WO2016147792A1 - Air purifier - Google Patents
Air purifier Download PDFInfo
- Publication number
- WO2016147792A1 WO2016147792A1 PCT/JP2016/054885 JP2016054885W WO2016147792A1 WO 2016147792 A1 WO2016147792 A1 WO 2016147792A1 JP 2016054885 W JP2016054885 W JP 2016054885W WO 2016147792 A1 WO2016147792 A1 WO 2016147792A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- wind tunnel
- air cleaner
- corona discharge
- cleaner according
- Prior art date
Links
- 238000007599 discharging Methods 0.000 claims abstract description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 35
- 230000001699 photocatalysis Effects 0.000 claims description 18
- 230000005540 biological transmission Effects 0.000 claims description 3
- 239000012855 volatile organic compound Substances 0.000 abstract description 43
- 239000011941 photocatalyst Substances 0.000 abstract description 28
- 238000000354 decomposition reaction Methods 0.000 abstract description 14
- 239000013067 intermediate product Substances 0.000 abstract description 10
- 238000000034 method Methods 0.000 abstract description 3
- 230000001678 irradiating effect Effects 0.000 abstract 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 24
- 239000000428 dust Substances 0.000 description 24
- 238000005192 partition Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical group O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000000172 allergic effect Effects 0.000 description 2
- 208000010668 atopic eczema Diseases 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000005949 ozonolysis reaction Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 241000554155 Andes Species 0.000 description 1
- 206010003645 Atopy Diseases 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 208000024780 Urticaria Diseases 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000004887 air purification Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 206010035653 pneumoconiosis Diseases 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F7/00—Ventilation
- F24F7/003—Ventilation in combination with air cleaning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
- A61L9/16—Disinfection, sterilisation or deodorisation of air using physical phenomena
- A61L9/18—Radiation
- A61L9/20—Ultraviolet radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
- A61L9/16—Disinfection, sterilisation or deodorisation of air using physical phenomena
- A61L9/22—Ionisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
Definitions
- the present invention relates to an air cleaner.
- VOC volatile organic compound
- Patent document 1 is disclosing the air cleaner which combined the deodorizing function by a photocatalyst, and the dust collection function by corona discharge.
- the present invention provides an air purifier capable of removing intermediate products generated in the decomposition process in addition to the removal of dust in the air and the decomposition of volatile organic compounds (VOC) using a photocatalyst. Objective.
- the air cleaner which concerns on the 1st viewpoint of this invention is provided with a housing
- the casing has a wind tunnel formed therein, and has an intake port for sucking air into the wind tunnel and an exhaust port for discharging the cleaned air from the wind tunnel.
- the blower generates an air flow from the intake port toward the exhaust port in the wind tunnel.
- the VOC removal unit is disposed in the wind tunnel and includes a photocatalytic filter and a light source that irradiates light to the photocatalytic filter.
- the corona discharge part is disposed downstream of the VOC removal part in the wind tunnel.
- the air cleaner which concerns on the 2nd viewpoint of this invention is an air cleaner which concerns on a 1st viewpoint, Comprising:
- the said photocatalyst filter is formed in the tunnel shape in which many holes were formed, and has an opening in one end.
- the other end has a shielding member that shields the airflow, and the airflow flows into the photocatalytic filter through the opening, and flows out of the photocatalytic filter through the numerous holes. ing.
- the air cleaner according to a third aspect of the present invention is the air cleaner according to the second aspect, wherein the shielding member shields transmission of ultraviolet rays irradiated from the light source.
- the corona discharge part is located on the opposite side of the light source with respect to the shielding member.
- the air cleaner according to a fourth aspect of the present invention is the air cleaner according to the second aspect or the third aspect, wherein the light source is disposed in the photocatalytic filter.
- the air cleaner according to a fifth aspect of the present invention is the air cleaner according to any one of the second to fourth aspects, wherein the photocatalytic filter is at least partially formed in a mesh shape.
- the air cleaner which concerns on the 6th viewpoint of this invention is an air cleaner which concerns on either of the 2nd viewpoint from the 2nd viewpoint, Comprising:
- the said air blower sends the said air current in the said photocatalyst filter through the said opening.
- the air cleaner according to the seventh aspect of the present invention is the air cleaner according to any one of the first to sixth aspects, further comprising an ozone decomposing unit.
- the ozone decomposing unit is disposed downstream of the corona discharge unit in the wind tunnel.
- an air cleaner provided with a VOC removal unit and a corona discharge unit is provided. Therefore, VOC in the air can be removed and dust in the air can be removed.
- the corona discharge part is arranged downstream of the VOC removal part. Therefore, the intermediate product remaining without being decomposed by the VOC removal unit can be decomposed by ozone generated during corona discharge. Thereby, the intermediate product produced in the decomposition process of VOC using a photocatalyst can also be removed.
- the side sectional view of the air cleaner concerning one embodiment of the present invention.
- FIG. 1 is a side sectional view of an air cleaner 1 according to this embodiment
- FIG. 2 is a plan view of the air cleaner 1.
- the top surface is removed so that the internal structure of the air cleaner 1 can be seen.
- the air cleaner 1 can be installed in a living environment of a human being such as indoors or in a vehicle, and purifies and activates air in the environment.
- the air purifier 1 having the characteristics described below is small and lightweight, it can exhibit a sufficient air cleaning capability and is convenient for carrying.
- the air purifier 1 has a housing 2 that forms a wind tunnel S1 therein.
- casing 2 which concerns on this embodiment is a rectangular parallelepiped shape.
- “up and down” and “lateral direction” are defined with reference to FIG. 1 unless otherwise specified.
- the “width direction” is a direction orthogonal to the “lateral direction” in FIG.
- the internal space of the housing 2 is divided in the vertical direction by the partition plate 3, the space above the partition plate 3 is a machine room forming the wind tunnel S1, and the space below the partition plate 3 is the electric chamber S2. is there.
- a power supply circuit 4 and a control board 5 are accommodated in the electric chamber S2.
- the power supply circuit 4 supplies electric power to the electrical components of the air cleaner 1, and the control board 5 controls the operation of these components.
- the partition plate 3 is substantially equal to the shapes of the top surface 2c and the bottom surface 2d of the housing 2.
- An air inlet H1 and an air outlet H2 are formed on the side surfaces 2a and 2b at both ends in the lateral direction of the housing 2, respectively.
- the intake port H1 and the exhaust port H2 are both openings that connect the wind tunnel S1 and the external space, and do not face the electric chamber S2.
- the intake port H1 and the exhaust port H2 do not appear originally, but their positions are shown for reference.
- the intake port H1 and the exhaust port H2 are located on the same straight line extending substantially in the lateral direction.
- the dust collection filter 10, the blower 20, the partition plate 21, the VOC removal unit 30, the corona discharge unit 40, and the ozone decomposition unit 50 are arranged in this order from the side surface 2a to the side surface 2b.
- the blower 20 is driven by receiving power supply from the power supply circuit 4, an airflow A1 is generated in the wind tunnel S1 from the intake port H1 on the side surface 2a to the exhaust port H2 on the side surface 2b.
- the air sucked into the wind tunnel S1 through the air inlet H1 is removed from harmful substances while proceeding in the wind tunnel S1 in the lateral direction, and then discharged from the air outlet H2.
- the dust collection filter 10 is disposed so as to face the air inlet H1. Therefore, the air taken into the wind tunnel S1 through the intake port H1 first passes through the dust collection filter 10.
- the performance of the dust collection filter 10 is not particularly limited, it is possible to remove relatively large dust, for example, a diameter of about 500 micrometers.
- the dust collection filter 10 can be a sponge material filter that entangles dust.
- a blower 20 is disposed downstream of the dust collection filter 10.
- the blower 20 is disposed adjacent to the dust collection filter 10 so that the air suction port contacts the dust collection filter 10. Therefore, the air that has passed through the dust collection filter 10 is efficiently taken into the blower 20 and flows further downstream via the air discharge port of the blower 20.
- the blower 20 is fixed on the partition plate 3 by a support member (not shown).
- the structure of the blower 20 is not particularly limited as long as an airflow having an appropriate air volume can be generated in the wind tunnel S1, and can be appropriately selected from various forms such as a sirocco fan and a crossflow fan. However, it is preferable to use a small size, light weight, low noise and long life. From the viewpoint that it can be used continuously for a long time, it is preferable to select one using a brushless motor. If the air volume is too small, the air purification function in the environment where the air purifier 1 is installed may not be sufficiently exhibited, which may be undesirable. If the air volume is too large, the VOC removal unit 30 described later may be used. In this case, the time during which VOC acts on the photocatalyst is shortened, which is not preferable.
