[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022101653A1 - 自動運転制御方法及び自動運転制御装置 - Google Patents

自動運転制御方法及び自動運転制御装置 Download PDF

Info

Publication number
WO2022101653A1
WO2022101653A1 PCT/IB2020/000957 IB2020000957W WO2022101653A1 WO 2022101653 A1 WO2022101653 A1 WO 2022101653A1 IB 2020000957 W IB2020000957 W IB 2020000957W WO 2022101653 A1 WO2022101653 A1 WO 2022101653A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
stop
distance
inter
basic
Prior art date
Application number
PCT/IB2020/000957
Other languages
English (en)
French (fr)
Inventor
平松真知子
高田裕史
Original Assignee
日産自動車株式会社
ルノー エス. ア. エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス. ア. エス. filed Critical 日産自動車株式会社
Priority to JP2022561695A priority Critical patent/JP7439951B2/ja
Priority to US18/035,885 priority patent/US11912275B2/en
Priority to CN202080107183.0A priority patent/CN116547182B/zh
Priority to EP20961471.8A priority patent/EP4245625A4/en
Priority to PCT/IB2020/000957 priority patent/WO2022101653A1/ja
Publication of WO2022101653A1 publication Critical patent/WO2022101653A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/17Control of distance between vehicles, e.g. keeping a distance to preceding vehicle with provision for special action when the preceding vehicle comes to a halt, e.g. stop and go
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18154Approaching an intersection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18159Traversing an intersection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • B60W60/0017Planning or execution of driving tasks specially adapted for safety of other traffic participants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/53Road markings, e.g. lane marker or crosswalk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2754/00Output or target parameters relating to objects
    • B60W2754/10Spatial relation or speed relative to objects
    • B60W2754/30Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks

