[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022196204A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2022196204A1
WO2022196204A1 PCT/JP2022/005603 JP2022005603W WO2022196204A1 WO 2022196204 A1 WO2022196204 A1 WO 2022196204A1 JP 2022005603 W JP2022005603 W JP 2022005603W WO 2022196204 A1 WO2022196204 A1 WO 2022196204A1
Authority
WO
WIPO (PCT)
Prior art keywords
hologram
area
display device
diffraction efficiency
wavelength
Prior art date
Application number
PCT/JP2022/005603
Other languages
English (en)
French (fr)
Inventor
賢治 大木
将弘 高田
邦弥 阿部
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to CN202280020791.7A priority Critical patent/CN117043662A/zh
Priority to US18/550,117 priority patent/US20240184245A1/en
Priority to EP22770963.1A priority patent/EP4310580A4/en
Publication of WO2022196204A1 publication Critical patent/WO2022196204A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B27/0103Head-up displays characterised by optical features comprising holographic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • G02B2027/0116Head-up displays characterised by optical features comprising device for genereting colour display comprising devices for correcting chromatic aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H2001/0088Adaptation of holography to specific applications for video-holography, i.e. integrating hologram acquisition, transmission and display
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2223Particular relationship between light source, hologram and observer
    • G03H2001/2226Edge lit holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2249Holobject properties
    • G03H2001/2284Superimposing the holobject with other visual information
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/30Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique discrete holograms only
    • G03H2001/303Interleaved sub-holograms, e.g. three RGB sub-holograms having interleaved pixels for reconstructing coloured holobject
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/10Modulation characteristics, e.g. amplitude, phase, polarisation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/10Spectral composition
    • G03H2222/17White light
    • G03H2222/18RGB trichrome light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/36Scanning light beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/15Colour filter, e.g. interferential colour filter
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/16Optical waveguide, e.g. optical fibre, rod
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2227/00Mechanical components or mechanical aspects not otherwise provided for
    • G03H2227/03Means for moving one component
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2240/00Hologram nature or properties
    • G03H2240/50Parameters or numerical values associated with holography, e.g. peel strength
    • G03H2240/51Intensity, power or luminance