- the air volume of the blower 20 is preferably 1 liter or more and 500 liters or less per minute, and more preferably 10 liters or more and 100 liters or less per minute. Further, the arrangement of the blower 20 can be selected as appropriate, and, for example, on the downstream side of the VOC removal unit 30 as long as the airflow A1 from the intake port H1 to the exhaust port H2 can be generated in the wind tunnel S1. It may be arranged.
- the VOC removal unit 30 is disposed adjacent to the blower 20 on the downstream side of the blower 20.
- a partition plate 21 is disposed between the VOC removal unit 30 and the blower 20.
- the partition plate 21 stands on the partition plate 3 and extends to the top surface 2 c of the housing 2. Further, the partition plate 21 is formed with an opening so as to face the air discharge port of the blower 20, and as a result, the air discharged from the blower 20 passes through the partition plate 21 to the VOC removal unit 30. Reach.
- the VOC removal unit 30 is a device that oxidatively decomposes VOC contained in air by causing a photocatalyst excited by ultraviolet rays (UV light) to act on the air.
- the VOC removal unit 30 includes a photocatalytic filter 31 and an ultraviolet (UV) lamp 32 that irradiates the photocatalytic filter 31 with ultraviolet light.
- the photocatalytic filter 31 has a tunnel member 33 that is open at both ends and extends substantially in the lateral direction.
- the tunnel member 33 does not have a bottom surface (a surface on the side of the partition plate 3) as a whole or has a certain rectangular tube shape, and is fixed on the partition plate 3.
- the tunnel member 33 according to the present embodiment is made of an inorganic material, and a photocatalyst is applied to the entire surface of the tunnel member 33.
- a photocatalyst is not specifically limited, In this embodiment, it is titanium dioxide.
- the tunnel member 33 according to the present embodiment is entirely formed in a mesh shape. In other words, the tunnel member 33 is formed with a large number of holes through which air can pass.
- the UV lamp 32 is driven by receiving power supply from the power supply circuit 4.
- the structure of the UV lamp 32 is not particularly limited as long as it has sufficient light emission characteristics to excite the photocatalyst. In the present embodiment, it is a mercury lamp with a quartz tube. However, of course, other modes such as an LED lamp can be used.
- the wavelength of ultraviolet rays emitted from the UV lamp 32 is typically about 260 nanometers. As long as the photocatalyst can be excited, a visible light lamp can be used instead of the UV lamp 32.
- the UV lamp 32 has a substantially cross-sectional center of the tunnel member 33 in the tunnel member 33 so that the photocatalyst applied to the surface of the tunnel member 33 can be efficiently irradiated with ultraviolet rays. It arrange
- the arrangement of the UV lamp 32 is not particularly limited as long as the photocatalyst can be excited.
- the opening on the upstream side of the tunnel member 33 is arranged adjacent to the opening of the partition plate 21 facing the air discharge port of the blower 20, and the air flowing out from the air discharge port is large in size.
- the portion flows into the tunnel member 33 through the opening on the upstream side.
- the opening on the downstream side of the tunnel member 33 is closed by a plate-shaped airflow shielding member 34.
- the shielding member 34 can make it difficult for the airflow from the blower 20 to flow, thereby reducing the wind speed and ensuring a sufficient time for the VOC to act on the photocatalyst.
- the air that has flowed into the tunnel member 33 follows the flow path, so that almost all of the air taken into the wind tunnel S1 comes into contact with the photocatalyst.
- VOC in the air efficiently contacts the photocatalyst and is oxidatively decomposed.
- the effect of the photocatalyst does not completely decompose the VOC to a harmless substance, and a certain amount of harmful intermediate products may still remain.
- the VOC removal part 30 cannot exhibit the dust collection effect, and dust in the air is not removed. Therefore, on the downstream side of the VOC removal unit 30, a corona discharge unit 40 for removing these harmful airborne substances is disposed.
- the corona discharge part 40 is disposed on the opposite side of the UV lamp 32 with respect to the shielding member 34.
- the corona discharge unit 40 is a device that generates corona discharge.
- the structure of the corona discharge part 40 is not particularly limited as long as corona discharge can be generated.
- the corona discharge part 40 includes a needle-like discharge electrode 41 and a ring-like counter electrode 42. A positive voltage is applied to the discharge electrode 41 from the power supply circuit 4, and the counter electrode 42 is grounded.
- the discharge electrode 41 is disposed upstream of the counter electrode 42.
- the needle-like discharge electrode 41 is located substantially on the central axis of the ring-shaped counter electrode 42, and the needle tip of the discharge electrode 41 is spaced from the ring-shaped counter electrode 42 by a certain distance. This distance is preferably 5 mm or more and 20 mm or less. In this case, the voltage is preferably 1 kV or more and 30 kV or less.
- the corona discharge unit 40 can detoxify the VOC that could not be removed by the VOC removal unit 30 and the intermediate product (particularly the latter) during the decomposition by the action of the electron shower and ozone described above. it can.
- the shielding member 34 described above is made of a material that shields transmission of ultraviolet rays, or an ultraviolet absorbent is applied to the surface.
- the ultraviolet rays generated by the UV lamp 32 do not easily reach the electrodes 41 and 42 of the corona discharge unit 40, and the electrodes 41 and 42 can be prevented from being deteriorated.
- the shielding member 34 is not provided, the floating organic substance is carbonized by ultraviolet rays, and when used for a long period of time, it may adhere to the insulating portion and cause dielectric breakdown.
- the shielding member 34, particularly the surface on the tunnel member 33 side is preferably configured in a dark color, particularly black, so that ultraviolet rays can be efficiently absorbed.
- casing 2, the partition plate 3, and the partition plate 21, especially these members 2, 3, and 21 is also comprised by dark color, especially black. .
- the central axis of the ring-shaped counter electrode 42 is generally aligned with the central axis of the exhaust port H2 of the housing 2.
- disassembly part 50 is arrange
- the ozone generated by the corona discharge is used for decomposition of the intermediate product, but surplus ozone remains.
- the ozonolysis unit 50 is a device for removing the remaining ozone.
- the structure of the ozone decomposing unit 50 is not particularly limited as long as ozone can be decomposed, but in this embodiment, an ozone decomposing element using graphite which is a nonmetallic catalyst is used.
- the ozonolysis section 50 has a structure in which a catalyst having ozone decomposability is configured in a honeycomb (honeycomb) shape, and the honeycomb passage extends from the ring-shaped counter electrode 42 to the exhaust port H2.
- honeycomb honeycomb
- Example 1 an air cleaner similar to the air cleaner according to the above embodiment was manufactured.
- the air volume of the blower was 35 liters per minute.
- the steady state ozone concentration in the sealed space can be estimated by the following calculation.
- V 8000 l
- T 1/2 30 min
- V p 0.2 ppm
- V p 35 l ⁇ min ⁇ 1 .
- the ozone concentration before driving the air cleaner was 0.01 ppm or less, which is the detection limit of the measuring device.
- an ozone monitor “EG-2001” made by Sugawara Jitsugyo was used.
- the UV lamp was removed from the air cleaner according to Example 1, and this was designated as Comparative Example 1.
- the air containing 10 ppm formaldehyde was supplied to the inlet of the air cleaner which concerns on the comparative example 1, and the density
- the decomposition efficiency was 50%, which was confirmed to be insufficient as an air cleaning effect.
- the concentration was measured using a portable VOC monitor “ppbRAE PGM-7240” manufactured by RAE SYSTEMS.
- the corona discharge part was removed from the air cleaner according to Example 1, and this was designated as Comparative Example 2.
- the air containing 10 ppm formaldehyde was supplied to the air inlet of the air cleaner which concerns on the comparative example 2, and the density
- the decomposition efficiency was 20%, which was confirmed to be insufficient as an air cleaning effect.
- the concentration was measured using a portable VOC monitor “ppbRAE PGM-7240” manufactured by RAE SYSTEMS.
- Example 2 Furthermore, the ozone decomposition part was removed from the air cleaner according to Example 1, and this was designated as Example 2. And when air
- the ozone concentration before driving the air cleaner was 0.01 ppm or less, which is the detection limit of the measuring device. For the measurement of ozone concentration, an ozone monitor “EG-2001” manufactured by Sugawara Jitsugyo was used.
- Example 1 the air purifying effect of the air purifier according to Example 1 was confirmed.
- Comparative Example 1 when there is no VOC removal unit (Comparative Example 1) or when there is no corona discharge unit (Comparative Example 2), sufficient air compared to the air cleaner according to Example 1 is obtained. It was confirmed that the cleaning effect was not exhibited.
- the photocatalyst filter having the mesh-shaped tunnel member and the shielding member is removed from the air cleaner according to the first embodiment, and instead, the photocatalyst is provided at the same position with no holes on the side surfaces and openings at both ends.
- a cylindrical tunnel member coated on the entire surface was disposed, and this was taken as Example 3.
