[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022102757A1 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
WO2022102757A1
WO2022102757A1 PCT/JP2021/041792 JP2021041792W WO2022102757A1 WO 2022102757 A1 WO2022102757 A1 WO 2022102757A1 JP 2021041792 W JP2021041792 W JP 2021041792W WO 2022102757 A1 WO2022102757 A1 WO 2022102757A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
mass
resin
component
group
Prior art date
Application number
PCT/JP2021/041792
Other languages
French (fr)
Japanese (ja)
Inventor
賢司 川合
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to JP2022562211A priority Critical patent/JPWO2022102757A1/ja
Priority to KR1020237015905A priority patent/KR20230098808A/en
Priority to CN202180076144.3A priority patent/CN116406332A/en
Publication of WO2022102757A1 publication Critical patent/WO2022102757A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a resin composition containing a maleimide compound. Further, the present invention relates to a cured product obtained by using the resin composition, a sheet-like laminated material, a resin sheet, a printed wiring board, and a semiconductor device.
  • the insulating layer is generally formed by curing the resin composition.
  • further improvement of dielectric properties such as dielectric constant of an insulating layer and further improvement of copper adhesion have been required.
  • an insulating layer having a high glass transition temperature there is a demand for an insulating layer having a high glass transition temperature.
  • the minimum melt viscosity of the resin composition, the relative permittivity (Dk) and the dielectric constant tangent (Df) of the material, and the glass transition are so far. There was a problem with the low point (Tg).
  • Patent Document 1 maleimide compounds containing an isopropylidene group have been known.
  • the subject of the present invention is a cured product in which the minimum melt viscosity can be suppressed to a lower level, the relative permittivity (Dk) and the dielectric constant tangent (Df) are low, the glass transition point (Tg) is high, and the copper plating peel strength is excellent.
  • the present invention is to provide a resin composition capable of obtaining the above.
  • (B) an active ester compound and (C) an epoxy resin surprisingly, the minimum melt viscosity of the resin composition can be suppressed to a lower value, and the specific dielectric constant (Dk) and the dielectric tangent (Df) can be suppressed.
  • Dk specific dielectric constant
  • Df dielectric tangent
  • the component (A) is the formula (A2) :.
  • rings A and B each independently represent an aromatic ring that may have a substituent; a represents an integer of 1 or more.
  • the component (A) is the formula (A-1) :.
  • R 1 and R 2 independently represent an alkyl group or an aryl group; a represents an integer of 1 or more; x and y independently represent 0, 1, 2 or, respectively. 3 is shown.
  • the content of the component (A) is 3% by mass to 30% by mass when the non-volatile component in the resin composition is 100% by mass, according to any one of the above [1] to [4].
  • the content of the component (B) is 3% by mass to 30% by mass when the non-volatile component in the resin composition is 100% by mass, according to any one of the above [1] to [5].
  • Resin composition. [7] The above-mentioned [1] to [6], wherein the mass ratio of the component (A) to the component (B) (component (A) / component (B)) is 0.5 to 2.
  • the content of the component (C) is 1% by mass to 30% by mass when the non-volatile component in the resin composition is 100% by mass, according to any one of the above [1] to [7].
  • a semiconductor device including the printed wiring board according to the above [18].
  • the minimum melt viscosity can be suppressed to be lower, the relative permittivity (Dk) and the dielectric tangent (Df) are low, the glass transition point (Tg) is high, and the copper plating peel strength is obtained.
  • An excellent cured product can be obtained.
  • the resin composition of the present invention comprises (A) a maleimide compound having an isopropyridene group bonded to two aromatic carbon atoms of different aromatic rings (hereinafter, may be referred to as "specific maleimide compound"), and (B) an active ester. It contains a compound and (C) epoxy resin.
  • the resin composition of the present invention may further contain any component in addition to (A) the specific maleimide compound, (B) the active ester compound, and (C) the epoxy resin.
  • Optional components include, for example, (A') other maleimide compounds, (B') other curing agents, (D) inorganic fillers, (E) curing accelerators, (F) polyimide resins, (G) and others. Additives and (H) organic solvent.
  • each component contained in the resin composition will be described in detail.
  • the resin composition of the present invention contains (A) a specific maleimide compound.
  • the specific maleimide compound may be used alone or in combination of two or more at any ratio.
  • the maleimide compound means a compound having at least one maleimide group (2,5-dihydro-2,5-dioxo-1H-pyrrole-1-yl group) in one molecule.
  • the maleimide group in the specific maleimide compound may be bonded to an aromatic carbon atom or an aliphatic carbon atom, but preferably contains one bonded to an aromatic carbon atom (A).
  • the number of maleimide groups in one molecule of the specific maleimide compound is preferably 2 or more, more preferably 3 or more, more preferably 3 to 11, and 3 to 6. More preferred.
  • the specific maleimide compound has at least one isopropylidene group (-C (CH 3 ) 2- ) bonded to two aromatic carbon atoms of different aromatic rings in one molecule.
  • the isopropyridene group contained in the specific maleimide compound is two aromatic carbon atoms in a combination of an aromatic carbon atom in an aromatic ring having a maleimide group and an aromatic carbon atom in an aromatic ring having no maleimide group.
  • the specific maleimide compound is preferably bonded to two aromatic carbon atoms in a combination of an aromatic carbon atom in an aromatic ring having a maleimide group and an aromatic carbon atom in an aromatic ring having no maleimide group.
  • all the isopropyridene groups contained in the specific maleimide compound are an aromatic carbon atom in an aromatic ring having a maleimide group and an aromatic carbon in an aromatic ring having no maleimide group. It is an isopropylidene group bonded to two aromatic carbon atoms in combination with an atom.
  • the number of such isopropyrine groups in one molecule of the specific maleimide compound is preferably 2 or more, more preferably 4 or more, still more preferably 4 to 20, and 4 to 10. Is particularly preferable.
  • the aromatic ring means a ring according to Hückel's law in which the number of electrons contained in the ⁇ -electron system on the ring is 4p + 2 (p is a natural number).
  • the aromatic ring may be an aromatic carbocycle having a carbon atom as a ring-constituting atom, or an aromatic heterocyclic ring having a heteroatom such as an oxygen atom, a nitrogen atom, and a sulfur atom in addition to the carbon atom as the ring-constituting atom. However, in one embodiment, it is preferably an aromatic carbon ring.
  • the aromatic ring is preferably a 5- to 14-membered aromatic ring, more preferably a 5- to 10-membered aromatic ring, and even more preferably a 5- or 6-membered aromatic ring.
  • the aromatic ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring and the like, more preferably a benzene ring or a naphthalene ring, and particularly preferably a benzene ring.
  • the specific maleimide compound is preferably the formula (A1): in one embodiment.
  • ring A, ring B and ring C each independently represent an aromatic ring which may have a substituent;
  • X is an independent single bond, —C (R x ).
  • 2- -O-, -CO-, -S-, -SO-, -SO 2- , -CONH-, or -NHCO-;
  • R x independently contains a hydrogen atom and a substituent.
  • the a unit and the c unit may be the same or different for each unit.
  • Rings A, B and C each independently represent an aromatic ring which may have a substituent, preferably an aromatic carbocycle which may have a substituent, and more preferably.
  • substituted group is not particularly limited, but for example, an alkyl group, an alkenyl group, an aryl group, an aryl-alkyl group, an alkyl-oxy group, an alkenyl-oxy group, and an aryl-oxy group.
  • alkyl-carbonyl group alkenyl-carbonyl group, aryl-carbonyl group, alkyl-oxy-carbonyl group, alkenyl-oxy-carbonyl group, aryl-oxy-carbonyl group, alkyl-carbonyl-oxy group, alkenyl-carbonyl-oxy
  • Alkyl (group) means a linear, branched and / or cyclic monovalent aliphatic saturated hydrocarbon group. Unless otherwise specified, the alkyl (group) is preferably an alkyl (group) having 1 to 14 carbon atoms. Examples of the alkyl (group) include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group and a nonyl group.
  • Alkenyl (group) means a linear, branched and / or cyclic monovalent aliphatic unsaturated hydrocarbon group having at least one carbon-carbon double bond. Unless otherwise specified, the alkenyl (group) is preferably an alkenyl group having 2 to 14 carbon atoms.
  • alkenyl (group) examples include a vinyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group, a decenyl group, a cyclohexenyl group and the like.
  • Aryl (group) means a monovalent aromatic hydrocarbon group. Unless otherwise specified, the aryl (group) is preferably an aryl (group) having 6 to 14 carbon atoms. Examples of the aryl (group) include a phenyl group, a 1-naphthyl group, a 2-naphthyl group and the like.
  • X can independently form a single bond, -C (R x ) 2- , -O-, -CO-, -S-, -SO-, -SO 2- , -CONH-, or -NHCO-. Shown, preferably single bond, -C (R x ) 2- , or -O-, more preferably single bond, or -C (R x ) 2- , and particularly preferably single bond.
  • R x independently represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent, and more preferably, a hydrogen atom, an alkyl group, or an alkyl group. It is an aryl group, more preferably a hydrogen atom or an alkyl group.
  • the specific maleimide compound includes, in one embodiment, a maleimide compound represented by the formula (A1) in which a is 1, and a maleimide compound represented by the formula (A1) in which a is 2 or more.
  • the maleimide compound represented by the formula (A1) of 2 or more is preferably contained in an amount of 1% by mass, more preferably 5% by mass, further preferably 8% by mass, and 10% by mass. Especially preferable.
  • B indicates 0 or 1 independently of each other, and is preferably 1.
  • c independently indicates 0, 1, 2 or 3, preferably 0, 1 or 2, more preferably 0 or 1, and particularly preferably 0.
  • the specific maleimide compound is more preferably the formula (A2): in one embodiment.
  • the specific maleimide compound is more preferably the formulas (A-1) to (A-6): in another embodiment.
  • R 1 and R 2 independently indicate an alkyl group or an aryl group; x and y independently indicate 0, 1, 2 or 3; other symbols are described above. Is similar to.
  • the maleimide compound represented by any of the above is contained, and in one embodiment, the compound represented by the formula (A-1) is contained, and in one embodiment, the formula (A-1a) is even more preferable.
  • a compound represented by the formula (A-1a) is particularly preferably contained.
  • R 1 and R 2 each independently represent an alkyl group or an aryl group, and are preferably an alkyl group.
  • x and y independently represent 0, 1, 2 or 3, respectively, preferably 0, 1 or 2, more preferably 0 or 1, and particularly preferably 0.
  • the weight average molecular weight (Mw) of the specific maleimide compound is preferably 500 to 5000, more preferably 500 to 4000, and even more preferably 500 to 3000.
  • the number average molecular weight (Mn) of the specific maleimide compound is preferably 500 to 5000, more preferably 500 to 4000, and even more preferably 500 to 3000.
  • the weight average molecular weight and the number average molecular weight of the resin can be measured as polystyrene-equivalent values by the gel permeation chromatography (GPC) method.
  • the maleimide equivalent of the specific maleimide compound is preferably 100 g / eq. ⁇ 1000 g / eq. , More preferably 150 g / eq. ⁇ 400 g / eq. Is.
  • the maleimide equivalent of the (A) specific maleimide compound is the mass of the (A) specific maleimide compound per one equivalent of the maleimide group.
  • the content of the (A) specific maleimide compound in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, it is preferably 50% by mass or less, more preferably 50% by mass or less. It is 40% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less, and particularly preferably 15% by mass or less.
  • the lower limit of the content of the (A) specific maleimide compound in the resin composition is not particularly limited, but is preferably 0.1% by mass or more when the non-volatile component in the resin composition is 100% by mass. , More preferably 1% by mass or more, still more preferably 3% by mass or more, still more preferably 5% by mass or more, and particularly preferably 7% by mass or more.
  • the resin composition of the present invention may further contain a (A') maleimide compound other than the (A) component as an optional component.
  • (A') Other maleimide compounds may be used alone or in any combination of two or more.
  • the (A') other maleimide compound is not particularly limited, and may be an aliphatic maleimide compound containing an aliphatic amine skeleton or an aromatic maleimide compound containing an aromatic amine skeleton, and may be commercially available.
  • Examples of products include "SLK-2600” manufactured by Shinetsu Chemical Industry Co., Ltd., "BMI-1500”, “BMI-1700", “BMI-3000J”, “BMI-689", and “BMI-689” manufactured by Designer Molecule's.
  • BMI-2500 maleimide compound containing dimerdiamine structure
  • BMI-6100 aromatic maleimide compound
  • MIR-3000-70MT biphenyl aralkyl type maleimide compound
  • BMI-70 and BMI-80 manufactured by KAI Kasei Co., Ltd.
  • BMI-2300 a maleimide resin
  • BMI-TMH a maleimide resin
  • the maleimide equivalent of the other maleimide compound is preferably 100 g / eq. ⁇ 20000 g / eq. , More preferably 200 g / eq. ⁇ 15000 g / eq. , More preferably 300 g / eq. ⁇ 10,000 g / eq. Is.
  • the maleimide equivalent of the (A') other maleimide compound is the mass of the (A') other maleimide compound per 1 equivalent of the maleimide group.
  • the weight average molecular weight (Mw) of the (A') other maleimide compound is preferably 500 to 50,000, more preferably 700 to 20,000.
  • the number average molecular weight (Mn) of the (A') other maleimide compound is preferably 500 to 50,000, more preferably 700 to 20,000.
  • the content of the (A') and other maleimide compounds in the resin composition is not particularly limited, but is preferably 50% by mass or less when the non-volatile component in the resin composition is 100% by mass. It is preferably 40% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less, and particularly preferably 10% by mass or less.
  • the lower limit of the content of the (A') and other maleimide compounds in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, for example, 0% by mass or more. , 0.1% by mass or more, 1% by mass or more, 2% by mass or more, and the like.
  • the content of the (A) specific maleimide compound in the resin composition is preferably 10% by mass when the total maleimide compound (total of the (A) component and the (A') component) in the resin composition is 100% by mass. % Or more, more preferably 30% by mass or more, still more preferably 40% by mass or more, and particularly preferably 50% by mass or more.
  • the resin composition of the present invention contains (B) an active ester compound.
  • the active ester compound may be used alone or in combination of two or more at any ratio.
  • the (B) active ester compound may have a function as an epoxy resin curing agent that reacts with and cures the (C) epoxy resin.
  • ester compound generally, two or more ester groups with high reaction activity such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds are contained in one molecule.
  • the compound to have is preferably used.
  • the active ester compound is preferably obtained by a condensation reaction between a carboxylic acid compound and / or a thiocarboxylic acid compound and a hydroxy compound and / or a thiol compound.
  • an active ester compound obtained from a carboxylic acid compound and a hydroxy compound is preferable, and an active ester compound obtained from a carboxylic acid compound and a phenol compound and / or a naphthol compound is more preferable.
  • the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, pyromellitic acid and the like.
  • phenol compound or naphthol compound examples include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthalin, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-.
  • the "dicyclopentadiene-type diphenol compound” refers to a diphenol compound obtained by condensing two phenol molecules with one dicyclopentadiene molecule.
  • the (B) active ester compound includes a dicyclopentadiene type active ester compound, a naphthalene type active ester compound containing a naphthalene structure, an active ester compound containing a phenol novolac acetylated product, and a phenol novolak benzoyl compound.
  • the active ester compound is preferable, and at least one selected from the dicyclopentadiene type active ester compound and the naphthalene type active ester compound is more preferable, and the dicyclopentadiene type active ester compound is further preferable.
  • the dicyclopentadiene type active ester compound an active ester compound containing a dicyclopentadiene type diphenol structure is preferable.
  • the active ester group equivalent of the active ester compound is preferably 50 g / eq. ⁇ 500 g / eq. , More preferably 50 g / eq. ⁇ 400 g / eq. , More preferably 100 g / eq. ⁇ 300 g / eq. Is.
  • the active ester group equivalent is the mass of the active ester compound per active ester group equivalent.
  • the content of the (B) active ester compound in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, it is preferably 50% by mass or less, more preferably 50% by mass or less. It is 40% by mass or less, more preferably 30% by mass or less, still more preferably 25% by mass or less, and particularly preferably 20% by mass or less.
  • the lower limit of the content of the (B) active ester compound in the resin composition is not particularly limited, but is preferably 0.1% by mass or more when the non-volatile component in the resin composition is 100% by mass. , More preferably 1% by mass or more, still more preferably 3% by mass or more, still more preferably 5% by mass or more, still more preferably 8% by mass or more, and particularly preferably 10% by mass or more.
  • the mass ratio ((A) component / (B) component) of the (A) specific maleimide compound to the (B) active ester compound in the resin composition is preferably 0.1 or more, more preferably 0.3 or more, particularly. It is preferably 0.5 or more.
  • the upper limit of the mass ratio ((A) component / (B) component) of the (A) specific maleimide compound to the (B) active ester compound in the resin composition is preferably 5 or less, more preferably 2 or less, and particularly preferably. It is 1 or less.
  • the resin composition of the present invention may further contain a (B') curing agent other than the (B) component as an optional component.
  • (B') Other curing agents may be used alone or in any combination of two or more.
  • the (B') other curing agent may have a function as an epoxy resin curing agent that reacts with (C) an epoxy resin and cures, similarly to the (B) active ester compound.
  • the (B') other curing agent is not particularly limited, but for example, a phenol-based curing agent, a carbodiimide-based curing agent, an acid anhydride-based curing agent, an amine-based curing agent, a benzoxazine-based curing agent, and the like. Examples thereof include a cyanate ester-based curing agent and a thiol-based curing agent. It is particularly preferable that the (B') other curing agent contains a phenolic curing agent.
  • a phenolic curing agent having a novolak structure is preferable from the viewpoint of heat resistance and water resistance. Further, from the viewpoint of adhesion to the adherend, a nitrogen-containing phenol-based curing agent is preferable, and a triazine skeleton-containing phenol-based curing agent is more preferable. Of these, a triazine skeleton-containing phenol novolac resin is preferable from the viewpoint of highly satisfying heat resistance, water resistance, and adhesion.
  • phenolic curing agent examples include, for example, "MEH-7700”, “MEH-7810", “MEH-7851” manufactured by Meiwa Kasei Co., Ltd., “NHN”, “CBN”, and “CBN” manufactured by Nippon Kayaku Co., Ltd. GPH, "SN-170”, “SN-180”, “SN-190”, “SN-475”, “SN-485”, “SN-495”, “SN-” manufactured by Nittetsu Chemical & Materials Co., Ltd. 375 “,” SN-395 “, DIC's" LA-7052 “,” LA-7054 “,” LA-3018 “,” LA-3018-50P “,” LA-1356 “,” TD2090 “,” TD-2090-60M “and the like.
  • carbodiimide-based curing agent examples include curing agents having one or more, preferably two or more carbodiimide structures in one molecule, and examples thereof include tetramethylene-bis (t-butylcarbodiimide) and cyclohexanebis (methylene-).
  • aliphatic biscarbodiimides such as t-butylcarbodiimide; biscarbodiimides such as aromatic biscarbodiimides such as phenylene-bis (kisilylcarbodiimide); polyhexamethylenecarbodiimide, polytrimethylhexamethylenecarbodiimide, polycyclohexylenecarbodiimide, poly (methylene).
  • Aliphatic polycarbodiimides such as biscyclohexylene carbodiimide), poly (isophorone carbodiimide); poly (phenylene carbodiimide), poly (naphthylene carbodiimide), poly (trilen carbodiimide), poly (methyldiisopropylphenylene carbodiimide), poly (triethylphenylene) Carbodiimide), poly (diethylphenylene carbodiimide), poly (triisopropylphenylene carbodiimide), poly (diisopropylphenylene carbodiimide), poly (xylylene carbodiimide), poly (tetramethylxylylene carbodiimide), poly (methylenediphenylene carbodiimide), poly Examples thereof include polycarbodiimides such as aromatic polycarbodiimides such as [methylenebis (methylphenylene) carbodiimide].
  • carbodiimide-based curing agents include, for example, "carbodilite V-02B”, “carbodilite V-03”, “carbodilite V-04K”, “carbodilite V-07” and “carbodilite V-09” manufactured by Nisshinbo Chemical Co., Ltd. "; Examples thereof include” Stavaxol P “,” Stavaxol P400 “, and” High Kazil 510 “manufactured by Rheinchemy.
  • the acid anhydride-based curing agent examples include a curing agent having one or more acid anhydride groups in one molecule, and a curing agent having two or more acid anhydride groups in one molecule is preferable.
  • Specific examples of the acid anhydride-based curing agent include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrohydride phthalic acid, methylhexahydrohydride phthalic acid, methylnadic acid anhydride, and hydride methylnadic acid.
  • acid anhydride curing agents include "HNA-100”, “MH-700”, “MTA-15”, “DDSA”, “OSA” manufactured by Shin Nihon Rika Co., Ltd., and “OSA” manufactured by Mitsubishi Chemical Corporation. "YH-306”, “YH-307”, “HN-2200”, “HN-5500” manufactured by Hitachi Chemical, "EF-30”, “EF-40”, “EF-60”, “EF” manufactured by Clay Valley. -80 "and the like.
  • the amine-based curing agent examples include curing agents having one or more, preferably two or more amino groups in one molecule, and examples thereof include aliphatic amines, polyether amines, and alicyclic amines. Aromatic amines and the like can be mentioned, and among them, aromatic amines are preferable from the viewpoint of achieving the desired effect of the present invention.
  • the amine-based curing agent is preferably a primary amine or a secondary amine, more preferably a primary amine.
  • amine-based curing agent examples include 4,4'-methylenebis (2,6-dimethylaniline), 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, and 3,3'-diaminodiphenylsulfone.
  • amine-based curing agent for example, "SEIKACURE-S” manufactured by Seika, "KAYABOND C-200S”, “KAYABOND C-100”, and “Kayahard A-A” manufactured by Nippon Kayaku. , "Kayahard AB”, “Kayahard AS”, “Epicure W” manufactured by Mitsubishi Chemical Corporation, and the like.
  • benzoxazine-based curing agent examples include "JBZ-OP100D” and “ODA-BOZ” manufactured by JFE Chemical Co., Ltd .; “HFB2006M” manufactured by Showa High Polymer Co., Ltd .; “Pd” manufactured by Shikoku Chemicals Corporation. Examples include “FA”.
  • cyanate ester-based curing agent examples include bisphenol A dicyanate, polyphenol cyanate (oligo (3-methylene-1,5-phenylene cyanate)), 4,4'-methylenebis (2,6-dimethylphenylcyanate), and 4, 4'-Etilidene diphenyl disyanate, hexafluorobisphenol A disyanate, 2,2-bis (4-cyanate) phenylpropane, 1,1-bis (4-cyanate phenylmethane), bis (4-cyanate-3,5-) Bifunctional cyanate resins such as dimethylphenyl) methane, 1,3-bis (4-cyanatephenyl-1- (methylethylidene)) benzene, bis (4-cyanatephenyl) thioether, and bis (4-cyanatephenyl) ether, Examples thereof include polyfunctional cyanate resins derived from phenol novolac, cresol novolak and the like, and prepolymers in which these cyanate
  • cyanate ester-based curing agent examples include "PT30” and “PT60” (both are phenol novolac type polyfunctional cyanate ester resins), "BA230”, and “BA230S75” (part of bisphenol A dicyanate) manufactured by Lonza Japan.
  • PT30 and "PT60” (both are phenol novolac type polyfunctional cyanate ester resins), "BA230”, and “BA230S75” (part of bisphenol A dicyanate) manufactured by Lonza Japan.
  • a prepolymer in which the whole is triazined to become a trimer) and the like can be mentioned.
  • thiol-based curing agent examples include trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptobutyrate), tris (3-mercaptopropyl) isocyanurate, and the like.
  • the reaction group equivalent of (B') and other curing agents is preferably 50 g / eq. ⁇ 3000 g / eq. , More preferably 100 g / eq. ⁇ 1000 g / eq. , More preferably 100 g / eq. ⁇ 500 g / eq. , Particularly preferably 100 g / eq. ⁇ 300 g / eq. Is.
  • the reaction group equivalent is the mass of the curing agent per reaction group equivalent.
  • the content of the (B') and other curing agents in the resin composition is not particularly limited, but is preferably 15% by mass or less when the non-volatile component in the resin composition is 100% by mass. It is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 3% by mass or less.
  • the lower limit of the content of the (B') and other curing agents in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, for example, 0% by mass or more. , 0.01% by mass or more, 0.1% by mass or more, 1% by mass or more, 2% by mass or more, and the like.
  • the content of the (B) active ester compound in the resin composition is preferably 10% by mass when the total of the (B) active ester compound and the (B') other curing agent in the resin composition is 100% by mass. % Or more, more preferably 30% by mass or more, still more preferably 40% by mass or more, and particularly preferably 50% by mass or more.
  • the resin composition of the present invention contains (C) an epoxy resin.
  • the epoxy resin is a curable resin having an epoxy group.
  • epoxy resin examples include bixilenol type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, dicyclopentadiene type epoxy resin, and trisphenol type.
  • the resin composition preferably contains, as the (C) epoxy resin, an epoxy resin having two or more epoxy groups in one molecule.
  • (C) The ratio of the epoxy resin having two or more epoxy groups in one molecule to 100% by mass of the non-volatile component of the epoxy resin is preferably 50% by mass or more, more preferably 60% by mass or more, and particularly preferably. Is 70% by mass or more.
  • the epoxy resin may be a liquid epoxy resin at a temperature of 20 ° C. (hereinafter sometimes referred to as “liquid epoxy resin”) or a solid epoxy resin at a temperature of 20 ° C. (hereinafter referred to as “solid epoxy resin”). ).
  • the resin composition of the present invention may contain only the liquid epoxy resin or only the solid epoxy resin as the epoxy resin, or may contain the liquid epoxy resin and the solid epoxy resin in combination. You may be.
  • the epoxy resin in the resin composition of the present invention is preferably a solid epoxy resin or a combination of a liquid epoxy resin and a solid epoxy resin, and more preferably a liquid epoxy resin.
  • liquid epoxy resin a liquid epoxy resin having two or more epoxy groups in one molecule is preferable.
  • liquid epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AF type epoxy resin, naphthalene type epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, phenol novolac type epoxy resin, and ester skeleton.
  • An alicyclic epoxy resin having an alicyclic epoxy resin, a cyclohexane type epoxy resin, a cyclohexanedimethanol type epoxy resin, and an epoxy resin having a butadiene structure are preferable.
  • liquid epoxy resin examples include “HP4032”, “HP4032D”, and “HP4032SS” (naphthalene type epoxy resin) manufactured by DIC; “828US”, “828EL”, “jER828EL”, and “825" manufactured by Mitsubishi Chemical Co., Ltd.
  • Bisphenol F type epoxy resin mixture Bisphenol F type epoxy resin mixture
  • Nagase Chemtex's "EX-721” glycol ester type epoxy resin
  • Daicel's "Selokiside 2021P” alicyclic epoxy resin with an ester skeleton
  • PB-3600 manufactured by Nippon Soda, "JP-100", “JP-200” (epoxy resin having a butadiene structure)
  • ZX1658 "ZX1658GS” (liquid) manufactured by Nittetsu Chemical & Materials. 1,4-glycidylcyclohexane type epoxy resin) and the like. These may be used individually by 1 type, or may be used in combination of 2 or more types.
  • solid epoxy resin a solid epoxy resin having three or more epoxy groups in one molecule is preferable, and an aromatic solid epoxy resin having three or more epoxy groups in one molecule is more preferable.
  • the solid epoxy resin examples include bixilenol type epoxy resin, naphthalene type epoxy resin, naphthalene type tetrafunctional epoxy resin, naphthol novolac type epoxy resin, cresol novolac type epoxy resin, dicyclopentadiene type epoxy resin, and trisphenol type epoxy resin.
  • Naftor type epoxy resin, biphenyl type epoxy resin, naphthylene ether type epoxy resin, anthracene type epoxy resin, bisphenol A type epoxy resin, bisphenol AF type epoxy resin, phenol aralkyl type epoxy resin, tetraphenylethane type epoxy resin, phenol phthali Midin type epoxy resin and phenol phthalein type epoxy resin are preferable.
  • solid epoxy resin examples include "HP4032H” (naphthalene type epoxy resin) manufactured by DIC; "HP-4700” and “HP-4710” (naphthalen type tetrafunctional epoxy resin) manufactured by DIC; DIC. "N-690” (cresol novolac type epoxy resin); DIC “N-695" (cresol novolac type epoxy resin); DIC "HP-7200”, “HP-7200HH”, “HP” -7200H “,” HP-7200L “(dicyclopentadiene type epoxy resin);” EXA-7311 ",” EXA-7311-G3 ",” EXA-7311-G4 ",” EXA-7311-G4S "manufactured by DIC.
  • Epoxy resin "ESN485" (naphthol type epoxy resin) manufactured by Nittetsu Chemical &Materials; "ESN375" (dihydroxynaphthalene type epoxy resin) manufactured by Nittetsu Chemical &Materials; "YX4000H” manufactured by Mitsubishi Chemical Co., Ltd., "YX4000", “YX4000HK”, “YL7890” (bixilenol type epoxy resin); “YL6121” (biphenyl type epoxy resin) manufactured by Mitsubishi Chemical Co., Ltd .; “YX8800” (anthracen type epoxy resin) manufactured by Mitsubishi Chemical Co., Ltd.; Chemical's "YX7700” (phenol aralkyl type epoxy resin); Osaka Gas Chemical's "PG-100", “CG-500”; Mitsubishi Chemical's "YL7760” (bisphenol AF type epoxy resin); Mitsubishi “YL7800” manufactured by Chemical Co., Ltd.
  • the mass ratio of the solid epoxy resin to the liquid epoxy resin is not particularly limited. However, it is preferably 10 or less, more preferably 5 or less, still more preferably 1 or less, still more preferably 0.5 or less, and particularly preferably 0.1 or less.
  • the epoxy equivalent of the epoxy resin is preferably 50 g / eq. ⁇ 5,000 g / eq. , More preferably 60 g / eq. ⁇ 2,000 g / eq. , More preferably 70 g / eq. ⁇ 1,000 g / eq. , Even more preferably 80 g / eq. ⁇ 500 g / eq. Is.
  • Epoxy equivalent is the mass of resin per equivalent of epoxy group. This epoxy equivalent can be measured according to JIS K7236.
  • the weight average molecular weight (Mw) of the epoxy resin is preferably 100 to 5,000, more preferably 250 to 3,000, and even more preferably 400 to 1,500.
  • the weight average molecular weight of the resin can be measured as a polystyrene-equivalent value by a gel permeation chromatography (GPC) method.
  • the content of the (C) epoxy resin in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, it is preferably 60% by mass or less, more preferably 40. It is 0% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less, and particularly preferably 10% by mass or less.
  • the lower limit of the content of the (C) epoxy resin in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, it is preferably 0.1% by mass or more. It is more preferably 0.5% by mass or more, further preferably 1% by mass or more, still more preferably 3% by mass or more, and particularly preferably 5% by mass or more.
  • the mass ratio ((A) component / (C) component) of the (A) specific maleimide compound to the (C) epoxy resin in the resin composition is preferably 0.1 or more, more preferably 0.5 or more, and particularly preferably. Is 0.8 or more.
  • the upper limit of the mass ratio ((A) component / (C) component) of the (A) specific maleimide compound to the (C) epoxy resin in the resin composition is preferably 10 or less, more preferably 3 or less, and particularly preferably 1. It is less than 5.5.
  • the resin composition of the present invention may contain (D) an inorganic filler as an optional component.
  • (D) The inorganic filler is contained in the resin composition in the form of particles.
  • An inorganic compound is used as the material of the inorganic filler.
  • Examples of the material of the inorganic filler (D) include silica, alumina, aluminosilicate, glass, cordierite, silicon oxide, barium sulfate, barium carbonate, talc, clay, mica powder, zinc oxide, and hydrotalcite.
  • Boehmite Aluminum Hydroxide, Magnesium Hydroxide, Calcium Carbonate, Magnesium Carbonide, Magnesium Oxide, Boron Nitride, Aluminum Nitride, Manganese Nitride, Aluminum Borate, Strontium Carbonate, Strontium Titanium, Calcium Titanium, Magnesium Titanium, Bismus Titanium , Titanium oxide, zirconium oxide, barium titanate, barium zirconate titanate, barium zirconate, calcium zirconate, zirconium phosphate, zirconium tungstate phosphate and the like.
  • silica or aluminosilicate is preferable, and silica is particularly preferable.
  • silica examples include amorphous silica, fused silica, crystalline silica, synthetic silica, hollow silica and the like. Further, as silica, spherical silica is preferable.
  • the inorganic filler may be used alone or in combination of two or more at any ratio.
  • inorganic fillers include, for example, "UFP-30” manufactured by Denka Kagaku Kogyo Co., Ltd .; “SP60-05” and “SP507-05” manufactured by Nittetsu Chemical & Materials Co., Ltd .; manufactured by Admatex Co., Ltd.
  • the average particle size of the inorganic filler is not particularly limited, but is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, still more preferably 2 ⁇ m or less, still more preferably 1 ⁇ m or less, and particularly preferably 0. It is 7 ⁇ m or less.
  • the lower limit of the average particle size of the inorganic filler is not particularly limited, but is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, still more preferably 0.1 ⁇ m or more, and particularly preferably 0. .2 ⁇ m or more.
  • the average particle size of the inorganic filler can be measured by a laser diffraction / scattering method based on the Mie scattering theory.
  • the inorganic filler can be measured by creating a particle size distribution of the inorganic filler on a volume basis by a laser diffraction / scattering type particle size distribution measuring device and using the median diameter as the average particle size.
  • 100 mg of an inorganic filler and 10 g of methyl ethyl ketone can be weighed in a vial and dispersed by ultrasonic waves for 10 minutes.
  • the measurement sample was measured using a laser diffraction type particle size distribution measuring device, the light source wavelengths used were blue and red, and the volume-based particle size distribution of the inorganic filler was measured by the flow cell method.
  • the average particle size was calculated as the median diameter.
  • Examples of the laser diffraction type particle size distribution measuring device include "LA-960" manufactured by HORIBA, Ltd.
  • the specific surface area of the inorganic filler is not particularly limited, but is preferably 0.1 m 2 / g or more, more preferably 0.5 m 2 / g or more, still more preferably 1 m 2 / g or more. Particularly preferably, it is 3 m 2 / g or more.
  • the upper limit of the specific surface area of the inorganic filler is not particularly limited, but is preferably 100 m 2 / g or less, more preferably 70 m 2 / g or less, still more preferably 50 m 2 / g or less, and particularly preferably. Is 40 m 2 / g or less.
  • nitrogen gas is adsorbed on the sample surface using a specific surface area measuring device (Maxorb HM-1210 manufactured by Mountech) according to the BET method, and the specific surface area is calculated using the BET multipoint method. It can be obtained by.
  • a specific surface area measuring device Maxorb HM-1210 manufactured by Mountech
  • the inorganic filler may be a non-hollow inorganic filler having a porosity of 0% by volume (preferably non-hollow silica or non-hollow aluminosilicate), and a hollow inorganic filler having a porosity of more than 0% by volume. It may be (preferably hollow silica, hollow aluminosilicate) or may contain both.
  • the inorganic filler contains only a hollow inorganic filler (preferably hollow silica, hollow aluminosilicate) or a non-hollow inorganic filler (preferably non-hollow silica, non-hollow silica) from the viewpoint of suppressing the dielectric constant to be lower.
  • Hollow aluminosilicate and hollow inorganic filler are both included.
  • the porosity of the hollow inorganic filler is preferably 90% by volume or less, and more preferably 85 product% or less.
  • the lower limit of the porosity of the inorganic filler is not particularly limited, but for example, more than 0% by volume, 1% by volume or more, 5% by volume or more, 10% by volume or more, 20% by volume or more, It can be 30% by volume or more.
  • the pore ratio P (volume%) of the inorganic filler is the volume-based ratio of the total volume of one or two or more pores existing inside the particle to the total volume of the particle with respect to the outer surface of the particle (of the pores). Defined as total volume / volume of particles), for example, a measured value of the actual density of the inorganic filler DM (g / cm 3 ), and a theoretical value of the material density of the material forming the inorganic filler DT (g). It is calculated by the following formula (I) using / cm 3 ).
  • the actual density of the inorganic filler can be measured, for example, using a true density measuring device.
  • the true density measuring device include ULTRAPYCNOMETER1000 manufactured by QUANTACHROME.
  • nitrogen is used as the measurement gas.
  • the inorganic filler is preferably surface-treated with an appropriate surface treatment agent.
  • an appropriate surface treatment agent include vinyl-based silane coupling agents such as vinyltrimethoxysilane and vinyltriethoxysilane; 2- (3,4-epyloxycyclohexyl) ethyltrimethoxysilane and 3-glycidoxypropylmethyldimethoxysilane.
  • Isocyanurate-based silane coupling agent such as 3-ureidopropyltrialkoxysilane
  • ureido-based silane coupling agent such as 3-ureidopropyltrialkoxysilane
  • mercapto-based silane coupling agent such as 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethoxysilane.
  • An isocyanate-based silane coupling agent such as 3-isocyanatepropyltriethoxysilane; an acid anhydride-based silane coupling agent such as 3-trimethoxysilylpropylsuccinic anhydride; a silane coupling agent such as; methyltrimethoxysilane, Dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, hexyltrimeth Examples thereof include alkylalkoxysilane compounds such as xysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, 1,6-bis (trimethoxysilyl) hexane, and tri
  • Examples of commercially available surface treatment agents include “KBM-1003” and “KBE-1003” (vinyl-based silane coupling agents) manufactured by Shin-Etsu Chemical Industry Co., Ltd .; “KBM-303", “KBM-402”, and “KBM-402”.
  • the degree of surface treatment with the surface treatment agent is preferably within a predetermined range from the viewpoint of improving the dispersibility of the inorganic filler.
  • 100% by mass of the inorganic filler is preferably surface-treated with 0.2% by mass to 5% by mass of a surface treatment agent, and is surface-treated with 0.2% by mass to 3% by mass. It is more preferable that the surface is treated with 0.3% by mass to 2% by mass.
  • the degree of surface treatment with the surface treatment agent can be evaluated by the amount of carbon per unit surface area of the inorganic filler.
  • the amount of carbon per unit surface area of the inorganic filler is preferably 0.02 mg / m 2 or more, more preferably 0.1 mg / m 2 or more, and 0.2 mg / m 2 from the viewpoint of improving the dispersibility of the inorganic filler. The above is more preferable.
  • 1.0 mg / m 2 or less is preferable, 0.8 mg / m 2 or less is more preferable, and 0.5 mg / m / More preferably, m 2 or less.
  • the amount of carbon per unit surface area of the inorganic filler can be measured after the surface-treated inorganic filler is washed with a solvent (for example, methyl ethyl ketone (MEK)). Specifically, a sufficient amount of MEK as a solvent is added to the inorganic filler surface-treated with a surface treatment agent, and ultrasonic cleaning is performed at 25 ° C. for 5 minutes. After removing the supernatant and drying the solid content, the amount of carbon per unit surface area of the inorganic filler can be measured using a carbon analyzer. As the carbon analyzer, "EMIA-320V" manufactured by HORIBA, Ltd. or the like can be used.
  • EMIA-320V manufactured by HORIBA, Ltd.
  • the content of the (D) inorganic filler in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, it is preferably 90% by mass or less, more preferably 90% by mass or less. It can be 85% by mass or less, more preferably 80% by mass or less, and particularly preferably 75% by mass or less.
  • the lower limit of the content of the (D) inorganic filler in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, for example, 0% by mass or more and 1% by mass. % Or more, preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more, still more preferably 40% by mass or more, and particularly preferably 50% by mass or more.
  • the mass ratio ((A) component / (D) component) of the (A) specific maleimide compound to the (D) inorganic filler in the resin composition is preferably 0.01 or more, more preferably 0.05 or more, particularly. It is preferably 0.1 or more.
  • the upper limit of the mass ratio ((A) component / (D) component) of the (A) specific maleimide compound to the (D) inorganic filler in the resin composition is preferably 1 or less, more preferably 0.5 or less, particularly. It is preferably 0.3 or less.
  • the resin composition of the present invention may contain (E) a curing accelerator as an optional component.
  • the (E) curing accelerator has a function of accelerating the curing of the (C) epoxy resin.
  • the curing accelerator examples include phosphorus-based curing accelerators, urea-based curing accelerators, guanidine-based curing accelerators, imidazole-based curing accelerators, metal-based curing accelerators, amine-based curing accelerators, and the like. Of these, an imidazole-based curing accelerator is preferable from the viewpoint of improving the crosslinkability.
  • the curing accelerator may be used alone or in combination of two or more.
  • Examples of the phosphorus-based curing accelerator include tetrabutylphosphonium bromide, tetrabutylphosphonium chloride, tetrabutylphosphonium acetate, tetrabutylphosphonium decanoate, tetrabutylphosphonium laurate, bis (tetrabutylphosphonium) pyromeritate, and tetrabutylphosphonium hydro.
  • Alitriphenylphosphine salts such as genhexahydrophthalate, tetrabutylphosphonium 2,6-bis [(2-hydroxy-5-methylphenyl) methyl] -4-methylphenorate, di-tert-butyldimethylphosphonium tetraphenylphosphine; Methyltriphenylphosphonium bromide, ethyltriphenylphosphonium bromide, propyltriphenylphosphonium bromide, butyltriphenylphosphonium bromide, benzyltriphenylphosphonium chloride, tetraphenylphosphonium bromide, p-triltriphenylphosphoniumtetra-p-trilborate, tetraphenyl Triphenylphosphinephosphine, tetraphenylphosphinetetrap-trilborate, triphenylethylphosphoniumtetraphenylborate, tri
  • Arophenylphosphine / quinone addition reactants such as addition reactants; tributylphosphine, tri-tert-butylphosphine, trioctylphosphine, di-tert-butyl (2-butenyl) phosphine, di-tert-butyl (3-methyl-).
  • 2-Butenyl) phosphine tricyclophenylphosphine and other aliphatic phosphine; dibutylphenylphosphine, di-tert-butylphenylphosphine, methyldiphenylphosphine, ethyldiphenylphosphine, butyldiphenylphosphine, diphenylcyclophosphine, triphenylphosphine, tri-o -Triphenylphosphine, tri-m-triphenylphosphine, tri-p-tri Luphosphine, Tris (4-ethylphenyl) phosphine, Tris (4-propylphenyl) phosphine, Tris (4-isopropylphenyl) phosphine, Tris (4-butylphenyl) phosphine, Tris (4-tert-butylphenyl) phosphine, Tris (2,4-di
  • urea-based curing accelerator examples include 1,1-dimethylurea; 1,1,3-trimethylurea, 3-ethyl-1,1-dimethylurea, 3-cyclohexyl-1,1-dimethylurea, 3-.
  • Aliphatic dimethylurea such as cyclooctyl-1,1-dimethylurea; 3-phenyl-1,1-dimethylurea, 3- (4-chlorophenyl) -1,1-dimethylurea, 3- (3,4-dichlorophenyl) )-1,1-Dimethylurea, 3- (3-chloro-4-methylphenyl) -1,1-dimethylurea, 3- (2-methylphenyl) -1,1-dimethylurea, 3- (4-) Methylphenyl) -1,1-dimethylurea, 3- (3,4-dimethylphenyl) -1,1-dimethylurea, 3- (4-isopropylphenyl) -1,1-dimethylurea, 3- (4-) Methoxyphenyl) -1,1-dimethylurea, 3- (4-nitrophenyl) -1,1-dimethylurea, 3- [4- (4-methoxyphenoxy) phen
  • guanidine-based curing accelerator examples include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1- (o-tolyl) guanidine, dimethylguanidine, diphenylguanidine, and trimethylguanidine.
  • imidazole-based curing accelerator examples include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, and the like.
  • imidazole-based curing accelerator a commercially available product may be used, for example, "1B2PZ”, “2MZA-PW”, “2PHZ-PW” manufactured by Shikoku Chemicals Corporation, and "P200-H50” manufactured by Mitsubishi Chemical Corporation. And so on.
  • the metal-based curing accelerator examples include organic metal complexes or organic metal salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin.
  • organic metal complex examples include an organic cobalt complex such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, an organic copper complex such as copper (II) acetylacetonate, and zinc (II) acetylacetonate.
  • organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate.
  • organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, zinc stearate and the like.
  • amine-based curing accelerator examples include trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6, -tris (dimethylaminomethyl) phenol, and 1,8-diazabicyclo. (5, 4, 0) -Undesen and the like can be mentioned.
  • amine-based curing accelerator a commercially available product may be used, and examples thereof include "MY-25” manufactured by Ajinomoto Fine-Techno Co., Ltd.
  • the content of the (E) curing accelerator in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, it is preferably 15% by mass or less, more preferably. It is 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 1% by mass or less.
  • the lower limit of the content of the (E) curing accelerator in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, for example, 0% by mass or more, 0. It can be 001% by mass or more, 0.01% by mass or more, 0.1% by mass or more, 0.2% by mass or more, and the like.
  • the resin composition of the present invention may contain (F) polyimide resin as an optional component.
  • the polyimide resin is a resin having an imide bond in the repeating unit.
  • the polyimide resin also includes a modified polyimide resin such as a siloxane modified polyimide resin.
  • the (F) polyimide resin preferably contains an aromatic polyimide resin having no fat chain in the main chain.
  • the (F) polyimide resin is more preferably the formula (F1): in one embodiment.
  • X 1 , Y 1 and Y 2 are independently single-bonded, -CR 2- , -O-, -CO-, -S-, -SO-, -SO 2- , -CONH-, or-.
  • the xa unit may be the same or different for each unit.
  • the ya unit may be the same or different for each unit.
  • X 1 , Y 1 and Y 2 are independently single-bonded, -CR 2- , -O-, -CO-, -S-, -SO-, -SO 2- , -CONH-, or-. Shows NHCO-; preferably -CR 2- , -O-, or -CO-; more preferably -CR 2- , or -O-.
  • R independently represents a hydrogen atom and an alkyl group; preferably a hydrogen atom and a methyl group; more preferably a methyl group.
  • Ring X a , ring X b , and ring Y a each independently represent an aromatic ring which may have a substituent; preferably a group selected from an alkyl group, an alkenyl group, and an aryl group. It is a benzene ring which may be substituted, or a naphthalene ring which may be substituted with a group selected from an alkyl group, an alkenyl group, and an aryl group; more preferably, it is selected from an alkyl group, an alkenyl group, and an aryl group. It is a benzene ring which may be substituted with a group; more preferably a benzene ring which may be substituted with an alkyl group; particularly preferably a (unsubstituted) benzene ring.
  • Each R y1 independently represents a substituent; preferably an alkyl group, an alkenyl group, or an aryl group; more preferably an alkyl group.
  • Y1 independently indicates 0, 1, 2 or 3; preferably 0, 1 or 2; more preferably 0 or 1; particularly preferably 0.
  • xa indicates 0, 1, 2, 3, 4 or 5; preferably 1, 2, 3, 4 or 5; more preferably 2, 3, 4 or 5; even more preferably 3 4 or 5; particularly preferably 4.
  • ya indicates 0, 1, 2, 3, 4 or 5; preferably 0, 1, 2, 3 or 4; more preferably 0, 1, 2 or 3; even more preferably. 1, 2 or 3; particularly preferably 2.
  • yb indicates 0 or 1; preferably 1.
  • the (F) polyimide resin is more preferably of the formulas (F2-1) to (F2-4) :.
  • X 11 , X 12 , X 13 , X 14 , Y 11 , Y 12 and Y 2 are independently single-bonded, -CR 2- , -O-, -CO-, -S-, -SO-, respectively. , -SO 2- , -CONH-, or -NHCO-; Ring X a1 , ring X a2 , ring X a3 , ring X a4 , ring X b , ring Y a1 and ring Y a2 each independently represent an aromatic ring which may have a substituent; Other symbols are as described above.
  • It contains a resin having a repeating unit represented by, and more preferably, it contains a resin having a repeating unit represented by the formula (F2-1).
  • X 11 , X 12 , X 13 and X 14 are independently single-bonded, -CR 2- , -O-, -CO-, -S-, -SO-, -SO 2- , -CONH- , Or -NHCO-; preferably -CR 2- , -O-, or -CO-; more preferably -CR 2- , or -O-; even more preferably X 11 and.
  • X 14 is -O- and X 12 and X 13 are -CR 2- .
  • Y 11 , Y 12 and Y 2 are independently single-bonded, -CR 2- , -O-, -CO-, -S-, -SO-, -SO 2- , -CONH-, or-. Shows NHCO-; preferably -CR 2- , -O-, or -CO-; more preferably -CR 2- , or -O-; even more preferably Y 11 and Y 2 . -O- and Y 12 is -CR 2- .
  • Ring X a1 , ring X a2 , ring X a3 , ring X a4 , ring X b , ring Y a1 and ring Y a2 each independently represent an aromatic ring which may have a substituent; preferably.
  • the (F) polyimide resin is more preferably the formula (F3): in one embodiment.
  • R x1 and Ry2 each independently indicate a substituent; x1 and y2 independently indicate 0, 1, 2, 3 or 4; Other symbols are as described above. ] Includes resins with repeating units represented by.
  • R x1 and Ry2 each independently indicate a substituent; preferably an alkyl group, an alkenyl group, or an aryl group; more preferably an alkyl group.
  • x1 and y2 independently indicate 0, 1, 2, 3 or 4; preferably 0, 1, 2 or 3; more preferably 0, 1 or 2; even more preferably. , 0 or 1; particularly preferably 0.
  • the (F) polyimide resin is not particularly limited, but is known, for example, an imidization reaction between a diamine compound and a tetracarboxylic acid anhydride, an imidization reaction between a diisocyanate compound and a tetracarboxylic acid anhydride, and the like. Can be obtained by law.
  • the (F) polyimide resin a commercially available product may be used, and examples of the (F) commercially available polyimide resin include “Ricacoat SN20” and “Ricacoat PN20” manufactured by Shin Nihon Rika Co., Ltd.
  • the weight average molecular weight of the (F) polyimide resin is not particularly limited, but is preferably 1000 or more, more preferably 2000 or more, still more preferably 3000 or more, and particularly preferably 4000 or more.
  • the upper limit of the weight average molecular weight of the (F) polyimide resin is not particularly limited, but is preferably 200,000 or less, more preferably 150,000 or less, particularly preferably 100,000 or less, and particularly preferably 75,000 or less.
  • the weight average molecular weight here may be a value measured by a gel permeation chromatography (GPC) method (polystyrene conversion).
  • the glass transition temperature of the (F) polyimide resin is not particularly limited, but is preferably 50 ° C. to 400 ° C., more preferably 75 ° C. to 350 ° C., still more preferably 100 ° C. to 300 ° C., and particularly preferably 125 ° C.
  • the temperature is from ° C to 250 ° C.
  • the content of the (F) polyimide resin in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, it is preferably 15% by mass or less, more preferably 10. It is mass% or less, more preferably 5% by mass or less, and particularly preferably 1% by mass or less.
  • the lower limit of the content of the (F) polyimide resin in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, for example, 0% by mass or more, 0. It can be 001% by mass or more, 0.01% by mass or more, 0.1% by mass or more, 0.2% by mass or more, and the like.
  • the resin composition of the present invention may further contain any additive as a non-volatile component.
  • additives include thermoplastic resins such as phenoxy resin, polyvinyl acetal resin, polyolefin resin, polysulfone resin, polyether sulfone resin, polyphenylene ether resin, polycarbonate resin, polyether ether ketone resin, and polyester resin; rubber.
  • Organic fillers such as particles; Organic metal compounds such as organic copper compounds, organic zinc compounds, and organic cobalt compounds; Colorants such as phthalocyanine blue, phthalocyanine green, iodin green, diazo yellow, crystal violet, titanium oxide, and carbon black; Polymerization prohibiting agents such as hydroquinone, catechol, pyrogallol, and phenothiazine; leveling agents such as silicone-based leveling agents and acrylic polymer-based leveling agents; thickeners such as Benton and montmorillonite; silicone-based defoaming agents, acrylic defoaming agents, and fluorine.
  • Organic metal compounds such as organic copper compounds, organic zinc compounds, and organic cobalt compounds
  • Colorants such as phthalocyanine blue, phthalocyanine green, iodin green, diazo yellow, crystal violet, titanium oxide, and carbon black
  • Polymerization prohibiting agents such as hydroquinone, catechol, pyrogallol, and phenothiazine
  • leveling agents such
  • Defoaming agents such as defoaming agents and vinyl resin defoaming agents; UV absorbers such as benzotriazole-based UV absorbers; Adhesive improvers such as ureasilane; Triazole-based adhesion-imparting agents and tetrazole-based adhesion-imparting agents Adhesion-imparting agents such as agents and triazine-based adhesion-imparting agents; Antioxidants such as hindered phenol-based antioxidants; Fluorescent whitening agents such as stylben derivatives; Fluorine-based surfactants, silicone-based surfactants, etc.
  • Phosphorus-based flame retardants eg phosphoric acid ester compounds, phosphazene compounds, phosphinic acid compounds, red phosphorus
  • nitrogen-based flame retardants eg melamine sulfate
  • halogen-based flame retardants eg antimony trioxide
  • phosphoric acid ester-based dispersants polyoxyalkylene-based dispersants, acetylene-based dispersants, silicone-based dispersants, anionic dispersants, cationic dispersants and other dispersants
  • borate-based stabilizers titanates.
  • stabilizers such as system stabilizers, aluminate-based stabilizers, zirconate-based stabilizers, isocyanate-based stabilizers, carboxylic acid-based stabilizers, and carboxylic acid anhydride-based stabilizers.
  • system stabilizers aluminate-based stabilizers, zirconate-based stabilizers, isocyanate-based stabilizers, carboxylic acid-based stabilizers, and carboxylic acid anhydride-based stabilizers.
  • aluminate-based stabilizers such as system stabilizers, aluminate-based stabilizers, zirconate-based stabilizers, isocyanate-based stabilizers, carboxylic acid-based stabilizers, and carboxylic acid anhydride-based stabilizers.
  • the resin composition of the present invention may further contain an arbitrary organic solvent as a volatile component in addition to the above-mentioned non-volatile component.
  • an arbitrary organic solvent as a volatile component in addition to the above-mentioned non-volatile component.
  • the (H) organic solvent a known solvent can be appropriately used, and the type thereof is not particularly limited.
  • the organic solvent include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, isoamyl acetate, methyl propionate, ethyl propionate and ⁇ -.
  • Ester-based solvents such as butyrolactone; ether-based solvents such as tetrahydropyran, tetrahydrofuran, 1,4-dioxane, diethyl ether, diisopropyl ether, dibutyl ether, diphenyl ether and anisol; alcohol-based solvents such as methanol, ethanol, propanol, butanol and ethylene glycol Solvents: Ether ester solvents such as 2-ethoxyethyl acetate, propylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl diglycol acetate, ⁇ -butyrolactone, methyl methoxypropionate; methyl lactate, ethyl lactate, 2-hydroxyiso Ester alcohol solvent such as methyl butyrate; ether alcohol solvent such as 2-methoxypropanol, 2-methoxyethanol, 2-ethoxyethanol, propylene glycol
  • the above-mentioned aliphatic hydrocarbon-based solvent; aromatic hydrocarbon-based solvents such as benzene, toluene, xylene, ethylbenzene, and trimethylbenzene can be mentioned.
  • the organic solvent may be used alone or in combination of two or more at any ratio.
  • the content of the (H) organic solvent is not particularly limited, but when all the components in the resin composition are 100% by mass, for example, 60% by mass or less and 40% by mass or less. , 30% by mass or less, 20% by mass or less, 15% by mass or less, 10% by mass or less, and the like.
  • the resin composition of the present invention can be, for example, in an arbitrary preparation container with (A) a specific maleimide compound, (B) an active ester compound, (C) an epoxy resin, and if necessary, (A') another maleimide compound, if necessary. (B') Other curing agents as needed, (D) Inorganic filler as needed, (E) Hardening accelerator as needed, (F) Epoxy resin as needed, (G) as needed It can be produced by adding and mixing other additives and, if necessary, (H) an organic solvent in any order and / or partially or all at the same time.
  • the temperature can be appropriately set, and heating and / or cooling may be performed temporarily or from beginning to end.
  • the resin composition may be uniformly dispersed by stirring or shaking using, for example, a stirring device such as a mixer or a shaking device in the process of adding and mixing, or thereafter. Further, at the same time as stirring or shaking, defoaming may be performed under low pressure conditions such as under vacuum.
  • the resin composition of the present invention contains (A) a specific maleimide compound, (B) an active ester compound, and (C) an epoxy resin.
  • the cured product of the resin composition of the present invention may have a feature of having a high glass transition point (Tg). Therefore, in one embodiment, the glass transition temperature (Tg) measured as in Test Example 4 below is preferably 110 ° C. or higher, more preferably 130 ° C. or higher, still more preferably 140 ° C. or higher, and particularly preferably 150 ° C. or higher. Can be above ° C.
  • the cured product of the resin composition of the present invention may have a feature of being excellent in copper plating peel strength. Therefore, in one embodiment, the copper plating peel strength calculated from the load when the copper-plated conductor layer is formed on the cured product and the copper-plated conductor layer is peeled off in the vertical direction as in Test Example 2 below is preferable.
  • the upper limit is not particularly limited, but may be, for example, 10 kgf / cm or less.
  • the cured product of the resin composition of the present invention may have a feature of low dielectric loss tangent (Df). Therefore, in one embodiment, the dielectric positive contact (Df) of the cured product of the resin composition when measured at 5.8 GHz and 23 ° C. as in Test Example 1 below is preferably 0.020 or less and 0.010 or less. , More preferably 0.009 or less, 0.008 or less, still more preferably 0.007 or less, 0.006 or less, particularly preferably 0.005 or less, 0.0045 or less, 0.004 or less.
  • the cured product of the resin composition of the present invention may have a feature of having a low relative permittivity (Dk). Therefore, in one embodiment, the relative permittivity (Dk) of the cured product of the resin composition when measured at 5.8 GHz and 23 ° C. as in Test Example 1 below is preferably 5.0 or less, more preferably. It can be 4.0 or less, more preferably 3.5 or less, particularly preferably 3.2 or less, 3.0 or less.
  • the resin composition of the present invention may have a feature that the minimum melt viscosity is low. Therefore, in one embodiment, using a dynamic viscoelasticity measuring device as in Test Example 5 below, the frequency is 1 Hz, the strain is 5 degrees, the load is 100 g, the heating rate is 5 ° C / min, and the temperature range is 60 ° C to 180 ° C.
  • the minimum melt viscosity when measured can be preferably 4000 poise or less, 3000 poise or less, more preferably 2000 poise or less, 1700 poise or less, still more preferably 1500 poise or less, 1300 poise or less, and particularly preferably 1100 poise or less.
  • the cured product of the resin composition of the present invention may have a feature that the arithmetic average roughness (Ra) of the surface after the roughening treatment is low. Therefore, in one embodiment, the arithmetic average roughness (Ra) of the surface of the cured product after the roughening treatment measured as in Test Example 3 below is preferably 300 nm or less, more preferably 200 nm or less, still more preferably 150 nm. Below, it can be even more preferably 100 nm or less, and particularly preferably 70 nm or less. The lower limit is not particularly limited and may be, for example, 1 nm or more and 2 nm or more.
  • the resin composition of the present invention can be suitably used as a resin composition for insulating use, particularly as a resin composition for forming an insulating layer.
  • a resin composition for forming the insulating layer for forming the conductor layer (including the rewiring layer) formed on the insulating layer (resin for forming the insulating layer for forming the conductor layer). It can be suitably used as a composition).
  • a printed wiring board described later it can be suitably used as a resin composition for forming an insulating layer of a printed wiring board (resin composition for forming an insulating layer of a printed wiring board).
  • the resin composition of the present invention also requires a resin composition such as a resin sheet, a sheet-like laminated material such as a prepreg, a solder resist, an underfill material, a die bonding material, a semiconductor encapsulant, a hole filling resin, and a component embedding resin.
  • a resin composition such as a resin sheet, a sheet-like laminated material such as a prepreg, a solder resist, an underfill material, a die bonding material, a semiconductor encapsulant, a hole filling resin, and a component embedding resin.
  • a resin composition such as a resin sheet, a sheet-like laminated material such as a prepreg, a solder resist, an underfill material, a die bonding material, a semiconductor encapsulant, a hole filling resin, and a component embedding resin.
  • the resin composition of the present invention is for a rewiring forming layer as an insulating layer for forming the rewiring layer.
  • a rewiring layer may be further formed on the sealing layer.
  • Step of laminating a temporary fixing film on a base material (2) A process of temporarily fixing a semiconductor chip on a temporary fixing film, (3) Step of forming a sealing layer on a semiconductor chip, (4) Step of peeling the base material and the temporary fixing film from the semiconductor chip, (5) A step of forming a rewiring forming layer as an insulating layer on the surface from which the base material and the temporary fixing film of the semiconductor chip are peeled off, and (6) a rewiring layer as a conductor layer is formed on the rewiring forming layer.
  • the resin composition of the present invention provides an insulating layer having good component embedding property, it can be suitably used even when the printed wiring board is a component built-in circuit board.
  • the resin composition of the present invention can be applied and used in a varnished state, but industrially, it is generally preferable to use the resin composition in the form of a sheet-like laminated material containing the resin composition.
  • the following resin sheets and prepregs are preferable.
  • the resin sheet comprises a support and a resin composition layer provided on the support, and the resin composition layer is formed from the resin composition of the present invention.
  • the thickness of the resin composition layer is preferably 50 ⁇ m or less from the viewpoint of reducing the thickness of the printed wiring board and providing a cured product having excellent insulating properties even if the cured product of the resin composition is a thin film. It is preferably 40 ⁇ m or less.
  • the lower limit of the thickness of the resin composition layer is not particularly limited, but may be usually 5 ⁇ m or more, 10 ⁇ m or more, or the like.
  • the support examples include a film made of a plastic material, a metal foil, and a release paper, and a film made of a plastic material and a metal foil are preferable.
  • the plastic material may be, for example, polyethylene terephthalate (hereinafter abbreviated as "PET”) or polyethylene naphthalate (hereinafter abbreviated as “PEN”).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • acrylics such as polymethylmethacrylate (PMMA)
  • PMMA polymethylmethacrylate
  • TAC triacetylcellulose
  • PES polyethersulfide
  • polyethers examples thereof include ketones and polyimides.
  • polyethylene terephthalate and polyethylene naphthalate are preferable, and inexpensive polyethylene terephthalate is particularly preferable.
  • the metal foil When a metal foil is used as the support, examples of the metal foil include copper foil, aluminum foil, and the like, and copper foil is preferable.
  • the copper foil a foil made of a single metal of copper may be used, and a foil made of an alloy of copper and another metal (for example, tin, chromium, silver, magnesium, nickel, zirconium, silicon, titanium, etc.) may be used. You may use it.
  • the support may be matted, corona-treated, or antistatic-treated on the surface to be joined to the resin composition layer.
  • a support with a release layer having a release layer on the surface to be joined to the resin composition layer may be used.
  • the release agent used for the release layer of the support with the release layer include one or more release agents selected from the group consisting of alkyd resin, polyolefin resin, urethane resin, and silicone resin. ..
  • a commercially available product may be used.
  • “SK-1” and “SK-1” manufactured by Lintec Corporation which are PET films having a release layer containing an alkyd resin-based mold release agent as a main component. Examples include “AL-5", “AL-7", “Lumilar T60” manufactured by Toray Industries, “Purex” manufactured by Teijin Ltd., and “Unipee” manufactured by Unitika Ltd.
  • the thickness of the support is not particularly limited, but is preferably in the range of 5 ⁇ m to 75 ⁇ m, and more preferably in the range of 10 ⁇ m to 60 ⁇ m.
  • the thickness of the entire support with a release layer is preferably in the above range.
  • the resin sheet may further contain any layer, if necessary.
  • an arbitrary layer include a protective film similar to the support provided on a surface of the resin composition layer that is not bonded to the support (that is, a surface opposite to the support). Be done.
  • the thickness of the protective film is not particularly limited, but is, for example, 1 ⁇ m to 40 ⁇ m.
  • a resin varnish prepared by dissolving the resin composition as it is in a liquid resin composition or in an organic solvent is applied onto a support using a die coater or the like, and further dried. It can be produced by forming a resin composition layer.
  • organic solvent examples include the same organic solvents as those described as the components of the resin composition.
  • the organic solvent may be used alone or in combination of two or more.
  • Drying may be carried out by a known method such as heating or blowing hot air.
  • the drying conditions are not particularly limited, but the resin composition layer is dried so that the content of the organic solvent is 10% by mass or less, preferably 5% by mass or less.
  • the temperature is 50 ° C to 150 ° C for 3 minutes to 10
  • the resin composition layer can be formed by drying for a minute.
  • the resin sheet can be rolled up and stored. If the resin sheet has a protective film, it can be used by peeling off the protective film.
  • the prepreg is formed by impregnating a sheet-like fiber base material with the resin composition of the present invention.
  • the sheet-like fiber base material used for the prepreg is not particularly limited, and those commonly used as the base material for the prepreg such as glass cloth, aramid non-woven fabric, and liquid crystal polymer non-woven fabric can be used.
  • the thickness of the sheet-shaped fiber base material is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, still more preferably 30 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • the lower limit of the thickness of the sheet-shaped fiber base material is not particularly limited. Usually, it is 10 ⁇ m or more.
  • the prepreg can be produced by a known method such as a hot melt method or a solvent method.
  • the thickness of the prepreg can be in the same range as the resin composition layer in the above-mentioned resin sheet.
  • the sheet-shaped laminated material of the present invention can be suitably used for forming an insulating layer of a printed wiring board (for an insulating layer of a printed wiring board), and for forming an interlayer insulating layer of a printed wiring board (printed). It can be more preferably used for the interlayer insulating layer of the wiring board).
  • the printed wiring board of the present invention includes an insulating layer made of a cured product obtained by curing the resin composition of the present invention.
  • the printed wiring board can be manufactured, for example, by using the above-mentioned resin sheet by a method including the following steps (I) and (II).
  • (I) A step of laminating a resin sheet on an inner layer substrate so that the resin composition layer of the resin sheet is bonded to the inner layer substrate
  • (II) The resin composition layer is cured (for example, thermosetting) to form an insulating layer.
  • the “inner layer substrate” used in the step (I) is a member that becomes a substrate of a printed wiring board, and is, for example, a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, and a thermosetting polyphenylene ether substrate. And so on. Further, the substrate may have a conductor layer on one side or both sides thereof, and the conductor layer may be patterned. An inner layer board in which a conductor layer (circuit) is formed on one side or both sides of the board may be referred to as an "inner layer circuit board".
  • an intermediate product in which an insulating layer and / or a conductor layer should be formed when the printed wiring board is manufactured is also included in the "inner layer substrate" in the present invention.
  • the printed wiring board is a circuit board with built-in components
  • an inner layer board containing built-in components may be used.
  • the inner layer substrate and the resin sheet can be laminated, for example, by heat-pressing the resin sheet to the inner layer substrate from the support side.
  • the member for heat-pressing the resin sheet to the inner layer substrate include a heated metal plate (SUS end plate or the like) or a metal roll (SUS roll). It is preferable not to press the heat-bonded member directly onto the resin sheet, but to press it through an elastic material such as heat-resistant rubber so that the resin sheet sufficiently follows the surface irregularities of the inner layer substrate.
  • the inner layer substrate and the resin sheet may be laminated by the vacuum laminating method.
  • the heat crimping temperature is preferably in the range of 60 ° C. to 160 ° C., more preferably 80 ° C. to 140 ° C.
  • the heat crimping pressure is preferably 0.098 MPa to 1.77 MPa, more preferably 0. It is in the range of .29 MPa to 1.47 MPa
  • the heat crimping time is preferably in the range of 20 seconds to 400 seconds, more preferably 30 seconds to 300 seconds.
  • Lamination can be carried out under reduced pressure conditions preferably with a pressure of 26.7 hPa or less.
  • Lamination can be performed by a commercially available vacuum laminator.
  • the commercially available vacuum laminator include a vacuum pressurizing laminator manufactured by Meiki Co., Ltd., a vacuum applicator manufactured by Nikko Materials, and a batch type vacuum pressurizing laminator.
  • the laminated resin sheet may be smoothed by pressing under normal pressure (under atmospheric pressure), for example, from the support side.
  • the press conditions for the smoothing treatment can be the same as the heat-bonding conditions for the above-mentioned lamination.
  • the smoothing process can be performed by a commercially available laminator.
  • the laminating and smoothing treatment may be continuously performed using the above-mentioned commercially available vacuum laminator.
  • the support may be removed between steps (I) and step (II), or may be removed after step (II).
  • step (II) the resin composition layer is cured (for example, thermosetting) to form an insulating layer made of a cured product of the resin composition.
  • the curing conditions of the resin composition layer are not particularly limited, and the conditions usually adopted when forming the insulating layer of the printed wiring board may be used.
  • the thermosetting conditions of the resin composition layer differ depending on the type of the resin composition and the like, but in one embodiment, the curing temperature is preferably 120 ° C. to 240 ° C., more preferably 150 ° C. to 220 ° C., still more preferable. Is 170 ° C to 210 ° C.
  • the curing time can be preferably 5 minutes to 120 minutes, more preferably 10 minutes to 100 minutes, and even more preferably 15 minutes to 100 minutes.
  • the resin composition layer Before the resin composition layer is thermally cured, the resin composition layer may be preheated at a temperature lower than the curing temperature. For example, prior to thermosetting the resin composition layer, the resin composition layer is heated at a temperature of 50 ° C. to 120 ° C., preferably 60 ° C. to 115 ° C., more preferably 70 ° C. to 110 ° C. for 5 minutes or more. Preheating may be preferably 5 to 150 minutes, more preferably 15 to 120 minutes, still more preferably 15 to 100 minutes.
  • steps (III) to (V) may be carried out according to various methods known to those skilled in the art used for manufacturing a printed wiring board.
  • the support is removed after the step (II)
  • the support may be removed between the steps (II) and the step (III), between the steps (III) and the step (IV), or the step ( It may be carried out between IV) and step (V).
  • the formation of the insulating layer and the conductor layer in steps (II) to (V) may be repeated to form a multilayer wiring board.
  • the printed wiring board of the present invention can be manufactured by using the above-mentioned prepreg.
  • the manufacturing method is basically the same as when a resin sheet is used.
  • Step (III) is a step of drilling holes in the insulating layer, whereby holes such as via holes and through holes can be formed in the insulating layer.
  • the step (III) may be carried out by using, for example, a drill, a laser, a plasma, or the like, depending on the composition of the resin composition used for forming the insulating layer.
  • the dimensions and shape of the holes may be appropriately determined according to the design of the printed wiring board.
  • Step (IV) is a step of roughening the insulating layer.
  • smear removal is also performed.
  • the procedure and conditions for the roughening treatment are not particularly limited, and known procedures and conditions usually used for forming the insulating layer of the printed wiring board can be adopted.
  • the insulating layer can be roughened by performing a swelling treatment with a swelling liquid, a roughening treatment with an oxidizing agent, and a neutralization treatment with a neutralizing liquid in this order.
  • the swelling solution used for the roughening treatment is not particularly limited, and examples thereof include an alkaline solution and a surfactant solution, preferably an alkaline solution, and the alkaline solution is more preferably a sodium hydroxide solution or a potassium hydroxide solution. preferable.
  • Examples of commercially available swelling liquids include "Swelling Dip Security Guns P" and "Swelling Dip Security Guns SBU” manufactured by Atotech Japan.
  • the swelling treatment with the swelling liquid is not particularly limited, but can be performed, for example, by immersing the insulating layer in the swelling liquid at 30 ° C. to 90 ° C. for 1 minute to 20 minutes. From the viewpoint of suppressing the swelling of the resin of the insulating layer to an appropriate level, it is preferable to immerse the insulating layer in a swelling liquid at 40 ° C to 80 ° C for 5 to 15 minutes.
  • the oxidizing agent used for the roughening treatment is not particularly limited, and examples thereof include an alkaline permanganate solution in which potassium permanganate or sodium permanganate is dissolved in an aqueous solution of sodium hydroxide.
  • the roughening treatment with an oxidizing agent such as an alkaline permanganate solution is preferably performed by immersing the insulating layer in an oxidizing agent solution heated to 60 ° C. to 100 ° C. for 10 to 30 minutes.
  • the concentration of permanganate in the alkaline permanganate solution is preferably 5% by mass to 10% by mass.
  • Examples of commercially available oxidizing agents include alkaline permanganate solutions such as "Concentrate Compact CP" and "Dozing Solution Security P" manufactured by Atotech Japan.
  • the neutralizing solution used for the roughening treatment is preferably an acidic aqueous solution, and examples of commercially available products include "Reduction Solution Security P” manufactured by Atotech Japan.
  • the treatment with a neutralizing solution can be performed by immersing the treated surface that has been roughened with an oxidizing agent in a neutralizing solution at 30 ° C to 80 ° C for 5 to 30 minutes. From the viewpoint of workability and the like, a method of immersing the object roughened with an oxidizing agent in a neutralizing solution at 40 ° C to 70 ° C for 5 to 20 minutes is preferable.
  • the root mean square roughness (Rq) of the surface of the insulating layer after the roughening treatment is preferably 500 nm or less, more preferably 400 nm or less, still more preferably 300 nm or less.
  • the lower limit is not particularly limited and may be, for example, 1 nm or more and 2 nm or more.
  • the root mean square roughness (Rq) of the insulating layer surface can be measured using a non-contact surface roughness meter.
  • Step (V) is a step of forming a conductor layer, and a conductor layer is formed on the insulating layer.
  • the conductor material used for the conductor layer is not particularly limited.
  • the conductor layer is one or more selected from the group consisting of gold, platinum, palladium, silver, copper, aluminum, cobalt, chromium, zinc, nickel, titanium, tungsten, iron, tin and indium. Contains metal.
  • the conductor layer may be a single metal layer or an alloy layer, and the alloy layer may be, for example, an alloy of two or more metals selected from the above group (for example, nickel-chromium alloy, copper, etc.). Examples include layers formed from nickel alloys and copper-titanium alloys).
  • Nickel alloys, copper-titanium alloy alloy layers are preferred, chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver or copper single metal layers, or nickel-chromium alloy alloy layers are more preferred, copper singles.
  • a metal layer is more preferred.
  • the conductor layer may have a single-layer structure, a single metal layer made of different types of metals or alloys, or a multi-layer structure in which two or more alloy layers are laminated.
  • the layer in contact with the insulating layer is preferably a single metal layer of chromium, zinc or titanium, or an alloy layer of nickel-chromium alloy.
  • the thickness of the conductor layer depends on the desired design of the printed wiring board, but is generally 3 ⁇ m to 35 ⁇ m, preferably 5 ⁇ m to 30 ⁇ m.
  • the conductor layer may be formed by plating.
  • the surface of the insulating layer can be plated by a conventionally known technique such as a semi-additive method or a full additive method to form a conductor layer having a desired wiring pattern, and the semi-additive can be manufactured from the viewpoint of ease of manufacture. It is preferably formed by the method.
  • a semi-additive method or a full additive method to form a conductor layer having a desired wiring pattern
  • the semi-additive can be manufactured from the viewpoint of ease of manufacture. It is preferably formed by the method.
  • an example of forming the conductor layer by the semi-additive method will be shown.
  • a plating seed layer is formed on the surface of the insulating layer by electroless plating.
  • a mask pattern that exposes a part of the plating seed layer corresponding to a desired wiring pattern is formed on the formed plating seed layer.
  • the mask pattern is removed.
  • the unnecessary plating seed layer can be removed by etching or the like to form a conductor layer having a desired wiring pattern.
  • the conductor layer may be formed using a metal leaf.
  • the step (V) is carried out between the steps (I) and the step (II).
  • the support is removed and a metal leaf is laminated on the surface of the exposed resin composition layer.
  • the laminating of the resin composition layer and the metal foil may be carried out by a vacuum laminating method.
  • the laminating conditions may be the same as the conditions described for step (I).
  • step (II) is carried out to form an insulating layer.
  • the metal foil on the insulating layer can be used to form a conductor layer having a desired wiring pattern by a conventionally known technique such as a subtractive method or a modified semi-additive method.
  • the metal foil can be manufactured by a known method such as an electrolysis method or a rolling method.
  • Examples of commercially available metal foils include HLP foils and JXUT-III foils manufactured by JX Nippon Mining & Metals Co., Ltd., 3EC-III foils and TP-III foils manufactured by Mitsui Mining & Smelting Co., Ltd.
  • the semiconductor device of the present invention includes the printed wiring board of the present invention.
  • the semiconductor device of the present invention can be manufactured by using the printed wiring board of the present invention.
  • semiconductor devices examples include various semiconductor devices used in electric products (for example, computers, mobile phones, digital cameras, televisions, etc.) and vehicles (for example, motorcycles, automobiles, trains, ships, aircraft, etc.).
  • Example 1 23 parts of an isopropyridene group-containing maleimide compound (“MIR-5000-60T” manufactured by Nippon Kayaku Co., Ltd., a toluene solution of 60% by mass of a non-volatile component, a main component (non-volatile component): a maleimide compound represented by the following formula (A)) , Liquid naphthalene skeleton-containing epoxy resin (DIC's "HP-4032-SS", epoxy equivalent 144 g / eq.) 10 parts, active ester curing agent containing dicyclopentadiene type diphenol structure (DIC's "HPC-" 8000-65T ”, a toluene solution of 65% by mass of the non-volatile component, 30 parts of active ester group equivalent 223 g / eq.), And an inorganic filler (amine-based epoxysilane compound (“KBM573 ”manufactured by Shinetsu Chemical Industry Co.
  • Example 2 Instead of the active ester curing agent containing a dicyclopentadiene type diphenol structure (“HPC-8000-65T” manufactured by DIC), the active ester compound containing a naphthalene structure (“HPC-8150-62T” manufactured by DIC), a non-volatile component.
  • a resin composition (resin varnish) was obtained in the same manner as in Example 1 except that a 62 mass% toluene solution and 30 parts of an active ester group equivalent of 229 g / eq.) Were used.
  • Example 3 The amount of the isopropyridene group-containing maleimide compound (“MIR-5000-60T” manufactured by Nippon Kayaku Co., Ltd.) was changed from 23 parts to 18 parts, and an active ester curing agent containing a dicyclopentadiene-type diphenol structure (manufactured by DIC Co., Ltd.) was changed.
  • MIR-5000-60T manufactured by Nippon Kayaku Co., Ltd.
  • Example 4 The amount of the isopropyridene group-containing maleimide compound (“MIR-5000-60T” manufactured by Nippon Kayaku Co., Ltd.) was changed from 23 parts to 21 parts, and the active ester curing agent containing a dicyclopentadiene type diphenol structure (manufactured by DIC Co., Ltd.) was changed.
  • Example 5 Instead of the active ester curing agent containing a dicyclopentadiene type diphenol structure (“HPC-8000-65T” manufactured by DIC), the active ester compound containing a naphthalene structure (“HPC-8150-62T” manufactured by DIC), a non-volatile component. Using 62 parts by mass of a toluene solution and 25 parts of active ester group equivalent 229 g / eq. Except for the fact that 5 parts of a triazine skeleton-containing cresol novolac-based curing agent (“LA-3018-50P” manufactured by DIC, hydroxyl group equivalent: about 151, 2-methoxypropanol solution containing 50% non-volatile components) was used. A resin composition (resin varnish) was obtained in the same manner as in Example 1.
  • Example 6 A resin composition (resin varnish) was obtained in the same manner as in Example 5 except that two parts of the polyimide resin 1 obtained in Synthesis Example 1 were added.
  • Example 7 The amount of "SO-C2" manufactured by Admatex was changed from 80 parts to 60 parts, and instead, an inorganic filler having a hollow part (amine-based alkoxysilane compound ("KBM573" manufactured by Shin-Etsu Chemical Industry Co., Ltd.) was used on the surface.
  • the resin composition (same as in Example 5) except that 20 parts of spherical silica having a treated hollow portion (“BA-S” manufactured by JGC Catalysts and Chemicals, Inc., average particle size 2.6 ⁇ m) was used. Resin varnish) was obtained.
  • Example 2 The same as in Example 1 except that 30 parts of the active ester compound (“HPC-8150-62T” manufactured by DIC, a toluene solution containing 62% by mass of the non-volatile component, and an active ester group equivalent of 229 g / eq.) was used. , A resin composition (resin varnish) was obtained.
  • a resin composition (resin varnish) was obtained in the same manner as in Example 1 except that "-62T", a toluene solution containing 62% by mass of the non-volatile component, and 30 parts of an active ester group equivalent (229 g / eq.) Were used.
  • ⁇ Test Example 1 Measurement of Relative Permittivity (Dk) and Dielectric Dissipation Factor (Df)>
  • Dk Relative Permittivity
  • Df Dielectric Dissipation Factor
  • A5 polyethylene terephthalate film
  • the resin compositions (resin varnishes) obtained in Examples and Comparative Examples were uniformly applied onto the release layer of this support so that the thickness of the resin composition layer after drying was 40 ⁇ m. Then, the resin composition was dried at 80 ° C. to 100 ° C. (average 90 ° C.) for 4 minutes to obtain a resin sheet containing a support and a resin composition layer.
  • the obtained resin sheet was heated at 190 ° C. for 90 minutes to heat-cure the resin composition layer. Then, the support was peeled off to obtain a cured product of the resin composition. This cured product was cut into test pieces having a width of 2 mm and a length of 80 mm.
  • the relative permittivity (Dk) and the dielectric loss tangent (Df) of the test piece were measured at a measurement frequency of 5.8 GHz and a measurement temperature of 23 ° C. by a cavity resonance perturbation method using “HP8632B” manufactured by Azilent Technologies. Measurements were made for three test pieces, and the average values are shown in Table 1 below.
  • the laminated substrate was immersed in a neutralizing solution (reduction sholusin securigant P (aqueous solution of sulfuric acid) manufactured by Atotech Japan) at 40 ° C. for 5 minutes, and then the laminated substrate was dried at 80 ° C. for 30 minutes. Then, "evaluation substrate A" was obtained.
  • a neutralizing solution reduction sholusin securigant P (aqueous solution of sulfuric acid) manufactured by Atotech Japan
  • the evaluation substrate A was immersed in an electroless plating solution containing PdCl 2 at 40 ° C. for 5 minutes, and then immersed in an electroless copper plating solution at 25 ° C. for 20 minutes. Then, it was heated at 150 ° C. for 30 minutes to perform annealing treatment. After that, an etching resist was formed, and a pattern was formed by etching. Then, copper sulfate electrolytic plating was performed to form a conductor layer with a thickness of 20 ⁇ m. Next, the annealing treatment was performed at 190 ° C. for 60 minutes to obtain "evaluation substrate B".
  • a notch was formed in the conductor layer of the evaluation substrate B to surround a rectangular portion having a width of 10 mm and a length of 100 mm.
  • One end of the rectangular part was peeled off and grasped with a gripping tool (autocom type testing machine "AC-50C-SL" manufactured by TSE Co., Ltd.). With a gripper, the rectangular part was peeled off in the vertical direction at a speed of 50 mm / min at room temperature, and the load (kgf / cm) when the 35 mm was peeled off was measured as the copper plating peel strength, and the following was measured. It is shown in Table 1.
  • ⁇ Test Example 3 Measurement of Surface Roughness Ra> The arithmetic average roughness Ra of the surface of the insulating layer of the evaluation substrate A produced in Test Example 2 (4) was measured. The measurement was carried out using a non-contact type surface roughness meter (WYKO NT3300 manufactured by Becoin Sturments) with a VSI mode and a 50x lens, and the measurement range was 121 ⁇ m ⁇ 92 ⁇ m. This measurement was performed at 10 measurement points, and the average value is shown in Table 1 below.
  • WYKO NT3300 manufactured by Becoin Sturments
  • Tg> The resin sheet obtained in Test Example 1 was heated in an oven at 190 ° C. for 90 minutes to cure the resin composition layer. Then, the support was peeled off to obtain a cured product of the resin composition layer. This cured product was cut into a length of 20 mm and a width of 6 mm to obtain a cured product for evaluation.
  • the first TMA curve was obtained at a heating rate of 5 ° C / min from 25 ° C to 250 ° C by a tensile weighting method using a thermomechanical analyzer (TMA) manufactured by Rigaku. Then, the same measurement was performed on the same cured product for evaluation, and a second TMA curve was obtained. From the TMA curve obtained the second time, the value of the glass transition temperature Tg (° C.) was obtained and shown in Table 1 below.
  • Test Example 5 Measurement of minimum melt viscosity> The resin sheet obtained in Test Example 1 was peeled off from the support film, and the frequency was 1 Hz, the strain was 5 degrees, the load was 100 g, the temperature rise rate was 5 ° C / min, and the temperature was measured by the dynamic viscoelasticity measuring device G-3000 manufactured by UBM. Measurements were made in the range of 60 ° C to 180 ° C.
  • Table 1 below shows the amounts of raw materials used, the content of non-volatile components, and the measurement results of the test examples of the resin compositions of Examples and Comparative Examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

