[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022116365A1 - 紫外灯消毒净水反应器及其制造方法 - Google Patents

紫外灯消毒净水反应器及其制造方法 Download PDF

Info

Publication number
WO2022116365A1
WO2022116365A1 PCT/CN2021/070827 CN2021070827W WO2022116365A1 WO 2022116365 A1 WO2022116365 A1 WO 2022116365A1 CN 2021070827 W CN2021070827 W CN 2021070827W WO 2022116365 A1 WO2022116365 A1 WO 2022116365A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet
water purification
disinfection
reactor
lamp
Prior art date
Application number
PCT/CN2021/070827
Other languages
English (en)
French (fr)
Inventor
范冰丰
洪泽楷
吴任凯
Original Assignee
佛山科学技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山科学技术学院 filed Critical 佛山科学技术学院
Publication of WO2022116365A1 publication Critical patent/WO2022116365A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/32Burning methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3222Units using UV-light emitting diodes [LED]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3227Units with two or more lamps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/328Having flow diverters (baffles)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/14Maintenance of water treatment installations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention relates to the technical field of water purification, in particular to an ultraviolet lamp disinfection water purification reactor and a manufacturing method thereof.
  • Water is an essential substance for people's production and life, and the purification of water is becoming more and more important, especially if the water contains pathogens, it must be purified in time to prevent disease infection and maintain the health of the population.
  • the following methods are generally adopted for the disinfection of domestic water: 1. Physical methods, such as ultrasonic disinfection, heating method, etc.; 2. Chemical methods: other oxidant methods such as chlorine method, ozone method, heavy metal ion method, etc.
  • heating methods and ultrasonic disinfection have a limited scope, and the chemicals in chemical methods have negative effects on the environment, including water toxicity, the danger of organochlorine, and the resistance of viruses and protists to chlorine.
  • ultraviolet disinfection methods for water purification especially deep ultraviolet disinfection, have good effects and do not produce disinfection by-products, which have attracted people's attention.
  • Publication No. CN206173027U “Ultraviolet Disinfection Device for Drinking Water” describes an ultraviolet disinfection device for drinking water, which includes a sterilization chamber that is hollow and has a water inlet and a water outlet; the inner wall of the sterilization chamber is provided with Several ultraviolet lamps, the water inlet is arranged at the upper right position of the disinfection chamber, the water outlet is arranged at the lower left position of the disinfection chamber; the water flow detector is arranged at the water outlet of the disinfection chamber , and the detection signal output end of the water flow detector is connected with the detection signal input end of the control module, and the control signal output end of the control module is connected with the ultraviolet lamp; the publication number is CN102198964A "Ultraviolet Lamp Water Disinfection” "Apparatus” describes a UV lamp water disinfection device, including a pipe body, which is provided with a water inlet and a water outlet, at least a frame, the frame is accommodated in the pipe body, and at
  • the present invention provides an ultraviolet lamp disinfection water purification reactor and a manufacturing method thereof.
  • the technical solution adopted by the present invention to solve the technical problem is: to provide an ultraviolet lamp disinfection water purification reactor, which includes a reactor cavity, and the reactor cavity is provided with a water inlet and a water outlet; the reactor cavity is provided with a water inlet and a water outlet; An ultraviolet disinfection lamp is arranged in the body; a rectification device is arranged in the reactor cavity, and rectification through holes are distributed on the rectification device.
  • the water flow can be rectified after passing through the rectification through hole of the rectifier device, which can effectively reduce turbulence or eddy current phenomenon, and then pass through Ultraviolet disinfection can play a better purification and disinfection effect.
  • the rectifying device includes a front rectifying device and a rear rectifying device; the front rectifying device is located on the side of the reactor cavity facing the water inlet, and the rear rectifying device is located on the side of the reactor cavity facing the water inlet.
  • the reactor cavity faces the side of the water outlet; the area between the water inlet and the front rectifier is a side cavity inlet chamber, and the area between the front rectifier and the rear rectifier is a processing chamber
  • the area between the rear fairing device and the water outlet is the side chamber outlet chamber.
  • the ultraviolet disinfection lamp is disposed in the side wall of the reactor chamber at a position corresponding to the processing chamber.
  • the rectifying through holes are straight columnar through holes.
  • a method for manufacturing an ultraviolet lamp disinfection water purification reactor which is used to manufacture the above-mentioned ultraviolet lamp disinfection water purification reactor, comprises the following steps:
  • the ultraviolet lamp disinfection water purification reactor is manufactured by using 3D printing.
  • the step S1 includes:
  • the pre-weighed photoinitiator TPO and nitromethylproprrolone are mass 1:1.5 Mix the mixture in a ratio of 1:3, put it into an ultrasonic cleaner, and sonicate for at least 30 minutes to obtain a transparent and colorless mixture of initiators, which is placed in a dark room for later use;
  • the pre-weighed alumina, zirconia and kaolin are 1:2 by mass Mix in a ratio of 1:4, and then mix in a small amount of white scattering particles to obtain ceramic mixed powder;
  • A4 Add the initiator mixed liquid to the resin mixture and mix, and then use a grinder to grind the particles that are prone to agglomeration in the ceramic resin mixture, and grind for at least 30 minutes to obtain a paste but with a certain fluidity. the ceramic slurry.
  • the exposure time of single-layer printing during curing is not less than 1s.
  • the step S5 includes:
  • the printed matter is heated at a rate of at least 5.5°C/min, raised to not lower than 1100°C, and the printed matter is heated at a temperature of not lower than 1100°C for at least 30 minutes;
  • the temperature of the printed matter is increased at a rate of at least 2.8°C/min to not lower than 1600°C, and the printed matter is heated at a temperature of not lower than 1600°C for at least 2 hours.
  • the white scattering particles are one of titanium oxide, magnesium oxide, boron nitride, zinc oxide, and barium sulfate, or a mixture of at least two of them.
  • the ultraviolet disinfection lamp adopts a deep ultraviolet band LED in the ultraviolet UVC band of 200-300 nm.
  • the beneficial effects of the present invention are: by adopting a rectifying device, the abnormal flow state of the fluid is adjusted, the residence time of the fluid in the reactor is increased, the uniform and effective radiation of the ultraviolet radiation source is provided for the fluid, the disinfection effect on the fluid is further improved, and the realization of Thoroughly disinfect the fluid to achieve the purpose of improving the efficiency of water purification.
  • Fig. 1 is the perspective view of the present invention
  • Fig. 2 is the working schematic diagram of the present invention
  • FIG. 3 is a perspective view of an embodiment of a rectifier device in the present invention.
  • FIG. 4 is a perspective view of another embodiment of the rectifier device in the present invention.
  • FIG. 5 is a perspective view of another embodiment of the rectifier device in the present invention.
  • FIG. 6 is a perspective view of the ultraviolet disinfection lamp in the present invention.
  • Reactor chamber 100 water inlet 101, water outlet 102, side chamber inlet 110, processing chamber 120, side chamber outlet 130, UV disinfection lamp 200, lamp beads 210, heat sink 220, rectifier 300, rectifier through holes 301 , a front rectifying device 310 , and a rear rectifying device 320 .
  • FIG. 1 is a perspective view of an embodiment of the present invention.
  • an embodiment of the present invention provides an ultraviolet lamp disinfection water purification reactor, including a reactor cavity 100, and a water inlet is provided on the reactor cavity 100 101. Water outlet 102.
