[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022110761A1 - 一种空调器 - Google Patents

一种空调器 Download PDF

Info

Publication number
WO2022110761A1
WO2022110761A1 PCT/CN2021/099382 CN2021099382W WO2022110761A1 WO 2022110761 A1 WO2022110761 A1 WO 2022110761A1 CN 2021099382 W CN2021099382 W CN 2021099382W WO 2022110761 A1 WO2022110761 A1 WO 2022110761A1
Authority
WO
WIPO (PCT)
Prior art keywords
defrosting
heat exchanger
flow path
outdoor
outdoor heat
Prior art date
Application number
PCT/CN2021/099382
Other languages
English (en)
French (fr)
Inventor
张恒
夏兴祥
孟建军
董辰
高永坤
Original Assignee
青岛海信日立空调系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信日立空调系统有限公司 filed Critical 青岛海信日立空调系统有限公司
Publication of WO2022110761A1 publication Critical patent/WO2022110761A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0251Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units being defrosted alternately
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started

Definitions

  • the present application relates to the technical field of air conditioners, and in particular, to an air conditioner.
  • the technology of air source heat pump is becoming more and more mature, and it is widely used in domestic and commercial fields.
  • the air source heat pump has a big problem in the heating operation: when the outdoor temperature and humidity reach a certain condition, frost will form on the air side of the outdoor heat exchanger, and as the amount of frost increases, the surface of the evaporator will gradually be blocked , resulting in the reduction of the heat transfer coefficient on the surface of the outdoor heat exchanger and the increase in the gas flow resistance, which seriously affects the heating effect of the machine. Therefore, the unit needs to be defrosted regularly.
  • Some embodiments of the present application provide an air conditioner, comprising:
  • An outdoor unit, the outdoor unit includes:
  • a flow path switching device for switching the flow path of the refrigerant discharged from the compressor
  • a flow path throttling device for throttling part of the refrigerant from the compressor switched by the flow path switching device
  • a first control valve which is connected in parallel with the flow path throttling device
  • Defrosting switching device is provided with 2, is connected with two outdoor heat exchangers respectively, is used for switching described outdoor heat exchanger to communicate with described flow path throttling device or communicate with gas-liquid separator;
  • a throttling device one end of which is connected to a position where a liquid pipe throttling device is connected to the liquid side of the outdoor heat exchanger, and the other end is connected to another liquid pipe throttling device that is connected to a position corresponding to the outdoor heat exchanger;
  • a control device when one of the outdoor heat exchangers in the outdoor unit needs to be defrosted, the control device controls the flow path switching device, the flow path throttling device, the first control valve, the defrosting switching device, and the liquid pipe throttling A device and a throttling device, so that the outdoor heat exchanger to be defrosted is implemented as a defrosting heat exchanger, and the remaining one outdoor heat exchanger is implemented as an evaporator;
  • the control device controls the flow path switching device to open; controls the flow path throttle device to open; controls the defrost switching device to flow out from the flow path throttle device
  • the refrigerant is communicated with the main gas pipe of the defrosting heat exchanger; the liquid pipe throttling device and the first control valve communicated with the defrosting heat exchanger are controlled to be closed; and the throttling device is controlled to be opened.
  • FIG. 1 is a system structure diagram of an air conditioner according to some embodiments of the present application.
  • FIG. 2 is a flow chart of defrosting an outdoor heat exchanger according to some embodiments of the present application.
  • FIG. 3 is a system structure diagram of another embodiment of the air conditioner of the present application.
  • the refrigeration cycle of an air conditioner includes a compressor, a condenser, an expansion valve, and an evaporator.
  • the refrigeration cycle includes a series of processes involving compression, condensation, expansion, and evaporation, and supplies refrigerant to air that has been conditioned and heat-exchanged.
  • the compressor compresses the refrigerant gas in a high temperature and high pressure state and discharges the compressed refrigerant gas.
  • the discharged refrigerant gas flows into the condenser.
  • the condenser condenses the compressed refrigerant into a liquid phase, and heat is released to the surrounding environment through the condensation process.
  • the expansion valve expands the high-temperature and high-pressure liquid-phase refrigerant condensed in the condenser into a low-pressure liquid-phase refrigerant.
  • the evaporator evaporates the refrigerant expanded in the expansion valve and returns the refrigerant gas in a low temperature and low pressure state to the compressor.
  • the evaporator can achieve the cooling effect by using the latent heat of evaporation of the refrigerant to exchange heat with the material to be cooled.
  • the air conditioner regulates the temperature of the indoor space.
  • the air conditioner outdoor unit refers to a part including a compressor of a refrigeration cycle and an outdoor heat exchanger
  • the air conditioner indoor unit includes an indoor heat exchanger
  • an expansion valve may be provided in the air conditioner indoor unit or the outdoor unit.
  • Indoor heat exchangers and outdoor heat exchangers are used as condensers or evaporators.
  • the air conditioner is used as a heater in a heating mode
  • the indoor heat exchanger is used as an evaporator
  • the air conditioner is used as a cooler in a cooling mode.
  • the air source heat pump includes an indoor unit and an outdoor unit.
  • Each indoor unit has a plurality of indoor heat exchangers and corresponding indoor fans, and the plurality of indoor heat exchangers are arranged in parallel.
  • the reverse defrost is performed by opening the four-way valve, and the outdoor unit is switched to a condenser, and the sensible heat and latent heat of condensation of the high-temperature and high-pressure refrigerant are used to defrost, which has a fast defrosting speed and good reliability.
  • the heating operation will stop, and at the same time, because the indoor heat exchanger is switched to the evaporator, it will absorb heat from the room, and the indoor temperature will drop significantly, affecting the indoor thermal comfort.
  • Hot gas bypass defrosting without changing the refrigerant flow direction of the system, use the bypass branch to introduce the compressor exhaust gas into an outdoor heat exchanger to be defrosted for defrosting, and other outdoor heat exchangers still maintain the system. Hot operation to achieve uninterrupted heating.
  • This kind of uninterrupted heating and defrosting method uses the heat converted from the power consumption of the compressor to defrost, which belongs to low-pressure defrosting, with less heat and long defrosting time; when defrosting with hot gas bypass, it uses low-pressure sensible heat to defrost, and the temperature is lower , the heat exchange temperature difference with the frost layer is small, and the defrosting reliability is poor; although the refrigerant flow direction is not changed during defrosting, the refrigerant flow rate of the indoor unit is very small, the system does not supply heat to the indoor unit, the indoor temperature during defrosting is reduced, and the user is comfortable Bad sex.
  • the outdoor unit is the outdoor unit of the air conditioner as described above.
  • the designed air conditioner is a stand-alone air conditioner.
  • the air conditioner includes an indoor unit and an outdoor unit.
  • the indoor unit may correspondingly include a plurality of indoor heat exchangers.
  • the indoor unit includes two indoor heat exchangers, which are the indoor heat exchangers 11-1 and 11-2 and the indoor fan ( Not shown), two indoor fans are provided for blowing the cold air or hot air generated by the indoor heat exchangers 11-1 and 11-2 to the indoor space respectively.
  • the outdoor unit is set as W1, and the number of outdoor heat exchangers is two.
  • the outdoor unit W1 includes a compressor 1, a flow path switching device 3, a flow path throttle device 19, a first control valve 18, two outdoor heat exchangers 4-1 and 4-2 arranged in parallel, corresponding to the outdoor heat exchangers respectively Two defrost switching devices 21 and 20 of 4-1 and 4-2, two liquid pipe throttle devices 6-1 and 6-2, two outdoor fans 5-1 and 5-2, one throttle device 28 And the gas-liquid separator 14.
  • the flow switching device 3 switches the flow of the refrigerant discharged from the compressor 1 to the indoor unit or the outdoor heat exchanger.
  • the flow path switching device 3 is a four-way valve with four terminals C, D, S and E.
  • the flow path switching device 3 is a pilot-operated three-way valve or other low-resistance three-way valve.
  • the three-pipe heat recovery multi-line air conditioner it is divided into the main cooling mode (that is, the indoor unit has two states of cooling and heating, and the cooling load is greater than the heating load, and the outdoor heat exchanger is used as a condenser. ) and the main heating mode (that is, the indoor unit has two states of cooling and heating, and the heating load is greater than the cooling load, and the outdoor heat exchanger is used as an evaporator at this time).
  • the outdoor heat exchanger 4-1 or 4-2 in the outdoor unit W1 or the outdoor heat exchanger 4 in the outdoor unit W1 -1 (or 4-2) for defrosting there is no difference.
  • the outdoor heat exchanger 4-1 and the outdoor heat exchanger 4-2 in the outdoor unit W1 are defrosted alternately, that is, when the outdoor heat exchanger 4-1 is defrosted, the outdoor The heat exchanger 4-2 performs heating operation, and when the outdoor heat exchanger is defrosted, the outdoor heat exchanger 4-1 performs heating operation, thereby realizing uninterrupted heating for defrosting.
  • the number of outdoor heat exchangers and the number of outdoor fans are the same and correspond one-to-one.
  • the first control valve 18 is a solenoid valve or a large-diameter two-way valve, which can be a reversible two-way valve with extremely low resistance and does not have a throttling function.
  • the first control valve 18 is connected in parallel with the flow path switching device 3.
  • the first control valve 18 can be opened to allow the refrigerant to flow through the first control valve 18, thereby reducing the pressure loss of the flow path and improving the overall flow rate. machine performance.
  • the flow path throttling device 19, the liquid pipe throttling device 6-1/6-2, and the throttling device 28 all use fixed opening throttling elements such as electronic expansion valves, bidirectional thermal expansion valves, or capillary tubes. .
  • the flow path throttling device 19 and the throttling device 28 can be used to adjust the defrosting pressure when one of the outdoor heat exchangers is defrosting to prevent heat waste due to excessive defrosting pressure.
  • the defrosting switching device 21/20 adopts a four-way valve, which has four terminals C, D, S and E.
  • C and D are connected and S and E are connected.
  • C and S are connected and D and E are connected.
  • the two defrost switching devices 21 and 20 may be pilot-operated three-way valves or other low-resistance three-way valves.
  • the refrigerant discharged from the compressor 1 flows out through the check valve 2, and the refrigerant after being switched by the flow path switching device 3, if it enters the outdoor side, it will first pass through the flow path restricting device 19 and/or with the The first control valve 18 is connected in parallel with the flow path restriction device 19 .
  • the refrigerant throttled by the flow path throttling device 19 is selected to enter the outdoor heat exchanger 4-1 or 4-2 through the state of the defrosting switching device 21/20 corresponding to the outdoor heat exchanger 4-1/4-2, That is, it alternately flows into the outdoor heat exchangers 4-1 and 4-2.