Definitions

  • the present invention relates to an automatic driving control method and an automatic driving control device.
  • JP2015-147525A since the own vehicle is not stopped in the intersection, when the reach to the intersection is less than the predetermined value, the distance between the vehicle and the preceding vehicle is calculated from the road length in the intersection (distance from the intersection entrance to the intersection exit).
  • a driving support control that can be set for a long time has been proposed.
  • an object of the present invention is a situation in which another vehicle is left behind at an intersection, particularly in an intersection lane in which a travel path, a railroad track, a sidewalk, or the like intersects a travel path on which the own vehicle travels. It is an object of the present invention to provide an automatic operation control method and an automatic operation control device which can suppress the above.
  • an automatic driving control method for stopping an own vehicle so that the inter-vehicle distance to the preceding vehicle becomes a predetermined inter-vehicle distance at the time of stopping.
  • this automatic driving control method when the stop position of the own vehicle is included in the front stop restriction area set in front of the crossing lane, the first stop is shorter than the predetermined basic stop distance.
  • the first stop control set to the hour-to-vehicle distance is executed.
  • the second stop distance is set to be longer than the basic stop distance. 2 Execute stop control.
  • FIG. 1 is a block diagram illustrating a configuration of a vehicle control system commonly applied to each embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating the automatic driving control method according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a specific scene to which the first stop control is applied.
  • FIG. 4 is a diagram illustrating an example of a specific scene to which the second stop control is applied.
  • FIG. 5 is a flowchart illustrating the automatic driving control method according to the second embodiment.
  • FIG. 6 is a flowchart illustrating the automatic driving control method according to the third embodiment.
  • FIG. 7 is a flowchart illustrating the first stop control according to the fourth embodiment.
  • FIG. 8 is a flowchart illustrating the automatic driving control method according to the fifth embodiment.
  • FIG. 1 is a block diagram illustrating a configuration of a vehicle control system commonly applied to each embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating the automatic driving control method according to the
  • FIG. 9 is a diagram showing an example of a specific scene in which the priority switching process is assumed to be executed.
  • FIG. 10 is a diagram showing an example of a map that defines the relationship between the number of vehicles in an intersection and the correction target inter-vehicle distance to be set in the automatic driving control method of the sixth embodiment.
  • FIG. 11 is a flowchart illustrating the automatic operation control method according to the seventh embodiment.
  • FIG. 12A is a diagram illustrating a modification 1.
  • FIG. 12B is a diagram illustrating a modification 2.
  • FIG. 12C is a diagram illustrating a modified example 3.
  • FIG. 12D is a diagram illustrating a modified example 4.
  • forward in the present specification means the traveling direction of the vehicle (hereinafter referred to as "own vehicle ⁇ ") to which the automatic driving control method of the embodiment should be executed (the traveling lane L1 of the own vehicle ⁇ ). It means the front in the traveling direction specified by).
  • rear means the rear in the traveling direction of the own vehicle ⁇ to which the automatic driving control method of the embodiment should be executed. Therefore, the front or rear with respect to the crossing lane Ct, which will be described later, is not universally determined, and is traveling in the traveling direction of the own vehicle ⁇ (traveling in the traveling lane L1 or traveling in the lane opposite to the traveling lane L1). ) Is determined as appropriate.
  • FIG. 1 is a diagram illustrating a configuration of a vehicle control system 10 commonly applied to each embodiment.
  • the vehicle control system 10 includes an external sensor 1, an internal sensor 2, a navigation system 3, a communication interface 4, an actuator 5, a display 6, and a controller 20.
  • the vehicle control system 10 is mounted on a vehicle (hereinafter referred to as "own vehicle ⁇ ") to which the automatic driving control method of the present embodiment should be executed.
  • the external sensor 1 is a detection device that detects the surrounding condition of the own vehicle ⁇ .
  • the external sensor 1 includes an in-vehicle camera 1a and a radar 1b.
  • the in-vehicle camera 1a is an imaging device that images the periphery of the own vehicle ⁇ .
  • the in-vehicle camera 1a is provided, for example, on the vehicle interior side of the windshield of the own vehicle ⁇ .
  • the vehicle-mounted camera 1a is composed of a monocular camera or a stereo camera.
  • the vehicle-mounted camera 1a outputs the captured peripheral image of the own vehicle ⁇ to the controller 20.
  • Radar 1b uses radio waves to detect objects such as other vehicles that exist outside the own vehicle ⁇ .
  • the radio wave is, for example, millimeter wave. More specifically, the radar 1b transmits radio waves around the own vehicle ⁇ , receives radio waves reflected by the object, and detects the object.
  • the radar 1b can output, for example, the distance or direction to an object as object information (particularly, peripheral vehicle information).
  • the radar 1b outputs the detected peripheral vehicle detection data to the controller 20.
  • a rider (LIDER: Laser Imaging Detection and Ringing) that detects an external object of the own vehicle ⁇ by using light may be mounted as the external sensor 1.
  • the internal sensor 2 is a detector that detects various information according to the traveling state of the own vehicle ⁇ .
  • the internal sensor 2 includes a vehicle speed sensor that detects the vehicle speed of the own vehicle ⁇ (hereinafter, also referred to as “own vehicle vehicle speed V ⁇ ”), an acceleration sensor that detects the acceleration of the own vehicle ⁇ , and the like.
  • the navigation system 3 is a device that obtains travel route information to a destination set on a map by an occupant such as a driver of the own vehicle ⁇ and outputs the information to the controller 20. More specifically, the navigation system 3 targets the travel route set in the own vehicle ⁇ based on the position information of the own vehicle ⁇ measured by GPS (Global Positioning System) and the map information of the predetermined map database. Obtained as route information. In addition to information on routes that can be traveled, this map information is an HD map (dynamic) that includes information such as the number of lanes or the size of the shoulder, the amount of travel of other vehicles, or the presence or absence of obstacles. Map) may be included.
  • GPS Global Positioning System
  • the communication interface 4 is composed of various communication protocols for receiving information necessary for traveling of the own vehicle ⁇ and information pointed out by the occupant from a predetermined external server and transmitting the information to the controller 20.
  • the communication interface 4 enables, for example, V2V (Vehicle to Vehicle) that enables communication between the controller 20 and another vehicle (vehicle-to-vehicle communication), and communication between the controller 20 and infrastructure equipment such as a traffic light (road-vehicle communication). It is realized by V2I (Vehicle to Infrastructure) and V2N (Vehicle to Network) that enables communication between the controller 20 and a predetermined external server (including the cloud).
  • V2V Vehicle to Vehicle
  • V2N Vehicle to Network
  • the actuator 5 is a device for operating the own vehicle ⁇ in a traveling state in response to a command from the controller 20.
  • the actuator 5 includes a drive actuator 5a, a brake actuator 5b, and a steering actuator 5c.
  • the drive actuator 5a is a device for adjusting the driving force of the own vehicle ⁇ .
  • the drive actuator 5a is composed of a throttle actuator or the like that adjusts the amount of air supplied to the engine (throttle opening degree).
  • the drive actuator 5a is composed of a circuit (inverter, converter, etc.) capable of adjusting the power supplied to the motor. Will be done.
  • the brake actuator 5b is a device that adjusts the braking force acting on the own vehicle ⁇ .
  • the brake actuator 5b is realized by a configuration for obtaining the braking force of the own vehicle ⁇ by frictional force (disc brake, etc.) and / or a configuration for obtaining the regenerative force of a motor mounted as a traveling drive source (regenerative braking). Will be done.
  • the steering actuator 5c is composed of an assist motor or the like that controls the steering torque in the electric power steering system.
  • the display 6 is a device arranged in the vehicle interior and displaying information based on the calculation result executed by the controller 20.
  • the display 6 may be incorporated in a device equipped with an HMI (Human Machine Interface) that receives input (touch panel operation, etc.) from the occupant of the own vehicle ⁇ .
  • HMI Human Machine Interface
  • the controller 20 as an automatic operation control device is composed of a computer equipped with a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
  • the controller 20 is programmed so that each process in the automatic operation control method described later can be executed.
  • the function of the controller 20 is realized by an ADAS (Advanced Driver Assistance Systems) / AD (Autonomous Driving) controller that performs main processing related to the operation control of the own vehicle ⁇ .
  • the function of the controller 20 may be realized by an arbitrary computer mounted on the own vehicle ⁇ such as a motor controller, an ECU (Engine Control Unit), or a vehicle control unit (VCU: Vehicle Control Unit). good.
  • the controller 20 may be configured by mounting a program on one computer hardware, or by mounting a program in which each process is distributed on a plurality of computer hardware, the plurality of computer hardware may be mounted. The hardware may be integrated to execute the automatic operation control method of each embodiment.
  • the controller 20 performs various calculations for executing the automatic driving control method of each embodiment by inputting various information received from the external sensor 1, the internal sensor 2, the navigation system 3, and the communication interface 4, and the calculation result. Is displayed on the display 6, and the actuator 5 is operated based on the calculation result.
  • the controller 20 operates the actuator 5 to operate the actuator 5 to adjust the inter-vehicle distance between the own vehicle ⁇ and the preceding vehicle ⁇ to a predetermined target inter-vehicle distance, and the vehicle speed V ⁇ of the own vehicle and the vehicle speed of the preceding vehicle ⁇ (hereinafter referred to as follows). , Also referred to as "preceding vehicle vehicle speed V ⁇ ").
  • the target inter-vehicle distance is set to a predetermined appropriate inter-vehicle distance from the viewpoint of safety and suppression of interruption of other vehicles.
  • the target inter-vehicle distance may be a fixed value or a variable value that fluctuates according to the traveling state of the own vehicle ⁇ (own vehicle vehicle speed V ⁇ , acceleration, etc.).
  • the target vehicle-to-vehicle distance at the timing when the own vehicle ⁇ stops following the stop of the preceding vehicle ⁇ (the timing when both the own vehicle speed V ⁇ and the preceding vehicle vehicle speed V ⁇ become 0) is referred to as “the inter-vehicle distance when stopped”. It is called "D ⁇ ".
  • the inter-vehicle distance D ⁇ when the vehicle is stopped is set as an appropriate value from the viewpoint of maintaining an appropriate inter-vehicle distance with respect to the preceding vehicle ⁇ in the stopped state of the own vehicle ⁇ .
  • “basic stop-to-vehicle distance D ⁇ 0 ", "first stop-to-vehicle distance D ⁇ 1 ", and “second stop-to-vehicle distance D ⁇ 1" are used as appropriate stop-to-vehicle distances D ⁇ according to various scenes. Set to one of the inter-vehicle distance D ⁇ 2 ”.
  • the basic inter-vehicle distance D ⁇ 0 when the vehicle is stopped is set to an appropriate value (for example, about 5 m) from the viewpoint that the preceding vehicle ⁇ can be avoided by turning when the own vehicle ⁇ starts traveling from the stopped state.
  • an appropriate value for example, about 5 m
  • the basic inter-vehicle distance D ⁇ 0 can be set to a value further larger than the value that can be avoided by turning the preceding vehicle ⁇ described above. ..
  • FIG. 2 is a flowchart illustrating the automatic operation control method of the present embodiment.
  • the controller 20 repeatedly executes the process described below at predetermined control cycles. Further, in the present embodiment,
  • the controller 20 acquires various input information.
  • the controller 20 includes information detected by the external sensor 1 (particularly, the distance between the own vehicle ⁇ and the preceding vehicle ⁇ , the preceding vehicle vehicle speed V ⁇ , and the like), and information detected by the internal sensor 2 (particularly). , Peripheral image, peripheral vehicle detection data, own vehicle speed V ⁇ , etc.), information obtained by the navigation system 3 (including, in particular, position information of own vehicle ⁇ , travel route information, HDD map, etc.), and communication.
  • Information obtained by the interface 4 is acquired as input information.
  • step S101 the controller 20 causes the own vehicle ⁇ to follow the stop of the preceding vehicle ⁇ and stops the own vehicle ⁇ at the stop position P ⁇ (hereinafter, also referred to as “basic stop position P ⁇ 0 ”) based on the inter-vehicle distance D ⁇ 0 at the time of basic stop. ..
  • step S200 the controller 20 determines whether or not the stop position P ⁇ of the own vehicle ⁇ is included in the front stop restriction region Rf set in front of the crossing traffic zone Ct.
  • the crossing lane Ct in the present specification is a traveling lane (including an automobile, a tram, and a railroad vehicle) of a traveling lane L1 in which the own vehicle ⁇ travels and a vehicle intersecting the traveling lane L1.
  • it means a region defined as a confluence portion of (also referred to as “crossing lane L2”).
  • the crossing lane Ct also includes a pedestrian crossing along the traveling lane L1 and a pedestrian crossing along the crossing lane L2.
  • the front stop restriction region R f is a region extending over a predetermined range to the outside of the front in the traveling lane L1 of the own vehicle ⁇ with respect to the crossing traffic zone Ct.
  • the front stop restriction region R f is a range in which if the stop position P ⁇ of the own vehicle ⁇ is included in the front stop restriction region R f , the following vehicle ⁇ is considered to hinder the forward departure from the crossing lane Ct. Is set to.
  • the front stop restriction area R f is stored in advance in a storage area that can be read by the controller 20. Considering that the length from the stop position P ⁇ of the own vehicle ⁇ to the rear end of the vehicle body differs depending on the vehicle type, etc., the extended length of the front stop restriction region R f is set to the vehicle body size of the own vehicle ⁇ (particularly in detail). It may be adjusted as appropriate according to the vehicle length and width).
  • the controller 20 determines whether or not the stop position P ⁇ is included in the front stop restriction region Rf based on the peripheral image, the peripheral vehicle detection data, and the previously known vehicle body size of the own vehicle ⁇ . Execute with reference to data and / or HD map. Then, when the controller 20 determines that the stop position P ⁇ is included in the forward stop restriction region Rf , the controller 20 executes the first stop control in step S400.
  • step S400 the controller 20 switches the inter-vehicle distance D ⁇ at the time of stop to the first inter-vehicle distance D ⁇ 1 at the time of stop, which is shorter than the basic inter-vehicle distance D ⁇ 0 at the time of stop.
  • the first stop inter-vehicle distance D ⁇ 1 changes the stop position P ⁇ to the front (direction in which the distance from the preceding vehicle ⁇ is narrowed) so that the stop position P ⁇ is not included in the front stop restriction region Rf .
  • it is a correction value determined to reduce and correct the inter-vehicle distance D ⁇ 0 when the vehicle is basically stopped.
  • the distance D ⁇ 1 at the time of the first stop is such that the distance between the preceding vehicle ⁇ and the own vehicle ⁇ is not excessively narrowed while realizing the purpose that the stop position P ⁇ is not included in the front stop restriction region Rf . It is preferable to set the length (for example, about 1/2 of the basic inter-vehicle distance D ⁇ 0 ). Then, when the controller 20 switches the stopped inter-vehicle distance D ⁇ to the first stopped inter-vehicle distance D ⁇ 1 , the process after step S700 is executed.
  • step S300 determines in step S200 that the stop position P ⁇ is not included in the front stop restriction region Rf .
  • the controller 20 determines whether or not the stop position P ⁇ is included in the rear stop restriction region Rr.
  • the rear stop restriction region Rr is an region extending over a predetermined range to the outside of the rear in the traveling lane L1 of the own vehicle ⁇ with respect to the crossing traffic zone Ct.
  • the rear stop restriction region Rr is set in a range in which if the stop position P ⁇ is included in the rear stop restriction region Rr , the retreat departure from the crossing lane Ct by the preceding vehicle ⁇ is considered to be hindered. ..
  • the rear stop restriction area Rr is stored in advance in a storage area that can be read by the controller 20.
  • the extended length of the rear stop restriction area R r may be appropriately adjusted according to the vehicle body size of the own vehicle ⁇ (particularly, the vehicle length and the vehicle width). ..
  • the controller 20 determines whether or not the stop position P ⁇ is included in the rear stop restriction region Rr, based on the peripheral image, the peripheral vehicle detection data, and the previously known vehicle body size of the own vehicle ⁇ . Execute with reference to data and / or HD map. Then, when the controller 20 determines that the stop position P ⁇ is included in the rear stop restriction region Rr, the controller 20 executes the second stop control in step S500.
  • step S500 the controller 20 switches the inter-vehicle distance D ⁇ at the time of stop to the second inter-vehicle distance D ⁇ 2 at the time of stop, which is longer than the basic inter-vehicle distance D ⁇ 0 at the time of stop.
  • the second stop-time inter-vehicle distance D ⁇ 2 changes the stop position P ⁇ to the rear (direction in which the distance from the preceding vehicle ⁇ increases) so that the stop position P ⁇ is not included in the rear stop restriction region Rr. From the viewpoint, it is a correction value defined to increase and correct the inter-vehicle distance D ⁇ 0 when the vehicle is basically stopped.