- the cross-sectional shape of the tunnel member of the air cleaner according to Example 1 was a square of 20 mm ⁇ 25 mm, whereas the diameter of the circular cross-section of the tunnel member according to Example 3 was 24 mm.
- Example 3 the air containing 10 ppm formaldehyde was supplied to the air inlet of the air cleaner which concerns on Example 3, and when the density
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
Abstract
Provided is an air purifier capable of removing intermediate products produced in a process of decomposition of volatile organic compounds (VOCs) using a photocatalyst. The air purifier is provided with an enclosure, a blower, a VOC removal unit, and a corona discharge unit. The enclosure has a wind tunnel formed in the interior and has an air inlet for taking air into the wind tunnel and an air outlet for discharging purified air from inside the wind tunnel. The blower generates an air flow from the air inlet toward the air outlet within the wind tunnel. The VOC removal unit is arranged within the wind tunnel and has a photocatalyst filter and a light source for irradiating the photocatalyst filter with light. The corona discharge unit is arranged downstream of the VOC removal unit in the wind tunnel.
Description
本発明は、空気清浄機に関する。
The present invention relates to an air cleaner.
従来、光触媒を用いて揮発性有機化合物(VOC)を分解する空気清浄機が知られている。VOCとは、ケトン類、アルコール類、有機酸等の有機化合物のうち、揮発性に富むものを意味し、空気中に含まれる場合には、人によってはアレルギー症状を誘発し、アトピー、蕁麻疹、喘息等を引き起こす。また、空気中に浮遊するダスト、主として、有機物質、無機物質を問わず、マイクロメートル以下の粒子も、アレルギー症状を誘発し得、さらには、塵肺や肺がんの原因ともなり得る。そして、このようなダストをコロナ放電により集塵する空気清浄機も知られている。特許文献1は、光触媒による脱臭機能と、コロナ放電による集塵機能とを組み合わせた空気清浄機を開示している。
Conventionally, an air cleaner that decomposes a volatile organic compound (VOC) using a photocatalyst is known. VOC means a highly volatile organic compound such as ketones, alcohols, organic acids, etc., and when it is contained in the air, it induces allergic symptoms in some people and causes atopy, urticaria Cause asthma, etc. Also, dust suspended in the air, mainly organic and inorganic substances, particles of micrometer or less can induce allergic symptoms, and can cause pneumoconiosis and lung cancer. And the air cleaner which collects such dust by corona discharge is also known. Patent document 1 is disclosing the air cleaner which combined the deodorizing function by a photocatalyst, and the dust collection function by corona discharge.
しかしながら、光触媒を用いてVOCを除去しようとしたとき、温度や湿度等の環境条件によっては十分な酸化が行われず、依然として有害な中間生成物が発生し得る。例えば、エタノールであれば、アセトアルデヒドが発生する。
However, when an attempt is made to remove VOC using a photocatalyst, sufficient oxidation may not be performed depending on environmental conditions such as temperature and humidity, and harmful intermediate products may still be generated. For example, in the case of ethanol, acetaldehyde is generated.
本発明は、空気中のダストの除去や光触媒を用いた揮発性有機化合物(VOC)の分解に加え、その分解過程で生じる中間生成物を除去することが可能な空気清浄機を提供することを目的とする。
The present invention provides an air purifier capable of removing intermediate products generated in the decomposition process in addition to the removal of dust in the air and the decomposition of volatile organic compounds (VOC) using a photocatalyst. Objective.
本発明の第1観点に係る空気清浄機は、筐体と、送風機と、VOC除去部と、コロナ放電部とを備える。前記筐体は、内部に風洞が形成され、前記風洞内に空気を吸い込む吸気口及び前記風洞内から清浄後の空気を排出する排気口を有する。前記送風機は、前記風洞
内において前記吸気口から前記排気口へ向けての気流を生成する。前記VOC除去部は、前記風洞内に配置され、光触媒フィルター及び前記光触媒フィルターに対し光を照射する光源を有する。光源の特性には特に限定はないが、上記の光触媒を有効に駆動するような光を発するものであれば良く、水銀封入石英ランプなどが考えられる。前記コロナ放電部は、前記風洞内において前記VOC除去部よりも下流に配置される。 The air cleaner which concerns on the 1st viewpoint of this invention is provided with a housing | casing, an air blower, a VOC removal part, and a corona discharge part. The casing has a wind tunnel formed therein, and has an intake port for sucking air into the wind tunnel and an exhaust port for discharging the cleaned air from the wind tunnel. The blower generates an air flow from the intake port toward the exhaust port in the wind tunnel. The VOC removal unit is disposed in the wind tunnel and includes a photocatalytic filter and a light source that irradiates light to the photocatalytic filter. There are no particular limitations on the characteristics of the light source, but any light source that emits light that effectively drives the above-described photocatalyst may be used, and a mercury-filled quartz lamp may be considered. The corona discharge part is disposed downstream of the VOC removal part in the wind tunnel.
内において前記吸気口から前記排気口へ向けての気流を生成する。前記VOC除去部は、前記風洞内に配置され、光触媒フィルター及び前記光触媒フィルターに対し光を照射する光源を有する。光源の特性には特に限定はないが、上記の光触媒を有効に駆動するような光を発するものであれば良く、水銀封入石英ランプなどが考えられる。前記コロナ放電部は、前記風洞内において前記VOC除去部よりも下流に配置される。 The air cleaner which concerns on the 1st viewpoint of this invention is provided with a housing | casing, an air blower, a VOC removal part, and a corona discharge part. The casing has a wind tunnel formed therein, and has an intake port for sucking air into the wind tunnel and an exhaust port for discharging the cleaned air from the wind tunnel. The blower generates an air flow from the intake port toward the exhaust port in the wind tunnel. The VOC removal unit is disposed in the wind tunnel and includes a photocatalytic filter and a light source that irradiates light to the photocatalytic filter. There are no particular limitations on the characteristics of the light source, but any light source that emits light that effectively drives the above-described photocatalyst may be used, and a mercury-filled quartz lamp may be considered. The corona discharge part is disposed downstream of the VOC removal part in the wind tunnel.
本発明の第2観点に係る空気清浄機は、第1観点に係る空気清浄機であって、前記光触媒フィルターは、多数の孔が形成されたトンネル状に形成されており、一端に開口を有するとともに、他端に前記気流を遮蔽する遮蔽部材を有し、前記気流が前記開口を介して前記光触媒フィルター内に流入し、前記多数の孔を介して前記光触媒フィルター内から流出するように構成されている。
The air cleaner which concerns on the 2nd viewpoint of this invention is an air cleaner which concerns on a 1st viewpoint, Comprising: The said photocatalyst filter is formed in the tunnel shape in which many holes were formed, and has an opening in one end. In addition, the other end has a shielding member that shields the airflow, and the airflow flows into the photocatalytic filter through the opening, and flows out of the photocatalytic filter through the numerous holes. ing.
本発明の第3観点に係る空気清浄機は、第2観点に係る空気清浄機であって、前記遮蔽部材は、前記光源から照射される紫外線の透過を遮蔽する。前記コロナ放電部は、前記遮蔽部材に対して前記光源の反対側に位置する。
The air cleaner according to a third aspect of the present invention is the air cleaner according to the second aspect, wherein the shielding member shields transmission of ultraviolet rays irradiated from the light source. The corona discharge part is located on the opposite side of the light source with respect to the shielding member.
本発明の第4観点に係る空気清浄機は、第2観点又は第3観点に係る空気清浄機であって、前記光源は、前記光触媒フィルター内に配置されている。
The air cleaner according to a fourth aspect of the present invention is the air cleaner according to the second aspect or the third aspect, wherein the light source is disposed in the photocatalytic filter.
本発明の第5観点に係る空気清浄機は、第2観点から第4観点のいずれかに係る空気清浄機であって、前記光触媒フィルターは、少なくとも部分的にメッシュ状に形成されている。
The air cleaner according to a fifth aspect of the present invention is the air cleaner according to any one of the second to fourth aspects, wherein the photocatalytic filter is at least partially formed in a mesh shape.
本発明の第6観点に係る空気清浄機は、第2観点から第5観点のいずれかに係る空気清浄機であって、前記送風機は、前記開口を介して前記光触媒フィルター内に前記気流を送り込むように配置されている。
The air cleaner which concerns on the 6th viewpoint of this invention is an air cleaner which concerns on either of the 2nd viewpoint from the 2nd viewpoint, Comprising: The said air blower sends the said air current in the said photocatalyst filter through the said opening. Are arranged as follows.
本発明の第7観点に係る空気清浄機は、第1観点から第6観点のいずれかに係る空気清浄機であって、オゾン分解部をさらに備える。前記オゾン分解部は、前記風洞内において前記コロナ放電部よりも下流に配置される。
The air cleaner according to the seventh aspect of the present invention is the air cleaner according to any one of the first to sixth aspects, further comprising an ozone decomposing unit. The ozone decomposing unit is disposed downstream of the corona discharge unit in the wind tunnel.