The present invention addresses the problem of providing a resin composition such that the minimum melt viscosity can be further reduced, the relative dielectric constant (Dk) and the dielectric loss factor (Df) are low, the glass transition temperature is high, and a cured article having a superior copper plating peel strength can be obtained, and provides a resin composition containing (A) a maleimide compound that has a isopropylidene group bonded to two aromatic carbon atoms in different aromatic rings, (B) an active ester compound, and (C) an epoxy resin.

Description

樹脂組成物Resin composition
 本発明は、マレイミド化合物を含む樹脂組成物に関する。さらには、当該樹脂組成物を用いて得られる硬化物、シート状積層材料、樹脂シート、プリント配線板、及び半導体装置に関する。 The present invention relates to a resin composition containing a maleimide compound. Further, the present invention relates to a cured product obtained by using the resin composition, a sheet-like laminated material, a resin sheet, a printed wiring board, and a semiconductor device.
 プリント配線板の製造技術として、絶縁層と導体層を交互に積み重ねるビルドアップ方式による製造方法が知られている。ビルドアップ方式による製造方法において、一般に、絶縁層は樹脂組成物を硬化させて形成される。近年、絶縁層の誘電率等の誘電特性のさらなる向上、銅密着性のさらなる向上が求められている。また、一方で、ガラス転移温度の高い絶縁層が求められている。しかし、これまでのところ、銅めっきピール強度が高い材料を用いた場合、樹脂組成物の最低溶融粘度の高さや、材料の比誘電率(Dk)及び誘電正接(Df)の高さ、ガラス転移点(Tg)の低さに課題があった。 As a manufacturing technique for printed wiring boards, a manufacturing method using a build-up method in which insulating layers and conductor layers are alternately stacked is known. In the build-up manufacturing method, the insulating layer is generally formed by curing the resin composition. In recent years, further improvement of dielectric properties such as dielectric constant of an insulating layer and further improvement of copper adhesion have been required. On the other hand, there is a demand for an insulating layer having a high glass transition temperature. However, so far, when a material having a high copper plating peel strength is used, the minimum melt viscosity of the resin composition, the relative permittivity (Dk) and the dielectric constant tangent (Df) of the material, and the glass transition are so far. There was a problem with the low point (Tg).
 これまでに、イソプロピリデン基を含むマレイミド化合物が知られている(特許文献1)。 So far, maleimide compounds containing an isopropylidene group have been known (Patent Document 1).
特許第6752390号公報Japanese Patent No. 6752390
 本発明の課題は、最低溶融粘度をより低く抑えることができ、比誘電率(Dk)及び誘電正接(Df)が低く、ガラス転移点(Tg)が高く且つ銅めっきピール強度に優れた硬化物を得ることができる樹脂組成物を提供することにある。 The subject of the present invention is a cured product in which the minimum melt viscosity can be suppressed to a lower level, the relative permittivity (Dk) and the dielectric constant tangent (Df) are low, the glass transition point (Tg) is high, and the copper plating peel strength is excellent. The present invention is to provide a resin composition capable of obtaining the above.
 本発明の課題を達成すべく、本発明者らは鋭意検討した結果、樹脂組成物の成分として、(A)異なる芳香環の2個の芳香族炭素原子に結合したイソプロピリデン基を有するマレイミド化合物、(B)活性エステル化合物、及び(C)エポキシ樹脂を使用することにより、意外にも、樹脂組成物の最低溶融粘度をより低く抑えることができ、比誘電率(Dk)及び誘電正接(Df)が低く、ガラス転移点(Tg)が高く且つ銅めっきピール強度に優れた硬化物を得ることができることを見出し、本発明を完成させるに至った。 As a result of diligent studies to achieve the object of the present invention, (A) a maleimide compound having an isopropyride group bonded to two aromatic carbon atoms of different aromatic rings as a component of the resin composition. By using (B) an active ester compound and (C) an epoxy resin, surprisingly, the minimum melt viscosity of the resin composition can be suppressed to a lower value, and the specific dielectric constant (Dk) and the dielectric tangent (Df) can be suppressed. ) Is low, the glass transition point (Tg) is high, and a cured product having excellent copper plating peel strength can be obtained, and the present invention has been completed.
 すなわち、本発明は以下の内容を含む。
[1] (A)異なる芳香環の2個の芳香族炭素原子に結合したイソプロピリデン基を有するマレイミド化合物、(B)活性エステル化合物、及び(C)エポキシ樹脂を含む樹脂組成物。
[2] (A)成分が、式(A2):
That is, the present invention includes the following contents.
[1] A resin composition containing (A) a maleimide compound having an isopropanol group bonded to two aromatic carbon atoms of different aromatic rings, (B) an active ester compound, and (C) an epoxy resin.
[2] The component (A) is the formula (A2) :.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[式中、環A及び環Bは、それぞれ独立して、置換基を有していてもよい芳香環を示し;aは、1以上の整数を示す。]
で表されるマレイミド化合物を含む、上記[1]に記載の樹脂組成物。
[3] (A)成分が、式(A-1):
[In the formula, rings A and B each independently represent an aromatic ring that may have a substituent; a represents an integer of 1 or more. ]
The resin composition according to the above [1], which comprises the maleimide compound represented by.
[3] The component (A) is the formula (A-1) :.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[式中、R及びRは、それぞれ独立して、アルキル基又はアリール基を示し;aは、1以上の整数を示し;x及びyは、それぞれ独立して、0、1、2又は3を示す。]
で表されるマレイミド化合物を含む、上記[1]又は[2]に記載の樹脂組成物。
[4] aが、2~10の整数である、上記[2]又は[3]に記載の樹脂組成物。
[5] (A)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、3質量%~30質量%である、上記[1]~[4]の何れかに記載の樹脂組成物。
[6] (B)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、3質量%~30質量%である、上記[1]~[5]の何れかに記載の樹脂組成物。
[7] (B)成分に対する(A)成分の質量比((A)成分/(B)成分)が、0.5~2である、上記[1]~[6]の何れかに記載の樹脂組成物。
[8] (C)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、1質量%~30質量%である、上記[1]~[7]の何れかに記載の樹脂組成物。
[9] (C)成分に対する(A)成分の質量比((A)成分/(C)成分)が、0.5~3である、上記[1]~[8]の何れかに記載の樹脂組成物。
[10] さらに(D)無機充填材を含む、上記[1]~[9]の何れかに記載の樹脂組成物。
[11] (D)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、40質量%以上である、上記[10]に記載の樹脂組成物。
[12] 樹脂組成物の硬化物の誘電正接(Df)が、5.8GHz、23℃で測定した場合、0.0045以下である、上記[1]~[11]の何れかに記載の樹脂組成物。
[13] 樹脂組成物の硬化物の比誘電率(Dk)が、5.8GHz、23℃で測定した場合、3.5以下である、上記[1]~[12]の何れかに記載の樹脂組成物。
[14] 樹脂組成物の硬化物のガラス転移温度(Tg)が、140℃以上である、上記[1]~[13]の何れかに記載の樹脂組成物。
[15] 上記[1]~[14]の何れかに記載の樹脂組成物の硬化物。
[16] 上記[1]~[14]の何れかに記載の樹脂組成物を含有する、シート状積層材料。
[17] 支持体と、当該支持体上に設けられた上記[1]~[14]の何れかに記載の樹脂組成物から形成される樹脂組成物層と、を有する樹脂シート。
[18] 上記[1]~[14]の何れかに記載の樹脂組成物の硬化物からなる絶縁層を備えるプリント配線板。
[19] 上記[18]に記載のプリント配線板を含む、半導体装置。
[In the formula, R 1 and R 2 independently represent an alkyl group or an aryl group; a represents an integer of 1 or more; x and y independently represent 0, 1, 2 or, respectively. 3 is shown. ]
The resin composition according to the above [1] or [2], which comprises the maleimide compound represented by.
[4] The resin composition according to the above [2] or [3], wherein a is an integer of 2 to 10.
[5] The content of the component (A) is 3% by mass to 30% by mass when the non-volatile component in the resin composition is 100% by mass, according to any one of the above [1] to [4]. Resin composition.
[6] The content of the component (B) is 3% by mass to 30% by mass when the non-volatile component in the resin composition is 100% by mass, according to any one of the above [1] to [5]. Resin composition.
[7] The above-mentioned [1] to [6], wherein the mass ratio of the component (A) to the component (B) (component (A) / component (B)) is 0.5 to 2. Resin composition.
[8] The content of the component (C) is 1% by mass to 30% by mass when the non-volatile component in the resin composition is 100% by mass, according to any one of the above [1] to [7]. Resin composition.
[9] The above-mentioned [1] to [8], wherein the mass ratio of the component (A) to the component (C) (component (A) / component (C)) is 0.5 to 3. Resin composition.
[10] The resin composition according to any one of the above [1] to [9], further comprising (D) an inorganic filler.
[11] The resin composition according to the above [10], wherein the content of the component (D) is 40% by mass or more when the non-volatile component in the resin composition is 100% by mass.
[12] The resin according to any one of [1] to [11] above, wherein the dielectric loss tangent (Df) of the cured product of the resin composition is 0.0045 or less when measured at 5.8 GHz and 23 ° C. Composition.
[13] The above-mentioned [1] to [12], wherein the relative permittivity (Dk) of the cured product of the resin composition is 3.5 or less when measured at 5.8 GHz and 23 ° C. Resin composition.
[14] The resin composition according to any one of the above [1] to [13], wherein the cured product of the resin composition has a glass transition temperature (Tg) of 140 ° C. or higher.
[15] A cured product of the resin composition according to any one of the above [1] to [14].
[16] A sheet-like laminated material containing the resin composition according to any one of the above [1] to [14].
[17] A resin sheet having a support and a resin composition layer formed from the resin composition according to any one of the above [1] to [14] provided on the support.
[18] A printed wiring board provided with an insulating layer made of a cured product of the resin composition according to any one of the above [1] to [14].
[19] A semiconductor device including the printed wiring board according to the above [18].
 本発明の樹脂組成物によれば、最低溶融粘度をより低く抑えることができ、比誘電率(Dk)及び誘電正接(Df)が低く、ガラス転移点(Tg)が高く且つ銅めっきピール強度に優れた硬化物を得ることができる。 According to the resin composition of the present invention, the minimum melt viscosity can be suppressed to be lower, the relative permittivity (Dk) and the dielectric tangent (Df) are low, the glass transition point (Tg) is high, and the copper plating peel strength is obtained. An excellent cured product can be obtained.
 以下、本発明をその好適な実施形態に即して詳細に説明する。ただし、本発明は、下記実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施され得る。 Hereinafter, the present invention will be described in detail according to the preferred embodiment thereof. However, the present invention is not limited to the following embodiments and examples, and may be arbitrarily modified and implemented without departing from the scope of claims of the present invention and the equivalent scope thereof.
<樹脂組成物>
 本発明の樹脂組成物は、(A)異なる芳香環の2個の芳香族炭素原子に結合したイソプロピリデン基を有するマレイミド化合物(以下「特定マレイミド化合物」という場合がある)、(B)活性エステル化合物、及び(C)エポキシ樹脂を含む。このような樹脂組成物を用いることにより、最低溶融粘度をより低く抑えることができ、比誘電率(Dk)及び誘電正接(Df)が低く、ガラス転移点(Tg)が高く且つ銅めっきピール強度に優れた硬化物を得ることができる。
<Resin composition>
The resin composition of the present invention comprises (A) a maleimide compound having an isopropyridene group bonded to two aromatic carbon atoms of different aromatic rings (hereinafter, may be referred to as "specific maleimide compound"), and (B) an active ester. It contains a compound and (C) epoxy resin. By using such a resin composition, the minimum melt viscosity can be suppressed to a lower level, the relative permittivity (Dk) and the dielectric loss tangent (Df) are low, the glass transition point (Tg) is high, and the copper plating peel strength is high. An excellent cured product can be obtained.
 本発明の樹脂組成物は、(A)特定マレイミド化合物、(B)活性エステル化合物、及び(C)エポキシ樹脂の他に、さらに任意の成分を含んでいてもよい。任意の成分としては、例えば、(A’)その他のマレイミド化合物、(B’)その他の硬化剤、(D)無機充填材、(E)硬化促進剤、(F)ポリイミド樹脂、(G)その他の添加剤、及び(H)有機溶剤が挙げられる。以下、樹脂組成物に含まれる各成分について詳細に説明する。 The resin composition of the present invention may further contain any component in addition to (A) the specific maleimide compound, (B) the active ester compound, and (C) the epoxy resin. Optional components include, for example, (A') other maleimide compounds, (B') other curing agents, (D) inorganic fillers, (E) curing accelerators, (F) polyimide resins, (G) and others. Additives and (H) organic solvent. Hereinafter, each component contained in the resin composition will be described in detail.
<(A)特定マレイミド化合物>
 本発明の樹脂組成物は、(A)特定マレイミド化合物を含む。(A)特定マレイミド化合物は、1種単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
<(A) Specific maleimide compound>
The resin composition of the present invention contains (A) a specific maleimide compound. (A) The specific maleimide compound may be used alone or in combination of two or more at any ratio.
 マレイミド化合物とは、1分子中に少なくとも1個のマレイミド基(2,5-ジヒドロ-2,5-ジオキソ-1H-ピロール-1-イル基)を有する化合物を意味する。(A)特定マレイミド化合物におけるマレイミド基は、芳香族炭素原子に結合していても、脂肪族炭素原子に結合していてもよいが、芳香族炭素原子に結合したものを含むことが好ましく、(A)特定マレイミド化合物におけるマレイミド基すべてが、芳香族炭素原子に結合したものであることがより好ましい。(A)特定マレイミド化合物1分子中におけるマレイミド基の数は、2以上であることが好ましく、3以上であることがより好ましく、3~11であることがより好ましく、3~6であることがさらに好ましい。 The maleimide compound means a compound having at least one maleimide group (2,5-dihydro-2,5-dioxo-1H-pyrrole-1-yl group) in one molecule. (A) The maleimide group in the specific maleimide compound may be bonded to an aromatic carbon atom or an aliphatic carbon atom, but preferably contains one bonded to an aromatic carbon atom (A). A) It is more preferable that all the maleimide groups in the specific maleimide compound are bonded to aromatic carbon atoms. (A) The number of maleimide groups in one molecule of the specific maleimide compound is preferably 2 or more, more preferably 3 or more, more preferably 3 to 11, and 3 to 6. More preferred.
 (A)特定マレイミド化合物は、異なる芳香環の2個の芳香族炭素原子に結合したイソプロピリデン基(-C(CH-)を1分子中に少なくとも1個有する。(A)特定マレイミド化合物に含まれるイソプロピリデン基は、マレイミド基を有する芳香環における芳香族炭素原子とマレイミド基を有さない芳香環における芳香族炭素原子との組み合わせの2個の芳香族炭素原子に結合したイソプロピリデン基、マレイミド基を有する異なる芳香環における芳香族炭素原子に結合したイソプロピリデン基、及びマレイミド基を有さない異なる芳香環における芳香族炭素原子に結合したイソプロピリデン基のいずれであってもよい。(A)特定マレイミド化合物は、好ましくは、マレイミド基を有する芳香環における芳香族炭素原子とマレイミド基を有さない芳香環における芳香族炭素原子との組み合わせの2個の芳香族炭素原子に結合したイソプロピリデン基を有し、特に好ましくは、(A)特定マレイミド化合物に含まれるイソプロピリデン基すべてが、マレイミド基を有する芳香環における芳香族炭素原子とマレイミド基を有さない芳香環における芳香族炭素原子との組み合わせの2個の芳香族炭素原子に結合したイソプロピリデン基である。(A)特定マレイミド化合物1分子中におけるこのようなイソプロピリデン基の数は、2以上であることが好ましく、4以上であることがより好ましく、4~20であることがさらに好ましく、4~10であることが特に好ましい。 (A) The specific maleimide compound has at least one isopropylidene group (-C (CH 3 ) 2- ) bonded to two aromatic carbon atoms of different aromatic rings in one molecule. (A) The isopropyridene group contained in the specific maleimide compound is two aromatic carbon atoms in a combination of an aromatic carbon atom in an aromatic ring having a maleimide group and an aromatic carbon atom in an aromatic ring having no maleimide group. Either an isopropyridene group bonded to an isopropyridene group bonded to an isopropyridene group bonded to an aromatic carbon atom in a different aromatic ring having a maleimide group, or an isopropyridene group bonded to an aromatic carbon atom in a different aromatic ring having no maleimide group. There may be. (A) The specific maleimide compound is preferably bonded to two aromatic carbon atoms in a combination of an aromatic carbon atom in an aromatic ring having a maleimide group and an aromatic carbon atom in an aromatic ring having no maleimide group. It has an isopropyridene group, and particularly preferably, (A) all the isopropyridene groups contained in the specific maleimide compound are an aromatic carbon atom in an aromatic ring having a maleimide group and an aromatic carbon in an aromatic ring having no maleimide group. It is an isopropylidene group bonded to two aromatic carbon atoms in combination with an atom. (A) The number of such isopropyrine groups in one molecule of the specific maleimide compound is preferably 2 or more, more preferably 4 or more, still more preferably 4 to 20, and 4 to 10. Is particularly preferable.
 芳香環とは、環上のπ電子系に含まれる電子数が4p+2個(pは自然数)であるヒュッケル則に従う環を意味する。芳香環は、炭素原子を環構成原子とする芳香族炭素環、又は環構成原子として、炭素原子に加えて、酸素原子、窒素原子、硫黄原子等のヘテロ原子を有する芳香族複素環であり得るが、一実施形態において、芳香族炭素環であることが好ましい。芳香環は、一実施形態において、5~14員の芳香環が好ましく、5~10員の芳香環がより好ましく、5又は6員の芳香環がさらに好ましい。芳香環の好適な具体例としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環等が挙げられ、より好ましくは、ベンゼン環又はナフタレン環であり、特に好ましくはベンゼン環である。 The aromatic ring means a ring according to Hückel's law in which the number of electrons contained in the π-electron system on the ring is 4p + 2 (p is a natural number). The aromatic ring may be an aromatic carbocycle having a carbon atom as a ring-constituting atom, or an aromatic heterocyclic ring having a heteroatom such as an oxygen atom, a nitrogen atom, and a sulfur atom in addition to the carbon atom as the ring-constituting atom. However, in one embodiment, it is preferably an aromatic carbon ring. In one embodiment, the aromatic ring is preferably a 5- to 14-membered aromatic ring, more preferably a 5- to 10-membered aromatic ring, and even more preferably a 5- or 6-membered aromatic ring. Preferable specific examples of the aromatic ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring and the like, more preferably a benzene ring or a naphthalene ring, and particularly preferably a benzene ring.
 (A)特定マレイミド化合物は、一実施形態において、好ましくは、式(A1): (A) The specific maleimide compound is preferably the formula (A1): in one embodiment.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
[式中、環A、環B及び環Cは、それぞれ独立して、置換基を有していてもよい芳香環を示し;Xは、それぞれ独立して、単結合、-C(R-、-O-、-CO-、-S-、-SO-、-SO-、-CONH-、又は-NHCO-を示し;Rは、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、又は置換基を有していてもよいアリール基を示し;aは、1以上の整数を示し;bは、それぞれ独立して、0又は1を示し;cは、それぞれ独立して、0、1、2又は3を示す。]
で表されるマレイミド化合物を含む。a単位及びc単位は、それぞれ、単位毎に同一であってもよいし、異なっていてもよい。
[In the formula, ring A, ring B and ring C each independently represent an aromatic ring which may have a substituent; X is an independent single bond, —C (R x ). 2- , -O-, -CO-, -S-, -SO-, -SO 2- , -CONH-, or -NHCO-; R x independently contains a hydrogen atom and a substituent. Indicates an alkyl group which may have an alkyl group or an aryl group which may have a substituent; a indicates an integer of 1 or more; b indicates 0 or 1 independently of each other; c indicates 0 or 1. , Independently indicate 0, 1, 2 or 3. ]
Includes maleimide compounds represented by. The a unit and the c unit may be the same or different for each unit.
 環A、環B及び環Cは、それぞれ独立して、置換基を有していてもよい芳香環を示し、好ましくは、置換基を有していてもよい芳香族炭素環、より好ましくは、置換基を有していてもよいベンゼン環又は置換基を有していてもよいナフタレン環であり、さらに好ましくは、アルキル基及びアリール基から選ばれる基で置換されていてもよいベンゼン環、又はアルキル基及びアリール基から選ばれる基で置換されていてもよいナフタレン環であり、特に好ましくは、アルキル基及びアリール基から選ばれる基で置換されていてもよいベンゼン環である。 Rings A, B and C each independently represent an aromatic ring which may have a substituent, preferably an aromatic carbocycle which may have a substituent, and more preferably. A benzene ring which may have a substituent or a naphthalene ring which may have a substituent, more preferably a benzene ring which may be substituted with a group selected from an alkyl group and an aryl group, or a group. It is a naphthalene ring which may be substituted with a group selected from an alkyl group and an aryl group, and particularly preferably a benzene ring which may be substituted with a group selected from an alkyl group and an aryl group.
 本明細書中、「置換基」としては、特に限定されるものではないが、例えば、アルキル基、アルケニル基、アリール基、アリール-アルキル基、アルキル-オキシ基、アルケニル-オキシ基、アリール-オキシ基、アルキル-カルボニル基、アルケニル-カルボニル基、アリール-カルボニル基、アルキル-オキシ-カルボニル基、アルケニル-オキシ-カルボニル基、アリール-オキシ-カルボニル基、アルキル-カルボニル-オキシ基、アルケニル-カルボニル-オキシ基、アリール-カルボニル-オキシ基等の1価の置換基が挙げられ、置換可能であれば、オキソ基(=O)等の2価の置換基も含み得る。 In the present specification, the "substituted group" is not particularly limited, but for example, an alkyl group, an alkenyl group, an aryl group, an aryl-alkyl group, an alkyl-oxy group, an alkenyl-oxy group, and an aryl-oxy group. Group, alkyl-carbonyl group, alkenyl-carbonyl group, aryl-carbonyl group, alkyl-oxy-carbonyl group, alkenyl-oxy-carbonyl group, aryl-oxy-carbonyl group, alkyl-carbonyl-oxy group, alkenyl-carbonyl-oxy Examples thereof include a monovalent substituent such as a group and an aryl-carbonyl-oxy group, and if substitutable, a divalent substituent such as an oxo group (= O) may also be included.
 アルキル(基)とは、直鎖、分枝鎖及び/又は環状の1価の脂肪族飽和炭化水素基を意味する。アルキル(基)は、特に指定がない限り、炭素原子数1~14のアルキル(基)が好ましい。アルキル(基)としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、シクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、ジメチルシクロヘキシル基、トリメチルシクロヘキシル基、シクロペンチルメチル基、シクロヘキシルメチル基等が挙げられる。アルケニル(基)とは、少なくとも1つの炭素-炭素二重結合を有する直鎖、分枝鎖及び/又は環状の1価の脂肪族不飽和炭化水素基を意味する。アルケニル(基)は、特に指定がない限り、炭素原子数2~14のアルケニル基が好ましい。アルケニル(基)としては、例えば、ビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、シクロヘキセニル基等が挙げられる。アリール(基)とは、1価の芳香族炭化水素基を意味する。アリール(基)は、特に指定がない限り、炭素原子数6~14のアリール(基)が好ましい。アリール(基)としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。 Alkyl (group) means a linear, branched and / or cyclic monovalent aliphatic saturated hydrocarbon group. Unless otherwise specified, the alkyl (group) is preferably an alkyl (group) having 1 to 14 carbon atoms. Examples of the alkyl (group) include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group and a nonyl group. Examples thereof include a group, a decyl group, a cyclopentyl group, a cyclohexyl group, a methylcyclohexyl group, a dimethylcyclohexyl group, a trimethylcyclohexyl group, a cyclopentylmethyl group, a cyclohexylmethyl group and the like. Alkenyl (group) means a linear, branched and / or cyclic monovalent aliphatic unsaturated hydrocarbon group having at least one carbon-carbon double bond. Unless otherwise specified, the alkenyl (group) is preferably an alkenyl group having 2 to 14 carbon atoms. Examples of the alkenyl (group) include a vinyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group, a decenyl group, a cyclohexenyl group and the like. Aryl (group) means a monovalent aromatic hydrocarbon group. Unless otherwise specified, the aryl (group) is preferably an aryl (group) having 6 to 14 carbon atoms. Examples of the aryl (group) include a phenyl group, a 1-naphthyl group, a 2-naphthyl group and the like.
 Xは、それぞれ独立して、単結合、-C(R-、-O-、-CO-、-S-、-SO-、-SO-、-CONH-、又は-NHCO-を示し、好ましくは、単結合、-C(R-、又は-O-であり、より好ましくは、単結合、又は-C(R-であり、特に好ましくは、単結合である。Rは、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、又は置換基を有していてもよいアリール基を示し、より好ましくは、水素原子、アルキル基、又はアリール基であり、さらに好ましくは、水素原子、又はアルキル基である。 X can independently form a single bond, -C (R x ) 2- , -O-, -CO-, -S-, -SO-, -SO 2- , -CONH-, or -NHCO-. Shown, preferably single bond, -C (R x ) 2- , or -O-, more preferably single bond, or -C (R x ) 2- , and particularly preferably single bond. be. R x independently represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent, and more preferably, a hydrogen atom, an alkyl group, or an alkyl group. It is an aryl group, more preferably a hydrogen atom or an alkyl group.
 aは、1以上の整数を示し、好ましくは、2以上であり、より好ましくは、2~10の整数であり、さらに好ましくは、2、3、4又は5である。(A)特定マレイミド化合物は、一実施形態において、aが1の式(A1)で表されるマレイミド化合物と、aが2以上の式(A1)で表されるマレイミド化合物とを含み、aが2以上の式(A1)で表されるマレイミド化合物を1質量%含有することが好ましく、5質量%含有することがより好ましく、8質量%含有することがさらに好ましく、10質量%含有することが特に好ましい。 A indicates an integer of 1 or more, preferably 2 or more, more preferably an integer of 2 to 10, and further preferably 2, 3, 4 or 5. (A) The specific maleimide compound includes, in one embodiment, a maleimide compound represented by the formula (A1) in which a is 1, and a maleimide compound represented by the formula (A1) in which a is 2 or more. The maleimide compound represented by the formula (A1) of 2 or more is preferably contained in an amount of 1% by mass, more preferably 5% by mass, further preferably 8% by mass, and 10% by mass. Especially preferable.
 bは、それぞれ独立して、0又は1を示し、好ましくは、1である。cは、それぞれ独立して、0、1、2又は3を示し、好ましくは、0、1又は2であり、より好ましくは、0又は1であり、特に好ましくは0である。 B indicates 0 or 1 independently of each other, and is preferably 1. c independently indicates 0, 1, 2 or 3, preferably 0, 1 or 2, more preferably 0 or 1, and particularly preferably 0.
 (A)特定マレイミド化合物は、一実施形態において、より好ましくは、式(A2): (A) The specific maleimide compound is more preferably the formula (A2): in one embodiment.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[式中、各記号は、上記の同様である。]
で表されるマレイミド化合物を含む。
[In the formula, each symbol is the same as above. ]
Includes maleimide compounds represented by.
 (A)特定マレイミド化合物は、別の実施形態において、より好ましくは、式(A-1)~(A-6): (A) The specific maleimide compound is more preferably the formulas (A-1) to (A-6): in another embodiment.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[式中、R及びRは、それぞれ独立して、アルキル基又はアリール基を示し;x及びyは、それぞれ独立して、0、1、2又は3を示し;その他の記号は、上記と同様である。]
の何れかで表されるマレイミド化合物を含み、一実施形態において、さらに好ましくは、式(A-1)で表される化合物を含み、一実施形態において、さらにより好ましくは、式(A-1a)又は(A-1b):
[In the formula, R 1 and R 2 independently indicate an alkyl group or an aryl group; x and y independently indicate 0, 1, 2 or 3; other symbols are described above. Is similar to. ]
The maleimide compound represented by any of the above is contained, and in one embodiment, the compound represented by the formula (A-1) is contained, and in one embodiment, the formula (A-1a) is even more preferable. ) Or (A-1b):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[式中、各記号は、上記と同様である。]
で表される化合物を含み、一実施形態において、特に好ましくは、式(A-1a)で表される化合物を含む。
[In the formula, each symbol is the same as above. ]
In one embodiment, a compound represented by the formula (A-1a) is particularly preferably contained.
 R及びRは、それぞれ独立して、アルキル基又はアリール基を示し、好ましくは、アルキル基である。x及びyは、それぞれ独立して、0、1、2又は3を示し、好ましくは、0、1又は2であり、より好ましくは、0又は1であり、特に好ましくは0である。 R 1 and R 2 each independently represent an alkyl group or an aryl group, and are preferably an alkyl group. x and y independently represent 0, 1, 2 or 3, respectively, preferably 0, 1 or 2, more preferably 0 or 1, and particularly preferably 0.
 (A)特定マレイミド化合物の重量平均分子量(Mw)は、好ましくは500~5000、より好ましくは500~4000、さらに好ましくは500~3000である。(A)特定マレイミド化合物の数平均分子量(Mn)は、好ましくは500~5000、より好ましくは500~4000、さらに好ましくは500~3000である。樹脂の重量平均分子量及び数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、ポリスチレン換算の値として測定できる。 (A) The weight average molecular weight (Mw) of the specific maleimide compound is preferably 500 to 5000, more preferably 500 to 4000, and even more preferably 500 to 3000. (A) The number average molecular weight (Mn) of the specific maleimide compound is preferably 500 to 5000, more preferably 500 to 4000, and even more preferably 500 to 3000. The weight average molecular weight and the number average molecular weight of the resin can be measured as polystyrene-equivalent values by the gel permeation chromatography (GPC) method.
 (A)特定マレイミド化合物のマレイミド当量は、好ましくは100g/eq.~1000g/eq.、より好ましくは150g/eq.~400g/eq.である。(A)特定マレイミド化合物のマレイミド当量は、マレイミド基1当量あたりの(A)特定マレイミド化合物の質量である。 (A) The maleimide equivalent of the specific maleimide compound is preferably 100 g / eq. ~ 1000 g / eq. , More preferably 150 g / eq. ~ 400 g / eq. Is. The maleimide equivalent of the (A) specific maleimide compound is the mass of the (A) specific maleimide compound per one equivalent of the maleimide group.
 (A)特定マレイミド化合物の市販品としては、例えば、日本化薬社製の「MIR-5000-60T」等が挙げられる。 (A) Examples of commercially available products of the specific maleimide compound include "MIR-5000-60T" manufactured by Nippon Kayaku Co., Ltd.
 樹脂組成物中の(A)特定マレイミド化合物の含有量は、特に限定されるものではないが、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは30質量%以下、さらにより好ましくは20質量%以下、特に好ましくは15質量%以下である。樹脂組成物中の(A)特定マレイミド化合物の含有量の下限は、特に限定されるものではないが、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは0.1質量%以上、より好ましくは1質量%以上、さらに好ましくは3質量%以上、さらにより好ましくは5質量%以上、特に好ましくは7質量%以上である。 The content of the (A) specific maleimide compound in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, it is preferably 50% by mass or less, more preferably 50% by mass or less. It is 40% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less, and particularly preferably 15% by mass or less. The lower limit of the content of the (A) specific maleimide compound in the resin composition is not particularly limited, but is preferably 0.1% by mass or more when the non-volatile component in the resin composition is 100% by mass. , More preferably 1% by mass or more, still more preferably 3% by mass or more, still more preferably 5% by mass or more, and particularly preferably 7% by mass or more.
<(A’)その他のマレイミド化合物>
 本発明の樹脂組成物は、さらに任意成分として(A)成分以外の(A’)マレイミド化合物を含む場合がある。(A’)その他のマレイミド化合物は、1種類単独で用いてもよく、2種類以上を任意に組み合わせて用いてもよい。
<(A') Other maleimide compounds>
The resin composition of the present invention may further contain a (A') maleimide compound other than the (A) component as an optional component. (A') Other maleimide compounds may be used alone or in any combination of two or more.
 (A’)その他のマレイミド化合物は、特に限定されるものではなく、脂肪族アミン骨格を含む脂肪族マレイミド化合物であっても、芳香族アミン骨格を含む芳香族マレイミド化合物であってもよく、市販品としては、例えば、信越化学工業社製の「SLK-2600」、デザイナーモレキュールズ社製の「BMI-1500」、「BMI-1700」、「BMI-3000J」、「BMI-689」、「BMI-2500」(ダイマージアミン構造含有マレイミド化合物)、デザイナーモレキュールズ社製の「BMI-6100」(芳香族マレイミド化合物)、日本化薬社製の「MIR-3000-70MT」(ビフェニルアラルキル型マレイミド化合物)、ケイ・アイ化成社製の「BMI-70」、「BMI-80」、大和化成工業社製「BMI-2300」、「BMI-TMH」等が挙げられる。また、(A’)その他のマレイミド化合物として、発明協会公開技報公技番号2020-500211号に開示されているマレイミド樹脂(インダン環骨格含有マレイミド化合物)を用いてもよい。 The (A') other maleimide compound is not particularly limited, and may be an aliphatic maleimide compound containing an aliphatic amine skeleton or an aromatic maleimide compound containing an aromatic amine skeleton, and may be commercially available. Examples of products include "SLK-2600" manufactured by Shinetsu Chemical Industry Co., Ltd., "BMI-1500", "BMI-1700", "BMI-3000J", "BMI-689", and "BMI-689" manufactured by Designer Molecule's. "BMI-2500" (maleimide compound containing dimerdiamine structure), "BMI-6100" (aromatic maleimide compound) manufactured by Designer Molecule, and "MIR-3000-70MT" (biphenyl aralkyl type maleimide compound) manufactured by Nippon Kayaku Co., Ltd. Compounds), "BMI-70" and "BMI-80" manufactured by KAI Kasei Co., Ltd., "BMI-2300" and "BMI-TMH" manufactured by Daiwa Kasei Kogyo Co., Ltd., and the like. Further, as the (A') other maleimide compound, a maleimide resin (maleimide compound containing an indane ring skeleton) disclosed in Publication No. 2020-500211 of the Japan Institute of Invention and Innovation may be used.
 (A’)その他のマレイミド化合物のマレイミド当量は、好ましくは100g/eq.~20000g/eq.、より好ましくは200g/eq.~15000g/eq.、さらに好ましくは300g/eq.~10000g/eq.である。(A’)その他のマレイミド化合物のマレイミド当量は、マレイミド基1当量あたりの(A’)その他のマレイミド化合物の質量である。 (A') The maleimide equivalent of the other maleimide compound is preferably 100 g / eq. ~ 20000 g / eq. , More preferably 200 g / eq. ~ 15000 g / eq. , More preferably 300 g / eq. ~ 10,000 g / eq. Is. The maleimide equivalent of the (A') other maleimide compound is the mass of the (A') other maleimide compound per 1 equivalent of the maleimide group.
 (A’)その他のマレイミド化合物の重量平均分子量(Mw)は、好ましくは500~50000、より好ましくは700~20000である。(A’)その他のマレイミド化合物の数平均分子量(Mn)は、好ましくは500~50000、より好ましくは700~20000である。 The weight average molecular weight (Mw) of the (A') other maleimide compound is preferably 500 to 50,000, more preferably 700 to 20,000. The number average molecular weight (Mn) of the (A') other maleimide compound is preferably 500 to 50,000, more preferably 700 to 20,000.
 樹脂組成物中の(A’)その他のマレイミド化合物の含有量は、特に限定されるものではないが、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは30質量%以下、さらにより好ましくは20質量%以下、特に好ましくは10質量%以下である。樹脂組成物中の(A’)その他のマレイミド化合物の含有量の下限は、特に限定されるものではないが、樹脂組成物中の不揮発成分を100質量%とした場合、例えば、0質量%以上、0.1質量%以上、1質量%以上、2質量%以上等であり得る。 The content of the (A') and other maleimide compounds in the resin composition is not particularly limited, but is preferably 50% by mass or less when the non-volatile component in the resin composition is 100% by mass. It is preferably 40% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less, and particularly preferably 10% by mass or less. The lower limit of the content of the (A') and other maleimide compounds in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, for example, 0% by mass or more. , 0.1% by mass or more, 1% by mass or more, 2% by mass or more, and the like.
 樹脂組成物中の(A)特定マレイミド化合物の含有量は、樹脂組成物中の全マレイミド化合物((A)成分と(A’)成分の合計)を100質量%とした場合、好ましくは10質量%以上、より好ましくは30質量%以上、さらに好ましくは40質量%以上、特に好ましくは50質量%以上である。 The content of the (A) specific maleimide compound in the resin composition is preferably 10% by mass when the total maleimide compound (total of the (A) component and the (A') component) in the resin composition is 100% by mass. % Or more, more preferably 30% by mass or more, still more preferably 40% by mass or more, and particularly preferably 50% by mass or more.
<(B)活性エステル化合物>
 本発明の樹脂組成物は、(B)活性エステル化合物を含有する。(B)活性エステル化合物は、1種単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。(B)活性エステル化合物は、(C)エポキシ樹脂と反応して硬化させるエポキシ樹脂硬化剤としての機能を有し得る。
<(B) Active ester compound>
The resin composition of the present invention contains (B) an active ester compound. (B) The active ester compound may be used alone or in combination of two or more at any ratio. The (B) active ester compound may have a function as an epoxy resin curing agent that reacts with and cures the (C) epoxy resin.
 (B)活性エステル化合物としては、一般にフェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の、反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。当該活性エステル化合物は、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル化合物が好ましく、カルボン酸化合物とフェノール化合物及び/又はナフトール化合物とから得られる活性エステル化合物がより好ましい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール化合物又はナフトール化合物としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン型ジフェノール化合物、フェノールノボラック等が挙げられる。ここで、「ジシクロペンタジエン型ジフェノール化合物」とは、ジシクロペンタジエン1分子にフェノール2分子が縮合して得られるジフェノール化合物をいう。 (B) As the active ester compound, generally, two or more ester groups with high reaction activity such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds are contained in one molecule. The compound to have is preferably used. The active ester compound is preferably obtained by a condensation reaction between a carboxylic acid compound and / or a thiocarboxylic acid compound and a hydroxy compound and / or a thiol compound. In particular, from the viewpoint of improving heat resistance, an active ester compound obtained from a carboxylic acid compound and a hydroxy compound is preferable, and an active ester compound obtained from a carboxylic acid compound and a phenol compound and / or a naphthol compound is more preferable. Examples of the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, pyromellitic acid and the like. Examples of the phenol compound or naphthol compound include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthalin, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-. Cresol, p-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenol, trihydroxybenzophenone, tetrahydroxybenzophenone, fluoroglucin, Examples thereof include benzenetriol, dicyclopentadiene-type diphenol compound, and phenol novolac. Here, the "dicyclopentadiene-type diphenol compound" refers to a diphenol compound obtained by condensing two phenol molecules with one dicyclopentadiene molecule.
 具体的には、(B)活性エステル化合物としては、ジシクロペンタジエン型活性エステル化合物、ナフタレン構造を含むナフタレン型活性エステル化合物、フェノールノボラックのアセチル化物を含む活性エステル化合物、フェノールノボラックのベンゾイル化物を含む活性エステル化合物が好ましく、中でもジシクロペンタジエン型活性エステル化合物、及びナフタレン型活性エステル化合物から選ばれる少なくとも1種であることがより好ましく、ジシクロペンタジエン型活性エステル化合物がさらに好ましい。ジシクロペンタジエン型活性エステル化合物としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物が好ましい。 Specifically, the (B) active ester compound includes a dicyclopentadiene type active ester compound, a naphthalene type active ester compound containing a naphthalene structure, an active ester compound containing a phenol novolac acetylated product, and a phenol novolak benzoyl compound. The active ester compound is preferable, and at least one selected from the dicyclopentadiene type active ester compound and the naphthalene type active ester compound is more preferable, and the dicyclopentadiene type active ester compound is further preferable. As the dicyclopentadiene type active ester compound, an active ester compound containing a dicyclopentadiene type diphenol structure is preferable.