  • the second stop distance D ⁇ 2 is such that the distance between the own vehicle ⁇ and the following vehicle ⁇ is not excessively narrowed while realizing the purpose of preventing the stop position P ⁇ from being included in the rear stop restriction region Rr. It is preferable to set the length. Then, when the controller 20 switches the stopped inter-vehicle distance D ⁇ to the second stopped inter-vehicle distance D ⁇ 2 , the process after step S700 is executed.
  • step S300 determines in step S300 that the stop position P ⁇ is not included in the rear stop restriction region Rr, the controller 20 executes the process of step S600.
  • step S600 the controller 20 maintains the inter-vehicle distance D ⁇ at the time of stop at the basic inter-vehicle distance D ⁇ 0 at the time of basic stop (maintains the stop position P ⁇ at the basic stop position P ⁇ 0 ), and processes after step S700. To execute.
  • step S400 when the controller 20 completes any of the processes related to the first stop control (step S400), the second stop control (step S500), and the basic stop control (step S600) described above, the controller 20 performs the process of step S700. Run.
  • step S700 the controller 20 performs a process of displaying on the display 6 information to be notified to the occupant of the own vehicle ⁇ in response to the execution of either the first stop control or the second stop control.
  • the controller 20 has a text to the effect that "the vehicle behind cannot leave, so the distance between the vehicle and the vehicle in front is narrowed" and, if necessary, the occupant's understanding of the text.
  • the image information that assists is displayed on the display 6.
  • the controller 20 has a text to the effect that "the vehicle in front cannot leave, so there is a space between vehicles” and, if necessary, image information that assists the occupants in understanding the text. Is displayed on the display 6.
  • the specific contents displayed on the display 6 are not limited to these, and can be changed as appropriate.
  • step S800 the controller 20 determines the actual inter-vehicle distance between the preceding vehicle ⁇ and the own vehicle ⁇ by the first stop control, the second stop control, or the basic stop control (that is, at the time of the first stop).
  • the actuator 5 is operated so as to approach the vehicle-to-vehicle distance D ⁇ 1 , the second vehicle-to-vehicle distance D ⁇ 2 , or the basic vehicle-to-vehicle distance D ⁇ 0 ).
  • step S400 the controller 20 sets the stop position P ⁇ of the own vehicle ⁇ to a position ahead of the basic stop position P ⁇ 0 (hereinafter, also referred to as “first correction stop position P ⁇ 1 ”). Move the own vehicle ⁇ so as to change to).
  • step S500 the controller 20 sets the stop position P ⁇ of the own vehicle ⁇ to a position behind the basic stop position P ⁇ 0 (hereinafter, also referred to as “second correction stop position P ⁇ 2 ”). Move the own vehicle ⁇ so as to change to).
  • step S600 the controller 20 maintains the stop position P ⁇ at the basic stop position P ⁇ 0 .
  • FIG. 3 is a diagram illustrating an example of a specific scene to which the first stop control is applied.
  • FIG. 3 assumes a scene in which the basic stop position P ⁇ 0 of the own vehicle ⁇ is included in the forward stop restriction region Rf (see the own vehicle ⁇ represented by the alternate long and short dash line).
  • the inter-vehicle distance D ⁇ at the time of stopping is shorter than the basic inter-vehicle distance D ⁇ 0 at the time of stopping according to the control logic of steps S200 and S400. It will be set to D ⁇ 1 .
  • the own vehicle ⁇ moves so that the stop position P ⁇ is changed from the basic stop position P ⁇ 0 to the first correction stop position P ⁇ 1 in front, the own vehicle ⁇ (more specifically, the vehicle body of the own vehicle ⁇ ) The space between the rear end) and the crossing lane Ct can be widened to allow the following vehicle ⁇ to move forward.
  • FIG. 4 is a diagram illustrating an example of a specific scene to which the second stop control is applied.
  • FIG. 4 assumes a scene in which the basic stop position P ⁇ 0 of the own vehicle ⁇ is included in the rear stop restriction region Rr (see the own vehicle ⁇ represented by the alternate long and short dash line).
  • the inter-vehicle distance D ⁇ at the time of stopping is longer than the basic inter-vehicle distance D ⁇ 0 at the time of stopping according to the control logic of steps S200 and S500.
  • D ⁇ 2 will be set.
  • the own vehicle ⁇ moves so that the stop position P ⁇ is changed from the basic stop position P ⁇ 0 to the second correction stop position P ⁇ 2 behind, the crossing lane Ct and the own vehicle ⁇ (more specifically, the own vehicle ⁇ )
  • the space between the front end of the vehicle body of the vehicle ⁇ ) can be widened to allow the preceding vehicle ⁇ to retreat.
  • an automatic driving control method for stopping the own vehicle ⁇ so that the inter-vehicle distance with respect to the preceding vehicle ⁇ becomes a predetermined inter-vehicle distance D ⁇ at the time of stopping is provided.
  • the inter-vehicle distance D ⁇ at the time of stop is predetermined.
  • the first stop control (step S400) for setting the first stop distance D ⁇ 1 shorter than the basic stop distance D ⁇ 0 is executed.
  • the stop position P ⁇ of the own vehicle ⁇ is included in the rear stop restriction area Rr set behind the crossing traffic zone Ct (Yes in step S300)
  • the inter-vehicle distance D ⁇ at the time of stop is set as the basic inter-vehicle distance at the time of stop.
  • the second stop control (step S600) for setting the inter-vehicle distance D ⁇ 2 at the time of the second stop, which is longer than the distance D ⁇ 0 is executed.
  • the stop position P ⁇ of the own vehicle ⁇ (particularly, the basic stop position P ⁇ 0 ) is included in the front stop restriction region Rf , the own vehicle ⁇ is placed ahead of the original stop position P ⁇ (first position). It can be changed to the corrected stop position P ⁇ 1 ). Therefore, it is possible to increase the space between the own vehicle ⁇ in the stopped state and the crossing lane Ct located behind the own vehicle ⁇ . That is, since the space for the following vehicle ⁇ to move forward from the crossing lane Ct and evacuate can be secured, it is possible to prevent the following vehicle ⁇ from being left behind in the crossing lane Ct.
  • the own vehicle ⁇ can be changed to a position behind the original stop position P ⁇ (second corrected stop position P ⁇ 2 ). .. Therefore, it is possible to increase the space between the own vehicle ⁇ in the stopped state and the crossing lane Ct located in front of the own vehicle ⁇ . That is, since the space for the preceding vehicle ⁇ to retreat from the crossing lane Ct and evacuate can be secured, it is possible to prevent the preceding vehicle ⁇ from being left behind in the crossing lane Ct.
  • the traveling of the vehicle in the crossing lane Ct (for example, the vehicle in the crossing lane L2) is hindered. It is possible to improve the traffic efficiency by suppressing the situation.
  • the own vehicle ⁇ advances from the crossing lane Ct of the following vehicle ⁇ .
  • the rear stop restriction area Rr is set to a range that hinders the reverse departure of the preceding vehicle ⁇ from the crossing lane Ct when the stop position P ⁇ of the own vehicle ⁇ is included in the rear stop restriction area Rr .
  • the vehicle-to-vehicle distance D ⁇ when stopped is set to the basic inter-vehicle distance D ⁇ 0 when stopped, and the own vehicle ⁇ is stopped (step S101). Then, whether the stop position P ⁇ of the own vehicle ⁇ is included in the front stop restriction area R f , is included in the rear stop restriction area R r , or is either the front stop restriction area R f or the rear stop restriction area R r . It is determined whether or not it is included in (step S200 and step S300). Then, when it is determined that the stop position P ⁇ of the own vehicle ⁇ is included in the forward stop restriction region Rf , the first stop control is executed (Yes in step S200 and step S400).
  • step S300 and step S500 the second stop control is executed (Yes in step S300 and step S500). Further, if it is determined that the stop position P ⁇ of the own vehicle ⁇ is not included in either the front stop restriction area R f or the rear stop restriction area R r , the basic stop control for maintaining the basic stop distance D ⁇ 0 is executed. (No in step S200, No in step S300, and step S600).
  • the present embodiment is an automatic driving control device for executing the above-mentioned automatic driving control method, and the own vehicle ⁇ is stopped so that the inter-vehicle distance with respect to the preceding vehicle ⁇ becomes a predetermined inter-vehicle distance D ⁇ at the time of stopping.
  • the controller 20 as an automatic operation control device is provided.
  • the controller 20 has at least one of a first stop control unit (step S400) and a second stop control unit (step S500). Then, when the stop position P ⁇ of the own vehicle ⁇ is included in the front stop restriction region Rf set in front of the crossing traffic zone Ct (Yes in step S200), the first stop control unit is the inter-vehicle distance D ⁇ at the time of stop. Is set to the first inter-vehicle distance D ⁇ 1 when the vehicle is stopped, which is shorter than the predetermined basic inter-vehicle distance D ⁇ 0 . Further, when the stop position P ⁇ of the own vehicle ⁇ is included in the rear stop restriction area Rr set behind the crossing traffic zone Ct (Yes in step S300), the second stop control unit is between vehicles at the time of stop. The distance D ⁇ is set to the second vehicle-to-vehicle distance D ⁇ 2 , which is longer than the basic stop-to-vehicle distance D ⁇ 0 .
  • the stop position P ⁇ of the own vehicle ⁇ is predicted in advance, and the predicted stop position P ⁇ (hereinafter, also referred to as “scheduled stop position P ⁇ ⁇ ”) is the front stop restriction area R f or the rear stop restriction area R r.
  • Scheduled stop position P ⁇ ⁇ is the front stop restriction area R f or the rear stop restriction area R r.
  • FIG. 5 is a flowchart illustrating the automatic operation control method of the present embodiment.
  • the controller 20 repeatedly executes the process described below at predetermined control cycles.
  • step S100 the controller 20 acquires various input information as in the first embodiment.
  • step S110 the controller 20 determines whether or not the own vehicle ⁇ is scheduled to stop. Specifically, the controller 20 refers to the peripheral image and / or the peripheral vehicle detection data, etc., based on whether or not the preceding vehicle vehicle speed V ⁇ related to the preceding vehicle ⁇ to be followed is equal to or less than a predetermined value. , It is determined whether or not the own vehicle ⁇ is in the state of the process leading to the stop (immediately before the stop).
  • step S115 the controller 20 calculates the planned stop position P ⁇ ⁇ . Specifically, the controller 20 assumes that the inter-vehicle distance D ⁇ when stopped is set to the basic inter-vehicle distance D ⁇ 0 when the vehicle is stopped, and when the vehicle speed V ⁇ of the own vehicle, the vehicle speed V ⁇ of the preceding vehicle, and the vehicle speed difference ⁇ V ⁇ all reach 0. The position where the own vehicle ⁇ is predicted to stop is obtained as the planned stop position P ⁇ ⁇ .
  • the planned stop position P ⁇ ⁇ when the inter-vehicle distance D ⁇ when the vehicle is stopped is set to the basic inter-vehicle distance D ⁇ 0 when the vehicle is stopped is also referred to as “basic stop scheduled position P ⁇ ⁇ 0 ”.
  • step S120 the controller 20 determines whether or not the crossing lane Ct exists around the basic stop schedule position P ⁇ ⁇ 0 . Specifically, the controller 20 crosses the lane Ct around the basic stop schedule position P ⁇ ⁇ 0 based on the peripheral image, the traveling route information, the HD map, the vehicle-to-vehicle communication information, and / or the road-to-vehicle communication information. Determines if is present.
  • step S600 the controller 20 maintains a state in which the inter-vehicle distance D ⁇ when stopped is set to 0 as the basic inter-vehicle distance D ⁇ when stopped.
  • the controller 20 determines that the crossing traffic zone Ct exists around the basic stop scheduled position P ⁇ ⁇ 0 , the controller 20 executes the processing after step S200'.
  • step S200' the controller 20 determines whether or not the basic stop schedule position P ⁇ ⁇ 0 is included in the front stop restriction region R f of the crossing traffic zone Ct. Specifically, the controller 20 makes the determination with reference to peripheral images, travel route information, and / or HD maps, etc., and coordinates in a predetermined coordinate system (for example, world coordinates) of the basic stop scheduled position P ⁇ ⁇ 0 . Is included in the range that defines the front stop restriction area R f on the same coordinate system.
  • a predetermined coordinate system for example, world coordinates
  • step S400 the controller 20 switches the inter-vehicle distance D ⁇ when stopped from the basic inter-vehicle distance D ⁇ 0 when stopped to the shorter first inter-vehicle distance D ⁇ 1 when stopped.
  • the controller 20 determines that the basic stop scheduled position P ⁇ ⁇ 0 is not included in the front stop restriction area R f , the controller 20 executes the process of step S300'.
  • step S300' the controller 20 determines whether or not the basic stop schedule position P ⁇ ⁇ 0 is included in the rear stop restriction region Rr of the crossing traffic zone Ct. Specifically, the controller 20 makes the determination with reference to peripheral images, travel route information, and / or HD maps, etc., and coordinates in a predetermined coordinate system (for example, world coordinates) of the basic stop scheduled position P ⁇ ⁇ 0 . Is included in the range that defines the rear stop restriction area Rr on the same coordinate system.
  • a predetermined coordinate system for example, world coordinates
  • step S500 the controller 20 determines that the basic stop scheduled position P ⁇ ⁇ 0 is included in the rear stop restriction region Rr . That is, as in the first embodiment, the controller 20 switches the inter-vehicle distance D ⁇ when stopped from the basic inter-vehicle distance D ⁇ 0 when stopped to the second inter-vehicle distance D ⁇ 2 when stopped, which is longer than this.
  • step S600 basic stop control
  • the stop position P ⁇ (scheduled stop position P ⁇ ⁇ ) when the own vehicle ⁇ is stopped by setting the inter-vehicle distance D ⁇ at the time of stop to the basic inter-vehicle distance D ⁇ 0 at the time of stop is predicted ( Step S115). Further, it is determined whether or not the predicted stop schedule position P ⁇ ⁇ (particularly the basic stop schedule position P ⁇ ⁇ 0 ) is included in the front stop restriction area R f or the rear stop restriction area R r (step S200'and Step S300').
  • step S200'and step S400 the first stop control is executed (Yes in step S200'and step S400).
  • the second stop control is executed (Yes in step S300'and step S500).
  • the basic stop control for maintaining the basic stop distance D ⁇ 0 is executed. (No in step S200', No in step S300', and step S600).
  • the stop position P ⁇ when the vehicle actually stops is included in the front stop restriction area R f or the rear stop restriction area R r (that is, the following vehicle ⁇ or the preceding vehicle ⁇ .
  • a specific control logic for appropriately adjusting the inter-vehicle distance D ⁇ when the vehicle is stopped is realized by predicting in advance the situation that hinders the evacuation from the crossing traffic zone Ct. Therefore, since the own vehicle ⁇ can be directly stopped so as not to hinder the evacuation of the following vehicle ⁇ or the preceding vehicle ⁇ from the crossing lane Ct, the control of temporarily stopping the own vehicle ⁇ and then moving it again is omitted. be able to. As a result, while preventing the situation in which the following vehicle ⁇ or the preceding vehicle ⁇ is left behind in the crossing lane Ct, it is possible to reduce the discomfort of the occupant caused by moving the own vehicle ⁇ again after stopping.
  • FIG. 6 is a flowchart illustrating the automatic operation control method of the present embodiment.
  • the blocks of step S100, step S115, and step S120, which are common to FIG. 5, are not shown.
  • step S200 when the controller 20 determines in step S200'that the basic stop scheduled position P ⁇ ⁇ 0 is included in the front stop restriction region Rf of the crossing traffic zone Ct, the controller 20 executes the process of step S210.
  • step S210 the controller 20 determines whether or not the following vehicle ⁇ exists in the crossing traffic zone Ct. Specifically, the controller 20 refers to a peripheral image (particularly an image of the rear of the own vehicle ⁇ ), peripheral vehicle detection data, and / or vehicle-to-vehicle communication information, and the following vehicle ⁇ in the crossing lane Ct. Determines if is present.
  • step S400 determines that the controller 20 determines that the following vehicle ⁇ exists in the crossing traffic zone Ct
  • step S600 basic stop control
  • the controller 20 determines that the basic stop schedule position P ⁇ ⁇ 0 is not included in the forward stop restriction area Rf in the above step S200', and then in the subsequent step S300', the basic stop schedule position P ⁇ ⁇ 0 . Is included in the rear stop restriction area Rr , the process of step S310 is executed.
  • step S310 the controller 20 determines whether or not the preceding vehicle ⁇ exists in the crossing traffic zone Ct. Specifically, the controller 20 refers to a peripheral image (particularly an image of the front of the own vehicle ⁇ ), peripheral vehicle detection data, and / or vehicle-to-vehicle communication information, and the preceding vehicle ⁇ in the crossing lane Ct. Determines if is present.
  • step S500 when the controller 20 determines that the preceding vehicle ⁇ exists in the crossing lane Ct, the controller 20 executes the second stop control in step S500.
  • the controller 20 determines that the preceding vehicle ⁇ does not exist in the crossing traffic zone Ct, the controller 20 executes the basic stop control in step S600.
  • the stop position P ⁇ (basic stop schedule position P ⁇ ⁇ 0 ) of the own vehicle ⁇ is included in the front stop restriction region Rf , the following vehicle ⁇ is further within the crossing traffic zone Ct. Is determined (Yes in step S200'and step S210). Then, if it is determined that the following vehicle ⁇ exists, the first stop control is executed (Yes in step S210 and step S400), and if it is determined that the following vehicle ⁇ does not exist, the inter-vehicle distance D ⁇ at the time of stopping is used as the basic inter-vehicle distance D ⁇ at the time of stopping. It is maintained at 0 (No in step S210 and step S600).
  • step S300 ′ it is further determined whether or not the preceding vehicle ⁇ exists in the crossing traffic zone Ct (step S300 ′). Yes and step S310). Then, when it is determined that the preceding vehicle ⁇ exists, the second stop control is executed (Yes in step S310 and step S500), and when it is determined that the preceding vehicle ⁇ does not exist, the inter-vehicle distance D ⁇ at the time of stopping is used as the basic inter-vehicle distance D ⁇ at the time of stopping. It is maintained at 0 (No in step S310 and step S600).
  • the stop position P ⁇ of the own vehicle ⁇ is included in the front stop restriction area R f or the rear stop restriction area R r , the following vehicle ⁇ or the preceding vehicle ⁇ which may be further left behind in the crossing lane Ct.