本発明によれば、VOC除去部及びコロナ放電部を備える空気清浄機が提供される。従って、空気中のVOCを除去することができるとともに、空気中のダストを除去することができる。ところで、コロナ放電時には、強い酸化力を持つオゾンが発生し得るが、本発明によれば、コロナ放電部がVOC除去部の下流側に配置される。そのため、VOC除去部で分解されずに残存した中間生成物を、コロナ放電時に発生したオゾンにより分解することができる。これにより、光触媒を用いたVOCの分解過程で生じる中間生成物も除去することができる。
According to the present invention, an air cleaner provided with a VOC removal unit and a corona discharge unit is provided. Therefore, VOC in the air can be removed and dust in the air can be removed. By the way, during corona discharge, ozone having a strong oxidizing power can be generated. However, according to the present invention, the corona discharge part is arranged downstream of the VOC removal part. Therefore, the intermediate product remaining without being decomposed by the VOC removal unit can be decomposed by ozone generated during corona discharge. Thereby, the intermediate product produced in the decomposition process of VOC using a photocatalyst can also be removed.
以下、図面を参照しつつ、本発明の一実施形態に係る空気清浄機について説明する。
図1に、本実施形態に係る空気清浄機1の側方断面図を示し、図2に、空気清浄機1の平面図を示す。ただし、図2では、空気清浄機1の内部構造が分かるように、天面が取り除かれている。空気清浄機1は、室内や車内等の人間の生活環境下に設置することができ、当該環境の空気を浄化・活性化する。特に、以下に説明する特徴を有する空気清浄機1は、小型・軽量に形成したとしても、十分な空気清浄能力を発揮することが可能であり、携帯にも便利である。 Hereinafter, an air cleaner according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a side sectional view of anair cleaner 1 according to this embodiment, and FIG. 2 is a plan view of the air cleaner 1. However, in FIG. 2, the top surface is removed so that the internal structure of the air cleaner 1 can be seen. The air cleaner 1 can be installed in a living environment of a human being such as indoors or in a vehicle, and purifies and activates air in the environment. In particular, even if the air purifier 1 having the characteristics described below is small and lightweight, it can exhibit a sufficient air cleaning capability and is convenient for carrying.
図1に、本実施形態に係る空気清浄機1の側方断面図を示し、図2に、空気清浄機1の平面図を示す。ただし、図2では、空気清浄機1の内部構造が分かるように、天面が取り除かれている。空気清浄機1は、室内や車内等の人間の生活環境下に設置することができ、当該環境の空気を浄化・活性化する。特に、以下に説明する特徴を有する空気清浄機1は、小型・軽量に形成したとしても、十分な空気清浄能力を発揮することが可能であり、携帯にも便利である。 Hereinafter, an air cleaner according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a side sectional view of an
図1及び図2に示すように、空気清浄機1は、内部に風洞S1を形成する筐体2を有する。本実施形態に係る筐体2は、直方体状である。なお、以下の説明において、「上下」及び「横方向」とは、特に断らない限り、図1を基準に定義される。また、「幅方向」とは、図2において「横方向」に直交する方向である。筐体2の内部空間は、仕切り板3により上下方向に分割されており、仕切り板3の上方の空間が風洞S1を形成する機械室であり、仕切り板3の下方の空間が電気室S2である。電気室S2内には、電源回路4や制御基板5が収容されている。電源回路4は、空気清浄機1の電気部品に電力を供給し、制御基板5は、これらの部品の動作を制御する。仕切り板3は、筐体2の天面2c及び底面2dの形状に概ね等しい。
As shown in FIGS. 1 and 2, the air purifier 1 has a housing 2 that forms a wind tunnel S1 therein. The housing | casing 2 which concerns on this embodiment is a rectangular parallelepiped shape. In the following description, “up and down” and “lateral direction” are defined with reference to FIG. 1 unless otherwise specified. The “width direction” is a direction orthogonal to the “lateral direction” in FIG. The internal space of the housing 2 is divided in the vertical direction by the partition plate 3, the space above the partition plate 3 is a machine room forming the wind tunnel S1, and the space below the partition plate 3 is the electric chamber S2. is there. A power supply circuit 4 and a control board 5 are accommodated in the electric chamber S2. The power supply circuit 4 supplies electric power to the electrical components of the air cleaner 1, and the control board 5 controls the operation of these components. The partition plate 3 is substantially equal to the shapes of the top surface 2c and the bottom surface 2d of the housing 2.
筐体2の横方向両端の側面2a,2bには、それぞれ空気の吸気口H1及び排気口H2が形成されている。吸気口H1及び排気口H2は、共に風洞S1と外部空間とを連通する開口であり、電気室S2には面していない。なお、図1及び図2には、本来であれば吸気口H1及び排気口H2は表れないが、参考としてこれらの位置が示されている。同図に示すように、吸気口H1と排気口H2とは、概ね横方向に延びる同一直線上に位置している。
An air inlet H1 and an air outlet H2 are formed on the side surfaces 2a and 2b at both ends in the lateral direction of the housing 2, respectively. The intake port H1 and the exhaust port H2 are both openings that connect the wind tunnel S1 and the external space, and do not face the electric chamber S2. In FIG. 1 and FIG. 2, the intake port H1 and the exhaust port H2 do not appear originally, but their positions are shown for reference. As shown in the figure, the intake port H1 and the exhaust port H2 are located on the same straight line extending substantially in the lateral direction.
風洞S1内には、側面2aから側面2bに向かって概ね一直線状に、集塵フィルター10、送風機20、仕切り板21、VOC除去部30、コロナ放電部40及びオゾン分解部50がこの順番で配置されている。送風機20が電源回路4からの電力供給を受けて駆動されると、風洞S1内において、側面2aの吸気口H1から側面2bの排気口H2へと向かう気流A1が発生する。風洞S1内へ吸気口H1を介して吸い込まれた空気は、風洞S1内を横方向に進みながら有害物質の除去がされ、その後、排気口H2から排出される。
In the wind tunnel S1, the dust collection filter 10, the blower 20, the partition plate 21, the VOC removal unit 30, the corona discharge unit 40, and the ozone decomposition unit 50 are arranged in this order from the side surface 2a to the side surface 2b. Has been. When the blower 20 is driven by receiving power supply from the power supply circuit 4, an airflow A1 is generated in the wind tunnel S1 from the intake port H1 on the side surface 2a to the exhaust port H2 on the side surface 2b. The air sucked into the wind tunnel S1 through the air inlet H1 is removed from harmful substances while proceeding in the wind tunnel S1 in the lateral direction, and then discharged from the air outlet H2.
集塵フィルター10は、吸気口H1に対面するように配置されている。従って、吸気口H1を介して風洞S1内に取り込まれた空気は、まず集塵フィルター10を通過する。集塵フィルター10の性能は特に限定されないが、比較的大きな、例えば、500マイクロメートル程度の径の塵や埃を除去することができる。例えば、集塵フィルター10は、塵や埃を絡め取るスポンジ素材のフィルターとすることができる。
The dust collection filter 10 is disposed so as to face the air inlet H1. Therefore, the air taken into the wind tunnel S1 through the intake port H1 first passes through the dust collection filter 10. Although the performance of the dust collection filter 10 is not particularly limited, it is possible to remove relatively large dust, for example, a diameter of about 500 micrometers. For example, the dust collection filter 10 can be a sponge material filter that entangles dust.
集塵フィルター10の下流側には、送風機20が配置されている。送風機20は、その空気吸込口が集塵フィルター10に接触するように、集塵フィルター10に隣接して配置されている。従って、集塵フィルター10を通過した空気は、送風機20に効率的に取り込まれ、送風機20の空気吐出口を介してさらに下流側へと流れてゆく。また、送風機20は、図示されない支持部材により、仕切り板3上に固定されている。
A blower 20 is disposed downstream of the dust collection filter 10. The blower 20 is disposed adjacent to the dust collection filter 10 so that the air suction port contacts the dust collection filter 10. Therefore, the air that has passed through the dust collection filter 10 is efficiently taken into the blower 20 and flows further downstream via the air discharge port of the blower 20. The blower 20 is fixed on the partition plate 3 by a support member (not shown).