Definitions

  • This technology relates to display devices.
  • a head-mounted display is used by being worn on the user's head.
  • a video (image) display method using a head-mounted display for example, light from the head-mounted display in addition to light from the outside reaches the user's eyes, so that the image of the outside world is displayed by the light from the display. is superimposed on the user.
  • Patent Literature 1 proposes a technology related to a so-called head-up display device that superimposes and displays a forward field of view and display content from a display device via a light-transmissive diffraction grating.
  • Patent Document 2 proposes a technique related to a holographic display that allows a good image to be observed with inconspicuous edges of the virtual image.
  • the main object is to provide a display device capable of realizing
  • the display device with respect to manufacturing variation, wavelength variation of the light source, and active variation (variation due to external factors) We have succeeded in further improving the reliability of this technology, and have completed this technology.
  • the present technology as a first aspect, comprising at least a light source, a first hologram, and a second hologram; the first hologram diffracts and compensates the dispersion of the light emitted from the light source, and the second hologram diffracts the dispersion-compensated and diffracted light and emits it toward a user's eye;
  • a display device wherein the first hologram has an intensity distribution of different diffraction efficiencies with respect to the wavelength of light emitted from the light source, depending on the in-plane position of the first hologram.
  • a light guide plate may be further provided,
  • the dispersion-compensated and diffracted light emitted from the first hologram is introduced into the light guide plate, propagates through the light guide plate by total reflection, is emitted outside the light guide plate, and It may be incident on the second hologram.
  • a light intensity detector that detects the light intensity of the light emitted from the light source may be further provided.
  • a light spectral sensitivity detector that detects the spectral sensitivity of the light emitted from the light source may be further provided.
  • a temperature detector that detects the temperature of the light source may be further provided.
  • the first hologram may have an intensity distribution of different diffraction efficiencies according to a position in the plane of the first hologram, along with a change in wavelength of light emitted from the light source.
  • the first hologram may have different maximum intensity of diffraction efficiency with respect to the wavelength of the light emitted from the light source depending on the position in the plane of the first hologram.
  • the first hologram has an intensity distribution of diffraction efficiency that differs according to a position in the plane of the first hologram as the wavelength of light emitted from the light source changes, and the first hologram may have different maximum intensity of diffraction efficiency with respect to the wavelength of the light emitted from the light source, depending on the position in the plane of .
  • the in-plane of the first hologram may have a first direction and a second direction substantially perpendicular to the first direction,
  • the starting point of the first direction and the starting point of the second direction may be the same
  • the area of the first hologram along the first direction may be formed with a region where the wavelength changes so that the diffraction efficiency becomes the maximum intensity
  • the area of the first hologram along the second direction may be formed with a region where the maximum intensity of diffraction efficiency changes.
  • the in-plane of the first hologram may have a first direction and a second direction substantially perpendicular to the first direction,
  • the starting point of the first direction and the starting point of the second direction may be the same
  • a region may be formed in which the wavelength at which the diffraction efficiency reaches the maximum intensity changes in the longer wavelength direction in order from the starting point side
  • a region may be formed in which the maximum intensity of diffraction efficiency changes in order from the starting point side.
  • the in-plane of the first hologram may have a first direction and a second direction substantially perpendicular to the first direction,
  • the starting point of the first direction and the starting point of the second direction may be the same
  • the area of the first hologram along the first direction may be formed with a region where the maximum intensity of diffraction efficiency changes
  • the area of the first hologram along the second direction may be formed with a region where the maximum intensity of diffraction efficiency changes.
  • the in-plane of the first hologram may have a first direction and a second direction substantially perpendicular to the first direction,
  • the starting point of the first direction and the starting point of the second direction may be the same
  • the area of the first hologram along the first direction may be formed with a region where the wavelength changes so that the diffraction efficiency becomes the maximum intensity
  • the area of the first hologram along the second direction may include a region where the wavelength changes with the maximum diffraction efficiency.
  • the in-plane of the first hologram may have a first direction and a second direction substantially perpendicular to the first direction,
  • the starting point of the first direction and the starting point of the second direction may be the same
  • a region where the wavelength at which the diffraction efficiency reaches the maximum intensity and a region where the maximum intensity of the diffraction efficiency changes may be randomly formed
  • a region in which the wavelength at which the diffraction efficiency reaches the maximum intensity and a region in which the maximum intensity of the diffraction efficiency varies may be randomly formed.
  • the in-plane of the first hologram may have a first direction and a second direction substantially perpendicular to the first direction,
  • the starting point of the first direction and the starting point of the second direction may be the same
  • the area of the first hologram along the first direction may be formed with a region in which the maximum intensity of diffraction efficiency changes continuously
  • the area of the first hologram along the second direction may have a region where the wavelength at which the diffraction efficiency reaches the maximum intensity changes continuously.
  • the in-plane of the first hologram may have a first direction and a second direction substantially perpendicular to the first direction, The starting point of the first direction and the starting point of the second direction may be the same, In the area of the first hologram along the first direction, a region in which the maximum intensity of diffraction efficiency changes discontinuously may be formed, The area of the first hologram along the second direction may include a region in which the wavelength at which the diffraction efficiency reaches the maximum intensity changes discontinuously.
  • the first hologram diffracts and compensates the dispersion of the light emitted from the light source
  • the second hologram diffracts the dispersion-compensated and diffracted light and emits it toward each of the user's eyes
  • a display device is provided in which the first hologram has an intensity distribution of different diffraction efficiencies with respect to the wavelength of light emitted from the light source, depending on the in-plane position of the first hologram.
  • a light guide plate may be further provided for each of the user's eyes,
  • the dispersion-compensated and diffracted light emitted from the first hologram is introduced into the light guide plate, propagates through the light guide plate by total reflection, is emitted outside the light guide plate, and It may be incident on the second hologram.
  • a light intensity detector that detects the light intensity of the light emitted from the light source may be further provided for each of the user's eyes.
  • a light spectral sensitivity detector that detects spectral sensitivity of the light emitted from the light source may be further provided for each of the user's eyes.
  • a temperature detector for detecting the temperature of the light source may be further provided for each of the user's eyes.
  • the first hologram may have an intensity distribution of different diffraction efficiencies according to a position in the plane of the first hologram, along with a change in wavelength of light emitted from the light source.
  • the first hologram may have different maximum intensity of diffraction efficiency with respect to the wavelength of the light emitted from the light source depending on the position in the plane of the first hologram.
  • the first hologram has an intensity distribution of diffraction efficiency that differs according to a position in the plane of the first hologram as the wavelength of light emitted from the light source changes, and the first hologram may have different maximum intensity of diffraction efficiency with respect to the wavelength of the light emitted from the light source, depending on the position in the plane of .
  • the in-plane of the first hologram may have a first direction and a second direction substantially perpendicular to the first direction,
  • the starting point of the first direction and the starting point of the second direction may be the same
  • the area of the first hologram along the first direction may be formed with a region where the wavelength changes so that the diffraction efficiency becomes the maximum intensity,
  • a region in which the maximum intensity of diffraction efficiency varies may be formed in the area of the first hologram along the second direction.
  • the in-plane of the first hologram may have a first direction and a second direction substantially perpendicular to the first direction,
  • the starting point of the first direction and the starting point of the second direction may be the same
  • a region may be formed in which the wavelength at which the diffraction efficiency reaches the maximum intensity changes in the longer wavelength direction in order from the starting point side
  • a region may be formed in which the maximum intensity of diffraction efficiency changes in order from the starting point side.
  • the in-plane of the first hologram may have a first direction and a second direction substantially perpendicular to the first direction,
  • the starting point of the first direction and the starting point of the second direction may be the same
  • the area of the first hologram along the first direction may be formed with a region where the maximum intensity of diffraction efficiency changes
  • the area of the first hologram along the second direction may be formed with a region where the maximum intensity of diffraction efficiency changes.
  • the in-plane of the first hologram may have a first direction and a second direction substantially perpendicular to the first direction,
  • the starting point of the first direction and the starting point of the second direction may be the same
  • the area of the first hologram along the first direction may be formed with a region where the wavelength changes so that the diffraction efficiency becomes the maximum intensity
  • the area of the first hologram along the second direction may include a region where the wavelength changes with the maximum diffraction efficiency.
  • the in-plane of the first hologram may have a first direction and a second direction substantially perpendicular to the first direction,
  • the starting point of the first direction and the starting point of the second direction may be the same
  • a region where the wavelength at which the diffraction efficiency reaches the maximum intensity and a region where the maximum intensity of the diffraction efficiency changes may be randomly formed
  • a region in which the wavelength at which the diffraction efficiency reaches the maximum intensity and a region in which the maximum intensity of the diffraction efficiency varies may be randomly formed.
  • the in-plane of the first hologram may have a first direction and a second direction substantially perpendicular to the first direction,
  • the starting point of the first direction and the starting point of the second direction may be the same
  • the area of the first hologram along the first direction may be formed with a region in which the maximum intensity of diffraction efficiency changes continuously
  • the area of the first hologram along the second direction may have a region where the wavelength at which the diffraction efficiency reaches the maximum intensity changes continuously.
  • the in-plane of the first hologram may have a first direction and a second direction substantially perpendicular to the first direction, The starting point of the first direction and the starting point of the second direction may be the same, In the area of the first hologram along the first direction, a region in which the maximum intensity of diffraction efficiency changes discontinuously may be formed, The area of the first hologram along the second direction may include a region in which the wavelength at which the diffraction efficiency reaches the maximum intensity changes discontinuously.
  • FIG. 1 is a diagram illustrating a configuration example of a display device according to a first embodiment to which the present technology is applied.
  • FIG. 2 is a diagram for explaining the in-plane diffraction efficiency of the first hologram (wavelength dispersion compensation hologram) included in the display device of the first embodiment to which the present technology is applied.
  • FIG. 3 is a diagram illustrating a configuration example of a display device according to a second embodiment to which the present technology is applied.
  • FIG. 4 is a diagram illustrating a configuration example of a display device according to a third embodiment to which the present technology is applied.
  • FIG. 1 is a diagram illustrating a configuration example of a display device according to a first embodiment to which the present technology is applied.
  • FIG. 2 is a diagram for explaining the in-plane diffraction efficiency of the first hologram (wavelength dispersion compensation hologram) included in the display device of the first embodiment to which the present technology is applied.
  • FIG. 3 is a diagram
  • FIG. 5 is a diagram for explaining the in-plane diffraction efficiency of the first hologram (wavelength dispersion compensation hologram) included in the display device of the fourth embodiment to which the present technology is applied.
  • FIG. 6 is a diagram illustrating a configuration example of a display device according to a fifth embodiment to which the present technology is applied.
  • the present technology relates to a display device.
  • two holograms are used: a pre-eye combiner hologram lens and a single-pitch hologram for each color to compensate for dispersion.
  • a pre-eye combiner hologram lens and a single-pitch hologram for each color to compensate for dispersion.
  • variations in hologram manufacturing, variations in light source wavelength, active variations (fluctuations due to external factors), and the like exist, and brightness variations may occur for each set (for example, for each production lot).
  • active variations fluctuations due to external factors
  • brightness variations may occur for each set (for example, for each production lot).
  • binocular assumption since the brightness for each eye is different, it leads to discomfort.
  • a display device composed of a hologram that displays images and a hologram that suppresses dispersion.
  • the predetermined half-value widths of the two holograms are designed so that the brightness in the desired viewing range can be sufficiently achieved, and brightness fluctuations depending on the viewing position of the viewer can be suppressed.
  • this example does not consider filling individual differences in binocular eyewear.