  • Part of the refrigerant discharged from the compressor 1 switched by the flow path switching device 3 can be throttled to an appropriate pressure through the flow path throttling device 19 and then enter the outdoor heat exchanger 4-1 through the defrosting switching device 21 for heat exchange Defrost.
  • Part of the refrigerant discharged from the compressor 1 switched by the flow path switching device 3 can be throttled to an appropriate pressure through the flow path throttling device 19 and then passed through the defrosting switching device 20 to enter the outdoor heat exchanger 4-2 for heat exchange Defrost.
  • the control device is used to control the flow path switching device 3, the flow path throttle device 19, the first control valve 18, the defrost switching devices 21 and 20, the liquid pipe throttle devices 6-1 and 6-2, and throttling device 28 to defrost one of the outdoor heat exchangers in the outdoor unit.
  • the air conditioner has a normal heating operation mode, a normal cooling operation mode, a reverse defrost operation mode, and an alternate defrost operation mode.
  • the normal heating operation mode is no different from the normal heating operation mode of the air conditioner.
  • the control method of the device and the flow direction of the refrigerant are the same as the normal heating operation mode of the air conditioner.
  • the flow path restricting device 19 in the outdoor unit W1 can be at any opening degree, in some embodiments, the first control valve is closed. 18 can be closed or opened, in some embodiments, open, the defrost switching devices 21 and 20 are both powered on, the liquid pipe throttling devices 6-1 and 6-2 are both open, and the outdoor fans 5-1 and 5-2 All open, the throttle device 28 may be at any opening, and in some embodiments, closed.
  • D and E in the defrosting switching devices 21 and 20 are connected and C and S are connected.
  • the flow path switching device 3 is powered on and reversed, so that D and E are connected and C and S are connected. D and E of the switching device 3 enter the refrigerant discharged from the compressor 1 into the indoor heat exchangers 11-1 and 11-2 through the gas-side shut-off valve 13 and the first extension pipe 12.
  • the heat After heat exchange in the indoor heat exchangers 11-1 and 11-2, the heat is condensed and released to become a liquid refrigerant, and then the refrigerant passes through the indoor unit side throttling devices 10-1 and 10-2, the second extension pipe 9 and the liquid side cutoff Valve 8, enters the liquid pipe throttling devices 6-1 and 6-2 to throttle to low temperature and low pressure gas-liquid two states, and the two-phase refrigerant enters the outdoor heat exchangers 4-1 and 4-2 to evaporate and absorb heat and become gaseous .
  • the refrigerant from the outdoor heat exchangers 4-1 and 4-2 enters the gas-liquid separator 14 through C and S of the defrosting switching devices 21 and 20, and is finally compressed by the suction compressor 1 to complete the heating cycle.
  • the outdoor fans 5-1 and 5-2 are always on throughout the normal heating operation mode.
  • the normal cooling operation mode is no different from the normal cooling operation mode of the air conditioner.
  • the flow throttling device 19 in the outdoor unit W1 is at any opening degree, and in some embodiments, the first control valve 18 is opened. Open, the defrosting switching devices 21 and 20 are both powered off and closed, the liquid pipe throttling devices 6-1 and 6-2 are both open, the outdoor fans 5-1 and 5-2 are both open, and the throttling device 28 is at any opening. In some embodiments, off.
  • D and C in the defrosting switching devices 21 and 20 are connected and E and S are connected.
  • the flow switching device 2 is powered off and closed. By default, D and C are connected and E and S are connected.
  • the compressor 1 compresses the low-temperature and low-pressure refrigerant into a high-temperature and high-pressure state, and passes through the check valve 2 and the first control valve 18 (due to the flow path section).
  • the flow device 19 and the first control valve 18 are connected in parallel. Therefore, as long as the first control valve 18 is opened, the refrigerant will all flow through the first control valve 18 and then enter the defrosting switching device 21 regardless of whether the flow path throttle device 19 is opened or not.
  • D and C of and 20 enter the outdoor heat exchangers 4-1 and 4-2. The effect of reducing the pressure loss of the flow path is achieved by the first control valve 18.
  • the refrigerant entering the indoor side is throttled by the retention devices 10-1 and 10-2, it enters the indoor heat exchangers 11-1 and 11-2 to evaporate and absorb heat and become gaseous.
  • the indoor heat exchangers 11-1 and 11 The refrigerant from -2 enters the gas-liquid separator 14 through the first extension pipe 12, the gas-side shut-off valve 13 and the E and S of the flow switching device 3, and is finally sucked into the compressor 1 for compression to complete the refrigeration cycle.
  • the refrigerant flows in the direction indicated by the broken line arrow in FIG. 1 .
  • the outdoor fans 5-1 and 5-2 are always on throughout the normal cooling operation mode.
  • the compressor 1 When the control device of the air conditioner detects and determines that the outdoor heat exchanger 4-1 or 4-2 needs to be defrosted, the compressor 1 first reduces the frequency or stops directly, and the indoor fans and outdoor fans 5-1 and 5-2 in the outdoor unit W1 and the outdoor fan in the outdoor unit module W2 stop running.
  • the air conditioner operates in the normal cooling operation mode, and uses all the outdoor heat exchangers 4-1 and 4-2 as condensers, and starts defrosting, that is, stops heating for all indoor units and replaces all outdoor heat exchangers. Heater defrosts.
  • the air conditioner After defrosting is completed, the air conditioner re-enters the normal heating operation mode.
  • the rotation defrosting operation mode is operated under the condition that the outdoor heat exchanger needs to be defrosted, and the indoor unit is still expected to have a certain heating capacity, so that the outdoor heat exchanger to be defrosted (that is, the defrosting change While defrosting the heater), the air conditioner can maintain uninterrupted heating, reduce indoor temperature fluctuations, and enhance the heating comfort of users.
  • the defrosting pressure of the defrosting heat exchanger controls the defrosting pressure of the defrosting heat exchanger.
  • the defrosting efficiency is high, and the defrosting The time is short, and the heat obtained by the indoor unit is large, and the user comfort is high.
  • the two outdoor heat exchangers to be defrosted execute the alternate defrosting operation mode.
  • S3 Determine whether the outdoor heat exchangers 4-1 and 4-2 meet the defrosting conditions, if so, go to S4, if not, continue to execute the normal heating operation mode of S2.
  • the defrosting condition can be judged according to the existing judgment basis.
  • the judgment is made according to the operating time of the compressor 1 and the temperature difference between the ambient temperature and the temperature of the outdoor unit coil.
  • S4 The alternate defrosting operation mode is sequentially performed for a plurality of defrosting heat exchangers.
  • the outdoor heat exchangers 4-1 and 4-2 are alternately defrosted according to the frost amounts of the outdoor heat exchangers 4-1 and 4-2 to be defrosted.
  • the outdoor heat exchangers 4-1 and 4-2 can be defrosted sequentially according to the order of the frost formation from large to small.
  • the amount of frost can be judged by detecting the indicators representing the amount of frost, such as the heating capacity of the outdoor heat exchangers 4-1 and 4-2, the evaporation temperature of the refrigerant, the blowing temperature of the indoor unit, At least one of the liquid pipe temperature of the outdoor heat exchanger and the like is detected, and the amount of frost formation in the outdoor heat exchangers 4-2 and 4-2 is predicted based on the change in the detected value.
  • the indicators representing the amount of frost such as the heating capacity of the outdoor heat exchangers 4-1 and 4-2, the evaporation temperature of the refrigerant, the blowing temperature of the indoor unit, At least one of the liquid pipe temperature of the outdoor heat exchanger and the like is detected, and the amount of frost formation in the outdoor heat exchangers 4-2 and 4-2 is predicted based on the change in the detected value.
  • the temperature of the liquid pipe of the outdoor heat exchanger is used to determine the amount of frost. The lower the temperature of the liquid pipe of the outdoor heat exchanger, the greater the amount of frost.
  • the outdoor heat exchanger 4-1 should be defrosted first to avoid excessive frosting of the outdoor heat exchanger 4-1. Frost will affect its normal operation. At this time, the outdoor heat exchanger 4-2 is in the normal heating operation mode.
  • the outdoor heat exchanger 4-1 is performed as a defrosting heat exchanger, and the outdoor heat exchanger 4-2 is performed as an evaporator.
  • the outdoor heat exchanger 4-2 is performed as a defrosting heat exchanger, and the outdoor heat exchanger 4-1 is performed as an evaporator.
  • a reverse defrosting operation mode can be performed to completely defrost the outdoor heat exchangers 4-1 and 4-2.
  • the reverse defrost operation mode can also be selected under other conditions.
  • the outdoor heat exchanger 4-1 in the outdoor unit module is implemented as a defrosting heat exchanger and enters the defrosting process, while the outdoor heat exchanger 4-2 is implemented as an evaporator and maintains the normal heating operation process.
  • the flow path switching device 3 the flow path adjusting device 19, the first control valve 18, the defrosting switching device 20/21, the outdoor fan 5-1, the liquid pipe throttling device 6-1 and the throttling device 28 mentioned above Both are devices in the outdoor unit W1.
  • the solid arrows indicate the flow of the refrigerant during the defrosting process of the outdoor heat exchanger 4-1.
  • the compressor 1 compresses the low-temperature and low-pressure refrigerant into a high-temperature and high-pressure state, and discharges the high-temperature and high-pressure refrigerant through the check valve 2 .
  • a part of the high-temperature and high-pressure refrigerant enters the indoor heat exchangers 11-1 and 11-2 through D and E of the flow switching device 3, the gas-side stop valve 13 and the first extension pipe 12, and enters the indoor heat exchangers 11-1 and 11-2. 11-2 After the internal heat exchange, it condenses and releases heat to become a liquid refrigerant, and then the refrigerant passes through the indoor unit side throttling devices 10-1 and 10-2, the second extension pipe 9 and the liquid side stop valve 8, and enters the liquid pipe throttling device. 6-2.
  • Another part of the high-temperature and high-pressure refrigerant is throttled to an appropriate pressure through the flow path throttling device 19, and then enters D and C of the defrosting switching device 21 and enters the outdoor heat exchanger 4-1 for heat exchange and defrosting.
  • the refrigerant from the heat exchange is throttled by the throttling device 28 and then merged with the refrigerant from the liquid pipe throttling device 6-2, and then enters the outdoor heat exchanger 4-2 to evaporate and absorb heat and become gaseous
  • the refrigerant from the outdoor heat exchanger 4-2 enters the gas-liquid separator 14 through C and S of the defrosting switching device 20 .
  • the flow path throttle device 19 and the throttle device 28 are both disconnected before defrosting. Therefore, before defrosting, it is necessary to set the initial opening degree of the flow path throttle device 19 during defrosting. , in some embodiments of the present application, fully open) and the initial opening of the throttling device 28, in some embodiments of the present application, fully open.
  • S1' Set the target outlet subcooling degree range of the outdoor heat exchanger 4-1, and set the target defrosting pressure range.
