[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022176700A1 - Air cleaner - Google Patents

Air cleaner Download PDF

Info

Publication number
WO2022176700A1
WO2022176700A1 PCT/JP2022/004846 JP2022004846W WO2022176700A1 WO 2022176700 A1 WO2022176700 A1 WO 2022176700A1 JP 2022004846 W JP2022004846 W JP 2022004846W WO 2022176700 A1 WO2022176700 A1 WO 2022176700A1
Authority
WO
WIPO (PCT)
Prior art keywords
duct
air
light source
fan
ultraviolet rays
Prior art date
Application number
PCT/JP2022/004846
Other languages
French (fr)
Japanese (ja)
Inventor
伸 松本
延章 大栗
規 浅田
英司 望月
啓輔 山城
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=78281983&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2022176700(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2022176700A1 publication Critical patent/WO2022176700A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/003Ventilation in combination with air cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/192Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by electrical means, e.g. by applying electrostatic fields or high voltages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/22Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using UV light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/80Self-contained air purifiers

Definitions

  • the present disclosure relates to air purifiers.
  • Patent Documents 1 and 2 Conventionally, an electric dust collection type air cleaner that charges dust particles contained in the air and collects the charged dust particles by electrostatic adsorption is known (see Patent Documents 1 and 2, for example).
  • the present disclosure provides an air purifier capable of inactivating viruses or killing bacteria.
  • a duct for flowing air from the inlet to the outlet; a light source that irradiates ultraviolet rays into the duct from the downstream side to the upstream side in the direction of air flow in the duct; a fan for discharging air from inside the duct to the outlet,
  • An air purifier is provided in which the light source and the fan are arranged side by side in a plane intersecting the flow direction.
  • an air cleaner capable of inactivating viruses or killing bacteria can be provided.
  • FIG. 1 is a perspective view partially showing a first example of an internal structure of a duct
  • FIG. 11 is a perspective view partially showing a second example of the internal structure of the duct
  • FIG. 11 is a perspective view partially showing a third example of the internal structure of the duct
  • It is a figure which shows an example of the relationship between the distance from a light source, and illuminance.
  • FIG. 4 is a diagram for explaining the orientation of light sources
  • FIG. 4 is a diagram showing a first arrangement example of a plurality of light sources with different light distribution angles
  • FIG. 10 is a diagram showing a second arrangement example of a plurality of light sources with different light distribution angles
  • FIG. 4 is a diagram showing a first arrangement example of a plurality of light sources that irradiate ultraviolet rays with different wavelengths
  • FIG. 10 is a diagram showing a second arrangement example of a plurality of light sources that irradiate ultraviolet rays with different wavelengths
  • 4 is a diagram showing a configuration example of a charging unit
  • FIG. FIG. 11 is a perspective view partially showing a fourth example of the internal structure of the duct
  • FIG. 12 is a perspective view partially showing a fifth example of the internal structure of the duct;
  • FIG. 1 is a diagram showing an example of an air purifier according to one embodiment.
  • An air purifier 100 shown in FIG. 1 is a device for purifying air.
  • the air purifier 100 includes a housing 10 that houses devices for purifying air.
  • the housing 10 has an intake port 11 for sucking air from the outside of the air cleaner 100 and an outlet port 12 for blowing out the air cleaned by devices inside the housing 10 to the outside of the air cleaner 100 .
  • the suction port 11 is provided at one end (eg, lower portion) of the housing 10, and the outlet 12 is provided at the other end (eg, upper portion) of the housing 10. .
  • the respective positions of the suction port 11 and the blowing port 12 are not limited to this, and may be other locations.
  • the installation number of each of the suction port 11 and the blowing port 12 may be one or more.
  • the air cleaner 100 includes a duct 20, an exhaust device 60 and a control device 80.
  • the duct 20 has an electrostatic precipitator 40 and an exposure section 70 . Note that the positional relationship of each component shown in FIG. 1 is merely an example, and is not limited to this as long as the desired effect of inactivating viruses or killing bacteria is achieved.
  • the duct 20 is a conduit that is interposed between the suction port 11 and the discharge port 12 and allows air to flow from the suction port 11 to the discharge port 12 .
  • the duct 20 is a channel that exists inside the housing 10 .
  • the duct 20 for example, is connected from the suction port 11 to the blowout port 12 and allows the air flowing in from the suction port 11 to flow toward the blowout port 12 .
  • the electric dust collector 40 is a part that charges fine particles contained in the air in the duct 20 (hereinafter also referred to as "air A") and collects the charged fine particles by electrostatic force.
  • Microparticles are viruses or bacteria, but may also be minute substances such as dust containing viruses or bacteria.
  • Particulates may include microparticulate matter (PM2.5).
  • PM2.5 refers to particles with a size of 2.5 ⁇ m or less among particles floating in the air.
  • the electrostatic precipitator 40 has a charging section 30 and a collection section 50 .
  • the charging section 30 is a section that charges fine particles contained in the air A.
  • the charging unit 30 charges fine particles contained in the air A by corona discharge, for example.
  • the collecting section 50 is a section that collects charged fine particles from the air A that has passed through the charging section 30 by electrostatic force.
  • the collection unit 50 has the ability to collect fine particles with a size of 10 nm or more and 100 ⁇ m or less, it is possible to collect small viruses of about 30 nm, novel coronavirus (COVID-19) of about 100 nm, or virus droplets of several ⁇ m. It can collect pathogenic bacteria.
  • the size of the fine particles that can be collected by the collection unit 50 is not particularly limited.
  • the exposure part 70 is a part that inactivates viruses contained in the air A or kills bacteria contained in the air A by irradiating the air A with ultraviolet rays emitted from light sources 71 and 72, which will be described later.
  • the discharge device 60 discharges the air A from inside the duct 20 to the outlet 12 .
  • the discharge device 60 introduces air from the outside of the air cleaner 100 into the duct 20 through the suction port 11 and discharges the air A that has passed through the collection section 50 and the exposure section 70 to the discharge port 12 .
  • the discharge device 60 has, for example, a fan and a motor, and discharges the air A to the outlet 12 by rotating the fan with the motor.
  • the control device 80 activates or stops the charging operation of the charging unit 30, the collecting operation of the collecting unit 50, and the discharging operation of the discharging device 60 according to the contents of the operation instruction from the user.
  • the functions of the control device 80 are implemented by a processor such as a CPU (Central Processing Unit) operating according to a program stored in memory.
  • the functions of the control device 80 may be realized by FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit).
  • the arrangement position of the collecting unit 50 is not particularly limited as long as it satisfies the desired collecting function.
  • the collecting unit 50 collects charged fine particles from the air A by electrostatic force between the charging unit 30 and the outlet 12 .
  • the particles charged in the charging section 30 are more likely to be supplied to the collecting section 50, so that the ability to collect the charged particles is improved.
  • the discharging device 60 is interposed between the charging unit 30 and the discharge port 12, the collecting unit 50 collects the charged fine particles from the air A by electrostatic force between the charging unit 30 and the discharging device 60. is preferred. This improves the ability to collect charged fine particles.
  • the placement position of the ejection device 60 is not particularly limited as long as it satisfies the desired ejection function.
  • the discharge device 60 is arranged between the collection section 50 and the blowout port 12 . Fine particles contained in the air A are collected by the collection unit 50, so that the discharge device 60 is arranged between the collection unit 50 and the outlet 12, so that the discharge device 60 can collect the dirty air A. less likely to be polluted. As a result, for example, safety in maintenance such as replacement and cleaning of the discharging device 60 is improved.
  • the air purifier 100 may include a filter 90 between the collector 50 and the outlet 12 for filtering ozone contained in the air A (which may contain ozone generated by corona discharge). As a result, the effect of reducing the concentration of ozone contained in the air blown from the outlet 12 is enhanced.
  • the filter 90 is preferably interposed between the discharge device 60 and the outlet 12 . As a result, the effect of reducing the concentration of ozone contained in the air blown from the outlet 12 is enhanced.
  • manganese oxide as the catalyst of the filter 90, the effect of reducing the ozone concentration is improved.
  • FIG. 2 is a diagram showing an example of the internal structure of the air purifier according to one embodiment, showing the air purifier 100 with the housing 10 (see FIG. 1) removed.
  • the housing 10 see FIG. 1
  • FIG. 2 not only the housing 10 but also some members are omitted for the sake of convenience in order to enhance the visibility of the internal structure.
  • the air cleaner 100 includes a light source that irradiates ultraviolet rays into the duct 20 from the downstream side to the upstream side in the flow direction 13 of the air A in the duct 20 .
  • Flow direction 13 may be the direction in which duct 20 extends.
  • a plurality of light sources 71 and 72 are illustrated in FIG. 2, but the number of light sources may be one or three or more.
  • the discharge device 60 of the air cleaner 100 includes a fan that discharges the air A from the inside of the duct 20 to the outlet 12 .
  • a plurality of fans 61 and 62 are illustrated in FIG. 2, but the number of fans may be one or three or more.
  • the light sources 71, 72 and the fans 61, 62 are arranged side by side on a plane intersecting the flow direction 13 of the air A (the flat plate 25 orthogonal to the flow direction 13 in the case of FIG. 2).
  • a plane intersecting the flow direction 13 of the air A the flat plate 25 orthogonal to the flow direction 13 in the case of FIG. 2.
  • the plane on which the light sources or fans are arranged may be a plane inclined with respect to the flow direction 13 .
  • an inclined spacer may be interposed between the light source or fan and the mounting plane so that the plane in which the light source or fan is juxtaposed may be inclined with respect to the flow direction 13 .
  • the light sources 71 and 72 are positioned at one diagonal corner of the rectangular flat plate 25 , and the fans 61 and 62 are positioned at the other diagonal corner of the rectangular flat plate 25 .
  • the fluidity of the air A in the duct 20 is improved, and the ultraviolet rays from the light sources 71 and 72 are more likely to irradiate the air A uniformly. Increases effectiveness in killing bacteria.
  • the light sources 71 , 72 do not overlap the fans 61 , 62 when viewed in the flow direction 13 .
  • the light sources 71 and 72 irradiate the inside of the duct 20 with ultraviolet rays through the through holes formed in the flat plate 25 , thereby removing viruses contained in the air A inside the exposure section 70 . Activates or kills bacteria contained in Air A.
  • the light sources 71 and 72 can inactivate viruses contained in the air A or kill bacteria contained in the air A even within the duct 20 (preferably, the exposure section 70).
  • the fans 61 and 62 discharge air A from the inside of the exposed portion 70 of the duct 20 to the outlet 12 through through holes formed in the flat plate 25 .
  • the fans 61 and 62 may be inside the duct 20 (preferably, the exposure section 70).
  • FIG. 3 is a perspective view partially showing a first example of the internal structure of the duct.
  • illustration of the light sources 71 and 72 is omitted.
  • the air cleaner 100 has a plate 21 arranged upstream in the flow direction 13 with respect to the fan 61 (below the fan 61 in FIG. 3).
  • the plate 21 obstructs the flow of the air A toward the fan 61 and prevents the space upstream of the light sources 71 and 72 (specifically, the space below the light sources 71 and 72 and on the side of the plate 21). It functions as a windshield that diverts the air A to the space of ). Therefore, the air A below the fan 61, which has a relatively small amount of ultraviolet irradiation from the light sources 71 and 72, flows into the space on the upstream side with respect to the light sources 71 and 72, thereby inactivating or inactivating the virus contained in the air A. The effect of killing bacteria contained in the air A is improved.
  • the plate 21 is arranged with a gap between it and the fan 61 , and the air A flowing from the side of the gap is discharged via the fan 61 .
  • the air cleaner 100 has a plate 22 arranged upstream in the flow direction 13 with respect to the fan 62 (below the fan 62 in FIG. 3).
  • the plate 22 obstructs the flow of the air A toward the fan 62 and prevents the space on the upstream side of the light sources 71 and 72 (specifically, the space below the light sources 71 and 72 and on the side of the plate 22). It functions as a windshield that diverts the air A to the space of ).
  • the air A below the fan 62 which has a relatively small amount of ultraviolet irradiation from the light sources 71 and 72, flows into the space on the upstream side of the light sources 71 and 72, thereby inactivating or inactivating the virus contained in the air A.
  • the effect of killing bacteria contained in the air A is improved.
  • the plate 22 is arranged with a gap between it and the fan 62 , and the air A flowing from the side of the gap is discharged via the fan 62 .
  • the air cleaner 100 has the plates 21 and 22 arranged so that the air A in the duct 20 flows into the space on the upstream side with respect to the light sources 71 and 72 .
  • the air A is more likely to be irradiated with the ultraviolet light emitted from the light sources 71 and 72, so that the effect of inactivating viruses contained in the air A or killing bacteria contained in the air A is improved.
  • FIG. 4 is a perspective view partially showing a second example of the internal structure of the duct.
  • a light source 71 arranged with a gap on the upstream side in the flow direction 13 with respect to the fan 61 and a light source 72 arranged with a gap on the upstream side with respect to the fan 62 in the flow direction 13 are arranged.
  • the ultraviolet rays emitted from the light sources 71 and 72 into the duct 20 are less likely to be blocked, and the unevenness of the ultraviolet rays emitted from the light sources 71 and 72 into the duct 20 is suppressed. Therefore, the effect of inactivating viruses contained in the air A or killing bacteria contained in the air A is improved.
  • the light source 71 is arranged on the upstream side of the plate 26 in the flow direction 13 and is arranged on the main surface of the plate 26 facing the upstream side. Thereby, ultraviolet rays can be uniformly irradiated from the light source 71 toward the inside of the duct 20 . Also, the light source 71 and the plate 26 are supported by the support 24 so that a gap is formed between the light source 71 and the fan 61 . As a result, the distance between the light source 71 and the fan 61 is increased, making it difficult for harmful ultraviolet rays to leak from the fan 61 .
  • the one or more struts 24 are an example of supports that support the plate 26 and the light source 71 within the duct 20 .
  • the plate 26 Since the plate 26 is arranged on the upstream side with respect to the fan 61, the air directed to the fan 61 is detoured.
  • the plate 26 is arranged with a gap between it and the fan 61 , and the air A flowing from the side of the gap is discharged via the fan 61 .
  • the light source 72 is arranged on the upstream side of the plate 27 in the flow direction 13 and is arranged on the main surface of the plate 27 facing the upstream side.
  • ultraviolet rays can be uniformly irradiated from the light source 72 toward the inside of the duct 20 .
  • the light source 72 and the plate 26 are supported by the support 24 so that an air gap is created between the light source 72 and the fan 62 .
  • the one or more struts 24 are an example of supports that support the plate 27 and the light source 72 within the duct 20 .
  • the plate 27 Since the plate 27 is arranged on the upstream side with respect to the fan 62 , it diverts the air toward the fan 62 .
  • the plate 27 is arranged with a gap between it and the fan 62 , and the air A flowing from the side of the gap is discharged via the fan 62 .
  • the plate 26 is arranged so that the air A in the duct 20 flows upstream in the flow direction 13 with respect to the light source 71
  • the plate 27 is arranged so that the air A in the duct 20 flows with respect to the light source 72 . It is arranged to flow upstream in direction 13 .
  • the air A is more likely to be irradiated with the ultraviolet light emitted from the light sources 71 and 72, so that the effect of inactivating viruses contained in the air A or killing bacteria contained in the air A is improved.
  • FIG. 5 is a perspective view partially showing a third example of the internal structure of the duct.
  • a light source 171 is arranged in the duct 20 on the upstream side in the flow direction 13 with respect to the fans 61 and 62 with an air gap therebetween.
  • the ultraviolet rays emitted from the light source 171 into the duct 20 are less likely to be blocked, and the unevenness of the ultraviolet rays emitted from the light source 171 into the duct 20 is suppressed. Therefore, the effect of inactivating viruses contained in the air A or killing bacteria contained in the air A is improved.
  • the light source 171 is arranged on the upstream side of the plate 28 in the flow direction 13 and is arranged on the main surface of the plate 28 facing the upstream side.
  • ultraviolet rays can be uniformly irradiated from the light source 171 toward the inside of the duct 20 .
  • the plate 28 is supported by a supporting portion (not shown) so that a gap is generated between the light source 171 and the fans 61 and 62 .