  • the diffraction efficiency distribution is designed to be high in the central part of the hologram and low in the peripheral part of the hologram, so that the boundary between the virtual image display part and the non-display part (outside the effective image display) is inconspicuous and the image is displayed. be able to.
  • no consideration is given to filling individual differences in binocular eyewear.
  • a first hologram (dispersion compensation hologram) is provided in which the intensity distribution of diffraction efficiency with respect to wavelength differs depending on the position (location) within the hologram plane.
  • the first hologram (dispersion compensation hologram) in which the intensity distribution of the diffraction efficiency differs (changes) according to the wavelength change according to the position (place) in the hologram plane
  • a first hologram (dispersion compensation hologram) in which the maximum intensity of the diffraction efficiency for a predetermined wavelength changes according to the position (place), or a diffraction efficiency that changes with the wavelength change according to the position (place) in the hologram plane.
  • a first hologram (dispersion compensation hologram) is provided in which the intensity distribution changes and the maximum intensity of the diffraction efficiency for a predetermined wavelength changes depending on the position (location) within the hologram plane.
  • first hologram dispersion compensation hologram
  • second holograms combine holograms
  • Example 1 of Display Device A display device according to a first embodiment (example 1 of display device) according to the present technology will be described with reference to FIGS.
  • FIG. 1 is a diagram showing a configuration example of a display device according to a first embodiment of the present technology, and more specifically, a diagram showing a display device 51. As shown in FIG. 1
  • the display device 51 includes at least a light source 5 , a first hologram (dispersion compensation hologram (dispersion compensation HOE)) 1 , and a second hologram (combiner hologram (combiner HOE)) 7 .
  • a first hologram (dispersion-compensating hologram (dispersion-compensating HOE)) 1 emits from a light source 5 and diffracts the light reflected by a dichroic mirror 3 while compensating the dispersion of the first collimator lens 2 and MEMS mirror 4 ( (moves in the direction of arrow M) and emerges as first diffracted lights L1-1 and L1-2.
  • a MEMS mirror 4 also referred to as a scanning mirror) two-dimensionally scans the first diffracted light (moves in the direction of arrow M).
  • the first collimator lens 6 collimates the first diffracted lights L1-1 and L1-2.
  • a second hologram (combiner hologram (combiner (HOE)) 7 diffracts the dispersion-compensated and diffracted light (first diffracted light L1-1 and L1-2) to direct the second hologram in the direction of the user's eyes. They are emitted as diffracted lights L2-1 and L2-2.
  • FIG. 2 is a diagram for explaining the in-plane diffraction efficiency of the first hologram (dispersion compensation hologram) 1 included in the display device (display device 51) of the first embodiment according to the present technology.
  • FIG. 2A is a diagram showing a configuration example of the in-plane diffraction efficiency distribution of the dispersion compensating hologram 1.
  • the vertical axis (vertical direction in FIG. 2A) is the adjustment axis of the maximum diffraction efficiency wavelength.
  • the horizontal axis (horizontal direction in FIG. 2A) is the adjustment axis for the maximum value of diffraction efficiency.
  • FIG. 2B is an explanatory diagram for adjusting the diffraction efficiency
  • the vertical axis vertical direction in FIG. 2B
  • the horizontal axis horizontal direction in FIG. 2B
  • Area 1 (high level of diffraction efficiency) shown in FIG. 2B corresponds to area 1-A, area 1-B and area 1-C shown in FIG. 2A
  • area 2 (medium level of diffraction efficiency) Corresponds to area 2-A, area 2-B and area 2-C shown in FIG. 2A
  • area 3 (diffraction efficiency is at a low level) is area 3-A, area 3-B and area shown in FIG. 2A It corresponds to 2-C.
  • FIG. 2C is an explanatory diagram for adjusting the wavelength of maximum diffraction efficiency, where the vertical axis (vertical direction in FIG. 2C) indicates diffraction efficiency and the horizontal axis (horizontal direction in FIG. 2C) indicates wavelength.
  • Area A (wavelength at short level) shown in FIG. 2C corresponds to area 1-A
  • area B (wavelength at medium level) corresponds to FIG.
  • Area 1-B, Area 2-B and Area 3-B shown in corresponds to Area 1-B
  • Area 2-B and Area 3-B shown in corresponds to Area 1-B
  • Area 2-B and Area 3-B shown in correspond to Area 1-C
  • Area 2-C and Area 3-C shown in FIG. 2A correspond to
  • the diffraction efficiency is adjusted by changing the position where light is applied (incident) according to the luminance and/or the wavelength of the light emitted from the light source 5.
  • the contents described above for the display device of the first embodiment (display device example 1) according to the present technology are the second to fifth embodiments according to the present technology, which will be described later. can be applied to the display device of
  • Second Embodiment (Example 2 of Display Device)> A display device according to a second embodiment (example 2 of display device) according to the present technology will be described with reference to FIG.
  • FIG. 3 is a diagram showing a configuration example of a display device according to a second embodiment of the present technology, and more specifically, a diagram showing a display device 53. As shown in FIG.
  • the display device 53 includes a right-eye display device 53R and a left-eye display device 53L.
  • the display device 53R for the right eye includes at least a light source 5R, a first hologram (dispersion compensation hologram (dispersion compensation HOE)) 1R, and a second hologram (combiner hologram (combiner HOE)) 7R.
  • the first hologram (dispersion compensation hologram (dispersion compensation (HOE)) 1R is emitted from the light source 5R and diffracts the light reflected by the dichroic mirror 3R while compensating the dispersion of the light, thereby obtaining the first collimator lens 2R and the MEMS mirror 4R.
  • a MEMS mirror 4R also referred to as a scanning mirror
  • the first collimator lens 6R collimates the first diffracted lights L1-1R and L1-2R.
  • the second hologram (combiner hologram (combiner (HOE)) 7R diffracts the dispersion-compensated and diffracted light (first diffracted light L1-1R and L1-2R) to direct the second hologram in the direction of the user's eyes. They are emitted as diffracted lights L2-1R and L2-2R.
  • the display device 53L for the left eye includes at least a light source 5L, a first hologram (dispersion compensation hologram (dispersion compensation HOE)) 1L, and a second hologram (combiner hologram (combiner HOE)) 7L.
  • the first hologram (dispersion compensation hologram (dispersion compensation (HOE)) 1L diffracts the light emitted from the light source 5L and reflected by the dichroic mirror 3L while compensating the dispersion of the light, and diffracts the light to obtain the first collimator lens 2L and the MEMS mirror 4L.
  • a MEMS mirror 4L also referred to as a scanning mirror
  • the first collimator lens 6L collimates the first diffracted lights L1-1L and L1-2L.
  • the second hologram (combiner hologram (combiner (HOE)) 7L diffracts the dispersion-compensated and diffracted light (first diffracted light L1-1L and L1-2L) to direct the second hologram in the direction of the user's eyes. They are emitted as diffracted lights L2-1L and L2-2L.
  • the output lights of the second holograms (combiner holograms (combiner (HOE)) 7R and 7L are adjusted at the in-plane positions of the first holograms (dispersion compensation holograms (dispersion compensation (HOE)) 1R and 1L). and the luminance ratio of both eyes can be matched.
  • FIG. 4 is a diagram showing a configuration example of a display device according to a third embodiment of the present technology, and more specifically, a diagram showing a display device 54. As shown in FIG.
  • the display device 54 includes at least a light source 5 , a first hologram (dispersion compensation hologram) 1 , a second hologram (combiner hologram) 7 , a light guide plate 8 and a prism 9 .
  • a first hologram (dispersion-compensating hologram (dispersion-compensating HOE)) 1 emits from a light source 5 and diffracts the light reflected by a dichroic mirror 3 while compensating the dispersion of the first collimator lens 2 and MEMS mirror 4 ( (moves in the direction of arrow M) and emerges as first diffracted lights L1-1 and L1-2.
  • a MEMS mirror 4 also referred to as a scanning mirror) two-dimensionally scans the first diffracted light (moves in the direction of arrow M).
  • the first collimator lens 6 collimates the first diffracted lights L1-1 and L1-2.
  • the first diffracted lights L1-1 and L1-2 are introduced into the light guide plate 8 via the prism 9 and propagated through the light guide plate 8 by total reflection (in the region Q1, the first diffracted light L1-1 is reflected by the region Q2, and the first diffracted light L1-2 is reflected by the region Q2.
  • a second hologram (combiner hologram (combiner (HOE)) 7 diffracts the dispersion-compensated and diffracted light (first diffracted light L1-1 and L1-2) to direct the second hologram in the direction of the user's eyes. They are emitted as diffracted lights L2-1 and L2-2.
  • the above-described contents of the display device of the third embodiment (example 3 of the display device) according to the present technology are the same as those of the first and second embodiments according to the above-described present technology. and display devices of fourth and fifth embodiments according to the present technology, which will be described later.
  • FIG. 5 is a diagram for explaining the in-plane diffraction efficiency of the first hologram (dispersion compensation hologram) 15 included in the display device according to the fourth embodiment of the present technology.
  • FIG. 5A is a diagram showing a structural example of the in-plane diffraction efficiency distribution of the dispersion compensating hologram 15A
  • FIG. 5B is a diagram showing a structural example of the in-plane diffraction efficiency distribution of the dispersion compensating hologram 15B
  • 5C is a diagram showing a configuration example of the in-plane diffraction efficiency distribution of the dispersion compensating hologram 15C
  • FIG. 5D is a configuration example of the in-plane diffraction efficiency distribution of the dispersion compensating hologram 15D. It is a diagram.
  • a region in which the maximum intensity of the diffraction efficiency changes is formed in the plane of the dispersion compensation hologram 15A shown in FIG. 5A.
  • the vertical axis direction on the left side of the plane of the dispersion compensation hologram 15A is the 1-A region (above-mentioned area 1 (high intensity) + area A (short wavelength)) and 3-A region.
  • the vertical axis direction on the right side of the plane of the dispersion compensating hologram 15A is the 2-A area.
  • 4-A region Area 4 (minimum intensity) + Area A (short wavelength)
  • the horizontal axis direction (horizontal direction in FIG. 5A) on the upper side of the plane of the dispersion compensation hologram 15A is the 1-A area (above-mentioned area 1 (high intensity) + area A (short wavelength) and the 2-A area (above-mentioned area 2 (medium intensity) + area A (short wavelength)), and the horizontal axis direction (horizontal direction in FIG. area 3 (low intensity)+area A (short wavelength)) and area 4-A (area 4 (minimum intensity)+area A (short wavelength)).
  • a region is formed in which the wavelength changes so that the diffraction efficiency reaches the maximum intensity.
  • the vertical axis direction on the left side of the plane of the dispersion compensation hologram 15B is the 1-A region (above-mentioned area 1 (high intensity) + area A (short wavelength) and 1-C region (Area 1 (high intensity) + Area C (wavelength)), and the vertical axis direction on the right side of the plane of the dispersion compensation hologram 15B (the vertical direction in FIG. 5B) is the 1-B area ( These are the area 1 (medium intensity) + area B (medium wavelength) and the 1-D area (area 1 (high intensity) + area D (longest wavelength)).
  • the horizontal axis direction (horizontal direction in FIG. 5B) on the upper side of the plane of the dispersion compensation hologram 15B is the 1-A area (above-mentioned area 1 (high intensity) + area A (short wavelength)) and the 1-B area ( area 1 (high intensity) + area B (medium wavelength)), and the horizontal axis direction (horizontal direction in FIG. 5B) on the lower side of the plane of the dispersion compensation hologram 15B is the 1-C area ( Area 1 (high intensity) + area C (wavelength length)) and 1-D region (area 1 (high intensity) + area D (longest wavelength)).
  • the vertical axis direction on the left side of the plane of the dispersion compensation hologram 15C (vertical direction in FIG. 5C) is divided into 2-B area (above-mentioned area 2 (medium intensity) + area B (medium wavelength)) and 1-B area. area (above-mentioned area 1 (high intensity) + area B (medium wavelength)) and 1-C area (above-mentioned area 1 (high intensity) + area C (wavelength)), and the dispersion compensation hologram 15B
  • the vertical axis direction in the middle of the plane (the vertical direction in FIG.
  • the direction (vertical direction in FIG. 5C) is 3-A region (above-mentioned area 3 (low intensity) + area A (short wavelength)) and 2-C region (above-mentioned area 2 (medium intensity) + area C ( wavelength length)) and 2-A region (above-mentioned area 1 (medium intensity) + area A (short wavelength)).
  • the horizontal axis direction (horizontal direction in FIG. 5C) on the upper side of the plane of the dispersion compensation hologram 15C is the 2-B area (above-mentioned area 2 (medium intensity) + area B (medium wavelength)) and the 3-C area ( area 3 (low intensity) + area C (long wavelength)) and 3-A region (area 3 (low intensity) + area A (short wavelength)), which are within the plane of the dispersion compensation hologram 15C.
  • 5C is the 1-B region (above-mentioned area 1 (high intensity) + area B (medium wavelength)) and the 1-A region (above-mentioned area 1 (high intensity) ) + area A (short wavelength)) and 2-C region (above-mentioned area 2 (medium intensity) + area C (long wavelength)), which are the lower horizontal direction in the plane of the dispersion compensation hologram 15C.
  • 5C is the 1-C region (above-mentioned area 1 (high intensity) + area C (wavelength length), and the 3-B region (above-mentioned area 3 (low intensity) + area B (medium wavelength) )) and the 2-A region (area 1 (medium intensity) + area A (short wavelength)).
  • the above-described contents of the display device of the fourth embodiment (display device example 4) according to the present technology are the same as those of the first to third embodiments according to the above-described present technology. and a display device of a fifth embodiment according to the present technology, which will be described later.
  • FIG. 6 is a diagram showing a configuration example of a display device according to a fifth embodiment of the present technology. Specifically, it is a diagram showing a display device 56 .
  • FIG. 6A is a view of the display device 56
  • FIG. 6B is an enlarged view of the area P6A shown in FIG. 6A and a view of the detection mechanism 60B
  • FIG. FIG. 6D is an enlarged view of area P6A shown in FIG. 6A, showing detection mechanism 60C
  • FIG. 6D is an enlarged view of area P6A shown in FIG. 6A, showing detection mechanism 60D.
  • the display device 56 includes at least a light source 5, a first hologram (dispersion compensation hologram) 1, and a second hologram (combiner hologram) 7.
  • a first hologram (dispersion-compensating hologram (dispersion-compensating HOE)) 1 emits from a light source 5 and diffracts the light reflected by a dichroic mirror 3 while compensating the dispersion of the first collimator lens 2 and MEMS mirror 4 ( (moves in the direction of arrow M) and emerges as first diffracted lights L1-1 and L1-2.