  • the target outlet subcooling degree Te1sco exists in a range, for example, 0°C ⁇ Te1sco ⁇ 10°C.
  • the target outlet subcooling degree Te1sco set the target outlet subcooling degree range (Te1sco- ⁇ , Te1sco+ ⁇ ], for example, 0°C ⁇ 3°C.
  • the target defrosting pressure Pfo can be known according to the function f(TW1).
  • a target defrosting pressure range (Pfo- ⁇ , Pfo+ ⁇ ) is set, for example, 0MPW1 ⁇ 0.5MPW1.
  • the outlet subcooling degree Te1sc of the outdoor heat exchanger 4-1 is calculated by the defrosting pressure Pf (detected by the pressure sensor 221) and the outlet temperature Te1 (detected by the temperature sensor 231) of the outdoor heat exchanger 4-1.
  • Te1sc Tec-Te1
  • Tec is the corresponding saturation temperature under the defrosting pressure Pf, which can be obtained by querying the prior art.
  • next opening degree of the throttle device 28 EV28(n+1) EV28(n)- ⁇ EV28, where ⁇ EV28 is the number of adjustment steps, and the number of adjustment steps can be selected as 0.1%-10% pls of the total opening degree ( the number of steps).
  • next opening degree of the throttle device 28 EV28(n+1) EV28(n)+ ⁇ EV28, where ⁇ EV28 is the number of adjustment steps, and the number of adjustment steps can be selected as 0.1%-10% pls of the total opening degree ( the number of steps).
  • S4' Compare whether the defrosting pressure Pf is within the target defrosting pressure range, if so, keep the opening degree of the flow path throttle device 19, and go to S42, if not, adjust the opening degree of the flow path throttle device 19, and Execute to S42.
  • next opening degree of the flow path throttle device 19 EV19(n+1) EV19(n)- ⁇ EV19, where ⁇ EV19 is the number of adjustment steps, and the number of adjustment steps can be selected as 0.1%-10% of the total opening degree pls (ie steps).
  • the defrosting end condition it can be determined whether the defrosting duration t1 reaches the first preset time T1, or whether the outlet temperature Te1 of the outdoor heat exchanger 4-1 is greater than or equal to the first temperature preset value Tef (for example, 2°C ⁇ Tef ⁇ 20°C) and maintain for a certain period of time T; if one of the two conditions is met, it means that the defrosting is over, otherwise the judgment is continued.
  • Tef for example, 2°C ⁇ Tef ⁇ 20°C
  • the defrosting end condition is not limited to this, and it is also possible to use whether the gas pipe temperature Tg of the outdoor heat exchanger 4-1 is equal to or greater than the set temperature Tn and whether the suction pressure Ps of the compressor 1 is greater than or equal to the set pressure Po. A judgment is made; alternatively, the number of times of adjustment of the opening degrees of the throttle device 28 and the flow path throttle device 19 may be adjusted, and the like.
  • S3' is executed before S4' as described above, the sequence of S3' and S4' is not limited, that is, S4' can also be executed before S3'.
  • the outdoor heat exchanger 4-1 exits the defrosting process and enters the normal heating operation process, which at least includes:
  • the outdoor heat exchanger 4-1 when the outdoor heat exchanger 4-1 enters the normal heating operation process, it can be selected to be at any opening degree, and in some embodiments, selected to be closed.
  • the flow throttling device 19 if the outdoor heat exchanger 4-1 exits the defrosting process without other outdoor heat exchangers for defrosting, and then enters the normal heating operation process, the flow throttling device 19 may be in the any opening.
  • the indoor side throttling devices 10-1 and 10-2 maintain the control before defrosting, and the throttling device 6-2 maintains the normal heating control, that is, controls the outlet of the outdoor heat exchanger 4-2 to overheat.
  • the throttling device 6-1 is also used to control the outlet superheat of the outdoor heat exchanger 4-1 at within 0-2°C.
  • the outdoor heat exchanger 4-2 acts as a defrosting heat exchanger and enters the defrosting process, while the outdoor heat exchanger 4-1 acts as an evaporator and maintains the normal heating operation process.
  • the outdoor heat exchanger 4-1 When the outdoor heat exchanger 4-2 performs defrosting, the outdoor heat exchanger 4-1 performs a normal heating operation process.
  • the air conditioner can also be compatible with the three-pipe heat recovery function.
  • FIG. 3 shows a system structure diagram of an air conditioner with two pipes and three pipes.
  • the air conditioner further includes a plurality of first switching valves a and a plurality of second switching valves b connected in parallel, the first switching valves a, the second switching valves b and one indoor heat exchanger correspond to each other .
  • the first switching valve a is used to branch at least part of the refrigerant from the compressor 1 that has been switched by the flow path switching device, and flow into the indoor heat exchangers 11-1/11-2 accordingly.
  • One end of the second switching valve b is connected to the position where the first switching valve a is connected to the gas side of the indoor heat exchanger 11-1/11-2, and the other end is connected to the gas-liquid separator (for example, the gas-liquid separator 14). 1 , the other end communicates with the gas-liquid separator 14 through an extension pipe 26 and a gas-side shut-off valve 27 .
  • Two pipes and three pipes are realized by switching the first switching valve a and the second switching valve b.
  • the air conditioner in addition to the above-mentioned operation modes, the air conditioner also has a main cooling operation mode and a main heating operation mode.
  • the main cooling operation mode that is, the indoor unit has two states of cooling and heating, and the cooling load is greater than the heating load, and the outdoor heat exchanger is used as a condenser at this time.
  • the indoor heat exchanger 11-1 is used as an evaporator (ie, the indoor heat exchanger 11-1 is cooling) and the indoor heat exchanger 11-2 is used as a condenser (ie, the indoor heat exchanger 11-2 heating).
  • the flow path switching device 3 in the outdoor unit W1 is powered on and opened, the flow path throttle device 19 is at any opening degree, the first control valve 18 is opened, the defrosting switching devices 21 and 20 are both powered off and closed, and the liquid pipe
  • the throttling devices 6-1 and 6-2 are both turned on, the outdoor fans 5-1 and 5-2 are both turned on, the throttling device 28 is at any opening degree, and controls the first switching valve a connected to the indoor heat exchanger 11-1 (ie, the first switching valve 24a) is closed and the second switching valve b (ie, the second switching valve 24b) is opened, and the first switching valve a (ie, the first switching valve 25a) connected to the indoor heat exchanger 11-2 is controlled to open And the second switching valve b (ie, the second switching valve 25b ) is closed.
  • D and C in the defrosting switching devices 21 and 20 are connected and E and S are connected.
  • the flow switching device 3 is powered on, and D and E are connected and C and S are connected.
  • the compressor 1 compresses the low-temperature and low-pressure refrigerant into a high-temperature and high-pressure state, and then divides it into two parts after passing through the check valve 2 .
  • a part of the high-temperature and high-pressure refrigerant enters D and C of the defrosting switching devices 21 and 20 through the first control valve 18 and enters the outdoor heat exchangers 4-1 and 4-2. After the heat exchange in the outdoor heat exchangers 4-1 and 4-2, the heat is condensed and released to become a liquid refrigerant, and then the refrigerant flows through the liquid pipe throttling devices 6-1 and 6-2 to the liquid side stop valve 8 and the second extension pipe 9 .
  • Another part of the high-temperature and high-pressure refrigerant passes through D and E of the flow switching device 3, passes through the gas-side stop valve 13, the first extension pipe 12, and the first switching valve 25a, enters the indoor heat exchanger 11-2, and then condenses and releases heat after heat exchange. , it becomes a liquid refrigerant, and then the refrigerant passes through the indoor unit side throttling device 10-2, and joins with the refrigerant from the outdoor side that passes through the liquid side stop valve 8 and the second extension pipe 9 and enters the indoor unit side throttling device 10-1 for throttling Depressurization is gas-liquid two states.
  • the indoor unit has two states of cooling and heating, and the heating load is greater than the cooling load, and the outdoor heat exchanger is used as an evaporator at this time.
  • the indoor heat exchanger 11-1 functions as a condenser (ie, the indoor heat exchanger 11-1 heats) and the indoor heat exchanger 11-2 functions as an evaporator (ie, the indoor heat exchange 11-2 refrigeration).
  • the flow path switching device 3 in the outdoor unit module is powered on and turned on, the flow path throttling device 19 is at any opening degree, and the first control valve 18 can be selectively opened or closed.
  • the frost switching devices 21 and 20 are both powered on, the liquid pipe throttling devices 6-1 and 6-2 are both turned on, the outdoor fans 5-1 and 5-2 are both turned on, the throttling device 28 is at any opening, and the first control
  • the switching valve 24a is opened and the second switching valve 24b is closed, and the first switching valve 25a is controlled to be closed and the second switching valve 25b to be opened.
  • D and E in the defrosting switching devices 21 and 20 are connected and C and S are connected.
  • the flow switching device 3 is powered on, and D and E are connected and C and S are connected.
  • the compressor 1 compresses the low-temperature and low-pressure refrigerant into a high-temperature and high-pressure state.
  • the side shut-off valve 13, the first extension pipe 12, and the first switching valve 24a enter the indoor heat exchanger 11-1 after heat exchange and condense and release heat to become liquid refrigerant, and then the refrigerant flows out through the indoor unit side throttling device 10-1, and divided into two parts.
  • the other part is throttled and depressurized by the throttling device 10-2 on the indoor unit side, and enters the indoor heat exchanger 11-2 to evaporate and absorb heat, and become gaseous. It is combined with the refrigerant flowing out of C and S through the defrosting switching devices 21 and 20 as described above, and then enters the gas-liquid separator 14, and is finally compressed by the suction compressor 1 to complete the main heating cycle.
  • At least the first switching valve 24a and the first switching valve 25a can be controlled to be closed when the defrosting is performed alternately.
  • first switching valve 24a and the first switching valve 25a are controlled to be closed, and the second switching valve 24b and the second switching valve 25b are closed; (2) the first switching valve 24a and the first switching valve 25a are controlled to be closed , and control to close the second switching valve 24b and the second switching valve 25b.
  • both the first switching valves 24a and 25a are controlled to be closed, and the second switching valves 24b and 25b are both closed.
  • a separation device 101 for separating the wind field is provided (for this part, please refer to the application number 202010279447.2, the name of the invention is " Air Conditioning Outdoor Unit” patent document).
  • the outdoor fans 5-1 and 5-2 are independently controlled by the control device, and the outdoor heat exchanger 4-1 and the outdoor fan 5-1 form a first wind field, and the outdoor heat exchanger 4-1 forms a first wind field.
  • -2 and the outdoor fan 5-2 form the second wind field, and the separating device 101 is used to separate the first wind field and the second wind field.
  • the rotation speed of the outdoor fan 5-2 can be appropriately increased to further enhance the heating effect, reduce indoor temperature fluctuations, and greatly improve the Air conditioner heating capacity and user heating comfort.
  • the outdoor fan 5-1 of the outdoor heat exchanger 4-2 is correspondingly turned on and the outdoor fan 5-2 of the outdoor heat exchanger 4-2 is turned off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