  • the reactor cavity 100 is a relatively sealed structure, and water enters the reactor cavity 100 from the water inlet 101 , and then comes out from the water outlet 102 .
  • the reactor cavity 100 is provided with an ultraviolet disinfection lamp 200 .
  • the ultraviolet disinfection lamp 200 performs sterilization and purification work through ultraviolet rays.
  • the sterilization principle of ultraviolet rays is based on the absorption of ultraviolet rays by microbial nucleic acids.
  • DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • the reactor cavity 100 is provided with a rectification device 300, and rectification through holes 301 are distributed on the rectification device 300. After the water flow passes through the rectification through holes 301 of the rectification device 300, turbulence or eddy current can be effectively reduced. .
  • the reactor cavity 100 has the functional characteristics of containing fluid and reflecting ultraviolet radiation.
  • the reactor cavity 100 can be regarded as a chamber completely filled with ultraviolet radiation.
  • the water flow becomes a fluid with a low Reynolds number after passing through the rectifying device 300, and then is disinfected by ultraviolet rays, and its disinfection effect is significantly higher than that of the traditional ultraviolet water disinfection and water purification reaction device.
  • the above-disclosed ultraviolet lamp disinfection water purification reactor is only a preferred embodiment of the present invention, and is only used to illustrate the technical solution of the present invention, but not to limit it.
  • Those of ordinary skill in the art should understand that they can still modify or supplement the technical solutions described in the foregoing technical solutions in combination with the prior art, or perform equivalent replacements to some of the technical features; and these modifications or replacements do not make The essence of the corresponding technical solutions deviates from the spirit and scope of the technical solutions of the embodiments of the present invention.
  • Example 1 the reactor cavity 100 is provided with one or more water inlets 101 .
  • the reactor cavity 100 is provided with one or more water outlets 102 .
  • the reactor cavity 100 is provided with one or ultraviolet disinfection lamp 200 .
  • one or more rectifiers 300 are provided on the reactor cavity 100 .
  • the rectifying device 300 includes a front rectifying device 310 and a rear rectifying device 320 .
  • the front rectifying device 310 is located on the side of the reactor cavity 100 facing the water inlet 101
  • the rear rectifying device 320 is located on the side of the reactor cavity 100 facing the water outlet 102 .
  • the area between the water inlet 101 and the front fairing device 310 is the side cavity inlet chamber 110
  • the area between the front fairing device 310 and the rear fairing device 320 is the processing chamber 120
  • the area between the rear fairing device 320 and the water outlet 102 is the side cavity outlet. Room 130. Because of the rectifying through hole 301, the side chamber inlet chamber 110, the processing chamber 120, and the side chamber outlet chamber 130 must be in communication.
  • the processing chamber 120 adopts a circular cross section.
  • the ultraviolet disinfection lamp 200 is arranged in the side wall of the reactor chamber 100 at the position corresponding to the processing chamber 120 .
  • the rectifying device 300 has a flat structure.
  • the rectifying device 300 has a plate-like structure, and the front side and/or the rear side of the rectifying device 300 is provided with a convex arc surface.
  • the rectifying device 300 has a truncated cone-shaped structure.
  • the front side and/or the rear side of the fairing device 300 is provided with a concave arc surface.
  • the rectifying through hole 301 is a straight columnar through hole.
  • the cross-sectional shape of the rectifying through hole 301 includes but is not limited to triangular, quadrangular, irregular polygon, regular polygon, circle and other m-shaped (m ⁇ 3).
  • the ultraviolet disinfection lamp 200 includes lamp beads 210 and heat sinks 220.
  • the lamp beads 210 are low-pressure, medium-pressure ultraviolet lamps and any ultraviolet lamps that can emit short-wave ultraviolet radiation.
  • the lamp beads 210 are LEDs in the deep ultraviolet band.
  • Another embodiment of the present invention provides a method for manufacturing an ultraviolet lamp disinfection water purification reactor, which is used to manufacture the above-mentioned ultraviolet lamp disinfection water purification reactor, comprising the following steps:
  • the manufacturing method of the ultraviolet lamp disinfection water purification reactor disclosed above is also only a preferred embodiment of the present invention, and is only used to illustrate the technical solution of the present invention, but not to limit it.
  • the present technology will be described below with reference to some embodiments.
  • step S1 includes,
  • the pre-weighed photoinitiator TPO and nitromethylproprrolone are mass 1:1.5 Mix the mixture in a ratio of 1:3, put it into an ultrasonic cleaner, and sonicate for at least 30 minutes to obtain a transparent and colorless mixture of initiators, which is placed in a dark room for later use;
  • the pre-weighed alumina, zirconia and kaolin are 1:2 by mass Mix in a ratio of 1:4, and then mix in a small amount of white scattering particles to obtain ceramic mixed powder;
  • A3 Add ceramic mixed powder to the pre-weighed resin monomer, stir while adding, and stir for at least 30 minutes to form a ceramic resin mixture.
  • the resin monomer is mainly used as a binder;
  • A4 Add the initiator mixed liquid to the resin mixture and mix, and then use a grinder to grind the particles that are prone to agglomeration in the ceramic resin mixture for at least 30 minutes to obtain a paste-like but fluid ceramic slurry.
  • the inner wall of the reactor cavity 100 prepared in this way can generate a diffuse reflection, and the diffuse reflection is composed of a coating material of white scattering particles.
  • step A1 the pre-weighed photoinitiator TPO and nitromethylproprrolone are mixed in a mass ratio of 1:1.5.
  • step A1 the pre-weighed photoinitiator TPO and nitromethylpropionol are mixed in a mass ratio of 1:2.
  • step A1 the pre-weighed photoinitiator TPO and nitromethylproprrolone are mixed in a mass ratio of 1:2.5.
  • step A1 the pre-weighed photoinitiator TPO and nitromethylproprrolone are mixed in a mass ratio of 1:3.
  • alumina, zirconia, kaolin, etc. are particulate materials.
  • step A2 pre-weighed alumina, zirconia, and kaolin are mixed in a mass ratio of 1:2, and then a small amount of white scattering particles are mixed to obtain a ceramic mixed powder.
  • step A2 pre-weighed alumina, zirconia, and kaolin are mixed in a mass ratio of 1:3, and then mixed with a small amount of white scattering particles to obtain a ceramic mixed powder.
  • step A2 pre-weighed alumina, zirconia, and kaolin are mixed in a mass ratio of 1:3.5, and then mixed with a small amount of white scattering particles to obtain a ceramic mixed powder.
  • step A2 pre-weighed alumina, zirconia, and kaolin are mixed in a mass ratio of 1:4, and then a small amount of white scattering particles are mixed to obtain a ceramic mixed powder.
  • the resin monomer is a granular or paste-like liquid with fluidity
  • the component is polyethylene glycol acrylate, which is formed under the action of photoinitiator TPO, nitromethylproprrolone and deep ultraviolet light. Bonds form solids.
  • Embodiment 17 in step S2, select 365 The 580nm band LED is used as the curing method, and the layer thickness is set to 10 150 ⁇ m, the exposure time of single-layer printing during curing is not less than 1s.
  • step S2 an LED with a wavelength of 365 nm is selected as the curing method, the layer thickness is set to 10 ⁇ m, and the single-layer printing exposure time during curing is 1 s.
  • step S2 an LED with a wavelength of 420 nm is selected as the curing method, the layer thickness is set to 60 ⁇ m, and the single-layer printing exposure time during curing is 5 s.
  • step S2 an LED with a wavelength of 500 nm is selected as the curing method, the layer thickness is set to 110 ⁇ m, and the single-layer printing exposure time during curing is 10 s.
  • step S2 an LED with a wavelength of 580 nm is selected as the curing method, the layer thickness is set to 150 ⁇ m, and the single-layer printing exposure time during curing is 20 s.