  • a MEMS mirror 4 also referred to as a scanning mirror) two-dimensionally scans the first diffracted light (moves in the direction of arrow M).
  • the first collimator lens 6 collimates the first diffracted lights L1-1 and L1-2.
  • a second hologram (combiner hologram (combiner (HOE)) 7 diffracts the dispersion-compensated and diffracted light (first diffracted light L1-1 and L1-2) to direct the second hologram in the direction of the user's eyes. They are emitted as diffracted lights L2-1 and L2-2.
  • the light (eg, red light) emitted from the light source 5R passes through the dichroic mirror 3R and enters the light intensity detector 10B-1, and the light (eg, green light) emitted from the light source 5G is dichroic.
  • the light (for example, blue light) emitted from the light source 5B is transmitted through the mirror 3G and is incident on the light intensity detector 10B-2.
  • light emitted from the light source 5G eg, green light
  • light emitted from the light source 5B eg, blue light. Detection of this intensity variation allows the dispersion compensation to be actively moved and adjusted.
  • light for example, red light
  • first hologram dispersion compensation hologram
  • optical spectral sensitivity detector 10C enters the optical spectral sensitivity detector 10C
  • light source 5B for example, red light
  • green light emitted from 5G
  • first hologram dispersion compensation hologram
  • optical spectral sensitivity detector 10C detects variations in optical spectral sensitivity (optical spectral intensity). be able to. By detecting this optical spectral sensitivity (optical spectral intensity) variation, dispersion compensation can be actively moved and adjusted.
  • a temperature detector 10D-1 is connected to the light source 5R
  • a temperature detector 10D-2 is connected to the light source 5G
  • a temperature detector 10D-3 is connected to the light source 5B
  • the light sources 5R, 5G and A temperature change of the light source 5B can be detected. Detection of this temperature variation allows the dispersion compensation to be actively moved and adjusted.
  • the above-described contents of the display device of the fifth embodiment (example 5 of the display device) according to the present technology are the same as those of the above-described first to fourth embodiments of the present technology. can be applied to the display device of
  • this technique can also take the following structures.
  • [1] comprising at least a light source, a first hologram, and a second hologram; the first hologram diffracts and compensates the dispersion of the light emitted from the light source, and the second hologram diffracts the dispersion-compensated and diffracted light and emits it toward a user's eye;
  • a display device wherein the first hologram has an intensity distribution of different diffraction efficiencies with respect to the wavelength of light emitted from the light source, depending on the in-plane position of the first hologram.
  • [2] further comprising a light guide plate,
  • the dispersion-compensated and diffracted light emitted from the first hologram is introduced into the light guide plate, propagates through the light guide plate by total reflection, is emitted outside the light guide plate, and
  • the display device according to any one of [1] to [4], further comprising a temperature detector that detects the temperature of the light source.
  • the display device according to any one of [7] Any one of [1] to [5], wherein the first hologram has different maximum intensity of diffraction efficiency with respect to the wavelength of the light emitted from the light source, depending on the position in the plane of the first hologram. or the display device according to one.
  • the first hologram has an intensity distribution of diffraction efficiency that differs according to a position in the plane of the first hologram as the wavelength of light emitted from the light source changes, and the first hologram
  • the display device according to any one of [1] to [5], which has different maximum intensity of diffraction efficiency with respect to the wavelength of light emitted from the light source, depending on the position in the plane of [1] to [5].
  • the in-plane of the first hologram has a first direction and a second direction substantially perpendicular to the first direction; the starting point of the first direction and the starting point of the second direction are the same, In the area of the first hologram along the first direction, a region is formed in which the wavelength changes so that the diffraction efficiency reaches the maximum intensity,
  • the display device according to any one of [1] to [5], wherein the area of the first hologram along the second direction is formed with a region where the maximum intensity of diffraction efficiency changes.
  • the in-plane of the first hologram has a first direction and a second direction substantially perpendicular to the first direction; the starting point of the first direction and the starting point of the second direction are the same, In the area of the first hologram along the first direction, a region is formed in which the wavelength at which the diffraction efficiency reaches the maximum intensity changes in the longer wavelength direction in order from the starting point side, Any one of [1] to [5], wherein the area of the first hologram along the second direction has a region in which the maximum intensity of diffraction efficiency changes in order from the starting point side. or the display device according to one.
  • the in-plane of the first hologram has a first direction and a second direction substantially perpendicular to the first direction; the starting point of the first direction and the starting point of the second direction are the same, A region in which the maximum intensity of diffraction efficiency changes is formed in the area of the first hologram along the first direction,
  • the display device according to any one of [1] to [5], wherein the area of the first hologram along the second direction is formed with a region where the maximum intensity of diffraction efficiency changes.
  • the in-plane of the first hologram has a first direction and a second direction substantially perpendicular to the first direction; the starting point of the first direction and the starting point of the second direction are the same, In the area of the first hologram along the first direction, a region is formed in which the wavelength changes so that the diffraction efficiency reaches the maximum intensity, [5] according to any one of [1] to [5], wherein the area of the first hologram along the second direction is formed with a region where the wavelength changes so that the diffraction efficiency reaches the maximum intensity. display device.
  • the in-plane of the first hologram has a first direction and a second direction substantially perpendicular to the first direction; the starting point of the first direction and the starting point of the second direction are the same, In the area of the first hologram along the first direction, a region where the wavelength at which the diffraction efficiency reaches the maximum intensity and a region where the maximum intensity of the diffraction efficiency changes are randomly formed, In the area of the first hologram along the second direction, a region where the wavelength at which the diffraction efficiency reaches the maximum intensity and a region where the maximum intensity of the diffraction efficiency changes are randomly formed, [1 ] to [5].
  • the in-plane of the first hologram has a first direction and a second direction substantially perpendicular to the first direction; the starting point of the first direction and the starting point of the second direction are the same, In the area of the first hologram along the first direction, a region in which the maximum intensity of diffraction efficiency changes continuously is formed, Any one of [1] to [5], wherein the area of the first hologram along the second direction has a region where the wavelength at which the diffraction efficiency reaches the maximum intensity is continuously changed.
  • the in-plane of the first hologram has a first direction and a second direction substantially perpendicular to the first direction; the starting point of the first direction and the starting point of the second direction are the same, In the area of the first hologram along the first direction, a region is formed in which the maximum intensity of diffraction efficiency changes discontinuously, Any one of [1] to [5], wherein the area of the first hologram along the second direction is formed with a region where the wavelength at which the diffraction efficiency reaches the maximum intensity changes discontinuously.
  • [16] comprising at least a light source, a first hologram, and a second hologram for each of the user's eyes; the first hologram diffracts and compensates the dispersion of the light emitted from the light source, and the second hologram diffracts the dispersion-compensated and diffracted light and emits it toward each of the user's eyes;
  • a display device wherein the first hologram has an intensity distribution of different diffraction efficiencies with respect to the wavelength of light emitted from the light source, depending on the in-plane position of the first hologram.
  • [17] Further comprising a light guide plate for each of the user's eyes, The dispersion-compensated and diffracted light emitted from the first hologram is introduced into the light guide plate, propagates through the light guide plate by total reflection, is emitted outside the light guide plate, and The display device according to [16], which is incident on the second hologram. [18] The display device according to [16] or [17], further comprising a light intensity detector that detects the light intensity of the light emitted from the light source for each of the user's eyes.
  • the display device according to any one of [16] to [18], further comprising optical spectral sensitivity detectors for detecting spectral sensitivity of light emitted from the light source for each of the user's eyes. .
  • the display device according to any one of [16] to [19], further comprising a temperature detector that detects the temperature of the light source for each of the user's eyes.
  • the first hologram has an intensity distribution with different diffraction efficiencies according to the position in the plane of the first hologram, as the wavelength of the light emitted from the light source changes.
  • the display device according to any one of [22] Any one of [16] to [20], wherein the first hologram has different maximum intensity of diffraction efficiency with respect to the wavelength of light emitted from the light source depending on the position in the plane of the first hologram. or the display device according to one. [23] wherein the first hologram has an intensity distribution of diffraction efficiency that differs according to a position in the plane of the first hologram as the wavelength of light emitted from the light source changes, and the first hologram The display device according to any one of [16] to [20], which has different maximum intensity of diffraction efficiency with respect to the wavelength of the light emitted from the light source, depending on the position in the plane of [16] to [20].
  • the in-plane of the first hologram has a first direction and a second direction substantially perpendicular to the first direction; the starting point of the first direction and the starting point of the second direction are the same, In the area of the first hologram along the first direction, a region is formed in which the wavelength changes so that the diffraction efficiency reaches the maximum intensity,
  • the display device according to any one of [16] to [20], wherein the area of the first hologram along the second direction is formed with a region where the maximum intensity of diffraction efficiency changes.
  • the in-plane of the first hologram has a first direction and a second direction substantially perpendicular to the first direction; the starting point of the first direction and the starting point of the second direction are the same, In the area of the first hologram along the first direction, a region is formed in which the wavelength at which the diffraction efficiency reaches the maximum intensity changes in the longer wavelength direction in order from the starting point side, Any one of [16] to [20], wherein the area of the first hologram along the second direction is formed with a region in which the maximum intensity of diffraction efficiency changes in order from the starting point side. or 1.
  • the display device according to claim 1.
  • the in-plane of the first hologram has a first direction and a second direction substantially perpendicular to the first direction; the starting point of the first direction and the starting point of the second direction are the same, A region in which the maximum intensity of diffraction efficiency changes is formed in the area of the first hologram along the first direction,
  • the display device according to any one of [16] to [20], wherein the area of the first hologram along the second direction is formed with a region where the maximum intensity of diffraction efficiency changes.
  • the in-plane of the first hologram has a first direction and a second direction substantially perpendicular to the first direction; the starting point of the first direction and the starting point of the second direction are the same, In the area of the first hologram along the first direction, a region is formed in which the wavelength changes so that the diffraction efficiency reaches the maximum intensity, [20] according to any one of [16] to [20], wherein the area of the first hologram along the second direction has a region where the wavelength changes so that the diffraction efficiency reaches the maximum intensity. display device.
  • the in-plane of the first hologram has a first direction and a second direction substantially perpendicular to the first direction; the starting point of the first direction and the starting point of the second direction are the same, In the area of the first hologram along the first direction, a region where the wavelength at which the diffraction efficiency reaches the maximum intensity and a region where the maximum intensity of the diffraction efficiency changes are randomly formed, In the area of the first hologram along the second direction, a region where the wavelength at which the diffraction efficiency reaches the maximum intensity and a region where the maximum intensity of the diffraction efficiency changes are randomly formed, [16 ] to [20].
  • the in-plane of the first hologram has a first direction and a second direction substantially perpendicular to the first direction; the starting point of the first direction and the starting point of the second direction are the same, In the area of the first hologram along the first direction, a region in which the maximum intensity of diffraction efficiency changes continuously is formed, Any one of [16] to [20], wherein the area of the first hologram along the second direction is formed with a region in which the wavelength at which the diffraction efficiency reaches the maximum intensity is continuously changed.
  • the in-plane of the first hologram has a first direction and a second direction substantially perpendicular to the first direction; the starting point of the first direction and the starting point of the second direction are the same, In the area of the first hologram along the first direction, a region is formed in which the maximum intensity of diffraction efficiency changes discontinuously, Any one of [16] to [20], wherein the area of the first hologram along the second direction is formed with a region where the wavelength at which the diffraction efficiency reaches the maximum intensity changes discontinuously.
  • First hologram (dispersion compensation hologram), 2, 2L, 2R... first collimator lens, 3, 3L, 3R... dichroic mirror, 4, 4L, 4R... MEMS mirror, 5, 5L, 5R... light source, 6, 6L, 6R... second collimator lens, 7, 7L, 7R... second hologram (combiner hologram), 8... light guide plate, 9... Prism, 51, 53 (53L, 53R), 54, 56... display devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Holo Graphy (AREA)