一种空调器,包括:室内机和室外机,室外机包括:压缩机(1);流路节流装置(3);第一控制阀(18),其与流路节流装置(3)并联;并列设置的两个室外换热器(4-1,4-2);两个除霜切换装置(20,21),其各自对应一个室外换热器(4-1,4-2),用于切换室外换热器(4-1,4-2)与流路节流装置(3)或与气液分离器(14)连通;两个液管节流装置(6-1,6-2);节流装置(28),其一端连接在一个液管节流装置(6-1)连接对应室外换热器(4-1)液侧的位置处,另一端连接另一个液管节流装置(6-2)连接对应室外换热器(4-2)的位置处;在室外机中的一个室外换热器(4-1,4-2)需要除霜时,控制装置控制待除霜的室外换热器(4-1,4-2)作为除霜换热器执行,另一个室外换热器(4-1,4-2)作为蒸发器执行。

Description

一种空调器
相关申请的交叉引用
本申请要求在2020年11月30日提交中国专利局、申请号为202011371181.0、发明名称为“一种空调器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调器技术领域,尤其涉及一种空调器。
背景技术
空气源热泵的技术日益成熟,其在家用和商用领域得到广泛应用。空气源热泵在制热运行时存在一个较大的问题:在室外温度和湿度达到一定条件时,室外换热器空气侧会结霜,随着结霜量的增加,蒸发器表面会逐渐被堵塞,导致室外换热器表面换热系数减小,气体流动阻力增大,严重影响机器制热效果,因此,机组需要定期进行除霜。
发明内容
本申请的一些实施例提供了一种空调器,包括:
室内机;
室外机,所述室外机包括:
压缩机;
流路切换装置,其用于切换从所述压缩机排出的制冷剂的流路;
流路节流装置,其用于节流通过所述流路切换装置切换的来自所述压缩机的部分制冷剂;
第一控制阀,其与所述流路节流装置并联;
室外换热器,并列设置有两个;
除霜切换装置,设置有2个,分别与两个室外换热器连接,用于切换所 述室外换热器与所述流路节流装置连通或与气液分离器连通;
两个液管节流装置,其各自连接所述室内机和各室外换热器;
节流装置,其一端连接在一个液管节流装置连接对应室外换热器液侧的位置处,另一端连接另一个液管节流装置连接对应室外换热器的位置处;
控制装置,在室外机中的一个室外换热器需要除霜时,所述控制装置控制所述流路切换装置、流路节流装置、第一控制阀、除霜切换装置、液管节流装置和节流装置,使待除霜的室外换热器作为除霜换热器执行,剩余的一个室外换热器作为蒸发器执行;
在除霜换热器除霜时,所述控制装置控制所述流路切换装置打开;控制打开所述流路节流装置;控制所述除霜切换装置使从所述流路节流装置流出的制冷剂与除霜换热器的主气管连通;控制与所述除霜换热器连通的液管节流装置、及第一控制阀关闭;控制所述节流装置打开。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一些实施例的空调器的系统结构图;
图2是本申请一些实施例的一个室外换热器进行除霜的流程图;
图3是本申请空调器的另一实施例的系统结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
空调的制冷循环包括压缩机、冷凝器、膨胀阀和蒸发器。制冷循环包括 一系列过程,涉及压缩、冷凝、膨胀和蒸发,并向已被调节和热交换的空气供应制冷剂。
压缩机压缩处于高温高压状态的制冷剂气体并排出压缩后的制冷剂气体。所排出的制冷剂气体流入冷凝器。冷凝器将压缩后的制冷剂冷凝成液相,并且热量通过冷凝过程释放到周围环境。
膨胀阀使在冷凝器中冷凝的高温高压状态的液相制冷剂膨胀为低压的液相制冷剂。蒸发器蒸发在膨胀阀中膨胀的制冷剂,并使处于低温低压状态的制冷剂气体返回到压缩机。蒸发器可以通过利用制冷剂的蒸发的潜热与待冷却的材料进行热交换来实现制冷效果。在整个循环中,空调器可以调节室内空间的温度。
空调室外机是指包括制冷循环的压缩机的部分以及包括室外热交换器,空调室内机包括室内热交换器,并且膨胀阀可以提供在空调室内机或室外机中。
室内热交换器和室外热交换器用作冷凝器或蒸发器。当室内热交换器用作冷凝器时,空调器用作制热模式的加热器,当室内热交换器用作蒸发器时,空调器用作制冷模式的冷却器。
空气源热泵包括室内机和室外机,每个室内机具有多个室内换热器及对应的室内风机,多个室内换热器并联设置,室外机具有通过连接管路相连通的变频压缩机、四通阀、节流元件、至少一个室外换热器及室外风机,在一个室外机存在至少两个室外换热器时,各室外换热器并列布置。
通过四通阀打开换向进行逆向除霜,将室外机切换为冷凝器,利用高温高压制冷剂的显热和冷凝潜热除霜,其化霜速度快且可靠性好。但是除霜时制热运行会停止,同时由于室内换热器切换为蒸发器,会从室内吸收热量,室内温度下降比较明显,影响室内热舒适性。
热气旁通除霜,在不改变系统冷媒流向的条件下,利用旁通支路将压缩机排气引入一台待除霜的室外换热器中进行除霜,其他室外换热器仍然维持制热运行,来实现不间断制热。
这种不间断制热除霜方式利用压缩机部分功耗转换的热量除霜,属于低压除霜,热量少且除霜时间长;热气旁通除霜时利用低压显热除霜,温度较低,和霜层的换热温差小,除霜可靠性差;虽然在除霜时不改变冷媒流向,但是室内机冷媒流量很小,系统不向室内机供热,除霜期间室内温度降低,用户舒适性差。
本申请一些实施例中,室外机为如上所述的空调室外机。
本申请一些实施例中,所设计的空调器为单机空调器。
空调器包括一个室内机和一个室外机。
室内机可对应包括有多个室内换热器,在本申请一些实施例中,室内机包括有2个室内换热器,其分别为室内换热器11-1和11-2以及室内风机(未示出),设置有2个,2个室内风机用于分别将室内换热器11-1和11-2产生的冷气或热气吹向室内空间。
本申请一些实施例中设室外机为W1,其室外换热器的个数为两个。
室外机W1包括压缩机1、流路切换装置3、流路节流装置19、第一控制阀18、并列设置的两个室外换热器4-1和4-2、分别对应室外换热器4-1和4-2的两个除霜切换装置21和20、两个液管节流装置6-1和6-2、两个室外风机5-1和5-2、一个节流装置28及气液分离器14。
流路切换装置3切换从压缩机1排出的制冷剂至室内机或室外换热器的流路。本申请一些实施例中,流路切换装置3为四通阀,具有四个端子C、D、S和E。本申请一些实施例中,流路切换装置3为先导式三通阀或其他低阻力三通阀。
参考图1,针对两管制单机空调器,在流路切换装置3掉电时,默认C和D相连,S和E相连,使室内换热器11-1和11-2用作蒸发器,而室外换热器4-1和4-2用作冷凝器,空调器制冷。
在四通阀上电换向时,C和S相连,D和E相连,使室内换热器11-1和11-2用作冷凝器,而室外换热器4-1和4-2用作蒸发器,空调器制热。
参考图3,针对三管制热回收多联机空调器,分为主制冷模式(即,室内 机存在制冷和制热两种状态,且制冷负荷大于制热负荷,此时室外换热器用作冷凝器)和主制热模式(即,室内机存在制冷和制热两种状态,且制热负荷大于制冷负荷,此时室外换热器用作蒸发器)。
本申请一些实施例中,无论是两管制多联机还是三管制热回收多联机,在对室外机W1中的室外换热器4-1或4-2或室外机W1中的室外换热器4-1(或4-2)进行除霜,都是没有差别的。
本申请一些实施例中,室外机W1中的室外换热器4-1和室外换热器4-2进行除霜时为交替除霜,即当室外换热器4-1除霜时,室外换热器4-2进行制热运行,而室外换热器除霜时,室外换热器4-1进行制热运行,实现了除霜的不间断制热。
参见图1,室外换热器的数量与室外风机的数量相同且一一对应。
本申请一些实施例中,第一控制阀18为电磁阀或大口径两通阀,可为阻力极小的可逆两通阀,不具有节流功能。第一控制阀18与流路切换装置3并联,在室外换热器作为冷凝器使用时能够通过开启第一控制阀18使得冷媒流经第一控制阀18进而降低流路的压损,提升整机的性能。