  • the distance between the light source 171 and the fans 61 and 62 is increased, making it difficult for harmful ultraviolet rays to leak from the fans 61 and 62 .
  • the one or more struts 24 are an example of supports that support the plate 28 and the light source 171 within the duct 20 . Since the plate 28 is arranged on the upstream side with respect to the fans 61, 62, it diverts the air toward the fans 61, 62. - ⁇ The plate 28 is arranged with a gap between it and the fans 61 and 62, and the air A bypassing the plate 28 or the air A passing through the slits 75 formed in the plate 28 is discharged via the fans 61 and 62. be done. Further, since the light source 171 is cooled by the air A passing through the slit 75, the fans 61 and 62 can be used both for air blowing and cooling.
  • the plate 28 is arranged so that the air A in the duct 20 flows upstream in the flow direction 13 with respect to the light source 171 .
  • the ultraviolet light emitted from the light source 171 is more likely to irradiate the air A, so that the effect of inactivating viruses contained in the air A or killing bacteria contained in the air A is improved.
  • the plate 28 has one or more slits 75 through which the air A in the duct 20 passes.
  • the slit 75 is an example of a through hole through which the air A in the duct 20 passes.
  • the slit 75 is arranged between adjacent light sources 171 .
  • the light source 171 is arranged parallel to the slit 75 .
  • FIG. 14 is a perspective view partially showing a fourth example of the internal structure of the duct.
  • light sources 171A and 171B are arranged in the duct 20 on the upstream side in the flow direction 13 with respect to the fans 61 and 62 with a gap therebetween.
  • the ultraviolet rays emitted from the light sources 171A and 171B into the duct 20 are less likely to be blocked, and the unevenness of the ultraviolet rays emitted from the light sources 171A and 171B into the duct 20 is suppressed. Therefore, the effect of inactivating viruses contained in the air A or killing bacteria contained in the air A is improved.
  • the light source 171B is spaced upstream in the flow direction 13 with respect to the light source 171A.
  • the light sources 171A and 171B irradiate ultraviolet rays into the duct 20 from the downstream side to the upstream side in the flow direction 13 .
  • the light sources that irradiate ultraviolet rays into the duct 20 in the same irradiation directions 14 in the flow direction 13 are arranged at a plurality of locations separated in the flow direction 13 .
  • the exposure portion 70 is relatively long, a relatively long distance for exposing the air A can be ensured while suppressing a decrease in the irradiation intensity of the ultraviolet rays with respect to the air A. Therefore, the effect of inactivating viruses contained in the air A or killing bacteria contained in the air A is improved.
  • FIG. 15 is a perspective view partially showing a fifth example of the internal structure of the duct.
  • light sources 171A and 171B are arranged in the duct 20 on the upstream side in the flow direction 13 with respect to the fans 61 and 62 with a gap therebetween.
  • the ultraviolet rays emitted from the light sources 171A and 171B into the duct 20 are less likely to be blocked, and the unevenness of the ultraviolet rays emitted from the light sources 171A and 171B into the duct 20 is suppressed. Therefore, the effect of inactivating viruses contained in the air A or killing bacteria contained in the air A is improved.
  • the light source 171B is spaced upstream in the flow direction 13 with respect to the light source 171A.
  • the light source 171A irradiates the inside of the duct 20 with ultraviolet rays from the downstream side to the upstream side in the flow direction 13
  • the light source 171B irradiates the inside of the duct 20 with ultraviolet rays from the upstream side toward the downstream side in the flow direction 13.
  • the light sources that irradiate the inside of the duct 20 with ultraviolet rays in the irradiation directions 14 that are opposite to each other in the flow direction 13 are arranged at a plurality of locations spaced apart in the flow direction 13 .
  • the exposure portion 70 is relatively long, a relatively long distance for exposing the air A can be ensured while suppressing a decrease in the irradiation intensity of the ultraviolet rays with respect to the air A. Therefore, the effect of inactivating viruses contained in the air A or killing bacteria contained in the air A is improved.
  • FIG. 6 is a diagram showing an example of the relationship between the distance from the light source and the illuminance in an air cleaner in which the electrostatic precipitator 40 is positioned upstream with respect to the exposure unit 70.
  • FIG. Condition R1 indicates a case where the reflectance of the inner wall of the duct 20 is less than 70% and the reflectance of the electrodes of the electrostatic precipitator 40 is less than 30%.
  • Condition R2 indicates a case where the reflectance of the inner wall of the duct 20 is 70% and the reflectance of the electrode of the electrostatic precipitator 40 is less than 30%.
  • Condition R3 indicates a case where the reflectance of the inner wall of the duct 20 is 70% and the reflectance of the electrodes of the electrostatic precipitator 40 is 30%.
  • Condition R4 indicates a case where the reflectance of the inner wall of the duct 20 is 70% and the reflectance of the electrode of the electrostatic precipitator 40 is 70%.
  • Conditions R1 to R4 indicate the case where the light distribution angle of the ultraviolet rays emitted from the light sources 71 and 72 is 35°.
  • the electrodes of the electrostatic precipitator 40 are electrodes for generating an electric field, and more specifically, a high voltage electrode and a ground electrode (collection electrode).
  • the electrostatic precipitator 40 Since the electrostatic precipitator 40 is located on the upstream side with respect to the exposure part 70, the ultraviolet rays irradiated into the duct 20 from the light sources 71 and 72 reach not only the exposure part 70 but also the electrostatic precipitator 40. . As a result, not only the viruses or bacteria contained in the air A in the exposure unit 70, but also the viruses or bacteria collected by the electrostatic precipitator 40 can be inactivated or the bacteria can be killed. improves.
  • the exposure unit 70 and the electrostatic precipitator 40 have separable structures, thereby improving maintainability such as cleaning.
  • the exposure unit 70 and the electrostatic precipitator 40 have a connecting structure that can be separated by fastening members such as bolts.
  • the charging section 30 and the collection section 50 have a separable structure, maintenance such as cleaning is improved.
  • the charging section 30 and the collection section 50 have a connecting structure that can be separated by a fastening member such as a bolt.
  • the light sources 71, 72 and fans 61, 62 are controlled by a control device 80 (see FIG. 1).
  • the control device 80 may execute an operation mode in which the light sources 71 and 72 irradiate ultraviolet rays while the fans 61 and 62 are stopped.
  • viruses collected by the electrostatic precipitator 40 can be inactivated or bacteria can be killed.
  • viruses or bacteria collected by the electrostatic precipitator 40 can be inactivated or bacteria can be killed without newly supplying viruses or bacteria into the air purifier 100, the safety of decomposition cleaning is improved.
  • control device 80 may execute an operation mode in which ultraviolet rays are emitted from the light sources 71 and 72 while the fans 61 and 62 are stopped at a higher irradiation output than when the fans 61 and 62 are rotated. .
  • viruses remaining on the inner wall of the duct 20 and the electrostatic precipitator 40 can be inactivated or bacteria can be killed.
  • a completion notification may be output. This improves the safety of the user's disassembly and cleaning work.
  • the control device 80 may switch between these operation modes M 1 , M 2 , and M 3 . Further, the control device 80 may switch and execute these operation modes M1 , M2 , and M3 according to the presence of people around the air purifier detected by the human sensor.
  • FIG. 7 is a diagram showing an example of the electrode tip structure of the electrostatic precipitator.
  • the tip of the electrode may be bent in a direction that blocks (not completely blocks) the flow of the air A in the duct 20 .
  • a swirl-like flow is formed in the duct 20, so that the ultraviolet rays evenly hit viruses or bacteria in the duct 20 even when the spatial illuminance of the ultraviolet rays is uneven.
  • the rate of failure to inactivate viruses or kill bacteria is reduced, and the effect of inactivating viruses or killing bacteria is improved.
  • the electrostatic precipitator 40 has a high voltage electrode 54 arranged inside the duct 20 and a collection electrode 52 facing the high voltage electrode 54 .
  • Multiple pairs of high voltage electrodes 54 and collection electrodes 52 are arranged in one direction perpendicular to flow direction 13 .
  • High voltage electrode 54 is, for example, a conductive plate.
  • Collection electrode 52 is a conductive plate that is grounded.
  • the collection unit 50 applies a high voltage between the high voltage electrode 54 and the collection electrode 52 to generate an electrostatic field between the high voltage electrode 54 and the collection electrode 52 . As a result, the charged fine particles are attracted to the collecting electrode 52 by electrostatic force and adhere to the collecting electrode 52 .
  • the high-voltage electrode 54 has a main electrode surface 54c in which tip portions 54a and 54b on the downstream side in the flow direction 13 are bent in the direction of blocking the flow of the air A.
  • the collection electrode 52 has a main electrode surface 52c in which tip portions 52a and 52b on the downstream side in the flow direction 13 are bent in a direction to block the flow of the air A. As shown in FIG. Tip portions 54a and 54b are alternately bent, and tip portions 52a and 52b are alternately bent. By bending in this way, a flow like a swirling flow is easily formed in the duct 20, so that the effect of inactivating viruses or killing bacteria is further improved.
  • FIG. 8 is a diagram for explaining the orientation of the light source.
  • An inner wall 23 of the duct 20 is a member that reflects ultraviolet rays.
  • the inner wall 23 itself may be an ultraviolet reflective material, or an ultraviolet reflective plate may be attached to the inner wall 23 .
  • the light source 71 includes a first wide-angle light distribution type light source 76 that irradiates ultraviolet light at a first light distribution angle, and a narrow-angle light distribution type light source 76 that irradiates ultraviolet light at a second light distribution angle narrower than the first light distribution angle. 2 light sources 77 may be included.
  • the ultraviolet rays emitted from the wide-angle light distribution type first light source 76 are reflected by the inner wall 23 of the duct 20 , and the unevenness of the irradiation distribution inside the duct 20 is alleviated.
  • the ultraviolet rays emitted from the narrow-angle light distribution type second light source 77 travel substantially straight and are irradiated deeply in the flow direction in the duct 20 . Therefore, by arranging the first light source 76 closer to the inner wall 23 of the duct 20 than the second light source 77 is, the effect of suppressing unevenness in the distribution of the ultraviolet rays irradiated into the duct 20 is enhanced.
  • FIG. 9 is a diagram showing a first arrangement example of a plurality of light sources with different light distribution angles.
  • Light sources 71, 72, 73, 74 are arranged in the duct 20 upstream of the fans 61, 62, 63, 64 in the flow direction 13 with a gap therebetween (similar to FIG. 4).
  • the light sources 71 , 72 , 73 , and 74 each have a wide-angle light distribution type first light source 76 and a narrow-angle light distribution type second light source 77 .
  • the first light source 76 is arranged closer to the inner wall 23 capable of reflecting ultraviolet rays than the second light source 77 is.
  • the first light sources 76 are arranged in an L shape along two sides adjacent to the inner wall 23 . As a result, the effect of suppressing unevenness in the distribution of ultraviolet rays irradiated into the duct 20 is enhanced.
  • FIG. 10 is a diagram showing a second arrangement example of a plurality of light sources with different light distribution angles.
  • a light source 171 arranged with an air gap on the upstream side in the flow direction 13 with respect to the fans 61 and 62 is arranged in the duct 20 (similar to FIG. 5).
  • the light source 171 has a wide-angle light distribution type first light source 76 and a narrow-angle light distribution type second light source 77 .
  • the first light source 76 is arranged closer to the inner wall 23 capable of reflecting ultraviolet rays than the second light source 77 is.
  • the first light sources 76 are arranged in a row along adjacent inner walls 23 . As a result, the effect of suppressing unevenness in the distribution of ultraviolet rays irradiated into the duct 20 is enhanced.
  • the first light sources 76 may be arranged in a line along another adjacent inner wall 23 capable of reflecting ultraviolet light.
  • FIG. 11 is a diagram showing a first arrangement example of a plurality of light sources emitting ultraviolet rays of different wavelengths.
  • the light source 172 includes a first light source 78 that emits UV-C and a second light source 79 that emits UV-B having a longer wavelength than UV-C. and may include As a result, the two functions of inactivating viruses or killing bacteria with UV-C and decomposing ozone with UV-B can be achieved in a relatively small space inside the duct 20 .
  • UV-B has a higher ozone absorption efficiency than UV-C, irradiation with UV-B can efficiently decompose ozone especially generated by corona discharge of the electrostatic precipitator 40 . Since excessive ozone is harmful to the human body, it is preferable to make the ozone concentration as small as possible.
  • UV-C Ultraviolet Light - C
  • UV-B Ultraviolet Light - B
  • UV B waves from 280 nm to 315 nm.
  • the control device 80 may detect the amount of generated ozone with an ozone sensor, and change the UV-B irradiation output according to the detected amount of generated ozone. For example, the control device 80 increases the UV-B irradiation output when the ozone generation amount is large compared to when the ozone generation amount is small. Thereby, ozone can be efficiently decomposed.
  • a light source 172 arranged across a gap on the upstream side in the flow direction 13 with respect to the fans 61 and 62 is arranged inside the duct 20 (similar to FIG. 5).
  • the light source 172 has a first light source 78 that emits UV-C and a second light source 79 that emits UV-B.
  • the first light sources 78 and the second light sources 79 are arranged alternately.
  • the light source may have a first light source 78 for irradiating UV-C and a second light source 79 for irradiating UV-B.
  • the first light source 78 may be of a wide-angle light distribution type or a narrow-angle light distribution type.
  • the second light source 79 may be of a wide-angle light distribution type or a narrow-angle light distribution type.
  • FIG. 12 is a diagram showing a second arrangement example of a plurality of light sources emitting ultraviolet rays of different wavelengths. If the second light source 79 that emits UV-B is arranged closer to the electrostatic precipitator 40 than the first light source 78 that emits UV-C, the ozone generated in the electrostatic precipitator 40 is converted into UV-C. can be degraded by UV-B at an earlier stage than As a result, attenuation of UV-C due to the use of UV-C to decompose ozone is suppressed, and reduction in the effect of UV-C in inactivating viruses or killing bacteria can be suppressed.
  • a first light source 78 that emits UV-C and a second light source 79 that emits UV-B are arranged on the inner wall 23 of the duct 20 (or a reflector attached to the inner wall 23), The second light source 79 is arranged closer to the electrostatic precipitator 40 than the first light source 78 is.
  • the ozone generated in the electrostatic precipitator 40 can be decomposed by UV-B at an earlier stage than UV-C, so that the inactivation of viruses or the death of bacteria by UV-C and the decomposition of ozone by UV-B can be performed. Efficient implementation.
  • FIG. 13 is a diagram showing a configuration example of the charging section.
  • the charging section 30 shown in FIG. 13 has a discharge section 36 for generating corona discharge.
  • the discharge section 36 has a discharge electrode 37 arranged in the duct 20, a ground electrode 38 facing the discharge electrode 37, and an insulator 39 for insulating between the discharge electrode 37 and the supporting section (inner wall, etc.).
  • the discharge electrode 37 is a disk-shaped electrode with a plurality of sharp projections extending radially.
  • the discharge section 36 has a discharge electrode group 35 in which a plurality of discharge electrodes 37 are laminated with a space therebetween.
  • a plurality of discharge electrode groups 35 are arranged in a plurality of spaces partitioned by grid-like ground electrodes 38 .
  • the charging device 30B applies a high voltage HV between the discharge electrode 37 (the plurality of discharge electrode groups 35) and the ground electrode 38, so that the discharge electrodes 37 (the plurality of discharge electrode groups 35) and the ground electrode 38 are A corona discharge is generated between
  • the discharge electrode 37 of the charging section 30 may have either a positive polarity or a negative polarity.
  • the positive discharge electrode is an electrode to which a positive high voltage is applied with respect to the ground electrode
  • the negative discharge electrode is an electrode to which a negative high voltage is applied with respect to the ground electrode.
  • the charging unit 30 applies a positive high voltage between the ground electrode and the positive discharge electrode 37 to generate corona discharge between the electrodes, thereby suppressing the concentration of ozone in the duct 20 and collecting ozone. It is possible to improve the collection rate of fine particles in the portion 50 .
  • the technology of the present disclosure is not limited to air purifiers having an electrostatic precipitator, but can also be applied to air purifiers that do not have an electrostatic precipitator.
  • REFERENCE SIGNS LIST 10 housing 11 suction port 12 outlet 13 flow direction 14 irradiation direction 20 duct 21, 22, 26, 27, 28 plate 23 inner wall 24 support 25 flat plate 30 charging section 35 discharge electrode group 36 discharge section 37 discharge electrode 38 ground electrode 39 insulator 40 electrostatic precipitator 50 collector 52 collector electrode 54 high-voltage electrode 60 discharge device 61, 62, 63, 64 fan 70 exposure section 71, 72, 73, 74 light source 75 slit 76, 78 first light source 77, 79 second light source 80 control device 90 filter 100 air cleaner