  • a specific control logic for adjusting the inter-vehicle distance D ⁇ when the vehicle is stopped is realized. Therefore, the control for changing the stop position P ⁇ of the own vehicle ⁇ from the basic stop position P ⁇ 0 to the first corrected stop position P ⁇ 1 in the front or the second corrected stop position P ⁇ 2 in the rear is changed to the following vehicle ⁇ or the preceding vehicle ⁇ .
  • step S400 one aspect of the specific processing in the first stop control (step S400) will be described.
  • the first stop control of the present embodiment when the inter-vehicle distance D ⁇ at the time of stop is not immediately switched from the basic inter-vehicle distance D ⁇ 0 at the time of stop to the inter-vehicle distance D ⁇ 1 at the first stop, a certain condition is satisfied. Perform the switch.
  • FIG. 7 is a flowchart illustrating the first stop control of the present embodiment.
  • step S410 the controller 20 determines whether or not the following vehicle ⁇ exists in a predetermined distance range in front of the crossing lane Ct.
  • this distance range the following vehicle ⁇ is placed in the crossing lane Ct to the extent that there is a realistic possibility that the following vehicle ⁇ is blocked by the own vehicle ⁇ in the stopped state and left in the crossing lane Ct. It is set within an appropriate range from the viewpoint of judging whether or not it is approaching.
  • the controller 20 refers to a peripheral image (particularly an image of the rear of the own vehicle ⁇ ), peripheral vehicle detection data, and / or vehicle-to-vehicle communication information, and the following vehicle ⁇ exists in the above distance range. Determine whether or not to do so.
  • step S450 the controller 20 proceeds to step S450 and the inter-vehicle distance when the vehicle is stopped.
  • the D ⁇ is switched from the basic stop distance D ⁇ 0 to the first stop distance D ⁇ 1 .
  • the controller 20 executes the process of step S420.
  • step S420 the controller 20 obtains the separation distance D ⁇ Ct (see FIG. 3) from the own vehicle ⁇ to the rear crossing lane Ct with reference to the image of the vehicle-mounted camera 1a and / or the peripheral vehicle detection data. ..
  • step S430 the controller 20 determines whether or not the separation distance D ⁇ Ct is equal to or less than the predetermined threshold distance Dth .
  • the threshold distance D th is an appropriate value as a criterion for determining whether the magnitude of the separation distance D ⁇ Ct allows the following vehicle ⁇ to enter the space between the own vehicle ⁇ and the crossing lane Ct. It is stipulated in.
  • step S440 the process proceeds to step S440, and the vehicle-to-vehicle distance D ⁇ when stopped is maintained at the basic inter-vehicle distance D ⁇ 0 when stopped.
  • the process proceeds to step S450, and the inter-vehicle distance D ⁇ when the vehicle is stopped is basically used.
  • the inter-vehicle distance D ⁇ 0 when the vehicle is stopped is switched to the inter-vehicle distance D ⁇ 1 when the first vehicle is stopped.
  • step S410 it is determined whether or not the following vehicle ⁇ exists in a predetermined distance range in front of the crossing traffic zone Ct. Then, when it is determined that the following vehicle ⁇ exists in the distance range, it is determined whether or not the separation distance D ⁇ Ct from the own vehicle ⁇ to the rear crossing lane Ct exceeds a predetermined threshold distance Dth (step S420 and step). S430).
  • the inter-vehicle distance D ⁇ at the time of stopping is switched from the basic inter-vehicle distance D ⁇ 0 at the time of stopping to the inter-vehicle distance D ⁇ 1 at the first stop (No in step S430 and step S450). .. Further, if it is determined that the separation distance D ⁇ Ct does not exceed the threshold distance Dth, the inter-vehicle distance D ⁇ at the time of stopping is maintained at the basic inter-vehicle distance D ⁇ 0 at the time of stopping (Yes in step S430 and step S440).
  • the own vehicle ⁇ when the space between the own vehicle ⁇ and the crossing lane Ct is not sufficiently wide from the viewpoint of allowing the following vehicle ⁇ to enter (when the separation distance D ⁇ Ct ⁇ threshold distance Dth), the own vehicle ⁇ The stop position P ⁇ of is maintained at the basic stop position P ⁇ 0 . Therefore, even though the space between the own vehicle ⁇ and the crossing lane Ct is not wide enough, the own vehicle ⁇ stops slightly at the first correction stop position P ⁇ 1 ahead of the basic stop position P ⁇ 0 . It is possible to prevent the following vehicle ⁇ from forcibly entering the expanded space.
  • FIG. 8 is a flowchart illustrating the automatic operation control method of the present embodiment.
  • the blocks of step S100, step S115, and step S120, which are common to FIG. 5, are not shown.
  • the controller 20 executes the priority switching process for predicting the priority switching in the traveling of the crossing lane Ct in step S121.
  • the controller 20 uses peripheral images, vehicle-to-vehicle communication information, and / or road-to-vehicle communication information as input information, and gives priority to traveling of the preceding vehicle ⁇ , the own vehicle ⁇ , and the following vehicle ⁇ in the traveling lane L1. Predicts whether to switch to the crossing lane L2 (in particular, whether the driving priority in the traveling lane L1 is lost).
  • the controller 20 predicts the time until the signal display in the traveling lane L1 of the own vehicle ⁇ switches from the traffic permission display (green light) to the traffic prohibition display (red light) (hereinafter, “priority switching predicted time”). ”) Is calculated.
  • FIG. 9 is a diagram showing an example of a specific scene in which the priority switching process is expected to be executed.
  • the controller 20 displays, from the above input information, the traffic signal sv1 for displaying the progress permission / non-permission in the traveling lane L1 of the own vehicle ⁇ and the progress permission / disapproval in the crossing traveling lane L2.
  • Traffic light sv2 for vehicles pedestrian traffic light sp1 for displaying permission / non-permission at the pedestrian crossing along the traveling lane L1, and permission / disapproval of progress at the pedestrian crossing along the crossing lane L2
  • Each display of the pedestrian traffic light sp2 (red, yellow, and blue lighting / blinking state, etc.) and / or the switching pattern of each of these displays is obtained, and the priority switching predicted time is calculated.
  • step S122 the controller 20 determines whether or not the priority is switched. Specifically, the controller 20 determines that the priority is switched when the priority switching predicted time calculated in step S122 is equal to or less than the predetermined threshold time, and the priority switching predicted time exceeds the threshold time. It is judged that the priority is not switched to. In this threshold time, when the basic stop scheduled position P ⁇ ⁇ 0 of the own vehicle ⁇ is included in the front stop restriction area R f or the rear stop restriction area R r , the preceding vehicle ⁇ or the following vehicle ⁇ is in the crossing lane.
  • the timing at which the priority of driving in the traveling lane L1 in the traveling lane L1 (that is, the traveling lane L1 of the preceding vehicle ⁇ and the following vehicle ⁇ ) is approached to the extent that a realistic possibility of being left behind in Ct is assumed. It is set at an appropriate time from the viewpoint of judging whether or not it is done.
  • step S200' the process after step S200'is executed in the same manner as in the second embodiment, and the inter-vehicle distance D ⁇ when stopped is set to the inter-vehicle distance D ⁇ 1 when stopped or the second stop. Switch to the hour-to-vehicle distance D ⁇ 2 .
  • the controller 20 determines that the priority is not switched, the controller 20 executes the basic stop control. That is, in this case, it is determined that the situation where the preceding vehicle ⁇ or the following vehicle ⁇ is not left behind in the crossing lane Ct does not occur, and the inter-vehicle distance D ⁇ when stopped is maintained at the basic inter-vehicle distance D ⁇ 0 when stopped.
  • step S122 it is determined whether or not the priority of the detected crossing lane Ct is switched (step S122), and if it is determined that the priority is not switched, the inter-vehicle distance D ⁇ at the time of stopping is set as the basic stop.
  • the inter-vehicle distance D ⁇ is maintained at 0 (No in step S122 and step S600).
  • the control for changing the stop position P ⁇ of the own vehicle ⁇ to the first correction stop position P ⁇ 1 in front of the basic stop position P ⁇ 0 or the second correction stop position P ⁇ 2 behind the basic stop position P ⁇ 0 is controlled by the following vehicle ⁇ or the preceding vehicle ⁇ .
  • each display red, yellow, and blue lighting / blinking state, etc.
  • the pedestrian signal sp1, and / or the pedestrian signal sp2 in the present embodiment.
  • the pedestrian signal sp1 and / or the pedestrian signal sp2 in the present embodiment.
  • a configuration for calculation may be adopted.
  • the controller 20 determines the magnitude of the first stop inter-vehicle distance D ⁇ 1 , the second stop inter-vehicle distance D ⁇ 2 , or both of them based on the number of vehicles existing in the crossing lane Ct. stipulate.
  • the controller 20 calculates the number of vehicles existing in the crossing lane Ct based on the peripheral image, the vehicle-to-vehicle communication information, and / or the road-to-vehicle communication information during the first stop control. ..
  • the vehicle in the crossing lane Ct to be detected includes a vehicle other than the preceding vehicle ⁇ or the following vehicle ⁇ (another vehicle further preceding the preceding vehicle ⁇ or the following vehicle ⁇ ). In addition, other vehicles that follow) are included.
  • the controller 20 determines the first inter-vehicle distance D ⁇ 1 at the time of stopping according to the number of vehicles calculated by referring to the predetermined map.
  • the controller 20 determines the second stop inter-vehicle distance D ⁇ 2 according to the number of vehicles existing in the crossing lane Ct during the second stop control.
  • FIG. 10 is a diagram showing an example of a map that defines the relationship between the number of vehicles existing in the crossing lane Ct and the first stop inter-vehicle distance D ⁇ 1 (second stop inter-vehicle distance D ⁇ 2 ) to be set. be.
  • the first stop inter-vehicle distance D ⁇ 1 (second stop inter-vehicle distance D ⁇ 2 ) becomes the basic stop inter-vehicle distance D ⁇ . It is set longer than 0 .
  • At least one of the first stop inter-vehicle distance D ⁇ 1 and the second stop inter-vehicle distance D ⁇ 2 is determined based on the number of vehicles existing in the crossing lane Ct. ..
  • the amount of changing the stop position P ⁇ of the own vehicle ⁇ from the basic stop position P ⁇ 0 can be determined according to the number of other vehicles that may actually be left behind in the crossing lane Ct. This prevents the preceding vehicle ⁇ or the following vehicle ⁇ from being left behind in the crossing lane Ct, and appropriately reduces the deviation width of the actual stop position P ⁇ with respect to the originally intended basic stop position P ⁇ 0 according to the situation. Can be made to.
  • the magnitudes of the first stop inter-vehicle distance D ⁇ 1 and the second stop inter-vehicle distance D ⁇ 2 are set to be the same. Shows. However, not limited to this, depending on the situation, the magnitudes of the first stop inter-vehicle distance D ⁇ 1 and the second stop inter-vehicle distance D ⁇ 2 with respect to the number of vehicles existing in the crossing lane Ct are different from each other. The embodiment may be adopted.
  • the seventh embodiment will be described.
  • the same elements as in any of the first to sixth embodiments are designated by the same reference numerals, and the description thereof will be omitted.
  • the inter-vehicle distance D ⁇ at the time of stopping is set to the inter-vehicle distance D ⁇ 1 at the time of the first stop or the inter-vehicle distance D ⁇ 2 at the time of the second stop and the own vehicle ⁇ is stopped
  • the inter-vehicle distance D ⁇ at the time of stopping is basically stopped.
  • An example of control that defines the timing for returning to the hour-to-vehicle distance D ⁇ 0 will be described.
  • FIG. 11 is a flowchart illustrating the automatic operation control method according to the present embodiment. For the sake of simplification of the drawings, illustration of each block up to step S800 common to FIGS. 2, 5, 6, or 8 will be omitted. That is, each process shown in FIG. 11 is started after the process of step S800.
  • step S900 the controller 20 determines whether or not the own vehicle ⁇ has stopped based on the own vehicle vehicle speed V ⁇ or the like. Then, when it is determined that the own vehicle ⁇ is not stopped, the controller 20 ends this routine, and when it is determined that the vehicle is stopped, the controller 20 executes the determinations of steps S1000 and S1010.
  • step S1000 and step S1010 the controller 20 determines whether or not the inter-vehicle distance D ⁇ when stopped is set to the inter-vehicle distance D ⁇ 1 when stopped first or the inter-vehicle distance D ⁇ 2 when stopped second. Then, in the controller 20, the inter-vehicle distance D ⁇ at the time of stopping is not set to either the inter-vehicle distance D ⁇ 1 at the first stop and the inter-vehicle distance D ⁇ 2 at the second stop (that is, the inter-vehicle distance D ⁇ 0 at the basic stop) is set. If it is determined, this routine is terminated.
  • the controller 20 determines that the inter-vehicle distance D ⁇ when stopped is set to the inter-vehicle distance D ⁇ 1 when stopped first or the inter-vehicle distance D ⁇ 2 when stopped second, the controller 20 executes the process of step S1100.
  • step S1100 the controller 20 determines whether or not a vehicle exists in the crossing lane Ct with reference to peripheral images, peripheral vehicle detection data, and / or vehicle-to-vehicle communication information.
  • the vehicle in the crossing lane Ct to be detected includes a vehicle other than the preceding vehicle ⁇ or the following vehicle ⁇ (another vehicle further preceding the preceding vehicle ⁇ or the following vehicle ⁇ ).
  • other vehicles that follow are included.
  • step S1200 when the controller 20 determines that the vehicle exists in the crossing lane Ct, in step S1200, the inter-vehicle distance D ⁇ at the time of stopping is maintained at the inter-vehicle distance D ⁇ 1 at the time of the first stop or the inter-vehicle distance D ⁇ 2 at the time of the second stop. do.
  • the inter-vehicle distance D ⁇ at the time of stopping is set to the inter-vehicle distance D ⁇ 1 at the first stop or the inter-vehicle distance D ⁇ 2 at the second stop to the basic inter-vehicle distance D ⁇ at the time of stop. Switch to 0 .
  • step S900 after the own vehicle ⁇ is stopped based on the first stop inter-vehicle distance D ⁇ 1 or the second stop inter-vehicle distance D ⁇ 2 (Yes in step S900), the crossing lane Ct.
  • the state in which the inter-vehicle distance D ⁇ at the time of stopping is set to the inter-vehicle distance D ⁇ 1 at the first stop or the inter-vehicle distance D ⁇ 2 at the time of the second stop is maintained until it is determined that there is no vehicle in the vehicle (steps S1100 to S1300).
  • the first corrected stop position P ⁇ 1 or the second corrected stop position P ⁇ 2 is maintained even when the preceding vehicle ⁇ moves while the own vehicle ⁇ is stopped.
  • the own vehicle ⁇ moves following the preceding vehicle ⁇ . That is, the own vehicle ⁇ maintains a relatively narrow inter-vehicle distance (1st stop inter-vehicle distance D ⁇ 1 ) or a relatively wide inter-vehicle distance (2nd stop inter-vehicle distance D ⁇ 2 ) with respect to the preceding vehicle ⁇ .
  • the preceding vehicle ⁇ or the following vehicle ⁇ more surely recognize the intention of the own vehicle ⁇ to make space for the evacuation of the following vehicle ⁇ or the preceding vehicle ⁇ from the crossing lane Ct. ..
  • FIG. 12A is a diagram illustrating a modified example of a scene to which the automatic driving control method can be applied.
  • the automatic driving control method particularly the first stop control
  • FIG. 12A shows that when the following vehicle ⁇ turns right from the crossing lane L2 toward the traveling lane L1 in the crossing lane Ct, even if the automatic driving control method of each embodiment is applied. good.
  • the automatic driving control method (particularly the second stop control) of each embodiment is applied. May be.
  • FIG. 12B is a diagram illustrating a modified example of a scene to which the automatic driving control method can be applied. As shown in the figure, when the following vehicle ⁇ turns left from the crossing lane L2 toward the traveling lane L1 in the crossing lane Ct, the automatic driving control method of each embodiment may be applied. Further, although not shown, the automatic driving control method of each embodiment may be applied when the preceding vehicle ⁇ turns left in the crossing traffic zone Ct.
  • FIG. 12C is a diagram illustrating a modified example of a scene to which the automatic driving control method can be applied.
  • the crossing lane Ct is composed of the traveling lane L1 of the own vehicle ⁇ , the sidewalk intersecting the traveling lane L1, and each traffic light (vehicle signal sv1 and pedestrian signal sp2) (crossing travel).
  • the automatic driving control method of each embodiment may be applied.
  • FIG. 12D is a diagram illustrating a modified example of a scene to which the automatic driving control method can be applied.
  • the crossing lane Ct intersects the traveling lane L1 of the own vehicle ⁇ , the traveling lane L1, the railroad crossing L3, and the railroad crossing rc that determines the permission / non-permission of the traveling lane L1, and each traffic light (for vehicles).
  • the automatic operation control method of each embodiment may be applied.
  • the control assuming that the following vehicle ⁇ may be left behind in the crossing traffic zone Ct (for example, the determination in step S200 in FIG. 2 and the first stop control in step S400) and the preceding vehicle ⁇ intersect.
  • An automatic driving control method that employs both controls assuming the possibility of being left behind in the lane Ct (for example, the determination in step S300 in FIG. 2 and the second stop control in step S500) has been described.
  • an automatic operation control method that employs only one of these is naturally included in the technical scope of the present invention.
  • control according to the third embodiment to the seventh embodiment is not limited to the one based on the automatic operation control method of the second embodiment, and may be performed based on the automatic operation control method of the first embodiment. ..
  • the automatic operation control program for causing the controller 20 which is a computer to execute the automatic operation control method described in each of the above embodiments, and the storage medium storing the automatic operation control program are also the specification at the time of filing in the present application. It is included in the range of the matters described in.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