本申请一些实施例中,流路节流装置19、液管节流装置6-1/6-2、节流装置28均采用电子膨胀阀、双向热力膨胀阀或毛细管等固定开度节流元件。
流路节流装置19、节流装置28可以在其中一个室外换热器除霜时用于调节除霜压力防止除霜压力过高造成热量浪费。
在室外机W1中,除霜切换装置21/20采用四通阀,其具有四个端子C、D、S和E,默认断电时C和D相连且S和E相连,上电换向时C和S相连且D和E相连。两个除霜切换装置21和20可以为先导式三通阀或其他低阻力三通阀。
参见图1,压缩机1排出的制冷剂通过单向阀2流出,经过流路切换装置3进行切换后的制冷剂,若进入室外侧,则首先会经过流路节流装置19和/或与该流路节流装置19并联的第一控制阀18。
通过流路节流装置19节流后的制冷剂通过对应室外换热器4-1/4-2的除 霜切换装置21/20的状态选择进入室外换热器4-1或4-2,即轮换流入室外换热器4-1和4-2。
通过流路切换装置3切换的由压缩机1排出的部分制冷剂能够通过该流路节流装置19节流到合适的压力而经过除霜切换装置21进入室外换热器4-1进行热交换除霜。
通过流路切换装置3切换的由压缩机1排出的部分制冷剂能够通过该流路节流装置19节流到合适的压力而经过除霜切换装置20进入室外换热器4-2进行热交换除霜。
控制装置用于控制室外机W1中的流路切换装置3、流路节流装置19、第一控制阀18、除霜切换装置21和20、液管节流装置6-1和6-2、和节流装置28,使室外机中的一个室外换热器进行除霜。
[空调器的运行模式]
参见图1,空调器具有通常制热运行模式、通常制冷运行模式、逆向除霜运行模式、以及轮换除霜运行模式。
通常制热运行模式
通常制热运行模式与空调器的普通制热运行模式无异。
室外机W1在通常制热运行时,其中器件的控制方式及冷媒流向与空调的普通制热运行模式均相同。
参考图1,在一些实施例中,在空调器处于通常制热运行模式时,室外机W1中的流路节流装置19可以处于任意开度,在一些实施例中,关闭,第一控制阀18可以关闭或打开,在一些实施例中,打开,除霜切换装置21和20均上电导通,液管节流装置6-1和6-2均打开,室外风机5-1和5-2均打开,节流装置28可以处于任意开度,在一些实施例中,关闭。
其中除霜切换装置21和20中的D和E连通且C和S连通。
本申请一些实施例中,流路切换装置3上电换向,使D和E连通且C和S连通,压缩机1将低温低压的冷媒压缩成高温高压状态,经过单向阀2、流路切换装置3的D和E将压缩机1排出的制冷剂经过气侧截止阀13和第一延 长配管12进入室内换热器11-1和11-2。
在室内换热器11-1和11-2内部热交换后冷凝放热,成为液态冷媒,随后冷媒经过室内机侧节流装置10-1和10-2、第二延长配管9和液侧截止阀8,进入液管节流装置6-1和6-2节流至低温低压气液两态,两相态冷媒进入室外换热器4-1和4-2内蒸发吸热,变为气态。
室外换热器4-1和4-2出来的冷媒经过除霜切换装置21和20的C和S进入气液分离器14,最后被吸入压缩机1压缩,完成制热循环。
在整个通常制热运行模式中,室外风机5-1和5-2始终打开。
通常制冷运行模式
通常制冷运行模式与空调器的普通制冷运行模式无异。
参考图1,本申请一些实施例中,在空调器处于通常制冷运行模式时,室外机W1中的流路节流装置19处于任意开度,在一些实施例中,打开,第一控制阀18打开,除霜切换装置21和20均断电闭合,液管节流装置6-1和6-2均打开,室外风机5-1和5-2均打开,节流装置28处于任意开度,在一些实施例中,关闭。
其中除霜切换装置21和20中的D和C连通且E和S连通。
流路切换装置2断电闭合,默认D和C连通且E和S连通,压缩机1将低温低压的冷媒压缩成高温高压状态,经过单向阀2、第一控制阀18(由于流路节流装置19和第一控制阀18并联,因此,只要第一控制阀18打开,不管流路节流装置19是否打开,制冷剂均会全部流过第一控制阀18后进入除霜切换装置21和20的D和C而进入室外换热器4-1和4-2。通过第一控制阀18实现了降低流路压损的效果。
在室外换热器4-1和4-2热交换后冷凝放热,成为液态冷媒,随后冷媒经过液管节流装置6-1和6-2进入室内侧。
进入室内侧的冷媒经就留装置10-1和10-2节流后,进入室内换热器11-1和11-2内蒸发吸热,变为气态,室内换热器11-1和11-2出来的冷媒经过第一延长配管12、气侧截止阀13和流路切换装置3的E和S进入气液分离器14, 最后被吸入压缩机1压缩,完成制冷循环。
室外机W1的通常制冷运行模式中的冷媒流向如图1中虚线箭头所示方向。
在整个通常制冷运行模式中,室外风机5-1和5-2始终打开。
逆向除霜运行模式
空调器的控制装置检测判定室外换热器4-1或4-2需要除霜时,压缩机1首先降频或直接停机,室内风机及室外机W1中的室外风机5-1和5-2及室外机模块W2中的室外风机均停止运行。
此后空调器按照通常制冷运行模式运行,以所有的室外换热器4-1、4-2、全部作为冷凝器执行,开始化霜,即停止对所有室内机的制热而对所有的室外换热器进行除霜。
在完成除霜后,空调器再重新进入通常制热运行模式。
该逆向除霜运行模式的优点是除霜干净,但也存在多个缺点(1)由于除霜期间制热运行停止,室内温度下降比较明显,从而影响用户使用的舒适性;(2)除霜时需要改变冷媒流向,特别是除霜后转制热运行时,由于除霜过程中气液分离器14中储存有大量冷媒,除霜后启动高低压压差建立缓慢,制热能力底下,严重音响制热周期能力。
轮换除霜运行模式
该轮换除霜运行模式是在需要对室外换热器进行除霜,且仍希望室内机具有一定制热能力的情况下运行的,使得在对待除霜的室外换热器(即,除霜换热器)进行除霜的同时,空调器可以保持不间断制热,减小室内温度波动,增强用户制热舒适性。
且在除霜过程中,通过控制除霜换热器的除霜压力,利用制冷剂的潜热进行除霜,相比热气旁通除霜利用显热除霜来说,除霜效率高,除霜时间短,且室内机获取的热量大,用户舒适度高。
在室外机W1存在2个室外换热器均需要进行除霜时,2个待除霜的室外换热器执行轮换除霜运行模式。
在一些实施例中,参见图1,对室外机W1中的室外换热器4-1和4-2轮 换除霜为例进行说明。
S1:流程开始。
S2:空调器执行通常制热运行模式。
S3:判断室外换热器4-1和4-2是否满足除霜条件,若是,进入S4,若否,继续执行S2的通常制热运行模式。
对于除霜条件的判断,可根据现有判断依据来进行,在本申请的一些实施例中,根据压缩机1运行时间以及环境温度与室外机盘管温度之间的温差作为判据来判断。
S4:针对多个除霜换热器依次执行轮换除霜运行模式。
根据待除霜的室外换热器4-1和4-2的结霜量,对室外换热器4-1和4-2进行轮换除霜。
可以根据结霜量从大到小的顺序对室外换热器4-1和4-2依次进行除霜。
可通过检测装置(未示出)检测表征结霜量的指标进行结霜量的判断,例如室外换热器4-1和4-2的加热能力、制冷剂的蒸发温度、室内机吹出温度、室外换热器的液管温度等中的至少一个进行检测,并根据检测值得变化来预测室外换热器4-2和4-2的结霜量。
本申请的一些实施例中,利用室外换热器的液管温度来判断结霜量,在室外换热器的液管温度越小时,其结霜量越大。
假设室外换热器4-1的结霜量大于室外换热器4-2的结霜量,应首先对室外换热器4-1进行除霜,以避免因室外换热器4-1过度结霜而影响其正常运行。此时室外换热器4-2处于通常制热运行模式。
即,室外换热器4-1作为除霜换热器执行,而室外换热器4-2作为蒸发器执行。
在完成对室外换热器4-1的除霜而进入通常制热运行模式后,再对室外换热器4-2进行除霜。
即,切换室外换热器4-2作为除霜换热器执行,而室外换热器4-1作为蒸发器执行。