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Electrostatic Separation (AREA)

Abstract

This air cleaner is provided with a duct through which air flows from a suction port to an outlet port, a light source which emits ultraviolet light into the duct from a downstream side toward an upstream side in the direction of flow of the air inside the duct, and a fan which discharges the air from inside the duct to the outlet port, wherein the light source and the fan are arranged side-by-side in a plane intersecting the direction of flow. For example, the duct includes an exposure portion for causing the ultraviolet light emitted from the light source to hit the air in the duct, and an electric dust collecting portion positioned on the upstream side of the exposure portion, wherein the electric dust collecting portion charges fine particles contained in the air in the duct, and collects the charged fine particles by means of an electrostatic force.

Description

空気清浄機Air cleaner
 本開示は、空気清浄機に関する。 The present disclosure relates to air purifiers.
 従来、空気中に含まれる塵埃粒子を帯電させ、帯電した塵埃粒子を静電吸着によって捕集する電気集塵式の空気清浄機が知られている(例えば、特許文献1,2参照)。 Conventionally, an electric dust collection type air cleaner that charges dust particles contained in the air and collects the charged dust particles by electrostatic adsorption is known (see Patent Documents 1 and 2, for example).
特開2001-79077号公報JP-A-2001-79077 特開2015-171440号公報JP 2015-171440 A
 病院、映画館、各種交通機関、船など、罹患者や多くの人がいる環境では、インフルエンザ等のウイルス感染症の対策のニーズが急激に高まっている。また、食品工場などでは、カビなどを含む菌への対策を講じる必要がある。そのため、ウイルスを不活化又は病原性細菌を死滅する手段が求められている。 In environments where there are many sick people and people, such as hospitals, movie theaters, various transportation facilities, and ships, the need for measures against viral infections such as influenza is rapidly increasing. Also, in food factories and the like, it is necessary to take measures against bacteria including mold. Therefore, there is a need for means to inactivate viruses or kill pathogenic bacteria.
 しかしながら、電気集塵機能だけでは、ウイルスを不活化又は細菌を死滅できない。 However, the electrostatic precipitator function alone cannot inactivate viruses or kill bacteria.
 本開示は、ウイルスを不活化又は細菌を死滅可能な空気清浄機を提供する。 The present disclosure provides an air purifier capable of inactivating viruses or killing bacteria.
 本開示の一態様では、
 吸い込み口から吹き出し口に空気を流すダクトと、
 前記ダクト内の空気の流れ方向における下流側から上流側に向けて、前記ダクト内に紫外線を照射する光源と、
 前記ダクト内から前記吹き出し口に空気を排出するファンと、を備え、
 前記光源及び前記ファンは、前記流れ方向に交わる平面に並べて配置された、空気清浄機が提供される。
In one aspect of the present disclosure,
a duct for flowing air from the inlet to the outlet;
a light source that irradiates ultraviolet rays into the duct from the downstream side to the upstream side in the direction of air flow in the duct;
a fan for discharging air from inside the duct to the outlet,
An air purifier is provided in which the light source and the fan are arranged side by side in a plane intersecting the flow direction.
 本開示の一態様によれば、ウイルスを不活化又は細菌を死滅可能な空気清浄機を提供できる。 According to one aspect of the present disclosure, an air cleaner capable of inactivating viruses or killing bacteria can be provided.
一実施形態の空気清浄機の一例を示す図である。It is a figure which shows an example of the air cleaner of one Embodiment. 一実施形態の空気清浄機の内部構造の一例を示す図である。It is a figure which shows an example of the internal structure of the air cleaner of one Embodiment. ダクトの内部構造の第1例を部分的に示す斜視図である。1 is a perspective view partially showing a first example of an internal structure of a duct; FIG. ダクトの内部構造の第2例を部分的に示す斜視図である。FIG. 11 is a perspective view partially showing a second example of the internal structure of the duct; ダクトの内部構造の第3例を部分的に示す斜視図である。FIG. 11 is a perspective view partially showing a third example of the internal structure of the duct; 光源からの距離と照度との関係の一例を示す図である。It is a figure which shows an example of the relationship between the distance from a light source, and illuminance. 電気集塵部の電極の先端構造の一例を示す図である。It is a figure which shows an example of the front-end|tip structure of the electrode of an electrostatic precipitator. 光源の配向を説明するための図である。FIG. 4 is a diagram for explaining the orientation of light sources; 配光角度が異なる複数の光源の第1配置例を示す図である。FIG. 4 is a diagram showing a first arrangement example of a plurality of light sources with different light distribution angles; 配光角度が異なる複数の光源の第2配置例を示す図である。FIG. 10 is a diagram showing a second arrangement example of a plurality of light sources with different light distribution angles; 照射する紫外線の波長が異なる複数の光源の第1配置例を示す図である。FIG. 4 is a diagram showing a first arrangement example of a plurality of light sources that irradiate ultraviolet rays with different wavelengths; 照射する紫外線の波長が異なる複数の光源の第2配置例を示す図である。FIG. 10 is a diagram showing a second arrangement example of a plurality of light sources that irradiate ultraviolet rays with different wavelengths; 帯電部の構成例を示す図である。4 is a diagram showing a configuration example of a charging unit; FIG. ダクトの内部構造の第4例を部分的に示す斜視図である。FIG. 11 is a perspective view partially showing a fourth example of the internal structure of the duct; ダクトの内部構造の第5例を部分的に示す斜視図である。FIG. 12 is a perspective view partially showing a fifth example of the internal structure of the duct;
 以下、本開示の技術を実施するための形態について図面を参照して説明する。 Hereinafter, embodiments for implementing the technology of the present disclosure will be described with reference to the drawings.
 図1は、一実施形態の空気清浄機の一例を示す図である。図1に示す空気清浄機100は、空気を清浄化するための機器である。空気清浄機100は、空気を清浄化するための装置類を収納する筐体10を備える。筐体10は、空気清浄機100の外部の空気を吸い込む吸い込み口11と、筐体10内の装置類により清浄化された空気を空気清浄機100の外部に吹き出す吹き出し口12とを有する。 FIG. 1 is a diagram showing an example of an air purifier according to one embodiment. An air purifier 100 shown in FIG. 1 is a device for purifying air. The air purifier 100 includes a housing 10 that houses devices for purifying air. The housing 10 has an intake port 11 for sucking air from the outside of the air cleaner 100 and an outlet port 12 for blowing out the air cleaned by devices inside the housing 10 to the outside of the air cleaner 100 .
 図1に示す例では、吸い込み口11は、筐体10の一方の端部(例えば、下部)に設けられ、吹き出し口12は、筐体10の他方の端部(例えば、上部)に設けられる。吸い込み口11及び吹き出し口12の各々の位置は、これに限られず、他の箇所でもよい。吸い込み口11及び吹き出し口12の各々の設置数は、一つでも複数でもよい。 In the example shown in FIG. 1, the suction port 11 is provided at one end (eg, lower portion) of the housing 10, and the outlet 12 is provided at the other end (eg, upper portion) of the housing 10. . The respective positions of the suction port 11 and the blowing port 12 are not limited to this, and may be other locations. The installation number of each of the suction port 11 and the blowing port 12 may be one or more.
 空気清浄機100は、ダクト20、排出装置60及び制御装置80を備える。ダクト20は、電気集塵部40及び露光部70を有する。なお、図1に示す各構成要素の位置関係は、単なる一例であり、ウイルスを不活化又は細菌を死滅する所望の効果を奏すれば、これに限定されない。 The air cleaner 100 includes a duct 20, an exhaust device 60 and a control device 80. The duct 20 has an electrostatic precipitator 40 and an exposure section 70 . Note that the positional relationship of each component shown in FIG. 1 is merely an example, and is not limited to this as long as the desired effect of inactivating viruses or killing bacteria is achieved.
 ダクト20は、吸い込み口11と吹き出し口12との間に介在し、吸い込み口11から吹き出し口12に空気を流す導管である。図1に示す例では、ダクト20は、筐体10の内部に存在する流路である。ダクト20は、例えば、吸い込み口11から吹き出し口12まで接続され、吸い込み口11から流入する空気を吹き出し口12に向けて流す。 The duct 20 is a conduit that is interposed between the suction port 11 and the discharge port 12 and allows air to flow from the suction port 11 to the discharge port 12 . In the example shown in FIG. 1 , the duct 20 is a channel that exists inside the housing 10 . The duct 20 , for example, is connected from the suction port 11 to the blowout port 12 and allows the air flowing in from the suction port 11 to flow toward the blowout port 12 .
 電気集塵部40は、ダクト20内の空気(以下、"空気A"とも称する)に含まれる微粒子を帯電させ、帯電した微粒子を静電力によって捕集する部位である。微粒子とは、ウイルス又は細菌であるが、ウイルス又は細菌を含む塵埃などの微小物質でもよい。微粒子には、微小粒子状物質(PM2.5)が含まれてもよい。PM2.5とは、空気中に浮遊する粒子のうち、大きさが2.5μm以下の粒子をいう。 The electric dust collector 40 is a part that charges fine particles contained in the air in the duct 20 (hereinafter also referred to as "air A") and collects the charged fine particles by electrostatic force. Microparticles are viruses or bacteria, but may also be minute substances such as dust containing viruses or bacteria. Particulates may include microparticulate matter (PM2.5). PM2.5 refers to particles with a size of 2.5 μm or less among particles floating in the air.
 電気集塵部40は、帯電部30及び捕集部50を有する。 The electrostatic precipitator 40 has a charging section 30 and a collection section 50 .
 帯電部30は、空気Aに含まれる微粒子を帯電させる部位である。帯電部30は、例えば、空気Aに含まれる微粒子をコロナ放電によって帯電させる。 The charging section 30 is a section that charges fine particles contained in the air A. The charging unit 30 charges fine particles contained in the air A by corona discharge, for example.
 捕集部50は、帯電部30を通過した空気Aから、帯電した微粒子を静電力により捕集する部位である。捕集部50は、例えば10nm以上100μm以下の大きさの微粒子を捕集する能力を有する場合、30nm程度の小さなウイルス、100nm程度の新型コロナウィルス(COVID-19)、又は数μmのウイルス飛沫や病原性細菌を捕集できる。なお、捕集部50が捕集可能な微粒子の大きさは、特に制限されない。 The collecting section 50 is a section that collects charged fine particles from the air A that has passed through the charging section 30 by electrostatic force. For example, when the collection unit 50 has the ability to collect fine particles with a size of 10 nm or more and 100 μm or less, it is possible to collect small viruses of about 30 nm, novel coronavirus (COVID-19) of about 100 nm, or virus droplets of several μm. It can collect pathogenic bacteria. In addition, the size of the fine particles that can be collected by the collection unit 50 is not particularly limited.
 露光部70は、後述の光源71,72から照射される紫外線を空気Aに当てることで、空気Aに含まれるウイルスを不活化又は空気Aに含まれる細菌を死滅する部位である。 The exposure part 70 is a part that inactivates viruses contained in the air A or kills bacteria contained in the air A by irradiating the air A with ultraviolet rays emitted from light sources 71 and 72, which will be described later.
 排出装置60は、ダクト20内から吹き出し口12に空気Aを排出する。排出装置60は、空気清浄機100の外部の空気を吸い込み口11からダクト20内に導入し、捕集部50及び露光部70を通過した空気Aを吹き出し口12に排出する。排出装置60は、例えば、ファン及びモータを有し、ファンをモータによって回転させることで、空気Aを吹き出し口12に排出する。 The discharge device 60 discharges the air A from inside the duct 20 to the outlet 12 . The discharge device 60 introduces air from the outside of the air cleaner 100 into the duct 20 through the suction port 11 and discharges the air A that has passed through the collection section 50 and the exposure section 70 to the discharge port 12 . The discharge device 60 has, for example, a fan and a motor, and discharges the air A to the outlet 12 by rotating the fan with the motor.
 制御装置80は、ユーザからの操作指示内容に応じて、帯電部30の帯電動作、捕集部50の捕集動作及び排出装置60の排出動作を作動又は停止させる。制御装置80の機能は、メモリに記憶されたプログラムによってCPU(Central Processing Unit)等のプロセッサが動作することにより実現される。制御装置80の機能は、FPGA(Field Programmable Gate Array)又はASIC(Application Specific Integrated Circuit)によって実現されてもよい。 The control device 80 activates or stops the charging operation of the charging unit 30, the collecting operation of the collecting unit 50, and the discharging operation of the discharging device 60 according to the contents of the operation instruction from the user. The functions of the control device 80 are implemented by a processor such as a CPU (Central Processing Unit) operating according to a program stored in memory. The functions of the control device 80 may be realized by FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit).
 捕集部50は、所望の捕集機能を満たせば、その配置位置は、特に限定されない。図1に示す例では、捕集部50は、帯電部30と吹き出し口12との間で、帯電した微粒子を空気Aから静電力により捕集する。これにより、帯電部30において帯電した微粒子が捕集部50に供給されやすくなるので、帯電した微粒子の捕集能力が向上する。排出装置60が帯電部30と吹き出し口12との間に介在する場合、捕集部50は、帯電部30と排出装置60との間で、帯電した微粒子を空気Aから静電力により捕集するのが好ましい。これにより、帯電した微粒子の捕集能力が向上する。 The arrangement position of the collecting unit 50 is not particularly limited as long as it satisfies the desired collecting function. In the example shown in FIG. 1, the collecting unit 50 collects charged fine particles from the air A by electrostatic force between the charging unit 30 and the outlet 12 . As a result, the particles charged in the charging section 30 are more likely to be supplied to the collecting section 50, so that the ability to collect the charged particles is improved. When the discharging device 60 is interposed between the charging unit 30 and the discharge port 12, the collecting unit 50 collects the charged fine particles from the air A by electrostatic force between the charging unit 30 and the discharging device 60. is preferred. This improves the ability to collect charged fine particles.
 排出装置60は、所望の排出機能を満たせば、その配置位置は、特に限定されない。図1に示す例では、排出装置60は、捕集部50と吹き出し口12との間に配置されている。空気Aに含まれる微粒子は、捕集部50において捕集されるので、排出装置60が捕集部50と吹き出し口12との間に配置されることで、排出装置60が汚れた空気Aで汚染し難くなる。その結果、例えば、排出装置60の交換や洗浄などのメンテナンスにおける安全性が向上する。 The placement position of the ejection device 60 is not particularly limited as long as it satisfies the desired ejection function. In the example shown in FIG. 1 , the discharge device 60 is arranged between the collection section 50 and the blowout port 12 . Fine particles contained in the air A are collected by the collection unit 50, so that the discharge device 60 is arranged between the collection unit 50 and the outlet 12, so that the discharge device 60 can collect the dirty air A. less likely to be polluted. As a result, for example, safety in maintenance such as replacement and cleaning of the discharging device 60 is improved.
 空気清浄機100は、空気Aに含まれるオゾン(コロナ放電によって生成されたオゾンを含んでよい)をろ過するフィルタ90を、捕集部50と吹き出し口12との間に備えてもよい。これにより、吹き出し口12から吹き出す空気に含まれるオゾンの濃度を低減する効果が高まる。排出装置60が捕集部50と吹き出し口12との間に介在する場合、フィルタ90は、排出装置60と吹き出し口12との間に介在するのが好ましい。これにより、吹き出し口12から吹き出す空気に含まれるオゾンの濃度を低減する効果が高まる。フィルタ90の触媒として、例えば、酸化マンガンを使用することで、オゾン濃度の低減効果は向上する。 The air purifier 100 may include a filter 90 between the collector 50 and the outlet 12 for filtering ozone contained in the air A (which may contain ozone generated by corona discharge). As a result, the effect of reducing the concentration of ozone contained in the air blown from the outlet 12 is enhanced. When the discharge device 60 is interposed between the collecting part 50 and the outlet 12 , the filter 90 is preferably interposed between the discharge device 60 and the outlet 12 . As a result, the effect of reducing the concentration of ozone contained in the air blown from the outlet 12 is enhanced. By using, for example, manganese oxide as the catalyst of the filter 90, the effect of reducing the ozone concentration is improved.