Abstract

製造ばらつきや、光源の波長ばらつきや、アクティブな変動(外的要因による変動)に対する、表示装置の更なる信頼性の向上を実現できる表示装置を提供すること。 光源と、第1ホログラムと、第2ホログラムと、を少なくとも備え、該第1ホログラムが、該光源から出射された光を分散補償して回折して出射し、該第2ホログラムが、該分散補償されて回折された光を回折してユーザの瞳方向に出射し、該第1ホログラムが、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長に対して、異なる回折効率の強度分布を有する、表示装置を提供する。

Description

表示装置
 本技術は、表示装置に関する。
 近年、例えば現実の風景などの外界の光景に画像を重ねて表示する技術に注目が集まっている。当該技術は、拡張現実(AR)技術とも呼ばれる。この技術を利用した製品の一つとして、ヘッドマウントディスプレイが挙げられる。ヘッドマウントディスプレイは、ユーザの頭部に装着して使用される。ヘッドマウントディスプレイを用いた映像(画像)の表示方法では、例えば外界からの光に加えてヘッドマウントディスプレイからの光がユーザの眼に到達することで、外界の像に当該ディスプレイからの光による映像が重畳されているようにユーザは認識する。
 例えば、特許文献1では、光透過性を有する回折格子を介し、前方の視野と表示装置からの表示内容とを重畳して表示する、いわゆるヘッドアップディスプレイ装置に関する技術が提案されている。
 また、例えば、特許文献2では、虚像のエッジが目立たない、良好な像を観察することができるホログラフィックディスプレイに関する技術が提案されている。
特開平1-306814号 特開平6-202037号
 しかしながら、特許文献1及び2で提案された技術では、製造ばらつきや、光源の波長ばらつきや、アクティブな変動(外的要因による変動)に対する、表示装置の更なる信頼性の向上が図れないおそれがある。
 そこで、本技術は、このような状況に鑑みてなされたものであり、製造ばらつきや、光源の波長ばらつきや、アクティブな変動(外的要因による変動)に対する、表示装置の更なる信頼性の向上を実現できる表示装置を提供することを主目的とする。
 本発明者らは、上述の目的を解決するために鋭意研究を行った結果、驚くべきことに、製造ばらつきや、光源の波長ばらつきや、アクティブな変動(外的要因による変動)に対する、表示装置の更なる信頼性を向上することができることに成功し、本技術を完成するに至った。
 すなわち、本技術は、第1の側面として、
 光源と、第1ホログラムと、第2ホログラムと、を少なくとも備え、
 該第1ホログラムが、該光源から出射された光を分散補償して回折して出射し、
 該第2ホログラムが、該分散補償されて回折された光を回折してユーザの眼の方向に出射し、
 該第1ホログラムが、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長に対して、異なる回折効率の強度分布を有する、表示装置。
 本技術に係る第1の側面の表示装置が、
 導光板を更に備えていてもよく、
 前記第1ホログラムから出射された該分散補償されて回折された光が、該導光板内に導入されて、該導光板内を全反射により伝播して、該導光板外に出射されて、前記第2ホログラムに入射されてもよい。
 本技術に係る第1の側面の表示装置が、
 前記光源から出射された光の光強度を検出する光強度検出器を更に備えていてもよい。
 本技術に係る第1の側面の表示装置が、
 前記光源から出射された光の分光感度を検出する光分光感度検出器を更に備えていてもよい。
 本技術に係る第1の側面の表示装置が、
 前記光源の温度を検出する温度検出器を更に備えていてもよい。
 本技術に係る第1の側面の表示装置において、
 前記第1ホログラムが、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長の変化に伴って、異なる回折効率の強度分布を有していてもよい。
 本技術に係る第1の側面の表示装置において、
 前記第1ホログラムが、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長に対して、異なる回折効率の最大強度を有していてもよい。
 本技術に係る第1の側面の表示装置において、
 前記第1ホログラムが、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長の変化に伴って、異なる回折効率の強度分布を有し、かつ、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長に対して、異なる回折効率の最大強度を有していてもよい。
 本技術に係る第1の側面の表示装置において、
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有していてもよく、
 該第1方向の始点と該第2方向の始点とは同じであってもよく、
 該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域が形成されていてもよく、
 該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が変化する領域が形成されていてもよい。
 本技術に係る第1の側面の表示装置において、
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有していてもよく、
 該第1方向の始点と該第2方向の始点とは同じであってもよく、
 該第1方向に沿った前記第1ホログラムが有するエリアには、該始点側から順に、回折効率が最大強度となる波長が長波長方向に変化する領域が形成されていてもよく、
 該第2方向に沿った前記第1ホログラムが有するエリアには、該始点側から順に、回折効率の最大強度が小さい方向に変化する領域が形成されていてもよい。
 本技術に係る第1の側面の表示装置において、
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有していてもよく、
 該第1方向の始点と該第2方向の始点とは同じであってもよく、
 該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が変化する領域が形成されていてもよく、
 該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が変化する領域が形成されていてもよい。
 本技術に係る第1の側面の表示装置において、
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有していてもよく、
 該第1方向の始点と該第2方向の始点とは同じであってもよく、
 該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域が形成されていてもよく、
 該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域が形成されていてもよい。
 本技術に係る第1の側面の表示装置において、
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有していてもよく、
 該第1方向の始点と該第2方向の始点とは同じであってもよく、
 該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域と回折効率の最大強度が変化する領域とがランダムに形成されていてもよく、
 該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域と回折効率の最大強度が変化する領域とがランダムに形成されていてもよい。
 本技術に係る第1の側面の表示装置において、
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有していてもよく、
 該第1方向の始点と該第2方向の始点とは同じであってもよく、
 該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が連続的に変化する領域が形成されていてもよく、
 該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が連続的に変化する領域が形成されていてもよい。
 本技術に係る第1の側面の表示装置において、
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有していてもよく、
 該第1方向の始点と該第2方向の始点とは同じであってもよく、
 該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が非連続的に変化する領域が形成されていてもよく、
 該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が非連続的に変化する領域が形成されていてもよい。
 また、本技術は、第2の側面として、
 ユーザの両眼のそれぞれに対して、光源と、第1ホログラムと、第2ホログラムと、を少なくとも備え、
 該第1ホログラムが、該光源から出射された光を分散補償して回折して出射し、
 該第2ホログラムが、該分散補償されて回折された光を回折して該ユーザの両眼のそれぞれの方向に出射し、
 該第1ホログラムが、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長に対して、異なる回折効率の強度分布を有する、表示装置を提供する。
 本技術に係る第2の側面の表示装置が、
 前記ユーザの両眼のそれぞれに対して、導光板を更に備えていてもよく、
 前記第1ホログラムから出射された該分散補償されて回折された光が、該導光板内に導入されて、該導光板内を全反射により伝播して、該導光板外に出射されて、前記第2ホログラムに入射されてもよい。
 本技術に係る第2の側面の表示装置が、
 前記ユーザの両眼のそれぞれに対して、前記光源から出射された光の光強度を検出する光強度検出器を更に備えていてもよい。
 本技術に係る第2の側面の表示装置が、
 前記ユーザの両眼のそれぞれに対して、前記光源から出射された光の分光感度を検出する光分光感度検出器を更に備えていてもよい。
 本技術に係る第2の側面の表示装置が、
 前記ユーザの両眼のそれぞれに対して、前記光源の温度を検出する温度検出器を更に備えていてもよい。
 本技術に係る第2の側面の表示装置において、
 前記第1ホログラムが、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長の変化に伴って、異なる回折効率の強度分布を有していてもよい。
 本技術に係る第2の側面の表示装置において、
 前記第1ホログラムが、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長に対して、異なる回折効率の最大強度を有していてもよい。
 本技術に係る第2の側面の表示装置において、
 前記第1ホログラムが、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長の変化に伴って、異なる回折効率の強度分布を有し、かつ、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長に対して、異なる回折効率の最大強度を有していてもよい。
 本技術に係る第2の側面の表示装置において、
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有していてもよく、
 該第1方向の始点と該第2方向の始点とは同じであってもよく、
 該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域が形成されていてもよく、
 該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が変化する領域は形成されていてもよい。
 本技術に係る第2の側面の表示装置において、
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有していてもよく、
 該第1方向の始点と該第2方向の始点とは同じであってもよく、
 該第1方向に沿った前記第1ホログラムが有するエリアには、該始点側から順に、回折効率が最大強度となる波長が長波長方向に変化する領域が形成されていてもよく、
 該第2方向に沿った前記第1ホログラムが有するエリアには、該始点側から順に、回折効率の最大強度が小さい方向に変化する領域が形成されていてもよい。
 本技術に係る第2の側面の表示装置において、
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有していてもよく、
 該第1方向の始点と該第2方向の始点とは同じであってもよく、
 該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が変化する領域が形成されていてもよく、
 該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が変化する領域が形成されていてもよい。
 本技術に係る第2の側面の表示装置において、
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有していてもよく、
 該第1方向の始点と該第2方向の始点とは同じであってもよく、
 該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域が形成されていてもよく、
 該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域が形成されていてもよい。
 本技術に係る第2の側面の表示装置において、
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有していてもよく、
 該第1方向の始点と該第2方向の始点とは同じであってもよく、
 該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域と回折効率の最大強度が変化する領域とがランダムに形成されていてもよく、
 該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域と回折効率の最大強度が変化する領域とがランダムに形成されていてもよい。
 本技術に係る第2の側面の表示装置において、
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有していてもよく、
 該第1方向の始点と該第2方向の始点とは同じであってもよく、
 該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が連続的に変化する領域が形成されていてもよく、
 該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が連続的に変化する領域が形成されていてもよい。
 本技術に係る第2の側面の表示装置において、
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有していてもよく、
 該第1方向の始点と該第2方向の始点とは同じであってもよく、
 該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が非連続的に変化する領域が形成されていてもよく、
 該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が非連続的に変化する領域が形成されていてもよい。
 本技術によれば、製造ばらつきや、光源の波長ばらつきや、アクティブな変動(外的要因による変動)に対する、表示装置の更なる信頼性の向上が実現され得る。なお、ここに記載された効果は、必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
図1は、本技術を適用した第1の実施形態の表示装置の構成例を示す図である。 図2は、本技術を適用した第1の実施形態の表示装置が備える第1ホログラム(波長分散補償ホログラム)の面内の回折効率を説明するための図である。 図3は、本技術を適用した第2の実施形態の表示装置の構成例を示す図である。 図4は、本技術を適用した第3の実施形態の表示装置の構成例を示す図である。 図5は、本技術を適用した第4の実施形態の表示装置が備える第1ホログラム(波長分散補償ホログラム)の面内の回折効率を説明するための図である。 図6は、本技術を適用した第5の実施形態の表示装置の構成例を示す図である。