可以选择多次对室外换热器4-1和4-2进行轮换除霜后,进行一次逆向除霜运行模式,以对室外换热器4-1和4-2进行彻底除霜。当然,也可以在其他条件下选择逆向除霜运行模式。
除霜换热器进行除霜的过程描述如下。
S41:控制流路切换装置3打开(即上电),控制流路节流装置19、第一控制阀18、除霜切换装置21/20,使压缩机1排出的制冷剂的一部分通过流路节流装置19及除霜切换装置21/20进入除霜换热器,切断与除霜换热器连通的液管节流装置,控制打开节流装置,剩余室外换热器作为蒸发器执行。
以室外机模块中的室外换热器4-1作为除霜换热器执行,进入除霜过程,而室外换热器4-2作为蒸发器执行,保持通常制热运行过程。
保持流路切换装置3处于上电打开状态,控制流路节流装置19打开且第一控制阀18关闭,除霜切换装置21断电闭合,除霜切换装置20上电打开,关闭室外风机5-1,关闭液管节流装置6-1,打开节流装置28,其余装置保持与通常制热运行模式中的状态相同。
其中如上所述的流路切换装置3、流路调节装置19、第一控制阀18、除霜切换装置20/21、室外风机5-1、液管节流装置6-1及节流装置28均是室外机W1中的器件。
再参见图1,实线箭头表示室外换热器4-1除霜过程时的冷媒流向。
在进入轮换除霜运行模式时,压缩机1将低温低压的冷媒压缩成高温高压状态,并通过单向阀2排出高温高压制冷剂。
其中一部分高温高压制冷剂经过流路切换装置3的D和E、气侧截止阀13和第一延长配管12进入室内换热器11-1和11-2,在室内换热器11-1和11-2内部热交换后冷凝放热,成为液态冷媒,随后冷媒经过室内机侧节流装置10-1和10-2、第二延长配管9和液侧截止阀8,进入液管节流装置6-2。
另一部分高温高压制冷剂经过流路节流装置19节流到合适压力,随后进入除霜切换装置21的D和C而进入室外换热器4-1换热除霜,从室外换热器4-1换热出来的制冷剂通过节流装置28节流后与从液管节流装置6-2出来的 制冷剂汇合,随后进入室外换热器4-2内蒸发吸热,变为气态,室外换热器4-2出来的冷媒经过除霜切换装置20的C和S进入气液分离器14。
在室外机中的一个室外换热器进行除霜时,针对除霜换热器例如室外换热器4-1,根据室外换热器4-1的出口过冷度及目标出口过冷度范围,控制调整节流装置28的开度,使室外换热器4-1的出口过冷度趋向维持在目标出口过冷度范围内;根据除霜压力及目标除霜压力范围,控制调整流路节流装置19的开度,使压缩机1的除霜压力趋向维持在目标除霜压力范围内,保证换热器出口温度及除霜压力,缩短除霜时间,提高除霜速度及效率,且在空调器不间断制热除霜时,能够确保室内机能力最大化,提高用户室内热舒适性。
在对室外换热器4-1进行除霜时,对节流装置28和流路节流装置19的进行开度控制。
进入除霜过程之前,需要设定除霜时节流装置28和流路节流装置19的初始开度。
本申请一些实施例中,除霜前流路节流装置19及节流装置28均是断开的,因此,在除霜之前,需要设定除霜时流路节流装置19的初始开度,本申请一些实施例中,全开)和节流装置28的初始开度,本申请一些实施例中,全开。
参照图2:
S1':设定室外换热器4-1的目标出口过冷度范围、以及设定目标除霜压力范围。
本申请一些实施例中,目标出口过冷度Te1sco存在一个范围,例如0℃≤Te1sco≤10℃。
根据目标出口过冷度Te1sco,设定目标出口过冷度范围(Te1sco-λ,Te1sco+λ],例如0℃<λ<3℃。
本申请一些实施例中,目标除霜压力Pfo为环境温度TW1的函数Pfo=f(TW1),函数Pfo=f(TW1)可以是在空调器进行调试时确定的预设函数。
在环境温度传感器检测环境温度TW1时,根据函数f(TW1)可以获知目标除霜压力Pfo。
根据目标除霜压力Pfo,设定目标除霜压力范围(Pfo-δ,Pfo+δ],例如0MPW1<δ<0.5MPW1。
S2':计算室外换热器4-1的出口过冷度Te1sco。
室外换热器4-1的出口过冷度Te1sc通过(由压力传感器221检测的)除霜压力Pf和室外换热器4-1的(由温度传感器231检测的)出口温度Te1计算。
即,Te1sc=Tec-Te1,其中Tec为除霜压力Pf下对应的饱和温度,可通过现有技术查询获得。
S3':比较出口过冷度Te1sc是否位于目标出口过冷度范围内;
S31':若出口过冷度Te1sc位于目标出口过冷度范围内,保持节流装置28的开度,并执行至S4';若否,调节节流装置28的开度,并执行到S4'。
具体调节节流装置28的开度的过程如下描述。
S32':若出口过冷度Te1sc大于目标出口过冷度范围的上限值时,增大节流装置28的开度达一个调节步数,并执行至S4'。
即,节流装置28的下次开度EV28(n+1)=EV28(n)-ΔEV28,其中ΔEV28是调节步数,其中调节步数可以选择为总开度的0.1%-10%pls(即步数)。
S33':若出口过冷度Te1sc小于目标出口过冷度范围的下限值时,减小节流装置28的开度达一个调节步数,并执行至S4'。
即,节流装置28的下次开度EV28(n+1)=EV28(n)+ΔEV28,其中ΔEV28是调节步数,其中调节步数可以选择为总开度的0.1%-10%pls(即步数)。
S4':比较除霜压力Pf是否位于目标除霜压力范围内,若是,保持流路节流装置19的开度,并执行到S42,若否,调节流路节流装置19的开度,并执行到S42。
具体调节流路节流装置19的开度的过程如下描述。
S41':若除霜压力Pf位于目标除霜压力范围内时,保持流路节流装置19的开度,并执行到S42。
S42':若除霜压力Pf大于目标除霜压力范围的上限值时,减小流路节流装 置19的开度达一个调节步数,并执行到S42。
即,流路节流装置19的下次开度EV19(n+1)=EV19(n)-ΔEV19,其中ΔEV19是调节步数,其中调节步数可以选择为总开度的0.1%-10%pls(即步数)。
S43':若除霜压力Pf小于目标除霜压力范围的下限值时,增大流路节流装置19的开度达一个调节步数,并执行到S42。
即,流路节流装置19的下次开度EV19(n+1)=EV19(n)+ΔEV19,其中ΔEV19是调节步数,其中调节步数可以选择为总开度的0.1%-10%pls(即步数)。
S42:判断除霜是否结束,若是,则退出除霜过程,若否,返回至S2',重新进行调整节流装置28和流路节流装置19的开度。
作为除霜结束条件可以判断除霜时长t1是否达到第一预设时间T1,或者室外换热器4-1的出口温度Te1是否大于等于第一温度预设值Tef(例如,2℃<Tef<20℃)且维持一定时间段T;若满足两个条件中的其中一个条件,则表示除霜结束,否则继续进行判断。
当然,除霜结束条件也不局限于此,也可以使用室外换热器4-1的气管温度Tg是否大于等于设定温度Tn且压缩机1的吸气压力Ps是否大于等于设定压力Po来进行判断;或者也可以使用调整节流装置28和流路节流装置19的开度的调整次数,等等。
尽管如上所述的S3'在S4'之前执行,但是S3'和S4'的先后顺序不限定,即S4'也可以在S3'之前执行。
在室外换热器4-1除霜结束后,退出除霜过程,并此后进入通常制热运行过程。
室外换热器4-1退出除霜过程而进入通常制热运行过程,至少包括:
(1)控制除霜切换装置21上电打开,使除霜换热器4-1的气侧与气液分离器14连通;
(2)打开室外风机5-1;
(3)打开液管节流装置6-1;
至于节流装置28,在室外换热器4-1进入通常制热运行过程时,可以选择 处于任意开度,在一些实施例中,选择关闭。
至于流路节流装置19,若室外换热器4-1退出除霜过程而没有其他室外换热器进行除霜,此后进入通常制热运行过程时,此时流路节流装置19可以处于任意开度。