先行車両に対する車間距離が所定の停車時車間距離となるように自車両を停車させる自動運転制御方法であって、自車両の停車位置が交差通行帯の前方に設定される前方停車制限領域に含まれる場合に、停車時車間距離を所定の基本停車時車間距離よりも短い第1停車時車間距離に設定する第1停車制御を実行し、及び/又は自車両の停車位置が交差通行帯の後方に設定される後方停車制限領域に含まれる場合に、停車時車間距離を基本停車時車間距離よりも長い第2停車時車間距離に設定する第2停車制御を実行する自動運転制御方法を提供する。

Description

自動運転制御方法及び自動運転制御装置
 本発明は、自動運転制御方法及び自動運転制御装置に関する。
 JP2015−147525Aでは、自車両を交差点内で停止させないため、交差点までの到達距離が所定値以下のときは、先行車両との車間距離を交差点内道路長(交差点入口から交差点出口までの距離)よりも長く設定する運転支援制御が提案されている。
 JP2015−147525Aの運転支援制御に基づいて自車両の停止させる場合、停止位置によっては他車両の交差点から離脱を妨げ、他車両が交差点内に取り残される可能性が想定される。
 このような事情に鑑み、本発明の目的は、交差点、特に、自車両が走行する走行路に対して走行路、線路若しくは歩道などが交差して成る交差通行帯において、他車両が取り残される事態を抑制し得る自動運転制御方法及び自動運転制御装置を提供することにある。
 本発明のある態様によれば、先行車両に対する車間距離が所定の停車時車間距離となるように自車両を停車させる自動運転制御方法が提供される。この自動運転制御方法では、自車両の停車位置が交差通行帯の前方に設定される前方停車制限領域に含まれる場合に、停車時車間距離を所定の基本停車時車間距離よりも短い第1停車時車間距離に設定する第1停車制御を実行する。また、自車両の停車位置が交差通行帯の後方に設定される後方停車制限領域に含まれる場合に、停車時車間距離を基本停車時車間距離よりも長い第2停車時車間距離に設定する第2停車制御を実行する。
図1は、本発明の各実施形態に共通に適用される車両制御システムの構成を説明するブロック図である。 図2は、第1実施形態による自動運転制御方法を説明するフローチャートである。 図3は、第1停車制御が適用される具体的シーンの一例を説明する図である。 図4は、第2停車制御が適用される具体的シーンの一例を説明する図である。 図5は、第2実施形態による自動運転制御方法を説明するフローチャートである。 図6は、第3実施形態による自動運転制御方法を説明するフローチャートである。 図7は、第4実施形態による第1停車制御を説明するフローチャートである。 図8は、第5実施形態による自動運転制御方法を説明するフローチャートである。 図9は、優先権切り替わり処理の実行が想定される具体的なシーンの一例を示す図である。 図10は、第6実施形態の自動運転制御方法において、交差点内の車両数と設定すべき補正目標車間距離との関係を規定するマップの一例を示す図である。 図11は、第7実施形態による自動運転制御方法を説明するフローチャートである。 図12Aは、変形例1を説明する図である。 図12Bは、変形例2を説明する図である。 図12Cは、変形例3を説明する図である。 図12Dは、変形例4を説明する図である。
 以下、図面等を参照して、本発明の各実施形態について説明する。なお、本明細書における「自動運転」は、車両のドライバによる運転操作の一部を支援する車両の動作制御(自動運転レベル=1~4)、及びドライバによる操作無しの車両の動作制御(自動運転レベル=5)の双方を含む概念である。また、本明細書における「前方」とは、実施形態の自動運転制御方法を実行すべき対象となる車両(以下では、「自車両α」と称する)の走行方向(自車両αの走行車線L1で指定されている走行方向)における前方を意味する。さらに、「後方」とは、実施形態の自動運転制御方法を実行すべき対象となる自車両αの走行方向における後方を意味する。したがって、後述する交差通行帯Ctに対する前方又は後方とは、普遍的に定まるものではなく、自車両αの走行方向(走行車線L1を走行しているか、或いはこれに対向する車線を走行している)に応じて適宜定まるものである。
 [各実施形態において共通するシステム構成]
 図1は、各実施形態に共通に適用される車両制御システム10の構成を説明する図である。
 図示のように、車両制御システム10は、外部センサ1と、内部センサ2と、ナビゲーションシステム3と、通信インターフェース4と、アクチュエータ5と、ディスプレイ6と、コントローラ20と、を備える。この車両制御システム10は、本実施形態の自動運転制御方法を実行すべき対象となる車両(以下では、「自車両α」と称する)に搭載される。
 外部センサ1は、自車両αの周辺状況を検出する検出機器である。特に、外部センサ1は、車載カメラ1a、及びレーダー1bを含む。
 車載カメラ1aは、自車両αの周辺を撮像する撮像機器である。車載カメラ1aは、例えば、自車両αのフロントガラスの車室内側に設けられる。なお、車載カメラ1aは、単眼カメラ又はステレオカメラにより構成される。車載カメラ1aは、撮像した自車両αの周辺画像をコントローラ20へ出力する。
 レーダー1bは、電波を利用して自車両αの外部に存在する他の車両などの物体を検出する。電波は、例えばミリ波である。より詳細には、レーダー1bは、電波を自車両αの周囲に送信し、物体で反射された電波を受信して物体を検出する。レーダー1bは、例えば物体までの距離又は方向を物体情報(特に、周辺車両情報)として出力することができる。レーダー1bは、検出した周辺車両検出データをコントローラ20へ出力する。なお、レーダー1bに代えて、又はレーダー1bとともに、光を利用して自車両αの外部の物体を検出するライダー(LIDER:Laser Imaging Detection and Ranging)を外部センサ1として搭載しても良い。
 内部センサ2は、自車両αの走行状態に応じた各種情報を検出する検出器である。例えば、内部センサ2は、自車両αの車速(以下では、「自車両車速Vα」とも称する)を検出する車速センサ及び自車両αの加速度を検出する加速度センサ等を含む。
 ナビゲーションシステム3は、自車両αのドライバ等の乗員によって地図上に設定された目的地までの走行ルート情報を求め、コントローラ20に出力する装置である。より具体的に、ナビゲーションシステム3は、GPS(Global Positioning System)によって測定された自車両αの位置情報と所定の地図データベースの地図情報とに基づいて、自車両αに設定される走行ルートを目標ルート情報として求める。なお、この地図情報には、走行可能な経路に関する情報に加え、車線数若しくは路肩の大きさなどの道路の態様、他車両の走行量、又は障害物の有無などの情報を含むHDマップ(ダイナミックマップ)が含まれていても良い。
 通信インターフェース4は、所定の外部サーバから自車両αの走行に必要な情報及び乗員が指摘する情報等を受信してコントローラ20に送信するための各種通信プロトコルにより構成される。通信インターフェース4は、例えば、コントローラ20と他車両との通信(車車間通信)を可能とするV2V(Vehicle to Vehicle)、コントローラ20と信号機等のインフラ設備との通信(路車間通信)を可能とするV2I(Vehicle to Infrastructure)、及びコントローラ20と所定の外部サーバ(クラウドを含む)との通信を可能とするV2N(Vehicle to Network)などにより実現される。
 アクチュエータ5は、自車両αをコントローラ20からの指令に応じた走行状態に操作するための装置である。特に、アクチュエータ5は、駆動アクチュエータ5a、ブレーキアクチュエータ5b、及びステアリングアクチュエータ5cを含む。
 駆動アクチュエータ5aは、自車両αの駆動力を調節するための装置である。特に、自車両αが走行駆動源としてエンジンを搭載している場合には、駆動アクチュエータ5aはエンジンに対する空気の供給量(スロットル開度)を調節するスロットルアクチュエータなどで構成される。一方、自車両αが走行駆動源としてモータを搭載しているハイブリッド車両又は電気自動車である場合には、駆動アクチュエータ5aはモータに供給する電力を調節可能な回路(インバータ及びコンバータなど)などで構成される。
 ブレーキアクチュエータ5bは、自車両αに作用する制動力を調節する装置である。ブレーキアクチュエータ5bは、自車両αの制動力を摩擦力によって得るための構成(ディスクブレーキなど)、及び/又は走行駆動源として搭載されるモータの回生力により得るための構成(回生ブレーキ)により実現される。
 ステアリングアクチュエータ5cは、電動パワーステアリングシステムのうちステアリングトルクを制御するアシストモータなどで構成される。
 ディスプレイ6は、車室内に配され、コントローラ20で実行された演算結果に基づく情報を表示する装置である。なお、ディスプレイ6は、自車両αの乗員からの入力(タッチパネル操作など)を受け付けるHMI(Human Machine Interface)が具備された装置に組み込まれていても良い。
 自動運転制御装置としてのコントローラ20は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、及び入出力インターフェース(I/Oインターフェース)を備えたコンピュータで構成される。そして、コントローラ20は、後述する自動運転制御方法における各処理が実行可能となるようにプログラムされている。
 コントローラ20の機能は、自車両αの運転制御に関する主要処理を行うADAS(Advanced Driver Assistance Systems)/AD(Autonomous Driving)コントローラなどにより実現される。なお、コントローラ20の機能は、これ以外に、モータコントローラ、ECU(Engine Control Unit)、又は車両制御ユニット(VCU:Vehicle Control Unit)などの自車両αに搭載される任意のコンピュータにより実現されても良い。また、コントローラ20は一台のコンピュータハードウェアにプログラムを実装させることで構成されていても良いし、複数台のコンピュータハードウェアに各処理を分散させたプログラムを実装して、当該複数のコンピュータハードウェアを統合して各実施形態の自動運転制御方法を実行する構成としても良い。
 特に、コントローラ20は、外部センサ1、内部センサ2、ナビゲーションシステム3、及び通信インターフェース4から受信する各種情報を入力として各実施形態の自動運転制御方法を実行するための各種演算を行い、演算結果をディスプレイ6に表示するとともに当該演算結果に基づいてアクチュエータ5を操作する。
 より詳細には、コントローラ20は、自車両αと先行車両βとの車間距離を所定の目標車間距離に調節する観点から、アクチュエータ5を操作して自車両車速Vαと先行車両βの車速(以下、「先行車両車速Vβ」とも称する)の差を調節する追従制御を実行する。ここで、目標車間距離は、安全性及び他車両の割り込みの抑制などの観点から予め定められた適切な大きさの車間距離に設定される。なお、目標車間距離は、固定値でも良いし、自車両αの走行状態(自車両車速Vα及び加速度等)に応じて変動する可変値であっても良い。
 特に、以下では、先行車両βの停車に追従して自車両αが停車するタイミング(自車両車速Vα及び先行車両車速Vβの双方が0となるタイミング)における目標車間距離を、「停車時車間距離Dβ」と称する。
 停車時車間距離Dβは、自車両αの停車状態において先行車両βに対して適切な車間を保つ観点から適切な値として設定される。特に、以下の各実施形態では、各種シーンに応じた適切な停車時車間距離Dβとして、「基本停車時車間距離Dβ」、「第1停車時車間距離Dβ」、及び「第2停車時車間距離Dβ」の何れかに設定する。ここで、基本停車時車間距離Dβとは、自車両αが停車状態から走行を開始する場合に先行車両βを旋回によって回避可能とする観点から適切な値(例えば、5m程度)に設定される。なお、例えば、先行車両βと自車両αの間に、法律上又は安全上の観点などから停車を禁止すべき領域(交差点内、踏切内、及び緊急車両の出入り口等の停止禁止部分など)が存在する場合、当該領域を回避して自車両αを停車させる観点から、基本停車時車間距離Dβを上述した先行車両βを旋回によって回避可能な値よりもさらに大きい値に設定することができる。
 以下、上記構成を前提として各実施形態の自動運転制御方法の詳細について説明する。
 [第1実施形態]
 以下、第1実施形態の自動運転制御方法を説明する。なお、本実施形態では、停車時車間距離Dβを基本停車時車間距離Dβに設定した状態で自車両αを停止させた後に、先行車両β又は後続車両γを交差通行帯Ctから退避させやすくするために当該自車両αの停車位置Pαを変更する制御態様について説明する。
 図2は、本実施形態の自動運転制御方法を説明するフローチャートである。なお、コントローラ20は、以下に説明する処理を所定の制御周期ごとに繰り返し実行する。また、本実施形態では、
 先ず、ステップS100において、コントローラ20は、各種入力情報を取得する。具体的に、コントローラ20は、外部センサ1で検出される情報(特に、自車両αと先行車両βとの車間距離及び先行車両車速Vβなどを含む)、内部センサ2で検出される情報(特に、周辺画像、周辺車両検出データ、及び自車両車速Vαなどを含む)、ナビゲーションシステム3により得られる情報(特に、自車両αの位置情報、走行ルート情報、及びHDDマップなどを含む)、及び通信インターフェース4により得られる情報(特に、車車間通信情報、及び路車間通信情報などを含む)を入力情報として取得する。
 ステップS101において、コントローラ20は、先行車両βの停車に追従させて、自車両αを基本停車時車間距離Dβに基づく停車位置Pα(以下、「基本停車位置Pα」とも称する)に停車させる。
 次に、ステップS200において、コントローラ20は、自車両αの停車位置Pαが交差通行帯Ctの前方に設定される前方停車制限領域Rに含まれているか否かを判定する。
 ここで、本明細書における交差通行帯Ctとは、自車両αが走行する走行車線L1と当該走行車線L1に対して交差する車両(自動車、路面電車、及び鉄道車両を含む)の走行車線(以下、「交差走行車線L2」とも称する)の合流部分として画定される領域を意味する。また、交差通行帯Ctには、走行車線L1に沿った横断歩道、及び交差走行車線L2に沿った横断歩道も含まれる。また、前方停車制限領域Rとは、交差通行帯Ctに対して自車両αの走行車線L1における前方の外側に所定範囲に亘って延在する領域である。特に、前方停車制限領域Rは、自車両αの停車位置Pαが当該前方停車制限領域Rに含まれると、後続車両γによる交差通行帯Ctからの前進離脱が阻害されると考えられる範囲に設定される。また、本実施形態において、前方停車制限領域Rは、コントローラ20により読み出し可能な記憶領域に予め記憶される。なお、自車両αの停車位置Pαから車体後端までの長さが車種などによって異なることを考慮し、前方停車制限領域Rの延在長さを自車両αの車体サイズ(特に詳細には車長及び車幅)に応じて適宜調節しても良い。
 より詳細には、コントローラ20は、停車位置Pαが前方停車制限領域Rに含まれているか否かの判定を、周辺画像、周辺車両検出データ、予め知られている自車両αの車体サイズのデータ、及び/又はHDマップなどを参照して実行する。そして、コントローラ20は、停車位置Pαが前方停車制限領域Rに含まれていると判断すると、ステップS400の第1停車制御を実行する。
 ステップS400の第1停車制御において、コントローラ20は、停車時車間距離Dβを基本停車時車間距離Dβよりも短い第1停車時車間距離Dβに切り替える。
 ここで、第1停車時車間距離Dβは、停車位置Pαが前方停車制限領域Rに含まれなくなるように、当該停車位置Pαを前方(先行車両βとの車間が狭まる方向)に変更する観点から基本停車時車間距離Dβを減少補正するように定められた補正値である。なお、第1停車時車間距離Dβは、停車位置Pαが前方停車制限領域Rに含まれなくするという目的を実現しつつ、先行車両βと自車両αの車間を過度に狭めない程度の長さ(例えば、基本停車時車間距離Dβの1/2程度)に設定することが好ましい。そして、コントローラ20は、停車時車間距離Dβを第1停車時車間距離Dβに切り替えると、ステップS700以降の処理を実行する。
 一方、コントローラ20は、上記ステップS200において停車位置Pαが前方停車制限領域Rに含まれていないと判断すると、ステップS300の処理を実行する。
 ステップS300において、コントローラ20は、停車位置Pαが後方停車制限領域Rに含まれているか否かを判定する。ここで、後方停車制限領域Rとは、交差通行帯Ctに対して自車両αの走行車線L1における後方の外側に所定範囲に亘って延在する領域である。特に、後方停車制限領域Rは、停車位置Pαが当該後方停車制限領域Rに含まれると、先行車両βによる交差通行帯Ctからの後退離脱が阻害されると考えられる範囲に設定される。本実施形態において、後方停車制限領域Rは、コントローラ20により読み出し可能な記憶領域に予め記憶される。なお、前方停車制限領域Rと同様に、自車両αの車体サイズ(特に詳細には車長及び車幅)に応じて後方停車制限領域Rの延在長さを適宜調節しても良い。
 より詳細には、コントローラ20は、停車位置Pαが後方停車制限領域Rに含まれているか否かの判定を、周辺画像、周辺車両検出データ、予め知られている自車両αの車体サイズのデータ、及び/又はHDマップなどを参照して実行する。そして、コントローラ20は、停車位置Pαが後方停車制限領域Rに含まれていると判断すると、ステップS500の第2停車制御を実行する。
 ステップS500の第2停車制御において、コントローラ20は、停車時車間距離Dβを基本停車時車間距離Dβよりも長い第2停車時車間距離Dβに切り替える。
 ここで、第2停車時車間距離Dβは、停車位置Pαが後方停車制限領域Rに含まれなくなるように、当該停車位置Pαを後方(先行車両βとの車間が広がる方向)に変更する観点から基本停車時車間距離Dβを増加補正するように定められた補正値である。なお、第2停車時車間距離Dβは、停車位置Pαが後方停車制限領域Rに含まれなくするという目的を実現しつつ、自車両αと後続車両γの車間を過度に狭めない程度の長さに設定することが好ましい。そして、コントローラ20は、停車時車間距離Dβを第2停車時車間距離Dβに切り替えると、ステップS700以降の処理を実行する。
 一方、コントローラ20は、上記ステップS300において停車位置Pαが後方停車制限領域Rに含まれていないと判断すると、ステップS600の処理を実行する。
 ステップS600の基本停車制御において、コントローラ20は、停車時車間距離Dβを基本停車時車間距離Dβに維持して(停車位置Pαを基本停車位置Pαに維持して)、ステップS700以降の処理を実行する。
 次に、コントローラ20は、上述した第1停車制御(ステップS400)、第2停車制御(ステップS500)、及び基本停車制御(ステップS600)に係る何れかの処理を終了すると、ステップS700の処理を実行する。