送風機20の構造は、風洞S1内に適切な風量の気流を生成することができる限り、特に限定されず、シロッコファン、クロスフローファン等の様々な形態のものから適宜選択することができる。ただし、小型、軽量、低騒音で寿命が長いものが使用されることが好ましい。長時間継続して使用できる点では、ブラシレスモーターを使用したものを選択することが好ましい。なお、風量が少なすぎる場合には、空気清浄機1の設置される環境における空気の浄化機能が十分に発揮されず好ましくないことがあり、風量が多すぎる場合にも、後述するVOC除去部30においてVOCが光触媒に作用する時間が短くなってしまい、好ましくないことがある。このような観点からは、送風機20の風量は、毎分1リットル以上かつ500リットル以下であることが好ましく、毎分10リットル以上かつ100リットル以下であることがより好ましい。また、送風機20の配置に関しても適宜選択することができ、風洞S1内に吸気口H1から排気口H2へと向かう気流A1を生成することができる限り、例えば、VOC除去部30よりも下流側に配置されていてもよい。
The structure of the blower 20 is not particularly limited as long as an airflow having an appropriate air volume can be generated in the wind tunnel S1, and can be appropriately selected from various forms such as a sirocco fan and a crossflow fan. However, it is preferable to use a small size, light weight, low noise and long life. From the viewpoint that it can be used continuously for a long time, it is preferable to select one using a brushless motor. If the air volume is too small, the air purification function in the environment where the air purifier 1 is installed may not be sufficiently exhibited, which may be undesirable. If the air volume is too large, the VOC removal unit 30 described later may be used. In this case, the time during which VOC acts on the photocatalyst is shortened, which is not preferable. From such a viewpoint, the air volume of the blower 20 is preferably 1 liter or more and 500 liters or less per minute, and more preferably 10 liters or more and 100 liters or less per minute. Further, the arrangement of the blower 20 can be selected as appropriate, and, for example, on the downstream side of the VOC removal unit 30 as long as the airflow A1 from the intake port H1 to the exhaust port H2 can be generated in the wind tunnel S1. It may be arranged.
VOC除去部30は、送風機20の下流側において、送風機20に隣接して配置されている。ただし、VOC除去部30と送風機20との間には、仕切り板21が配置されている。仕切り板21は、仕切り板3上に起立しており、筐体2の天面2cまで延びている。また、仕切り板21には、送風機20の空気吐出口に対面するように開口が形成されており、その結果、送風機20から吐出される空気は、仕切り板21を通過してVOC除去部30に達する。
The VOC removal unit 30 is disposed adjacent to the blower 20 on the downstream side of the blower 20. However, a partition plate 21 is disposed between the VOC removal unit 30 and the blower 20. The partition plate 21 stands on the partition plate 3 and extends to the top surface 2 c of the housing 2. Further, the partition plate 21 is formed with an opening so as to face the air discharge port of the blower 20, and as a result, the air discharged from the blower 20 passes through the partition plate 21 to the VOC removal unit 30. Reach.
VOC除去部30は、紫外線(UV光)により励起した光触媒を空気に作用させることで、空気中に含まれるVOCを酸化分解する装置である。具体的には、VOC除去部30は、光触媒フィルター31と、これに紫外線を照射する紫外線(UV)ランプ32とを有する。光触媒フィルター31は、両端が開口し、概ね横方向に延びるトンネル部材33を有する。トンネル部材33は、全体として底面(仕切り板3側の面)のない又はある角筒状であり、仕切り板3上に固定されている。本実施形態に係るトンネル部材33は、無機材質により構成されており、トンネル部材33の表面全体には、光触媒が塗布されている。光触媒の種類は特に限定されないが、本実施形態では、二酸化チタンである。本実施形態に係るトンネル部材33は、全体がメッシュ状に形成されており、言い換えると、トンネル部材33には空気の通り抜けが可能な多数の孔が形成されている。
The VOC removal unit 30 is a device that oxidatively decomposes VOC contained in air by causing a photocatalyst excited by ultraviolet rays (UV light) to act on the air. Specifically, the VOC removal unit 30 includes a photocatalytic filter 31 and an ultraviolet (UV) lamp 32 that irradiates the photocatalytic filter 31 with ultraviolet light. The photocatalytic filter 31 has a tunnel member 33 that is open at both ends and extends substantially in the lateral direction. The tunnel member 33 does not have a bottom surface (a surface on the side of the partition plate 3) as a whole or has a certain rectangular tube shape, and is fixed on the partition plate 3. The tunnel member 33 according to the present embodiment is made of an inorganic material, and a photocatalyst is applied to the entire surface of the tunnel member 33. Although the kind of photocatalyst is not specifically limited, In this embodiment, it is titanium dioxide. The tunnel member 33 according to the present embodiment is entirely formed in a mesh shape. In other words, the tunnel member 33 is formed with a large number of holes through which air can pass.
UVランプ32は、電源回路4からの電力供給を受けて駆動される。UVランプ32の構造は、光触媒を励起するのに十分な発光特性を有する限り、特に限定されないが、本実施形態では、石英管の水銀ランプである。しかしながら、勿論、LEDランプ等の他の態様とすることもできる。UVランプ32から照射される紫外線の波長は、典型的には、260ナノメートル程度である。また、光触媒を励起することができる限り、UVランプ32に代えて、可視光ランプを用いることもできる。また、本実施形態に係るUVランプ32は、トンネル部材33の表面に塗布された光触媒に効率的に紫外線を照射することができるように、トンネル部材33内において、トンネル部材33の略断面中央を概ね横方向に延びるように配置されている。しかしながら、UVランプ32の配置も、光触媒を励起することができる限り、特に限定されない。
The UV lamp 32 is driven by receiving power supply from the power supply circuit 4. The structure of the UV lamp 32 is not particularly limited as long as it has sufficient light emission characteristics to excite the photocatalyst. In the present embodiment, it is a mercury lamp with a quartz tube. However, of course, other modes such as an LED lamp can be used. The wavelength of ultraviolet rays emitted from the UV lamp 32 is typically about 260 nanometers. As long as the photocatalyst can be excited, a visible light lamp can be used instead of the UV lamp 32. Further, the UV lamp 32 according to the present embodiment has a substantially cross-sectional center of the tunnel member 33 in the tunnel member 33 so that the photocatalyst applied to the surface of the tunnel member 33 can be efficiently irradiated with ultraviolet rays. It arrange | positions so that it may extend in a horizontal direction substantially. However, the arrangement of the UV lamp 32 is not particularly limited as long as the photocatalyst can be excited.
トンネル部材33の上流側の開口は、送風機20の空気吐出口に対面する仕切り板21の開口にさらに対面するように隣接して配置されており、当該空気吐出口から流れ出た空気は、その大部分が当該上流側の開口を介してトンネル部材33内へ流入する。一方、トンネル部材33の下流側の開口は、板状の気流の遮蔽部材34により塞がれている。そのため、トンネル部材33内に流入した空気は、トンネル部材33の下流側の開口を介してトンネル部材33内から抜け出ることができず、メッシュ状のトンネル部材33に形成された多数の孔を介して、トンネル部材33内から流出する。遮蔽部材34は、送風機20からの気流を流れにくくすることができ、これにより、風速を低下させ、VOCが光触媒に作用する時間が十分に確保される。
The opening on the upstream side of the tunnel member 33 is arranged adjacent to the opening of the partition plate 21 facing the air discharge port of the blower 20, and the air flowing out from the air discharge port is large in size. The portion flows into the tunnel member 33 through the opening on the upstream side. On the other hand, the opening on the downstream side of the tunnel member 33 is closed by a plate-shaped airflow shielding member 34. For this reason, the air that has flowed into the tunnel member 33 cannot escape from the tunnel member 33 through the opening on the downstream side of the tunnel member 33, and passes through a large number of holes formed in the mesh-shaped tunnel member 33. Then, it flows out of the tunnel member 33. The shielding member 34 can make it difficult for the airflow from the blower 20 to flow, thereby reducing the wind speed and ensuring a sufficient time for the VOC to act on the photocatalyst.
また、本実施形態では、トンネル部材33内に流入した空気が上記の流路を辿ることで、風洞S1内に取り込まれた空気の殆ど全量が光触媒に接触することになる。これにより、空気中のVOCが効率的に光触媒と接触し、酸化分解される。ただし、VOCが光触媒により効率的に分解されるとしても、光触媒による効果では、VOCが無害な物質まで完全に分解されず、依然として有害な中間生成物が一定程度残留し得る。また、VOC除去部30は、集塵効果を発揮することはできず、空気中のダストは除去されない。そのため、VOC除去部30の下流側には、これらの有害な空気中の浮遊物質を除去するためのコロナ放電部40が配置されている。
In the present embodiment, the air that has flowed into the tunnel member 33 follows the flow path, so that almost all of the air taken into the wind tunnel S1 comes into contact with the photocatalyst. Thereby, VOC in the air efficiently contacts the photocatalyst and is oxidatively decomposed. However, even if the VOC is efficiently decomposed by the photocatalyst, the effect of the photocatalyst does not completely decompose the VOC to a harmless substance, and a certain amount of harmful intermediate products may still remain. Moreover, the VOC removal part 30 cannot exhibit the dust collection effect, and dust in the air is not removed. Therefore, on the downstream side of the VOC removal unit 30, a corona discharge unit 40 for removing these harmful airborne substances is disposed.