  • step S5 comprises,
  • the printed matter is heated at a rate of at least 5.5°C/min, raised to not lower than 1100°C, and heated at a temperature not lower than 1100°C for at least 30 minutes;
  • the printed matter is heated at a rate of at least 2.8°C/min, raised to not lower than 1600°C, and the printed matter is heated at a temperature of not lower than 1600°C for at least 2 hours.
  • step S5 B1.
  • the printed matter is heated at a rate of 3°C/min to 320°C, and the printed matter is heated and degreasing at a temperature of 320°C for 300 minutes;
  • the temperature of the printed matter is increased at a rate of 2.8°C/min to 1600°C, and the printed matter is heated at a temperature of 1600°C for 2 hours.
  • step S5 B1.
  • the temperature of the printed matter is increased at a rate of at least 3.5°C/min to 450°C, and the printed matter is heated and degreased at a temperature of 450°C for 350 minutes;
  • the printed matter is heated at a rate of at least 3.5°C/min to 1800°C, and the printed matter is heated at a temperature of 1800°C for 2.5 hours.
  • step S5 B1.
  • the temperature of the printed matter is increased at a rate of 4°C/min to 600°C, and the printed matter is heated and degreased at a temperature of 600°C for 400 minutes;
  • the printed matter is heated at a rate of 4°C/min, raised to 2200°C, and the printed matter is heated at a temperature of 2200°C for 3 hours.
  • the white scattering particles are one of titanium oxide, magnesium oxide, boron nitride, zinc oxide, and barium sulfate, or a mixture of at least two of them.
  • the ultraviolet disinfection lamp 200 adopts the deep ultraviolet band LED in the ultraviolet UVC band of 200-300 nm.
  • the ultraviolet disinfection lamp 200 adopts a deep-ultraviolet band LED with an ultraviolet UVC band of 200 nm.
  • the ultraviolet disinfection lamp 200 adopts a deep-ultraviolet band LED with an ultraviolet UVC band of 250 nm.
  • the ultraviolet disinfection lamp 200 adopts a deep-ultraviolet band LED in the ultraviolet UVC band of 300 nm.
  • step S3 printing of the water inlet 101 is started on the lifting platform.
  • printing of the water outlet 102 is started.
  • Example 22 after pre-printing the water inlet and the side cavity into the chamber 110, the front rectifying device is started to be printed.
  • Example 23 after pre-printing the water inlet and the side chamber inlet chamber 110, the front rectifier 310, and the processing chamber 120, start printing the rear rectifier,
  • the raw material of the processing chamber 120 is one or a mixture of at least two of alumina, zirconia, hydroxyapatite, and tricalcium phosphate;
  • Example 24 using 3D ceramic printing, using the method of introducing mixed slurry, and mixing white scattering particles into the printing slurry at the same time, the optional particle materials are alumina, zirconia, magnesia, zinc oxide, boron oxide, One or at least two mixtures of barium sulfate, etc.;
  • Example 24 the proportion of white scattering particles in the slurry is increased to not less than 10%, so that the ultraviolet irradiation treatment cavity can better reflect radiation.
  • Example 26 after pre-printing the inlet side chamber 110 and the front rectifier 310, start printing the processing chamber 120, and reserve n deep ultraviolet band LED disinfection module points on the wall of the ultraviolet irradiation processing chamber. It is the second step through hole.
  • the distribution of the plurality of ultraviolet disinfection lamps 200 on the cavity wall of the processing chamber 120 should preferably be uniform, so as to ensure the uniformity of radiation in the processing chamber 120 and prevent dead spots of disinfection.
  • Embodiment 27 during the printing process, a second-stage stepped through hole is reserved in the cavity wall of the reactor cavity 100 .
  • the radiation source (ultraviolet disinfection lamp 200 ) is sealed in the outer hole of the through hole, and the sealing materials for reference are: polyurethane, rubber, PS resin and other waterproof glues.
  • Embodiment 28 can achieve multi-level disinfection of the water flow according to the processing scale of the fluid and the specific type of fluid or fluid mixture to be introduced, and further improve the cleanliness of the water.
  • the superimposing manner of multiple deep-ultraviolet band LED disinfection water purification reaction devices of the present invention includes but is not limited to sequential superposition and hierarchical superposition. Sequential stacking means that the water outlet 102 and the water inlet 101 of the reaction device are connected in parallel and straight lines, and a plurality of ultraviolet disinfection water purification reaction devices are connected in a straight line connection.
  • Hierarchical stacking means that the reaction devices are stacked and connected in a row. This method is suitable for a small footprint and can be stacked in multiple layers to handle large-scale engineering disinfection.
  • the inner surface of the processing chamber 120 and the rectifier device 300 may be coated with a layer of material that has a high reflectance for ultraviolet light in the UVC ultraviolet band. It is known from current experiments that the inner surface has a higher UVC ultraviolet reflectance, which is The ultraviolet radiation dose emitted by the LED disinfection module 7 in the deep ultraviolet band will have a significantly higher utilization rate, and the utilization rate of the UVC light power will be greatly improved.
  • Example 30 the deep-ultraviolet band LED water purification reactor manufactured by the mold-opening method, in terms of material selection, can be made of PTFE as a whole or as a coating.
  • polytetrafluoroethylene is a preferred material for the reflective coating material of the inner wall of the reactor cavity 100 because it has a high reflectance to the UVC ultraviolet band, and polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • PTFE has an ultraviolet reflectance of more than 0.9 in the UVC ultraviolet band.
  • Example 31 in the selection of the coating material for the inner wall of the reactor chamber 100, aluminum, as an excellent reflector for UV, is superior to other types of metals (such as gold or silver), which is also the coating material for the entire processing chamber 120
  • metals such as gold or silver
  • the reflectance of aluminum to the UVC ultraviolet band reaches 0.98, which is only 0.02 away from the material with an ideal reflectance of 1.0.
  • the rectifier 300 adopts a uniform porous structure
  • the materials selected for reference include one or at least two mixtures of alumina, zirconia, magnesia, zinc oxide, boron oxide, barium sulfate, etc., high-density One or two mixtures of polyethylene, polyvinyl chloride, polypropylene, etc.
  • Example 33 in conjunction with the structure and system of the present invention, when water with E. coli is used to pass through the radiation-filled processing chamber 120, can be supplemented with some calculations:
  • is the circle ratio
  • R is the radius of the cross-sectional circle of the processing chamber 120
  • L is the length of the processing chamber 120 .
  • the water with a certain flow rate Q passes through the treatment chamber 120, that is, through the reaction chamber with a volume V, the average time that bacteria and viruses in the water stay in the treatment chamber 120 is:
  • k is the material reflectance (utilized part) of the surface of the processing chamber 120 and the rectifier device 300
  • 1-k is the absorption ratio and transmittance (loss part) of the surface of the processing chamber 120 and the device 5
  • is the material reflectance (utilized part) of the surface of the processing chamber 120 and the rectifier device 300
  • 1-k is the absorption ratio and transmittance (loss part) of the surface of the processing chamber 120 and the device 5
  • the power of the led sterilization module 7 is ⁇ , and the proportions of the openings of the led sterilization module 7 in the deep ultraviolet band and the holes on the rectifier device 300 are approximately ignored.
  • R is the radius of the cross-sectional circle of the processing chamber 120 (cm)
  • the present invention can also make appropriate changes and modifications to the above-mentioned embodiments. Therefore, the present invention is not limited to the specific embodiments disclosed and described above, and some modifications and changes to the present invention should also fall within the protection scope of the claims of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Civil Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physical Water Treatments (AREA)