 図2は、一実施形態における空気清浄機の内部構造の一例を示す図であり、筐体10(図1参照)を取り外した状態の空気清浄機100を示す。なお、図2では、内部構造の視認性を高めるため、便宜上、筐体10だけでなく、いくつかの部材の図示が省略されている。 FIG. 2 is a diagram showing an example of the internal structure of the air purifier according to one embodiment, showing the air purifier 100 with the housing 10 (see FIG. 1) removed. In addition, in FIG. 2 , not only the housing 10 but also some members are omitted for the sake of convenience in order to enhance the visibility of the internal structure.
 空気清浄機100は、ダクト20内の空気Aの流れ方向13における下流側から上流側に向けて、ダクト20内に紫外線を照射する光源を備える。流れ方向13は、ダクト20が延びる方向でもよい。図2には、複数の光源71,72が例示されているが、光源の個数は、一つでも三つ以上でもよい。また、空気清浄機100の排出装置60は、ダクト20内から吹き出し口12に空気Aを排出するファンを備える。図2には、複数のファン61,62が例示されているが、ファンの個数は、一つでも三つ以上でもよい。 The air cleaner 100 includes a light source that irradiates ultraviolet rays into the duct 20 from the downstream side to the upstream side in the flow direction 13 of the air A in the duct 20 . Flow direction 13 may be the direction in which duct 20 extends. A plurality of light sources 71 and 72 are illustrated in FIG. 2, but the number of light sources may be one or three or more. Further, the discharge device 60 of the air cleaner 100 includes a fan that discharges the air A from the inside of the duct 20 to the outlet 12 . A plurality of fans 61 and 62 are illustrated in FIG. 2, but the number of fans may be one or three or more.
 光源71,72及びファン61,62は、空気Aの流れ方向13に交わる平面(図2の場合、流れ方向13に直交する平板25)に並べて配置されている。光源71,72及びファン61,62がそのような平面に並べて配置されることで、光源とファンが流れ方向13に配列された不図示の形態に比べて、光源71,72からダクト20内に向けて照射される紫外線は、ファン61,62に遮られ難くなる。よって、光源の個数が比較的少なくても、空気Aに含まれるウイルスを不活化又は空気Aに含まれる細菌を死滅する効果が向上する。 The light sources 71, 72 and the fans 61, 62 are arranged side by side on a plane intersecting the flow direction 13 of the air A (the flat plate 25 orthogonal to the flow direction 13 in the case of FIG. 2). By arranging the light sources 71, 72 and fans 61, 62 side by side in such a plane, more light is emitted from the light sources 71, 72 into the duct 20 than in a configuration not shown in which the light sources and fans are arranged in the flow direction 13. The ultraviolet rays directed toward and irradiated are less likely to be blocked by the fans 61 and 62. - 特許庁Therefore, even if the number of light sources is relatively small, the effect of inactivating viruses contained in the air A or killing bacteria contained in the air A is improved.
 なお、光源又はファンが並べて配置される平面は、流れ方向13に対して傾斜した平面でもよい。例えば、傾斜したスペーサが、光源又はファンと取り付け平面との間に介在することで、光源又はファンが並べて配置される平面は、流れ方向13に対して傾斜してもよい。 The plane on which the light sources or fans are arranged may be a plane inclined with respect to the flow direction 13 . For example, an inclined spacer may be interposed between the light source or fan and the mounting plane so that the plane in which the light source or fan is juxtaposed may be inclined with respect to the flow direction 13 .
 図2に示す例では、光源71,72は、方形状の平板25の一方の対角に位置し、ファン61,62は、方形状の平板25の他方の対角に位置する。これにより、ダクト20内の空気Aの流動性が向上し、光源71,72からの紫外線が空気Aに均一に照射されやすくなるので、空気Aに含まれるウイルスを不活化又は空気Aに含まれる細菌を死滅する効果が向上する。また、光源71,72は、流れ方向13での視点で見ると、ファン61,62と重なっていない。 In the example shown in FIG. 2 , the light sources 71 and 72 are positioned at one diagonal corner of the rectangular flat plate 25 , and the fans 61 and 62 are positioned at the other diagonal corner of the rectangular flat plate 25 . As a result, the fluidity of the air A in the duct 20 is improved, and the ultraviolet rays from the light sources 71 and 72 are more likely to irradiate the air A uniformly. Increases effectiveness in killing bacteria. Also, the light sources 71 , 72 do not overlap the fans 61 , 62 when viewed in the flow direction 13 .
 図2に示す例では、光源71,72は、平板25に形成された貫通孔を通して、ダクト20内に向けて紫外線を照射することで、露光部70内において、空気Aに含まれるウイルスを不活化又は空気Aに含まれる細菌を死滅する。なお、光源71,72は、ダクト20(好ましくは、露光部70)内にあっても、空気Aに含まれるウイルスを不活化又は空気Aに含まれる細菌を死滅できる。 In the example shown in FIG. 2 , the light sources 71 and 72 irradiate the inside of the duct 20 with ultraviolet rays through the through holes formed in the flat plate 25 , thereby removing viruses contained in the air A inside the exposure section 70 . Activates or kills bacteria contained in Air A. The light sources 71 and 72 can inactivate viruses contained in the air A or kill bacteria contained in the air A even within the duct 20 (preferably, the exposure section 70).
 図2に示す例では、ファン61,62は、平板25に形成された貫通孔を通して、ダクト20の露光部70内から吹き出し口12に空気Aを排出する。なお、ファン61,62は、ダクト20(好ましくは、露光部70)内にあってもよい。 In the example shown in FIG. 2, the fans 61 and 62 discharge air A from the inside of the exposed portion 70 of the duct 20 to the outlet 12 through through holes formed in the flat plate 25 . Incidentally, the fans 61 and 62 may be inside the duct 20 (preferably, the exposure section 70).
 図3は、ダクトの内部構造の第1例を部分的に示す斜視図である。図3では、光源71,72の図示が省略されている。 FIG. 3 is a perspective view partially showing a first example of the internal structure of the duct. In FIG. 3, illustration of the light sources 71 and 72 is omitted.
 空気清浄機100は、ファン61に対して流れ方向13の上流側(図3では、ファン61の下方)に配置された板21を有する。これにより、板21は、ファン61に向かう空気Aの流れを阻害して、光源71,72に対して上流側の空間(具体的には、光源71,72の下方の且つ板21の側方の空間)に空気Aを迂回させる遮風板として機能する。したがって、光源71,72からの紫外線の照射量が比較的少ないファン61の下方の空気Aが、光源71,72に対して上流側の空間に流れるので、空気Aに含まれるウイルスを不活化又は空気Aに含まれる細菌を死滅する効果が向上する。板21は、ファン61との間に空隙を空けて配置され、当該空隙の側方から流れ込む空気Aは、ファン61を介して排出される。 The air cleaner 100 has a plate 21 arranged upstream in the flow direction 13 with respect to the fan 61 (below the fan 61 in FIG. 3). As a result, the plate 21 obstructs the flow of the air A toward the fan 61 and prevents the space upstream of the light sources 71 and 72 (specifically, the space below the light sources 71 and 72 and on the side of the plate 21). It functions as a windshield that diverts the air A to the space of ). Therefore, the air A below the fan 61, which has a relatively small amount of ultraviolet irradiation from the light sources 71 and 72, flows into the space on the upstream side with respect to the light sources 71 and 72, thereby inactivating or inactivating the virus contained in the air A. The effect of killing bacteria contained in the air A is improved. The plate 21 is arranged with a gap between it and the fan 61 , and the air A flowing from the side of the gap is discharged via the fan 61 .
 同様に、空気清浄機100は、ファン62に対して流れ方向13の上流側(図3では、ファン62の下方)に配置された板22を有する。これにより、板22は、ファン62に向かう空気Aの流れを阻害して、光源71,72に対して上流側の空間(具体的には、光源71,72の下方の且つ板22の側方の空間)に空気Aを迂回させる遮風板として機能する。したがって、光源71,72からの紫外線の照射量が比較的少ないファン62の下方の空気Aが、光源71,72に対して上流側の空間に流れるので、空気Aに含まれるウイルスを不活化又は空気Aに含まれる細菌を死滅する効果が向上する。板22は、ファン62との間に空隙を空けて配置され、当該空隙の側方から流れ込む空気Aは、ファン62を介して排出される。 Similarly, the air cleaner 100 has a plate 22 arranged upstream in the flow direction 13 with respect to the fan 62 (below the fan 62 in FIG. 3). As a result, the plate 22 obstructs the flow of the air A toward the fan 62 and prevents the space on the upstream side of the light sources 71 and 72 (specifically, the space below the light sources 71 and 72 and on the side of the plate 22). It functions as a windshield that diverts the air A to the space of ). Therefore, the air A below the fan 62, which has a relatively small amount of ultraviolet irradiation from the light sources 71 and 72, flows into the space on the upstream side of the light sources 71 and 72, thereby inactivating or inactivating the virus contained in the air A. The effect of killing bacteria contained in the air A is improved. The plate 22 is arranged with a gap between it and the fan 62 , and the air A flowing from the side of the gap is discharged via the fan 62 .
 このように、空気清浄機100は、ダクト20内の空気Aが、光源71,72に対して上流側の空間に流れるように配置された板21,22を有する。これにより、光源71,72から出力される紫外線が空気Aに照射されやすくなるので、空気Aに含まれるウイルスを不活化又は空気Aに含まれる細菌を死滅する効果が向上する。 Thus, the air cleaner 100 has the plates 21 and 22 arranged so that the air A in the duct 20 flows into the space on the upstream side with respect to the light sources 71 and 72 . As a result, the air A is more likely to be irradiated with the ultraviolet light emitted from the light sources 71 and 72, so that the effect of inactivating viruses contained in the air A or killing bacteria contained in the air A is improved.
 図4は、ダクトの内部構造の第2例を部分的に示す斜視図である。図4では、ファン61に対して流れ方向13の上流側に空隙を挟んで配置された光源71と、ファン62に対して流れ方向13の上流側に空隙を挟んで配置された光源72とが、ダクト20内に配置されている。これにより、光源71,72からダクト20内に照射される紫外線が遮られ難くなり、光源71,72からダクト20内に照射される紫外線の偏りは抑制される。よって、空気Aに含まれるウイルスを不活化又は空気Aに含まれる細菌を死滅する効果が向上する。 FIG. 4 is a perspective view partially showing a second example of the internal structure of the duct. In FIG. 4, a light source 71 arranged with a gap on the upstream side in the flow direction 13 with respect to the fan 61 and a light source 72 arranged with a gap on the upstream side with respect to the fan 62 in the flow direction 13 are arranged. , are arranged in the duct 20 . As a result, the ultraviolet rays emitted from the light sources 71 and 72 into the duct 20 are less likely to be blocked, and the unevenness of the ultraviolet rays emitted from the light sources 71 and 72 into the duct 20 is suppressed. Therefore, the effect of inactivating viruses contained in the air A or killing bacteria contained in the air A is improved.
 図4に示す例では、光源71は、板26に対して流れ方向13の上流側に配置され、板26の上流側に面する主面に配置されている。これにより、光源71からダクト20内に向けて紫外線を均一に照射できる。また、光源71とファン61との間に空隙が生じるように、光源71及び板26は支柱24により支持されている。これにより、光源71とファン61との間の距離が拡大するので、ファン61から有害な紫外線が漏れ難くなる。一又は複数の支柱24は、板26及び光源71をダクト20内で支持する支持部の一例である。板26は、ファン61に対して上流側に配置されているので、ファン61に向かう空気を迂回させる。板26は、ファン61との間に空隙を空けて配置され、当該空隙の側方から流れ込む空気Aは、ファン61を介して排出される。 In the example shown in FIG. 4, the light source 71 is arranged on the upstream side of the plate 26 in the flow direction 13 and is arranged on the main surface of the plate 26 facing the upstream side. Thereby, ultraviolet rays can be uniformly irradiated from the light source 71 toward the inside of the duct 20 . Also, the light source 71 and the plate 26 are supported by the support 24 so that a gap is formed between the light source 71 and the fan 61 . As a result, the distance between the light source 71 and the fan 61 is increased, making it difficult for harmful ultraviolet rays to leak from the fan 61 . The one or more struts 24 are an example of supports that support the plate 26 and the light source 71 within the duct 20 . Since the plate 26 is arranged on the upstream side with respect to the fan 61, the air directed to the fan 61 is detoured. The plate 26 is arranged with a gap between it and the fan 61 , and the air A flowing from the side of the gap is discharged via the fan 61 .
 図4に示す例では、光源72は、板27に対して流れ方向13の上流側に配置され、板27の上流側に面する主面に配置されている。これにより、光源72からダクト20内に向けて紫外線を均一に照射できる。また、光源72とファン62との間に空隙が生じるように、光源72及び板26は支柱24により支持されている。これにより、光源72とファン62との間の距離が拡大するので、ファン62から有害な紫外線が漏れ難くなる。一又は複数の支柱24は、板27及び光源72をダクト20内で支持する支持部の一例である。板27は、ファン62に対して上流側に配置されているので、ファン62に向かう空気を迂回させる。板27は、ファン62との間に空隙を空けて配置され、当該空隙の側方から流れ込む空気Aは、ファン62を介して排出される。 In the example shown in FIG. 4 , the light source 72 is arranged on the upstream side of the plate 27 in the flow direction 13 and is arranged on the main surface of the plate 27 facing the upstream side. Thereby, ultraviolet rays can be uniformly irradiated from the light source 72 toward the inside of the duct 20 . Also, the light source 72 and the plate 26 are supported by the support 24 so that an air gap is created between the light source 72 and the fan 62 . As a result, the distance between the light source 72 and the fan 62 is increased, making it difficult for harmful ultraviolet rays to leak from the fan 62 . The one or more struts 24 are an example of supports that support the plate 27 and the light source 72 within the duct 20 . Since the plate 27 is arranged on the upstream side with respect to the fan 62 , it diverts the air toward the fan 62 . The plate 27 is arranged with a gap between it and the fan 62 , and the air A flowing from the side of the gap is discharged via the fan 62 .
 このように、板26は、ダクト20内の空気Aが光源71に対して流れ方向13の上流側に流れるように配置され、板27は、ダクト20内の空気Aが光源72に対して流れ方向13の上流側に流れるように配置されている。これにより、光源71,72から出力される紫外線が空気Aに照射されやすくなるので、空気Aに含まれるウイルスを不活化又は空気Aに含まれる細菌を死滅する効果が向上する。 Thus, the plate 26 is arranged so that the air A in the duct 20 flows upstream in the flow direction 13 with respect to the light source 71 , and the plate 27 is arranged so that the air A in the duct 20 flows with respect to the light source 72 . It is arranged to flow upstream in direction 13 . As a result, the air A is more likely to be irradiated with the ultraviolet light emitted from the light sources 71 and 72, so that the effect of inactivating viruses contained in the air A or killing bacteria contained in the air A is improved.
 図5は、ダクトの内部構造の第3例を部分的に示す斜視図である。図5では、ファン61,62に対して流れ方向13の上流側に空隙を挟んで配置された光源171が、ダクト20内に配置されている。これにより、光源171からダクト20内に照射される紫外線が遮られ難くなり、光源171からダクト20内に照射される紫外線の偏りは抑制される。よって、空気Aに含まれるウイルスを不活化又は空気Aに含まれる細菌を死滅する効果が向上する。 FIG. 5 is a perspective view partially showing a third example of the internal structure of the duct. In FIG. 5 , a light source 171 is arranged in the duct 20 on the upstream side in the flow direction 13 with respect to the fans 61 and 62 with an air gap therebetween. As a result, the ultraviolet rays emitted from the light source 171 into the duct 20 are less likely to be blocked, and the unevenness of the ultraviolet rays emitted from the light source 171 into the duct 20 is suppressed. Therefore, the effect of inactivating viruses contained in the air A or killing bacteria contained in the air A is improved.
 図5に示す例では、光源171は、板28に対して流れ方向13の上流側に配置され、板28の上流側に面する主面に配置されている。これにより、光源171からダクト20内に向けて紫外線を均一に照射できる。また、光源171とファン61,62との間に空隙が生じるように、板28は不図示の支持部により支持されている。これにより、光源171とファン61,62との間の距離が拡大するので、ファン61,62から有害な紫外線が漏れ難くなる。一又は複数の支柱24は、板28及び光源171をダクト20内で支持する支持部の一例である。板28は、ファン61,62に対して上流側に配置されているので、ファン61,62に向かう空気を迂回させる。板28は、ファン61,62との間に空隙を空けて配置され、板28を迂回した空気A又は板28に形成されたスリット75を通過した空気Aは、ファン61,62を介して排出される。また、光源171は、スリット75を通過する空気Aによって冷却されるので、ファン61,62を送風と冷却に兼用できる。 In the example shown in FIG. 5, the light source 171 is arranged on the upstream side of the plate 28 in the flow direction 13 and is arranged on the main surface of the plate 28 facing the upstream side. Thereby, ultraviolet rays can be uniformly irradiated from the light source 171 toward the inside of the duct 20 . Further, the plate 28 is supported by a supporting portion (not shown) so that a gap is generated between the light source 171 and the fans 61 and 62 . As a result, the distance between the light source 171 and the fans 61 and 62 is increased, making it difficult for harmful ultraviolet rays to leak from the fans 61 and 62 . The one or more struts 24 are an example of supports that support the plate 28 and the light source 171 within the duct 20 . Since the plate 28 is arranged on the upstream side with respect to the fans 61, 62, it diverts the air toward the fans 61, 62. - 特許庁The plate 28 is arranged with a gap between it and the fans 61 and 62, and the air A bypassing the plate 28 or the air A passing through the slits 75 formed in the plate 28 is discharged via the fans 61 and 62. be done. Further, since the light source 171 is cooled by the air A passing through the slit 75, the fans 61 and 62 can be used both for air blowing and cooling.