より詳細には、コロナ放電部40は、遮蔽部材34に対してUVランプ32の反対側に配置されている。コロナ放電部40は、コロナ放電を発生させる装置である。コロナ放電部40の構造は、コロナ放電を発生させることができる限り、特に限定されないが、本実施形態では、針状の放電電極41とリング状の対向電極42とを有する。放電電極41には、電源回路4から正電圧が印加され、対向電極42は接地されている。放電電極41は、対向電極42よりも上流側に配置されている。また、針状の放電電極41は、概ねリング状の対向電極42の中心軸上に位置し、放電電極41の針先は、リング状の対向電極42から一定の距離を空けている。この距離は、好ましくは、5mm以上かつ20mm以下である。この場合、電圧は、1kV以上かつ30kV以下であることが好ましい。
More specifically, the corona discharge part 40 is disposed on the opposite side of the UV lamp 32 with respect to the shielding member 34. The corona discharge unit 40 is a device that generates corona discharge. The structure of the corona discharge part 40 is not particularly limited as long as corona discharge can be generated. In the present embodiment, the corona discharge part 40 includes a needle-like discharge electrode 41 and a ring-like counter electrode 42. A positive voltage is applied to the discharge electrode 41 from the power supply circuit 4, and the counter electrode 42 is grounded. The discharge electrode 41 is disposed upstream of the counter electrode 42. Further, the needle-like discharge electrode 41 is located substantially on the central axis of the ring-shaped counter electrode 42, and the needle tip of the discharge electrode 41 is spaced from the ring-shaped counter electrode 42 by a certain distance. This distance is preferably 5 mm or more and 20 mm or less. In this case, the voltage is preferably 1 kV or more and 30 kV or less.
以上の構成により、放電電極41及び対向電極42間に高圧が印加されると、これらの電極41,42間にコロナ放電が生じる。これにより、コロナ放電部40付近の空気中において、中間生成物に電子シャワーを浴びせることができるとともに、オゾンが発生する。ここで発生したオゾンは、その強い酸化力により、中間生成物を分解させることができる。従って、コロナ放電部40では、上述した電子シャワーとオゾンの作用とにより、VOC除去部30で除去しきれなかったVOCと、その分解途中の中間生成物と(特に後者)を無毒化させることができる。
With the above configuration, when a high voltage is applied between the discharge electrode 41 and the counter electrode 42, corona discharge occurs between the electrodes 41 and 42. Thereby, in the air near the corona discharge part 40, while being able to shower an intermediate product with an electronic shower, ozone generate | occur | produces. The ozone generated here can decompose the intermediate product by its strong oxidizing power. Therefore, the corona discharge unit 40 can detoxify the VOC that could not be removed by the VOC removal unit 30 and the intermediate product (particularly the latter) during the decomposition by the action of the electron shower and ozone described above. it can.
また、コロナ放電が発生すると、コロナ放電部40付近の空気中のダストが帯電し、この帯電したダストはクーロン力により対向電極42に集められ、ここで焼失する。これにより、空気中のダストも除去される。
Further, when corona discharge occurs, dust in the air near the corona discharge portion 40 is charged, and the charged dust is collected on the counter electrode 42 by Coulomb force and burned out here. Thereby, dust in the air is also removed.
ところで、上述した遮蔽部材34は、紫外線の透過を遮蔽する材質で構成される、又は紫外線吸収剤が表面に塗布されていることが好ましい。この場合、UVランプ32で発生した紫外線が、コロナ放電部40の電極41,42に達しにくくなり、電極41,42の劣化を防止することができる。もし遮蔽部材34がない場合には、浮遊する有機物が紫外線で炭化され、長期間使用した場合には、絶縁部分に付着して絶縁破壊を起こす可能性がある。また、以上の観点からは、遮蔽部材34、特にトンネル部材33側の面は、紫外線を効率的に吸収できるよう、暗色、特に黒色に構成されていることが好ましい。また、本実施形態では、筐体2、仕切り板3及び仕切り板21、特にこれらの部材2,3,21の風洞S1に面する内側表面も、暗色、特に黒色に構成されていることが好ましい。
By the way, it is preferable that the shielding member 34 described above is made of a material that shields transmission of ultraviolet rays, or an ultraviolet absorbent is applied to the surface. In this case, the ultraviolet rays generated by the UV lamp 32 do not easily reach the electrodes 41 and 42 of the corona discharge unit 40, and the electrodes 41 and 42 can be prevented from being deteriorated. If the shielding member 34 is not provided, the floating organic substance is carbonized by ultraviolet rays, and when used for a long period of time, it may adhere to the insulating portion and cause dielectric breakdown. Further, from the above viewpoint, the shielding member 34, particularly the surface on the tunnel member 33 side, is preferably configured in a dark color, particularly black, so that ultraviolet rays can be efficiently absorbed. Moreover, in this embodiment, it is preferable that the inner surface facing the wind tunnel S1 of the housing | casing 2, the partition plate 3, and the partition plate 21, especially these members 2, 3, and 21 is also comprised by dark color, especially black. .
リング状の対向電極42の中心軸は、概ね筐体2の排気口H2の中心軸と位置合わせされている。そして、対向電極42と排気口H2との間には、両者に接触するように、オゾン分解部50が配置されている。コロナ放電により発生したオゾンは、中間生成物の分解に利用されるが、剰余のオゾンが残留する。オゾン分解部50は、この残留したオゾンを除去するための装置である。オゾン分解部50の構造は、オゾンを分解することができる限り、特に限定されないが、本実施形態では、非金属系触媒であるグラファイトを用いたオゾン分解素子が用いられている。また、本実施形態に係るオゾン分解部50は、オゾン分解能を有する触媒をハニカム(蜂の巣)状に構成した構造を有しており、ハニカムの通路がリング状の対向電極42から排気口H2まで向かうように配置されている。
The central axis of the ring-shaped counter electrode 42 is generally aligned with the central axis of the exhaust port H2 of the housing 2. And the ozone decomposition | disassembly part 50 is arrange | positioned between the counter electrode 42 and the exhaust port H2 so that both may be contacted. The ozone generated by the corona discharge is used for decomposition of the intermediate product, but surplus ozone remains. The ozonolysis unit 50 is a device for removing the remaining ozone. The structure of the ozone decomposing unit 50 is not particularly limited as long as ozone can be decomposed, but in this embodiment, an ozone decomposing element using graphite which is a nonmetallic catalyst is used. Further, the ozonolysis section 50 according to the present embodiment has a structure in which a catalyst having ozone decomposability is configured in a honeycomb (honeycomb) shape, and the honeycomb passage extends from the ring-shaped counter electrode 42 to the exhaust port H2. Are arranged as follows.
実施例1として、上記実施形態に係る空気清浄機と同様の空気清浄機を製作した。送風機の風量は毎分35リットルとした。
As Example 1, an air cleaner similar to the air cleaner according to the above embodiment was manufactured. The air volume of the blower was 35 liters per minute.
実施例1に係る空気清浄機を室内に配置し、排気口の外側付近で空気中に含まれるイオンの数を測定したところ、マイナスイオンが30万個/cc、プラスイオンが200個/ccの結果が得られた。イオンの数の測定には、アンデス電気株式会社製の空気イオンカウンター「ITC-201A」を用いた。実施例1に係る空気清浄機では、励起された空気により好ましい濃度のマイナスイオンが生成されていることが確認された。
When the air cleaner according to Example 1 was placed indoors and the number of ions contained in the air was measured near the outside of the exhaust port, the number of negative ions was 300,000 / cc and the number of positive ions was 200 / cc. Results were obtained. For the measurement of the number of ions, an air ion counter “ITC-201A” manufactured by Andes Electric Co., Ltd. was used. In the air cleaner according to Example 1, it was confirmed that negative ions having a preferable concentration were generated by the excited air.
また、実施例1に係る空気清浄機が駆動中及び停止中の両方の条件下で、空気中に含まれる各サイズの粒子の量を測定し、集塵率を算出したところ、以下の結果が得られた。測定は、リオン株式会社製のパーティクルカウンター「KC-51」を用いて、空気清浄機の排気口の外側付近で行った。以下の結果からは、空気中のダストが高集塵率で除去されていることが確認できた。
Moreover, when the amount of particles of each size contained in the air was measured and the dust collection rate was calculated under both the driving and stopping conditions of the air cleaner according to Example 1, the following results were obtained. Obtained. The measurement was performed near the outside of the exhaust port of the air cleaner using a particle counter “KC-51” manufactured by Rion Corporation. From the following results, it was confirmed that dust in the air was removed at a high dust collection rate.