Abstract

本发明公开了一种紫外灯消毒净水反应器及其制造方法,包括反应器腔体,所述反应器腔体上设置有入水口、出水口;所述反应器腔体内设置有紫外消毒灯;所述反应器腔体内设置有整流装置,所述整流装置上分布有整流通孔;通过采用整流装置配合紫外消毒灯的设计,使水流经过整流装置的整流通孔后起到整流作用,可以有效减少湍流或涡流现象,再通过紫外线消毒,就可以起到更好的净化消毒效果。

Description

紫外灯消毒净水反应器及其制造方法 技术领域
本发明涉及净水技术领域,特别是一种紫外灯消毒净水反应器及其制造方法。
背景技术
水为人们生产生活的必须物质,用水的净化也变得越来越重要,尤其是水中含有病原体,必须要及时净化处理,防止疾病传染,维护人群健康。现有技术中,对于生活用水的消毒普遍采用以下手段:1.物理方法,例如超声波消毒、加热法等;2.化学方法:加氯法、臭氧法、重金属离子法等其他氧化剂方法。但是加热法、超声波消毒作用范围有限,而化学方法中的化学物质对环境产生了负面影响,包括水的毒性、有机氯的危险性、以及病毒以及原生生物对氯产生抗药性等。相比之下,紫外线消毒方式净水,尤其是深紫外线消毒的效果好、不产生消毒副产物等优点受到了人们的重视。
公开号为CN206173027U的《饮用水的紫外线消毒装置》描述了一种饮用水的紫外线消毒装置,包括呈中空设置且具有进水口和出水口的消毒腔室;在所述消毒腔室的内壁设有若干紫外灯,进水口设于所述消毒腔室的右上方位置,所述出水口设于所述消毒腔室的左下方位置;所述水流检测器设在所述消毒腔室的出水口处,且所述水流检测器的检测信号输出端与所述控制模块的检测信号输入端连接,所述控制模块的控制信号输出端与所述紫外灯连接;公开号为CN102198964A的《紫外灯水体消毒装置》描述了一种紫外灯水体消毒装置,包括一管体,该管体上设有一进水口和一出水口,至少一框架,该框架容置于该管体内,以及至少一组设于该框架上的紫外灯模组。然而在实践中发现,如果采用紫外净水技术处理大流量流体时,流体易发生湍流或涡流现象,导致部分流体在紫外线消毒区域的停留时间过短,使紫外辐射源无法对流体进行均匀彻底消毒,流体受到的紫外有效辐射剂量低,导致取得的消毒效果差。为了解决上述问题,亟需提出一种新的技术手段。
发明内容
为了克服现有技术的不足,本发明提供一种紫外灯消毒净水反应器及其制造方法。
本发明解决其技术问题所采用的技术方案是:提供一种紫外灯消毒净水反应器,包括反应器腔体,所述反应器腔体上设置有入水口、出水口;所述反应器腔体内设置有紫外消毒灯;所述反应器腔体内设置有整流装置,所述整流装置上分布有整流通孔。
根据本发明所提供的紫外灯消毒净水反应器,通过采用整流装置配合紫外消毒灯的设计,使水流经过整流装置的整流通孔后起到整流作用,可以有效减少湍流或涡流现象,再通过紫外线消毒,就可以起到更好的净化消毒效果。
作为本发明的一些优选实施例,所述整流装置包括有前整流装置、后整流装置;所述前整流装置位于所述反应器腔体朝向所述入水口一侧位置,所述后整流装置位于所述反应器腔体朝向所述出水口一侧位置;所述入水口与所述前整流装置之间区域为侧腔入室,所述前整流装置与所述后整流装置之间区域为处理腔室,所述后整流装置与所述出水口之间区域为侧腔出室。
作为本发明的一些优选实施例,所述紫外消毒灯设置在对应所述处理腔室位置处的所述反应器腔体侧壁中。
作为本发明的一些优选实施例,所述整流通孔为直线柱状通孔。
一种紫外灯消毒净水反应器制造方法,用于制造上述的紫外灯消毒净水反应器,包括以下步骤:
S1.调制陶瓷浆料;
S2.预备3D打印机,将预设的紫外灯消毒净水反应器模型切片文件导入所述3D打印机,设置所述3D打印机的打印参数;
S3.进行打印工作,在所述3D打印机的升降台上平铺一层陶瓷浆料,并将所述升降台上平铺的陶瓷浆料固化,然后依次垂直向上打印,打印过程中逐层固化,形成打印物;
S4.进行冲洗工作,用溶剂冲洗所述打印物上未固化的残余陶瓷浆料;
S5.进行烧结工作,对所述打印物进行烧结形成所述反应器腔体;
S6.进行安装灯工作,在所述反应器腔体上安装所述紫外消毒灯、密封圈,并注入防水胶。
根据本发明所提供的紫外灯消毒净水反应器制造方法,通过采用3D打印制造紫外灯消毒净水反应器。
作为本发明的一些优选实施例,所述步骤S1包括,
A1.将预先称好的光引发剂TPO和氮甲基丙咯酮按质量1:1.5
Figure PCTCN2021070827-appb-000001
1:3比例混合,放入超声清洗仪中超声,超声至少30分钟,获得透明无色的引发剂混合液体,置入暗室待用;
A2.将预先称好的氧化铝、氧化锆、高岭土按质量1:2
Figure PCTCN2021070827-appb-000002
1:4比例混合,然后混入少量白色散射粒子,得到陶瓷混合粉;
A3.将预先称好的树脂单体中加入陶瓷混合粉,边加边搅拌,搅拌至少30分钟,形成陶瓷树脂混合物;
A4.对所述树脂混合物加入所述引发剂混合液体混合,再用研磨机将所述陶瓷树脂混合物中易发生团聚的颗粒进行研磨,研磨至少30分钟,得到呈膏状但具有一定流动性的所述陶瓷浆料。
作为本发明的一些优选实施例,所述步骤S2中,选用365
Figure PCTCN2021070827-appb-000003
580nm波段的LED作为固化方法,层厚设置为10
Figure PCTCN2021070827-appb-000004
150μm,固化时的单层打印曝光时间不低于1s。
作为本发明的一些优选实施例,所述步骤S5包括,
B1.对所述打印物以至少3℃/min速率升温、提升至320℃
Figure PCTCN2021070827-appb-000005
600℃,并在320℃
Figure PCTCN2021070827-appb-000006
600℃温度中持续至少300分钟对所述打印物进行加热脱脂;
B2.对所述打印物以至少5.5℃/min的速率升温、提升至不低于1100℃,并在不低于1100℃温度中持续至少30分钟对所述打印物进行加热;
B3.对所述打印物以至少2.8℃/min的速率升温、提升至不低于1600℃,并在不低于1600℃温度中持续至少2小时对所述打印物进行加热。
作为本发明的一些优选实施例,所述步骤A2中,所述白色散射粒子为氧化钛、氧化镁、氮化硼、氧化锌、硫酸钡中的一种,或者至少两种的混合体。
作为本发明的一些优选实施例,所述步骤S6中,所述紫外消毒灯采用200~300nm紫外UVC波段的深紫外波段led。
本发明的有益效果是:通过采用整流装置,调整流体异常流动状态,增加流体在反应器的滞留时间,为流体提供均匀的、有效的紫外辐射源的辐射,进一步提高对流体的消毒效果,实现对流体全面彻底的消毒,达到了提高净水效率的目的。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明的立体图;
图2是本发明的工作示意图;
图3是本发明中整流装置一种实施例的立体图;
图4是本发明中整流装置另一种实施例的立体图;
图5是本发明中整流装置另一种实施例的立体图;
图6是本发明中紫外消毒灯的立体图。
附图标记:
反应器腔体100、入水口101、出水口102、侧腔入室110、处理腔室120、侧腔出室130、紫外消毒灯200、灯珠210、散热片220、整流装置300、整流通孔301、前整流装置310、后整流装置320。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施方式,对本发明进行进一步详细说明。为透彻的理解本发明创造,在接下来的描述中会涉及一些特定细节。而在没有这些特定细节时,本发明创造仍可实现,即所属领域内的技术人员使用此处的这些描述和陈述向所属领域内的其他技术人员可更有效的介绍他们的工作本质。此外需要说明的是,下面描述中使用的词语“前侧”、“后侧”等指的是附图中的方向,词语“内”和“外”分别指的是朝向或远离特定部件几何中心的方向,相关技术人员在对上述方向作简单、不需要创造性的调整不应理解为本申请保护范围以外的技术。应当理解,此处所描述的具体实施方式仅仅用以解释本申请,并不用于限定实际保护范围。而为避免混淆本发明创造的目的,由于熟知的 制造方法、控制程序、部件尺寸、材料成分、管路布局等的技术已经很容易理解,因此它们并未被详细描述。