 このように、板28は、ダクト20内の空気Aが光源171に対して流れ方向13の上流側に流れるように配置されている。これにより、光源171から出力される紫外線が空気Aに照射されやすくなるので、空気Aに含まれるウイルスを不活化又は空気Aに含まれる細菌を死滅する効果が向上する。 Thus, the plate 28 is arranged so that the air A in the duct 20 flows upstream in the flow direction 13 with respect to the light source 171 . As a result, the ultraviolet light emitted from the light source 171 is more likely to irradiate the air A, so that the effect of inactivating viruses contained in the air A or killing bacteria contained in the air A is improved.
 板28は、ダクト20内の空気Aが通過する一又は複数のスリット75を有する。スリット75は、ダクト20内の空気Aが通過する貫通孔の一例である。スリット75のような貫通孔を板28に設けることで、板28による空気Aの遮りを抑制でき、空気Aの圧力損失を抑制できる。スリット75は、隣り合う光源171の間に配置される。光源171は、スリット75に平行に配置されている。 The plate 28 has one or more slits 75 through which the air A in the duct 20 passes. The slit 75 is an example of a through hole through which the air A in the duct 20 passes. By providing the through holes such as the slits 75 in the plate 28, blocking of the air A by the plate 28 can be suppressed, and the pressure loss of the air A can be suppressed. The slit 75 is arranged between adjacent light sources 171 . The light source 171 is arranged parallel to the slit 75 .
 図14は、ダクトの内部構造の第4例を部分的に示す斜視図である。図14では、ファン61,62に対して流れ方向13の上流側に空隙を挟んで配置された光源171A,171Bが、ダクト20内に配置されている。これにより、光源171A,171Bからダクト20内に照射される紫外線が遮られ難くなり、光源171A,171Bからダクト20内に照射される紫外線の偏りは抑制される。よって、空気Aに含まれるウイルスを不活化又は空気Aに含まれる細菌を死滅する効果が向上する。 FIG. 14 is a perspective view partially showing a fourth example of the internal structure of the duct. In FIG. 14, light sources 171A and 171B are arranged in the duct 20 on the upstream side in the flow direction 13 with respect to the fans 61 and 62 with a gap therebetween. As a result, the ultraviolet rays emitted from the light sources 171A and 171B into the duct 20 are less likely to be blocked, and the unevenness of the ultraviolet rays emitted from the light sources 171A and 171B into the duct 20 is suppressed. Therefore, the effect of inactivating viruses contained in the air A or killing bacteria contained in the air A is improved.
 図14に示す例では、光源171Bは、光源171Aに対して流れ方向13の上流側に間隔を空けて配置されている。光源171A,171Bは、流れ方向13における下流側から上流側に向けてダクト20内に紫外線を照射する。このように、図14に示す例では、流れ方向13において互いに同じ向きの照射方向14でダクト20内に紫外線を照射する光源が、流れ方向13に離れた複数の箇所に配置されている。これにより、露光部70が比較的長くても、空気Aに対する紫外線の照射強度の低下を抑えた状態で空気Aを露光する距離を比較的長く確保できる。よって、空気Aに含まれるウイルスを不活化又は空気Aに含まれる細菌を死滅する効果が向上する。 In the example shown in FIG. 14, the light source 171B is spaced upstream in the flow direction 13 with respect to the light source 171A. The light sources 171A and 171B irradiate ultraviolet rays into the duct 20 from the downstream side to the upstream side in the flow direction 13 . Thus, in the example shown in FIG. 14 , the light sources that irradiate ultraviolet rays into the duct 20 in the same irradiation directions 14 in the flow direction 13 are arranged at a plurality of locations separated in the flow direction 13 . As a result, even if the exposure portion 70 is relatively long, a relatively long distance for exposing the air A can be ensured while suppressing a decrease in the irradiation intensity of the ultraviolet rays with respect to the air A. Therefore, the effect of inactivating viruses contained in the air A or killing bacteria contained in the air A is improved.
 図15は、ダクトの内部構造の第5例を部分的に示す斜視図である。図15では、ファン61,62に対して流れ方向13の上流側に空隙を挟んで配置された光源171A,171Bが、ダクト20内に配置されている。これにより、光源171A,171Bからダクト20内に照射される紫外線が遮られ難くなり、光源171A,171Bからダクト20内に照射される紫外線の偏りは抑制される。よって、空気Aに含まれるウイルスを不活化又は空気Aに含まれる細菌を死滅する効果が向上する。 FIG. 15 is a perspective view partially showing a fifth example of the internal structure of the duct. In FIG. 15, light sources 171A and 171B are arranged in the duct 20 on the upstream side in the flow direction 13 with respect to the fans 61 and 62 with a gap therebetween. As a result, the ultraviolet rays emitted from the light sources 171A and 171B into the duct 20 are less likely to be blocked, and the unevenness of the ultraviolet rays emitted from the light sources 171A and 171B into the duct 20 is suppressed. Therefore, the effect of inactivating viruses contained in the air A or killing bacteria contained in the air A is improved.
 図15に示す例では、光源171Bは、光源171Aに対して流れ方向13の上流側に間隔を空けて配置されている。光源171Aは、流れ方向13における下流側から上流側に向けてダクト20内に紫外線を照射し、光源171Bは、流れ方向13における上流側から下流側に向けてダクト20内に紫外線を照射する。このように、図15に示す例では、流れ方向13において互いに逆向きの照射方向14でダクト20内に紫外線を照射する光源が、流れ方向13に離れた複数の箇所に配置されている。これにより、露光部70が比較的長くても、空気Aに対する紫外線の照射強度の低下を抑えた状態で空気Aを露光する距離を比較的長く確保できる。よって、空気Aに含まれるウイルスを不活化又は空気Aに含まれる細菌を死滅する効果が向上する。 In the example shown in FIG. 15, the light source 171B is spaced upstream in the flow direction 13 with respect to the light source 171A. The light source 171A irradiates the inside of the duct 20 with ultraviolet rays from the downstream side to the upstream side in the flow direction 13, and the light source 171B irradiates the inside of the duct 20 with ultraviolet rays from the upstream side toward the downstream side in the flow direction 13. Thus, in the example shown in FIG. 15 , the light sources that irradiate the inside of the duct 20 with ultraviolet rays in the irradiation directions 14 that are opposite to each other in the flow direction 13 are arranged at a plurality of locations spaced apart in the flow direction 13 . As a result, even if the exposure portion 70 is relatively long, a relatively long distance for exposing the air A can be ensured while suppressing a decrease in the irradiation intensity of the ultraviolet rays with respect to the air A. Therefore, the effect of inactivating viruses contained in the air A or killing bacteria contained in the air A is improved.
 図6は、電気集塵部40が露光部70に対して上流側に位置する空気清浄機において、光源からの距離と照度との関係の一例を示す図である。条件R1は、ダクト20の内壁の反射率が70%未満で電気集塵部40の電極の反射率が30%未満の場合を示す。条件R2は、ダクト20の内壁の反射率が70%で電気集塵部40の電極の反射率が30%未満の場合を示す。条件R3は、ダクト20の内壁の反射率が70%で電気集塵部40の電極の反射率が30%の場合を示す。条件R4は、ダクト20の内壁の反射率が70%で電気集塵部40の電極の反射率が70%の場合を示す。条件R1~R4は、光源71,72から照射される紫外線の配光角度が35°の場合を示す。電気集塵部40の電極とは、電界を発生させるための電極であり、より具体的には、高電圧電極と接地電極(捕集電極)である。 FIG. 6 is a diagram showing an example of the relationship between the distance from the light source and the illuminance in an air cleaner in which the electrostatic precipitator 40 is positioned upstream with respect to the exposure unit 70. FIG. Condition R1 indicates a case where the reflectance of the inner wall of the duct 20 is less than 70% and the reflectance of the electrodes of the electrostatic precipitator 40 is less than 30%. Condition R2 indicates a case where the reflectance of the inner wall of the duct 20 is 70% and the reflectance of the electrode of the electrostatic precipitator 40 is less than 30%. Condition R3 indicates a case where the reflectance of the inner wall of the duct 20 is 70% and the reflectance of the electrodes of the electrostatic precipitator 40 is 30%. Condition R4 indicates a case where the reflectance of the inner wall of the duct 20 is 70% and the reflectance of the electrode of the electrostatic precipitator 40 is 70%. Conditions R1 to R4 indicate the case where the light distribution angle of the ultraviolet rays emitted from the light sources 71 and 72 is 35°. The electrodes of the electrostatic precipitator 40 are electrodes for generating an electric field, and more specifically, a high voltage electrode and a ground electrode (collection electrode).
 電気集塵部40が露光部70に対して上流側に位置することで、光源71,72からダクト20内に照射される紫外線は、露光部70だけでなく、電気集塵部40にも届く。これにより、露光部70内の空気Aに含まれるウイルス又は細菌だけでなく、電気集塵部40に捕集されたウイルスを不活化又は細菌を死滅できるので、空気清浄機100全体の不活化効果が向上する。 Since the electrostatic precipitator 40 is located on the upstream side with respect to the exposure part 70, the ultraviolet rays irradiated into the duct 20 from the light sources 71 and 72 reach not only the exposure part 70 but also the electrostatic precipitator 40. . As a result, not only the viruses or bacteria contained in the air A in the exposure unit 70, but also the viruses or bacteria collected by the electrostatic precipitator 40 can be inactivated or the bacteria can be killed. improves.
 また、図6に示すように、紫外線の反射率を上げることによって、露光部70照度だけでなく、電気集塵部40の照度も上がる。これにより、露光部70内の空気Aに含まれるウイルス又は細菌だけでなく、電気集塵部40により捕集されたウイルスを不活化又は細菌を死滅できるので、空気清浄機100全体の不活化効果が更に向上する。 Further, as shown in FIG. 6, by increasing the reflectance of ultraviolet rays, not only the illuminance of the exposure unit 70 but also the illuminance of the electrostatic precipitator 40 is increased. As a result, not only viruses or bacteria contained in the air A in the exposure unit 70 but also viruses or bacteria collected by the electrostatic precipitator 40 can be inactivated or bacteria can be killed. is further improved.
 図2において、露光部70と電気集塵部40は、分離可能な構造を有することで、清掃等のメンテナンス性が向上する。例えば、露光部70と電気集塵部40は、ボルト等の締結部材によって分離可能な連結構造を有する。また、帯電部30と捕集部50は、分離可能な構造を有することで、清掃等のメンテナンス性が向上する。例えば、帯電部30と捕集部50は、ボルト等の締結部材によって分離可能な連結構造を有する。 In FIG. 2, the exposure unit 70 and the electrostatic precipitator 40 have separable structures, thereby improving maintainability such as cleaning. For example, the exposure unit 70 and the electrostatic precipitator 40 have a connecting structure that can be separated by fastening members such as bolts. In addition, since the charging section 30 and the collection section 50 have a separable structure, maintenance such as cleaning is improved. For example, the charging section 30 and the collection section 50 have a connecting structure that can be separated by a fastening member such as a bolt.
 光源71,72及びファン61,62は、制御装置80(図1参照)によって制御される。制御装置80は、ファン61,62を停止させた状態で光源71,72から紫外線を照射させる運転モードを実行してもよい。これにより、ファン61,62の動作により生ずる消費電力及び動作音が抑制された状態で、電気集塵部40により捕集されたウイルスを不活化又は細菌を死滅できる。また、新たにウイルス又は細菌が空気清浄機100内に供給されない状態で、電気集塵部40により捕集されたウイルスを不活化又は細菌を死滅できるので、分解清掃の安全性が向上する。また、制御装置80は、ファン61,62を回転させた状態よりも高い照射出力で、ファン61,62を停止させた状態で光源71,72から紫外線を照射する運転モードを実行してもよい。これにより、空気清浄機100の動作停止の操作をユーザから受けた後、ダクト20の内壁や電気集塵部40に残ったウイルスを不活化又は細菌を死滅できるので、動作停止後の不活化の効果が向上する。これらの運転モードが完了すると、完了通知が出力されてもよい。これにより、ユーザによる分解清掃の作業の安全性が向上する。 The light sources 71, 72 and fans 61, 62 are controlled by a control device 80 (see FIG. 1). The control device 80 may execute an operation mode in which the light sources 71 and 72 irradiate ultraviolet rays while the fans 61 and 62 are stopped. As a result, while the power consumption and operating noise caused by the operation of the fans 61 and 62 are suppressed, viruses collected by the electrostatic precipitator 40 can be inactivated or bacteria can be killed. In addition, since viruses or bacteria collected by the electrostatic precipitator 40 can be inactivated or bacteria can be killed without newly supplying viruses or bacteria into the air purifier 100, the safety of decomposition cleaning is improved. Further, the control device 80 may execute an operation mode in which ultraviolet rays are emitted from the light sources 71 and 72 while the fans 61 and 62 are stopped at a higher irradiation output than when the fans 61 and 62 are rotated. . As a result, after receiving an operation to stop the operation of the air purifier 100 from the user, viruses remaining on the inner wall of the duct 20 and the electrostatic precipitator 40 can be inactivated or bacteria can be killed. Improves effectiveness. Upon completion of these operating modes, a completion notification may be output. This improves the safety of the user's disassembly and cleaning work.
 電気集塵部40が電気集塵を停止し光源71,72が紫外線を照射する第1運転モードM、電気集塵部40が電気集塵し光源71,72が紫外線を照射しない第2運転モードM、電気集塵部40が電気集塵し光源71,72が紫外線を照射する第3運転モードMなどがあってもよい。制御装置80は、これらの運転モードM,M,Mを切り替えて実行してもよい。また、制御装置80は、人感センサによって検出される空気清浄機周囲の人の存在に応じて、これらの運転モードM,M,Mを切り替えて実行してもよい。 A first operation mode M 1 in which the electric dust collection unit 40 stops electric dust collection and the light sources 71 and 72 irradiate ultraviolet rays, and a second operation mode M 1 in which the electric dust collection unit 40 collects electric dust and the light sources 71 and 72 do not irradiate ultraviolet rays. There may be a mode M 2 , a third operation mode M 3 in which the electrostatic precipitator 40 collects electrostatic dust and the light sources 71 and 72 irradiate ultraviolet rays, and the like. The control device 80 may switch between these operation modes M 1 , M 2 , and M 3 . Further, the control device 80 may switch and execute these operation modes M1 , M2 , and M3 according to the presence of people around the air purifier detected by the human sensor.
 図7は、電気集塵部の電極の先端構造の一例を示す図である。電極の先端部は、ダクト20内における空気Aの流れを遮る方向(完全に遮るわけではない)に折れ曲がってもよい。これにより、ダクト20内で旋回流のような流れが形成されるので、紫外線の空間照度に偏りがある場合でも、紫外線がダクト20内のウイルス又は細菌に平均的に当たるようになる。その結果、ウイルスを不活化できない又は細菌を死滅できない割合が減少し、ウイルスの不活化又は細菌の死滅の効果が向上する。 FIG. 7 is a diagram showing an example of the electrode tip structure of the electrostatic precipitator. The tip of the electrode may be bent in a direction that blocks (not completely blocks) the flow of the air A in the duct 20 . As a result, a swirl-like flow is formed in the duct 20, so that the ultraviolet rays evenly hit viruses or bacteria in the duct 20 even when the spatial illuminance of the ultraviolet rays is uneven. As a result, the rate of failure to inactivate viruses or kill bacteria is reduced, and the effect of inactivating viruses or killing bacteria is improved.
 図7に示す例では、電気集塵部40は、ダクト20内に配置された高電圧電極54と、高電圧電極54に対向する捕集電極52とを有する。高電圧電極54と捕集電極52との複数組のペアが、流れ方向13に直交する一の方向で配列されている。高電圧電極54は、例えば、導電性のプレートである。捕集電極52は、接地された導電性のプレートである。捕集部50は、高電圧電極54と捕集電極52との間に高電圧を印加することで、高電圧電極54と捕集電極52との間に静電界を発生させる。これにより、帯電した微粒子は、静電力によって捕集電極52に吸い寄せられ、捕集電極52に付着する。 In the example shown in FIG. 7, the electrostatic precipitator 40 has a high voltage electrode 54 arranged inside the duct 20 and a collection electrode 52 facing the high voltage electrode 54 . Multiple pairs of high voltage electrodes 54 and collection electrodes 52 are arranged in one direction perpendicular to flow direction 13 . High voltage electrode 54 is, for example, a conductive plate. Collection electrode 52 is a conductive plate that is grounded. The collection unit 50 applies a high voltage between the high voltage electrode 54 and the collection electrode 52 to generate an electrostatic field between the high voltage electrode 54 and the collection electrode 52 . As a result, the charged fine particles are attracted to the collecting electrode 52 by electrostatic force and adhere to the collecting electrode 52 .