 ステップS700において、コントローラ20は、第1停車制御、及び第2停車制御の何れかが実行されたことに応じて自車両αの乗員に報知すべき情報をディスプレイ6に表示させる処理を行う。例えば、コントローラ20は、第1停車制御を実行した場合には、「後方の車が離脱できないため前方の車との車間を詰めます」という趣旨のテキスト及び必要に応じて当該テキストの乗員による理解を補助するイメージ情報をディスプレイ6に表示する。一方、コントローラ20は、第2停車制御を実行した場合には、「前方の車が離脱できないため車間を空けます」という趣旨のテキスト及び必要に応じて当該テキストの乗員による理解を補助するイメージ情報をディスプレイ6に表示する。なお、ディスプレイ6に表示する具体的な内容はこれらに限られず、適宜変更が可能である。
 そして、ステップS800において、コントローラ20は、先行車両βと自車両αの実際の車間距離を、第1停車制御、第2停車制御、又は基本停車制御により定められた距離(すなわち、第1停車時車間距離Dβ、第2停車時車間距離Dβ、及び基本停車時車間距離Dβの何れか)に近づけるように、アクチュエータ5を操作する。
 したがって、コントローラ20は、第1停車制御(ステップS400)を実行した場合、自車両αの停車位置Pαを基本停車位置Pαからより前方の位置(以下、「第1補正停車位置Pα」とも称する)に変更するように当該自車両αを移動させる。また、コントローラ20は、第2停車制御(ステップS500)を実行した場合、自車両αの停車位置Pαを基本停車位置Pαからより後方の位置(以下、「第2補正停車位置Pα」とも称する)に変更するように当該自車両αを移動させる。一方、コントローラ20は、基本停車制御(ステップS600)を実行した場合、停車位置Pαを基本停車位置Pαに維持する。
 次に、以上説明した本実施形態の自動運転制御方法を具体的なシーンに適用した場合における制御結果の一例を説明する。
 図3は、第1停車制御が適用される具体的シーンの一例を説明する図である。特に、図3では、自車両αの基本停車位置Pαが前方停車制限領域Rに含まれるシーンを想定している(一点二鎖線で表した自車両αを参照)。当該シーンにおいて、本実施形態の自動運転制御方法を適用すると、ステップS200及びステップS400の制御ロジックにしたがい、停車時車間距離Dβが、基本停車時車間距離Dβよりも短い第1停車時車間距離Dβに設定されることとなる。したがって、自車両αは、停車位置Pαが基本停車位置Pαから前方の第1補正停車位置Pαに変更されるように移動するので、自車両α(より詳細には自車両αの車体の後端)と交差通行帯Ctの間のスペースを、後続車両γの前進を許容するように広げることができる。
 一方、図4は、第2停車制御が適用される具体的シーンの一例を説明する図である。特に、図4では、自車両αの基本停車位置Pαが後方停車制限領域Rに含まれるシーンを想定している(一点二鎖線で表した自車両αを参照)。当該シーンにおいて、本実施形態の自動運転制御方法を適用すると、ステップS200及びステップS500の制御ロジックにしたがい、停車時車間距離Dβが、基本停車時車間距離Dβよりも長い第2停車時車間距離Dβが設定されることとなる。したがって、自車両αは、停車位置Pαが基本停車位置Pαから後方の第2補正停車位置Pαに変更されるように移動するので、交差通行帯Ctと自車両α(より詳細には自車両αの車体の前端)との間のスペースを、先行車両βの後退を許容するように広げることができる。
 以上説明した構成を有する本実施形態によれば、以下の作用効果を奏する。
 本実施形態では、先行車両βに対する車間距離が所定の停車時車間距離Dβとなるように自車両αを停車させる自動運転制御方法が提供される。
 この自動運転制御方法では、自車両αの停車位置Pαが交差通行帯Ctの前方に設定される前方停車制限領域Rに含まれる場合(ステップS200のYes)に、停車時車間距離Dβを所定の基本停車時車間距離Dβよりも短い第1停車時車間距離Dβに設定する第1停車制御(ステップS400)を実行する。また、自車両αの停車位置Pαが交差通行帯Ctに対して後方に設定される後方停車制限領域Rに含まれる場合(ステップS300のYes)に、停車時車間距離Dβを基本停車時車間距離Dβよりも長い第2停車時車間距離Dβに設定する第2停車制御(ステップS600)を実行する。
 これにより、自車両αの停車位置Pα(特に、基本停車位置Pα)が前方停車制限領域Rに含まれる場合には、自車両αを本来の停車位置Pαよりも前方の位置(第1補正停車位置Pα)に変更することができる。このため、停車状態の自車両αと該自車両αの後方に位置する交差通行帯Ctの間のスペースを広げることができる。すなわち、後続車両γが交差通行帯Ctから前進して退避するスペースを確保することができるので、後続車両γが交差通行帯Ct内に取り残される事態を防止することができる。
 一方、基本停車位置Pαが後方停車制限領域Rに含まれる場合には、自車両αを本来の停車位置Pαよりも後方の位置(第2補正停車位置Pα)に変更することができる。このため、停車状態の自車両αと該自車両αの前方に位置する交差通行帯Ctの間のスペースを広げることができる。すなわち、先行車両βが交差通行帯Ctから後退して退避するスペースを確保することができるので、先行車両βが交差通行帯Ct内に取り残される事態を防止することができる。
 また、このように、先行車両β又は後続車両γが交差通行帯Ct内に取り残されることを防止することにより、交差通行帯Ct内における車両(例えば、交差走行車線L2における車両)の走行が阻害される事態も抑制され、交通効率の向上も図ることができる。
 特に、本実施形態では、前方停車制限領域Rを、自車両αの停車位置Pαが当該前方停車制限領域Rに含まれると該自車両αが後続車両γの交差通行帯Ctからの前進離脱を阻害する範囲に設定する。また、後方停車制限領域Rを、自車両αの停車位置Pαが当該後方停車制限領域Rに含まれると先行車両βの交差通行帯Ctからの後退離脱を阻害する範囲に設定する。
 これにより、自車両αが後続車両γ又は先行車両βの交差通行帯Ctからの退避を阻害し得る状態で停車するシーンを適確に検出し、当該シーンにおいて当該自車両αの停車位置Pαを適切に変更するための具体的な制御ロジックが実現される。
 さらに、本実施形態の自動運転制御方法では、停車時車間距離Dβを基本停車時車間距離Dβに設定して自車両αを停車させる(ステップS101)。そして、自車両αの停車位置Pαが前方停車制限領域Rに含まれているか、後方停車制限領域Rに含まれているか、又は前方停車制限領域R及び後方停車制限領域Rの何れにも含まれていないかを判定する(ステップS200及びステップS300)。そして、自車両αの停車位置Pαが前方停車制限領域Rに含まれていると判断すると、第1停車制御を実行する(ステップS200のYes及びステップS400)。また、自車両αの停車位置Pαが後方停車制限領域Rに含まれていないと判断すると、第2停車制御を実行する(ステップS300のYes及びステップS500)。さらに、自車両αの停車位置Pαが前方停車制限領域R及び後方停車制限領域Rの何れにも含まれていないと判断すると、基本停車時車間距離Dβを維持する基本停車制御を実行する(ステップS200のNo、ステップS300のNo、及びステップS600)。
 これにより、自車両αを基本停車位置Pαに一度停車させた後であっても、当該自車両αが後続車両γ又は先行車両βの交差通行帯Ctからの退避を阻害し得るシーンにおいては停車位置Pαを変更する一方、そうでないシーンでは自車両αの停車位置Pαを本来の基本停車位置Pαに維持するための具体的な制御ロジックが実現される。
 また、本実施形態によれば、上記自動運転制御方法を実行するための自動運転制御装置であって、先行車両βに対する車間距離が所定の停車時車間距離Dβとなるように自車両αを停車させる自動運転制御装置としてのコントローラ20が提供される。
 このコントローラ20は、第1停車制御部(ステップS400)及び第2停車制御部(ステップS500)の少なくとも一方を有する。そして、第1停車制御部は、自車両αの停車位置Pαが交差通行帯Ctの前方に設定される前方停車制限領域Rに含まれる場合(ステップS200のYes)に、停車時車間距離Dβを所定の基本停車時車間距離Dβよりも短い第1停車時車間距離Dβに設定する。また、第2停車制御部は、自車両αの停車位置Pαが交差通行帯Ctに対して後方に設定される後方停車制限領域Rに含まれる場合(ステップS300のYes)に、停車時車間距離Dβを基本停車時車間距離Dβよりも長い第2停車時車間距離Dβに設定する。
 これにより、上記自動運転制御方法を実行するための好適なシステム構成が実現される。
 [第2実施形態]
 以下、第2実施形態の自動運転制御方法を説明する。なお、第1実施形態と同様の要素には同一の符号を付し、その説明を省略する。本実施形態では、予め自車両αの停車位置Pαを予測し、予測した停車位置Pα(以下、「停車予定位置P^α」とも称する)が前方停車制限領域R又は後方停車制限領域Rに含まれるか否かの判定結果に基づいて、停車位置Pαを調節する例を説明する。
 図5は、本実施形態の自動運転制御方法を説明するフローチャートである。なお、コントローラ20は、以下に説明する処理を所定の制御周期ごとに繰り返し実行する。
 先ず、ステップS100において、コントローラ20は、第1実施形態と同様に、各種入力情報を取得する。
 次に、ステップS110において、コントローラ20は、自車両αが停車予定であるか否かを判定する。具体的に、コントローラ20は、周辺画像、及び/又は周辺車両検出データなどを参照して、追従対象である先行車両βに係る先行車両車速Vβが所定値以下であるか否かなどを基準として、自車両αが停車に至る過程の状態(停車間際)であるかどうかを判定する。
 ステップS115において、コントローラ20は、停車予定位置P^αを演算する。具体的に、コントローラ20は、停車時車間距離Dβを基本停車時車間距離Dβに設定している前提において、自車両車速Vα、先行車両車速Vβ、及び車速差ΔVαβが全て0に至ったときの自車両αが停車すると予測される位置を停車予定位置P^αとして求める。なお、以下では、停車時車間距離Dβを基本停車時車間距離Dβに設定している場合の停車予定位置P^αを特に、「基本停車予定位置P^α」とも称する。
 次に、ステップS120において、コントローラ20は、基本停車予定位置P^αの周辺に交差通行帯Ctが存在するか否かを判定する。具体的に、コントローラ20は、周辺画像、走行ルート情報、HDマップ、車車間通信情報、及び/又は路車間通信情報などに基づいて、基本停車予定位置P^αの周辺に交差通行帯Ctが存在するか否かを判定する。
 そして、コントローラ20は、基本停車予定位置P^αの周辺に交差通行帯Ctが存在しないと判断すると、ステップS600の基本停車制御を実行する。すなわち、この場合、コントローラ20は、停車時車間距離Dβを基本停車時車間距離Dβに設定した状態を維持する。一方、コントローラ20は、基本停車予定位置P^αの周辺に交差通行帯Ctが存在すると判断すると、ステップS200´以降の処理を実行する。
 ステップS200´において、コントローラ20は、基本停車予定位置P^αが交差通行帯Ctの前方停車制限領域Rに含まれるか否かを判定する。具体的に、コントローラ20は当該判定を、周辺画像、走行ルート情報、及び/又はHDマップなどを参照して、基本停車予定位置P^αの所定の座標系(例えば、世界座標)における座標が、同座標系上において前方停車制限領域Rを規定する範囲に含まれるか否かに基づいて実行する。
 そして、コントローラ20は、基本停車予定位置P^αが前方停車制限領域Rに含まれると判断すると、ステップS400の第1停車制御を実行する。すなわち、第1実施形態と同様に、コントローラ20は、停車時車間距離Dβを基本停車時車間距離Dβからこれよりも短い第1停車時車間距離Dβに切り替える。一方、コントローラ20は、基本停車予定位置P^αが前方停車制限領域Rに含まれないと判断すると、ステップS300´の処理を実行する。
 ステップS300´において、コントローラ20は、基本停車予定位置P^αが交差通行帯Ctの後方停車制限領域Rに含まれるか否かを判定する。具体的に、コントローラ20は当該判定を、周辺画像、走行ルート情報、及び/又はHDマップなどを参照して、基本停車予定位置P^αの所定の座標系(例えば、世界座標)における座標が、同座標系上において後方停車制限領域Rを規定する範囲に含まれるか否かに基づいて実行する。
 そして、コントローラ20は、基本停車予定位置P^αが後方停車制限領域Rに含まれると判断すると、ステップS500の第2停車制御を実行する。すなわち、第1実施形態と同様に、コントローラ20は、停車時車間距離Dβを基本停車時車間距離Dβからこれよりも長い第2停車時車間距離Dβに切り替える。一方、コントローラ20は、基本停車予定位置P^αが後方停車制限領域Rに含まれないと判断すると、ステップS600の処理(基本停車制御)を実行する。すなわち、コントローラ20は、自車両αの停車予定位置P^αを基本停車予定位置P^αに維持する。
 以上説明した構成を有する本実施形態の自動運転制御方法によれば、以下の作用効果を奏する。
 本実施形態の自動運転制御方法では、停車時車間距離Dβを基本停車時車間距離Dβに設定して自車両αを停車させる場合の停車位置Pα(停車予定位置P^α)を予測する(ステップS115)。また、予測された停車予定位置P^α(特に基本停車予定位置P^α)が前方停車制限領域R又は後方停車制限領域Rに含まれるか否かを判定する(ステップS200´及びステップS300´)。そして、基本停車予定位置P^αが前方停車制限領域Rに含まれると判断すると、第1停車制御を実行する(ステップS200´のYes及びステップS400)。一方、基本停車予定位置P^αが後方停車制限領域Rに含まれると判断すると、第2停車制御を実行する(ステップS300´のYes及びステップS500)。さらに、基本停車予定位置P^αが前方停車制限領域R及び後方停車制限領域Rの何れにも含まれないと判断すると、基本停車時車間距離Dβを維持する基本停車制御を実行する(ステップS200´のNo、ステップS300´のNo、及びステップS600)。
 これにより、自車両αの走行中において、実際に停車に至ったときの停車位置Pαが前方停車制限領域R又は後方停車制限領域Rに含まれる状況(すなわち、後続車両γ又は先行車両βの交差通行帯Ctからの退避を阻害する状況)を事前に予測して、停車時車間距離Dβを適切に調節するための具体的な制御ロジックが実現される。このため、自車両αを後続車両γ又は先行車両βの交差通行帯Ctからの退避を阻害しないように直接停車させることができるので、自車両αを一旦停車させた後に再び移動させる制御を省略ことができる。結果として、後続車両γ又は先行車両βが交差通行帯Ctに取り残される状況を防ぎつつ、自車両αを停止後に再び移動させることに起因した乗員の違和感の軽減も図ることができる。
 [第3実施形態]
 以下、第3実施形態について説明する。なお、第1実施形態又は第2実施形態と同様の要素には同一の符号を付し、その説明を省略する。本実施形態では、図5で説明した自動運転制御方法をベースとして、さらに交差通行帯Ct内に後続車両γが存在するか否かを判定し、その判定結果に応じて停車時車間距離Dβを設定する制御態様を説明する。
 図6は、本実施形態の自動運転制御方法を説明するフローチャートである。なお、図面の簡略化のため、図5と共通するステップS100、ステップS115、及びステップS120の各ブロックについては図示を省略する。
 特に、本実施形態では、コントローラ20は、ステップS200´において基本停車予定位置P^αが交差通行帯Ctの前方停車制限領域Rに含まれると判断すると、ステップS210の処理を実行する。
 ステップS210において、コントローラ20は、交差通行帯Ct内に後続車両γが存在するか否かを判定する。具体的に、コントローラ20は、周辺画像(特に自車両αの後方を撮像した画像)、周辺車両検出データ、及び/又は車車間通信情報などを参照して、交差通行帯Ct内に後続車両γが存在するか否かを判定する。
 そして、コントローラ20は、交差通行帯Ct内に後続車両γが存在すると判断すると、ステップS400の第1停車制御を実行する。一方、コントローラ20は、交差通行帯Ct内に後続車両γが存在しないと判断すると、ステップS600の処理(基本停車制御)を実行する。すなわち、コントローラ20は、停車時車間距離Dβを基本停車時車間距離Dβに維持する。
 一方、コントローラ20は、上記ステップS200´において基本停車予定位置P^αが前方停車制限領域Rに含まれないと判断した上で、その後のステップS300´において基本停車予定位置P^αが後方停車制限領域Rに含まれると判断すると、ステップS310の処理を実行する。
 ステップS310において、コントローラ20は、交差通行帯Ct内に先行車両βが存在するか否かを判定する。具体的に、コントローラ20は、周辺画像(特に自車両αの前方を撮像した画像)、周辺車両検出データ、及び/又は車車間通信情報などを参照して、交差通行帯Ct内に先行車両βが存在するか否かを判定する。
 そして、コントローラ20は、交差通行帯Ct内に先行車両βが存在すると判断すると、ステップS500の第2停車制御を実行する。一方、コントローラ20は、交差通行帯Ct内に先行車両βが存在しないと判断すると、ステップS600の基本停車制御を実行する。
 以上説明した構成を有する本実施形態の自動運転制御方法によれば、以下の作用効果を奏する。
 本実施形態の自動運転制御方法では、自車両αの停車位置Pα(基本停車予定位置P^α)が前方停車制限領域Rに含まれる場合に、さらに交差通行帯Ct内に後続車両γが存在するか否かを判定する(ステップS200´のYes及びステップS210)。そして、後続車両γが存在すると判断すると、第1停車制御を実行し(ステップS210のYes及びステップS400)、後続車両γが存在しないと判断すると、停車時車間距離Dβを基本停車時車間距離Dβに維持する(ステップS210のNo及びステップS600)。
 また、自車両αの基本停車予定位置P^αが後方停車制限領域Rに含まれる場合に、さらに交差通行帯Ct内に先行車両βが存在するか否かを判定する(ステップS300´のYes及びステップS310)。そして、先行車両βが存在すると判断すると、第2停車制御を実行し(ステップS310のYes及びステップS500)、先行車両βが存在しないと判断すると、停車時車間距離Dβを基本停車時車間距離Dβに維持する(ステップS310のNo及びステップS600)。
 これにより、自車両αの停車位置Pαが前方停車制限領域R又は後方停車制限領域Rに含まれるシーンにおいて、さらに交差通行帯Ct内に取り残される可能性がある後続車両γ又は先行車両βの存否を確認した上で、停車時車間距離Dβを調節する具体的な制御ロジックが実現される。したがって、自車両αの停車位置Pαを基本停車位置Pαからより前方の第1補正停車位置Pα又はより後方の第2補正停車位置Pαに変更する制御を、後続車両γ又は先行車両βが交差通行帯Ct内の取り残される事態のより生じ易いシーンに限定して実行することができる。結果として、無用に自車両αの停車位置Pαを本来望まれる基本停車位置Pαから変える状況を抑制し得る具体的な制御ロジックが実現される。
 [第4実施形態]
 以下、第4実施形態について説明する。なお、第1~第3実施形態と同様の要素には同一の符号を付し、その説明を省略する。本実施形態では、第1停車制御(ステップS400)における具体的な処理に関する一態様を説明する。特に、本実施形態の第1停車制御では、停車時車間距離Dβを基本停車時車間距離Dβから第1停車時車間距離Dβへ即座に切り替えるのではなく、一定の条件を満たした場合に当該切り替えを実行する。