在除霜过程中,室内侧节流装置10-1和10-2维持除霜前的控制,节流装置6-2维持正常制热控制,即,控制室外换热器4-2的出口过热度Ts2,即,温度传感器233检测排气温度Td2,压力传感器222检测排气压力Pd2,室外换热器4-2的出口过热度Ts2为排气温度Td2与排气压力Pd2对应的饱和温度之差,出口过热度Ts2控制在0-2℃内。
类似地,在室外换热器4-1退出除霜,而室外换热器4-2进行除霜时,节流装置6-1也用于控制室外换热器4-1的出口过热度在0-2℃内。
此后,室外换热器4-2作为除霜换热器,进入除霜过程,而室外换热器4-1作为蒸发器,保持通常制热运行过程。
保持流路切换装置3处于打开通电状态,保持打开流路节流装置19且关断第一控制阀18,控制断电闭合除霜切换装置20,打开节流装置28,关闭室外风机5-2及液管节流装置6-2,其余装置保持与通常制热运行模式中的状态相同。
室外换热器4-2的除霜过程参见室外换热器4-1的除霜过程。
在室外换热器4-2进行除霜时,室外换热器4-1进行通常制热运行过程。
[三管制热回收功能]
本申请的一些实施例中,空调器也可以兼容三管制热回收功能,参见图3,其示出兼顾两管制和三管制的空调器的系统结构图。
参见图1和图3,空调器还包括并联的多个第一切换阀a和并联的多个第二切换阀b,第一切换阀a、第二切换阀b和一个室内换热器彼此对应。
第一切换阀a用于将通过将流路切换装置切换的来自压缩机1的至少部分制冷剂分支,并对应流入室内换热器11-1/11-2。
第二切换阀b的一端连接在第一切换阀a连接室内换热器11-1/11-2气侧 的位置处,另一端与气液分离器(例如气液分离器14)连接,具体地,参见图1,另一端通过延长配管26及气侧截止阀27与气液分离器14连通。
两管制和三管制是通过切换第一切换阀a和第二切换阀b来实现的。
参见图3,空调器除了上述所述的运行模式外,还具有主制冷运行模式和主制热运行模式。
主制冷运行模式,即,室内机存在制冷和制热两种状态,且制冷负荷大于制热负荷,此时室外换热器用作冷凝器。
在主制冷运行模式下,假设室内换热器11-1用作蒸发器(即,室内换热器11-1制冷)而室内换热器11-2用作冷凝器(即,室内换热器11-2制热)。
参考图3,室外机W1中的流路切换装置3上电打开,流路节流装置19处于任意开度,第一控制阀18打开,除霜切换装置21和20均断电闭合,液管节流装置6-1和6-2均打开,室外风机5-1和5-2均打开,节流装置28处于任意开度,控制与室内换热器11-1连接的第一切换阀a(即第一切换阀24a)关闭且第二切换阀b(即第二切换阀24b)打开,控制与室内换热器11-2连接的第一切换阀a(即第一切换阀25a)打开且第二切换阀b(即第二切换阀25b)关闭。
其中除霜切换装置21和20中的D和C连通且E和S连通。
流路切换装置3上电打开,D和E连通且C和S连通,压缩机1将低温低压的冷媒压缩成高温高压状态,通过单向阀2后分成两部分。
一部分高温高压制冷剂经过第一控制阀18进入除霜切换装置21和20的D和C而进入室外换热器4-1和4-2。在室外换热器4-1和4-2热交换后冷凝放热,成为液态冷媒,随后冷媒经过液管节流装置6-1和6-2流向液侧截止阀8和第二延长配管9。
另一部分高温高压制冷剂经过流路切换装置3的D和E经过气侧截止阀13、第一延长配管12、及第一切换阀25a进入室内换热器11-2内部热交换后冷凝放热,成为液态冷媒,随后冷媒经过室内机侧节流装置10-2,与室外侧来的经过液侧截止阀8和第二延长配管9的冷媒汇合进入室内机侧节流装置 10-1节流降压为气液两态。
随后进入室内换热器11-1内蒸发吸热,变为气态,经过第二切换阀24b、延长配管26、气侧截止阀27进入气液分离器14,最后被吸入压缩机1压缩,完成主制冷循环。
主制热模式,即,室内机存在制冷和制热两种状态,且制热负荷大于制冷负荷,此时室外换热器用作蒸发器。
在主制热模式下,假设室内换热器11-1用作冷凝器(即,室内换热器11-1制热)而室内换热器11-2用作蒸发器(即,室内换热器11-2制冷)。
参考图3,室外机模块中的流路切换装置3上电打开,流路节流装置19处于任意开度,第一控制阀18可选择打开或关闭,在一些实施例中,选择关闭,除霜切换装置21和20均上电导通,液管节流装置6-1和6-2均打开,室外风机5-1和5-2均打开,节流装置28处于任意开度,控制第一切换阀24a打开且第二切换阀24b关闭,控制第一切换阀25a关闭且第二切换阀25b打开。
其中除霜切换装置21和20中的D和E连通且C和S连通。
流路切换装置3上电打开,D和E连通且C和S连通,压缩机1将低温低压的冷媒压缩成高温高压状态,经过单向阀2、流路切换装置3的D和E、气侧截止阀13、第一延长配管12、第一切换阀24a进入室内换热器11-1内部热交换后冷凝放热,成为液态冷媒,随后冷媒经过室内机侧节流装置10-1流出,并分成两部分。
一部分经过第二延长配管9、液侧截止阀8进入液管节流装置6-1和6-2节流至低温低压气液两态,随后进入室外换热器4-1和4-2内蒸发吸热,变为气态,室外换热器4-1和4-2出来的冷媒经过除霜切换装置21和20的C和S流出。
另一部分经过室内机侧节流装置10-2节流降压进入室内换热器11-2内蒸发吸热,变为气态,经过第二切换阀25b、延长配管26、气侧截止阀27,与如上所述的经过除霜切换装置21和20的C和S流出的冷媒汇合后进入气液 分离器14,最后被吸入压缩机1压缩,完成主制热循环。
涉及三管制热回收功能时,参见图3,在进行轮换除霜时,可以至少控制闭合第一切换阀24a及第一切换阀25a。
即,(1)控制闭合第一切换阀24a及与第一切换阀25a,且关闭第二切换阀24b及第二切换阀25b;(2)控制闭合第一切换阀24a及第一切换阀25a,且控制闭合第二切换阀24b及第二切换阀25b。
其余装置保持与前述轮换除霜运行模式中的状态相同。
且在通常制热运行模式和通常制冷运行模式时,控制第一切换阀24a和25a均闭合,且第二切换阀24b和25b均关闭。
[风场分隔]
由于在室外换热器4-1进行除霜时,室外换热器4-2的对应室外风机5-2保持运行状态,因此,为了避免室外风机5-2产生的风场吹过室外换热器4-1,而使室外换热器4-1无法有效除霜的情况,在本申请中,设置有用于分隔风场的分隔装置101(此部分可参见申请号为202010279447.2、发明名称为“空调室外机”的专利文件)。
本申请一些实施例中,室外风机5-1和5-2分别独立地受控制装置控制,且室外换热器4-1和室外风机5-1形成第一风场,且室外换热器4-2和室外风机5-2形成第二风场,分隔装置101用于分离第一风场和第二风场。
即,在室外风机5-1运行且室外风机5-2不运行时,其不会将风吹向室外换热器4-2,而在室外风机5-2运行且室外风机5-1不运行时,其不会将风吹向室外换热器4-1。
这样,在室外换热器4-1进行除霜时,由于分隔装置101分离第一风场和第二风场,因此,即使室外风机5-2仍运行,对第一风场也不会产生影响。
由此,有效避免在室外换热器4-1进行除霜时其表面有风吹过,进而防止在室外温度较低时出现冷凝负荷过大而无法有效除霜的情况,可以实现全温区不间断制热。
此外,在室外风机5-1停止运行(即室外换热器4-1正在除霜)时,可以 适当提高室外风机5-2的转速,进一步增强制热效果,减小室内温度波动,大大改善空调器制热能力及用户制热舒适性。
且在室外换热器4-1退出除霜过程而进入通常制热运行过程时,对应打开室外风机5-1而关闭室外换热器4-2的室外风机5-2。
以上实施例仅用以说明本申请的技术方案,而非对其进行限制;尽管参照前述实施例对本申请进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本申请所要求保护的技术方案的精神和范围。