 高電圧電極54は、流れ方向13の下流側の先端部54a,54bが空気Aの流れを遮る方向に折れ曲がる主電極面54cを有する。捕集電極52は、流れ方向13の下流側の先端部52a,52bが空気Aの流れを遮る方向に折れ曲がる主電極面52cを有する。先端部54a,54bが互い違いに折れ曲がり、且つ、先端部52a,52bが互い違いに折れ曲がる。このように折れ曲がることで、ダクト20内で旋回流のような流れが形成されやすくなるので、ウイルスの不活化又は細菌の死滅の効果がより向上する。 The high-voltage electrode 54 has a main electrode surface 54c in which tip portions 54a and 54b on the downstream side in the flow direction 13 are bent in the direction of blocking the flow of the air A. The collection electrode 52 has a main electrode surface 52c in which tip portions 52a and 52b on the downstream side in the flow direction 13 are bent in a direction to block the flow of the air A. As shown in FIG. Tip portions 54a and 54b are alternately bent, and tip portions 52a and 52b are alternately bent. By bending in this way, a flow like a swirling flow is easily formed in the duct 20, so that the effect of inactivating viruses or killing bacteria is further improved.
 図8は、光源の配向を説明するための図である。ダクト20の内壁23は、紫外線を反射する部材である。内壁23自体が、紫外線の反射材でもよいし、紫外線の反射板が内壁23に取り付けられてもよい。光源71は、第1配光角度で紫外線を照射する広角配光型の第1光源76と、第1配光角度よりも狭い第2配光角度で紫外線を照射する挟角配光型の第2光源77とを含んでもよい。広角配光型の第1光源76から照射される紫外線は、ダクト20の内壁23で反射し、ダクト20内の照射分布の偏りが緩和される。狭角配光型の第2光源77から照射される紫外線は、ほぼ直進し、ダクト20内の流れ方向に深く照射される。したがって、第1光源76は、第2光源77よりもダクト20の内壁23の近くに配置されることで、ダクト20内に照射される紫外線の分布の偏りを抑制する効果が高まる。 FIG. 8 is a diagram for explaining the orientation of the light source. An inner wall 23 of the duct 20 is a member that reflects ultraviolet rays. The inner wall 23 itself may be an ultraviolet reflective material, or an ultraviolet reflective plate may be attached to the inner wall 23 . The light source 71 includes a first wide-angle light distribution type light source 76 that irradiates ultraviolet light at a first light distribution angle, and a narrow-angle light distribution type light source 76 that irradiates ultraviolet light at a second light distribution angle narrower than the first light distribution angle. 2 light sources 77 may be included. The ultraviolet rays emitted from the wide-angle light distribution type first light source 76 are reflected by the inner wall 23 of the duct 20 , and the unevenness of the irradiation distribution inside the duct 20 is alleviated. The ultraviolet rays emitted from the narrow-angle light distribution type second light source 77 travel substantially straight and are irradiated deeply in the flow direction in the duct 20 . Therefore, by arranging the first light source 76 closer to the inner wall 23 of the duct 20 than the second light source 77 is, the effect of suppressing unevenness in the distribution of the ultraviolet rays irradiated into the duct 20 is enhanced.
 図9は、配光角度が異なる複数の光源の第1配置例を示す図である。ファン61,62,63,64に対して流れ方向13の上流側に空隙を挟んで配置された光源71,72,73,74が、ダクト20内に配置されている(図4同様)。図9において、光源71,72,73,74は、それぞれ、広角配光型の第1光源76と、挟角配光型の第2光源77とを有する。第1光源76は、第2光源77よりも、紫外線を反射可能な内壁23の近くに配置されている。第1光源76は、内壁23に隣接する二辺に沿ってL字状に配列されている。これにより、ダクト20内に照射される紫外線の分布の偏りを抑制する効果が高まる。 FIG. 9 is a diagram showing a first arrangement example of a plurality of light sources with different light distribution angles. Light sources 71, 72, 73, 74 are arranged in the duct 20 upstream of the fans 61, 62, 63, 64 in the flow direction 13 with a gap therebetween (similar to FIG. 4). In FIG. 9 , the light sources 71 , 72 , 73 , and 74 each have a wide-angle light distribution type first light source 76 and a narrow-angle light distribution type second light source 77 . The first light source 76 is arranged closer to the inner wall 23 capable of reflecting ultraviolet rays than the second light source 77 is. The first light sources 76 are arranged in an L shape along two sides adjacent to the inner wall 23 . As a result, the effect of suppressing unevenness in the distribution of ultraviolet rays irradiated into the duct 20 is enhanced.
 図10は、配光角度が異なる複数の光源の第2配置例を示す図である。ファン61,62に対して流れ方向13の上流側に空隙を挟んで配置された光源171が、ダクト20内に配置されている(図5同様)。図10において、光源171は、広角配光型の第1光源76と、挟角配光型の第2光源77とを有する。第1光源76は、第2光源77よりも、紫外線を反射可能な内壁23の近くに配置されている。第1光源76は、隣接する内壁23に沿って一列に配列されている。これにより、ダクト20内に照射される紫外線の分布の偏りを抑制する効果が高まる。第1光源76は、紫外線を反射可能な他の隣接する内壁23に沿って一列に配列されてもよい。 FIG. 10 is a diagram showing a second arrangement example of a plurality of light sources with different light distribution angles. A light source 171 arranged with an air gap on the upstream side in the flow direction 13 with respect to the fans 61 and 62 is arranged in the duct 20 (similar to FIG. 5). In FIG. 10, the light source 171 has a wide-angle light distribution type first light source 76 and a narrow-angle light distribution type second light source 77 . The first light source 76 is arranged closer to the inner wall 23 capable of reflecting ultraviolet rays than the second light source 77 is. The first light sources 76 are arranged in a row along adjacent inner walls 23 . As a result, the effect of suppressing unevenness in the distribution of ultraviolet rays irradiated into the duct 20 is enhanced. The first light sources 76 may be arranged in a line along another adjacent inner wall 23 capable of reflecting ultraviolet light.
 図11は、照射する紫外線の波長が異なる複数の光源の第1配置例を示す図である。電気集塵部40及び露光部70を有する空気清浄機において、光源172は、UV-Cを照射する第1光源78と、波長がUV-Cよりも長いUV-Bを照射する第2光源79と、を含んでもよい。これにより、UV-Cによるウイルスの不活化又は細菌の死滅とUV-Bによるオゾンの分解の二つの機能を比較的小さなダクト20内の空間で両立できる。UV-Bは、オゾンの吸収効率が、UV-Cよりも高いので、UV-Bを照射することで、電気集塵部40のコロナ放電で特に発生するオゾンを効率的に分解できる。過多なオゾンは、人体に有害であるため、オゾン濃度は、できるだけ微小にすることが好ましい。UV-C(Ultraviolet Light - C)は、100nm~280nmの紫外線C波である。UV-B(Ultraviolet Light - B)は、280nm~315nmの紫外線B波である。 FIG. 11 is a diagram showing a first arrangement example of a plurality of light sources emitting ultraviolet rays of different wavelengths. In the air cleaner having the electrostatic precipitator 40 and the exposure unit 70, the light source 172 includes a first light source 78 that emits UV-C and a second light source 79 that emits UV-B having a longer wavelength than UV-C. and may include As a result, the two functions of inactivating viruses or killing bacteria with UV-C and decomposing ozone with UV-B can be achieved in a relatively small space inside the duct 20 . Since UV-B has a higher ozone absorption efficiency than UV-C, irradiation with UV-B can efficiently decompose ozone especially generated by corona discharge of the electrostatic precipitator 40 . Since excessive ozone is harmful to the human body, it is preferable to make the ozone concentration as small as possible. UV-C (Ultraviolet Light - C) is ultraviolet C waves from 100 nm to 280 nm. UV-B (Ultraviolet Light - B) is ultraviolet B waves from 280 nm to 315 nm.
 制御装置80は、オゾン発生量をオゾンセンサで検知し、その検知されたオゾン発生量に応じて、UV-Bの照射出力を変化させてもよい。例えば、制御装置80は、オゾン発生量が多い場合、少ない場合に比べて、UV-Bの照射出力を大きくする。これにより、オゾンを効率的に分解できる。 The control device 80 may detect the amount of generated ozone with an ozone sensor, and change the UV-B irradiation output according to the detected amount of generated ozone. For example, the control device 80 increases the UV-B irradiation output when the ozone generation amount is large compared to when the ozone generation amount is small. Thereby, ozone can be efficiently decomposed.
 図11では、ファン61,62に対して流れ方向13の上流側に空隙を挟んで配置された光源172が、ダクト20内に配置されている(図5同様)。図11において、光源172は、UV-Cを照射する第1光源78と、UV-Bを照射する第2光源79とを有する。第1光源78と第2光源79は、交互に配置されている。これにより、ダクト20内に照射されるUV-BとUV-Cの分布の偏りを抑制する効果が高まる。なお、図9のような構成で、光源は、UV-Cを照射する第1光源78と、UV-Bを照射する第2光源79とを有してもよい。 In FIG. 11, a light source 172 arranged across a gap on the upstream side in the flow direction 13 with respect to the fans 61 and 62 is arranged inside the duct 20 (similar to FIG. 5). In FIG. 11, the light source 172 has a first light source 78 that emits UV-C and a second light source 79 that emits UV-B. The first light sources 78 and the second light sources 79 are arranged alternately. As a result, the effect of suppressing uneven distribution of UV-B and UV-C irradiated into the duct 20 is enhanced. In the configuration shown in FIG. 9, the light source may have a first light source 78 for irradiating UV-C and a second light source 79 for irradiating UV-B.
 また、第1光源78は、広角配光型でも挟角配光型でもよい。同様に、第2光源79は、広角配光型でも挟角配光型でもよい。 Also, the first light source 78 may be of a wide-angle light distribution type or a narrow-angle light distribution type. Similarly, the second light source 79 may be of a wide-angle light distribution type or a narrow-angle light distribution type.
 図12は、照射する紫外線の波長が異なる複数の光源の第2配置例を示す図である。UV-Bを照射する第2光源79は、UV-Cを照射する第1光源78よりも電気集塵部40の近くに配置されると、電気集塵部40で発生するオゾンをUV-Cよりも早い段階でUV-Bで分解できる。その結果、UV-Cがオゾンの分解に使用されることによるUV-Cの減衰が抑制され、UV-Cによるウイルスの不活化又は細菌の死滅の効果の低下を抑制できる。 FIG. 12 is a diagram showing a second arrangement example of a plurality of light sources emitting ultraviolet rays of different wavelengths. If the second light source 79 that emits UV-B is arranged closer to the electrostatic precipitator 40 than the first light source 78 that emits UV-C, the ozone generated in the electrostatic precipitator 40 is converted into UV-C. can be degraded by UV-B at an earlier stage than As a result, attenuation of UV-C due to the use of UV-C to decompose ozone is suppressed, and reduction in the effect of UV-C in inactivating viruses or killing bacteria can be suppressed.
 図12に示す例では、UV-Cを照射する第1光源78及びUV-Bを照射する第2光源79は、ダクト20の内壁23(又は、内壁23に取り付けられる反射板)に配列され、第2光源79は、第1光源78よりも電気集塵部40の近くに配置されている。これにより、電気集塵部40で発生するオゾンをUV-Cよりも早い段階でUV-Bで分解できるので、UV-Cによるウイルスの不活化又は細菌の死滅とUV-Bによるオゾンの分解を効率的に実施できる。 In the example shown in FIG. 12, a first light source 78 that emits UV-C and a second light source 79 that emits UV-B are arranged on the inner wall 23 of the duct 20 (or a reflector attached to the inner wall 23), The second light source 79 is arranged closer to the electrostatic precipitator 40 than the first light source 78 is. As a result, the ozone generated in the electrostatic precipitator 40 can be decomposed by UV-B at an earlier stage than UV-C, so that the inactivation of viruses or the death of bacteria by UV-C and the decomposition of ozone by UV-B can be performed. Efficient implementation.
 図13は、帯電部の構成例を示す図である。図13に示す帯電部30は、コロナ放電を発生させる放電部36を有する。放電部36は、ダクト20内に配置される放電電極37と、放電電極37に対向する接地電極38と、放電電極37と支持部(内壁など)との間を絶縁する碍子39とを有する。 FIG. 13 is a diagram showing a configuration example of the charging section. The charging section 30 shown in FIG. 13 has a discharge section 36 for generating corona discharge. The discharge section 36 has a discharge electrode 37 arranged in the duct 20, a ground electrode 38 facing the discharge electrode 37, and an insulator 39 for insulating between the discharge electrode 37 and the supporting section (inner wall, etc.).
 放電電極37は、複数の尖鋭な突起が放射状に延びる円盤状電極である。放電部36は、複数の放電電極37が間隔を空けて積層する放電電極群35を有する。複数の放電電極群35は、格子状の接地電極38で仕切られた複数の空間に配置されている。帯電装置30Bは、放電電極37(複数の放電電極群35)と接地電極38との間に高電圧HVを印加することで、放電電極37(複数の放電電極群35)と接地電極38との間にコロナ放電を発生させる。 The discharge electrode 37 is a disk-shaped electrode with a plurality of sharp projections extending radially. The discharge section 36 has a discharge electrode group 35 in which a plurality of discharge electrodes 37 are laminated with a space therebetween. A plurality of discharge electrode groups 35 are arranged in a plurality of spaces partitioned by grid-like ground electrodes 38 . The charging device 30B applies a high voltage HV between the discharge electrode 37 (the plurality of discharge electrode groups 35) and the ground electrode 38, so that the discharge electrodes 37 (the plurality of discharge electrode groups 35) and the ground electrode 38 are A corona discharge is generated between
 帯電部30の放電電極37は、正極性でも負極性でもよい。正極性の放電電極とは、接地電極に対してプラスの高電圧が印加される電極であり、負極性の放電電極とは、接地電極に対してマイナスの高電圧が印加される電極である。 The discharge electrode 37 of the charging section 30 may have either a positive polarity or a negative polarity. The positive discharge electrode is an electrode to which a positive high voltage is applied with respect to the ground electrode, and the negative discharge electrode is an electrode to which a negative high voltage is applied with respect to the ground electrode.
 帯電部30は、接地電極と正極性の放電電極37との間にプラスの高電圧を印加して両電極間にコロナ放電を発生させることで、ダクト20内のオゾン濃度の抑制と、捕集部50での微粒子の捕集率の向上とが可能となる。 The charging unit 30 applies a positive high voltage between the ground electrode and the positive discharge electrode 37 to generate corona discharge between the electrodes, thereby suppressing the concentration of ozone in the duct 20 and collecting ozone. It is possible to improve the collection rate of fine particles in the portion 50 .
 以上、実施形態を説明したが、本発明は上記実施形態に限定されない。他の実施形態の一部又は全部との組み合わせや置換などの種々の変形及び改良が可能である。 Although the embodiments have been described above, the present invention is not limited to the above embodiments. Various modifications and improvements such as combination or replacement with part or all of other embodiments are possible.
 例えば、本開示の技術は、電気集塵部を持つ空気清浄機に限られず、電気集塵部を持たない空気清浄機にも適用できる。 For example, the technology of the present disclosure is not limited to air purifiers having an electrostatic precipitator, but can also be applied to air purifiers that do not have an electrostatic precipitator.
 本国際出願は、2021年2月19日に出願した日本国特許出願第2021-025077号に基づく優先権を主張するものであり、日本国特許出願第2021-025077号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2021-025077 filed on February 19, 2021, and the entire content of Japanese Patent Application No. 2021-025077 is to refer to.
 10 筐体
 11 吸い込み口
 12 吹き出し口
 13 流れ方向
 14 照射方向
 20 ダクト
 21,22,26,27,28 板
 23 内壁
 24 支柱
 25 平板
 30 帯電部
 35 放電電極群
 36 放電部
 37 放電電極
 38 接地電極
 39 碍子
 40 電気集塵部
 50 捕集部
 52 捕集電極
 54 高電圧電極
 60 排出装置
 61,62,63,64 ファン
 70 露光部
 71,72,73,74 光源
 75 スリット
 76,78 第1光源
 77,79 第2光源
 80 制御装置
 90 フィルタ
 100 空気清浄機
REFERENCE SIGNS LIST 10 housing 11 suction port 12 outlet 13 flow direction 14 irradiation direction 20 duct 21, 22, 26, 27, 28 plate 23 inner wall 24 support 25 flat plate 30 charging section 35 discharge electrode group 36 discharge section 37 discharge electrode 38 ground electrode 39 insulator 40 electrostatic precipitator 50 collector 52 collector electrode 54 high-voltage electrode 60 discharge device 61, 62, 63, 64 fan 70 exposure section 71, 72, 73, 74 light source 75 slit 76, 78 first light source 77, 79 second light source 80 control device 90 filter 100 air cleaner