 (B)活性エステル化合物の市販品としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物として、「EXB9451」、「EXB9460」、「EXB9460S」、「EXB-8000L」、「EXB-8000L-65M」、「EXB-8000L-65TM」、「HPC-8000L-65TM」、「HPC-8000」、「HPC-8000-65T」、「HPC-8000H」、「HPC-8000H-65TM」、(DIC社製);ナフタレン構造を含む活性エステル化合物として「EXB-8100L-65T」、「EXB-8150-60T」、「EXB-8150-62T」、「EXB-9416-70BK」、「HPC-8150-60T」、「HPC-8150-62T」、「EXB-8」(DIC社製);りん含有活性エステル化合物として、「EXB9401」(DIC社製)、フェノールノボラックのアセチル化物である活性エステル化合物として「DC808」(三菱ケミカル社製)、フェノールノボラックのベンゾイル化物である活性エステル化合物として「YLH1026」、「YLH1030」、「YLH1048」(三菱ケミカル社製)、スチリル基及びナフタレン構造を含む活性エステル化合物として「PC1300-02-65MA」(エア・ウォーター社製)等が挙げられる。 (B) Commercially available products of the active ester compound include "EXB9451", "EXB9460", "EXB9460S", "EXB-8000L" and "EXB-8000L-65M" as active ester compounds containing a dicyclopentadiene type diphenol structure. , "EXB-8000L-65TM", "HPC-8000L-65TM", "HPC-8000", "HPC-8000-65T", "HPC-8000H", "HPC-8000H-65TM", (manufactured by DIC). ); As active ester compounds containing a naphthalene structure, "EXB-8100L-65T", "EXB-8150-60T", "EXB-8150-62T", "EXB-9416-70BK", "HPC-8150-60T", "HPC-8150-62T", "EXB-8" (manufactured by DIC); "EXB9401" (manufactured by DIC) as a phosphorus-containing active ester compound, and "DC808" (DC808) as an acetylated compound of phenol novolac. Mitsubishi Chemical Co., Ltd.), "YLH1026", "YLH1030", "YLH1048" (manufactured by Mitsubishi Chemical Co., Ltd.) as active ester compounds which are benzoyl compounds of phenol novolac, and "PC1300-02" as active ester compounds containing styryl group and naphthalene structure. -65MA "(manufactured by Air Water Co., Ltd.) and the like.
 (B)活性エステル化合物の活性エステル基当量は、好ましくは50g/eq.~500g/eq.、より好ましくは50g/eq.~400g/eq.、さらに好ましくは100g/eq.~300g/eq.である。活性エステル基当量は、活性エステル基1当量あたりの活性エステル化合物の質量である。 (B) The active ester group equivalent of the active ester compound is preferably 50 g / eq. ~ 500 g / eq. , More preferably 50 g / eq. ~ 400 g / eq. , More preferably 100 g / eq. ~ 300 g / eq. Is. The active ester group equivalent is the mass of the active ester compound per active ester group equivalent.
 樹脂組成物中の(B)活性エステル化合物の含有量は、特に限定されるものではないが、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは30質量%以下、さらにより好ましくは25質量%以下、特に好ましくは20質量%以下である。樹脂組成物中の(B)活性エステル化合物の含有量の下限は、特に限定されるものではないが、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは0.1質量%以上、より好ましくは1質量%以上、さらに好ましくは3質量%以上、さらに好ましくは5質量%以上、さらにより好ましくは8質量%以上、特に好ましくは10質量%以上である。 The content of the (B) active ester compound in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, it is preferably 50% by mass or less, more preferably 50% by mass or less. It is 40% by mass or less, more preferably 30% by mass or less, still more preferably 25% by mass or less, and particularly preferably 20% by mass or less. The lower limit of the content of the (B) active ester compound in the resin composition is not particularly limited, but is preferably 0.1% by mass or more when the non-volatile component in the resin composition is 100% by mass. , More preferably 1% by mass or more, still more preferably 3% by mass or more, still more preferably 5% by mass or more, still more preferably 8% by mass or more, and particularly preferably 10% by mass or more.
 樹脂組成物中の(B)活性エステル化合物に対する(A)特定マレイミド化合物の質量比((A)成分/(B)成分)は、好ましくは0.1以上、より好ましくは0.3以上、特に好ましくは0.5以上である。樹脂組成物中の(B)活性エステル化合物に対する(A)特定マレイミド化合物の質量比((A)成分/(B)成分)の上限は、好ましくは5以下、より好ましくは2以下、特に好ましくは1以下である。 The mass ratio ((A) component / (B) component) of the (A) specific maleimide compound to the (B) active ester compound in the resin composition is preferably 0.1 or more, more preferably 0.3 or more, particularly. It is preferably 0.5 or more. The upper limit of the mass ratio ((A) component / (B) component) of the (A) specific maleimide compound to the (B) active ester compound in the resin composition is preferably 5 or less, more preferably 2 or less, and particularly preferably. It is 1 or less.
<(B’)その他の硬化剤>
 本発明の樹脂組成物は、さらに任意成分として(B)成分以外の(B’)硬化剤を含む場合がある。(B’)その他の硬化剤は、1種類単独で用いてもよく、2種類以上を任意に組み合わせて用いてもよい。(B’)その他の硬化剤は、(B)活性エステル化合物同様に、(C)エポキシ樹脂と反応して硬化させるエポキシ樹脂硬化剤としての機能を有し得る。
<(B') Other curing agents>
The resin composition of the present invention may further contain a (B') curing agent other than the (B) component as an optional component. (B') Other curing agents may be used alone or in any combination of two or more. The (B') other curing agent may have a function as an epoxy resin curing agent that reacts with (C) an epoxy resin and cures, similarly to the (B) active ester compound.
 (B’)その他の硬化剤としては、特に限定されるものではないが、例えば、フェノール系硬化剤、カルボジイミド系硬化剤、酸無水物系硬化剤、アミン系硬化剤、ベンゾオキサジン系硬化剤、シアネートエステル系硬化剤、及びチオール系硬化剤が挙げられる。(B’)その他の硬化剤は、フェノール系硬化剤を含むことが特に好ましい。 The (B') other curing agent is not particularly limited, but for example, a phenol-based curing agent, a carbodiimide-based curing agent, an acid anhydride-based curing agent, an amine-based curing agent, a benzoxazine-based curing agent, and the like. Examples thereof include a cyanate ester-based curing agent and a thiol-based curing agent. It is particularly preferable that the (B') other curing agent contains a phenolic curing agent.
 フェノール系硬化剤としては、耐熱性及び耐水性の観点から、ノボラック構造を有するフェノール系硬化剤が好ましい。また、被着体に対する密着性の観点から、含窒素フェノール系硬化剤が好ましく、トリアジン骨格含有フェノール系硬化剤がより好ましい。中でも、耐熱性、耐水性、及び密着性を高度に満足させる観点から、トリアジン骨格含有フェノールノボラック樹脂が好ましい。フェノール系硬化剤の具体例としては、例えば、明和化成社製の「MEH-7700」、「MEH-7810」、「MEH-7851」、日本化薬社製の「NHN」、「CBN」、「GPH」、日鉄ケミカル&マテリアル社製の「SN-170」、「SN-180」、「SN-190」、「SN-475」、「SN-485」、「SN-495」、「SN-375」、「SN-395」、DIC社製の「LA-7052」、「LA-7054」、「LA-3018」、「LA-3018-50P」、「LA-1356」、「TD2090」、「TD-2090-60M」等が挙げられる。 As the phenolic curing agent, a phenolic curing agent having a novolak structure is preferable from the viewpoint of heat resistance and water resistance. Further, from the viewpoint of adhesion to the adherend, a nitrogen-containing phenol-based curing agent is preferable, and a triazine skeleton-containing phenol-based curing agent is more preferable. Of these, a triazine skeleton-containing phenol novolac resin is preferable from the viewpoint of highly satisfying heat resistance, water resistance, and adhesion. Specific examples of the phenolic curing agent include, for example, "MEH-7700", "MEH-7810", "MEH-7851" manufactured by Meiwa Kasei Co., Ltd., "NHN", "CBN", and "CBN" manufactured by Nippon Kayaku Co., Ltd. GPH, "SN-170", "SN-180", "SN-190", "SN-475", "SN-485", "SN-495", "SN-" manufactured by Nittetsu Chemical & Materials Co., Ltd. 375 "," SN-395 ", DIC's" LA-7052 "," LA-7054 "," LA-3018 "," LA-3018-50P "," LA-1356 "," TD2090 "," TD-2090-60M "and the like.
 カルボジイミド系硬化剤としては、1分子内中に1個以上、好ましくは2個以上のカルボジイミド構造を有する硬化剤が挙げられ、例えば、テトラメチレン-ビス(t-ブチルカルボジイミド)、シクロヘキサンビス(メチレン-t-ブチルカルボジイミド)等の脂肪族ビスカルボジイミド;フェニレン-ビス(キシリルカルボジイミド)等の芳香族ビスカルボジイミド等のビスカルボジイミド;ポリヘキサメチレンカルボジイミド、ポリトリメチルヘキサメチレンカルボジイミド、ポリシクロヘキシレンカルボジイミド、ポリ(メチレンビスシクロヘキシレンカルボジイミド)、ポリ(イソホロンカルボジイミド)等の脂肪族ポリカルボジイミド;ポリ(フェニレンカルボジイミド)、ポリ(ナフチレンカルボジイミド)、ポリ(トリレンカルボジイミド)、ポリ(メチルジイソプロピルフェニレンカルボジイミド)、ポリ(トリエチルフェニレンカルボジイミド)、ポリ(ジエチルフェニレンカルボジイミド)、ポリ(トリイソプロピルフェニレンカルボジイミド)、ポリ(ジイソプロピルフェニレンカルボジイミド)、ポリ(キシリレンカルボジイミド)、ポリ(テトラメチルキシリレンカルボジイミド)、ポリ(メチレンジフェニレンカルボジイミド)、ポリ[メチレンビス(メチルフェニレン)カルボジイミド]等の芳香族ポリカルボジイミド等のポリカルボジイミドが挙げられる。 Examples of the carbodiimide-based curing agent include curing agents having one or more, preferably two or more carbodiimide structures in one molecule, and examples thereof include tetramethylene-bis (t-butylcarbodiimide) and cyclohexanebis (methylene-). aliphatic biscarbodiimides such as t-butylcarbodiimide; biscarbodiimides such as aromatic biscarbodiimides such as phenylene-bis (kisilylcarbodiimide); polyhexamethylenecarbodiimide, polytrimethylhexamethylenecarbodiimide, polycyclohexylenecarbodiimide, poly (methylene). Aliphatic polycarbodiimides such as biscyclohexylene carbodiimide), poly (isophorone carbodiimide); poly (phenylene carbodiimide), poly (naphthylene carbodiimide), poly (trilen carbodiimide), poly (methyldiisopropylphenylene carbodiimide), poly (triethylphenylene) Carbodiimide), poly (diethylphenylene carbodiimide), poly (triisopropylphenylene carbodiimide), poly (diisopropylphenylene carbodiimide), poly (xylylene carbodiimide), poly (tetramethylxylylene carbodiimide), poly (methylenediphenylene carbodiimide), poly Examples thereof include polycarbodiimides such as aromatic polycarbodiimides such as [methylenebis (methylphenylene) carbodiimide].
 カルボジイミド系硬化剤の市販品としては、例えば、日清紡ケミカル社製の「カルボジライトV-02B」、「カルボジライトV-03」、「カルボジライトV-04K」、「カルボジライトV-07」及び「カルボジライトV-09」;ラインケミー社製の「スタバクゾールP」、「スタバクゾールP400」、「ハイカジル510」等が挙げられる。 Commercially available products of carbodiimide-based curing agents include, for example, "carbodilite V-02B", "carbodilite V-03", "carbodilite V-04K", "carbodilite V-07" and "carbodilite V-09" manufactured by Nisshinbo Chemical Co., Ltd. "; Examples thereof include" Stavaxol P "," Stavaxol P400 ", and" High Kazil 510 "manufactured by Rheinchemy.
 酸無水物系硬化剤としては、1分子内中に1個以上の酸無水物基を有する硬化剤が挙げられ、1分子内中に2個以上の酸無水物基を有する硬化剤が好ましい。酸無水物系硬化剤の具体例としては、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、無水トリメリット酸、無水ピロメリット酸、ベンソフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、オキシジフタル酸二無水物、3,3’-4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-C]フラン-1,3-ジオン、エチレングリコールビス(アンヒドロトリメリテート)、スチレンとマレイン酸とが共重合したスチレン・マレイン酸樹脂などのポリマー型の酸無水物などが挙げられる。酸無水物系硬化剤の市販品としては、新日本理化社製の「HNA-100」、「MH-700」、「MTA-15」、「DDSA」、「OSA」、三菱ケミカル社製の「YH-306」、「YH-307」、日立化成社製の「HN-2200」、「HN-5500」、クレイバレイ社製「EF-30」、「EF-40」「EF-60」、「EF-80」等が挙げられる。 Examples of the acid anhydride-based curing agent include a curing agent having one or more acid anhydride groups in one molecule, and a curing agent having two or more acid anhydride groups in one molecule is preferable. Specific examples of the acid anhydride-based curing agent include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrohydride phthalic acid, methylhexahydrohydride phthalic acid, methylnadic acid anhydride, and hydride methylnadic acid. Anhydride, Trialkyltetrahydrophthalic anhydride, Dodecenyl succinic anhydride, 5- (2,5-dioxotetrahydro-3-franyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride, Trianhydride Merit acid, pyromellitic anhydride, benzophenone tetracarboxylic acid dianhydride, biphenyltetracarboxylic acid dianhydride, naphthalenetetracarboxylic acid dianhydride, oxydiphthalic acid dianhydride, 3,3'-4,4'- Diphenylsulfone tetracarboxylic acid dianhydride, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydro-2,5-dioxo-3-franyl) -naphtho [1,2-C] furan-1 , 3-Dione, ethylene glycol bis (anhydrotrimeritate), polymer-type acid anhydrides such as styrene / maleic acid resin in which styrene and maleic acid are copolymerized, and the like. Commercially available acid anhydride curing agents include "HNA-100", "MH-700", "MTA-15", "DDSA", "OSA" manufactured by Shin Nihon Rika Co., Ltd., and "OSA" manufactured by Mitsubishi Chemical Corporation. "YH-306", "YH-307", "HN-2200", "HN-5500" manufactured by Hitachi Chemical, "EF-30", "EF-40", "EF-60", "EF" manufactured by Clay Valley. -80 "and the like.
 アミン系硬化剤としては、1分子内中に1個以上、好ましくは2個以上のアミノ基を有する硬化剤が挙げられ、例えば、脂肪族アミン類、ポリエーテルアミン類、脂環式アミン類、芳香族アミン類等が挙げられ、中でも、本発明の所望の効果を奏する観点から、芳香族アミン類が好ましい。アミン系硬化剤は、第1級アミン又は第2級アミンが好ましく、第1級アミンがより好ましい。アミン系硬化剤の具体例としては、4,4’-メチレンビス(2,6-ジメチルアニリン)、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、m-フェニレンジアミン、m-キシリレンジアミン、ジエチルトルエンジアミン、4,4’-ジアミノジフェニルエーテル、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシベンジジン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、3,3-ジメチル-5,5-ジエチル-4,4-ジフェニルメタンジアミン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、等が挙げられる。アミン系硬化剤は市販品を用いてもよく、例えば、セイカ社製「SEIKACURE-S」、日本化薬社製の「KAYABOND C-200S」、「KAYABOND C-100」、「カヤハードA-A」、「カヤハードA-B」、「カヤハードA-S」、三菱ケミカル社製の「エピキュアW」等が挙げられる。 Examples of the amine-based curing agent include curing agents having one or more, preferably two or more amino groups in one molecule, and examples thereof include aliphatic amines, polyether amines, and alicyclic amines. Aromatic amines and the like can be mentioned, and among them, aromatic amines are preferable from the viewpoint of achieving the desired effect of the present invention. The amine-based curing agent is preferably a primary amine or a secondary amine, more preferably a primary amine. Specific examples of the amine-based curing agent include 4,4'-methylenebis (2,6-dimethylaniline), 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, and 3,3'-diaminodiphenylsulfone. , M-phenylenediamine, m-xylylene diamine, diethyltoluenediamine, 4,4'-diaminodiphenyl ether, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4' -Diaminobiphenyl, 3,3'-dihydroxybenzidine, 2,2-bis (3-amino-4-hydroxyphenyl) propane, 3,3-dimethyl-5,5-diethyl-4,4-diphenylmethanediamine, 2, 2-Bis (4-aminophenyl) propane, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-) Aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 4,4'-bis (4-aminophenoxy) biphenyl, bis (4- (4-aminophenoxy) phenyl) sulfone, bis (4-) (3-Aminophenoxy) phenyl) sulfone, etc. may be mentioned. Commercially available products may be used as the amine-based curing agent, for example, "SEIKACURE-S" manufactured by Seika, "KAYABOND C-200S", "KAYABOND C-100", and "Kayahard A-A" manufactured by Nippon Kayaku. , "Kayahard AB", "Kayahard AS", "Epicure W" manufactured by Mitsubishi Chemical Corporation, and the like.
 ベンゾオキサジン系硬化剤の具体例としては、JFEケミカル社製の「JBZ-OP100D」、「ODA-BOZ」;昭和高分子社製の「HFB2006M」;四国化成工業社製の「P-d」、「F-a」などが挙げられる。 Specific examples of the benzoxazine-based curing agent include "JBZ-OP100D" and "ODA-BOZ" manufactured by JFE Chemical Co., Ltd .; "HFB2006M" manufactured by Showa High Polymer Co., Ltd .; "Pd" manufactured by Shikoku Chemicals Corporation. Examples include "FA".
 シアネートエステル系硬化剤としては、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート(オリゴ(3-メチレン-1,5-フェニレンシアネート))、4,4’-メチレンビス(2,6-ジメチルフェニルシアネート)、4,4’-エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2-ビス(4-シアネート)フェニルプロパン、1,1-ビス(4-シアネートフェニルメタン)、ビス(4-シアネート-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアネートフェニル-1-(メチルエチリデン))ベンゼン、ビス(4-シアネートフェニル)チオエーテル、及びビス(4-シアネートフェニル)エーテル等の2官能シアネート樹脂、フェノールノボラック及びクレゾールノボラック等から誘導される多官能シアネート樹脂、これらシアネート樹脂が一部トリアジン化したプレポリマーなどが挙げられる。シアネートエステル系硬化剤の具体例としては、ロンザジャパン社製の「PT30」及び「PT60」(いずれもフェノールノボラック型多官能シアネートエステル樹脂)、「BA230」、「BA230S75」(ビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー)等が挙げられる。 Examples of the cyanate ester-based curing agent include bisphenol A dicyanate, polyphenol cyanate (oligo (3-methylene-1,5-phenylene cyanate)), 4,4'-methylenebis (2,6-dimethylphenylcyanate), and 4, 4'-Etilidene diphenyl disyanate, hexafluorobisphenol A disyanate, 2,2-bis (4-cyanate) phenylpropane, 1,1-bis (4-cyanate phenylmethane), bis (4-cyanate-3,5-) Bifunctional cyanate resins such as dimethylphenyl) methane, 1,3-bis (4-cyanatephenyl-1- (methylethylidene)) benzene, bis (4-cyanatephenyl) thioether, and bis (4-cyanatephenyl) ether, Examples thereof include polyfunctional cyanate resins derived from phenol novolac, cresol novolak and the like, and prepolymers in which these cyanate resins are partially triazined. Specific examples of the cyanate ester-based curing agent include "PT30" and "PT60" (both are phenol novolac type polyfunctional cyanate ester resins), "BA230", and "BA230S75" (part of bisphenol A dicyanate) manufactured by Lonza Japan. Alternatively, a prepolymer in which the whole is triazined to become a trimer) and the like can be mentioned.
 チオール系硬化剤としては、例えば、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、トリス(3-メルカプトプロピル)イソシアヌレート等が挙げられる。 Examples of the thiol-based curing agent include trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptobutyrate), tris (3-mercaptopropyl) isocyanurate, and the like.
 (B’)その他の硬化剤の反応基当量は、好ましくは50g/eq.~3000g/eq.、より好ましくは100g/eq.~1000g/eq.、さらに好ましくは100g/eq.~500g/eq.、特に好ましくは100g/eq.~300g/eq.である。反応基当量は、反応基1当量あたりの硬化剤の質量である。 The reaction group equivalent of (B') and other curing agents is preferably 50 g / eq. ~ 3000 g / eq. , More preferably 100 g / eq. ~ 1000 g / eq. , More preferably 100 g / eq. ~ 500 g / eq. , Particularly preferably 100 g / eq. ~ 300 g / eq. Is. The reaction group equivalent is the mass of the curing agent per reaction group equivalent.
 樹脂組成物中の(B’)その他の硬化剤の含有量は、特に限定されるものではないが、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは15質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下、特に好ましくは3質量%以下である。樹脂組成物中の(B’)その他の硬化剤の含有量の下限は、特に限定されるものではないが、樹脂組成物中の不揮発成分を100質量%とした場合、例えば、0質量%以上、0.01質量%以上、0.1質量%以上、1質量%以上、2質量%以上等であり得る。 The content of the (B') and other curing agents in the resin composition is not particularly limited, but is preferably 15% by mass or less when the non-volatile component in the resin composition is 100% by mass. It is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 3% by mass or less. The lower limit of the content of the (B') and other curing agents in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, for example, 0% by mass or more. , 0.01% by mass or more, 0.1% by mass or more, 1% by mass or more, 2% by mass or more, and the like.
 樹脂組成物中の(B)活性エステル化合物の含有量は、樹脂組成物中の(B)活性エステル化合物と(B’)その他の硬化剤の合計を100質量%とした場合、好ましくは10質量%以上、より好ましくは30質量%以上、さらに好ましくは40質量%以上、特に好ましくは50質量%以上である。 The content of the (B) active ester compound in the resin composition is preferably 10% by mass when the total of the (B) active ester compound and the (B') other curing agent in the resin composition is 100% by mass. % Or more, more preferably 30% by mass or more, still more preferably 40% by mass or more, and particularly preferably 50% by mass or more.
<(C)エポキシ樹脂>
 本発明の樹脂組成物は、(C)エポキシ樹脂を含有する。(C)エポキシ樹脂とは、エポキシ基を有する硬化性樹脂である。
<(C) Epoxy resin>
The resin composition of the present invention contains (C) an epoxy resin. (C) The epoxy resin is a curable resin having an epoxy group.
 (C)エポキシ樹脂としては、例えば、ビキシレノール型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニル型エポキシ樹脂、線状脂肪族エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、シクロヘキサン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、トリメチロール型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、イソシアヌラート型エポキシ樹脂、フェノールフタルイミジン型エポキシ樹脂、フェノールフタレイン型エポキシ樹脂等が挙げられる。(C)エポキシ樹脂は、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of the epoxy resin include bixilenol type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, dicyclopentadiene type epoxy resin, and trisphenol type. Epoxy resin, naphthol novolac type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol type epoxy resin, naphthalene type epoxy resin, naphthol type epoxy resin, anthracene type epoxy resin, glycidylamine type epoxy resin, glycidyl ester type epoxy resin , Cresol novolak type epoxy resin, phenol aralkyl type epoxy resin, biphenyl type epoxy resin, linear aliphatic epoxy resin, epoxy resin having a butadiene structure, alicyclic epoxy resin, heterocyclic epoxy resin, spiro ring-containing epoxy resin, Cyclohexane type epoxy resin, cyclohexanedimethanol type epoxy resin, naphthylene ether type epoxy resin, trimethylol type epoxy resin, tetraphenylethane type epoxy resin, isocyanurate type epoxy resin, phenolphthalimidine type epoxy resin, phenolphthaline Examples include type epoxy resins. (C) One type of epoxy resin may be used alone, or two or more types may be used in combination.
 樹脂組成物は、(C)エポキシ樹脂として、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を含むことが好ましい。(C)エポキシ樹脂の不揮発成分100質量%に対して、1分子中に2個以上のエポキシ基を有するエポキシ樹脂の割合は、好ましくは50質量%以上、より好ましくは60質量%以上、特に好ましくは70質量%以上である。 The resin composition preferably contains, as the (C) epoxy resin, an epoxy resin having two or more epoxy groups in one molecule. (C) The ratio of the epoxy resin having two or more epoxy groups in one molecule to 100% by mass of the non-volatile component of the epoxy resin is preferably 50% by mass or more, more preferably 60% by mass or more, and particularly preferably. Is 70% by mass or more.
 エポキシ樹脂には、温度20℃で液状のエポキシ樹脂(以下「液状エポキシ樹脂」ということがある。)と、温度20℃で固体状のエポキシ樹脂(以下「固体状エポキシ樹脂」ということがある。)とがある。本発明の樹脂組成物は、エポキシ樹脂として、液状エポキシ樹脂のみを含んでいてもよく、或いは固体状エポキシ樹脂のみを含んでいてもよく、或いは液状エポキシ樹脂と固体状エポキシ樹脂とを組み合わせて含んでいてもよい。本発明の樹脂組成物におけるエポキシ樹脂は、固体状エポキシ樹脂であるか、或いは液状エポキシ樹脂と固体状エポキシ樹脂との組み合わせであることが好ましく、液状エポキシ樹脂であることがより好ましい。 The epoxy resin may be a liquid epoxy resin at a temperature of 20 ° C. (hereinafter sometimes referred to as “liquid epoxy resin”) or a solid epoxy resin at a temperature of 20 ° C. (hereinafter referred to as “solid epoxy resin”). ). The resin composition of the present invention may contain only the liquid epoxy resin or only the solid epoxy resin as the epoxy resin, or may contain the liquid epoxy resin and the solid epoxy resin in combination. You may be. The epoxy resin in the resin composition of the present invention is preferably a solid epoxy resin or a combination of a liquid epoxy resin and a solid epoxy resin, and more preferably a liquid epoxy resin.
 液状エポキシ樹脂としては、1分子中に2個以上のエポキシ基を有する液状エポキシ樹脂が好ましい。 As the liquid epoxy resin, a liquid epoxy resin having two or more epoxy groups in one molecule is preferable.
 液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、エステル骨格を有する脂環式エポキシ樹脂、シクロヘキサン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、及びブタジエン構造を有するエポキシ樹脂が好ましい。 Examples of the liquid epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AF type epoxy resin, naphthalene type epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, phenol novolac type epoxy resin, and ester skeleton. An alicyclic epoxy resin having an alicyclic epoxy resin, a cyclohexane type epoxy resin, a cyclohexanedimethanol type epoxy resin, and an epoxy resin having a butadiene structure are preferable.
 液状エポキシ樹脂の具体例としては、DIC社製の「HP4032」、「HP4032D」、「HP4032SS」(ナフタレン型エポキシ樹脂);三菱ケミカル社製の「828US」、「828EL」、「jER828EL」、「825」、「エピコート828EL」(ビスフェノールA型エポキシ樹脂);三菱ケミカル社製の「jER807」、「1750」(ビスフェノールF型エポキシ樹脂);三菱ケミカル社製の「jER152」(フェノールノボラック型エポキシ樹脂);三菱ケミカル社製の「630」、「630LSD」、「604」(グリシジルアミン型エポキシ樹脂);ADEKA社製の「ED-523T」(グリシロール型エポキシ樹脂);ADEKA社製の「EP-3950L」、「EP-3980S」(グリシジルアミン型エポキシ樹脂);ADEKA社製の「EP-4088S」(ジシクロペンタジエン型エポキシ樹脂);日鉄ケミカル&マテリアル化学社製の「ZX1059」(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品);ナガセケムテックス社製の「EX-721」(グリシジルエステル型エポキシ樹脂);ダイセル社製の「セロキサイド2021P」(エステル骨格を有する脂環式エポキシ樹脂);ダイセル社製の「PB-3600」、日本曹達社製の「JP-100」、「JP-200」(ブタジエン構造を有するエポキシ樹脂);日鉄ケミカル&マテリアル製の「ZX1658」、「ZX1658GS」(液状1,4-グリシジルシクロヘキサン型エポキシ樹脂)等が挙げられる。これらは、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Specific examples of the liquid epoxy resin include "HP4032", "HP4032D", and "HP4032SS" (naphthalene type epoxy resin) manufactured by DIC; "828US", "828EL", "jER828EL", and "825" manufactured by Mitsubishi Chemical Co., Ltd. , "Epicoat 828EL" (bisphenol A type epoxy resin); "jER807", "1750" (bisphenol F type epoxy resin) manufactured by Mitsubishi Chemical Co., Ltd .; "jER152" (phenol novolak type epoxy resin) manufactured by Mitsubishi Chemical Co., Ltd.; Mitsubishi Chemical's "630", "630LSD", "604" (glycidylamine type epoxy resin); ADEKA's "ED-523T" (glycilol type epoxy resin); ADEKA's "EP-3950L", "EP-3980S" (glycidylamine type epoxy resin); "EP-4088S" (dicyclopentadiene type epoxy resin) manufactured by ADEKA; "ZX1059" (bisphenol A type epoxy resin) manufactured by Nittetsu Chemical & Materials Chemicals Co., Ltd. Bisphenol F type epoxy resin mixture); Nagase Chemtex's "EX-721" (glycidyl ester type epoxy resin); Daicel's "Selokiside 2021P" (alicyclic epoxy resin with an ester skeleton); "PB-3600" manufactured by Nippon Soda, "JP-100", "JP-200" (epoxy resin having a butadiene structure); "ZX1658", "ZX1658GS" (liquid) manufactured by Nittetsu Chemical & Materials. 1,4-glycidylcyclohexane type epoxy resin) and the like. These may be used individually by 1 type, or may be used in combination of 2 or more types.
 固体状エポキシ樹脂としては、1分子中に3個以上のエポキシ基を有する固体状エポキシ樹脂が好ましく、1分子中に3個以上のエポキシ基を有する芳香族系の固体状エポキシ樹脂がより好ましい。 As the solid epoxy resin, a solid epoxy resin having three or more epoxy groups in one molecule is preferable, and an aromatic solid epoxy resin having three or more epoxy groups in one molecule is more preferable.
 固体状エポキシ樹脂としては、ビキシレノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン型4官能エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、フェノールフタルイミジン型エポキシ樹脂、フェノールフタレイン型エポキシ樹脂が好ましい。 Examples of the solid epoxy resin include bixilenol type epoxy resin, naphthalene type epoxy resin, naphthalene type tetrafunctional epoxy resin, naphthol novolac type epoxy resin, cresol novolac type epoxy resin, dicyclopentadiene type epoxy resin, and trisphenol type epoxy resin. Naftor type epoxy resin, biphenyl type epoxy resin, naphthylene ether type epoxy resin, anthracene type epoxy resin, bisphenol A type epoxy resin, bisphenol AF type epoxy resin, phenol aralkyl type epoxy resin, tetraphenylethane type epoxy resin, phenol phthali Midin type epoxy resin and phenol phthalein type epoxy resin are preferable.
 固体状エポキシ樹脂の具体例としては、DIC社製の「HP4032H」(ナフタレン型エポキシ樹脂);DIC社製の「HP-4700」、「HP-4710」(ナフタレン型4官能エポキシ樹脂);DIC社製の「N-690」(クレゾールノボラック型エポキシ樹脂);DIC社製の「N-695」(クレゾールノボラック型エポキシ樹脂);DIC社製の「HP-7200」、「HP-7200HH」、「HP-7200H」、「HP-7200L」(ジシクロペンタジエン型エポキシ樹脂);DIC社製の「EXA-7311」、「EXA-7311-G3」、「EXA-7311-G4」、「EXA-7311-G4S」、「HP6000」(ナフチレンエーテル型エポキシ樹脂);日本化薬社製の「EPPN-502H」(トリスフェノール型エポキシ樹脂);日本化薬社製の「NC7000L」(ナフトールノボラック型エポキシ樹脂);日本化薬社製の「NC3000H」、「NC3000」、「NC3000L」、「NC3000FH」、「NC3100」(ビフェニル型エポキシ樹脂);日鉄ケミカル&マテリアル社製の「ESN475V」、「ESN4100V」(ナフタレン型エポキシ樹脂);日鉄ケミカル&マテリアル社製の「ESN485」(ナフトール型エポキシ樹脂);日鉄ケミカル&マテリアル社製の「ESN375」(ジヒドロキシナフタレン型エポキシ樹脂);三菱ケミカル社製の「YX4000H」、「YX4000」、「YX4000HK」、「YL7890」(ビキシレノール型エポキシ樹脂);三菱ケミカル社製の「YL6121」(ビフェニル型エポキシ樹脂);三菱ケミカル社製の「YX8800」(アントラセン型エポキシ樹脂);三菱ケミカル社製の「YX7700」(フェノールアラルキル型エポキシ樹脂);大阪ガスケミカル社製の「PG-100」、「CG-500」;三菱ケミカル社製の「YL7760」(ビスフェノールAF型エポキシ樹脂);三菱ケミカル社製の「YL7800」(フルオレン型エポキシ樹脂);三菱ケミカル社製の「jER1010」(ビスフェノールA型エポキシ樹脂);三菱ケミカル社製の「jER1031S」(テトラフェニルエタン型エポキシ樹脂);日本化薬社製の「WHR991S」(フェノールフタルイミジン型エポキシ樹脂)等が挙げられる。これらは、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Specific examples of the solid epoxy resin include "HP4032H" (naphthalene type epoxy resin) manufactured by DIC; "HP-4700" and "HP-4710" (naphthalen type tetrafunctional epoxy resin) manufactured by DIC; DIC. "N-690" (cresol novolac type epoxy resin); DIC "N-695" (cresol novolac type epoxy resin); DIC "HP-7200", "HP-7200HH", "HP" -7200H "," HP-7200L "(dicyclopentadiene type epoxy resin);" EXA-7311 "," EXA-7311-G3 "," EXA-7311-G4 "," EXA-7311-G4S "manufactured by DIC. , "HP6000" (naphthylene ether type epoxy resin); "EPPN-502H" (trisphenol type epoxy resin) manufactured by Nippon Kayaku Co., Ltd .; "NC7000L" (naphthol novolac type epoxy resin) manufactured by Nihon Kayaku Co., Ltd.; "NC3000H", "NC3000", "NC3000L", "NC3000FH", "NC3100" (biphenyl type epoxy resin) manufactured by Nippon Kayaku Co., Ltd .; "ESN475V", "ESN4100V" (naphthalen type) manufactured by Nittetsu Chemical & Materials Co., Ltd. Epoxy resin); "ESN485" (naphthol type epoxy resin) manufactured by Nittetsu Chemical &Materials; "ESN375" (dihydroxynaphthalene type epoxy resin) manufactured by Nittetsu Chemical &Materials; "YX4000H" manufactured by Mitsubishi Chemical Co., Ltd., "YX4000", "YX4000HK", "YL7890" (bixilenol type epoxy resin); "YL6121" (biphenyl type epoxy resin) manufactured by Mitsubishi Chemical Co., Ltd .; "YX8800" (anthracen type epoxy resin) manufactured by Mitsubishi Chemical Co., Ltd.; Chemical's "YX7700" (phenol aralkyl type epoxy resin); Osaka Gas Chemical's "PG-100", "CG-500"; Mitsubishi Chemical's "YL7760" (bisphenol AF type epoxy resin); Mitsubishi "YL7800" manufactured by Chemical Co., Ltd. (fluorene type epoxy resin); "jER1010" manufactured by Mitsubishi Chemical Co., Ltd. (bisphenol A type epoxy resin); "jER1031S" manufactured by Mitsubishi Chemical Co., Ltd. (tetraphenylethane type epoxy resin); Examples thereof include "WHR991S" (phenol phthalimidine type epoxy resin) manufactured by the same company. These may be used individually by 1 type, or may be used in combination of 2 or more types.
 (C)エポキシ樹脂として、固体状エポキシ樹脂と液状エポキシ樹脂とを併用する場合、液状エポキシ樹脂に対する固体状エポキシ樹脂の質量比(固体状エポキシ樹脂/液状エポキシ樹脂)は、特に限定されるものではないが、好ましくは10以下、より好ましくは5以下、さらに好ましくは1以下、さらにより好ましくは0.5以下、特に好ましくは0.1以下である。 (C) When the solid epoxy resin and the liquid epoxy resin are used in combination as the epoxy resin, the mass ratio of the solid epoxy resin to the liquid epoxy resin (solid epoxy resin / liquid epoxy resin) is not particularly limited. However, it is preferably 10 or less, more preferably 5 or less, still more preferably 1 or less, still more preferably 0.5 or less, and particularly preferably 0.1 or less.
 (C)エポキシ樹脂のエポキシ当量は、好ましくは50g/eq.~5,000g/eq.、より好ましくは60g/eq.~2,000g/eq.、さらに好ましくは70g/eq.~1,000g/eq.、さらにより好ましくは80g/eq.~500g/eq.である。エポキシ当量は、エポキシ基1当量あたりの樹脂の質量である。このエポキシ当量は、JIS K7236に従って測定することができる。 (C) The epoxy equivalent of the epoxy resin is preferably 50 g / eq. ~ 5,000 g / eq. , More preferably 60 g / eq. ~ 2,000 g / eq. , More preferably 70 g / eq. ~ 1,000 g / eq. , Even more preferably 80 g / eq. ~ 500 g / eq. Is. Epoxy equivalent is the mass of resin per equivalent of epoxy group. This epoxy equivalent can be measured according to JIS K7236.
 (C)エポキシ樹脂の重量平均分子量(Mw)は、好ましくは100~5,000、より好ましくは250~3,000、さらに好ましくは400~1,500である。樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、ポリスチレン換算の値として測定できる。 (C) The weight average molecular weight (Mw) of the epoxy resin is preferably 100 to 5,000, more preferably 250 to 3,000, and even more preferably 400 to 1,500. The weight average molecular weight of the resin can be measured as a polystyrene-equivalent value by a gel permeation chromatography (GPC) method.
 樹脂組成物中の(C)エポキシ樹脂の含有量は、特に限定されるものではないが、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは60質量%以下、より好ましくは40質量%以下、さらに好ましくは30質量%以下、さらにより好ましくは20質量%以下、特に好ましくは10質量%以下である。樹脂組成物中の(C)エポキシ樹脂の含有量の下限は、特に限定されるものではないが、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、さらに好ましくは1質量%以上、さらにより好ましくは3質量%以上、特に好ましくは5質量%以上である。 The content of the (C) epoxy resin in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, it is preferably 60% by mass or less, more preferably 40. It is 0% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less, and particularly preferably 10% by mass or less. The lower limit of the content of the (C) epoxy resin in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, it is preferably 0.1% by mass or more. It is more preferably 0.5% by mass or more, further preferably 1% by mass or more, still more preferably 3% by mass or more, and particularly preferably 5% by mass or more.
 樹脂組成物中の(C)エポキシ樹脂に対する(A)特定マレイミド化合物の質量比((A)成分/(C)成分)は、好ましくは0.1以上、より好ましくは0.5以上、特に好ましくは0.8以上である。樹脂組成物中の(C)エポキシ樹脂に対する(A)特定マレイミド化合物の質量比((A)成分/(C)成分)の上限は、好ましくは10以下、より好ましくは3以下、特に好ましくは1.5以下である。 The mass ratio ((A) component / (C) component) of the (A) specific maleimide compound to the (C) epoxy resin in the resin composition is preferably 0.1 or more, more preferably 0.5 or more, and particularly preferably. Is 0.8 or more. The upper limit of the mass ratio ((A) component / (C) component) of the (A) specific maleimide compound to the (C) epoxy resin in the resin composition is preferably 10 or less, more preferably 3 or less, and particularly preferably 1. It is less than 5.5.
<(D)無機充填材>
 本発明の樹脂組成物は、任意成分として(D)無機充填材を含む場合がある。(D)無機充填材は、粒子の状態で樹脂組成物に含まれる。
<(D) Inorganic filler>
The resin composition of the present invention may contain (D) an inorganic filler as an optional component. (D) The inorganic filler is contained in the resin composition in the form of particles.
 (D)無機充填材の材料としては、無機化合物を用いる。(D)無機充填材の材料としては、例えば、シリカ、アルミナ、アルミノシリケート、ガラス、コーディエライト、シリコン酸化物、硫酸バリウム、炭酸バリウム、タルク、クレー、雲母粉、酸化亜鉛、ハイドロタルサイト、ベーマイト、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化マンガン、ホウ酸アルミニウム、炭酸ストロンチウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、酸化ジルコニウム、チタン酸バリウム、チタン酸ジルコン酸バリウム、ジルコン酸バリウム、ジルコン酸カルシウム、リン酸ジルコニウム、及びリン酸タングステン酸ジルコニウム等が挙げられる。これらの中でも、シリカ又はアルミノシリケートが好適であり、シリカが特に好適である。シリカとしては、例えば、無定形シリカ、溶融シリカ、結晶シリカ、合成シリカ、中空シリカ等が挙げられる。また、シリカとしては球形シリカが好ましい。(D)無機充填材は、1種類単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。 (D) An inorganic compound is used as the material of the inorganic filler. Examples of the material of the inorganic filler (D) include silica, alumina, aluminosilicate, glass, cordierite, silicon oxide, barium sulfate, barium carbonate, talc, clay, mica powder, zinc oxide, and hydrotalcite. Boehmite, Aluminum Hydroxide, Magnesium Hydroxide, Calcium Carbonate, Magnesium Carbonide, Magnesium Oxide, Boron Nitride, Aluminum Nitride, Manganese Nitride, Aluminum Borate, Strontium Carbonate, Strontium Titanium, Calcium Titanium, Magnesium Titanium, Bismus Titanium , Titanium oxide, zirconium oxide, barium titanate, barium zirconate titanate, barium zirconate, calcium zirconate, zirconium phosphate, zirconium tungstate phosphate and the like. Among these, silica or aluminosilicate is preferable, and silica is particularly preferable. Examples of silica include amorphous silica, fused silica, crystalline silica, synthetic silica, hollow silica and the like. Further, as silica, spherical silica is preferable. (D) The inorganic filler may be used alone or in combination of two or more at any ratio.
 (D)無機充填材の市販品としては、例えば、電化化学工業社製の「UFP-30」;日鉄ケミカル&マテリアル社製の「SP60-05」、「SP507-05」;アドマテックス社製の「YC100C」、「YA050C」、「YA050C-MJE」、「YA010C」;デンカ社製の「UFP-30」;トクヤマ社製の「シルフィルNSS-3N」、「シルフィルNSS-4N」、「シルフィルNSS-5N」;アドマテックス社製の「SC2500SQ」、「SO-C4」、「SO-C2」、「SO-C1」;デンカ社製の「DAW-03」、「FB-105FD」;日揮触媒化成社製の「BA-S」;太平洋セメント社製「MG-005」などが挙げられる。 (D) Commercially available inorganic fillers include, for example, "UFP-30" manufactured by Denka Kagaku Kogyo Co., Ltd .; "SP60-05" and "SP507-05" manufactured by Nittetsu Chemical & Materials Co., Ltd .; manufactured by Admatex Co., Ltd. "YC100C", "YA050C", "YA050C-MJE", "YA010C"; "UFP-30" manufactured by Denka; "Silfil NSS-3N", "Silfil NSS-4N", "Silfil NSS" manufactured by Tokuyama -5N ”; Admatex's“ SC2500SQ ”,“ SO-C4 ”,“ SO-C2 ”,“ SO-C1 ”; Denka's“ DAW-03 ”,“ FB-105FD ”; JGC Catalysts and Chemicals "BA-S" manufactured by Taiheiyo Cement Co., Ltd .; "MG-005" manufactured by Taiheiyo Cement Co., Ltd. may be mentioned.
 (D)無機充填材の平均粒径は、特に限定されるものではないが、好ましくは10μm以下、より好ましくは5μm以下、さらに好ましくは2μm以下、さらにより好ましくは1μm以下、特に好ましくは0.7μm以下である。(D)無機充填材の平均粒径の下限は、特に限定されるものではないが、好ましくは0.01μm以上、より好ましくは0.05μm以上、さらに好ましくは0.1μm以上、特に好ましくは0.2μm以上である。(D)無機充填材の平均粒径は、ミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的には、レーザー回折散乱式粒径分布測定装置により、無機充填材の粒径分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材100mg、メチルエチルケトン10gをバイアル瓶に秤取り、超音波にて10分間分散させたものを使用することができる。測定サンプルを、レーザー回折式粒径分布測定装置を使用して、使用光源波長を青色及び赤色とし、フローセル方式で無機充填材の体積基準の粒径分布を測定し、得られた粒径分布からメディアン径として平均粒径を算出した。レーザー回折式粒径分布測定装置としては、例えば堀場製作所社製「LA-960」等が挙げられる。 (D) The average particle size of the inorganic filler is not particularly limited, but is preferably 10 μm or less, more preferably 5 μm or less, still more preferably 2 μm or less, still more preferably 1 μm or less, and particularly preferably 0. It is 7 μm or less. (D) The lower limit of the average particle size of the inorganic filler is not particularly limited, but is preferably 0.01 μm or more, more preferably 0.05 μm or more, still more preferably 0.1 μm or more, and particularly preferably 0. .2 μm or more. (D) The average particle size of the inorganic filler can be measured by a laser diffraction / scattering method based on the Mie scattering theory. Specifically, it can be measured by creating a particle size distribution of the inorganic filler on a volume basis by a laser diffraction / scattering type particle size distribution measuring device and using the median diameter as the average particle size. As the measurement sample, 100 mg of an inorganic filler and 10 g of methyl ethyl ketone can be weighed in a vial and dispersed by ultrasonic waves for 10 minutes. The measurement sample was measured using a laser diffraction type particle size distribution measuring device, the light source wavelengths used were blue and red, and the volume-based particle size distribution of the inorganic filler was measured by the flow cell method. The average particle size was calculated as the median diameter. Examples of the laser diffraction type particle size distribution measuring device include "LA-960" manufactured by HORIBA, Ltd.