 図7は、本実施形態の第1停車制御を説明するフローチャートである。
 図示のように、先ず、ステップS410において、コントローラ20は、交差通行帯Ctよりも手前の所定の距離範囲に後続車両γが存在するか否かを判定する。なお、この距離範囲は、後続車両γが停車状態の自車両αに阻まれて交差通行帯Ct内に取り残される現実的な可能性の生じ得る程度に、当該後続車両γが交差通行帯Ctに近づいているか否かを判断する観点から適切な範囲に定められる。
 具体的に、コントローラ20は、周辺画像(特に自車両αの後方を撮像した画像)、周辺車両検出データ、及び/又は車車間通信情報などを参照して、上記距離範囲に後続車両γが存在するか否かを判定する。
 そして、コントローラ20は、後続車両γが上記距離範囲に存在しないと判断すると(より詳細には、後続車両γが交差通行帯Ct内に存在すると判断すると)、ステップS450に進み、停車時車間距離Dβを基本停車時車間距離Dβから第1停車時車間距離Dβに切り替える。一方、コントローラ20は、後続車両γが上記距離範囲に存在すると判断すると、ステップS420の処理を実行する。
 ステップS420において、コントローラ20は、車載カメラ1aの画像、及び/又は周辺車両検出データなどを参照して、自車両αから後方の交差通行帯Ctまでの離間距離DαCt(図3参照)を求める。
 次に、ステップS430において、コントローラ20は、離間距離DαCtが所定の閾値距離Dth以下であるか否かを判定する。なお、閾値距離Dthは、離間距離DαCtの大きさが自車両αと交差通行帯Ctの間のスペースへの後続車両γの進入を許容する程度であるかを判断する基準として適切な値に定められる。
 そして、コントローラ20は、離間距離DαCtが閾値距離Dth以下であると判断すると、ステップS440に進み、停車時車間距離Dβを基本停車時車間距離Dβに維持する。一方、コントローラ20は、離間距離DαCtが閾値距離Dth以下ではないと判断すると(離間距離DαCtが閾値距離Dthを超えると判断すると)、ステップS450に進み、停車時車間距離Dβを基本停車時車間距離Dβから第1停車時車間距離Dβに切り替える。
 以上説明した構成を有する本実施形態の自動運転制御方法によれば、以下の作用効果を奏する。
 本実施形態の自動運転制御方法における第1停車制御では、後続車両γが交差通行帯Ctよりも手前の所定の距離範囲に存在するか否かを判定する(ステップS410)。そして、後続車両γが距離範囲に存在すると判断すると、自車両αから後方の交差通行帯Ctまでの離間距離DαCtが所定の閾値距離Dthを超えるか否かを判定する(ステップS420及びステップS430)。そして、離間距離DαCtが閾値距離Dthを超えると判断すると、停車時車間距離Dβを基本停車時車間距離Dβから第1停車時車間距離Dβに切り替える(ステップS430のNo及びステップS450)。また、離間距離DαCtが閾値距離Dthを超えないと判断すると、停車時車間距離Dβを基本停車時車間距離Dβに維持する(ステップS430のYes及びステップS440)。
 これにより、自車両αと交差通行帯Ctの間のスペースが後続車両γの進入を許容する観点から十分に広くない場合(離間距離DαCt≦閾値距離Dthの場合)には、自車両αの停車位置Pαは基本停車位置Pαに維持される。したがって、自車両αと交差通行帯Ctの間のスペースが十分に広くないにもかかわらず、自車両αが基本停車位置Pαよりも前方の第1補正停車位置Pαに停車することで若干広がった上記スペースに後続車両γが無理に進入しようとする行為を抑止することができる。また、自車両αと交差通行帯Ctの間のスペースが後続車両γの進入を許容する観点から十分に広い場合(離間距離DαCt>閾値距離Dthの場合)には、停車時車間距離Dβが第1停車時車間距離Dβに切り替えられる。これにより、自車両αが基本停車位置Pαに停車している状態でも上記スペースが比較的広い状況においてさらにこれが広がることとなるので、後続車両γに対して当該スペースへの進入を助長することができる。結果として、後続車両γによる交差通行帯Ctの横断を促すことによる交通効率の向上も図ることができる。
 [第5実施形態]
 以下、第5実施形態について説明する。なお、第1~第4実施形態の何れかと同様の要素には同一の符号を付し、その説明を省略する。本実施形態では、図5で説明した第2実施形態の自動運転制御方法をベースとして、さらに交差通行帯Ctの通行に関する優先権の切り替わりを判定し、その判定結果に応じて停車時車間距離Dβを設定する制御態様を説明する。
 図8は、本実施形態の自動運転制御方法を説明するフローチャートである。なお、図面の簡略化のため、図5と共通するステップS100、ステップS115、及びステップS120の各ブロックについては図示を省略する。
 特に、本実施形態では、コントローラ20は、ステップS121において、交差通行帯Ctの走行における優先権の切り替わりを予測する優先権切り替わり処理を実行する。具体的に、コントローラ20は、周辺画像、車車間通信情報、及び/又は路車間通信情報などを入力情報として、先行車両β、自車両α、及び後続車両γの走行車線L1における走行の優先権が交差走行車線L2に切り替わるか(特に、走行車線L1における走行の優先権が失われるか)を予測する。
 より具体的には、コントローラ20は、自車両αの走行車線L1における信号表示が通行許可表示(青信号)から通行禁止表示(赤信号)に切り替わるまでの予測時間(以下、「優先権切り替わり予測時間」とも称する)を演算する。
 図9は、優先権切り替わり処理の実行が想定される具体的なシーンの一例を示す図である。図示のように、コントローラ20は、上記入力情報から自車両αの走行車線L1における進行許可・不許可を表示するための車両用信号機sv1、交差走行車線L2における進行許可・不許可を表示するための車両用信号機sv2、走行車線L1に沿った横断歩道における進行許可・不許可を表示するための歩行者用信号機sp1、交差走行車線L2に沿った横断歩道における進行許可・不許可を表示するための歩行者用信号機sp2の各表示(赤、黄、及び青の点灯・点滅状態など)、及び/又はこれらの各表示の切り替わりパターンを求めて優先権切り替わり予測時間を演算する。
 次に、ステップS122において、コントローラ20は、優先権が切り替わるか否かを判定する。具体的に、コントローラ20は、ステップS122で演算した優先権切り替わり予測時間が予め定めた閾値時間以下である場合には優先権が切り替わると判断し、優先権切り替わり予測時間が当該閾値時間を超える場合には優先権が切り替わらないと判断する。なお、この閾値時間は、自車両αの基本停車予定位置P^αが前方停車制限領域R又は後方停車制限領域Rに含まれる場合において、先行車両β又は後続車両γが交差通行帯Ct内に取り残される現実的な可能性が想定される程度に、走行車線L1(すなわち、先行車両β及び後続車両γの走行車線L1)における走行車線L1における走行の優先権が失われるタイミングが迫っているか否かを判断する観点から適切な時間に定められる。
 そして、コントローラ20は、優先権が切り替わると判断すると、第2実施形態と同様にステップS200´以降の処理を実行して、停車時車間距離Dβを第1停車時車間距離Dβ又は第2停車時車間距離Dβに切り替える。一方、コントローラ20は、優先権が切り替わらないと判断すると、基本停車制御を実行する。すなわち、この場合、先行車両β又は後続車両γが交差通行帯Ct内に取り残される状況が生じないと判断されて、停車時車間距離Dβが基本停車時車間距離Dβに維持される。
 以上説明した構成を有する本実施形態の自動運転制御方法によれば、以下の作用効果を奏する。
 本実施形態の自動運転制御方法では、検出した交差通行帯Ctの優先権が切り替わるか否かを判定し(ステップS122)、優先権が切り替わらないと判断すると、停車時車間距離Dβを基本停車時車間距離Dβに維持する(ステップS122のNo及びステップS600)。
 これにより、自車両αの停車位置Pαを基本停車位置Pαより前方の第1補正停車位置Pα又はより後方の第2補正停車位置Pαに変更する制御を、後続車両γ又は先行車両βが交差通行帯Ct内の取り残される事態が生じ得る状況(優先権切り替わり予測時間内に走行車線L1における走行の優先権が失われる状況)に限定して実行することができる。したがって、無用に自車両αの停車位置Pαを本来望まれる基本停車位置Pαから変える状況を抑制し得る具体的な制御ロジックが実現される。
 なお、本実施形態における車両用信号機sv1、車両用信号機sv2、歩行者用信号機sp1、及び/又は歩行者用信号機sp2の各表示(赤、黄、及び青の点灯・点滅状態など)に代えて、又はこれらとともに、交差通行帯Ctの内部又はその周辺に存在する他車両及び/又は歩行者の挙動(車両の発進タイミング及び歩行者の横断開始タイミングなど)を参照して優先権切り替わり予測時間を演算する構成を採用しても良い。
 [第6実施形態]
 以下、第6実施形態について説明する。なお、第1~第5実施形態の何れかと同様の要素には同一の符号を付し、その説明を省略する。
 本実施形態において、コントローラ20は、第1停車時車間距離Dβ、第2停車時車間距離Dβ、又はこれらの双方の大きさを、交差通行帯Ct内に存在する車両の数に基づいて定める。
 より具体的に、コントローラ20は、第1停車制御中において、周辺画像、車車間通信情報、及び/又は路車間通信情報などに基づいて、交差通行帯Ct内に存在する車両の数を演算する。なお、本実施形態において、検出対象となる交差通行帯Ct内の車両には、上述の先行車両β又は後続車両γ以外の他車両(先行車両βにさらに先行する他車両、又は後続車両γにさらに後続する他車両など)が含まれる。そして、コントローラ20は、予め定められるマップを参照して演算した車両の数に応じた第1停車時車間距離Dβを定める。同様に、コントローラ20は、第2停車制御中において、交差通行帯Ct内に存在する車両の数に応じた第2停車時車間距離Dβを定める。
 図10は、交差通行帯Ct内に存在する車両の数と設定すべき第1停車時車間距離Dβ(第2停車時車間距離Dβ)との関係を規定するマップの一例を示す図である。図示のように、本実施形態では、交差通行帯Ct内に存在する車両の数が大きくなるほど、第1停車時車間距離Dβ(第2停車時車間距離Dβ)が基本停車時車間距離Dβに対して長く設定される。
 以上説明したように、本実施形態では、第1停車時車間距離Dβ及び第2停車時車間距離Dβの少なくとも何れか一方を、交差通行帯Ct内に存在する車両の数に基づいて定める。
 これにより、実際に交差通行帯Ct内に取り残される可能性のある他車両の数に応じて、自車両αの停車位置Pαを基本停車位置Pαから変化させる量を定めることができる。これにより、交差通行帯Ct内に先行車両β又は後続車両γが取り残される事態を防ぎつつ、本来意図される基本停車位置Pαに対する実際の停車位置Pαのずれ幅を状況に応じて適切に減少させることができる。
 なお、図10では、交差通行帯Ct内に存在する車両の数が同数である場合の第1停車時車間距離Dβ及び第2停車時車間距離Dβの大きさを同一に設定する例を示している。しかしながら、これに限られず、状況に応じて、交差通行帯Ct内に存在する車両の数に対する第1停車時車間距離Dβ及び第2停車時車間距離Dβのそれぞれの大きさが相互に異なる態様を採用しても良い。
 [第7実施形態]
 以下、第7実施形態について説明する。なお、第1~第6実施形態の何れかと同様の要素には同一の符号を付し、その説明を省略する。本実施形態では、停車時車間距離Dβを第1停車時車間距離Dβ又は第2停車時車間距離Dβに設定して自車両αを停車させた場合に、停車時車間距離Dβを基本停車時車間距離Dβに戻すタイミングを規定する制御の一例を説明する。
 図11は、本実施形態による自動運転制御方法を説明するフローチャートである。なお、図面の簡略化のため、図2、図5、図6、又は図8と共通するステップS800までの各ブロックについては図示を省略する。すなわち、図11に示す各処理は、ステップS800の処理の後に開始される。
 先ず、ステップS900において、コントローラ20は、自車両車速Vαなどに基づいて自車両αが停車したか否かを判定する。そして、コントローラ20は、自車両αが停車していないと判断すると本ルーチンを終了する一方、停車したと判断するとステップS1000及びステップS1010の判定を実行する。
 ステップS1000及びステップS1010において、コントローラ20は、停車時車間距離Dβが第1停車時車間距離Dβ又は第2停車時車間距離Dβに設定されているか否かを判定する。そして、コントローラ20は、停車時車間距離Dβが第1停車時車間距離Dβ及び第2停車時車間距離Dβの何れにも設定されていない(すなわち、基本停車時車間距離Dβに設定されている)と判断すると本ルーチンを終了する。一方、コントローラ20は、停車時車間距離Dβが第1停車時車間距離Dβ又は第2停車時車間距離Dβに設定されていると判断するとステップS1100の処理を実行する。
 ステップS1100において、コントローラ20は、周辺画像、周辺車両検出データ、及び/又は車車間通信情報などを参照して、交差通行帯Ct内に車両が存在するか否かを判定する。なお、本実施形態において、検出対象となる交差通行帯Ct内の車両には、上述の先行車両β又は後続車両γ以外の他車両(先行車両βにさらに先行する他車両、又は後続車両γにさらに後続する他車両など)が含まれる。
 そして、コントローラ20は、交差通行帯Ct内に車両が存在すると判断すると、ステップS1200において、停車時車間距離Dβを第1停車時車間距離Dβ又は第2停車時車間距離Dβのままに維持する。一方、コントローラ20は、交差通行帯Ct内に車両が存在しないと判断すると、停車時車間距離Dβを第1停車時車間距離Dβ又は第2停車時車間距離Dβから基本停車時車間距離Dβに切り替える。
 以上説明したように、本実施形態では、自車両αを第1停車時車間距離Dβ又は第2停車時車間距離Dβに基づいて停車させた後に(ステップS900のYes)、交差通行帯Ct内に車両が存在しないと判断するまで、停車時車間距離Dβを第1停車時車間距離Dβ又は第2停車時車間距離Dβに設定した状態を維持する(ステップS1100~ステップS1300)。
 これにより、自車両αの停車位置Pαを基本停車位置Pαからずれた第1補正停車位置Pα又は第2補正停車位置Pαに停車させた場合には、交差通行帯Ct内に他の車両が存在しなくなるまで、当該停車位置Pαが維持されることとなる。すなわち、交差通行帯Ct内に取り残される可能性のある車両が存在する状況が継続している間は、後続車両γ又は先行車両βが交差通行帯Ctから退避するためのスペースが形成された状態を維持することができる。このため、交差通行帯Ct内に後続車両γ又は先行車両βが取り残される状況をより確実に防止することができる。
 また、本実施形態の自動運転制御方法によれば、自車両αの停車中に先行車両βが移動する場合であっても、第1補正停車位置Pα又は第2補正停車位置Pαを維持するように自車両αが先行車両βに追従して移動することとなる。すなわち、自車両αは先行車両βに対して相対的に狭い車間(第1停車時車間距離Dβ)又は相対的に広い車間(第2停車時車間距離Dβ)を維持するように先行車両βに追従する。このため、先行車両β又は後続車両γに対して、後続車両γ又は先行車両βの交差通行帯Ctからの退避のためのスペースを空けるという自車両αの意図をより確実に認識させることができる。結果として、先行車両β又は後続車両γによる当該スペースを空けるための協力(後続車両γの後退又は先行車両βの前進)を促すことができ、後続車両γ又は先行車両βが交差通行帯Ctに取り残される事態をより確実に防止することができる。
 [変形例1]
 図12Aは、自動運転制御方法を適用可能なシーンの一変形例を説明する図である。上記各実施形態では、自車両α及び後続車両γがともに同じ走行車線L1を直進しているシーン(図4参照)において各実施形態の自動運転制御方法(特に第1停車制御)を適用する例について説明したが、図12Aに示すように、交差通行帯Ctにおいて後続車両γが交差走行車線L2から走行車線L1に向かって右折する場合において、各実施形態の自動運転制御方法を適用しても良い。
 また、図示はしないが、交差通行帯Ctにおいて先行車両βが交差走行車線L2から走行車線L1に向かって右折する場合において、各実施形態の自動運転制御方法(特に第2停車制御)を適用しても良い。
 [変形例2]
 図12Bは、自動運転制御方法を適用可能なシーンの一変形例を説明する図である。図示のように、交差通行帯Ctにおいて後続車両γが交差走行車線L2から走行車線L1に向かって左折する場合において、各実施形態の自動運転制御方法を適用しても良い。また、図示はしないが、交差通行帯Ctにおいて先行車両βが左折する場合において、各実施形態の自動運転制御方法を適用しても良い。
 [変形例3]
 図12Cは、自動運転制御方法を適用可能なシーンの一変形例を説明する図である。図示のように、交差通行帯Ctが自車両αの走行車線L1、当該走行車線L1に交差する歩道、及び各信号機(車両用信号機sv1及び歩行者用信号機sp2)で構成される場合(交差走行車線L2が存在しない場合)において、各実施形態の自動運転制御方法を適用しても良い。
 [変形例4]
 図12Dは、自動運転制御方法を適用可能なシーンの一変形例を説明する図である。図示のように、交差通行帯Ctが自車両αの走行車線L1、当該走行車線L1に交差して線路L3、走行車線L1の通行の許可・不許可を定める踏切rc、及び各信号機(車両用信号機sv1及び踏切信号機st3)で構成される場合において、各実施形態の自動運転制御方法を適用しても良い。
 特に、本変形例のシーンにおいて、第5実施形態の自動運転制御方法(図8)を適用する場合には、車両用信号機sv1、及び/又は踏切信号機st3の各表示から優先権切り替わり予測時間が演算される構成を採用しても良い。一方で、本変形例においては、踏切rc内に車両が取り残される事態をより確実に防止する観点から、図8に示す優先権の切り替わり判断に関する各処理(ステップS111及びステップS112)を実行することなく、ステップS200以降を実行する制御ロジック(すなわち、図2又は図5で説明した制御ロジック)を適用することが好ましい。
 以上、本発明の実施形態について説明したが、上記各実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 例えば、上記各実施形態では、後続車両γが交差通行帯Ctに取り残される可能性を想定した制御(例えば、図2のステップS200の判定及びステップS400の第1停車制御)及び先行車両βが交差通行帯Ctに取り残される可能性を想定した制御(例えば、図2のステップS300の判定及びステップS500の第2停車制御)の双方を採用した自動運転制御方法について説明した。しかしながら、これらの内の何れか一方のみを採用した自動運転制御方法も当然、本発明の技術的範囲に含まれる。
 また、上記各実施形態は、矛盾を生じない範囲の任意の組み合わせで相互に組み合わせることが可能である。例えば、第3実施形態~第7実施形態に係る制御は、第2実施形態の自動運転制御方法をベースとするものに限られず、第1実施形態の自動運転制御方法をベースとして行っても良い。
 なお、上記各実施形態で説明した自動運転制御方法をコンピュータであるコントローラ20に実行させるための自動運転制御プログラム、及び当該自動運転制御プログラムを記憶した記憶媒体も、本出願における出願当初の明細書等に記載された事項の範囲内に含まれる。