また、10ppmのホルムアルデヒドを含む空気を実施例1に係る空気清浄機の吸気口に供給し、排気口から排出される空気のホルムアルデヒドの濃度を測定したところ、500ppbとなり、95%の分解効率が確認された。なお、濃度の測定には、RAE SYSTEMS社製のポータブルVOCモニタ「ppbRAE PGM-7240」を使用した。
In addition, when air containing 10 ppm formaldehyde was supplied to the air intake of the air cleaner according to Example 1 and the concentration of formaldehyde in the air discharged from the exhaust was measured, it was 500 ppb, confirming a 95% decomposition efficiency. It was done. The concentration was measured using a portable VOC monitor “ppbRAE PGM-7240” manufactured by RAE SYSTEMS.
また、実施例1に係る空気清浄機の吸気口に大気を供給し、排気口から排出される空気中のオゾンの濃度を測定したところ、0.2ppmという結果が得られた。
ここで、密閉空間での定常状態のオゾン濃度は、下記の計算で見積もることができる。
ρ(t):時間tにおけるオゾンの濃度(ppm)
N(t):時間tにおけるオゾンの個数
V:空気清浄機を運転している部屋の容積(l)
T1/2:オゾンの半減期(min)
λ:減衰定数(min-1)
np:空気清浄機から放出されるオゾンの生成率(ppm・min-1)
ρp:空気清浄機から放出されるオゾンの濃度(ppm)
Vp:空気清浄機から放出される空気の風速(l・min-1)
とすると、
N(t)=ρ(t)・V
np=ρp・Vp
λ=0.693・T1/2 -1
である。 Further, when the atmosphere was supplied to the air inlet of the air cleaner according to Example 1 and the concentration of ozone in the air discharged from the air outlet was measured, a result of 0.2 ppm was obtained.
Here, the steady state ozone concentration in the sealed space can be estimated by the following calculation.
ρ (t): concentration of ozone at time t (ppm)
N (t): number of ozone at time t V: volume of the room where the air purifier is operating (l)
T 1/2 : half-life of ozone (min)
λ: damping constant (min -1 )
n p : Ozone generation rate (ppm · min −1 ) released from the air cleaner
ρ p : Concentration of ozone released from the air cleaner (ppm)
V p : wind speed of air discharged from the air purifier (l · min −1 )
Then,
N (t) = ρ (t) · V
n p = ρ p · V p
λ = 0.693 · T 1/2 -1
It is.
ここで、密閉空間での定常状態のオゾン濃度は、下記の計算で見積もることができる。
ρ(t):時間tにおけるオゾンの濃度(ppm)
N(t):時間tにおけるオゾンの個数
V:空気清浄機を運転している部屋の容積(l)
T1/2:オゾンの半減期(min)
λ:減衰定数(min-1)
np:空気清浄機から放出されるオゾンの生成率(ppm・min-1)
ρp:空気清浄機から放出されるオゾンの濃度(ppm)
Vp:空気清浄機から放出される空気の風速(l・min-1)
とすると、
N(t)=ρ(t)・V
np=ρp・Vp
λ=0.693・T1/2 -1
である。 Further, when the atmosphere was supplied to the air inlet of the air cleaner according to Example 1 and the concentration of ozone in the air discharged from the air outlet was measured, a result of 0.2 ppm was obtained.
Here, the steady state ozone concentration in the sealed space can be estimated by the following calculation.
ρ (t): concentration of ozone at time t (ppm)
N (t): number of ozone at time t V: volume of the room where the air purifier is operating (l)
T 1/2 : half-life of ozone (min)
λ: damping constant (min -1 )
n p : Ozone generation rate (ppm · min −1 ) released from the air cleaner
ρ p : Concentration of ozone released from the air cleaner (ppm)
V p : wind speed of air discharged from the air purifier (l · min −1 )
Then,
N (t) = ρ (t) · V
n p = ρ p · V p
λ = 0.693 · T 1/2 -1
It is.
一定のオゾンの流入がある場合の崩壊現象を記述する微分方程式は下記のように表される。
dN(t)/dt=np-λN(t)
そこで、t→∞において、dN(t)/dt=0であるので、
N(∞)=np・λ-1
ρ(∞)=np・λ-1・V-1
=ρp・Vp・(T1/2/0.693)・V-1
となる。ここで、空気清浄機を使用する部屋の体積をV=8000l、オゾンの半減期をT1/2=30min、測定値から、ρp=0.2ppm、Vp=35l・min-1を用いて計算すると、ρ(∞)=0.038ppmとなった。 The differential equation describing the decay phenomenon when there is a constant inflow of ozone is expressed as follows.
dN (t) / dt = n p −λN (t)
Therefore, since tN → ∞, dN (t) / dt = 0,
N (∞) = n p · λ −1
ρ (∞) = n p · λ -1 · V -1
= Ρ p · V p · (T 1/2 /0.693) · V -1
It becomes. Here, the volume of the room where the air cleaner is used is V = 8000 l, the ozone half-life is T 1/2 = 30 min, and the measured values are used as ρ p = 0.2 ppm and V p = 35 l · min −1 . To calculate ρ (∞) = 0.038 ppm.
dN(t)/dt=np-λN(t)
そこで、t→∞において、dN(t)/dt=0であるので、
N(∞)=np・λ-1
ρ(∞)=np・λ-1・V-1
=ρp・Vp・(T1/2/0.693)・V-1
となる。ここで、空気清浄機を使用する部屋の体積をV=8000l、オゾンの半減期をT1/2=30min、測定値から、ρp=0.2ppm、Vp=35l・min-1を用いて計算すると、ρ(∞)=0.038ppmとなった。 The differential equation describing the decay phenomenon when there is a constant inflow of ozone is expressed as follows.
dN (t) / dt = n p −λN (t)
Therefore, since tN → ∞, dN (t) / dt = 0,
N (∞) = n p · λ −1
ρ (∞) = n p · λ -1 · V -1
= Ρ p · V p · (T 1/2 /0.693) · V -1
It becomes. Here, the volume of the room where the air cleaner is used is V = 8000 l, the ozone half-life is T 1/2 = 30 min, and the measured values are used as ρ p = 0.2 ppm and V p = 35 l · min −1 . To calculate ρ (∞) = 0.038 ppm.
従って、8立方メートルの室内(二畳間)であれば、環境基準(0.05ppm)を十分に下回ることになる。なお、空気清浄機の駆動前のオゾンの濃度は、測定器の検出限界である0.01ppm以下であった。オゾンの濃度の測定には、荏原実業製のオゾンモニター「EG-2001」を使用した。
Therefore, if it is a room of 8 cubic meters (between two tatami mats), it will be well below the environmental standard (0.05 ppm). The ozone concentration before driving the air cleaner was 0.01 ppm or less, which is the detection limit of the measuring device. For the measurement of ozone concentration, an ozone monitor “EG-2001” made by Sugawara Jitsugyo was used.
次に、実施例1に係る空気清浄機からUVランプを除去し、これを比較例1とした。そして、比較例1に係る空気清浄機の吸気口に、10ppmのホルムアルデヒドを含む空気を供給し、排気口から排出される空気のホルムアルデヒドの濃度を測定したところ、5ppmという結果が得られた。この場合、分解効率は、50%となり、空気清浄効果としては不十分であることが確認された。なお、濃度の測定には、RAE SYSTEMS社製のポータブルVOCモニタ「ppbRAE PGM-7240」を使用した。
Next, the UV lamp was removed from the air cleaner according to Example 1, and this was designated as Comparative Example 1. And when the air containing 10 ppm formaldehyde was supplied to the inlet of the air cleaner which concerns on the comparative example 1, and the density | concentration of formaldehyde of the air discharged | emitted from an exhaust port was measured, the result of 5 ppm was obtained. In this case, the decomposition efficiency was 50%, which was confirmed to be insufficient as an air cleaning effect. The concentration was measured using a portable VOC monitor “ppbRAE PGM-7240” manufactured by RAE SYSTEMS.
また、実施例1に係る空気清浄機からコロナ放電部を除去し、これを比較例2とした。そして、比較例2に係る空気清浄機の吸気口に、10ppmのホルムアルデヒドを含む空気を供給し、排気口から排出される空気のホルムアルデヒドの濃度を測定したところ、8ppmという結果が得られた。この場合、分解効率は、20%となり、空気清浄効果としては不十分であることが確認された。なお、濃度の測定には、RAE SYSTEMS社製のポータブルVOCモニタ「ppbRAE PGM-7240」を使用した。
Moreover, the corona discharge part was removed from the air cleaner according to Example 1, and this was designated as Comparative Example 2. And when the air containing 10 ppm formaldehyde was supplied to the air inlet of the air cleaner which concerns on the comparative example 2, and the density | concentration of formaldehyde of the air discharged | emitted from an exhaust port was measured, the result of 8 ppm was obtained. In this case, the decomposition efficiency was 20%, which was confirmed to be insufficient as an air cleaning effect. The concentration was measured using a portable VOC monitor “ppbRAE PGM-7240” manufactured by RAE SYSTEMS.