 (D)無機充填材の比表面積は、特に限定されるものではないが、好ましくは0.1m/g以上、より好ましくは0.5m/g以上、さらに好ましくは1m/g以上、特に好ましくは3m/g以上である。(D)無機充填材の比表面積の上限は、特に限定されるものではないが、好ましくは100m/g以下、より好ましくは70m/g以下、さらに好ましくは50m/g以下、特に好ましくは40m/g以下である。無機充填材の比表面積は、BET法に従って、比表面積測定装置(マウンテック社製Macsorb HM-1210)を使用して試料表面に窒素ガスを吸着させ、BET多点法を用いて比表面積を算出することで得られる。 (D) The specific surface area of the inorganic filler is not particularly limited, but is preferably 0.1 m 2 / g or more, more preferably 0.5 m 2 / g or more, still more preferably 1 m 2 / g or more. Particularly preferably, it is 3 m 2 / g or more. (D) The upper limit of the specific surface area of the inorganic filler is not particularly limited, but is preferably 100 m 2 / g or less, more preferably 70 m 2 / g or less, still more preferably 50 m 2 / g or less, and particularly preferably. Is 40 m 2 / g or less. For the specific surface area of the inorganic filler, nitrogen gas is adsorbed on the sample surface using a specific surface area measuring device (Maxorb HM-1210 manufactured by Mountech) according to the BET method, and the specific surface area is calculated using the BET multipoint method. It can be obtained by.
 (D)無機充填材は、空孔率0体積%の非中空無機充填材(好ましくは非中空シリカ、非中空アルミノシリケート)であってもよく、空孔率0体積%超の中空無機充填材(好ましくは中空シリカ、中空アルミノシリケート)であってもよく、両方を含んでいてもよい。(D)無機充填材は、誘電率をより低く抑える観点から、中空無機充填材(好ましくは中空シリカ、中空アルミノシリケート)のみを含むか、或いは非中空無機充填材(好ましくは非中空シリカ、非中空アルミノシリケート)と中空無機充填材(好ましくは中空シリカ、中空アルミノシリケート)の両方を含むことが好ましい。中空無機充填材の空孔率は、90体積%以下であることが好ましく、85積%以下であることがより好ましい。(D)無機充填材の空孔率の下限は、特に限定されるものではないが、例えば、0体積%超、1体積%以上、5体積%以上、10体積%以上、20体積%以上、30体積%以上等とし得る。無機充填材の空孔率P(体積%)は、粒子の外面を基準とした粒子全体の体積に対する粒子内部に1個又は2個以上存在する空孔の合計体積の体積基準割合(空孔の合計体積/粒子の体積)として定義され、例えば、無機充填材の実際の密度の測定値D(g/cm)、及び無機充填材を形成する材料の物質密度の理論値D(g/cm)を用いて、下記式(I)により算出される。 (D) The inorganic filler may be a non-hollow inorganic filler having a porosity of 0% by volume (preferably non-hollow silica or non-hollow aluminosilicate), and a hollow inorganic filler having a porosity of more than 0% by volume. It may be (preferably hollow silica, hollow aluminosilicate) or may contain both. (D) The inorganic filler contains only a hollow inorganic filler (preferably hollow silica, hollow aluminosilicate) or a non-hollow inorganic filler (preferably non-hollow silica, non-hollow silica) from the viewpoint of suppressing the dielectric constant to be lower. Hollow aluminosilicate) and hollow inorganic filler (preferably hollow silica, hollow aluminosilicate) are both included. The porosity of the hollow inorganic filler is preferably 90% by volume or less, and more preferably 85 product% or less. (D) The lower limit of the porosity of the inorganic filler is not particularly limited, but for example, more than 0% by volume, 1% by volume or more, 5% by volume or more, 10% by volume or more, 20% by volume or more, It can be 30% by volume or more. The pore ratio P (volume%) of the inorganic filler is the volume-based ratio of the total volume of one or two or more pores existing inside the particle to the total volume of the particle with respect to the outer surface of the particle (of the pores). Defined as total volume / volume of particles), for example, a measured value of the actual density of the inorganic filler DM (g / cm 3 ), and a theoretical value of the material density of the material forming the inorganic filler DT (g). It is calculated by the following formula (I) using / cm 3 ).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 無機充填材の実際の密度は、例えば、真密度測定装置を用いて測定することができる。真密度測定装置としては、例えば、QUANTACHROME社製のULTRAPYCNOMETER1000等が挙げられる。測定ガスとしては、例えば、窒素を使用する。 The actual density of the inorganic filler can be measured, for example, using a true density measuring device. Examples of the true density measuring device include ULTRAPYCNOMETER1000 manufactured by QUANTACHROME. For example, nitrogen is used as the measurement gas.
 (D)無機充填材は、適切な表面処理剤で表面処理されていることが好ましい。表面処理されることにより、(D)無機充填材の耐湿性及び分散性を高めることができる。表面処理剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニル系シランカップリング剤;2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシ系シランカップリング剤;p-スチリルトリメトキシシラン等のスチリル系シランカップリング剤;3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等のメタクリル系シランカップリング剤;3-アクリロキシプロピルトリメトキシシラン等のアクリル系シランカップリング剤;N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-8-アミノオクチルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン等のアミノ系シランカップリング剤;トリス-(トリメトキシシリルプロピル)イソシアヌレート等のイソシアヌレート系シランカップリング剤;3-ウレイドプロピルトリアルコキシシラン等の等のウレイド系シランカップリング剤;3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等のメルカプト系シランカップリング剤;3-イソシアネートプロピルトリエトキシシラン等のイソシアネート系シランカップリング剤;3-トリメトキシシリルプロピルコハク酸無水物等の酸無水物系シランカップリング剤;等のシランカップリング剤;メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、1,6-ビス(トリメトキシシリル)ヘキサン、トリフルオロプロピルトリメトキシシラン等のアルキルアルコキシシラン化合物等が挙げられる。また、表面処理剤は、1種単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。 (D) The inorganic filler is preferably surface-treated with an appropriate surface treatment agent. By surface treatment, (D) the moisture resistance and dispersibility of the inorganic filler can be enhanced. Examples of the surface treatment agent include vinyl-based silane coupling agents such as vinyltrimethoxysilane and vinyltriethoxysilane; 2- (3,4-epyloxycyclohexyl) ethyltrimethoxysilane and 3-glycidoxypropylmethyldimethoxysilane. , 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane and other epoxy-based silane coupling agents; p-styryltrimethoxysilane and other styryl-based Silane coupling agents; methacrylic silane coupling agents such as 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane; Acrylic silane coupling agents such as 3-acryloxypropyltrimethoxysilane; N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane , 3-Aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N -Amino-based silane coupling agents such as phenyl-8-aminooctyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane; tris- (trimethoxysilylpropyl) isocyanurate, etc. Isocyanurate-based silane coupling agent; ureido-based silane coupling agent such as 3-ureidopropyltrialkoxysilane; mercapto-based silane coupling agent such as 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethoxysilane. An isocyanate-based silane coupling agent such as 3-isocyanatepropyltriethoxysilane; an acid anhydride-based silane coupling agent such as 3-trimethoxysilylpropylsuccinic anhydride; a silane coupling agent such as; methyltrimethoxysilane, Dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, hexyltrimeth Examples thereof include alkylalkoxysilane compounds such as xysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, 1,6-bis (trimethoxysilyl) hexane, and trifluoropropyltrimethoxysilane. Further, the surface treatment agent may be used alone or in combination of two or more at any ratio.
 表面処理剤の市販品としては、例えば、信越化学工業社製の「KBM-1003」、「KBE-1003」(ビニル系シランカップリング剤);「KBM-303」、「KBM-402」、「KBM-403」、「KBE-402」、「KBE-403」(エポキシ系シランカップリング剤);「KBM-1403」(スチリル系シランカップリング剤);「KBM-502」、「KBM-503」、「KBE-502」、「KBE-503」(メタクリル系シランカップリング剤);「KBM-5103」(アクリル系シランカップリング剤);「KBM-602」、「KBM-603」、「KBM-903」、「KBE-903」、「KBE-9103P」、「KBM-573」、「KBM-575」(アミノ系シランカップリング剤);「KBM-9659」(イソシアヌレート系シランカップリング剤);「KBE-585」(ウレイド系シランカップリング剤);「KBM-802」、「KBM-803」(メルカプト系シランカップリング剤);「KBE-9007N」(イソシアネート系シランカップリング剤);「X-12-967C」(酸無水物系シランカップリング剤);「KBM-13」、「KBM-22」、「KBM-103」、「KBE-13」、「KBE-22」、「KBE-103」、「KBM-3033」、「KBE-3033」、「KBM-3063」、「KBE-3063」、「KBE-3083」、「KBM-3103C」、「KBM-3066」、「KBM-7103」(アルキルアルコキシシラン化合物)等が挙げられる。 Examples of commercially available surface treatment agents include "KBM-1003" and "KBE-1003" (vinyl-based silane coupling agents) manufactured by Shin-Etsu Chemical Industry Co., Ltd .; "KBM-303", "KBM-402", and "KBM-402". KBM-403 "," KBE-402 "," KBE-403 "(epoxy-based silane coupling agent);" KBM-1403 "(styryl-based silane coupling agent);" KBM-502 "," KBM-503 " , "KBE-502", "KBE-503" (methacrylic silane coupling agent); "KBM-5103" (acrylic silane coupling agent); "KBM-602", "KBM-603", "KBM-" 903 ”,“ KBE-903 ”,“ KBE-9103P ”,“ KBM-573 ”,“ KBM-575 ”(amino silane coupling agent);“ KBM-9569 ”(isocyanurate-based silane coupling agent); "KBE-585" (ureido-based silane coupling agent); "KBM-802", "KBM-803" (mercapto-based silane coupling agent); "KBE-9007N" (isocyanate-based silane coupling agent); "X" -12-967C "(acid anhydride-based silane coupling agent);" KBM-13 "," KBM-22 "," KBM-103 "," KBE-13 "," KBE-22 "," KBE-103 " , "KBM-3033", "KBE-3033", "KBM-3063", "KBE-3063", "KBE-3083", "KBM-3103C", "KBM-3066", "KBM-7103" ( Alkylalkoxysilane compound) and the like.
 表面処理剤による表面処理の程度は、無機充填材の分散性向上の観点から、所定の範囲に収まることが好ましい。具体的には、無機充填材100質量%は、0.2質量%~5質量%の表面処理剤で表面処理されていることが好ましく、0.2質量%~3質量%で表面処理されていることがより好ましく、0.3質量%~2質量%で表面処理されていることがさらに好ましい。 The degree of surface treatment with the surface treatment agent is preferably within a predetermined range from the viewpoint of improving the dispersibility of the inorganic filler. Specifically, 100% by mass of the inorganic filler is preferably surface-treated with 0.2% by mass to 5% by mass of a surface treatment agent, and is surface-treated with 0.2% by mass to 3% by mass. It is more preferable that the surface is treated with 0.3% by mass to 2% by mass.
 表面処理剤による表面処理の程度は、無機充填材の単位表面積当たりのカーボン量によって評価することができる。無機充填材の単位表面積当たりのカーボン量は、無機充填材の分散性向上の観点から、0.02mg/m以上が好ましく、0.1mg/m以上がより好ましく、0.2mg/m以上がさらに好ましい。一方、樹脂組成物の最低溶融粘度やシート形態での最低溶融粘度の上昇を防止する観点から、1.0mg/m以下が好ましく、0.8mg/m以下がより好ましく、0.5mg/m以下がさらに好ましい。 The degree of surface treatment with the surface treatment agent can be evaluated by the amount of carbon per unit surface area of the inorganic filler. The amount of carbon per unit surface area of the inorganic filler is preferably 0.02 mg / m 2 or more, more preferably 0.1 mg / m 2 or more, and 0.2 mg / m 2 from the viewpoint of improving the dispersibility of the inorganic filler. The above is more preferable. On the other hand, from the viewpoint of preventing an increase in the minimum melt viscosity of the resin composition and the minimum melt viscosity in the sheet form, 1.0 mg / m 2 or less is preferable, 0.8 mg / m 2 or less is more preferable, and 0.5 mg / m / More preferably, m 2 or less.
 (D)無機充填材の単位表面積当たりのカーボン量は、表面処理後の無機充填材を溶剤(例えば、メチルエチルケトン(MEK))により洗浄処理した後に測定することができる。具体的には、溶剤として十分な量のMEKを表面処理剤で表面処理された無機充填材に加えて、25℃で5分間超音波洗浄する。上澄液を除去し、固形分を乾燥させた後、カーボン分析計を用いて無機充填材の単位表面積当たりのカーボン量を測定することができる。カーボン分析計としては、堀場製作所社製「EMIA-320V」等を使用することができる。 (D) The amount of carbon per unit surface area of the inorganic filler can be measured after the surface-treated inorganic filler is washed with a solvent (for example, methyl ethyl ketone (MEK)). Specifically, a sufficient amount of MEK as a solvent is added to the inorganic filler surface-treated with a surface treatment agent, and ultrasonic cleaning is performed at 25 ° C. for 5 minutes. After removing the supernatant and drying the solid content, the amount of carbon per unit surface area of the inorganic filler can be measured using a carbon analyzer. As the carbon analyzer, "EMIA-320V" manufactured by HORIBA, Ltd. or the like can be used.
 樹脂組成物中の(D)無機充填材の含有量は、特に限定されるものではないが、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは90質量%以下、より好ましくは85質量%以下、さらに好ましくは80質量%以下、特に好ましくは75質量%以下であり得る。樹脂組成物中の(D)無機充填材の含有量の下限は、特に限定されるものではないが、樹脂組成物中の不揮発成分を100質量%とした場合、例えば0質量%以上、1質量%以上等であり得、好ましくは10質量%以上、より好ましくは20質量%以上、さらに好ましくは30質量%以上、さらにより好ましくは40質量%以上、特に好ましくは50質量%以上であり得る。 The content of the (D) inorganic filler in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, it is preferably 90% by mass or less, more preferably 90% by mass or less. It can be 85% by mass or less, more preferably 80% by mass or less, and particularly preferably 75% by mass or less. The lower limit of the content of the (D) inorganic filler in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, for example, 0% by mass or more and 1% by mass. % Or more, preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more, still more preferably 40% by mass or more, and particularly preferably 50% by mass or more.
 樹脂組成物中の(D)無機充填材に対する(A)特定マレイミド化合物の質量比((A)成分/(D)成分)は、好ましくは0.01以上、より好ましくは0.05以上、特に好ましくは0.1以上である。樹脂組成物中の(D)無機充填材に対する(A)特定マレイミド化合物の質量比((A)成分/(D)成分)の上限は、好ましくは1以下、より好ましくは0.5以下、特に好ましくは0.3以下である。 The mass ratio ((A) component / (D) component) of the (A) specific maleimide compound to the (D) inorganic filler in the resin composition is preferably 0.01 or more, more preferably 0.05 or more, particularly. It is preferably 0.1 or more. The upper limit of the mass ratio ((A) component / (D) component) of the (A) specific maleimide compound to the (D) inorganic filler in the resin composition is preferably 1 or less, more preferably 0.5 or less, particularly. It is preferably 0.3 or less.
<(E)硬化促進剤>
 本発明の樹脂組成物は、任意成分として(E)硬化促進剤を含む場合がある。(E)硬化促進剤は、(C)エポキシ樹脂の硬化を促進させる機能を有する。
<(E) Curing accelerator>
The resin composition of the present invention may contain (E) a curing accelerator as an optional component. The (E) curing accelerator has a function of accelerating the curing of the (C) epoxy resin.
 硬化促進剤としては、例えば、リン系硬化促進剤、ウレア系硬化促進剤、グアニジン系硬化促進剤、イミダゾール系硬化促進剤、金属系硬化促進剤、アミン系硬化促進剤等が挙げられる。中でも、架橋性向上の観点から、イミダゾール系硬化促進剤が好ましい。(E)硬化促進剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the curing accelerator include phosphorus-based curing accelerators, urea-based curing accelerators, guanidine-based curing accelerators, imidazole-based curing accelerators, metal-based curing accelerators, amine-based curing accelerators, and the like. Of these, an imidazole-based curing accelerator is preferable from the viewpoint of improving the crosslinkability. (E) The curing accelerator may be used alone or in combination of two or more.
 リン系硬化促進剤としては、例えば、テトラブチルホスホニウムブロマイド、テトラブチルホスホニウムクロライド、テトラブチルホスホニウムアセテート、テトラブチルホスホニウムデカノエート、テトラブチルホスホニウムラウレート、ビス(テトラブチルホスホニウム)ピロメリテート、テトラブチルホスホニウムハイドロジェンヘキサヒドロフタレート、テトラブチルホスホニウム2,6-ビス[(2-ヒドロキシ-5-メチルフェニル)メチル]-4-メチルフェノラート、ジ-tert-ブチルジメチルホスホニウムテトラフェニルボレート等の脂肪族ホスホニウム塩;メチルトリフェニルホスホニウムブロマイド、エチルトリフェニルホスホニウムブロマイド、プロピルトリフェニルホスホニウムブロマイド、ブチルトリフェニルホスホニウムブロマイド、ベンジルトリフェニルホスホニウムクロライド、テトラフェニルホスホニウムブロマイド、p-トリルトリフェニルホスホニウムテトラ-p-トリルボレート、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラp-トリルボレート、トリフェニルエチルホスホニウムテトラフェニルボレート、トリス(3-メチルフェニル)エチルホスホニウムテトラフェニルボレート、トリス(2-メトキシフェニル)エチルホスホニウムテトラフェニルボレート、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート等の芳香族ホスホニウム塩;トリフェニルホスフィン・トリフェニルボラン等の芳香族ホスフィン・ボラン複合体;トリフェニルホスフィン・p-ベンゾキノン付加反応物等の芳香族ホスフィン・キノン付加反応物;トリブチルホスフィン、トリ-tert-ブチルホスフィン、トリオクチルホスフィン、ジ-tert-ブチル(2-ブテニル)ホスフィン、ジ-tert-ブチル(3-メチル-2-ブテニル)ホスフィン、トリシクロヘキシルホスフィン等の脂肪族ホスフィン;ジブチルフェニルホスフィン、ジ-tert-ブチルフェニルホスフィン、メチルジフェニルホスフィン、エチルジフェニルホスフィン、ブチルジフェニルホスフィン、ジフェニルシクロヘキシルホスフィン、トリフェニルホスフィン、トリ-o-トリルホスフィン、トリ-m-トリルホスフィン、トリ-p-トリルホスフィン、トリス(4-エチルフェニル)ホスフィン、トリス(4-プロピルフェニル)ホスフィン、トリス(4-イソプロピルフェニル)ホスフィン、トリス(4-ブチルフェニル)ホスフィン、トリス(4-tert-ブチルフェニル)ホスフィン、トリス(2,4-ジメチルフェニル)ホスフィン、トリス(2,5-ジメチルフェニル)ホスフィン、トリス(2,6-ジメチルフェニル)ホスフィン、トリス(3,5-ジメチルフェニル)ホスフィン、トリス(2,4,6-トリメチルフェニル)ホスフィン、トリス(2,6-ジメチル-4-エトキシフェニル)ホスフィン、トリス(2-メトキシフェニル)ホスフィン、トリス(4-メトキシフェニル)ホスフィン、トリス(4-エトキシフェニル)ホスフィン、トリス(4-tert-ブトキシフェニル)ホスフィン、ジフェニル-2-ピリジルホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,2-ビス(ジフェニルホスフィノ)アセチレン、2,2’-ビス(ジフェニルホスフィノ)ジフェニルエーテル等の芳香族ホスフィン等が挙げられる。 Examples of the phosphorus-based curing accelerator include tetrabutylphosphonium bromide, tetrabutylphosphonium chloride, tetrabutylphosphonium acetate, tetrabutylphosphonium decanoate, tetrabutylphosphonium laurate, bis (tetrabutylphosphonium) pyromeritate, and tetrabutylphosphonium hydro. Alitriphenylphosphine salts such as genhexahydrophthalate, tetrabutylphosphonium 2,6-bis [(2-hydroxy-5-methylphenyl) methyl] -4-methylphenorate, di-tert-butyldimethylphosphonium tetraphenylphosphine; Methyltriphenylphosphonium bromide, ethyltriphenylphosphonium bromide, propyltriphenylphosphonium bromide, butyltriphenylphosphonium bromide, benzyltriphenylphosphonium chloride, tetraphenylphosphonium bromide, p-triltriphenylphosphoniumtetra-p-trilborate, tetraphenyl Triphenylphosphinephosphine, tetraphenylphosphinetetrap-trilborate, triphenylethylphosphoniumtetraphenylborate, tris (3-methylphenyl) ethylphosphonium tetraphenylborate, tris (2-methoxyphenyl) ethylphosphonium tetraphenylborate, (4) -Arophenylphosphine salts such as triphenylphosphine thiosianate, tetraphenylphosphine thiosianate, butyl triphenyl phosphonium thiosianate; aromatic phosphine-boran complex such as triphenylphosphine / triphenylboran; triphenylphosphine / p-benzoquinone. Arophenylphosphine / quinone addition reactants such as addition reactants; tributylphosphine, tri-tert-butylphosphine, trioctylphosphine, di-tert-butyl (2-butenyl) phosphine, di-tert-butyl (3-methyl-). 2-Butenyl) phosphine, tricyclophenylphosphine and other aliphatic phosphine; dibutylphenylphosphine, di-tert-butylphenylphosphine, methyldiphenylphosphine, ethyldiphenylphosphine, butyldiphenylphosphine, diphenylcyclophosphine, triphenylphosphine, tri-o -Triphenylphosphine, tri-m-triphenylphosphine, tri-p-tri Luphosphine, Tris (4-ethylphenyl) phosphine, Tris (4-propylphenyl) phosphine, Tris (4-isopropylphenyl) phosphine, Tris (4-butylphenyl) phosphine, Tris (4-tert-butylphenyl) phosphine, Tris (2,4-dimethylphenyl) phosphine, tris (2,5-dimethylphenyl) phosphine, tris (2,6-dimethylphenyl) phosphine, tris (3,5-dimethylphenyl) phosphine, tris (2,4) 6-trimethylphenyl) phosphine, tris (2,6-dimethyl-4-ethoxyphenyl) phosphine, tris (2-methoxyphenyl) phosphine, tris (4-methoxyphenyl) phosphine, tris (4-ethoxyphenyl) phosphine, tris (4-tert-Butoxyphenyl) phosphine, diphenyl-2-pyridylphosphine, 1,2-bis (diphenylphosphine) ethane, 1,3-bis (diphenylphosphine) propane, 1,4-bis (diphenylphosphine) ) Butane, 1,2-bis (diphenylphosphine) acetylene, 2,2'-bis (diphenylphosphine), aromatic phosphine such as diphenyl ether and the like can be mentioned.
 ウレア系硬化促進剤としては、例えば、1,1-ジメチル尿素;1,1,3-トリメチル尿素、3-エチル-1,1-ジメチル尿素、3-シクロヘキシル-1,1-ジメチル尿素、3-シクロオクチル-1,1-ジメチル尿素等の脂肪族ジメチルウレア;3-フェニル-1,1-ジメチル尿素、3-(4-クロロフェニル)-1,1-ジメチル尿素、3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素、3-(3-クロロ-4-メチルフェニル)-1,1-ジメチル尿素、3-(2-メチルフェニル)-1,1-ジメチル尿素、3-(4-メチルフェニル)-1,1-ジメチル尿素、3-(3,4-ジメチルフェニル)-1,1-ジメチル尿素、3-(4-イソプロピルフェニル)-1,1-ジメチル尿素、3-(4-メトキシフェニル)-1,1-ジメチル尿素、3-(4-ニトロフェニル)-1,1-ジメチル尿素、3-[4-(4-メトキシフェノキシ)フェニル]-1,1-ジメチル尿素、3-[4-(4-クロロフェノキシ)フェニル]-1,1-ジメチル尿素、3-[3-(トリフルオロメチル)フェニル]-1,1-ジメチル尿素、N,N-(1,4-フェニレン)ビス(N’,N’-ジメチル尿素)、N,N-(4-メチル-1,3-フェニレン)ビス(N’,N’-ジメチル尿素)〔トルエンビスジメチルウレア〕等の芳香族ジメチルウレア等が挙げられる。 Examples of the urea-based curing accelerator include 1,1-dimethylurea; 1,1,3-trimethylurea, 3-ethyl-1,1-dimethylurea, 3-cyclohexyl-1,1-dimethylurea, 3-. Aliphatic dimethylurea such as cyclooctyl-1,1-dimethylurea; 3-phenyl-1,1-dimethylurea, 3- (4-chlorophenyl) -1,1-dimethylurea, 3- (3,4-dichlorophenyl) )-1,1-Dimethylurea, 3- (3-chloro-4-methylphenyl) -1,1-dimethylurea, 3- (2-methylphenyl) -1,1-dimethylurea, 3- (4-) Methylphenyl) -1,1-dimethylurea, 3- (3,4-dimethylphenyl) -1,1-dimethylurea, 3- (4-isopropylphenyl) -1,1-dimethylurea, 3- (4-) Methoxyphenyl) -1,1-dimethylurea, 3- (4-nitrophenyl) -1,1-dimethylurea, 3- [4- (4-methoxyphenoxy) phenyl] -1,1-dimethylurea, 3- [4- (4-Chlorophenoxy) phenyl] -1,1-dimethylurea, 3- [3- (trifluoromethyl) phenyl] -1,1-dimethylurea, N, N- (1,4-phenylene) Aromatic dimethylurea such as bis (N', N'-dimethylurea), N, N- (4-methyl-1,3-phenylene) bis (N', N'-dimethylurea) [toluene bisdimethylurea] And so on.
 グアニジン系硬化促進剤としては、例えば、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド等が挙げられる。 Examples of the guanidine-based curing accelerator include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1- (o-tolyl) guanidine, dimethylguanidine, diphenylguanidine, and trimethylguanidine. Tetramethylguanidine, pentamethylguanidine, 1,5,7-triazabicyclo [4.4.0] deca-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] Deca-5-ene, 1-methylbiguanide, 1-ethylbiguanide, 1-n-butylbiguanide, 1-n-octadecylbiguanide, 1,1-dimethylbiguanide, 1,1-diethylbiguanide, 1-cyclohexylbiguanide, 1 -Allyl biguanide, 1-phenylbiguanide, 1- (o-tolyl) biguanide and the like can be mentioned.
 イミダゾール系硬化促進剤としては、例えば、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン、2-フェニルイミダゾリン等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられる。 Examples of the imidazole-based curing accelerator include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, and the like. 2-Ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-Cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl- 2-Phenylimidazolium trimellitate, 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino-6- [2'-undecyl Imidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4'-methylimidazolyl- (1')]-ethyl-s-triazine, 2,4- Diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2- Phenyl-4-methyl-5-hydroxymethylimidazole, 2,3-dihydro-1H-pyrrolo [1,2-a] benzimidazole, 1-dodecyl-2-methyl-3-benzylimidazolium chloride, 2-methylimidazoline , 2-Imidazole compounds such as phenylimidazolin and adducts of imidazole compounds and epoxy resins can be mentioned.
 イミダゾール系硬化促進剤としては、市販品を用いてもよく、例えば、四国化成工業社製の「1B2PZ」、「2MZA-PW」、「2PHZ-PW」、三菱ケミカル社製の「P200-H50」等が挙げられる。 As the imidazole-based curing accelerator, a commercially available product may be used, for example, "1B2PZ", "2MZA-PW", "2PHZ-PW" manufactured by Shikoku Chemicals Corporation, and "P200-H50" manufactured by Mitsubishi Chemical Corporation. And so on.
 金属系硬化促進剤としては、例えば、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の、有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体等が挙げられる。有機金属塩としては、例えば、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛等が挙げられる。 Examples of the metal-based curing accelerator include organic metal complexes or organic metal salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin. Specific examples of the organic metal complex include an organic cobalt complex such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, an organic copper complex such as copper (II) acetylacetonate, and zinc (II) acetylacetonate. Examples thereof include organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate. Examples of the organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, zinc stearate and the like.
 アミン系硬化促進剤としては、例えば、トリエチルアミン、トリブチルアミン等のトリアルキルアミン、4-ジメチルアミノピリジン、ベンジルジメチルアミン、2,4,6,-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5,4,0)-ウンデセン等が挙げられる。 Examples of the amine-based curing accelerator include trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6, -tris (dimethylaminomethyl) phenol, and 1,8-diazabicyclo. (5, 4, 0) -Undesen and the like can be mentioned.
 アミン系硬化促進剤としては、市販品を用いてもよく、例えば、味の素ファインテクノ社製の「MY-25」等が挙げられる。 As the amine-based curing accelerator, a commercially available product may be used, and examples thereof include "MY-25" manufactured by Ajinomoto Fine-Techno Co., Ltd.
 樹脂組成物中の(E)硬化促進剤の含有量は、特に限定されるものではないが、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは15質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下、特に好ましくは1質量%以下である。樹脂組成物中の(E)硬化促進剤の含有量の下限は、特に限定されるものではないが、樹脂組成物中の不揮発成分を100質量%とした場合、例えば、0質量%以上、0.001質量%以上、0.01質量%以上、0.1質量%以上、0.2質量%以上等であり得る。 The content of the (E) curing accelerator in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, it is preferably 15% by mass or less, more preferably. It is 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 1% by mass or less. The lower limit of the content of the (E) curing accelerator in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, for example, 0% by mass or more, 0. It can be 001% by mass or more, 0.01% by mass or more, 0.1% by mass or more, 0.2% by mass or more, and the like.
<(F)ポリイミド樹脂>
 本発明の樹脂組成物は、任意成分として(F)ポリイミド樹脂を含む場合がある。(F)ポリイミド樹脂は、繰り返し単位中にイミド結合を持つ樹脂である。(F)ポリイミド樹脂には、シロキサン変性ポリイミド樹脂などの変性ポリイミド樹脂も含まれる。
<(F) Polyimide resin>
The resin composition of the present invention may contain (F) polyimide resin as an optional component. (F) The polyimide resin is a resin having an imide bond in the repeating unit. (F) The polyimide resin also includes a modified polyimide resin such as a siloxane modified polyimide resin.
 (F)ポリイミド樹脂は、一実施形態において、好ましくは、主鎖に脂肪鎖を有さない芳香族ポリイミド樹脂を含む。 (F) In one embodiment, the (F) polyimide resin preferably contains an aromatic polyimide resin having no fat chain in the main chain.
 (F)ポリイミド樹脂は、一実施形態において、より好ましくは、式(F1): The (F) polyimide resin is more preferably the formula (F1): in one embodiment.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[式中、
 X、Y及びYは、それぞれ独立して、単結合、-CR-、-O-、-CO-、-S-、-SO-、-SO-、-CONH-、又は-NHCO-を示し;
 Rは、それぞれ独立して、水素原子、及びアルキル基を示し;
 環X、環X、及び環Yは、それぞれ独立して、置換基を有していてもよい芳香環を示し;
 Ry1は、それぞれ独立して、置換基を示し;
 y1は、それぞれ独立して、0、1、2又は3を示し;
 xa及びyaは、それぞれ独立して、0、1、2、3、4又は5を示し;
 ybは、0又は1を示す。]
で表される繰り返し単位を有する樹脂を含む。xa単位は、単位毎に同一であってもよいし、異なっていてもよい。ya単位は、単位毎に同一であってもよいし、異なっていてもよい。
[During the ceremony,
X 1 , Y 1 and Y 2 are independently single-bonded, -CR 2- , -O-, -CO-, -S-, -SO-, -SO 2- , -CONH-, or-. Shows NHCO-;
R independently represent a hydrogen atom and an alkyl group;
Ring X a , ring X b , and ring Y a each independently represent an aromatic ring that may have a substituent;
R y1 each independently indicates a substituent;
y1 independently indicates 0, 1, 2 or 3;
xa and ya independently indicate 0, 1, 2, 3, 4 or 5;
yb indicates 0 or 1. ]
Includes resins with repeating units represented by. The xa unit may be the same or different for each unit. The ya unit may be the same or different for each unit.
 X、Y及びYは、それぞれ独立して、単結合、-CR-、-O-、-CO-、-S-、-SO-、-SO-、-CONH-、又は-NHCO-を示し;好ましくは、-CR-、-O-、又は-CO-であり;より好ましくは、-CR-、又は-O-である。 X 1 , Y 1 and Y 2 are independently single-bonded, -CR 2- , -O-, -CO-, -S-, -SO-, -SO 2- , -CONH-, or-. Shows NHCO-; preferably -CR 2- , -O-, or -CO-; more preferably -CR 2- , or -O-.
 Rは、それぞれ独立して、水素原子、及びアルキル基を示し;好ましくは、水素原子、及びメチル基であり;より好ましくは、メチル基である。 R independently represents a hydrogen atom and an alkyl group; preferably a hydrogen atom and a methyl group; more preferably a methyl group.
 環X、環X、及び環Yは、それぞれ独立して、置換基を有していてもよい芳香環を示し;好ましくは、アルキル基、アルケニル基、及びアリール基から選ばれる基で置換されていてもよいベンゼン環、又はアルキル基、アルケニル基、及びアリール基から選ばれる基で置換されていてもよいナフタレン環であり;より好ましくは、アルキル基、アルケニル基、及びアリール基から選ばれる基で置換されていてもよいベンゼン環であり;さらに好ましくは、アルキル基で置換されていてもよいベンゼン環であり;特に好ましくは(無置換の)ベンゼン環である。 Ring X a , ring X b , and ring Y a each independently represent an aromatic ring which may have a substituent; preferably a group selected from an alkyl group, an alkenyl group, and an aryl group. It is a benzene ring which may be substituted, or a naphthalene ring which may be substituted with a group selected from an alkyl group, an alkenyl group, and an aryl group; more preferably, it is selected from an alkyl group, an alkenyl group, and an aryl group. It is a benzene ring which may be substituted with a group; more preferably a benzene ring which may be substituted with an alkyl group; particularly preferably a (unsubstituted) benzene ring.
 Ry1は、それぞれ独立して、置換基を示し;好ましくは、アルキル基、アルケニル基、又はアリール基であり;より好ましくは、アルキル基である。 Each R y1 independently represents a substituent; preferably an alkyl group, an alkenyl group, or an aryl group; more preferably an alkyl group.
 y1は、それぞれ独立して、0、1、2又は3を示し;好ましくは、0、1又は2であり;より好ましくは、0又は1であり;特に好ましくは0である。xaは、0、1、2、3、4又は5を示し;好ましくは、1、2、3、4又は5であり;より好ましくは、2、3、4又は5であり;さらに好ましくは3、4又は5であり;特に好ましくは4である。yaは、0、1、2、3、4又は5を示し;好ましくは、0、1、2、3又は4であり;より好ましくは、0、1、2又は3であり;さらに好ましくは、1、2又は3であり;特に好ましくは、2である。ybは、0又は1を示し;好ましくは、1である。 Y1 independently indicates 0, 1, 2 or 3; preferably 0, 1 or 2; more preferably 0 or 1; particularly preferably 0. xa indicates 0, 1, 2, 3, 4 or 5; preferably 1, 2, 3, 4 or 5; more preferably 2, 3, 4 or 5; even more preferably 3 4 or 5; particularly preferably 4. ya indicates 0, 1, 2, 3, 4 or 5; preferably 0, 1, 2, 3 or 4; more preferably 0, 1, 2 or 3; even more preferably. 1, 2 or 3; particularly preferably 2. yb indicates 0 or 1; preferably 1.
 式(F1)で表される構造単位に含まれる式(Fx): Formula (Fx) included in the structural unit represented by formula (F1):
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[式中、*は結合部位を示し;その他の記号は上記の通りである。]
で表される部分構造の具体例としては、式(Fx-1)~(Fx-24):
[In the formula, * indicates the binding site; other symbols are as described above. ]
As a specific example of the partial structure represented by, the formulas (Fx-1) to (Fx-24):
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[式中、*は上記と同様である。]
の何れかで表される部分構造が挙げられる。
[In the formula, * is the same as above. ]
A partial structure represented by any of the above can be mentioned.
 式(F1)で表される構造単位に含まれる式(Fy): Formula (Fy) included in the structural unit represented by formula (F1):
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[式中、*は結合部位を示し;その他の記号は上記の通りである。]
で表される部分構造の具体例としては、式(Fy-1)~(Fy-25):
[In the formula, * indicates the binding site; other symbols are as described above. ]
As a specific example of the partial structure represented by, the formulas (Fy-1) to (Fy-25):
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[式中、*は上記と同様である。]
の何れかで表される部分構造が挙げられる。
[In the formula, * is the same as above. ]
A partial structure represented by any of the above can be mentioned.
 (F)ポリイミド樹脂は、一実施形態において、さらに好ましくは、式(F2-1)~(F2-4): In one embodiment, the (F) polyimide resin is more preferably of the formulas (F2-1) to (F2-4) :.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[式中、
 X11、X12、X13、X14、Y11、Y12及びYは、それぞれ独立して、単結合、-CR-、-O-、-CO-、-S-、-SO-、-SO-、-CONH-、又は-NHCO-を示し;
 環Xa1、環Xa2、環Xa3、環Xa4、環X、環Ya1及び環Ya2は、それぞれ独立して、置換基を有していてもよい芳香環を示し;
 その他の記号は、上記の通りである。]
で表される繰り返し単位を有する樹脂を含み、中でもとりわけ、式(F2-1)で表される繰り返し単位を有する樹脂を含むことが好ましい。
[During the ceremony,
X 11 , X 12 , X 13 , X 14 , Y 11 , Y 12 and Y 2 are independently single-bonded, -CR 2- , -O-, -CO-, -S-, -SO-, respectively. , -SO 2- , -CONH-, or -NHCO-;
Ring X a1 , ring X a2 , ring X a3 , ring X a4 , ring X b , ring Y a1 and ring Y a2 each independently represent an aromatic ring which may have a substituent;
Other symbols are as described above. ]
It contains a resin having a repeating unit represented by, and more preferably, it contains a resin having a repeating unit represented by the formula (F2-1).
 X11、X12、X13及びX14は、それぞれ独立して、単結合、-CR-、-O-、-CO-、-S-、-SO-、-SO-、-CONH-、又は-NHCO-を示し;好ましくは、-CR-、-O-、又は-CO-であり;より好ましくは、-CR-、又は-O-であり;さらに好ましくは、X11及びX14が-O-であり且つX12及びX13が-CR-である。Y11、Y12及びYは、それぞれ独立して、単結合、-CR-、-O-、-CO-、-S-、-SO-、-SO-、-CONH-、又は-NHCO-を示し;好ましくは、-CR-、-O-、又は-CO-であり;より好ましくは、-CR-、又は-O-であり;さらに好ましくは、Y11及びYが-O-であり且つY12が-CR-である。 X 11 , X 12 , X 13 and X 14 are independently single-bonded, -CR 2- , -O-, -CO-, -S-, -SO-, -SO 2- , -CONH- , Or -NHCO-; preferably -CR 2- , -O-, or -CO-; more preferably -CR 2- , or -O-; even more preferably X 11 and. X 14 is -O- and X 12 and X 13 are -CR 2- . Y 11 , Y 12 and Y 2 are independently single-bonded, -CR 2- , -O-, -CO-, -S-, -SO-, -SO 2- , -CONH-, or-. Shows NHCO-; preferably -CR 2- , -O-, or -CO-; more preferably -CR 2- , or -O-; even more preferably Y 11 and Y 2 . -O- and Y 12 is -CR 2- .
 環Xa1、環Xa2、環Xa3、環Xa4、環X、環Ya1及び環Ya2は、それぞれ独立して、置換基を有していてもよい芳香環を示し;好ましくは、アルキル基、アルケニル基、及びアリール基から選ばれる基で置換されていてもよいベンゼン環、又はアルキル基、アルケニル基、及びアリール基から選ばれる基で置換されていてもよいナフタレン環であり;より好ましくは、アルキル基、アルケニル基、及びアリール基から選ばれる基で置換されていてもよいベンゼン環であり;さらに好ましくは、アルキル基で置換されていてもよいベンゼン環であり;特に好ましくは(無置換の)ベンゼン環である。 Ring X a1 , ring X a2 , ring X a3 , ring X a4 , ring X b , ring Y a1 and ring Y a2 each independently represent an aromatic ring which may have a substituent; preferably. , A benzene ring optionally substituted with a group selected from an alkyl group, an alkenyl group and an aryl group, or a naphthalene ring optionally substituted with a group selected from an alkyl group, an alkenyl group and an aryl group; More preferably, it is a benzene ring which may be substituted with a group selected from an alkyl group, an alkenyl group, and an aryl group; more preferably, it is a benzene ring which may be substituted with an alkyl group; particularly preferably. It is a (unsubstituted) benzene ring.
 (F)ポリイミド樹脂は、一実施形態において、さらに好ましくは、式(F3): The (F) polyimide resin is more preferably the formula (F3): in one embodiment.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[式中、
 Rx1及びRy2は、それぞれ独立して、置換基を示し;
 x1及びy2は、それぞれ独立して、0、1、2、3又は4を示し;
 その他の記号は、上記の通りである。]
で表される繰り返し単位を有する樹脂を含む。
[During the ceremony,
R x1 and Ry2 each independently indicate a substituent;
x1 and y2 independently indicate 0, 1, 2, 3 or 4;
Other symbols are as described above. ]
Includes resins with repeating units represented by.
 Rx1及びRy2は、それぞれ独立して、置換基を示し;好ましくは、アルキル基、アルケニル基、又はアリール基であり;より好ましくは、アルキル基である。 R x1 and Ry2 each independently indicate a substituent; preferably an alkyl group, an alkenyl group, or an aryl group; more preferably an alkyl group.
 x1及びy2は、それぞれ独立して、0、1、2、3又は4を示し;好ましくは、0、1、2又は3を示し;より好ましくは、0、1又は2であり;さらに好ましくは、0又は1であり;特に好ましくは0である。 x1 and y2 independently indicate 0, 1, 2, 3 or 4; preferably 0, 1, 2 or 3; more preferably 0, 1 or 2; even more preferably. , 0 or 1; particularly preferably 0.
 (F)ポリイミド樹脂は、特に限定されるものではないが、例えば、ジアミン化合物とテトラカルボン酸無水物とのイミド化反応、ジイソシアネート化合物とテトラカルボン酸無水物とのイミド化反応等の公知の合成法により得ることができる。(F)ポリイミド樹脂は市販品を用いてもよく、(F)ポリイミド樹脂の市販品としては、例えば、新日本理化社製の「リカコートSN20」、「リカコートPN20」等が挙げられる。 The (F) polyimide resin is not particularly limited, but is known, for example, an imidization reaction between a diamine compound and a tetracarboxylic acid anhydride, an imidization reaction between a diisocyanate compound and a tetracarboxylic acid anhydride, and the like. Can be obtained by law. As the (F) polyimide resin, a commercially available product may be used, and examples of the (F) commercially available polyimide resin include “Ricacoat SN20” and “Ricacoat PN20” manufactured by Shin Nihon Rika Co., Ltd.
 (F)ポリイミド樹脂の重量平均分子量は、特に限定されるものではないが、好ましくは1000以上、より好ましくは2000以上、さらに好ましくは3000以上、特に好ましくは4000以上である。(F)ポリイミド樹脂の重量平均分子量の上限は、特に限定されるものではないが、好ましくは200000以下、より好ましくは150000以下、特に好ましくは100000以下、特に好ましくは75000以下である。ここにおける重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレン換算)で測定した値であり得る。 The weight average molecular weight of the (F) polyimide resin is not particularly limited, but is preferably 1000 or more, more preferably 2000 or more, still more preferably 3000 or more, and particularly preferably 4000 or more. The upper limit of the weight average molecular weight of the (F) polyimide resin is not particularly limited, but is preferably 200,000 or less, more preferably 150,000 or less, particularly preferably 100,000 or less, and particularly preferably 75,000 or less. The weight average molecular weight here may be a value measured by a gel permeation chromatography (GPC) method (polystyrene conversion).