图1是本发明一个实施方式的立体图,参照图1,本发明的一个实施方式提供了一种紫外灯消毒净水反应器,包括反应器腔体100,反应器腔体100上设置有入水口101、出水口102。反应器腔体100为一个相对密封结构,水从入水口101进入反应器腔体100,再从出水口102出来。
进一步的,反应器腔体100内设置有紫外消毒灯200。紫外消毒灯200通过紫外线进行灭菌净化工作。紫外线的灭菌原理是基于微生物核酸对紫外线的吸收,当微生物受到紫外线照射时,微生物的DNA(脱氧核糖核酸)和RNA(核糖核酸)分子结构将会因为吸收紫外线的能量被破坏,造成生长性细胞和再生性细胞的死亡,微生物被灭活,失去繁殖和自我复制的功能,达到杀菌消毒的效果。
再进一步的,参照图2,反应器腔体100内设置有整流装置300,整流装置300上分布有整流通孔301,水流经过整流装置300的整流通孔301后,可以有效减少湍流或涡流现象。
反应器腔体100内具有容纳流体、反射紫外辐射的功能特性,反应器腔体100内可看作完全充满紫外辐射的一个腔室。水流对于经过整流装置300后成为低雷诺数的流体,再通过紫外线消毒,其消毒效果作用明显高于传统的紫外水消毒净水反应装置。
以上公开的一种紫外灯消毒净水反应器所揭露的仅为本发明较佳的实施方式,仅用于说明本发明的技术方案,而非对其限制。本领域的普通技术人员应当理解,其依然可以对前述的技术方案所记载的技术方案结合现有技术进行修改或者补充,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应的技术方案的本质脱离本发明的实施方式技术方案的精神和范围。
以下结合一些实施例进行说明,其中此处所称的“实施例”是指可包含于本申请至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。此外,表示一个或多个实施例的细节并非固定的指代任何特定顺序,也不构成对本发明的限制。
实施例1,反应器腔体100上设置有一个或多个入水口101。
实施例2,反应器腔体100上设置有一个或多个出水口102。
实施例3,反应器腔体100上设置有一个或紫外消毒灯200。
实施例4,反应器腔体100上设置有一个或多个整流装置300。
实施例5,整流装置300包括有前整流装置310、后整流装置320。
前整流装置310位于反应器腔体100朝向入水口101一侧位置,后整流装置320位于反应器腔体100朝向出水口102一侧位置。
入水口101与前整流装置310之间区域为侧腔入室110,前整流装置310与后整流装置320之间区域为处理腔室120,后整流装置320与出水口102之间区域为侧腔出室130。因为整流通孔301,侧腔入室110、处理腔室120、侧腔出室130之间必定是连通的。
实施例6,处理腔室120垂直于流体流动方向的截面为n边形状(n≥3),例如三角形(n=3)、四边形(n=4)、规则多边形(n>4)、不规则多边形(n>4)以及圆形(n为∞)。
本实施例中,优选的,处理腔室120采用圆形的截面。
实施例7,紫外消毒灯200设置在对应处理腔室120位置处的反应器腔体100侧壁中。
实施例8,参照图3,整流装置300为平板状结构。
实施例9,参照图4,整流装置300为板状结构,整流装置300的前侧和/或后侧设置有凸弧面。
实施例10,参照图5,整流装置300为圆台状结构。
实施例11,整流装置300的前侧和/或后侧设置有凹弧面。
实施例12,整流通孔301为直线柱状通孔。
实施例13,整流通孔301的截面形状包括不限于三角形、四边形、不规则多边形、规则多边形、圆形等m边形(m≥3)。
实施例14,参照图6,紫外消毒灯200包括有灯珠210、散热片220,灯珠210采用低压、中压紫外线灯以及任何可以发出短波紫外辐射范围的紫外线灯。
本实施例中,优选地,灯珠210采用深紫外波段led。
本发明的另一个实施方式提供了一种紫外灯消毒净水反应器制造方法,用于制造上述的紫外灯消毒净水反应器,包括以下步骤:
S1.调制陶瓷浆料;
S2.预备3D打印机,将预设的紫外灯消毒净水反应器模型切片文件导入3D打印机,设置3D打印机的打印参数;
S3.进行打印工作,在3D打印机的升降台上平铺一层陶瓷浆料,并将升降台上平铺的陶瓷浆料固化,然后依次垂直向上打印,打印过程中逐层固化,形成打印物;
S4.进行冲洗工作,用溶剂冲洗打印物上未固化的残余陶瓷浆料;
S5.进行烧结工作,对打印物进行烧结形成反应器腔体100;
S6.进行安装灯工作,在反应器腔体100上安装紫外消毒灯200、密封圈,并注入防水胶。
以上公开的一种紫外灯消毒净水反应器制造方法所揭露的同样仅为本发明较佳的实施方式,仅用于说明本发明的技术方案,而非对其限制。以下再结合一些实施例进行说明本技术。
实施例15,步骤S1包括,
A1.将预先称好的光引发剂TPO和氮甲基丙咯酮按质量1:1.5
Figure PCTCN2021070827-appb-000007
1:3比例混合,放入超声清洗仪中超声,超声至少30分钟,获得透明无色的引发剂混合液体,置入暗室待用;
A2.将预先称好的氧化铝、氧化锆、高岭土按质量1:2
Figure PCTCN2021070827-appb-000008
1:4比例混合,然后混入少量白色散射粒子,得到陶瓷混合粉;
A3.将预先称好的树脂单体中加入陶瓷混合粉,边加边搅拌,搅拌至少30分钟,形成陶瓷树脂混合物,树脂单体主要做粘结剂使用;
A4.对树脂混合物加入引发剂混合液体混合,再用研磨机将陶瓷树脂混合物中易发生团聚的颗粒进行研磨,研磨至少30分钟,得到呈膏状但具有一定流动性的陶瓷浆料。
这样制备出来的反应器腔体100内壁能发生一个漫反射,漫反射由白色散射粒子涂层材料组成。
本实施例中,可选地,步骤A1中,将预先称好的光引发剂TPO和氮甲基丙咯酮按质量1:1.5比例混合。
本实施例中,可选地,步骤A1中,将预先称好的光引发剂TPO和氮甲基丙咯酮按质量1:2比例混合。
本实施例中,可选地,步骤A1中,将预先称好的光引发剂TPO和氮甲基丙咯酮按质量1:2.5比例混合。
本实施例中,可选地,步骤A1中,将预先称好的光引发剂TPO和氮甲基丙咯酮按质量1:3比例混合。
本实施例中,可选地,步骤A2中氧化铝、氧化锆、高岭土等为颗粒材料。
本实施例中,可选地,步骤A2中,将预先称好的氧化铝、氧化锆、高岭土按质量1:2比例混合,然后混入少量白色散射粒子,得到陶瓷混合粉。
本实施例中,可选地,步骤A2中,将预先称好的氧化铝、氧化锆、高岭土按质量1:3比例混合,然后混入少量白色散射粒子,得到陶瓷混合粉。
本实施例中,可选地,步骤A2中,将预先称好的氧化铝、氧化锆、高岭土按质量1:3.5比例混合,然后混入少量白色散射粒子,得到陶瓷混合粉。
本实施例中,可选地,步骤A2中,将预先称好的氧化铝、氧化锆、高岭土按质量1:4比例混合,然后混入少量白色散射粒子,得到陶瓷混合粉。
实施例16,步骤A3中,树脂单体为颗粒状或膏状具备流动性液体,成分为聚乙二醇丙烯酸酯,在光引发剂TPO和氮甲基丙咯酮以及深紫外光作用下成键形成固体。
实施例17,步骤S2中,选用365
Figure PCTCN2021070827-appb-000009
580nm波段的LED作为固化方法,层厚设置为10
Figure PCTCN2021070827-appb-000010
150μm,固化时的单层打印曝光时间不低于1s。
本实施例中,可选地,步骤S2中,选用365nm波段的LED作为固化方法,层厚设置为10μm,固化时的单层打印曝光时间1s。
本实施例中,可选地,步骤S2中,选用420nm波段的LED作为固化方法,层厚设置为60μm,固化时的单层打印曝光时间5s。
本实施例中,可选地,步骤S2中,选用500nm波段的LED作为固化方法,层厚设置为110μm,固化时的单层打印曝光时间10s。
本实施例中,可选地,步骤S2中,选用580nm波段的LED作为固化方法,层厚设置为150μm,固化时的单层打印曝光时间20s。
实施例18,步骤S5包括,