Claims (10)

  1.  先行車両に対する車間距離が所定の停車時車間距離となるように自車両を停車させる自動運転制御方法であって、
     前記自車両の停車位置が交差通行帯の前方に設定される前方停車制限領域に含まれる場合に、前記停車時車間距離を所定の基本停車時車間距離よりも短い第1停車時車間距離に設定する第1停車制御を実行し、及び/又は
     前記自車両の停車位置が前記交差通行帯の後方に設定される後方停車制限領域に含まれる場合に、前記停車時車間距離を前記基本停車時車間距離よりも長い第2停車時車間距離に設定する第2停車制御を実行する、
     自動運転制御方法。
  2.  請求項1に記載の自動運転制御方法であって、
     前記前方停車制限領域を、前記自車両の停車位置が該前方停車制限領域に含まれると該自車両が後続車両の前記交差通行帯からの前進離脱を阻害する範囲に設定し、及び/又は
     前記後方停車制限領域を、前記自車両の停車位置が該後方停車制限領域に含まれると該自車両が前記先行車両の前記交差通行帯からの後退離脱を阻害する範囲に設定する、
     自動運転制御方法。
  3.  請求項2に記載の自動運転制御方法であって、
     前記停車時車間距離を前記基本停車時車間距離に設定して前記自車両を停車させ、
     前記自車両の停車位置が前記前方停車制限領域に含まれているか、前記後方停車制限領域に含まれているか、又は前記前方停車制限領域及び前記後方停車制限領域の何れにも含まれていないかを判定し、
     前記自車両の停車位置が前記前方停車制限領域に含まれていると判断すると、前記第1停車制御を実行し、
     前記自車両の停車位置が前記後方停車制限領域に含まれていないと判断すると、前記第2停車制御を実行し、
     前記自車両の停車位置が前記前方停車制限領域及び前記後方停車制限領域の何れにも含まれていないと判断すると、前記基本停車時車間距離を維持する基本停車制御を実行する、
     自動運転制御方法。
  4.  請求項2に記載の自動運転制御方法であって、
     前記停車時車間距離を前記基本停車時車間距離に設定して前記自車両を停車させる場合の停車位置を予測し、
     予測された前記自車両の停車位置が前記前方停車制限領域又は前記後方停車制限領域に含まれるか否かを判定し、
     前記自車両の停車位置が前記前方停車制限領域に含まれると判断すると、前記第1停車制御を実行し、
     前記自車両の停車位置が前記後方停車制限領域に含まれると判断すると、前記第2停車制御を実行し、
     前記自車両の停車位置が前記前方停車制限領域及び前記後方停車制限領域の何れにも含まれないと判断すると、前記基本停車時車間距離を維持する基本停車制御を実行する、
     自動運転制御方法。
  5.  請求項2~4の何れか1項に記載の自動運転制御方法であって、
     前記自車両の停車位置が前記前方停車制限領域に含まれる場合に、さらに前記交差通行帯内に前記後続車両が存在するか否かを判定し、
     前記後続車両が存在すると判断すると、前記第1停車制御を実行し、
     前記後続車両が存在しないと判断すると、前記停車時車間距離を前記基本停車時車間距離に維持し、及び/又は
     前記自車両の停車位置が前記後方停車制限領域に含まれる場合に、さらに前記交差通行帯内に前記先行車両が存在するか否かを判定し、
     前記先行車両が存在すると判断すると、前記第2停車制御を実行し、
     前記先行車両が存在しないと判断すると、前記停車時車間距離を前記基本停車時車間距離に維持する、
     自動運転制御方法。
  6.  請求項2~4の何れか1項に記載の自動運転制御方法であって、
     前記第1停車制御では、
     前記後続車両が前記交差通行帯よりも手前の所定の距離範囲に存在するか否かを判定し、
     前記自車両から後方の前記交差通行帯までの離間距離が所定の閾値距離を超えるか否かを判定し、
     前記離間距離が前記閾値距離を超えると判断すると、前記停車時車間距離を前記基本停車時車間距離から前記第1停車時車間距離に切り替え、
     前記離間距離が前記閾値距離を超えないと判断すると、前記停車時車間距離を前記基本停車時車間距離に維持する、
     自動運転制御方法。
  7.  請求項1~6の何れか1項に記載の自動運転制御方法であって、
     検出した前記交差通行帯の優先権が切り替わるか否かを判定し、
     前記優先権が切り替わらないと判断すると、前記停車時車間距離を前記基本停車時車間距離に維持する、
     自動運転制御方法。
  8.  請求項1~7の何れか1項に記載の自動運転制御方法であって、
     前記第1停車時車間距離及び前記第2停車時車間距離の少なくとも何れか一方を、
     前記交差通行帯内に存在する車両の数に基づいて定める、
     自動運転制御方法。
  9.  請求項1~8の何れか1項に記載の自動運転制御方法であって、
     前記自車両を前記第1停車時車間距離又は前記第2停車時車間距離に基づいて停車させた後に、前記交差通行帯内に車両が存在しないと判断するまで、前記停車時車間距離を前記第1停車時車間距離又は前記第2停車時車間距離に設定した状態を維持する、
     自動運転制御方法。
  10.  先行車両に対する車間距離が所定の停車時車間距離となるように自車両を停車させる自動運転制御装置であって、
     第1停車制御部及び第2停車制御部の少なくとも一方と、を有し、
     前記第1停車制御部は、前記自車両の停車位置が交差通行帯の前方に設定される前方停車制限領域に含まれる場合に、前記停車時車間距離を所定の基本停車時車間距離よりも短い第1停車時車間距離に設定し、
     前記第2停車制御部は、前記自車両の停車位置が前記交差通行帯の後方に設定される後方停車制限領域に含まれる場合に、前記停車時車間距離を前記基本停車時車間距離よりも長い第2停車時車間距離に設定する、
     自動運転制御装置。
PCT/IB2020/000957 2020-11-16 2020-11-16 自動運転制御方法及び自動運転制御装置 WO2022101653A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022561695A JP7439951B2 (ja) 2020-11-16 2020-11-16 自動運転制御方法及び自動運転制御装置
US18/035,885 US11912275B2 (en) 2020-11-16 2020-11-16 Autonomous driving control method and autonomous driving control device
CN202080107183.0A CN116547182B (zh) 2020-11-16 2020-11-16 自动驾驶控制方法以及自动驾驶控制装置
EP20961471.8A EP4245625A4 (en) 2020-11-16 2020-11-16 AUTONOMOUS DRIVING CONTROL METHOD AND AUTONOMOUS DRIVING CONTROL DEVICE
PCT/IB2020/000957 WO2022101653A1 (ja) 2020-11-16 2020-11-16 自動運転制御方法及び自動運転制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2020/000957 WO2022101653A1 (ja) 2020-11-16 2020-11-16 自動運転制御方法及び自動運転制御装置

Publications (1)

Publication Number Publication Date
WO2022101653A1 true WO2022101653A1 (ja) 2022-05-19

Family

ID=81600819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/000957 WO2022101653A1 (ja) 2020-11-16 2020-11-16 自動運転制御方法及び自動運転制御装置

Country Status (5)

Country Link
US (1) US11912275B2 (ja)
EP (1) EP4245625A4 (ja)
JP (1) JP7439951B2 (ja)
CN (1) CN116547182B (ja)
WO (1) WO2022101653A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7472807B2 (ja) * 2021-01-26 2024-04-23 トヨタ自動車株式会社 車両制御システム及び衝突回避支援装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008087618A (ja) * 2006-10-02 2008-04-17 Xanavi Informatics Corp 車両の走行制御システム
JP2015147525A (ja) 2014-02-07 2015-08-20 日産自動車株式会社 運転支援装置
WO2017038173A1 (ja) * 2015-09-04 2017-03-09 三菱自動車工業株式会社 追従制御装置
WO2018173175A1 (ja) * 2017-03-22 2018-09-27 本田技研工業株式会社 車両制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014220685A1 (de) 2014-10-13 2016-04-14 Bayerische Motoren Werke Aktiengesellschaft Bereitstellen einer Mindestabstandsangabe in einem Kraftfahrzeug
JP6788634B2 (ja) * 2018-06-21 2020-11-25 株式会社Subaru 自動運転支援システム
JP6754416B2 (ja) * 2018-11-16 2020-09-09 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
US20210276551A1 (en) * 2020-03-03 2021-09-09 Honda Motor Co., Ltd. Information processing system for movable objects and information processing method for movable objects

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008087618A (ja) * 2006-10-02 2008-04-17 Xanavi Informatics Corp 車両の走行制御システム
JP2015147525A (ja) 2014-02-07 2015-08-20 日産自動車株式会社 運転支援装置
WO2017038173A1 (ja) * 2015-09-04 2017-03-09 三菱自動車工業株式会社 追従制御装置
WO2018173175A1 (ja) * 2017-03-22 2018-09-27 本田技研工業株式会社 車両制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4245625A4

Also Published As

Publication number Publication date
CN116547182A (zh) 2023-08-04
US20230347891A1 (en) 2023-11-02
JP7439951B2 (ja) 2024-02-28
US11912275B2 (en) 2024-02-27
EP4245625A4 (en) 2023-12-27
JPWO2022101653A1 (ja) 2022-05-19
EP4245625A1 (en) 2023-09-20
CN116547182B (zh) 2024-06-18

Similar Documents

Publication Publication Date Title
JP6677822B2 (ja) 車両制御装置
JP6801116B2 (ja) 走行制御装置、車両および走行制御方法
JP6606148B2 (ja) 車両制御装置
JP6817413B2 (ja) 車両制御装置
WO2018101254A1 (ja) 車両制御装置
JP7434866B2 (ja) 車両の走行制御方法および走行制御装置
JP6954469B2 (ja) 運転支援方法及び運転支援装置
US10821980B2 (en) Vehicle control device
JP7156252B2 (ja) 運転支援装置
JP7287498B2 (ja) 運転制御方法及び運転制御装置
JP7255460B2 (ja) 車両制御システム
JP6376523B2 (ja) 車両制御装置
JP7035408B2 (ja) 車両走行制御方法及び装置
JP2007293388A (ja) 交差点交通管制システム
US20190286141A1 (en) Vehicle control apparatus
JP2020199808A (ja) 車両制御装置、車両、車両制御装置の動作方法およびプログラム
JP2020045039A (ja) 車両制御方法及び車両制御装置
WO2022101653A1 (ja) 自動運転制御方法及び自動運転制御装置
JP2020199810A (ja) 車両制御装置、車両、車両制御装置の動作方法およびプログラム
JP7572266B2 (ja) 車両制御装置、車両制御方法およびプログラム
WO2022249490A1 (ja) 運転制御方法及び運転制御装置
JP6376520B2 (ja) 車両制御装置
JP7393258B2 (ja) 制御装置及び車両
JP7471150B2 (ja) 走行支援方法、及び、走行支援装置
JP7138132B2 (ja) 制御装置及び車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961471

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561695

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202080107183.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020961471

Country of ref document: EP

Effective date: 20230616