Claims (10)

  1. 一种空调器,其特征在于,包括:
    室内机;
    室外机,所述室外机包括:
    压缩机;
    流路切换装置,其用于切换从所述压缩机排出的制冷剂的流路;
    流路节流装置,其用于节流通过所述流路切换装置切换的来自所述压缩机的部分制冷剂;
    第一控制阀,其与所述流路节流装置并联;
    室外换热器,并列设置有两个;
    除霜切换装置,设置有2个,分别与两个室外换热器连接,用于切换所述室外换热器与所述流路节流装置连通或与气液分离器连通;
    两个液管节流装置,其各自连接所述室内机和各室外换热器;
    节流装置,其一端连接在一个液管节流装置连接对应室外换热器液侧的位置处,另一端连接另一个液管节流装置连接对应室外换热器的位置处;
    控制装置,在室外机中的一个室外换热器需要除霜时,所述控制装置控制所述流路切换装置、流路节流装置、第一控制阀、除霜切换装置、液管节流装置和节流装置,使待除霜的室外换热器作为除霜换热器执行,剩余的一个室外换热器作为蒸发器执行;
    在除霜换热器除霜时,所述控制装置控制所述流路切换装置打开;控制打开所述流路节流装置;控制所述除霜切换装置使从所述流路节流装置流出的制冷剂与除霜换热器的主气管连通;控制与所述除霜换热器连通的液管节流装置、及第一控制阀关闭;控制所述节流装置打开。
  2. 根据权利要求1所述的空调器,其特征在于,
    在对所述除霜换热器进行除霜时,所述控制装置被配置为:
    控制打开所述节流装置,根据所述除霜换热器的出口过冷度及目标出口过 冷度范围,控制调整所述节流装置的开度;
    控制打开所述流路节流装置,根据除霜压力及目标除霜压力范围,控制调整所述流路节流装置的开度。
  3. 根据权利要求1所述的空调器,其特征在于,
    控制打开所述节流装置,根据所述除霜换热器的出口过冷度及目标出口过冷度范围,控制调整所述节流装置的开度,具体为:
    设定所述除霜换热器的目标出口过冷度范围;
    计算所述除霜换热器的出口过冷度;
    比较所述出口过冷度是否位于所述目标出口过冷度范围内,若是,保持当前所述节流装置的开度,若否,调节所述节流装置的开度;
    控制打开所述流路节流装置,根据除霜压力及目标除霜压力范围,控制所述流路节流装置的开度,具体为:
    设定目标除霜压力范围;
    计算所述待除霜换热器的除霜压力;
    比较所述除霜压力是否位于所述目标除霜压力范围内,若是,保持所述流路节流装置的开度,若否,调节所述流路节流装置的开度。
  4. 根据权利要求3所述的空调器,其特征在于,
    调节所述节流装置的开度,具体为:
    在所述出口过冷度大于所述目标出口过冷度范围的上限值时,增大所述节流装置的开度;
    在所述出口过冷度小于所述目标出口过冷度范围的下限值时,减小所述节流装置的开度;
    调节所述流路节流装置的开度,具体为:
    在所述除霜压力大于所述目标除霜压力范围的上限值时,减小所述流路节流装置的开度;
    在所述除霜压力小于所述目标除霜压力范围的下限值时,增大所述流路节流装置的开度。
  5. 根据权利要求1至4中任一项所述的空调器,其特征在于,所述控制装置配置为:
    在对除霜换热器进行除霜时,若达到第一预设除霜时间,或者
    若所述除霜换热器的出口温度大于等于第一温度预设值且维持一定时间段,控制所述除霜换热器退出除霜过程而进入通常制热运行过程。
  6. 根据权利要求5所述的空调器,其特征在于,所述控制装置被配置为:
    所述除霜换热器退出除霜过程而进入通常制热运行过程,至少包括:
    控制所述除霜切换装置,使所述除霜换热器的气侧与所述气液分离器连通;
    控制打开与所述除霜换热器连通的液管节流装置。
  7. 根据权利要求1至4中任一项所述的空调器,其特征在于,
    所述目标除霜压力范围与环境温度有关。
  8. 根据权利要求1所述的空调器,其特征在于,所述空调器还包括:
    室内换热器,设置有2个,并联设置;
    并联的2个第一切换阀,其各自对应连接一个室内换热器,所述第一切换阀用于将流路切换装置切换的来自压缩机的至少部分制冷剂分支,并对应流入到其对应的室内换热器的气侧;
    并联的2个第二切换阀,其各自对应连接一个室内换热器,所述第二切换阀的一端连接在所述第一切换阀连接所述室内换热器气侧的位置处,另一端与气液分离器连接;
    第一切换阀和第二切换阀分别受所述控制装置控制。
  9. 根据权利要求1至4、8中任一项所述的空调器,其特征在于,所述室外机还包括:
    两个室外风机,其各自对应两个室外换热器且与所述控制装置连接,各室外风机分别与其对应的室外换热器形成一风场;
    分隔装置,其用于分隔相邻风场;
    在除霜时,所述控制装置控制关闭与除霜换热器对应的室外风机。
  10. 根据权利要求9所述的空调器,其特征在于,
    在室外机中的其中一个室外换热器正在除霜时,控制器控制提高另一室外换热器对应的转速提高。
PCT/CN2021/099382 2020-11-30 2021-06-10 一种空调器 WO2022110761A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011371181.0 2020-11-30
CN202011371181.0A CN112443999A (zh) 2020-11-30 2020-11-30 一种空调器

Publications (1)

Publication Number Publication Date
WO2022110761A1 true WO2022110761A1 (zh) 2022-06-02

Family

ID=74737982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099382 WO2022110761A1 (zh) 2020-11-30 2021-06-10 一种空调器

Country Status (2)

Country Link
CN (1) CN112443999A (zh)
WO (1) WO2022110761A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115342482A (zh) * 2022-08-23 2022-11-15 宁波奥克斯电气股份有限公司 一种除霜控制方法及空调器
CN115711472A (zh) * 2022-11-28 2023-02-24 珠海格力电器股份有限公司 空调控制方法和控制装置、空调系统及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112443999A (zh) * 2020-11-30 2021-03-05 青岛海信日立空调系统有限公司 一种空调器
CN115682332A (zh) * 2021-07-30 2023-02-03 美的集团股份有限公司 空调器控制方法、装置、空调器及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4675927B2 (ja) * 2007-03-30 2011-04-27 三菱電機株式会社 空気調和装置
JP4946948B2 (ja) * 2008-03-31 2012-06-06 三菱電機株式会社 ヒートポンプ式空気調和装置
CN104520656A (zh) * 2012-08-03 2015-04-15 三菱电机株式会社 空气调节装置
CN104813123A (zh) * 2012-11-29 2015-07-29 三菱电机株式会社 空气调节装置
CN105987429A (zh) * 2015-02-05 2016-10-05 佛山市禾才科技服务有限公司 一种多联机空调系统及其制热待机快速启动控制方法
WO2016170575A1 (ja) * 2015-04-20 2016-10-27 三菱電機株式会社 冷凍サイクル装置
CN108917219A (zh) * 2018-07-19 2018-11-30 广东芬尼克兹节能设备有限公司 热泵机组除霜系统及其除霜方法
CN109154463A (zh) * 2016-05-16 2019-01-04 三菱电机株式会社 空气调节装置
CN112443999A (zh) * 2020-11-30 2021-03-05 青岛海信日立空调系统有限公司 一种空调器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100592007C (zh) * 2008-10-21 2010-02-24 中南大学 一种空气源热泵型空调器及其除霜方法
CN104807113B (zh) * 2015-04-30 2017-11-10 广东美的暖通设备有限公司 一种空调室外机除霜判定方法
WO2017138108A1 (ja) * 2016-02-10 2017-08-17 三菱電機株式会社 空気調和装置
CN205448435U (zh) * 2016-03-15 2016-08-10 广东美的制冷设备有限公司 一种可对冷凝器除霜的空调器
CN109668233A (zh) * 2018-12-12 2019-04-23 广东美的暖通设备有限公司 多联机系统
CN111425992B (zh) * 2020-04-13 2021-03-26 珠海格力电器股份有限公司 一种空调化霜控制方法、装置、存储介质及空调
CN111664549B (zh) * 2020-06-10 2023-09-12 青岛海信日立空调系统有限公司 空调器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4675927B2 (ja) * 2007-03-30 2011-04-27 三菱電機株式会社 空気調和装置
JP4946948B2 (ja) * 2008-03-31 2012-06-06 三菱電機株式会社 ヒートポンプ式空気調和装置
CN104520656A (zh) * 2012-08-03 2015-04-15 三菱电机株式会社 空气调节装置
CN104813123A (zh) * 2012-11-29 2015-07-29 三菱电机株式会社 空气调节装置
CN105987429A (zh) * 2015-02-05 2016-10-05 佛山市禾才科技服务有限公司 一种多联机空调系统及其制热待机快速启动控制方法
WO2016170575A1 (ja) * 2015-04-20 2016-10-27 三菱電機株式会社 冷凍サイクル装置
CN109154463A (zh) * 2016-05-16 2019-01-04 三菱电机株式会社 空气调节装置
CN108917219A (zh) * 2018-07-19 2018-11-30 广东芬尼克兹节能设备有限公司 热泵机组除霜系统及其除霜方法
CN112443999A (zh) * 2020-11-30 2021-03-05 青岛海信日立空调系统有限公司 一种空调器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115342482A (zh) * 2022-08-23 2022-11-15 宁波奥克斯电气股份有限公司 一种除霜控制方法及空调器
CN115711472A (zh) * 2022-11-28 2023-02-24 珠海格力电器股份有限公司 空调控制方法和控制装置、空调系统及存储介质

Also Published As

Publication number Publication date
CN112443999A (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
WO2022110761A1 (zh) 一种空调器
CN108131858B (zh) 一种热泵空调系统及其控制方法
US9506674B2 (en) Air conditioner including a bypass pipeline for a defrosting operation
CN213841110U (zh) 空调器
JP5213817B2 (ja) 空気調和機
WO2022110771A1 (zh) 空调器
KR100821728B1 (ko) 공기 조화 시스템
CN112444000A (zh) 空调器
WO2018040579A1 (zh) 空调器系统和空调器系统的控制方法
CN112050399B (zh) 一种空调装置
CN112443997A (zh) 空调器
CN213841111U (zh) 空调器
CN108151350B (zh) 三管制多联机系统及其控制方法
JP2015117894A (ja) 空気調和機の室外機
KR101723689B1 (ko) 공기 조화기
KR20140017865A (ko) 공기 조화기 및 그의 제어방법
CN112444003A (zh) 空调器
CN112444002A (zh) 空调器
CN112443998A (zh) 空调器
CN213089945U (zh) 一种空调装置
CN109959180B (zh) 空调系统及其除霜方法
CN113685916A (zh) 一种空调系统及其控制方法
CN108444141B (zh) 空调器系统、空调器和空调器的控制方法
CN220506910U (zh) 空调系统和空调器
CN214501455U (zh) 空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896270

Country of ref document: EP

Kind code of ref document: A1