B1.对打印物以至少3℃/min速率升温、提升至320℃
Figure PCTCN2021070827-appb-000011
600℃,并在320℃
Figure PCTCN2021070827-appb-000012
600℃温度中持续至少300分钟对打印物进行加热脱脂;
B2.对打印物以至少5.5℃/min的速率升温、提升至不低于1100℃,并在不低于1100℃温度中持续至少30分钟对打印物进行加热;
B3.对打印物以至少2.8℃/min的速率升温、提升至不低于1600℃,并在不低于1600℃温度中持续至少2小时对打印物进行加热。
本实施例中,可选地,步骤S5中,B1.对打印物以3℃/min速率升温、提升至320℃℃,并在320℃温度中持续300分钟对打印物进行加热脱脂;
B2.对打印物以5.5℃/min的速率升温、提升至1100℃,并在1100℃温度中持续30分钟对打印物进行加热;
B3.对打印物以2.8℃/min的速率升温、提升至1600℃,并在1600℃温度中持续2小时对打印物进行加热。
本实施例中,可选地,步骤S5中,B1.对打印物以至少3.5℃/min速率升温、提升至450℃,并在450℃温度中持续350分钟对打印物进行加热脱脂;
B2.对打印物6℃/min的速率升温、提升至1400℃,并在1400℃温度中持续40分钟对打印物进行加热;
B3.对打印物以至少3.5℃/min的速率升温、提升至1800℃,并在1800℃温度中持续2.5小时对打印物进行加热。
本实施例中,可选地,步骤S5中,B1.对打印物以4℃/min速率升温、提升至600℃,并在600℃温度中持续400分钟对打印物进行加热脱脂;
B2.对打印物以6.5℃/min的速率升温、提升至1100℃,并在1100℃温度中持续至少30分钟对打印物进行加热;
B3.对打印物以4℃/min的速率升温、提升至2200℃,并在2200℃温度中持续3小时对打印物进行加热。
实施例19,步骤A2中,白色散射粒子为氧化钛、氧化镁、氮化硼、氧化锌、硫酸钡中的一种,或者至少两种的混合体。
实施例20,步骤S6中,紫外消毒灯200采用200~300nm紫外UVC波段的深紫外波段led。
本实施例中,可选地,步骤S6中,紫外消毒灯200采用200nm紫外UVC波段的深紫外波段led。
本实施例中,可选地,步骤S6中,紫外消毒灯200采用250nm紫外UVC波段的深紫外波段led。
本实施例中,可选地,步骤S6中,紫外消毒灯200采用300nm紫外UVC波段的深紫外波段led。
实施例21,步骤S3中,在升降台上开始打印入水口101。
本实施例中,可选地,在打印完入水口101、侧腔入室110、前整流装置310、处理腔室120、后整流装置320、侧腔出室130后开始打印出水口102。
实施例22,在预打印完入水口与侧腔入室110后开始打印前整流装置。
实施例23,在预打印完入水口与侧腔入室110、前整流装置310、处理腔室120后开始打印后整流装置,
获得处理腔室120步骤:
处理腔室120原材采用氧化铝,氧化锆,羟基磷灰石,磷酸三钙等中的一种或至少两种混合体;
实施例24,采用3D陶瓷打印,利用导入混合浆料的方式,同时在打印浆料中混入白色散射粒子,可供选取地粒子材料有氧化铝、氧化锆、氧化镁、氧化锌、氧化硼、硫酸钡等中的一种或至少两种混合体;
实施例24,提高白色散射粒子在浆料中比例不低于10%,使得紫外照射处理腔体能较好反射辐射。
实施例26,在预打印完入水口侧腔入室110、前整流装置310后,开始打印处理腔室120,紫外照射处理腔体腔体壁预留n个深紫外波段led消毒模块点位,点位为二级阶梯通孔。
在紫外照射腔室添加辐射源(紫外消毒灯200)的步骤:
将辐射源置入紫外照射腔室二级阶梯通孔中;
多个紫外消毒灯200在处理腔室120的腔体壁的分布应以均匀分布为佳,以保证处理腔室120内辐射均匀性,防止消毒死角。
实施例27,打印过程中,反应器腔体100的腔体壁预留二级阶梯形的通孔。
在通孔外孔中对辐射源(紫外消毒灯200)进行密封,可供参考的密封材料有:聚氨酯、橡胶、PS树脂等防水胶水。
实施例28,可根据对流体的处理规模以及具体通入的流体类型或流体混合物,能对水流达到多层级消毒,进一步提高水的洁净度。多个本发明深紫外波段led消毒净水反应装置叠加方式包括不限于顺序叠加以及层级叠加。顺序叠加即指反应装置出水口102与入水口101平行直线连接,多个紫外消毒净水反应装置以直线连接的方式进行相接,该方法连接适合距离较远,可用于间接输送连接。而层级叠加即指反应装置成排进行叠加连接,该方法适合占地面积较小,可多重进行层级叠加用于处理规模较大的工程消毒。
实施例29,处理腔室120内表面以及整流装置300可涂有一层对UVC紫外波段的紫外线光有着高反射比的材料,由目前实验得知,内表面有着越高的UVC紫外反射比,其对深紫外波段led消毒模块7发出的紫外辐射剂量将有着更为明显高的利用率,将会大幅度提高对UVC光功率的利用率。
实施例30,采用开模方式制造的深紫外波段led净水反应器,材料选择上,可以整体或涂层采用PTFE。
本实施例中,可选地,聚四氟乙烯(PTFE)因作为对UVC紫外波段有着较高的反射比,作为反应器腔体100内壁的反射涂层材料的优选项,聚四氟乙烯(PTFE)对UVC紫外波段的紫外光反射率可达0.9以上。
实施例31,反应器腔体100内壁的涂层材料选择上,铝作为对UV优良的反射体,优于其他类型的金属(如金或银),其也是整个处理腔室120以及涂层材料的候选材料之一,就目前实验技术表明,在一定程度下,铝对UVC紫外波段的反射比达到0.98,离理想反射比为1.0的材料仅有0.02之差。
实施例32,整流装置300采取均匀多孔结构,可供参考选取地材料有氧化铝、氧化锆、氧化镁、氧化锌、氧化硼、硫酸钡等中的一种或至少两种混合体、高密度聚乙烯、聚氯乙烯、聚丙烯等一种或两种混合物。
实施例33,结合本发明的结构与系统,当使用具有大肠杆菌的水通过充满辐射的处理腔室120时,可采用一些计算加以补充说明:
在本实施例中,设通入水量流速Q=158ml/s
由于本优选实施例采用圆形截面的处理腔室120,其腔室具有的容积为:V=πR 2L
其中π为圆周率,R为处理腔室120截面圆的半径大小,L为处理腔室120的长度。
则设有一定的流速Q的水经过处理腔室120,即通过容积为V的反应腔室内,则可得出水中细菌以及病毒在处理腔室120中停留的平均时间为:
τ=V/Q
根据紫外辐射剂量的计算公式:
紫外剂量(mJ/cm 2)=粒子停留的平均时间(s)×紫外照度(mw/cm 2),得出单个点辐射源7照射下紫外剂量的式为:
Figure PCTCN2021070827-appb-000013
其中k为处理腔室120以及整流装置300的表面的材料反射比(利用部分),1-k则为处理腔室120以及装置5表面的吸收比和透射比(损耗部分),单个深紫外波段led消毒模块7功率为φ,且近似忽略深紫外波段led消毒模块7开孔以及整流装置300上孔的占比。
由目前技术可知,大肠杆菌在275nm的UVC紫外波段的紫外光照射下需要剂量D为9mJ/cm 2。则根据公式得:需要剂量=单个点辐射源照射下紫外剂量(mJ/cm 2)×点辐射源数量(个),换算为:
Figure PCTCN2021070827-appb-000014
设涂抹的反射材料的反射比为k=0.9时,且Q为158ml/s,深紫外波段led消毒模块7辐射功率为10mw,则得到公式简化为:
Figure PCTCN2021070827-appb-000015
其中R为处理腔室120截面圆的半径大小(cm)
应当注意到的是,随着腔体的半径R增大,点辐射源数目在减少,LED数目正比于
Figure PCTCN2021070827-appb-000016
则可以得出在不同处理腔室120截面圆的半径大小时,得出需要的10mw的深紫外波段led消毒模块7的数量:
Figure PCTCN2021070827-appb-000017
根据上述原理,本发明还可以对上述实施方式进行适当的变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。