 (F)ポリイミド樹脂のガラス転移温度は、特に限定されるものではないが、好ましくは50℃~400℃、より好ましくは75℃~350℃、さらに好ましくは100℃~300℃、特に好ましくは125℃~250℃である。 The glass transition temperature of the (F) polyimide resin is not particularly limited, but is preferably 50 ° C. to 400 ° C., more preferably 75 ° C. to 350 ° C., still more preferably 100 ° C. to 300 ° C., and particularly preferably 125 ° C. The temperature is from ° C to 250 ° C.
 樹脂組成物中の(F)ポリイミド樹脂の含有量は、特に限定されるものではないが、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは15質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下、特に好ましくは1質量%以下である。樹脂組成物中の(F)ポリイミド樹脂の含有量の下限は、特に限定されるものではないが、樹脂組成物中の不揮発成分を100質量%とした場合、例えば、0質量%以上、0.001質量%以上、0.01質量%以上、0.1質量%以上、0.2質量%以上等であり得る。 The content of the (F) polyimide resin in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, it is preferably 15% by mass or less, more preferably 10. It is mass% or less, more preferably 5% by mass or less, and particularly preferably 1% by mass or less. The lower limit of the content of the (F) polyimide resin in the resin composition is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, for example, 0% by mass or more, 0. It can be 001% by mass or more, 0.01% by mass or more, 0.1% by mass or more, 0.2% by mass or more, and the like.
<(G)その他の添加剤>
 本発明の樹脂組成物は、不揮発成分として、さらに任意の添加剤を含んでいてもよい。このような添加剤としては、例えば、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリオレフィン樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂等の熱可塑性樹脂;ゴム粒子等の有機充填材;有機銅化合物、有機亜鉛化合物、有機コバルト化合物等の有機金属化合物;フタロシアニンブルー、フタロシアニングリーン、アイオディングリーン、ジアゾイエロー、クリスタルバイオレット、酸化チタン、カーボンブラック等の着色剤;ハイドロキノン、カテコール、ピロガロール、フェノチアジン等の重合禁止剤;シリコーン系レベリング剤、アクリルポリマー系レベリング剤等のレベリング剤;ベントン、モンモリロナイト等の増粘剤;シリコーン系消泡剤、アクリル系消泡剤、フッ素系消泡剤、ビニル樹脂系消泡剤等の消泡剤;ベンゾトリアゾール系紫外線吸収剤等の紫外線吸収剤;尿素シラン等の接着性向上剤;トリアゾール系密着性付与剤、テトラゾール系密着性付与剤、トリアジン系密着性付与剤等の密着性付与剤;ヒンダードフェノール系酸化防止剤等の酸化防止剤;スチルベン誘導体等の蛍光増白剤;フッ素系界面活性剤、シリコーン系界面活性剤等の界面活性剤;リン系難燃剤(例えばリン酸エステル化合物、ホスファゼン化合物、ホスフィン酸化合物、赤リン)、窒素系難燃剤(例えば硫酸メラミン)、ハロゲン系難燃剤、無機系難燃剤(例えば三酸化アンチモン)等の難燃剤;リン酸エステル系分散剤、ポリオキシアルキレン系分散剤、アセチレン系分散剤、シリコーン系分散剤、アニオン性分散剤、カチオン性分散剤等の分散剤;ボレート系安定剤、チタネート系安定剤、アルミネート系安定剤、ジルコネート系安定剤、イソシアネート系安定剤、カルボン酸系安定剤、カルボン酸無水物系安定剤等の安定剤等が挙げられる。(G)その他の添加剤は、1種を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。(G)その他の添加剤の含有量は当業者であれば適宜設定できる。
<(G) Other additives>
The resin composition of the present invention may further contain any additive as a non-volatile component. Examples of such additives include thermoplastic resins such as phenoxy resin, polyvinyl acetal resin, polyolefin resin, polysulfone resin, polyether sulfone resin, polyphenylene ether resin, polycarbonate resin, polyether ether ketone resin, and polyester resin; rubber. Organic fillers such as particles; Organic metal compounds such as organic copper compounds, organic zinc compounds, and organic cobalt compounds; Colorants such as phthalocyanine blue, phthalocyanine green, iodin green, diazo yellow, crystal violet, titanium oxide, and carbon black; Polymerization prohibiting agents such as hydroquinone, catechol, pyrogallol, and phenothiazine; leveling agents such as silicone-based leveling agents and acrylic polymer-based leveling agents; thickeners such as Benton and montmorillonite; silicone-based defoaming agents, acrylic defoaming agents, and fluorine. Defoaming agents such as defoaming agents and vinyl resin defoaming agents; UV absorbers such as benzotriazole-based UV absorbers; Adhesive improvers such as ureasilane; Triazole-based adhesion-imparting agents and tetrazole-based adhesion-imparting agents Adhesion-imparting agents such as agents and triazine-based adhesion-imparting agents; Antioxidants such as hindered phenol-based antioxidants; Fluorescent whitening agents such as stylben derivatives; Fluorine-based surfactants, silicone-based surfactants, etc. Surfactants; Phosphorus-based flame retardants (eg phosphoric acid ester compounds, phosphazene compounds, phosphinic acid compounds, red phosphorus), nitrogen-based flame retardants (eg melamine sulfate), halogen-based flame retardants, inorganic flame retardants (eg antimony trioxide) ) And other flame-retardant agents; phosphoric acid ester-based dispersants, polyoxyalkylene-based dispersants, acetylene-based dispersants, silicone-based dispersants, anionic dispersants, cationic dispersants and other dispersants; borate-based stabilizers, titanates. Examples thereof include stabilizers such as system stabilizers, aluminate-based stabilizers, zirconate-based stabilizers, isocyanate-based stabilizers, carboxylic acid-based stabilizers, and carboxylic acid anhydride-based stabilizers. (G) As the other additives, one type may be used alone, or two or more types may be used in combination at any ratio. (G) The content of other additives can be appropriately set by those skilled in the art.
<(H)有機溶剤>
 本発明の樹脂組成物は、上述した不揮発成分以外に、揮発性成分として、さらに任意の有機溶剤を含有する場合がある。(H)有機溶剤としては、公知のものを適宜用いることができ、その種類は特に限定されるものではない。(H)有機溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤;酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸イソアミル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン等のエステル系溶剤;テトラヒドロピラン、テトラヒドロフラン、1,4-ジオキサン、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジフェニルエーテル、アニソール等のエーテル系溶剤;メタノール、エタノール、プロパノール、ブタノール、エチレングリコール等のアルコール系溶剤;酢酸2-エトキシエチル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチルジグリコールアセテート、γ-ブチロラクトン、メトキシプロピオン酸メチル等のエーテルエステル系溶剤;乳酸メチル、乳酸エチル、2-ヒドロキシイソ酪酸メチル等のエステルアルコール系溶剤;2-メトキシプロパノール、2-メトキシエタノール、2-エトキシエタノール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル(ブチルカルビトール)等のエーテルアルコール系溶剤;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶剤;ジメチルスルホキシド等のスルホキシド系溶剤;アセトニトリル、プロピオニトリル等のニトリル系溶剤;ヘキサン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶剤;ベンゼン、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン等の芳香族炭化水素系溶剤等を挙げることができる。(H)有機溶剤は、1種単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
<(H) Organic solvent>
The resin composition of the present invention may further contain an arbitrary organic solvent as a volatile component in addition to the above-mentioned non-volatile component. As the (H) organic solvent, a known solvent can be appropriately used, and the type thereof is not particularly limited. (H) Examples of the organic solvent include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, isoamyl acetate, methyl propionate, ethyl propionate and γ-. Ester-based solvents such as butyrolactone; ether-based solvents such as tetrahydropyran, tetrahydrofuran, 1,4-dioxane, diethyl ether, diisopropyl ether, dibutyl ether, diphenyl ether and anisol; alcohol-based solvents such as methanol, ethanol, propanol, butanol and ethylene glycol Solvents: Ether ester solvents such as 2-ethoxyethyl acetate, propylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl diglycol acetate, γ-butyrolactone, methyl methoxypropionate; methyl lactate, ethyl lactate, 2-hydroxyiso Ester alcohol solvent such as methyl butyrate; ether alcohol solvent such as 2-methoxypropanol, 2-methoxyethanol, 2-ethoxyethanol, propylene glycol monomethyl ether, diethylene glycol monobutyl ether (butyl carbitol); N, N-dimethylformamide , N, N-dimethylacetamide, N-methyl-2-pyrrolidone and other amide solvents; dimethylsulfoxide and other sulfoxide solvents; acetonitrile, propionitrile and other nitrile solvents; hexane, cyclopentane, cyclohexane, methylcyclohexane and the like. The above-mentioned aliphatic hydrocarbon-based solvent; aromatic hydrocarbon-based solvents such as benzene, toluene, xylene, ethylbenzene, and trimethylbenzene can be mentioned. (H) The organic solvent may be used alone or in combination of two or more at any ratio.
 一実施形態において、(H)有機溶剤の含有量は、特に限定されるものではないが、樹脂組成物中の全成分を100質量%とした場合、例えば、60質量%以下、40質量%以下、30質量%以下、20質量%以下、15質量%以下、10質量%以下等であり得る。 In one embodiment, the content of the (H) organic solvent is not particularly limited, but when all the components in the resin composition are 100% by mass, for example, 60% by mass or less and 40% by mass or less. , 30% by mass or less, 20% by mass or less, 15% by mass or less, 10% by mass or less, and the like.
<樹脂組成物の製造方法>
 本発明の樹脂組成物は、例えば、任意の調製容器に(A)特定マレイミド化合物、(B)活性エステル化合物、(C)エポキシ樹脂、必要に応じて(A’)その他のマレイミド化合物、必要に応じて(B’)その他の硬化剤、必要に応じて(D)無機充填材、必要に応じて(E)硬化促進剤、必要に応じて(F)ポリイミド樹脂、必要に応じて(G)その他の添加剤、及び必要に応じて(H)有機溶剤を、任意の順で及び/又は一部若しくは全部同時に加えて混合することによって、製造することができる。また、各成分を加えて混合する過程で、温度を適宜設定することができ、一時的に又は終始にわたって、加熱及び/又は冷却してもよい。また、加えて混合する過程において又はその後に、樹脂組成物を、例えば、ミキサーなどの撹拌装置又は振盪装置を用いて撹拌又は振盪し、均一に分散させてもよい。また、撹拌又は振盪と同時に、真空下等の低圧条件下で脱泡を行ってもよい。
<Manufacturing method of resin composition>
The resin composition of the present invention can be, for example, in an arbitrary preparation container with (A) a specific maleimide compound, (B) an active ester compound, (C) an epoxy resin, and if necessary, (A') another maleimide compound, if necessary. (B') Other curing agents as needed, (D) Inorganic filler as needed, (E) Hardening accelerator as needed, (F) Epoxy resin as needed, (G) as needed It can be produced by adding and mixing other additives and, if necessary, (H) an organic solvent in any order and / or partially or all at the same time. Further, in the process of adding and mixing each component, the temperature can be appropriately set, and heating and / or cooling may be performed temporarily or from beginning to end. Further, the resin composition may be uniformly dispersed by stirring or shaking using, for example, a stirring device such as a mixer or a shaking device in the process of adding and mixing, or thereafter. Further, at the same time as stirring or shaking, defoaming may be performed under low pressure conditions such as under vacuum.
<樹脂組成物の特性>
 本発明の樹脂組成物は、(A)特定マレイミド化合物、(B)活性エステル化合物、及び(C)エポキシ樹脂を含む。このような樹脂組成物を用いることにより、最低溶融粘度をより低く抑えることができ、比誘電率(Dk)及び誘電正接(Df)が低く、ガラス転移点(Tg)が高く且つ銅めっきピール強度に優れた硬化物を得ることができる。
<Characteristics of resin composition>
The resin composition of the present invention contains (A) a specific maleimide compound, (B) an active ester compound, and (C) an epoxy resin. By using such a resin composition, the minimum melt viscosity can be suppressed to a lower level, the relative permittivity (Dk) and the dielectric loss tangent (Df) are low, the glass transition point (Tg) is high, and the copper plating peel strength is high. An excellent cured product can be obtained.
 本発明の樹脂組成物の硬化物は、ガラス転移点(Tg)が高いという特徴を有し得る。したがって、一実施形態において、下記試験例4のように測定した場合のガラス転移温度(Tg)が、好ましくは110℃以上、より好ましくは130℃以上、さらに好ましくは140℃以上、特に好ましくは150℃以上となり得る。 The cured product of the resin composition of the present invention may have a feature of having a high glass transition point (Tg). Therefore, in one embodiment, the glass transition temperature (Tg) measured as in Test Example 4 below is preferably 110 ° C. or higher, more preferably 130 ° C. or higher, still more preferably 140 ° C. or higher, and particularly preferably 150 ° C. or higher. Can be above ° C.
 本発明の樹脂組成物の硬化物は、銅めっきピール強度に優れているという特徴を有し得る。したがって、一実施形態において、下記試験例2のように硬化物に銅めっき導体層の形成し、垂直方向に銅めっき導体層を引き剥がした時の荷重から算出される銅めっきピール強度が、好ましくは0.2kgf/cm以上、より好ましくは0.3kgf/cm以上、さらに好ましくは0.4kgf/cm以上、特に好ましくは0.45kgf/cm以上、0.5kgf/cm以上となり得る。上限については特に限定されるものではないが、例えば、10kgf/cm以下等とし得る。 The cured product of the resin composition of the present invention may have a feature of being excellent in copper plating peel strength. Therefore, in one embodiment, the copper plating peel strength calculated from the load when the copper-plated conductor layer is formed on the cured product and the copper-plated conductor layer is peeled off in the vertical direction as in Test Example 2 below is preferable. Can be 0.2 kgf / cm or more, more preferably 0.3 kgf / cm or more, still more preferably 0.4 kgf / cm or more, particularly preferably 0.45 kgf / cm or more, 0.5 kgf / cm or more. The upper limit is not particularly limited, but may be, for example, 10 kgf / cm or less.
 本発明の樹脂組成物の硬化物は、誘電正接(Df)が低いという特徴を有し得る。したがって、一実施形態において、下記試験例1のように5.8GHz、23℃で測定した場合の樹脂組成物の硬化物の誘電正接(Df)は、好ましくは0.020以下、0.010以下、より好ましくは0.009以下、0.008以下、さらに好ましくは0.007以下、0.006以下、特に好ましくは0.005以下、0.0045以下、0.004以下となり得る。 The cured product of the resin composition of the present invention may have a feature of low dielectric loss tangent (Df). Therefore, in one embodiment, the dielectric positive contact (Df) of the cured product of the resin composition when measured at 5.8 GHz and 23 ° C. as in Test Example 1 below is preferably 0.020 or less and 0.010 or less. , More preferably 0.009 or less, 0.008 or less, still more preferably 0.007 or less, 0.006 or less, particularly preferably 0.005 or less, 0.0045 or less, 0.004 or less.
 本発明の樹脂組成物の硬化物は、比誘電率(Dk)が低いという特徴を有し得る。したがって、一実施形態において、下記試験例1のように5.8GHz、23℃で測定した場合の樹脂組成物の硬化物の比誘電率(Dk)は、好ましくは5.0以下、より好ましくは4.0以下、さらに好ましくは3.5以下、特に好ましくは3.2以下、3.0以下となり得る。 The cured product of the resin composition of the present invention may have a feature of having a low relative permittivity (Dk). Therefore, in one embodiment, the relative permittivity (Dk) of the cured product of the resin composition when measured at 5.8 GHz and 23 ° C. as in Test Example 1 below is preferably 5.0 or less, more preferably. It can be 4.0 or less, more preferably 3.5 or less, particularly preferably 3.2 or less, 3.0 or less.
 本発明の樹脂組成物は、最低溶融粘度が低いという特徴を有し得る。したがって、一実施形態において、下記試験例5のように動的粘弾性測定装置を用いて周波数1Hz、歪み5度、荷重100g、昇温速度5℃/分、温度範囲60℃~180℃にて測定した場合の最低溶融粘度が、好ましくは4000poise以下、3000poise以下、より好ましくは2000poise以下、1700poise以下、さらに好ましくは1500poise以下、1300poise以下、特に好ましくは1100poise以下であり得る。 The resin composition of the present invention may have a feature that the minimum melt viscosity is low. Therefore, in one embodiment, using a dynamic viscoelasticity measuring device as in Test Example 5 below, the frequency is 1 Hz, the strain is 5 degrees, the load is 100 g, the heating rate is 5 ° C / min, and the temperature range is 60 ° C to 180 ° C. The minimum melt viscosity when measured can be preferably 4000 poise or less, 3000 poise or less, more preferably 2000 poise or less, 1700 poise or less, still more preferably 1500 poise or less, 1300 poise or less, and particularly preferably 1100 poise or less.
 一実施形態において、本発明の樹脂組成物の硬化物は、粗化処理後の表面の算術平均粗さ(Ra)が低いという特徴を有し得る。したがって、一実施形態において、下記試験例3のように測定される粗化処理後の硬化物表面の算術平均粗さ(Ra)が、好ましくは300nm以下、より好ましくは200nm以下、さらに好ましくは150nm以下、さらにより好ましくは100nm以下、特に好ましくは70nm以下となり得る。下限については特に限定されるものではなく、例えば、1nm以上、2nm以上等とし得る。 In one embodiment, the cured product of the resin composition of the present invention may have a feature that the arithmetic average roughness (Ra) of the surface after the roughening treatment is low. Therefore, in one embodiment, the arithmetic average roughness (Ra) of the surface of the cured product after the roughening treatment measured as in Test Example 3 below is preferably 300 nm or less, more preferably 200 nm or less, still more preferably 150 nm. Below, it can be even more preferably 100 nm or less, and particularly preferably 70 nm or less. The lower limit is not particularly limited and may be, for example, 1 nm or more and 2 nm or more.
<樹脂組成物の用途>
 本発明の樹脂組成物は、絶縁用途の樹脂組成物、特に、絶縁層を形成するための樹脂組成物として好適に使用することができる。具体的には、絶縁層上に形成される導体層(再配線層を含む)を形成するための当該絶縁層を形成するための樹脂組成物(導体層を形成するための絶縁層形成用樹脂組成物)として好適に使用することができる。また、後述するプリント配線板において、プリント配線板の絶縁層を形成するための樹脂組成物(プリント配線板の絶縁層形成用樹脂組成物)として好適に使用することができる。本発明の樹脂組成物はまた、樹脂シート、プリプレグ等のシート状積層材料、ソルダーレジスト、アンダーフィル材、ダイボンディング材、半導体封止材、穴埋め樹脂、部品埋め込み樹脂等、樹脂組成物が必要とされる用途で広範囲に使用できる。
<Use of resin composition>
The resin composition of the present invention can be suitably used as a resin composition for insulating use, particularly as a resin composition for forming an insulating layer. Specifically, a resin composition for forming the insulating layer for forming the conductor layer (including the rewiring layer) formed on the insulating layer (resin for forming the insulating layer for forming the conductor layer). It can be suitably used as a composition). Further, in a printed wiring board described later, it can be suitably used as a resin composition for forming an insulating layer of a printed wiring board (resin composition for forming an insulating layer of a printed wiring board). The resin composition of the present invention also requires a resin composition such as a resin sheet, a sheet-like laminated material such as a prepreg, a solder resist, an underfill material, a die bonding material, a semiconductor encapsulant, a hole filling resin, and a component embedding resin. Can be used in a wide range of applications.
 また、例えば、以下の(1)~(6)工程を経て半導体チップパッケージが製造される場合、本発明の樹脂組成物は、再配線層を形成するための絶縁層としての再配線形成層用の樹脂組成物(再配線形成層形成用の樹脂組成物)、及び半導体チップを封止するための樹脂組成物(半導体チップ封止用の樹脂組成物)としても好適に使用することができる。半導体チップパッケージが製造される際、封止層上に更に再配線層を形成してもよい。
 (1)基材に仮固定フィルムを積層する工程、
 (2)半導体チップを、仮固定フィルム上に仮固定する工程、
 (3)半導体チップ上に封止層を形成する工程、
 (4)基材及び仮固定フィルムを半導体チップから剥離する工程、
 (5)半導体チップの基材及び仮固定フィルムを剥離した面に、絶縁層としての再配線形成層を形成する工程、及び
 (6)再配線形成層上に、導体層としての再配線層を形成する工程
Further, for example, when the semiconductor chip package is manufactured through the following steps (1) to (6), the resin composition of the present invention is for a rewiring forming layer as an insulating layer for forming the rewiring layer. Can also be suitably used as a resin composition (resin composition for forming a rewiring forming layer) and a resin composition for encapsulating a semiconductor chip (resin composition for encapsulating a semiconductor chip). When the semiconductor chip package is manufactured, a rewiring layer may be further formed on the sealing layer.
(1) Step of laminating a temporary fixing film on a base material,
(2) A process of temporarily fixing a semiconductor chip on a temporary fixing film,
(3) Step of forming a sealing layer on a semiconductor chip,
(4) Step of peeling the base material and the temporary fixing film from the semiconductor chip,
(5) A step of forming a rewiring forming layer as an insulating layer on the surface from which the base material and the temporary fixing film of the semiconductor chip are peeled off, and (6) a rewiring layer as a conductor layer is formed on the rewiring forming layer. Forming process
 また、本発明の樹脂組成物は、部品埋め込み性に良好な絶縁層をもたらすことから、プリント配線板が部品内蔵回路板である場合にも好適に使用することができる。 Further, since the resin composition of the present invention provides an insulating layer having good component embedding property, it can be suitably used even when the printed wiring board is a component built-in circuit board.
<シート状積層材料>
 本発明の樹脂組成物は、ワニス状態で塗布して使用することもできるが、工業的には一般に、該樹脂組成物を含有するシート状積層材料の形態で用いることが好適である。
<Sheet-like laminated material>
The resin composition of the present invention can be applied and used in a varnished state, but industrially, it is generally preferable to use the resin composition in the form of a sheet-like laminated material containing the resin composition.
 シート状積層材料としては、以下に示す樹脂シート、プリプレグが好ましい。 As the sheet-shaped laminated material, the following resin sheets and prepregs are preferable.
 一実施形態において、樹脂シートは、支持体と、該支持体上に設けられた樹脂組成物層とを含んでなり、樹脂組成物層は本発明の樹脂組成物から形成される。 In one embodiment, the resin sheet comprises a support and a resin composition layer provided on the support, and the resin composition layer is formed from the resin composition of the present invention.
 樹脂組成物層の厚さは、プリント配線板の薄型化、及び当該樹脂組成物の硬化物が薄膜であっても絶縁性に優れた硬化物を提供できるという観点から、好ましくは50μm以下、より好ましくは40μm以下である。樹脂組成物層の厚さの下限は、特に限定されないが、通常、5μm以上、10μm以上等とし得る。 The thickness of the resin composition layer is preferably 50 μm or less from the viewpoint of reducing the thickness of the printed wiring board and providing a cured product having excellent insulating properties even if the cured product of the resin composition is a thin film. It is preferably 40 μm or less. The lower limit of the thickness of the resin composition layer is not particularly limited, but may be usually 5 μm or more, 10 μm or more, or the like.
 支持体としては、例えば、プラスチック材料からなるフィルム、金属箔、離型紙が挙げられ、プラスチック材料からなるフィルム、金属箔が好ましい。 Examples of the support include a film made of a plastic material, a metal foil, and a release paper, and a film made of a plastic material and a metal foil are preferable.
 支持体としてプラスチック材料からなるフィルムを使用する場合、プラスチック材料としては、例えば、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート(以下「PEN」と略称することがある。)等のポリエステル、ポリカーボネート(以下「PC」と略称することがある。)、ポリメチルメタクリレート(PMMA)等のアクリル、環状ポリオレフィン、トリアセチルセルロース(TAC)、ポリエーテルサルファイド(PES)、ポリエーテルケトン、ポリイミド等が挙げられる。中でも、ポリエチレンテレフタレート、ポリエチレンナフタレートが好ましく、安価なポリエチレンテレフタレートが特に好ましい。 When a film made of a plastic material is used as a support, the plastic material may be, for example, polyethylene terephthalate (hereinafter abbreviated as "PET") or polyethylene naphthalate (hereinafter abbreviated as "PEN"). ) And other polyesters, polycarbonate (hereinafter sometimes abbreviated as "PC"), acrylics such as polymethylmethacrylate (PMMA), cyclic polyolefins, triacetylcellulose (TAC), polyethersulfide (PES), polyethers. Examples thereof include ketones and polyimides. Of these, polyethylene terephthalate and polyethylene naphthalate are preferable, and inexpensive polyethylene terephthalate is particularly preferable.
 支持体として金属箔を使用する場合、金属箔としては、例えば、銅箔、アルミニウム箔等が挙げられ、銅箔が好ましい。銅箔としては、銅の単金属からなる箔を用いてもよく、銅と他の金属(例えば、スズ、クロム、銀、マグネシウム、ニッケル、ジルコニウム、ケイ素、チタン等)との合金からなる箔を用いてもよい。 When a metal foil is used as the support, examples of the metal foil include copper foil, aluminum foil, and the like, and copper foil is preferable. As the copper foil, a foil made of a single metal of copper may be used, and a foil made of an alloy of copper and another metal (for example, tin, chromium, silver, magnesium, nickel, zirconium, silicon, titanium, etc.) may be used. You may use it.
 支持体は、樹脂組成物層と接合する面にマット処理、コロナ処理、帯電防止処理を施してあってもよい。 The support may be matted, corona-treated, or antistatic-treated on the surface to be joined to the resin composition layer.
 また、支持体としては、樹脂組成物層と接合する面に離型層を有する離型層付き支持体を使用してもよい。離型層付き支持体の離型層に使用する離型剤としては、例えば、アルキド樹脂、ポリオレフィン樹脂、ウレタン樹脂、及びシリコーン樹脂からなる群から選択される1種以上の離型剤が挙げられる。離型層付き支持体は、市販品を用いてもよく、例えば、アルキド樹脂系離型剤を主成分とする離型層を有するPETフィルムである、リンテック社製の「SK-1」、「AL-5」、「AL-7」、東レ社製の「ルミラーT60」、帝人社製の「ピューレックス」、ユニチカ社製の「ユニピール」等が挙げられる。 Further, as the support, a support with a release layer having a release layer on the surface to be joined to the resin composition layer may be used. Examples of the release agent used for the release layer of the support with the release layer include one or more release agents selected from the group consisting of alkyd resin, polyolefin resin, urethane resin, and silicone resin. .. As the support with a release layer, a commercially available product may be used. For example, "SK-1" and "SK-1" manufactured by Lintec Corporation, which are PET films having a release layer containing an alkyd resin-based mold release agent as a main component. Examples include "AL-5", "AL-7", "Lumilar T60" manufactured by Toray Industries, "Purex" manufactured by Teijin Ltd., and "Unipee" manufactured by Unitika Ltd.
 支持体の厚さは、特に限定されないが、5μm~75μmの範囲が好ましく、10μm~60μmの範囲がより好ましい。なお、離型層付き支持体を使用する場合、離型層付き支持体全体の厚さが上記範囲であることが好ましい。 The thickness of the support is not particularly limited, but is preferably in the range of 5 μm to 75 μm, and more preferably in the range of 10 μm to 60 μm. When a support with a release layer is used, the thickness of the entire support with a release layer is preferably in the above range.
 一実施形態において、樹脂シートは、さらに必要に応じて、任意の層を含んでいてもよい。斯かる任意の層としては、例えば、樹脂組成物層の支持体と接合していない面(即ち、支持体とは反対側の面)に設けられた、支持体に準じた保護フィルム等が挙げられる。保護フィルムの厚さは、特に限定されるものではないが、例えば、1μm~40μmである。保護フィルムを積層することにより、樹脂組成物層の表面へのゴミ等の付着やキズを抑制することができる。 In one embodiment, the resin sheet may further contain any layer, if necessary. Examples of such an arbitrary layer include a protective film similar to the support provided on a surface of the resin composition layer that is not bonded to the support (that is, a surface opposite to the support). Be done. The thickness of the protective film is not particularly limited, but is, for example, 1 μm to 40 μm. By laminating the protective film, it is possible to suppress the adhesion and scratches of dust and the like on the surface of the resin composition layer.
 樹脂シートは、例えば、液状の樹脂組成物をそのまま、或いは有機溶剤に樹脂組成物を溶解した樹脂ワニスを調製し、これを、ダイコーター等を用いて支持体上に塗布し、更に乾燥させて樹脂組成物層を形成させることにより製造することができる。 For the resin sheet, for example, a resin varnish prepared by dissolving the resin composition as it is in a liquid resin composition or in an organic solvent is applied onto a support using a die coater or the like, and further dried. It can be produced by forming a resin composition layer.
 有機溶剤としては、樹脂組成物の成分として説明した有機溶剤と同様のものが挙げられる。有機溶剤は1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Examples of the organic solvent include the same organic solvents as those described as the components of the resin composition. The organic solvent may be used alone or in combination of two or more.
 乾燥は、加熱、熱風吹きつけ等の公知の方法により実施してよい。乾燥条件は特に限定されないが、樹脂組成物層中の有機溶剤の含有量が10質量%以下、好ましくは5質量%以下となるように乾燥させる。樹脂組成物又は樹脂ワニス中の有機溶剤の沸点によっても異なるが、例えば30質量%~60質量%の有機溶剤を含む樹脂組成物又は樹脂ワニスを用いる場合、50℃~150℃で3分間~10分間乾燥させることにより、樹脂組成物層を形成することができる。 Drying may be carried out by a known method such as heating or blowing hot air. The drying conditions are not particularly limited, but the resin composition layer is dried so that the content of the organic solvent is 10% by mass or less, preferably 5% by mass or less. Depending on the boiling point of the organic solvent in the resin composition or resin varnish, for example, when a resin composition or resin varnish containing 30% by mass to 60% by mass of an organic solvent is used, the temperature is 50 ° C to 150 ° C for 3 minutes to 10 The resin composition layer can be formed by drying for a minute.
 樹脂シートは、ロール状に巻きとって保存することが可能である。樹脂シートが保護フィルムを有する場合、保護フィルムを剥がすことによって使用可能となる。 The resin sheet can be rolled up and stored. If the resin sheet has a protective film, it can be used by peeling off the protective film.
 一実施形態において、プリプレグは、シート状繊維基材に本発明の樹脂組成物を含浸させて形成される。 In one embodiment, the prepreg is formed by impregnating a sheet-like fiber base material with the resin composition of the present invention.
 プリプレグに用いるシート状繊維基材は特に限定されず、ガラスクロス、アラミド不織布、液晶ポリマー不織布等のプリプレグ用基材として常用されているものを用いることができる。プリント配線板の薄型化の観点から、シート状繊維基材の厚さは、好ましくは50μm以下、より好ましくは40μm以下、さらに好ましくは30μm以下、特に好ましくは20μm以下である。シート状繊維基材の厚さの下限は特に限定されない。通常、10μm以上である。 The sheet-like fiber base material used for the prepreg is not particularly limited, and those commonly used as the base material for the prepreg such as glass cloth, aramid non-woven fabric, and liquid crystal polymer non-woven fabric can be used. From the viewpoint of reducing the thickness of the printed wiring board, the thickness of the sheet-shaped fiber base material is preferably 50 μm or less, more preferably 40 μm or less, still more preferably 30 μm or less, and particularly preferably 20 μm or less. The lower limit of the thickness of the sheet-shaped fiber base material is not particularly limited. Usually, it is 10 μm or more.
 プリプレグは、ホットメルト法、ソルベント法等の公知の方法により製造することができる。 The prepreg can be produced by a known method such as a hot melt method or a solvent method.
 プリプレグの厚さは、上述の樹脂シートにおける樹脂組成物層と同様の範囲とし得る。 The thickness of the prepreg can be in the same range as the resin composition layer in the above-mentioned resin sheet.
 本発明のシート状積層材料は、プリント配線板の絶縁層を形成するため(プリント配線板の絶縁層用)に好適に使用することができ、プリント配線板の層間絶縁層を形成するため(プリント配線板の層間絶縁層用)により好適に使用することができる。 The sheet-shaped laminated material of the present invention can be suitably used for forming an insulating layer of a printed wiring board (for an insulating layer of a printed wiring board), and for forming an interlayer insulating layer of a printed wiring board (printed). It can be more preferably used for the interlayer insulating layer of the wiring board).
<プリント配線板>
 本発明のプリント配線板は、本発明の樹脂組成物を硬化して得られる硬化物からなる絶縁層を含む。
<Printed wiring board>
The printed wiring board of the present invention includes an insulating layer made of a cured product obtained by curing the resin composition of the present invention.
 プリント配線板は、例えば、上述の樹脂シートを用いて、下記(I)及び(II)の工程を含む方法により製造することができる。
 (I)内層基板上に、樹脂シートを、樹脂シートの樹脂組成物層が内層基板と接合するように積層する工程
 (II)樹脂組成物層を硬化(例えば熱硬化)して絶縁層を形成する工程
The printed wiring board can be manufactured, for example, by using the above-mentioned resin sheet by a method including the following steps (I) and (II).
(I) A step of laminating a resin sheet on an inner layer substrate so that the resin composition layer of the resin sheet is bonded to the inner layer substrate (II) The resin composition layer is cured (for example, thermosetting) to form an insulating layer. Process to do
 工程(I)で用いる「内層基板」とは、プリント配線板の基板となる部材であって、例えば、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等が挙げられる。また、該基板は、その片面又は両面に導体層を有していてもよく、この導体層はパターン加工されていてもよい。基板の片面または両面に導体層(回路)が形成された内層基板は「内層回路基板」ということがある。またプリント配線板を製造する際に、さらに絶縁層及び/又は導体層が形成されるべき中間製造物も本発明でいう「内層基板」に含まれる。プリント配線板が部品内蔵回路板である場合、部品を内蔵した内層基板を使用してもよい。 The "inner layer substrate" used in the step (I) is a member that becomes a substrate of a printed wiring board, and is, for example, a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, and a thermosetting polyphenylene ether substrate. And so on. Further, the substrate may have a conductor layer on one side or both sides thereof, and the conductor layer may be patterned. An inner layer board in which a conductor layer (circuit) is formed on one side or both sides of the board may be referred to as an "inner layer circuit board". Further, an intermediate product in which an insulating layer and / or a conductor layer should be formed when the printed wiring board is manufactured is also included in the "inner layer substrate" in the present invention. When the printed wiring board is a circuit board with built-in components, an inner layer board containing built-in components may be used.
 内層基板と樹脂シートの積層は、例えば、支持体側から樹脂シートを内層基板に加熱圧着することにより行うことができる。樹脂シートを内層基板に加熱圧着する部材(以下、「加熱圧着部材」ともいう。)としては、例えば、加熱された金属板(SUS鏡板等)又は金属ロール(SUSロール)等が挙げられる。なお、加熱圧着部材を樹脂シートに直接プレスするのではなく、内層基板の表面凹凸に樹脂シートが十分に追随するよう、耐熱ゴム等の弾性材を介してプレスするのが好ましい。 The inner layer substrate and the resin sheet can be laminated, for example, by heat-pressing the resin sheet to the inner layer substrate from the support side. Examples of the member for heat-pressing the resin sheet to the inner layer substrate (hereinafter, also referred to as “heat-bonding member”) include a heated metal plate (SUS end plate or the like) or a metal roll (SUS roll). It is preferable not to press the heat-bonded member directly onto the resin sheet, but to press it through an elastic material such as heat-resistant rubber so that the resin sheet sufficiently follows the surface irregularities of the inner layer substrate.
 内層基板と樹脂シートの積層は、真空ラミネート法により実施してよい。真空ラミネート法において、加熱圧着温度は、好ましくは60℃~160℃、より好ましくは80℃~140℃の範囲であり、加熱圧着圧力は、好ましくは0.098MPa~1.77MPa、より好ましくは0.29MPa~1.47MPaの範囲であり、加熱圧着時間は、好ましくは20秒間~400秒間、より好ましくは30秒間~300秒間の範囲である。積層は、好ましくは圧力26.7hPa以下の減圧条件下で実施され得る。 The inner layer substrate and the resin sheet may be laminated by the vacuum laminating method. In the vacuum laminating method, the heat crimping temperature is preferably in the range of 60 ° C. to 160 ° C., more preferably 80 ° C. to 140 ° C., and the heat crimping pressure is preferably 0.098 MPa to 1.77 MPa, more preferably 0. It is in the range of .29 MPa to 1.47 MPa, and the heat crimping time is preferably in the range of 20 seconds to 400 seconds, more preferably 30 seconds to 300 seconds. Lamination can be carried out under reduced pressure conditions preferably with a pressure of 26.7 hPa or less.
 積層は、市販の真空ラミネーターによって行うことができる。市販の真空ラミネーターとしては、例えば、名機製作所社製の真空加圧式ラミネーター、ニッコー・マテリアルズ社製のバキュームアップリケーター、バッチ式真空加圧ラミネーター等が挙げられる。 Lamination can be performed by a commercially available vacuum laminator. Examples of the commercially available vacuum laminator include a vacuum pressurizing laminator manufactured by Meiki Co., Ltd., a vacuum applicator manufactured by Nikko Materials, and a batch type vacuum pressurizing laminator.
 積層の後に、常圧下(大気圧下)、例えば、加熱圧着部材を支持体側からプレスすることにより、積層された樹脂シートの平滑化処理を行ってもよい。平滑化処理のプレス条件は、上記積層の加熱圧着条件と同様の条件とすることができる。平滑化処理は、市販のラミネーターによって行うことができる。なお、積層と平滑化処理は、上記の市販の真空ラミネーターを用いて連続的に行ってもよい。 After laminating, the laminated resin sheet may be smoothed by pressing under normal pressure (under atmospheric pressure), for example, from the support side. The press conditions for the smoothing treatment can be the same as the heat-bonding conditions for the above-mentioned lamination. The smoothing process can be performed by a commercially available laminator. The laminating and smoothing treatment may be continuously performed using the above-mentioned commercially available vacuum laminator.
 支持体は、工程(I)と工程(II)の間に除去してもよく、工程(II)の後に除去してもよい。 The support may be removed between steps (I) and step (II), or may be removed after step (II).
 工程(II)において、樹脂組成物層を硬化(例えば熱硬化)して、樹脂組成物の硬化物からなる絶縁層を形成する。樹脂組成物層の硬化条件は特に限定されず、プリント配線板の絶縁層を形成するに際して通常採用される条件を使用してよい。 In step (II), the resin composition layer is cured (for example, thermosetting) to form an insulating layer made of a cured product of the resin composition. The curing conditions of the resin composition layer are not particularly limited, and the conditions usually adopted when forming the insulating layer of the printed wiring board may be used.
 例えば、樹脂組成物層の熱硬化条件は、樹脂組成物の種類等によっても異なるが、一実施形態において、硬化温度は好ましくは120℃~240℃、より好ましくは150℃~220℃、さらに好ましくは170℃~210℃である。硬化時間は好ましくは5分間~120分間、より好ましくは10分間~100分間、さらに好ましくは15分間~100分間とすることができる。 For example, the thermosetting conditions of the resin composition layer differ depending on the type of the resin composition and the like, but in one embodiment, the curing temperature is preferably 120 ° C. to 240 ° C., more preferably 150 ° C. to 220 ° C., still more preferable. Is 170 ° C to 210 ° C. The curing time can be preferably 5 minutes to 120 minutes, more preferably 10 minutes to 100 minutes, and even more preferably 15 minutes to 100 minutes.
 樹脂組成物層を熱硬化させる前に、樹脂組成物層を硬化温度よりも低い温度にて予備加熱してもよい。例えば、樹脂組成物層を熱硬化させるのに先立ち、50℃~120℃、好ましくは60℃~115℃、より好ましくは70℃~110℃の温度にて、樹脂組成物層を5分間以上、好ましくは5分間~150分間、より好ましくは15分間~120分間、さらに好ましくは15分間~100分間予備加熱してもよい。 Before the resin composition layer is thermally cured, the resin composition layer may be preheated at a temperature lower than the curing temperature. For example, prior to thermosetting the resin composition layer, the resin composition layer is heated at a temperature of 50 ° C. to 120 ° C., preferably 60 ° C. to 115 ° C., more preferably 70 ° C. to 110 ° C. for 5 minutes or more. Preheating may be preferably 5 to 150 minutes, more preferably 15 to 120 minutes, still more preferably 15 to 100 minutes.
 プリント配線板を製造するに際しては、(III)絶縁層に穴あけする工程、(IV)絶縁層を粗化処理する工程、(V)導体層を形成する工程をさらに実施してもよい。これらの工程(III)乃至工程(V)は、プリント配線板の製造に用いられる、当業者に公知の各種方法に従って実施してよい。なお、支持体を工程(II)の後に除去する場合、該支持体の除去は、工程(II)と工程(III)との間、工程(III)と工程(IV)の間、又は工程(IV)と工程(V)との間に実施してよい。また、必要に応じて、工程(II)~工程(V)の絶縁層及び導体層の形成を繰り返して実施し、多層配線板を形成してもよい。 When manufacturing a printed wiring board, (III) a step of drilling a hole in the insulating layer, (IV) a step of roughening the insulating layer, and (V) a step of forming a conductor layer may be further carried out. These steps (III) to (V) may be carried out according to various methods known to those skilled in the art used for manufacturing a printed wiring board. When the support is removed after the step (II), the support may be removed between the steps (II) and the step (III), between the steps (III) and the step (IV), or the step ( It may be carried out between IV) and step (V). Further, if necessary, the formation of the insulating layer and the conductor layer in steps (II) to (V) may be repeated to form a multilayer wiring board.