 以下、本技術を実施するための好適な形態について説明する。以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。なお、特に断りがない限り、図面において、「上」とは図中の上方向又は上側を意味し、「下」とは、図中の下方向又は下側を意味し、「左」とは図中の左方向又は左側を意味し、「右」とは図中の右方向又は右側を意味する。また、図面を用いた説明においては、同一又は同等の要素又は部材には同一の符号を付し、重複する説明は、特別な事情がない限り、省略する。
 なお、説明は以下の順序で行う。
 1.本技術の概要
 2.第1の実施形態(表示装置の例1)
 3.第2の実施形態(表示装置の例2)
 4.第3の実施形態(表示装置の例3)
 5.第4の実施形態(表示装置の例4)
 6.第5の実施形態(表示装置の例5)
<1.本技術の概要>
 まず、本技術の概要について説明をする。本技術は、表示装置に関するものである。
 網膜直描ディスプレイの設計では、例えば、眼前コンバイナホログラムレンズと、分散を補償するための色毎の単一ピッチのホログラムとの計2枚のホログラムが使用されている。実際には、ホログラムの製造ばらつき、光源の波長ばらつき、アクティブな変動(外的要因による変動)等が存在するため、セットごと(例えば、製造ロットごと)に輝度ばらつきが生じてしまうことがある。特に、両眼想定の場合は、各目に対する輝度が異なるため、違和感につながる。
 上記のことを解決する試みとしては、例えば、個体ごとの調光機能の付与や、光源とホログラムの特性との組み合わせを見ながらの膨大な選別等が挙げられる。しかしながら、これらのことでも、両眼の性能差を埋めることが難しい。
 また、映像を表示するホログラムと、分散を抑制するホログラムとから構成された表示装置の例がある。この例では、2つのホログラムのそれぞれが有する所定の半値幅が、所望の観察範囲での輝度が十分に達成可能なように設計されて、観察者の観察位置による輝度変動を抑制することができる。しかしながら、この例は、両眼アイウエアの個体差を埋めることは考慮されていない。
 さらに、映像を表示するホログラムの回折効率分布に着目した例がある。この例では、回折効率分布が、ホログラムの中心部が高く、ホログラムの周辺部が低く設計されて、虚像表示部と非表示部(画像表示有効外)との境界が目立たずに画像表示をすることができる。しかしながら、この例も、両眼アイウエアの個体差を埋めることは考慮されていない。
 本技術は、このような状況を鑑みてなされたものである。本技術においては、ホログラム面内の位置(場所)に応じて、波長に対する回折効率の強度分布が異なる第1ホログラム(分散補償ホログラム)が提供される。詳しくは、本技術においては、ホログラム面内の位置(場所)に応じて、波長変化に伴って回折効率の強度分布が異なる(変化する)第1ホログラム(分散補償ホログラム)や、ホログラム面内の位置(場所)に応じて、所定の波長に対する回折効率の最大強度が変化する第1ホログラム(分散補償ホログラム)や、ホログラム面内の位置(場所)に応じて、波長変化に伴って回折効率の強度分布が変化し、かつ、ホログラム面内の位置(場所)に応じて、所定の波長に対する回折効率の最大強度が変化する第1ホログラム(分散補償ホログラム)が提供される。
 そして、本技術によれば、第1ホログラム(分散補償ホログラム)と、分散の補償のターゲットとなる対の第2ホログラム(コンバイナホログラム)とを組み合わせて、分散を補償することで光源の波長分布により生じる回折光の分散及び個体ごとの輝度差をなくし、両眼視での違和感を低減することができる。
 以上の説明が、本技術の概要である。以下、本技術を実施するための好適な形態について図面を参照しながら、具体的に、かつ、詳細に説明する。
<2.第1の実施形態(表示装置の例1)>
 本技術に係る第1の実施形態(表示装置の例1)の表示装置について、図1及び図2を用いて説明する。
 図1は、本技術に係る第1の実施形態の表示装置の構成例を示す図であり、具体的には、表示装置51を示す図である。
 表示装置51は、光源5と、第1ホログラム(分散補償ホログラム(分散補償HOE))1と、第2ホログラム(コンバイナホログラム(コンバイナHOE))7と、を少なくとも備える。
 第1ホログラム(分散補償ホログラム(分散補償HOE))1は、光源5から出射されて、ダイクロイックミラー3によって反射された光を分散補償して回折して、第1コリメータレンズ2及びMEMSミラー4(矢印M方向に動く)を介して、第1回折光L1-1及びL1-2として出射する。MEMSミラー4(走査ミラーとも言う。)は、第1回折光を二次元的に走査する(矢印M方向に動く)。第1コリメータレンズ6は、第1回折光L1-1及びL1-2を平行光にする。
 第2ホログラム(コンバイナホログラム(コンバイナ(HOE))7は、分散補償されて回折された光(第1回折光L1-1及びL1-2)を回折して、ユーザの眼の方向に、第2回折光L2-1及びL2-2として出射する。
 図2は、本技術に係る第1の実施形態の表示装置(表示装置51)が備える第1ホログラム(分散補償ホログラム)1の面内の回折効率を説明するための図である。
 より詳しくは、図2Aは、分散補償ホログラム1の面内の回折効率の分布の構成例を示す図であり、縦軸(図2Aの上下方向)は、回折効率最大波長の調整軸であり、横軸(図2Aの左右方向)は、回折効率最大値の調整軸である。
 図2Bは、回折効率を調整するための説明図であり、縦軸(図2Bの上下方向)は回折効率を示し、横軸(図2Bの左右方向)は波長を示す。図2Bに示されるエリア1(回折効率が大レベル)は、図2Aに示されるエリア1-A、エリア1-B及びエリア1-Cに該当し、エリア2(回折効率が中レベル)は、図2Aに示されるエリア2-A、エリア2-B及びエリア2-Cに該当し、エリア3(回折効率が小レベル)は、図2Aに示されるエリア3-A、エリア3-B及びエリア2-Cに該当する。
 図2Cは、最大回折効率の波長を調整するための説明図であり、縦軸(図2Cの上下方向)は回折効率を示し、横軸(図2Cの左右方向)は波長を示す。図2Cに示されるエリアA(波長が短レベル)は、図2Aに示されるエリア1-A、エリア2-A及びエリア3-Aに該当し、エリアB(波長が中レベル)は、図2Aに示されるエリア1-B、エリア2-B及びエリア3-Bに該当し、エリアC(波長が長レベル)は、図2Aに示されるエリア1-C、エリア2-C及びエリア3-Cに該当する。
 分散補償ホログラム1の面内において、輝度及び/又は光源5から出射される光の波長に応じて、光を当てる(入射させる)位置を変えて回折効率を調整する。
 以上、本技術に係る第1の実施形態(表示装置の例1)の表示装置について説明した内容は、特に技術的な矛盾がない限り、後述する本技術に係る第2~第5の実施形態の表示装置に適用することができる。
<3.第2の実施形態(表示装置の例2)>
 本技術に係る第2の実施形態(表示装置の例2)の表示装置について、図3を用いて説明する。
 図3は、本技術に係る第2の実施形態の表示装置の構成例を示す図であり、具体的には、表示装置53を示す図である。
 表示装置53は、右眼用の表示装置53Rと、左眼用の表示装置53Lとを備える。
 右眼用の表示装置53Rは、光源5Rと、第1ホログラム(分散補償ホログラム(分散補償HOE))1Rと、第2ホログラム(コンバイナホログラム(コンバイナHOE))7Rと、を少なくとも備える。
 第1ホログラム(分散補償ホログラム(分散補償(HOE))1Rは、光源5Rから出射されて、ダイクロイックミラー3Rによって反射された光を分散補償して回折して、第1コリメータレンズ2R及びMEMSミラー4Rを介して、第1回折光L1-1R及びL1-2Rとして出射する。MEMSミラー4R(走査ミラーとも言う。)は、第1回折光を二次元的に走査する(矢印M方向に動く)。第1コリメータレンズ6Rは、第1回折光L1-1R及びL1-2Rを平行光にする。
 第2ホログラム(コンバイナホログラム(コンバイナ(HOE))7Rは、分散補償されて回折された光(第1回折光L1-1R及びL1-2R)を回折して、ユーザの眼の方向に、第2回折光L2-1R及びL2-2Rとして出射する。
 左眼用の表示装置53Lは、光源5Lと、第1ホログラム(分散補償ホログラム(分散補償HOE))1Lと、第2ホログラム(コンバイナホログラム(コンバイナHOE))7Lと、を少なくとも備える。
 第1ホログラム(分散補償ホログラム(分散補償(HOE))1Lは、光源5Lから出射されて、ダイクロイックミラー3Lによって反射された光を分散補償して回折して、第1コリメータレンズ2L及びMEMSミラー4Lを介して、第1回折光L1-1L及びL1-2Lとして出射する。MEMSミラー4L(走査ミラーとも言う。)は、第1回折光を二次元的に走査する(矢印M方向に動く)。第1コリメータレンズ6Lは、第1回折光L1-1L及びL1-2Lを平行光にする。
 第2ホログラム(コンバイナホログラム(コンバイナ(HOE))7Lは、分散補償されて回折された光(第1回折光L1-1L及びL1-2L)を回折して、ユーザの眼の方向に、第2回折光L2-1L及びL2-2Lとして出射する。
 表示装置53によれば、第1ホログラム(分散補償ホログラム(分散補償(HOE))1R及び1Lの面内の位置で第2ホログラム(コンバイナホログラム(コンバイナ(HOE))7R及び7Lの出力光を調整し、両眼の輝度比を合わせることができる。
 以上、本技術に係る第2の実施形態(表示装置の例2)の表示装置について説明した内容は、特に技術的な矛盾がない限り、前述した本技術に係る第1の実施形態の表示装置及び後述する本技術に係る第3~第5の実施形態の表示装置に適用することができる。
<4.第3の実施形態(表示装置の例3)>
 本技術に係る第3の実施形態(表示装置の例3)の表示装置について、図4を用いて説明する。
 図4は、本技術に係る第3の実施形態の表示装置の構成例を示す図であり、具体的には、表示装置54を示す図である。
 表示装置54は、光源5と、第1ホログラム(分散補償ホログラム)1と、第2ホログラム(コンバイナホログラム)7と、導光板8と、プリズム9とを少なくとも備える。
 第1ホログラム(分散補償ホログラム(分散補償HOE))1は、光源5から出射されて、ダイクロイックミラー3によって反射された光を分散補償して回折して、第1コリメータレンズ2及びMEMSミラー4(矢印M方向に動く)を介して、第1回折光L1-1及びL1-2として出射する。MEMSミラー4(走査ミラーとも言う。)は、第1回折光を二次元的に走査する(矢印M方向に動く)。第1コリメータレンズ6は、第1回折光L1-1及びL1-2を平行光にする。
 第1回折光L1-1及びL1-2は、プリズム9を介して、導光板8内に導入されて、導光板8内を全反射により伝播して(領域Q1で第1回折光L1-1は反射され、領域Q2で第1回折光L1-2は反射される。)、導光板8外に出射されて、第2ホログラム(コンバイナホログラム)7に入射される。
 第2ホログラム(コンバイナホログラム(コンバイナ(HOE))7は、分散補償されて回折された光(第1回折光L1-1及びL1-2)を回折して、ユーザの眼の方向に、第2回折光L2-1及びL2-2として出射する。
 以上、本技術に係る第3の実施形態(表示装置の例3)の表示装置について説明した内容は、特に技術的な矛盾がない限り、前述した本技術に係る第1~第2の実施形態の表示装置及び後述する本技術に係る第4~第5の実施形態の表示装置に適用することができる。
<5.第4の実施形態(表示装置の例4)>
 本技術に係る第4の実施形態(表示装置の例4)の表示装置について、図5を用いて説明する。図5は、本技術に係る第4の実施形態の表示装置が備える第1ホログラム(分散補償ホログラム)15の面内の回折効率を説明するための図である。
 より詳しくは、図5Aは、分散補償ホログラム15Aの面内の回折効率の分布の構成例を示す図であり、図5Bは、分散補償ホログラム15Bの面内の回折効率の分布の構成例を示す図であり、図5Cは、分散補償ホログラム15Cの面内の回折効率の分布の構成例を示す図であり、図5Dは、分散補償ホログラム15Dの面内の回折効率の分布の構成例を示す図である。
 図5Aに示される分散補償ホログラム15Aの面内には、回折効率の最大強度が変化する領域が形成されている。
 すなわち、分散補償ホログラム15Aの面内の左側の縦軸方向(図5Aの上下方向)は、1-A領域(上述したエリア1(強度大)+エリアA(波長短))と、3-A領域(上述したエリア3(強度小)+エリアA(波長短))とであり、また、分散補償ホログラム15Aの面内の右側の縦軸方向(図5Aの上下方向)は、2-A領域(上述したエリア1(強度中)+エリアA(波長短))と、4-A領域(エリア4(強度最小)+エリアA(波長短))とである。
 分散補償ホログラム15Aの面内の上側の横軸方向(図5Aの左右方向)は、1-A領域(上述したエリア1(強度大)+エリアA(波長短)と、2-A領域(上述したエリア2(強度中)+エリアA(波長短))とであり、また、分散補償ホログラム15Aの面内の下側の横軸方向(図5Aの左右方向)は、3-A領域(上述したエリア3(強度小)+エリアA(波長短))と、4-A領域(エリア4(強度最小)+エリアA(波長短))とである。
 図5Bに示される分散補償ホログラム15Bの面内は、回折効率が最大強度となる波長が変化する領域が形成されている。
 すなわち、分散補償ホログラム15Bの面内の左側の縦軸方向(図5Bの上下方向)は、1-A領域(上述したエリア1(強度大)+エリアA(波長短)と、1-C領域(上述したエリア1(強度大)+エリアC(波長長))とであり、また、分散補償ホログラム15Bの面内の右側の縦軸方向(図5Bの上下方向)は、1-B領域(上述したエリア1(強度中)+エリアB(波長中)と、1-D領域(エリア1(強度大)+エリアD(波長最長))とである。
 分散補償ホログラム15Bの面内の上側の横軸方向(図5Bの左右方向)は、1-A領域(上述したエリア1(強度大)+エリアA(波長短))と、1-B領域(上述したエリア1(強度大)+エリアB(波長中))とであり、また、分散補償ホログラム15Bの面内の下側の横軸方向(図5Bの左右方向)は、1-C領域(上述したエリア1(強度大)+エリアC(波長長))と、1-D領域(エリア1(強度大)+エリアD(波長最長))とである。
 図5Cに示される分散補償ホログラム15Cの面内には、回折効率の最大強度が変化する領域と回折効率が最大強度となる波長が変化する領域とがランダムに形成されている。
 すなわち、分散補償ホログラム15Cの面内の左側の縦軸方向(図5Cの上下方向)は、2-B領域(上述したエリア2(強度中)+エリアB(波長中))と、1-B領域(上述したエリア1(強度大)+エリアB(波長中))と、1-C領域(上述したエリア1(強度大)+エリアC(波長長))とであり、分散補償ホログラム15Bの面内の真ん中の縦軸方向(図5Cの上下方向)は、3-C領域(上述したエリア3(強度小)+エリアC(波長長))と、1-A領域(上述したエリア1(強度大)+エリアA(波長短))と、3-B領域(上述したエリア3(強度小)+エリアB(波長中))とであり、分散補償ホログラム15Bの面内の右側の縦軸方向(図5Cの上下方向)は、3-A領域(上述したエリア3(強度小)+エリアA(波長短))と、2-C領域(上述したエリア2(強度中)+エリアC(波長長))と、2-A領域(上述したエリア1(強度中)+エリアA(波長短))とである。
 分散補償ホログラム15Cの面内の上側の横軸方向(図5Cの左右方向)は、2-B領域(上述したエリア2(強度中)+エリアB(波長中))と、3-C領域(上述したエリア3(強度小)+エリアC(波長長))と、3-A領域(上述したエリア3(強度小)+エリアA(波長短))とであり、分散補償ホログラム15Cの面内の真ん中の横軸方向(図5Cの左右方向)は、1-B領域(上述したエリア1(強度大)+エリアB(波長中))と、1-A領域(上述したエリア1(強度大)+エリアA(波長短))と、2-C領域(上述したエリア2(強度中)+エリアC(波長長))とであり、分散補償ホログラム15Cの面内の下側の横軸方向(図5Cの左右方向)は、1-C領域(上述したエリア1(強度大)+エリアC(波長長)と、3-B領域(上述したエリア3(強度小)+エリアB(波長中))と、2-A領域(上述したエリア1(強度中)+エリアA(波長短))とである。
 図5Dに示される分散補償ホログラム15Dの面内は、縦軸のエリア(図15Dの上下方向では、連続的に強度分布を有する。)では、回折効率の最大強度が連続的に変化する領域が形成され、横軸のエリア(図15Dの左右方向では連続的に波長分布を有する。)では、回折効率が最大強度となる波長が連続的に変化する領域が形成されている。なお、図示はされていないが、回折効率の最大強度が非連続的に変化する領域が形成されてもよく、回折効率が最大強度となる波長が非連続的に変化する領域が形成されてもよい。
 以上、本技術に係る第4の実施形態(表示装置の例4)の表示装置について説明した内容は、特に技術的な矛盾がない限り、前述した本技術に係る第1~第3の実施形態の表示装置及び後述する本技術に係る第5の実施形態の表示装置に適用することができる。
<6.第5の実施形態(表示装置の例5)>
 本技術に係る第5の実施形態(表示装置の例5)の表示装置について、図6を用いて説明する。