Claims (10)

  1. 一种紫外灯消毒净水反应器,包括反应器腔体(100),所述反应器腔体(100)上设置有入水口(101)、出水口(102),其特征在于:
    所述反应器腔体(100)内设置有紫外消毒灯(200);
    所述反应器腔体(100)内设置有整流装置(300),所述整流装置(300)上分布有整流通孔(301)。
  2. 根据权利要求1所述的一种紫外灯消毒净水反应器,其特征在于:所述整流装置(300)包括有前整流装置(310)、后整流装置(320);
    所述前整流装置(310)位于所述反应器腔体(100)朝向所述入水口(101)一侧位置,所述后整流装置(320)位于所述反应器腔体(100)朝向所述出水口(102)一侧位置;
    所述入水口(101)与所述前整流装置(310)之间区域为侧腔入室(110),所述前整流装置(310)与所述后整流装置(320)之间区域为处理腔室(120),所述后整流装置(320)与所述出水口(102)之间区域为侧腔出室(130)。
  3. 根据权利要求2所述的一种紫外灯消毒净水反应器,其特征在于:所述紫外消毒灯(200)设置在对应所述处理腔室(120)位置处的所述反应器腔体(100)侧壁中。
  4. 根据权利要求1所述的一种紫外灯消毒净水反应器,其特征在于:所述整流通孔(301)为直线柱状通孔。
  5. 一种紫外灯消毒净水反应器制造方法,用于制造权利要求1至4中任一项所述的紫外灯消毒净水反应器,其特征在于包括以下步骤:
    S1.调制陶瓷浆料;
    S2.预备3D打印机,将预设的紫外灯消毒净水反应器模型切片文件导入所述3D打印机,设置所述3D打印机的打印参数;
    S3.进行打印工作,在所述3D打印机的升降台上平铺一层陶瓷浆料,并将所述升降台上平铺的陶瓷浆料固化,然后依次垂直向上打印,打印过程中逐层固化,形成打印物;
    S4.进行冲洗工作,用溶剂冲洗所述打印物上未固化的残余陶瓷浆料;
    S5.进行烧结工作,对所述打印物进行烧结形成所述反应器腔体(100);
    S6.进行安装灯工作,在所述反应器腔体(100)上安装所述紫外消毒灯(200)、密封圈,并注入防水胶。
  6. 根据权利要求5所述的一种紫外灯消毒净水反应器制造方法,其特征在于:所述步骤S1包括,
    A1.将预先称好的光引发剂TPO和氮甲基丙咯酮按质量
    Figure PCTCN2021070827-appb-100001
    比例混合,放入超声清洗仪中超声,超声至少30分钟,获得透明无色的引发剂混合液体,置入暗室待用;
    A2.将预先称好的氧化铝、氧化锆、高岭土按质量
    Figure PCTCN2021070827-appb-100002
    比例混合,然后混入少量白色散射粒子,得到陶瓷混合粉;
    A3.将预先称好的树脂单体中加入陶瓷混合粉,边加边搅拌,搅拌至少30分钟,形成陶瓷树脂混合物;
    A4.对所述树脂混合物加入所述引发剂混合液体混合,再用研磨机将所述陶瓷树脂混合物中易发生团聚的颗粒进行研磨,研磨至少30分钟,得到呈膏状但具有一定流动性的所述陶瓷浆料。
  7. 根据权利要求5所述的一种紫外灯消毒净水反应器制造方法,其特征在于:所述步骤S2中,选用
    Figure PCTCN2021070827-appb-100003
    波段的LED作为固化方法,层厚设置为
    Figure PCTCN2021070827-appb-100004
    固化时的单层打印曝光时间不低于1s。
  8. 根据权利要求5所述的一种紫外灯消毒净水反应器制造方法,其特征在于:所述步骤S5包括,
    B1.对所述打印物以至少3℃/min速率升温、提升至
    Figure PCTCN2021070827-appb-100005
    并在
    Figure PCTCN2021070827-appb-100006
    温度中持续至少300分钟对所述打印物进行加热脱脂;
    B2.对所述打印物以至少5.5℃/min的速率升温、提升至不低于1100℃,并在不低于1100℃温度中持续至少30分钟对所述打印物进行加热;
    B3.对所述打印物以至少2.8℃/min的速率升温、提升至不低于1600℃,并在不低于1600℃温度中持续至少2小时对所述打印物进行加热。
  9. 根据权利要求6所述的一种紫外灯消毒净水反应器制造方法,其特征在于:所述步骤A2中,所述白色散射粒子为氧化钛、氧化镁、氮化硼、氧化锌、硫酸钡中的一种,或者至少 两种的混合体。
  10. 根据权利要求5所述的一种紫外灯消毒净水反应器制造方法,其特征在于:所述步骤S6中,所述紫外消毒灯(200)采用200~300nm紫外UVC波段的深紫外波段led。
PCT/CN2021/070827 2020-12-03 2021-01-08 紫外灯消毒净水反应器及其制造方法 WO2022116365A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011393658.5 2020-12-03
CN202011393658.5A CN112645406A (zh) 2020-12-03 2020-12-03 紫外灯消毒净水反应器及其制造方法