 他の実施形態において、本発明のプリント配線板は、上述のプリプレグを用いて製造することができる。製造方法は基本的に樹脂シートを用いる場合と同様である。 In another embodiment, the printed wiring board of the present invention can be manufactured by using the above-mentioned prepreg. The manufacturing method is basically the same as when a resin sheet is used.
 工程(III)は、絶縁層に穴あけする工程であり、これにより絶縁層にビアホール、スルーホール等のホールを形成することができる。工程(III)は、絶縁層の形成に使用した樹脂組成物の組成等に応じて、例えば、ドリル、レーザー、プラズマ等を使用して実施してよい。ホールの寸法や形状は、プリント配線板のデザインに応じて適宜決定してよい。 Step (III) is a step of drilling holes in the insulating layer, whereby holes such as via holes and through holes can be formed in the insulating layer. The step (III) may be carried out by using, for example, a drill, a laser, a plasma, or the like, depending on the composition of the resin composition used for forming the insulating layer. The dimensions and shape of the holes may be appropriately determined according to the design of the printed wiring board.
 工程(IV)は、絶縁層を粗化処理する工程である。通常、この工程(IV)において、スミアの除去も行われる。粗化処理の手順、条件は特に限定されず、プリント配線板の絶縁層を形成するに際して通常使用される公知の手順、条件を採用することができる。例えば、膨潤液による膨潤処理、酸化剤による粗化処理、中和液による中和処理をこの順に実施して絶縁層を粗化処理することができる。 Step (IV) is a step of roughening the insulating layer. Usually, in this step (IV), smear removal is also performed. The procedure and conditions for the roughening treatment are not particularly limited, and known procedures and conditions usually used for forming the insulating layer of the printed wiring board can be adopted. For example, the insulating layer can be roughened by performing a swelling treatment with a swelling liquid, a roughening treatment with an oxidizing agent, and a neutralization treatment with a neutralizing liquid in this order.
 粗化処理に用いる膨潤液としては特に限定されないが、アルカリ溶液、界面活性剤溶液等が挙げられ、好ましくはアルカリ溶液であり、該アルカリ溶液としては、水酸化ナトリウム溶液、水酸化カリウム溶液がより好ましい。市販されている膨潤液としては、例えば、アトテックジャパン社製の「スウェリング・ディップ・セキュリガンスP」、「スウェリング・ディップ・セキュリガンスSBU」等が挙げられる。膨潤液による膨潤処理は、特に限定されないが、例えば、30℃~90℃の膨潤液に絶縁層を1分間~20分間浸漬することにより行うことができる。絶縁層の樹脂の膨潤を適度なレベルに抑える観点から、40℃~80℃の膨潤液に絶縁層を5分間~15分間浸漬させることが好ましい。 The swelling solution used for the roughening treatment is not particularly limited, and examples thereof include an alkaline solution and a surfactant solution, preferably an alkaline solution, and the alkaline solution is more preferably a sodium hydroxide solution or a potassium hydroxide solution. preferable. Examples of commercially available swelling liquids include "Swelling Dip Security Guns P" and "Swelling Dip Security Guns SBU" manufactured by Atotech Japan. The swelling treatment with the swelling liquid is not particularly limited, but can be performed, for example, by immersing the insulating layer in the swelling liquid at 30 ° C. to 90 ° C. for 1 minute to 20 minutes. From the viewpoint of suppressing the swelling of the resin of the insulating layer to an appropriate level, it is preferable to immerse the insulating layer in a swelling liquid at 40 ° C to 80 ° C for 5 to 15 minutes.
 粗化処理に用いる酸化剤としては、特に限定されないが、例えば、水酸化ナトリウムの水溶液に過マンガン酸カリウム又は過マンガン酸ナトリウムを溶解したアルカリ性過マンガン酸溶液が挙げられる。アルカリ性過マンガン酸溶液等の酸化剤による粗化処理は、60℃~100℃に加熱した酸化剤溶液に絶縁層を10分間~30分間浸漬させて行うことが好ましい。また、アルカリ性過マンガン酸溶液における過マンガン酸塩の濃度は5質量%~10質量%が好ましい。市販されている酸化剤としては、例えば、アトテックジャパン社製の「コンセントレート・コンパクトCP」、「ドージングソリューション・セキュリガンスP」等のアルカリ性過マンガン酸溶液が挙げられる。 The oxidizing agent used for the roughening treatment is not particularly limited, and examples thereof include an alkaline permanganate solution in which potassium permanganate or sodium permanganate is dissolved in an aqueous solution of sodium hydroxide. The roughening treatment with an oxidizing agent such as an alkaline permanganate solution is preferably performed by immersing the insulating layer in an oxidizing agent solution heated to 60 ° C. to 100 ° C. for 10 to 30 minutes. The concentration of permanganate in the alkaline permanganate solution is preferably 5% by mass to 10% by mass. Examples of commercially available oxidizing agents include alkaline permanganate solutions such as "Concentrate Compact CP" and "Dozing Solution Security P" manufactured by Atotech Japan.
 また、粗化処理に用いる中和液としては、酸性の水溶液が好ましく、市販品としては、例えば、アトテックジャパン社製の「リダクションソリューション・セキュリガントP」が挙げられる。 The neutralizing solution used for the roughening treatment is preferably an acidic aqueous solution, and examples of commercially available products include "Reduction Solution Security P" manufactured by Atotech Japan.
 中和液による処理は、酸化剤による粗化処理がなされた処理面を30℃~80℃の中和液に5分間~30分間浸漬させることにより行うことができる。作業性等の点から、酸化剤による粗化処理がなされた対象物を、40℃~70℃の中和液に5分間~20分間浸漬する方法が好ましい。 The treatment with a neutralizing solution can be performed by immersing the treated surface that has been roughened with an oxidizing agent in a neutralizing solution at 30 ° C to 80 ° C for 5 to 30 minutes. From the viewpoint of workability and the like, a method of immersing the object roughened with an oxidizing agent in a neutralizing solution at 40 ° C to 70 ° C for 5 to 20 minutes is preferable.
 一実施形態において、粗化処理後の絶縁層表面の二乗平均平方根粗さ(Rq)は、好ましくは500nm以下、より好ましくは400nm以下、さらに好ましくは300nm以下である。下限については特に限定されるものではなく、例えば、1nm以上、2nm以上等とし得る。絶縁層表面の二乗平均平方根粗さ(Rq)は、非接触型表面粗さ計を用いて測定することができる。 In one embodiment, the root mean square roughness (Rq) of the surface of the insulating layer after the roughening treatment is preferably 500 nm or less, more preferably 400 nm or less, still more preferably 300 nm or less. The lower limit is not particularly limited and may be, for example, 1 nm or more and 2 nm or more. The root mean square roughness (Rq) of the insulating layer surface can be measured using a non-contact surface roughness meter.
 工程(V)は、導体層を形成する工程であり、絶縁層上に導体層を形成する。導体層に使用する導体材料は特に限定されない。好適な実施形態では、導体層は、金、白金、パラジウム、銀、銅、アルミニウム、コバルト、クロム、亜鉛、ニッケル、チタン、タングステン、鉄、スズ及びインジウムからなる群から選択される1種以上の金属を含む。導体層は、単金属層であっても合金層であってもよく、合金層としては、例えば、上記の群から選択される2種以上の金属の合金(例えば、ニッケル・クロム合金、銅・ニッケル合金及び銅・チタン合金)から形成された層が挙げられる。中でも、導体層形成の汎用性、コスト、パターニングの容易性等の観点から、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅の単金属層、又はニッケル・クロム合金、銅・ニッケル合金、銅・チタン合金の合金層が好ましく、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅の単金属層、又はニッケル・クロム合金の合金層がより好ましく、銅の単金属層が更に好ましい。 Step (V) is a step of forming a conductor layer, and a conductor layer is formed on the insulating layer. The conductor material used for the conductor layer is not particularly limited. In a preferred embodiment, the conductor layer is one or more selected from the group consisting of gold, platinum, palladium, silver, copper, aluminum, cobalt, chromium, zinc, nickel, titanium, tungsten, iron, tin and indium. Contains metal. The conductor layer may be a single metal layer or an alloy layer, and the alloy layer may be, for example, an alloy of two or more metals selected from the above group (for example, nickel-chromium alloy, copper, etc.). Examples include layers formed from nickel alloys and copper-titanium alloys). Among them, from the viewpoint of versatility, cost, ease of patterning, etc. for forming a conductor layer, a single metal layer of chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver or copper, or a nickel-chromium alloy, copper, etc. Nickel alloys, copper-titanium alloy alloy layers are preferred, chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver or copper single metal layers, or nickel-chromium alloy alloy layers are more preferred, copper singles. A metal layer is more preferred.
 導体層は、単層構造であっても、異なる種類の金属若しくは合金からなる単金属層又は合金層が2層以上積層した複層構造であってもよい。導体層が複層構造である場合、絶縁層と接する層は、クロム、亜鉛若しくはチタンの単金属層、又はニッケル・クロム合金の合金層であることが好ましい。 The conductor layer may have a single-layer structure, a single metal layer made of different types of metals or alloys, or a multi-layer structure in which two or more alloy layers are laminated. When the conductor layer has a multi-layer structure, the layer in contact with the insulating layer is preferably a single metal layer of chromium, zinc or titanium, or an alloy layer of nickel-chromium alloy.
 導体層の厚さは、所望のプリント配線板のデザインによるが、一般に3μm~35μm、好ましくは5μm~30μmである。 The thickness of the conductor layer depends on the desired design of the printed wiring board, but is generally 3 μm to 35 μm, preferably 5 μm to 30 μm.
 一実施形態において、導体層は、メッキにより形成してよい。例えば、セミアディティブ法、フルアディティブ法等の従来公知の技術により絶縁層の表面にメッキして、所望の配線パターンを有する導体層を形成することができ、製造の簡便性の観点から、セミアディティブ法により形成することが好ましい。以下、導体層をセミアディティブ法により形成する例を示す。 In one embodiment, the conductor layer may be formed by plating. For example, the surface of the insulating layer can be plated by a conventionally known technique such as a semi-additive method or a full additive method to form a conductor layer having a desired wiring pattern, and the semi-additive can be manufactured from the viewpoint of ease of manufacture. It is preferably formed by the method. Hereinafter, an example of forming the conductor layer by the semi-additive method will be shown.
 まず、絶縁層の表面に、無電解メッキによりメッキシード層を形成する。次いで、形成されたメッキシード層上に、所望の配線パターンに対応してメッキシード層の一部を露出させるマスクパターンを形成する。露出したメッキシード層上に、電解メッキにより金属層を形成した後、マスクパターンを除去する。その後、不要なメッキシード層をエッチング等により除去して、所望の配線パターンを有する導体層を形成することができる。 First, a plating seed layer is formed on the surface of the insulating layer by electroless plating. Next, a mask pattern that exposes a part of the plating seed layer corresponding to a desired wiring pattern is formed on the formed plating seed layer. After forming a metal layer by electrolytic plating on the exposed plating seed layer, the mask pattern is removed. After that, the unnecessary plating seed layer can be removed by etching or the like to form a conductor layer having a desired wiring pattern.
 他の実施形態において、導体層は、金属箔を使用して形成してよい。金属箔を使用して導体層を形成する場合、工程(V)は、工程(I)と工程(II)の間に実施することが好適である。例えば、工程(I)の後、支持体を除去し、露出した樹脂組成物層の表面に金属箔を積層する。樹脂組成物層と金属箔との積層は、真空ラミネート法により実施してよい。積層の条件は、工程(I)について説明した条件と同様としてよい。次いで、工程(II)を実施して絶縁層を形成する。その後、絶縁層上の金属箔を利用して、サブトラクティブ法、モディファイドセミアディティブ法等の従来の公知の技術により、所望の配線パターンを有する導体層を形成することができる。 In other embodiments, the conductor layer may be formed using a metal leaf. When the conductor layer is formed using the metal foil, it is preferable that the step (V) is carried out between the steps (I) and the step (II). For example, after step (I), the support is removed and a metal leaf is laminated on the surface of the exposed resin composition layer. The laminating of the resin composition layer and the metal foil may be carried out by a vacuum laminating method. The laminating conditions may be the same as the conditions described for step (I). Then, step (II) is carried out to form an insulating layer. After that, the metal foil on the insulating layer can be used to form a conductor layer having a desired wiring pattern by a conventionally known technique such as a subtractive method or a modified semi-additive method.
 金属箔は、例えば、電解法、圧延法等の公知の方法により製造することができる。金属箔の市販品としては、例えば、JX日鉱日石金属社製のHLP箔、JXUT-III箔、三井金属鉱山社製の3EC-III箔、TP-III箔等が挙げられる。 The metal foil can be manufactured by a known method such as an electrolysis method or a rolling method. Examples of commercially available metal foils include HLP foils and JXUT-III foils manufactured by JX Nippon Mining & Metals Co., Ltd., 3EC-III foils and TP-III foils manufactured by Mitsui Mining & Smelting Co., Ltd.
<半導体装置>
 本発明の半導体装置は、本発明のプリント配線板を含む。本発明の半導体装置は、本発明のプリント配線板を用いて製造することができる。
<Semiconductor device>
The semiconductor device of the present invention includes the printed wiring board of the present invention. The semiconductor device of the present invention can be manufactured by using the printed wiring board of the present invention.
 半導体装置としては、電気製品(例えば、コンピューター、携帯電話、デジタルカメラ及びテレビ等)及び乗物(例えば、自動二輪車、自動車、電車、船舶及び航空機等)等に供される各種半導体装置が挙げられる。 Examples of semiconductor devices include various semiconductor devices used in electric products (for example, computers, mobile phones, digital cameras, televisions, etc.) and vehicles (for example, motorcycles, automobiles, trains, ships, aircraft, etc.).
 以下、本発明を実施例により具体的に説明する。本発明はこれらの実施例に限定されるものではない。なお、以下において、量を表す「部」及び「%」は、別途明示のない限り、それぞれ「質量部」及び「質量%」を意味する。特に温度及び圧力の指定が無い場合の温度条件及び圧力条件は、室温(23℃)及び大気圧(1atm)である。 Hereinafter, the present invention will be specifically described with reference to examples. The present invention is not limited to these examples. In the following, "parts" and "%" representing quantities mean "parts by mass" and "% by mass", respectively, unless otherwise specified. When the temperature and pressure are not specified, the temperature and pressure conditions are room temperature (23 ° C.) and atmospheric pressure (1 atm).
<合成例1:ポリイミド樹脂1>
 N,N-ジメチルアセトアミド400g中に、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物(BPADA)49.6gと、4,4’-[1,4-フェニレンビス[(1-メチルエチリデン)-4,1-フェニレンオキシ]]ビスベンゼンアミン(BPPAN)50.4gと、溶媒としてのトルエン40gとを混合することで得られるモノマー組成物を、常温、大気圧中で3時間撹拌、反応させた。これにより、ポリアミド酸の溶液を得た。
<Synthesis Example 1: Polyimide Resin 1>
In 400 g of N, N-dimethylacetamide, 49.6 g of 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propanedianhydride (BPADA) and 4,4'-[1,4 -A monomer composition obtained by mixing 50.4 g of phenylene bis [(1-methylethylidene) -4,1-phenyleneoxy]] bisbenzeneamine (BPPAN) and 40 g of toluene as a solvent is prepared at room temperature. The mixture was stirred and reacted in atmospheric pressure for 3 hours. This gave a solution of polyamic acid.
 引き続き、ポリアミド酸の溶液を昇温した後、約160℃に保持しながら、窒素気流下で縮合水をトルエンとともに共沸除去した。水分定量受器に所定量の水がたまっていること、及び、水の流出が見られなくなっていることを確認した。確認後、反応溶液を更に昇温し、200℃で1時間攪拌した。その後、冷却した。これにより、ポリイミド樹脂1(下記式(F)で表される繰り返し単位を有するポリイミド樹脂)を不揮発成分として20質量%含むワニスを得た。ポリイミド樹脂1のガラス転移温度Tgを、上述した方法にしたがって測定したところ、210℃であった。 Subsequently, after raising the temperature of the polyamic acid solution, the condensed water was azeotropically removed together with toluene under a nitrogen stream while maintaining the temperature at about 160 ° C. It was confirmed that a predetermined amount of water had accumulated in the water metering receiver and that no outflow of water was observed. After confirmation, the temperature of the reaction solution was further raised, and the mixture was stirred at 200 ° C. for 1 hour. Then it was cooled. As a result, a varnish containing 20% by mass of polyimide resin 1 (polyimide resin having a repeating unit represented by the following formula (F)) as a non-volatile component was obtained. The glass transition temperature Tg of the polyimide resin 1 was measured according to the above-mentioned method and found to be 210 ° C.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
<実施例1>
 イソプロピリデン基含有マレイミド化合物(日本化薬社製「MIR-5000-60T」、不揮発成分60質量%のトルエン溶液、主成分(不揮発成分):下記式(A)で表されるマレイミド化合物)23部、液状のナフタレン骨格含有エポキシ樹脂(DIC社製「HP-4032-SS」、エポキシ当量144g/eq.)10部、ジシクロペンタジエン型ジフェノール構造を含む活性エステル硬化剤(DIC社製「HPC-8000-65T」、不揮発成分65質量%のトルエン溶液、活性エステル基当量223g/eq.)30部、無機充填材(アミン系アルコキシシラン化合物(信越化学工業社製「KBM573」)で表面処理された球形シリカ(アドマテックス社製「SO-C2」、平均粒径0.5μm、比表面積5.8m/g))80部、及び、硬化促進剤(四国化成社製のイミダゾール化合物「1B2PZ」)0.5部を混合し、高速回転ミキサーを用いて均一に分散して、樹脂組成物(樹脂ワニス)を得た。
<Example 1>
23 parts of an isopropyridene group-containing maleimide compound (“MIR-5000-60T” manufactured by Nippon Kayaku Co., Ltd., a toluene solution of 60% by mass of a non-volatile component, a main component (non-volatile component): a maleimide compound represented by the following formula (A)) , Liquid naphthalene skeleton-containing epoxy resin (DIC's "HP-4032-SS", epoxy equivalent 144 g / eq.) 10 parts, active ester curing agent containing dicyclopentadiene type diphenol structure (DIC's "HPC-" 8000-65T ”, a toluene solution of 65% by mass of the non-volatile component, 30 parts of active ester group equivalent 223 g / eq.), And an inorganic filler (amine-based epoxysilane compound (“KBM573 ”manufactured by Shinetsu Chemical Industry Co., Ltd.)” 80 parts of spherical silica ("SO-C2" manufactured by Admatex, average particle size 0.5 μm, specific surface area 5.8 m 2 / g), and curing accelerator (imidazole compound "1B2PZ" manufactured by Shikoku Kasei Co., Ltd.) 0.5 parts were mixed and uniformly dispersed using a high-speed rotary mixer to obtain a resin composition (resin varnish).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
<実施例2>
 ジシクロペンタジエン型ジフェノール構造を含む活性エステル硬化剤(DIC社製「HPC-8000-65T」)の代わりに、ナフタレン構造を含む活性エステル化合物(DIC社製「HPC-8150-62T」、不揮発成分62質量%のトルエン溶液、活性エステル基当量229g/eq.)30部を用いたこと以外は、実施例1と同様にして、樹脂組成物(樹脂ワニス)を得た。
<Example 2>
Instead of the active ester curing agent containing a dicyclopentadiene type diphenol structure (“HPC-8000-65T” manufactured by DIC), the active ester compound containing a naphthalene structure (“HPC-8150-62T” manufactured by DIC), a non-volatile component. A resin composition (resin varnish) was obtained in the same manner as in Example 1 except that a 62 mass% toluene solution and 30 parts of an active ester group equivalent of 229 g / eq.) Were used.
<実施例3>
 イソプロピリデン基含有マレイミド化合物(日本化薬社製「MIR-5000-60T」)の使用量を23部から18部に変更し、ジシクロペンタジエン型ジフェノール構造を含む活性エステル硬化剤(DIC社製「HPC-8000-65T」)の代わりに、ナフタレン構造を含む活性エステル化合物(DIC社製「HPC-8150-62T」、不揮発成分62質量%のトルエン溶液、活性エステル基当量229g/eq.)30部を用い、さらにビフェニルアラルキル型マレイミド化合物(日本化薬社製「MIR-3000-70MT」、不揮発分70%のMEK/トルエン混合溶液)5部を用いたこと以外は、実施例1と同様にして、樹脂組成物(樹脂ワニス)を得た。
<Example 3>
The amount of the isopropyridene group-containing maleimide compound (“MIR-5000-60T” manufactured by Nippon Kayaku Co., Ltd.) was changed from 23 parts to 18 parts, and an active ester curing agent containing a dicyclopentadiene-type diphenol structure (manufactured by DIC Co., Ltd.) was changed. Instead of "HPC-8000-65T"), an active ester compound containing a naphthalene structure ("HPC-8150-62T" manufactured by DIC, a toluene solution containing 62% by mass of a non-volatile component, an active ester group equivalent of 229 g / eq.) 30 The same as in Example 1 except that 5 parts of a biphenyl aralkyl type maleimide compound (“MIR-3000-70MT” manufactured by Nippon Kayaku Co., Ltd., MEK / toluene mixed solution having a non-volatile content of 70%) was used. A resin composition (resin varnish) was obtained.
<実施例4>
 イソプロピリデン基含有マレイミド化合物(日本化薬社製「MIR-5000-60T」)の使用量を23部から21部に変更し、ジシクロペンタジエン型ジフェノール構造を含む活性エステル硬化剤(DIC社製「HPC-8000-65T」)の代わりに、ナフタレン構造を含む活性エステル化合物(DIC社製「HPC-8150-62T」、不揮発成分62質量%のトルエン溶液、活性エステル基当量229g/eq.)30部を用い、さらに液状の脂肪族マレイミド化合物(デザイナーモレキュールズ社製「BMI-1500」)2部を用いたこと以外は、実施例1と同様にして、樹脂組成物(樹脂ワニス)を得た。
<Example 4>
The amount of the isopropyridene group-containing maleimide compound (“MIR-5000-60T” manufactured by Nippon Kayaku Co., Ltd.) was changed from 23 parts to 21 parts, and the active ester curing agent containing a dicyclopentadiene type diphenol structure (manufactured by DIC Co., Ltd.) was changed. Instead of "HPC-8000-65T"), an active ester compound containing a naphthalene structure ("HPC-8150-62T" manufactured by DIC, a toluene solution containing 62% by mass of a non-volatile component, an active ester group equivalent of 229 g / eq.) 30 A resin composition (resin varnish) was obtained in the same manner as in Example 1 except that 2 parts of a liquid aliphatic maleimide compound (“BMI-1500” manufactured by Designer Molecule) was used. rice field.
<実施例5>
 ジシクロペンタジエン型ジフェノール構造を含む活性エステル硬化剤(DIC社製「HPC-8000-65T」)の代わりに、ナフタレン構造を含む活性エステル化合物(DIC社製「HPC-8150-62T」、不揮発成分62質量%のトルエン溶液、活性エステル基当量229g/eq.)25部を用い、硬化促進剤(四国化成社製のイミダゾール化合物「1B2PZ」)の使用量を0.5部から0.1部に変更し、さらにトリアジン骨格含有クレゾールノボラック系硬化剤(DIC社製「LA-3018-50P」、水酸基当量:約151、不揮発成分50%の2-メトキシプロパノール溶液)5部を用いたこと以外は、実施例1と同様にして、樹脂組成物(樹脂ワニス)を得た。
<Example 5>
Instead of the active ester curing agent containing a dicyclopentadiene type diphenol structure (“HPC-8000-65T” manufactured by DIC), the active ester compound containing a naphthalene structure (“HPC-8150-62T” manufactured by DIC), a non-volatile component. Using 62 parts by mass of a toluene solution and 25 parts of active ester group equivalent 229 g / eq. Except for the fact that 5 parts of a triazine skeleton-containing cresol novolac-based curing agent (“LA-3018-50P” manufactured by DIC, hydroxyl group equivalent: about 151, 2-methoxypropanol solution containing 50% non-volatile components) was used. A resin composition (resin varnish) was obtained in the same manner as in Example 1.
<実施例6>
 合成例1で得られたポリイミド樹脂1を2部追加したこと以外は、実施例5と同様にして、樹脂組成物(樹脂ワニス)を得た。
<Example 6>
A resin composition (resin varnish) was obtained in the same manner as in Example 5 except that two parts of the polyimide resin 1 obtained in Synthesis Example 1 were added.
<実施例7>
 アドマテックス社製「SO-C2」の使用量を80部から60部に変更し、代わりに、中空部分を有する無機充填材(アミン系アルコキシシラン化合物(信越化学工業社製「KBM573」)で表面処理された中空部分を有する球形シリカ(日揮触媒化成社製「BA-S」、平均粒径2.6μm))20部を用いたこと以外は、実施例5と同様にして、樹脂組成物(樹脂ワニス)を得た。
<Example 7>
The amount of "SO-C2" manufactured by Admatex was changed from 80 parts to 60 parts, and instead, an inorganic filler having a hollow part (amine-based alkoxysilane compound ("KBM573" manufactured by Shin-Etsu Chemical Industry Co., Ltd.) was used on the surface. The resin composition (same as in Example 5) except that 20 parts of spherical silica having a treated hollow portion (“BA-S” manufactured by JGC Catalysts and Chemicals, Inc., average particle size 2.6 μm) was used. Resin varnish) was obtained.
<比較例1>
 イソプロピリデン基含有マレイミド化合物(日本化薬社製「MIR-5000-60T」)を使用せず、ジシクロペンタジエン型ジフェノール構造を含む活性エステル硬化剤(DIC社製「HPC-8000-65T」)の代わりに、ナフタレン構造を含む活性エステル化合物(DIC社製「HPC-8150-62T」、不揮発成分62質量%のトルエン溶液、活性エステル基当量229g/eq.)30部を用い、無機充填材の使用量を80部から55部に変更したこと以外は、実施例1と同様にして、樹脂組成物(樹脂ワニス)を得た。
<Comparative Example 1>
An active ester curing agent containing a dicyclopentadiene-type diphenol structure (“HPC-8000-65T” manufactured by DIC) without using an isopropylidene group-containing maleimide compound (“MIR-5000-60T” manufactured by Nippon Kayaku Co., Ltd.). Instead of, 30 parts of an active ester compound containing a naphthalene structure (“HPC-8150-62T” manufactured by DIC, a toluene solution having a non-volatile component of 62% by mass, an active ester group equivalent of 229 g / eq.) Was used as an inorganic filler. A resin composition (resin varnish) was obtained in the same manner as in Example 1 except that the amount used was changed from 80 parts to 55 parts.
<比較例2>
 イソプロピリデン基含有マレイミド化合物(日本化薬社製「MIR-5000-60T」)の代わりに、ビフェニルアラルキル型マレイミド化合物(日本化薬社製「MIR-3000-70MT」、マレイミド基当量:275g/eq.、不揮発分70%のMEK/トルエン混合溶液)20部を用い、ジシクロペンタジエン型ジフェノール構造を含む活性エステル硬化剤(DIC社製「HPC-8000-65T」)の代わりに、ナフタレン構造を含む活性エステル化合物(DIC社製「HPC-8150-62T」、不揮発成分62質量%のトルエン溶液、活性エステル基当量229g/eq.)30部を用いたこと以外は、実施例1と同様にして、樹脂組成物(樹脂ワニス)を得た。
<Comparative Example 2>
Instead of the isopropyridene group-containing maleimide compound ("MIR-5000-60T" manufactured by Nippon Kayaku Co., Ltd.), a biphenyl aralkyl type maleimide compound ("MIR-3000-70MT" manufactured by Nippon Kayaku Co., Ltd., maleimide group equivalent: 275 g / eq) Using 20 parts of MEK / toluene mixed solution with 70% non-volatile content, a naphthalene structure was used instead of the active ester curing agent containing a dicyclopentadiene-type diphenol structure (“HPC-8000-65T” manufactured by DIC). The same as in Example 1 except that 30 parts of the active ester compound (“HPC-8150-62T” manufactured by DIC, a toluene solution containing 62% by mass of the non-volatile component, and an active ester group equivalent of 229 g / eq.) Was used. , A resin composition (resin varnish) was obtained.
<比較例3>
 イソプロピリデン基含有マレイミド化合物(日本化薬社製「MIR-5000-60T」)の代わりに、液状の脂肪族マレイミド化合物(デザイナーモレキュールズ社製「BMI-1500」、マレイミド基当量750g/eq.)14部を用い、ジシクロペンタジエン型ジフェノール構造を含む活性エステル硬化剤(DIC社製「HPC-8000-65T」)の代わりに、ナフタレン構造を含む活性エステル化合物(DIC社製「HPC-8150-62T」、不揮発成分62質量%のトルエン溶液、活性エステル基当量229g/eq.)30部を用いこと以外は、実施例1と同様にして、樹脂組成物(樹脂ワニス)を得た。
<Comparative Example 3>
Instead of the isopropyridene group-containing maleimide compound (“MIR-5000-60T” manufactured by Nippon Kayaku Co., Ltd.), a liquid aliphatic maleimide compound (“BMI-1500” manufactured by Designer Moleculars Co., Ltd., maleimide group equivalent 750 g / eq. ) 14 parts, instead of an active ester curing agent containing a dicyclopentadiene type diphenol structure (“HPC-8000-65T” manufactured by DIC), an active ester compound containing a naphthalene structure (“HPC-8150” manufactured by DIC). A resin composition (resin varnish) was obtained in the same manner as in Example 1 except that "-62T", a toluene solution containing 62% by mass of the non-volatile component, and 30 parts of an active ester group equivalent (229 g / eq.) Were used.
<試験例1:比誘電率(Dk)及び誘電正接(Df)の測定>
 支持体として、離型層を備えたポリエチレンテレフタレートフィルム(リンテック社製「AL5」、厚さ38μm)を用意した。この支持体の離型層上に、実施例及び比較例で得られた樹脂組成物(樹脂ワニス)を、乾燥後の樹脂組成物層の厚さが40μmとなるように均一に塗布した。その後、樹脂組成物を80℃~100℃(平均90℃)で4分間乾燥させて、支持体及び樹脂組成物層を含む樹脂シートを得た。
<Test Example 1: Measurement of Relative Permittivity (Dk) and Dielectric Dissipation Factor (Df)>
As a support, a polyethylene terephthalate film (“AL5” manufactured by Lintec Corporation, thickness 38 μm) having a release layer was prepared. The resin compositions (resin varnishes) obtained in Examples and Comparative Examples were uniformly applied onto the release layer of this support so that the thickness of the resin composition layer after drying was 40 μm. Then, the resin composition was dried at 80 ° C. to 100 ° C. (average 90 ° C.) for 4 minutes to obtain a resin sheet containing a support and a resin composition layer.
 得られた樹脂シートを、190℃にて90分間加熱して、樹脂組成物層を熱硬化させた。その後、支持体を剥離して、樹脂組成物の硬化物を得た。この硬化物を、幅2mm、長さ80mmの試験片に切断した。該試験片について、アジレントテクノロジーズ社製「HP8362B」を用いて、空洞共振摂動法により、測定周波数5.8GHz、測定温度23℃にて比誘電率(Dk)及び誘電正接(Df)を測定した。3本の試験片について測定を行い、その平均値を下記表1に示した。 The obtained resin sheet was heated at 190 ° C. for 90 minutes to heat-cure the resin composition layer. Then, the support was peeled off to obtain a cured product of the resin composition. This cured product was cut into test pieces having a width of 2 mm and a length of 80 mm. The relative permittivity (Dk) and the dielectric loss tangent (Df) of the test piece were measured at a measurement frequency of 5.8 GHz and a measurement temperature of 23 ° C. by a cavity resonance perturbation method using “HP8632B” manufactured by Azilent Technologies. Measurements were made for three test pieces, and the average values are shown in Table 1 below.
<試験例2:銅めっきピール強度の測定>
 (1)内層回路基板の下地処理
 内層回路基板として、内層回路(銅箔)を両面に有するガラス布基材エポキシ樹脂両面銅張積層板(銅箔の厚さ18μm、基板厚み0.4mm、パナソニック社製「R1515A」)を用意した。この内層回路基板の両面を、メック社製「CZ8101」にて1μmエッチングして、銅表面の粗化処理を行った。
<Test Example 2: Measurement of Copper Plating Peel Strength>
(1) Base treatment of inner layer circuit board As an inner layer circuit board, a glass cloth base material epoxy resin double-sided copper-clad laminate having an inner layer circuit (copper foil) on both sides (copper foil thickness 18 μm, substrate thickness 0.4 mm, Panasonic The company's "R1515A") was prepared. Both sides of this inner layer circuit board were etched by 1 μm with “CZ8101” manufactured by MEC to roughen the copper surface.
 (2)樹脂シートのラミネート
 試験例1で得た樹脂シートを、バッチ式真空加圧ラミネーター(ニッコー・マテリアルズ社製、2ステージビルドアップラミネーター、CVP700)を用いて、内層回路基板の両面にラミネートした。このラミネートは、樹脂シートの樹脂組成物層が内層回路基板と接するように実施した。また、このラミネートは、30秒間減圧して気圧を13hPa以下とし、130℃、圧力0.74MPaにて45秒間圧着させることにより、実施した。次いで、120℃、圧力0.5MPaにて75秒間、熱プレスを行った。
(2) Laminating of resin sheet The resin sheet obtained in Test Example 1 is laminated on both sides of the inner layer circuit board using a batch type vacuum pressure laminator (2-stage build-up laminator manufactured by Nikko Materials Co., Ltd., CVP700). bottom. This laminating was carried out so that the resin composition layer of the resin sheet was in contact with the inner layer circuit board. Further, this laminating was carried out by reducing the pressure for 30 seconds to a pressure of 13 hPa or less and crimping at 130 ° C. and a pressure of 0.74 MPa for 45 seconds. Then, heat pressing was performed at 120 ° C. and a pressure of 0.5 MPa for 75 seconds.
 (3)樹脂組成物の硬化
 ラミネートされた樹脂シート及び内層回路基板を130℃で30分間加熱し、続けて170℃で30分間加熱して、樹脂組成物を硬化して、絶縁層を形成した。その後、支持体を剥離して、絶縁層、内層回路基板及び絶縁層をこの順で備える積層基板を得た。
(3) Curing of Resin Composition The laminated resin sheet and the inner layer circuit board were heated at 130 ° C. for 30 minutes, and subsequently heated at 170 ° C. for 30 minutes to cure the resin composition to form an insulating layer. .. Then, the support was peeled off to obtain a laminated substrate having an insulating layer, an inner layer circuit board, and an insulating layer in this order.
 (4)粗化処理
 前記の積層基板を、膨潤液(アトテックジャパン社製のジエチレングリコールモノブチルエーテル含有のスエリングディップ・セキュリガントP(グリコールエーテル類、水酸化ナトリウムの水溶液))に、60℃で10分間浸漬した。次に、積層基板を、粗化液(アトテックジャパン社製のコンセントレート・コンパクトP(KMnO:60g/L、NaOH:40g/Lの水溶液)に、80℃で20分間浸漬した。その後で、積層基板を、中和液(アトテックジャパン社製のリダクションショリューシン・セキュリガントP(硫酸の水溶液))に、40℃で5分間浸漬した。その後、積層基板を、80℃で30分乾燥して、「評価基板A」を得た。
(4) Roughening treatment The above-mentioned laminated substrate is dipped in a swelling solution (Selling Dip Securigant P (glycol ethers, aqueous solution of sodium hydroxide) containing diethylene glycol monobutyl ether manufactured by Atotech Japan) at 60 ° C. for 10 minutes. Soaked. Next, the laminated substrate was immersed in a roughening solution (an aqueous solution of Concentrate Compact P (KMnO 4 : 60 g / L, NaOH: 40 g / L) manufactured by Atotech Japan Co., Ltd.) at 80 ° C. for 20 minutes. The laminated substrate was immersed in a neutralizing solution (reduction sholusin securigant P (aqueous solution of sulfuric acid) manufactured by Atotech Japan) at 40 ° C. for 5 minutes, and then the laminated substrate was dried at 80 ° C. for 30 minutes. Then, "evaluation substrate A" was obtained.
 (5)セミアディティブ工法によるメッキ:
 評価基板Aを、PdClを含む無電解メッキ用溶液に40℃で5分間浸漬し、次に、無電解銅メッキ液に25℃で20分間浸漬した。その後、150℃にて30分間加熱して、アニール処理を行った。その後に、エッチングレジストを形成し、エッチングによるパターン形成を行った。その後、硫酸銅電解メッキを行い、20μmの厚さで導体層を形成した。次に、アニール処理を190℃にて60分間行って、「評価基板B」を得た。
(5) Plating by semi-additive method:
The evaluation substrate A was immersed in an electroless plating solution containing PdCl 2 at 40 ° C. for 5 minutes, and then immersed in an electroless copper plating solution at 25 ° C. for 20 minutes. Then, it was heated at 150 ° C. for 30 minutes to perform annealing treatment. After that, an etching resist was formed, and a pattern was formed by etching. Then, copper sulfate electrolytic plating was performed to form a conductor layer with a thickness of 20 μm. Next, the annealing treatment was performed at 190 ° C. for 60 minutes to obtain "evaluation substrate B".
 (6)銅めっきピール強度の測定
 評価基板Bの導体層に、幅10mm、長さ100mmの矩形部分を囲む切込みを形成した。矩形部分の一端を剥がして、つかみ具(ティー・エス・イー社製、オートコム型試験機「AC-50C-SL」)で掴んだ。つかみ具により、室温中にて、50mm/分の速度で前記の矩形部分を垂直方向に引きはがし、35mmを引き剥がした時の荷重(kgf/cm)を銅めっきピール強度として測定し、下記の表1に示した。
(6) Measurement of Copper Plating Peel Strength A notch was formed in the conductor layer of the evaluation substrate B to surround a rectangular portion having a width of 10 mm and a length of 100 mm. One end of the rectangular part was peeled off and grasped with a gripping tool (autocom type testing machine "AC-50C-SL" manufactured by TSE Co., Ltd.). With a gripper, the rectangular part was peeled off in the vertical direction at a speed of 50 mm / min at room temperature, and the load (kgf / cm) when the 35 mm was peeled off was measured as the copper plating peel strength, and the following was measured. It is shown in Table 1.
<試験例3:表面粗さRaの測定>
 試験例2(4)で作製した評価基板Aの絶縁層の表面の算術平均粗さRaを測定した。測定は、非接触型表面粗さ計(ビーコインスツルメンツ社製WYKO NT3300)を用いて、VSIモード、50倍レンズにより、測定範囲を121μm×92μmとして測定した。この測定は、10か所の測定点で行い、その平均値を下記の表1に示した。
<Test Example 3: Measurement of Surface Roughness Ra>
The arithmetic average roughness Ra of the surface of the insulating layer of the evaluation substrate A produced in Test Example 2 (4) was measured. The measurement was carried out using a non-contact type surface roughness meter (WYKO NT3300 manufactured by Becoin Sturments) with a VSI mode and a 50x lens, and the measurement range was 121 μm × 92 μm. This measurement was performed at 10 measurement points, and the average value is shown in Table 1 below.
<試験例4:ガラス転移温度Tgの測定>
 試験例1で得た樹脂シートを190℃のオーブンで90分加熱して樹脂組成物層を硬化させた。その後、支持体を剥離して、樹脂組成物層の硬化物を得た。この硬化物を、長さ20mm、幅6mmに切り出して、評価用硬化物を得た。
<Test Example 4: Measurement of glass transition temperature Tg>
The resin sheet obtained in Test Example 1 was heated in an oven at 190 ° C. for 90 minutes to cure the resin composition layer. Then, the support was peeled off to obtain a cured product of the resin composition layer. This cured product was cut into a length of 20 mm and a width of 6 mm to obtain a cured product for evaluation.
 この評価用硬化物について、リガク社製の熱機械分析装置(TMA)を用い、引張加重法で25℃から250℃まで5℃/分の昇温速度で1回目のTMA曲線を得た。その後、同一の評価用硬化物について同じ測定を行い、2回目のTMA曲線を得た。2回目に得られたTMA曲線から、ガラス転移温度Tg(℃)の値を求め、下記の表1に示した。 For this cured product for evaluation, the first TMA curve was obtained at a heating rate of 5 ° C / min from 25 ° C to 250 ° C by a tensile weighting method using a thermomechanical analyzer (TMA) manufactured by Rigaku. Then, the same measurement was performed on the same cured product for evaluation, and a second TMA curve was obtained. From the TMA curve obtained the second time, the value of the glass transition temperature Tg (° C.) was obtained and shown in Table 1 below.
<試験例5:最低溶融粘度の測定>
 試験例1で得られた樹脂シートを、支持フィルムから剥がし、ユービーエム社製動的粘弾性測定装置G-3000にて周波数1Hz、歪み5度、荷重100g、昇温速度5℃/分、温度範囲60℃~180℃にて測定した。
<Test Example 5: Measurement of minimum melt viscosity>
The resin sheet obtained in Test Example 1 was peeled off from the support film, and the frequency was 1 Hz, the strain was 5 degrees, the load was 100 g, the temperature rise rate was 5 ° C / min, and the temperature was measured by the dynamic viscoelasticity measuring device G-3000 manufactured by UBM. Measurements were made in the range of 60 ° C to 180 ° C.
 実施例及び比較例の樹脂組成物の原料使用量及び不揮発成分の含有量、試験例の測定結果を下記表1に示す。 Table 1 below shows the amounts of raw materials used, the content of non-volatile components, and the measurement results of the test examples of the resin compositions of Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表1を参照すると、マレイミド化合物を用いていない比較例1では、比誘電率(Dk)が高く、銅めっきピール強度が低い値となっている。また、マレイミド化合物としてダイマージアミン骨格を含むマレイミド化合物を用いた比較例3では、ガラス転移温度(Tg)が低い値となっている。また、マレイミド化合物としてイソプロピリデン基を有さない芳香族ポリマレイミド化合物を用いた比較例2では、最低溶融粘度及び誘電正接(Df)が高い値となっている。これに対し、(A)特定マレイミド化合物、(B)活性エステル化合物、及び(C)エポキシ樹脂を含む本発明の樹脂組成物を使用した場合は、これらの課題を克服できることがわかる。 Referring to Table 1, in Comparative Example 1 in which the maleimide compound was not used, the relative permittivity (Dk) was high and the copper plating peel strength was low. Further, in Comparative Example 3 in which the maleimide compound containing a dimerdiamine skeleton was used as the maleimide compound, the glass transition temperature (Tg) was a low value. Further, in Comparative Example 2 in which the aromatic polymaleimide compound having no isopropylidene group was used as the maleimide compound, the minimum melt viscosity and the dielectric loss tangent (Df) were high. On the other hand, when the resin composition of the present invention containing (A) a specific maleimide compound, (B) an active ester compound, and (C) an epoxy resin is used, it can be seen that these problems can be overcome.
 本願は、日本国特許庁に出願された特願2020-189015(出願日2020年11月12日)を基礎としており、その内容はすべて本明細書に包含されるものとする。 This application is based on Japanese Patent Application No. 2020-189015 (filed on November 12, 2020) filed with the Japan Patent Office, the contents of which are all included in the present specification.