 図6は、本技術に係る第5の実施形態の表示装置の構成例を示す図である。具体的には、表示装置56を示す図である。
 より詳しくは、図6Aは、表示装置56を示す図であり、図6Bは、図6Aに示される領域P6Aの拡大図であり、検出機構60Bを示す図であり、図6Cは、図6Aに示される領域P6Aの拡大図であり、検出機構60Cを示す図であり、図6Dは、図6Aに示される領域P6Aの拡大図であり、検出機構60Dを示す図である。
 表示装置56は、光源5と、第1ホログラム(分散補償ホログラム)1と、第2ホログラム(コンバイナホログラム)7と、を少なくとも備える。
 第1ホログラム(分散補償ホログラム(分散補償HOE))1は、光源5から出射されて、ダイクロイックミラー3によって反射された光を分散補償して回折して、第1コリメータレンズ2及びMEMSミラー4(矢印M方向に動く)を介して、第1回折光L1-1及びL1-2として出射する。MEMSミラー4(走査ミラーとも言う。)は、第1回折光を二次元的に走査する(矢印M方向に動く)。第1コリメータレンズ6は、第1回折光L1-1及びL1-2を平行光にする。
 第2ホログラム(コンバイナホログラム(コンバイナ(HOE))7は、分散補償されて回折された光(第1回折光L1-1及びL1-2)を回折して、ユーザの眼の方向に、第2回折光L2-1及びL2-2として出射する。
 検出機構60Bでは、光源5Rから出射された光(例えば赤色光)はダイクロイックミラー3Rを透過して光強度検出器10B-1に入射され、光源5Gから出射された光(例えば緑色光)はダイクロイックミラー3Gを透過して光強度検出器10B-2に入射され、光源5Bから出射された光(例えば青色光)はダイクロイックミラー3Bを透過して光強度検出器10B-3に入射され、光源5Rから出射された光(例えば赤色光)、光源5Gから出射された光(例えば緑色光)及び光源5Bから出射された光(例えば青色光)の強度変動を検出すことができる。この強度変動の検出により、分散補償をアクティブに動かし調整することができる。
 検出機構60Cでは、光源5Rから出射された光(例えば赤色光)はダイクロイックミラー3Rを反射して第1ホログラム(分散補償ホログラム)1に入射されて、光分光感度検出器10Cに入射され、光源5Gから出射された光(例えば緑色光)はダイクロイックミラー3Gを反射して第1ホログラム(分散補償ホログラム)1に入射されて、光分光感度検出器10Cに入射され、光源5Bから出射された光(例えば青色光)はダイクロイックミラー3Bを反射して第1ホログラム(分散補償ホログラム)1に入射されて、光分光感度検出器10Cに入射されて、光分光感度(光分光強度)変動を検出すことができる。この光分光感度(光分光強度)変動の検出により、分散補償をアクティブに動かし調整することができる。
 検出機構60Dでは、光源5Rに温度検出器10D-1が接続され、光源5Gに温度検出器10D-2が接続され、光源5Bに温度検出器10D-3が接続され、光源5R、光源5G及び光源5Bの温度変動を検出すことができる。この温度変動の検出により、分散補償をアクティブに動かし調整することができる。
 以上、本技術に係る第5の実施形態(表示装置の例5)の表示装置について説明した内容は、特に技術的な矛盾がない限り、前述した本技術に係る第1~第4の実施形態の表示装置に適用することができる。
 なお、本技術に係る実施形態は、上述した各実施形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 また、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。
 また、本技術は、以下のような構成を取ることもできる。
[1]
 光源と、第1ホログラムと、第2ホログラムと、を少なくとも備え、
 該第1ホログラムが、該光源から出射された光を分散補償して回折して出射し、
 該第2ホログラムが、該分散補償されて回折された光を回折してユーザの眼の方向に出射し、
 該第1ホログラムが、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長に対して、異なる回折効率の強度分布を有する、表示装置。
[2]
 導光板を更に備え、
 前記第1ホログラムから出射された該分散補償されて回折された光が、該導光板内に導入されて、該導光板内を全反射により伝播して、該導光板外に出射されて、前記第2ホログラムに入射される、[1]に記載の表示装置。
[3]
 前記光源から出射された光の光強度を検出する光強度検出器を更に備える、[1]又は[2]に記載の表示装置。
[4]
 前記光源から出射された光の分光感度を検出する光分光感度検出器を更に備える、[1]から[3]のいずれか1つに記載の表示装置。
[5]
 前記光源の温度を検出する温度検出器を更に備える、[1]から[4]のいずれか1つに記載の表示装置。
[6]
 前記第1ホログラムが、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長の変化に伴って、異なる回折効率の強度分布を有する、[1]から[5]のいずれか1つに記載の表示装置。
[7]
 前記第1ホログラムが、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長に対して、異なる回折効率の最大強度を有する、[1]から[5]のいずれか1つに記載の表示装置。
[8]
 前記第1ホログラムが、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長の変化に伴って、異なる回折効率の強度分布を有し、かつ、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長に対して、異なる回折効率の最大強度を有する、[1]から[5]のいずれか1つに記載の表示装置。
[9]
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有し、
 該第1方向の始点と該第2方向の始点とは同じであり、
 該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域が形成され、
 該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が変化する領域が形成されている、[1]から[5]のいずれか1つに記載の表示装置。
[10]
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有し、
 該第1方向の始点と該第2方向の始点とは同じであり、
 該第1方向に沿った前記第1ホログラムが有するエリアには、該始点側から順に、回折効率が最大強度となる波長が長波長方向に変化する領域が形成され、
 該第2方向に沿った前記第1ホログラムが有するエリアには、該始点側から順に、回折効率の最大強度が小さい方向に変化する領域が形成されている、[1]から[5]のいずれか1つに記載の表示装置。
[11]
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有し、
 該第1方向の始点と該第2方向の始点とは同じであり、
 該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が変化する領域が形成され、
 該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が変化する領域が形成されている、[1]から[5]のいずれか1つに記載の表示装置。
[12]
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有し、
 該第1方向の始点と該第2方向の始点とは同じであり、
 該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域が形成され、
 該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域が形成されている、[1]から[5]のいずれか1つに記載の表示装置。
[13]
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有し、
 該第1方向の始点と該第2方向の始点とは同じであり、
 該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域と回折効率の最大強度が変化する領域とがランダムに形成され、
 該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域と回折効率の最大強度が変化する領域とがランダムに形成されている、[1]から[5]のいずれか1つに記載の表示装置。
[14]
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有し、
 該第1方向の始点と該第2方向の始点とは同じであり、
 該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が連続的に変化する領域が形成され、
 該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が連続的に変化する領域が形成されている、[1]から[5]のいずれか1つに記載の表示装置。
[15]
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有し、
 該第1方向の始点と該第2方向の始点とは同じであり、
 該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が非連続的に変化する領域が形成され、
 該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が非連続的に変化する領域が形成されている、[1]から[5]のいずれか1つに記載の表示装置。
[16]
 ユーザの両眼のそれぞれに対して、光源と、第1ホログラムと、第2ホログラムと、を少なくとも備え、
 該第1ホログラムが、該光源から出射された光を分散補償して回折して出射し、
 該第2ホログラムが、該分散補償されて回折された光を回折して該ユーザの両眼のそれぞれの方向に出射し、
 該第1ホログラムが、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長に対して、異なる回折効率の強度分布を有する、表示装置。
[17]
 前記ユーザの両眼のそれぞれに対して、導光板を更に備え、
 前記第1ホログラムから出射された該分散補償されて回折された光が、該導光板内に導入されて、該導光板内を全反射により伝播して、該導光板外に出射されて、前記第2ホログラムに入射される、[16]に記載の表示装置。
[18]
 前記ユーザの両眼のそれぞれに対して、前記光源から出射された光の光強度を検出する光強度検出器を更に備える、[16]又は[17]に記載の表示装置。
[19]
 前記ユーザの両眼のそれぞれに対して、前記光源から出射された光の分光感度を検出する光分光感度検出器を更に備える、[16]から[18]のいずれか1つに記載の表示装置。
[20]
 前記ユーザの両眼のそれぞれに対して、前記光源の温度を検出する温度検出器を更に備える、[16]から[19]のいずれか1つに記載の表示装置。
[21]
 前記第1ホログラムが、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長の変化に伴って、異なる回折効率の強度分布を有する、[16]から[20]のいずれか1つに記載の表示装置。
[22]
 前記第1ホログラムが、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長に対して、異なる回折効率の最大強度を有する、[16]から[20]のいずれか1つに記載の表示装置。
[23]
 前記第1ホログラムが、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長の変化に伴って、異なる回折効率の強度分布を有し、かつ、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長に対して、異なる回折効率の最大強度を有する、[16]から[20]のいずれか1つに記載の表示装置。
[24]
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有し、
 該第1方向の始点と該第2方向の始点とは同じであり、
 該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域が形成され、
 該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が変化する領域は形成されている、[16]から[20]のいずれか1つに記載の表示装置。[25]
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有し、
 該第1方向の始点と該第2方向の始点とは同じであり、
 該第1方向に沿った前記第1ホログラムが有するエリアには、該始点側から順に、回折効率が最大強度となる波長が長波長方向に変化する領域が形成され、
 該第2方向に沿った前記第1ホログラムが有するエリアには、該始点側から順に、回折効率の最大強度が小さい方向に変化する領域が形成されている、[16]から[20]のいずれか1つに記載の表示装置。
[26]
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有し、
 該第1方向の始点と該第2方向の始点とは同じであり、
 該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が変化する領域が形成され、
 該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が変化する領域が形成されている、[16]から[20]のいずれか1つに記載の表示装置。[27]
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有し、
 該第1方向の始点と該第2方向の始点とは同じであり、
 該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域が形成され、
 該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域が形成されている、[16]から[20]のいずれか1つに記載の表示装置。
[28]
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有し、
 該第1方向の始点と該第2方向の始点とは同じであり、
 該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域と回折効率の最大強度が変化する領域とがランダムに形成され、
 該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域と回折効率の最大強度が変化する領域とがランダムに形成されている、[16]から[20]のいずれか1つに記載の表示装置。
[29]
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有し、
 該第1方向の始点と該第2方向の始点とは同じであり、
 該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が連続的に変化する領域が形成され、
 該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が連続的に変化する領域が形成されている、[16]から[20]のいずれか1つに記載の表示装置。
[30]
 前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有し、
 該第1方向の始点と該第2方向の始点とは同じであり、
 該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が非連続的に変化する領域が形成され、
 該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が非連続的に変化する領域が形成されている、[16]から[20]のいずれか1つに記載の表示装置。
 1…第1ホログラム(分散補償ホログラム)、
 2、2L、2R…第1コリメータレンズ、
 3、3L、3R…ダイクロイックミラー、
 4、4L、4R…MEMSミラー、
 5、5L、5R…光源、
 6、6L、6R…第2コリメータレンズ、
 7、7L、7R…第2ホログラム(コンバイナホログラム)、
 8…導光板、
 9…プリズム、
 51、53(53L、53R)、54、56…表示装置。
 