Publications (1)

Publication Number Publication Date
WO2022116365A1 true WO2022116365A1 (zh) 2022-06-09

Family

ID=75350005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070827 WO2022116365A1 (zh) 2020-12-03 2021-01-08 紫外灯消毒净水反应器及其制造方法

Country Status (2)

Country Link
CN (1) CN112645406A (zh)
WO (1) WO2022116365A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113511701A (zh) * 2021-07-06 2021-10-19 青净光能科技股份有限公司 双腔室流体处理系统
JP7441895B2 (ja) 2022-07-01 2024-03-01 星和電機株式会社 流体殺菌装置
CN116002801A (zh) * 2022-12-16 2023-04-25 东莞市中皓照明科技有限公司 用于饮用水设备后端出水口的uvc-led消毒装置及消毒方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120054417A (ko) * 2010-11-19 2012-05-30 조선대학교산학협력단 비접촉식 자외선 살균장치
CN102515304A (zh) * 2011-12-27 2012-06-27 南京工业大学 等离子体污水处理用液力整流装置及其整流方法
JP2014061462A (ja) * 2012-09-20 2014-04-10 Toshiba Corp 液体処理装置
CN206033304U (zh) * 2016-08-29 2017-03-22 广东康晟环保设备工程有限公司 一种高效的明渠式紫外线消毒设备
CN106810215A (zh) * 2017-01-18 2017-06-09 深圳摩方新材科技有限公司 一种陶瓷浆料的制备及3d打印光固化成型方法
CN107540352A (zh) * 2017-09-20 2018-01-05 吴江中瑞机电科技有限公司 3d打印氧化铝增韧陶瓷浆料的制备及应用
CN110170061A (zh) * 2018-02-20 2019-08-27 斯坦雷电气株式会社 具有多个整流板的流体处理设备
CN111320229A (zh) * 2018-12-13 2020-06-23 斯坦雷电气株式会社 流体杀菌装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204058149U (zh) * 2014-08-22 2014-12-31 天津亿安瑞科技有限公司 一种净化机净化装置
CN109467385B (zh) * 2018-01-15 2021-09-03 杭州创屹机电科技有限公司 一种抗菌环保3d打印陶瓷材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120054417A (ko) * 2010-11-19 2012-05-30 조선대학교산학협력단 비접촉식 자외선 살균장치
CN102515304A (zh) * 2011-12-27 2012-06-27 南京工业大学 等离子体污水处理用液力整流装置及其整流方法
JP2014061462A (ja) * 2012-09-20 2014-04-10 Toshiba Corp 液体処理装置
CN206033304U (zh) * 2016-08-29 2017-03-22 广东康晟环保设备工程有限公司 一种高效的明渠式紫外线消毒设备
CN106810215A (zh) * 2017-01-18 2017-06-09 深圳摩方新材科技有限公司 一种陶瓷浆料的制备及3d打印光固化成型方法
CN107540352A (zh) * 2017-09-20 2018-01-05 吴江中瑞机电科技有限公司 3d打印氧化铝增韧陶瓷浆料的制备及应用
CN110170061A (zh) * 2018-02-20 2019-08-27 斯坦雷电气株式会社 具有多个整流板的流体处理设备
CN111320229A (zh) * 2018-12-13 2020-06-23 斯坦雷电气株式会社 流体杀菌装置

Also Published As

Publication number Publication date
CN112645406A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
WO2022116365A1 (zh) 紫外灯消毒净水反应器及其制造方法
US9861721B2 (en) Systems and methods for performing the bacterial disinfection of a fluid using point radiation sources
US20130323128A1 (en) Ultraviolet photoreactor for the purification of fluids
TWI490245B (zh) 氯化之氯乙烯系樹脂之製造方法及製造裝置
CN102318872A (zh) 一种led紫外流体消毒方法及其装置
JP2011016074A (ja) 紫外線殺菌浄水装置とそれに使用する紫外線ledユニット
CN103570098A (zh) 一种紫外led流体消毒系统
CN202175579U (zh) 一种led紫外流体消毒装置
JP2000325796A (ja) 光触媒担持体及びその製造方法
CN102092814A (zh) 一种处理船舶压载水的装置
CN116761784A (zh) 光反应器组件
JP2012223736A (ja) 液体清浄化処理装置
WO2014178362A1 (ja) 塩素化塩化ビニル系樹脂の製造装置および製造方法
CN107486230A (zh) 一种高活性大比表面积纳米片状结构g‑C3N4的制备方法
WO2022147878A1 (zh) 准直式消毒净水装置
CN208667170U (zh) 紫外净水装置
JP7186383B2 (ja) 水処理システム
CN101074122A (zh) 光触媒的杀菌方法及其装置以及运用光触媒杀菌的冷却水塔
CN101076555A (zh) 具有改善的表面交联和改善的亲水性的超吸收聚合物颗粒以及利用真空紫外线辐射制备它们的方法
CN202449881U (zh) 一种处理船舶压载水的装置
CN105692775A (zh) 一种超声波-微波-紫外联合辐照进行水消毒的方法
TWM527005U (zh) 具多重模式之水素裝置
CN104291411B (zh) 一种紫外发光二极管水消毒系统
JP2003200178A (ja) 光触媒を利用した水処理装置
CN204224290U (zh) 一种紫外发光二极管水消毒系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899409

Country of ref document: EP

Kind code of ref document: A1