Claims (19)

  1.  (A)異なる芳香環の2個の芳香族炭素原子に結合したイソプロピリデン基を有するマレイミド化合物、(B)活性エステル化合物、及び(C)エポキシ樹脂を含む樹脂組成物。 A resin composition containing (A) a maleimide compound having an isopropylidene group bonded to two aromatic carbon atoms of different aromatic rings, (B) an active ester compound, and (C) an epoxy resin.
  2.  (A)成分が、式(A2):
    Figure JPOXMLDOC01-appb-C000001
    [式中、環A及び環Bは、それぞれ独立して、置換基を有していてもよい芳香環を示し;aは、1以上の整数を示す。]
    で表されるマレイミド化合物を含む、請求項1に記載の樹脂組成物。
    The component (A) is the formula (A2) :.
    Figure JPOXMLDOC01-appb-C000001
    [In the formula, rings A and B each independently represent an aromatic ring that may have a substituent; a represents an integer of 1 or more. ]
    The resin composition according to claim 1, which comprises the maleimide compound represented by.
  3.  (A)成分が、式(A-1):
    Figure JPOXMLDOC01-appb-C000002
    [式中、R及びRは、それぞれ独立して、アルキル基又はアリール基を示し;aは、1以上の整数を示し;x及びyは、それぞれ独立して、0、1、2又は3を示す。]
    で表されるマレイミド化合物を含む、請求項1又は2に記載の樹脂組成物。
    The component (A) is the formula (A-1) :.
    Figure JPOXMLDOC01-appb-C000002
    [In the formula, R 1 and R 2 independently represent an alkyl group or an aryl group; a represents an integer of 1 or more; x and y independently represent 0, 1, 2 or, respectively. 3 is shown. ]
    The resin composition according to claim 1 or 2, which comprises a maleimide compound represented by.
  4.  aが、2~10の整数である、請求項2又は3に記載の樹脂組成物。 The resin composition according to claim 2 or 3, wherein a is an integer of 2 to 10.
  5.  (A)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、3質量%~30質量%である、請求項1~4の何れか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein the content of the component (A) is 3% by mass to 30% by mass when the non-volatile component in the resin composition is 100% by mass. ..
  6.  (B)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、3質量%~30質量%である、請求項1~5の何れか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, wherein the content of the component (B) is 3% by mass to 30% by mass when the non-volatile component in the resin composition is 100% by mass. ..
  7.  (B)成分に対する(A)成分の質量比((A)成分/(B)成分)が、0.5~2である、請求項1~6の何れか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 6, wherein the mass ratio of the component (A) to the component (B) (component (A) / component (B)) is 0.5 to 2.
  8.  (C)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、1質量%~30質量%である、請求項1~7の何れか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, wherein the content of the component (C) is 1% by mass to 30% by mass when the non-volatile component in the resin composition is 100% by mass. ..
  9.  (C)成分に対する(A)成分の質量比((A)成分/(C)成分)が、0.5~3である、請求項1~8の何れか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 8, wherein the mass ratio of the component (A) to the component (C) (component (A) / component (C)) is 0.5 to 3.
  10.  さらに(D)無機充填材を含む、請求項1~9の何れか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 9, further comprising (D) an inorganic filler.
  11.  (D)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、40質量%以上である、請求項10に記載の樹脂組成物。 The resin composition according to claim 10, wherein the content of the component (D) is 40% by mass or more when the non-volatile component in the resin composition is 100% by mass.
  12.  樹脂組成物の硬化物の誘電正接(Df)が、5.8GHz、23℃で測定した場合、0.0045以下である、請求項1~11の何れか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 11, wherein the dielectric loss tangent (Df) of the cured product of the resin composition is 0.0045 or less when measured at 5.8 GHz and 23 ° C.
  13.  樹脂組成物の硬化物の比誘電率(Dk)が、5.8GHz、23℃で測定した場合、3.5以下である、請求項1~12の何れか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 12, wherein the relative permittivity (Dk) of the cured product of the resin composition is 3.5 or less when measured at 5.8 GHz and 23 ° C.
  14.  樹脂組成物の硬化物のガラス転移温度(Tg)が、140℃以上である、請求項1~13の何れか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 13, wherein the cured product of the resin composition has a glass transition temperature (Tg) of 140 ° C. or higher.
  15.  請求項1~14の何れか1項に記載の樹脂組成物の硬化物。 The cured product of the resin composition according to any one of claims 1 to 14.
  16.  請求項1~14の何れか1項に記載の樹脂組成物を含有する、シート状積層材料。 A sheet-like laminated material containing the resin composition according to any one of claims 1 to 14.
  17.  支持体と、当該支持体上に設けられた請求項1~14の何れか1項に記載の樹脂組成物から形成される樹脂組成物層と、を有する樹脂シート。 A resin sheet having a support and a resin composition layer formed from the resin composition according to any one of claims 1 to 14 provided on the support.
  18.  請求項1~14の何れか1項に記載の樹脂組成物の硬化物からなる絶縁層を備えるプリント配線板。 A printed wiring board provided with an insulating layer made of a cured product of the resin composition according to any one of claims 1 to 14.
  19.  請求項18に記載のプリント配線板を含む、半導体装置。 A semiconductor device including the printed wiring board according to claim 18.
PCT/JP2021/041792 2020-11-12 2021-11-12 Resin composition WO2022102757A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022562211A JPWO2022102757A1 (en) 2020-11-12 2021-11-12
KR1020237015905A KR20230098808A (en) 2020-11-12 2021-11-12 resin composition
CN202180076144.3A CN116406332A (en) 2020-11-12 2021-11-12 Resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-189015 2020-11-12
JP2020189015 2020-11-12