Claims (23)

  1.  吸い込み口から吹き出し口に空気を流すダクトと、
     前記ダクト内の空気の流れ方向における下流側から上流側に向けて、前記ダクト内に紫外線を照射する光源と、
     前記ダクト内から前記吹き出し口に空気を排出するファンと、を備え、
     前記光源及び前記ファンは、前記流れ方向に交わる平面に並べて配置された、空気清浄機。
    a duct for flowing air from the inlet to the outlet;
    a light source that irradiates ultraviolet rays into the duct from the downstream side to the upstream side in the direction of air flow in the duct;
    a fan for discharging air from inside the duct to the outlet,
    The air cleaner, wherein the light source and the fan are arranged side by side on a plane intersecting the flow direction.
  2.  前記ダクト内の空気が前記光源に対して前記上流側に流れるように配置された板を備える、請求項1に記載の空気清浄機。 The air cleaner according to claim 1, comprising a plate arranged so that the air in the duct flows toward the upstream side with respect to the light source.
  3.  吸い込み口から吹き出し口に空気を流すダクトと、
     前記ダクト内の空気の流れ方向における下流側から上流側に向けて、前記ダクト内に紫外線を照射する光源と、
     前記ダクト内から前記吹き出し口に空気を排出するファンと、
     前記ダクト内の空気が前記光源に対して前記上流側に流れるように配置された板と、を備える、空気清浄機。
    a duct for flowing air from the inlet to the outlet;
    a light source that irradiates ultraviolet rays into the duct from the downstream side to the upstream side in the direction of air flow in the duct;
    a fan for discharging air from inside the duct to the outlet;
    and a plate arranged so that the air in the duct flows to the upstream side with respect to the light source.
  4.  前記板は、前記ファンに対して前記上流側に配置された、請求項2又は3に記載の空気清浄機。 The air cleaner according to claim 2 or 3, wherein the plate is arranged on the upstream side with respect to the fan.
  5.  前記板は、前記ファンに向かう空気を迂回させる、請求項2から4のいずれか一項に記載の空気清浄機。 The air purifier according to any one of claims 2 to 4, wherein the plate diverts air directed toward the fan.
  6.  前記板は、前記ファンに向かう空気を、前記光源に対して前記上流側に迂回させる、請求項5に記載の空気清浄機。 The air cleaner according to claim 5, wherein the plate diverts air directed toward the fan to the upstream side with respect to the light source.
  7.  前記光源は、前記板に対して前記上流側に配置された、請求項3に記載の空気清浄機。 The air cleaner according to claim 3, wherein the light source is arranged on the upstream side with respect to the plate.
  8.  前記光源は、前記流れ方向に離れた複数の箇所に配置された、請求項7に記載の空気清浄機。 The air purifier according to claim 7, wherein the light sources are arranged at a plurality of locations separated in the flow direction.
  9.  前記流れ方向における上流側から下流側に向けて、前記ダクト内に紫外線を照射する光源を備える、請求項7に記載の空気清浄機。 The air purifier according to claim 7, comprising a light source that irradiates the inside of the duct with ultraviolet rays from the upstream side to the downstream side in the flow direction.
  10.  吸い込み口から吹き出し口に空気を流すダクトと、
     前記ダクト内の空気の流れ方向における下流側から上流側に向けて、前記ダクト内に紫外線を照射する光源と、
     前記ダクト内から前記吹き出し口に空気を排出するファンと、
     前記ファンに対して前記上流側に配置された板と、を備え、
     前記光源は、前記板に対して前記上流側に配置され、
     前記板は、前記ダクト内の空気が通過する貫通孔を有する、空気清浄機。
    a duct for flowing air from the inlet to the outlet;
    a light source that irradiates ultraviolet rays into the duct from the downstream side to the upstream side in the direction of air flow in the duct;
    a fan for discharging air from inside the duct to the outlet;
    a plate arranged on the upstream side with respect to the fan,
    The light source is arranged on the upstream side with respect to the plate,
    The air cleaner, wherein the plate has a through hole through which the air in the duct passes.
  11.  吸い込み口から吹き出し口に空気を流すダクトと、
     前記ダクト内の空気の流れ方向における下流側から上流側に向けて、前記ダクト内に紫外線を照射する光源と、
     前記ダクト内から前記吹き出し口に空気を排出するファンと、を備え、
     前記光源は、前記流れ方向に離れた複数の箇所に配置された、空気清浄機。
    a duct for flowing air from the inlet to the outlet;
    a light source that irradiates ultraviolet rays into the duct from the downstream side to the upstream side in the direction of air flow in the duct;
    a fan for discharging air from inside the duct to the outlet,
    The air purifier, wherein the light sources are arranged at a plurality of locations separated in the flow direction.
  12.  吸い込み口から吹き出し口に空気を流すダクトと、
     前記ダクト内の空気の流れ方向における下流側から上流側に向けて、前記ダクト内に紫外線を照射する光源と、
     前記流れ方向における上流側から下流側に向けて、前記ダクト内に紫外線を照射する光源と、
     前記ダクト内から前記吹き出し口に空気を排出するファンと、を備える、空気清浄機。
    a duct for flowing air from the inlet to the outlet;
    a light source that irradiates ultraviolet rays into the duct from the downstream side to the upstream side in the direction of air flow in the duct;
    a light source that irradiates ultraviolet rays into the duct from the upstream side toward the downstream side in the flow direction;
    and a fan for discharging air from inside the duct to the outlet.
  13.  前記ダクトは、前記光源から照射される紫外線を前記ダクト内の空気に当てる露光部と、前記露光部に対して前記上流側に位置する電気集塵部と、を有し、
     前記電気集塵部は、前記ダクト内の空気に含まれる微粒子を帯電させ、帯電した微粒子を静電力によって捕集する、請求項1から12のいずれか一項に記載の空気清浄機。
    The duct has an exposure section that exposes the air in the duct to ultraviolet rays emitted from the light source, and an electrostatic precipitator located upstream of the exposure section,
    The air cleaner according to any one of claims 1 to 12, wherein the electrostatic precipitator charges particles contained in the air in the duct and collects the charged particles by electrostatic force.
  14.  前記露光部と前記電気集塵部は、分離可能な構造を有する、請求項13に記載の空気清浄機。 The air cleaner according to claim 13, wherein the exposure section and the electrostatic precipitator have a separable structure.
  15.  前記電気集塵部は、前記ダクト内の空気に含まれる微粒子を帯電させる帯電部と、帯電した微粒子を静電力によって捕集する捕集部と、を有し、
     前記帯電部と前記捕集部は、分離可能な構造を有する、請求項13又は14に記載の空気清浄機。
    The electric dust collection unit has a charging unit that charges fine particles contained in the air in the duct, and a collecting unit that collects the charged fine particles by electrostatic force,
    The air cleaner according to claim 13 or 14, wherein said charging section and said collecting section have a separable structure.
  16.  前記電気集塵部は、前記静電力を発生される電極を有し、
     前記電極の先端部は、前記ダクト内における空気の流れを遮る方向に折れ曲がる、請求項13から15のいずれか一項に記載の空気清浄機。
    The electrostatic precipitator has an electrode for generating the electrostatic force,
    16. The air cleaner according to any one of claims 13 to 15, wherein a tip portion of said electrode is bent in a direction of blocking air flow in said duct.
  17.  前記光源は、UV-Cを照射する第1光源、波長がUV-Cよりも長いUV-Bを照射する第2光源と、を含む、請求項13から16のいずれか一項に記載の空気清浄機。 The light source includes a first light source that irradiates UV-C, and a second light source that irradiates UV-B having a longer wavelength than UV-C. The air according to any one of claims 13 to 16. Cleaner.
  18.  前記第2光源は、前記第1光源よりも前記電気集塵部の近くに配置された、請求項17に記載の空気清浄機。 The air cleaner according to claim 17, wherein the second light source is arranged closer to the electrostatic precipitator than the first light source.
  19.  紫外線は、前記ダクトの内壁で反射し、
     前記光源は、第1配光角度で紫外線を照射する第1光源と、前記第1配光角度よりも狭い第2配光角度で紫外線を照射する第2光源と、を含み、
     前記第1光源は、前記第2光源よりも前記内壁の近くに配置された、請求項1から16のいずれか一項に記載の空気清浄機。
    UV rays are reflected by the inner wall of the duct,
    The light source includes a first light source that irradiates ultraviolet light at a first light distribution angle and a second light source that irradiates ultraviolet light at a second light distribution angle narrower than the first light distribution angle,
    17. An air cleaner according to any preceding claim, wherein the first light source is located closer to the inner wall than the second light source.
  20.  吸い込み口から吹き出し口に空気を流すダクトと、
     前記ダクト内の空気の流れ方向における下流側から上流側に向けて、前記ダクト内に紫外線を照射する光源と、
     前記ダクト内から前記吹き出し口に空気を排出するファンと、を備え、
     紫外線は、前記ダクトの内壁で反射し、
     前記光源は、第1配光角度で紫外線を照射する第1光源と、前記第1配光角度よりも狭い第2配光角度で紫外線を照射する第2光源と、を含み、
     前記第1光源は、前記第2光源よりも前記内壁の近くに配置された、空気清浄機。
    a duct for flowing air from the inlet to the outlet;
    a light source that irradiates ultraviolet rays into the duct from the downstream side to the upstream side in the direction of air flow in the duct;
    a fan for discharging air from inside the duct to the outlet,
    UV rays are reflected by the inner wall of the duct,
    The light source includes a first light source that irradiates ultraviolet light at a first light distribution angle and a second light source that irradiates ultraviolet light at a second light distribution angle narrower than the first light distribution angle,
    The air purifier, wherein the first light source is arranged closer to the inner wall than the second light source.
  21.  前記光源及び前記ファンを制御する制御装置を備え、
     前記制御装置は、前記ファンを停止させた状態で前記光源から紫外線を照射する、請求項1から20のいずれか一項に記載の空気清浄機。
    A control device for controlling the light source and the fan,
    21. The air cleaner according to any one of claims 1 to 20, wherein said control device emits ultraviolet light from said light source while said fan is stopped.
  22.  前記制御装置は、前記ファンを回転させた状態よりも高い照射出力で、前記ファンを停止させた状態で前記光源から紫外線を照射する、請求項21に記載の空気清浄機。 22. The air cleaner according to claim 21, wherein said control device irradiates ultraviolet rays from said light source while said fan is stopped at a higher irradiation output than when said fan is rotating.
  23.  前記電気集塵部が電気集塵を停止し前記光源が紫外線を照射する第1運転モードと、前記電気集塵部が電気集塵し前記光源が紫外線を照射しない第2運転モードと、前記電気集塵部が電気集塵し前記光源が紫外線を照射する第3運転モードとを切り替えて実行する制御装置を備える、請求項13から18のいずれか一項に記載の空気清浄機。 a first operation mode in which the electrostatic precipitator stops electrostatic dust collection and the light source irradiates ultraviolet rays; a second operation mode in which the electrostatic precipitator stops electrostatic dust collection and the light source does not irradiate ultraviolet rays; 19. The air purifier according to any one of claims 13 to 18, further comprising a control device that switches between and executes a third operation mode in which the dust collecting section performs electrostatic dust collection and the light source irradiates ultraviolet rays.
PCT/JP2022/004846 2021-02-19 2022-02-08 Air cleaner WO2022176700A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021025077A JP6958754B1 (en) 2021-02-19 2021-02-19 Air cleaner
JP2021-025077 2021-02-19