Claims (16)

  1.  光源と、第1ホログラムと、第2ホログラムと、を少なくとも備え、
     該第1ホログラムが、該光源から出射された光を分散補償して回折して出射し、
     該第2ホログラムが、該分散補償されて回折された光を回折してユーザの眼の方向に出射し、
     該第1ホログラムが、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長に対して、異なる回折効率の強度分布を有する、表示装置。
  2.  導光板を更に備え、
     前記第1ホログラムから出射された該分散補償されて回折された光が、該導光板内に導入されて、該導光板内を全反射により伝播して、該導光板外に出射されて、前記第2ホログラムに入射される、請求項1に記載の表示装置。
  3.  前記光源から出射された光の光強度を検出する光強度検出器を更に備える、請求項1に記載の表示装置。
  4.  前記光源から出射された光の分光感度を検出する光分光感度検出器を更に備える、請求項1に記載の表示装置。
  5.  前記光源の温度を検出する温度検出器を更に備える、請求項1に記載の表示装置。
  6.  前記第1ホログラムが、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長の変化に伴って、異なる回折効率の強度分布を有する、請求項1に記載の表示装置。
  7.  前記第1ホログラムが、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長に対して、異なる回折効率の最大強度を有する、請求項1に記載の表示装置。
  8.  前記第1ホログラムが、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長の変化に伴って、異なる回折効率の強度分布を有し、かつ、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長に対して、異なる回折効率の最大強度を有する、請求項1に記載の表示装置。
  9.  前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有し、
     該第1方向の始点と該第2方向の始点とは同じであり、
     該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域が形成され、
     該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が変化する領域が形成されている、請求項1に記載の表示装置。
  10.  前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有し、
     該第1方向の始点と該第2方向の始点とは同じであり、
     該第1方向に沿った前記第1ホログラムが有するエリアには、該始点側から順に、回折効率が最大強度となる波長が長波長方向に変化する領域が形成され、
     該第2方向に沿った前記第1ホログラムが有するエリアには、該始点側から順に、回折効率の最大強度が小さい方向に変化する領域が形成されている、請求項1に記載の表示装置。
  11.  前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有し、
     該第1方向の始点と該第2方向の始点とは同じであり、
     該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が変化する領域が形成され、
     該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が変化する領域が形成されている、請求項1に記載の表示装置。
  12.  前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有し、
     該第1方向の始点と該第2方向の始点とは同じであり、
     該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域が形成され、
     該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域が形成されている、請求項1に記載の表示装置。
  13.  前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有し、
     該第1方向の始点と該第2方向の始点とは同じであり、
     該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域と回折効率の最大強度が変化する領域とがランダムに形成され、
     該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が変化する領域と回折効率の最大強度が変化する領域とがランダムに形成されている、請求項1に記載の表示装置。
  14.  前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有し、
     該第1方向の始点と該第2方向の始点とは同じであり、
     該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が連続的に変化する領域が形成され、
     該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が連続的に変化する領域が形成されている、請求項1に記載の表示装置。
  15.  前記第1ホログラムの面内が第1方向と、該第1方向に対して略垂直である第2方向とを有し、
     該第1方向の始点と該第2方向の始点とは同じであり、
     該第1方向に沿った前記第1ホログラムが有するエリアには、回折効率の最大強度が非連続的に変化する領域が形成され、
     該第2方向に沿った前記第1ホログラムが有するエリアには、回折効率が最大強度となる波長が非連続的に変化する領域が形成されている、請求項1に記載の表示装置。
  16.  ユーザの両眼のそれぞれに対して、光源と、第1ホログラムと、第2ホログラムと、を少なくとも備え、
     該第1ホログラムが、該光源から出射された光を分散補償して回折して出射し、
     該第2ホログラムが、該分散補償されて回折された光を回折して該ユーザの両眼のそれぞれの方向に出射し、
     該第1ホログラムが、該第1ホログラムの面内の位置に応じて、該光源から出射された光の波長に対して、異なる回折効率の強度分布を有する、表示装置。
     
PCT/JP2022/005603 2021-03-19 2022-02-14 表示装置 WO2022196204A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280020791.7A CN117043662A (zh) 2021-03-19 2022-02-14 显示设备
US18/550,117 US20240184245A1 (en) 2021-03-19 2022-02-14 Display device
EP22770963.1A EP4310580A4 (en) 2021-03-19 2022-02-14 DISPLAY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-045853 2021-03-19
JP2021045853 2021-03-19

Publications (1)

Publication Number Publication Date
WO2022196204A1 true WO2022196204A1 (ja) 2022-09-22

Family

ID=83322221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005603 WO2022196204A1 (ja) 2021-03-19 2022-02-14 表示装置

Country Status (4)

Country Link
US (1) US20240184245A1 (ja)
EP (1) EP4310580A4 (ja)
CN (1) CN117043662A (ja)
WO (1) WO2022196204A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306814A (ja) 1988-06-03 1989-12-11 Canon Inc 表示装置
JPH06202037A (ja) 1992-12-28 1994-07-22 Canon Inc ホログラフィックディスプレイ
JPH0772422A (ja) * 1993-06-23 1995-03-17 Olympus Optical Co Ltd 映像表示装置
JP2001519928A (ja) * 1998-01-28 2001-10-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ヘッド搭載型ディスプレイ
WO2017047528A1 (ja) * 2015-09-16 2017-03-23 コニカミノルタ株式会社 画像表示装置およびヘッドマウントディスプレイ
JP2020042212A (ja) * 2018-09-12 2020-03-19 ソニー株式会社 表示装置、表示制御方法及び記録媒体
JP2020514783A (ja) * 2017-01-26 2020-05-21 ディジレンズ インコーポレイテッド 均一出力照明を有する導波管
US20210011300A1 (en) * 2018-03-26 2021-01-14 Seereal Technolgies S.A. Display device
JP2021502590A (ja) * 2017-11-06 2021-01-28 マジック リープ, インコーポレイテッドMagic Leap,Inc. シャドウマスクを使用した調整可能勾配パターン化のための方法およびシステム
JP2021506190A (ja) * 2017-12-19 2021-02-18 アコニア ホログラフィックス、エルエルシー 分散補償を有する光学システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4810949B2 (ja) * 2005-09-29 2011-11-09 ソニー株式会社 光学装置及び画像表示装置
WO2018031634A1 (en) * 2016-08-10 2018-02-15 FictionArt, Inc. Volume phase holographic waveguide for display
FI128551B (en) * 2017-05-08 2020-07-31 Dispelix Oy A diffractive lattice with varying diffraction efficiency and a method for displaying an image
FI128376B (en) * 2017-06-02 2020-04-15 Dispelix Oy Process for the preparation of a diffractive grating with varying efficiency and a diffraction grating
US11789265B2 (en) * 2017-08-18 2023-10-17 A9.Com, Inc. Waveguide image combiners for augmented reality displays

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306814A (ja) 1988-06-03 1989-12-11 Canon Inc 表示装置
JPH06202037A (ja) 1992-12-28 1994-07-22 Canon Inc ホログラフィックディスプレイ
JPH0772422A (ja) * 1993-06-23 1995-03-17 Olympus Optical Co Ltd 映像表示装置
JP2001519928A (ja) * 1998-01-28 2001-10-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ヘッド搭載型ディスプレイ
WO2017047528A1 (ja) * 2015-09-16 2017-03-23 コニカミノルタ株式会社 画像表示装置およびヘッドマウントディスプレイ
JP2020514783A (ja) * 2017-01-26 2020-05-21 ディジレンズ インコーポレイテッド 均一出力照明を有する導波管
JP2021502590A (ja) * 2017-11-06 2021-01-28 マジック リープ, インコーポレイテッドMagic Leap,Inc. シャドウマスクを使用した調整可能勾配パターン化のための方法およびシステム
JP2021506190A (ja) * 2017-12-19 2021-02-18 アコニア ホログラフィックス、エルエルシー 分散補償を有する光学システム
US20210011300A1 (en) * 2018-03-26 2021-01-14 Seereal Technolgies S.A. Display device
JP2020042212A (ja) * 2018-09-12 2020-03-19 ソニー株式会社 表示装置、表示制御方法及び記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4310580A4

Also Published As

Publication number Publication date
CN117043662A (zh) 2023-11-10
EP4310580A4 (en) 2024-09-04
US20240184245A1 (en) 2024-06-06
EP4310580A1 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
US12124040B2 (en) Augmented reality display comprising eyepiece having a transparent emissive display
JP7404368B2 (ja) 光学過焦点反射システムおよび方法、ならびに、それを組み込む拡張および/または仮想現実ディスプレイ
CN110546549B (zh) 具有可变屈光力反射器的显示系统
US11409109B1 (en) Geometric phase lens alignment in an augmented reality head mounted display
US20180084232A1 (en) Optical See-Through Head Worn Display
US20230251494A1 (en) Augmented/Virtual Reality Near Eye Display with Edge Imaging Spectacle Lens
WO2017150631A1 (en) Head Mounted Display Using Spatial Light Modulator To Move the Viewing Zone
US20070159673A1 (en) Substrate-guided display with improved image quality
US11054639B2 (en) Eye projection system
JP2020526793A (ja) 視野を拡大するためのディスプレイデバイス
JP2021534447A (ja) 空間的に変化するリターダ光学系を備えるヘッドマウントディスプレイ(hmd)
KR20150010784A (ko) 지향성 조명식 도파관 배열체
CN113508328A (zh) 用于近眼显示器的虚拟图像的颜色校正
JP2023512873A (ja) ヘッドマウントディスプレイシステムのための偏光多重光学系
GB2571389A (en) Optical structure for augmented reality display
US20220163816A1 (en) Display apparatus for rendering three-dimensional image and method therefor
WO2020248535A1 (zh) 一种纳米波导镜片及ar显示装置
KR102686391B1 (ko) 동적 풀 3차원 디스플레이
WO2022196204A1 (ja) 表示装置
US20240061248A1 (en) Anamorphic directional illumination device
US20230418068A1 (en) Anamorphic directional illumination device
Yoshikaie et al. Full-color binocular retinal scan AR display with pupil tracking system
US20230418034A1 (en) Anamorphic directional illumination device
KR101645989B1 (ko) 포토폴리머를 이용한 헤드 마운트 디스플레이 장치 및 영상 디스플레이 방법
JP2024039614A (ja) ユーザに画像を投影するための装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770963

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18550117

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280020791.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022770963

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022770963

Country of ref document: EP

Effective date: 20231019

NENP Non-entry into the national phase

Ref country code: JP