Publications (1)

Publication Number Publication Date
WO2022102757A1 true WO2022102757A1 (en) 2022-05-19

Family

ID=81602430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041792 WO2022102757A1 (en) 2020-11-12 2021-11-12 Resin composition

Country Status (5)

Country Link
JP (1) JPWO2022102757A1 (en)
KR (1) KR20230098808A (en)
CN (1) CN116406332A (en)
TW (1) TW202233757A (en)
WO (1) WO2022102757A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240110098A1 (en) * 2022-09-13 2024-04-04 Government Of The United States, As Represented By The Secretary Of The Air Force Highly aromatic and liquid-crystalline co-polyimides endcapped with aromatic groups and crosslinked products therefrom

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234328A (en) * 2013-06-18 2013-11-21 Ajinomoto Co Inc Epoxy resin composition
JP2019044128A (en) * 2017-09-06 2019-03-22 味の素株式会社 Resin composition
WO2020054526A1 (en) * 2018-09-12 2020-03-19 日本化薬株式会社 Maleimide resin, curable resin composition, and cured product thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234328A (en) * 2013-06-18 2013-11-21 Ajinomoto Co Inc Epoxy resin composition
JP2019044128A (en) * 2017-09-06 2019-03-22 味の素株式会社 Resin composition
WO2020054526A1 (en) * 2018-09-12 2020-03-19 日本化薬株式会社 Maleimide resin, curable resin composition, and cured product thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240110098A1 (en) * 2022-09-13 2024-04-04 Government Of The United States, As Represented By The Secretary Of The Air Force Highly aromatic and liquid-crystalline co-polyimides endcapped with aromatic groups and crosslinked products therefrom
US11976231B2 (en) * 2022-09-13 2024-05-07 United States Of America As Represented By The Secretary Of The Air Force Highly aromatic and liquid-crystalline co- polyimides endcapped with aromatic groups and crosslinked products therefrom

Also Published As

Publication number Publication date
KR20230098808A (en) 2023-07-04
CN116406332A (en) 2023-07-07
TW202233757A (en) 2022-09-01
JPWO2022102757A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
JP2021172756A (en) Resin composition
JP7222320B2 (en) resin composition
JP7494715B2 (en) Resin composition
JP7532932B2 (en) Resin composition
JP7192681B2 (en) resin composition
WO2022102757A1 (en) Resin composition
JP2022151212A (en) Method for manufacturing printed wiring board
JP2023068335A (en) resin composition
JP2022001628A (en) Resin composition
JP2021134337A (en) Resin composition
JP7311064B2 (en) resin composition
JP7472839B2 (en) Resin composition
JP7552662B2 (en) Resin composition
JP7560398B2 (en) Resin composition
JP7409223B2 (en) resin composition
WO2023063266A1 (en) Resin composition
JP2023068373A (en) resin composition
WO2023149521A1 (en) Resin composition, cured product, sheet-like layered material, resin sheet, printed wiring board, and semiconductor device
JP2023100523A (en) resin composition
JP2022109003A (en) resin composition
JP2022077908A (en) Resin composition
JP2023069752A (en) resin composition
JP2022141184A (en) resin composition
JP2023124504A (en) resin composition
JP2023003393A (en) resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21892002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022562211

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237015905

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21892002

Country of ref document: EP

Kind code of ref document: A1