Publications (1)

Publication Number Publication Date
WO2022176700A1 true WO2022176700A1 (en) 2022-08-25

Family

ID=78281983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004846 WO2022176700A1 (en) 2021-02-19 2022-02-08 Air cleaner

Country Status (2)

Country Link
JP (1) JP6958754B1 (en)
WO (1) WO2022176700A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114061001B (en) * 2021-12-01 2023-05-12 上海市卫生建筑设计研究院有限公司 A ventilation system for medical building

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07313583A (en) * 1994-05-27 1995-12-05 Ushio Inc Air sterilizer
JP2000042445A (en) * 1998-07-27 2000-02-15 Kawasaki Heavy Ind Ltd Electric precipitator
JP2000042326A (en) * 1998-08-03 2000-02-15 Daikin Ind Ltd Air cleaner
JP2009178626A (en) * 2008-01-29 2009-08-13 Panasonic Corp Electrostatic dust collector
KR101081858B1 (en) * 2011-07-07 2011-11-09 주식회사 청수이앤에스 Apparatus for sterilizing and deodorizing air
US20180207311A1 (en) * 2017-01-24 2018-07-26 Samsung Electronics Co., Ltd. Electronic apparatus having photocatalytic filter
CN208347626U (en) * 2018-06-27 2019-01-08 李卫东 A kind of indoor air purification on apartment door, ventilation device
KR20190062720A (en) * 2017-11-29 2019-06-07 주식회사 네오세라믹 Air purification device using photocatalytic module with perforated plate
US20200122078A1 (en) * 2018-10-17 2020-04-23 The Boeing Company Aircraft Air Purification And Volatile Organic Compounds Reduction Unit
CN111389589A (en) * 2020-02-28 2020-07-10 悠飞(广东顺德)环境科技有限公司 Trapping, killing and desensitizing module for fine particulate pollution source

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3159067B2 (en) * 1996-07-19 2001-04-23 ダイキン工業株式会社 Air purifier
JP2001009242A (en) * 1999-06-29 2001-01-16 Matsushita Refrig Co Ltd Functional element having deodorizing/antifungal function
CN2643896Y (en) * 2003-07-30 2004-09-29 杨文明 Indoor air disinfection machine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07313583A (en) * 1994-05-27 1995-12-05 Ushio Inc Air sterilizer
JP2000042445A (en) * 1998-07-27 2000-02-15 Kawasaki Heavy Ind Ltd Electric precipitator
JP2000042326A (en) * 1998-08-03 2000-02-15 Daikin Ind Ltd Air cleaner
JP2009178626A (en) * 2008-01-29 2009-08-13 Panasonic Corp Electrostatic dust collector
KR101081858B1 (en) * 2011-07-07 2011-11-09 주식회사 청수이앤에스 Apparatus for sterilizing and deodorizing air
US20180207311A1 (en) * 2017-01-24 2018-07-26 Samsung Electronics Co., Ltd. Electronic apparatus having photocatalytic filter
KR20190062720A (en) * 2017-11-29 2019-06-07 주식회사 네오세라믹 Air purification device using photocatalytic module with perforated plate
CN208347626U (en) * 2018-06-27 2019-01-08 李卫东 A kind of indoor air purification on apartment door, ventilation device
US20200122078A1 (en) * 2018-10-17 2020-04-23 The Boeing Company Aircraft Air Purification And Volatile Organic Compounds Reduction Unit
CN111389589A (en) * 2020-02-28 2020-07-10 悠飞(广东顺德)环境科技有限公司 Trapping, killing and desensitizing module for fine particulate pollution source

Also Published As

Publication number Publication date
JP6958754B1 (en) 2021-11-02
JP2022127121A (en) 2022-08-31

Similar Documents

Publication Publication Date Title
US7300499B1 (en) Airplane air purifier
US20070283810A1 (en) Air filtration device for closed environments
AU2004268857A1 (en) Gas treating device
GB2524008A (en) Air disinfection and pollution removal method and apparatus
WO2022176700A1 (en) Air cleaner
CN209524586U (en) A kind of purification assembly and air cleaning facility
JPH1061986A (en) Air purifier
JP2009195665A (en) Device for disinfection and deodorization
JP7120425B1 (en) Air cleaner
JP7136306B2 (en) Air cleaner
KR20190011134A (en) Air sterilization apparatus having ultraviolet light emitting diodes
JP7074247B1 (en) Air cleaner
KR20210017995A (en) Air sterilization module and air purifier using it
CN216203908U (en) Air purification assembly and air circulation system
WO2016147792A1 (en) Air purifier
CN209399507U (en) A kind of air cleaning facility
JP5659944B2 (en) Air conditioner
JP2022071316A (en) Air cleaning device and opening device
CN216204127U (en) Air purification assembly and air circulation system
JP2000051332A (en) Air cleaner
KR102523936B1 (en) Air Purifier
WO2022176711A1 (en) Air purifier
US20240082454A1 (en) Adaptive air quality control system
WO2023195227A1 (en) Air purification apparatus
US20220339991A1 (en) Air sterilization device for vehicular air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756021

Country of ref document: EP

Kind code of ref document: A1