さらに、実施例1に係る空気清浄機からオゾン分解部を除去し、これを実施例2とした。そして、実施例2に係る空気清浄機の吸気口に大気を供給し、排気口から排出される空気中のオゾンの濃度を測定したところ、20ppmという結果が得られた。この結果は、環境基準を超え(0.05ppm)ており、実施例1に係る空気清浄機は、実施例2に係る空気清浄機よりも室内で利用するのに適切であることが確認された。なお、空気清浄機の駆動前のオゾンの濃度は、測定器の検出限界である0.01ppm以下であった。オゾンの濃度の測定には、荏原実業製オゾンモニター「EG-2001」を使用した。
Furthermore, the ozone decomposition part was removed from the air cleaner according to Example 1, and this was designated as Example 2. And when air | atmosphere was supplied to the inlet port of the air cleaner which concerns on Example 2, and the density | concentration of the ozone in the air discharged | emitted from an exhaust port was measured, the result of 20 ppm was obtained. This result exceeded the environmental standard (0.05 ppm), and it was confirmed that the air cleaner according to Example 1 is more suitable for indoor use than the air cleaner according to Example 2. . The ozone concentration before driving the air cleaner was 0.01 ppm or less, which is the detection limit of the measuring device. For the measurement of ozone concentration, an ozone monitor “EG-2001” manufactured by Sugawara Jitsugyo was used.
以上より、実施例1に係る空気清浄機の空気清浄効果が確認された。また、実施例1と比較し、VOC除去部がない場合(比較例1)、又はコロナ放電部がない場合(比較例2)には、実施例1に係る空気清浄機と比較すると十分な空気清浄効果が発揮されないことが確認された。
From the above, the air purifying effect of the air purifier according to Example 1 was confirmed. In addition, compared with Example 1, when there is no VOC removal unit (Comparative Example 1) or when there is no corona discharge unit (Comparative Example 2), sufficient air compared to the air cleaner according to Example 1 is obtained. It was confirmed that the cleaning effect was not exhibited.
また、実施例1に係る空気清浄機から、メッシュ状のトンネル部材と遮蔽部材とを有する光触媒フィルターを取り除き、代わりに同じ位置に、側面に孔を有さず、両端に開口を有し、光触媒が全体に塗布された円筒状のトンネル部材を配置し、これを実施例3とした。なお、実施例1に係る空気清浄機のトンネル部材の断面形状は、20mm×25mmの四角形であったのに対し、実施例3に係るトンネル部材の円形断面の直径は、24mmであった。そして、実施例3に係る空気清浄機の吸気口に、10ppmのホルムアルデヒドを含む空気を供給し、排気口から排出される空気のホルムアルデヒドの濃度を測定したところ、6ppmという結果が得られた。この場合、分解効率は、40%となり、実施例1に係る空気清浄効果(95%)を下回った。これにより、メッシュ状のトンネル部材及び遮蔽部材を有する構造の光触媒フィルターの優位性が確認された。
Further, the photocatalyst filter having the mesh-shaped tunnel member and the shielding member is removed from the air cleaner according to the first embodiment, and instead, the photocatalyst is provided at the same position with no holes on the side surfaces and openings at both ends. A cylindrical tunnel member coated on the entire surface was disposed, and this was taken as Example 3. The cross-sectional shape of the tunnel member of the air cleaner according to Example 1 was a square of 20 mm × 25 mm, whereas the diameter of the circular cross-section of the tunnel member according to Example 3 was 24 mm. And the air containing 10 ppm formaldehyde was supplied to the air inlet of the air cleaner which concerns on Example 3, and when the density | concentration of the formaldehyde of the air discharged | emitted from an exhaust port was measured, the result of 6 ppm was obtained. In this case, the decomposition efficiency was 40%, which was lower than the air cleaning effect (95%) according to Example 1. Thereby, the superiority of the photocatalytic filter having a structure having a mesh-shaped tunnel member and a shielding member was confirmed.
1 空気清浄機
2 筐体
20 送風機
30 VOC除去部
31 光触媒フィルター
32 UVランプ(光源)
33 トンネル部材
34 遮蔽部材
40 コロナ放電部
50 オゾン分解部
S1 風洞
H1 吸気口
H2 排気口
A1 風の流れ
S2 電気室(電気回路および制御基板設置部分)
2a 上流側側面
2b 下流側側面
21 仕切り板(送風機と光触媒室を分離する壁。風を通す穴が開いている。)
41 放電電極(コロナ放電用針状電極)
42 対向電極(コロナ放電用設置電極) DESCRIPTION OFSYMBOLS 1 Air cleaner 2 Case 20 Blower 30 VOC removal part 31 Photocatalyst filter 32 UV lamp (light source)
33Tunnel member 34 Shield member 40 Corona discharge part 50 Ozone decomposition part S1 Wind tunnel H1 Intake port H2 Exhaust port A1 Wind flow S2 Electrical room (electric circuit and control board installation part)
2aUpstream side surface 2b Downstream side surface 21 Partition plate (wall separating the blower and the photocatalyst chamber. There is a hole through which air passes.)
41 Discharge electrode (corona discharge needle electrode)
42 Counter electrode (Installation electrode for corona discharge)
2 筐体
20 送風機
30 VOC除去部
31 光触媒フィルター
32 UVランプ(光源)
33 トンネル部材
34 遮蔽部材
40 コロナ放電部
50 オゾン分解部
S1 風洞
H1 吸気口
H2 排気口
A1 風の流れ
S2 電気室(電気回路および制御基板設置部分)
2a 上流側側面
2b 下流側側面
21 仕切り板(送風機と光触媒室を分離する壁。風を通す穴が開いている。)
41 放電電極(コロナ放電用針状電極)
42 対向電極(コロナ放電用設置電極) DESCRIPTION OF
33
2a
41 Discharge electrode (corona discharge needle electrode)
42 Counter electrode (Installation electrode for corona discharge)
Claims (7)
- 内部に風洞が形成され、前記風洞内に空気を吸い込む吸気口及び前記風洞内から清浄後の空気を排出する排気口を有する筐体と、
前記風洞内において前記吸気口から前記排気口へ向けての気流を生成する送風機と、
前記風洞内に配置され、光触媒フィルター及び前記光触媒フィルターに対し光を照射する光源を有するVOC除去部と、
前記風洞内において前記VOC除去部よりも下流に配置されるコロナ放電部と、
を備える、空気清浄機。 A casing having a wind tunnel formed therein, an intake port for sucking air into the wind tunnel, and an exhaust port for discharging the cleaned air from the wind tunnel;
A blower for generating an air flow from the intake port toward the exhaust port in the wind tunnel;
A VOC removal unit that is disposed in the wind tunnel and includes a photocatalytic filter and a light source that irradiates light to the photocatalytic filter;
A corona discharge section disposed downstream of the VOC removal section in the wind tunnel;
An air purifier. - 前記光触媒フィルターは、多数の孔が形成されたトンネル状に形成されており、一端に開口を有するとともに、他端に前記気流を遮蔽する遮蔽部材を有し、前記気流が前記開口を介して前記光触媒フィルター内に流入し、前記多数の孔を介して前記光触媒フィルター内から流出するように構成されている、
請求項1に記載の空気清浄機。 The photocatalytic filter is formed in a tunnel shape having a large number of holes, and has an opening at one end and a shielding member that shields the airflow at the other end, and the airflow passes through the opening. It is configured to flow into the photocatalytic filter and to flow out of the photocatalytic filter through the numerous holes.
The air cleaner according to claim 1. - 前記遮蔽部材は、前記光源から照射される紫外線の透過を遮蔽し、
前記コロナ放電部は、前記遮蔽部材に対して前記光源の反対側に位置する、
請求項2に記載の空気清浄機。 The shielding member shields transmission of ultraviolet rays emitted from the light source,
The corona discharge part is located on the opposite side of the light source with respect to the shielding member.
The air cleaner according to claim 2. - 前記光源は、前記光触媒フィルター内に配置されている、
請求項2又は3に記載の空気清浄機。 The light source is disposed in the photocatalytic filter,
The air cleaner according to claim 2 or 3. - 前記光触媒フィルターは、少なくとも部分的にメッシュ状に形成されている、
請求項2から4のいずれかに記載の空気清浄機。 The photocatalytic filter is at least partially formed in a mesh shape,
The air cleaner according to any one of claims 2 to 4. - 前記送風機は、前記開口を介して前記光触媒フィルター内に前記気流を送り込むように配置されている、
請求項2から5のいずれかに記載の空気清浄機。 The blower is arranged to send the airflow into the photocatalytic filter through the opening.
The air cleaner according to any one of claims 2 to 5. - 前記風洞内において前記コロナ放電部よりも下流に配置されるオゾン分解部
をさらに備える、
請求項1から6のいずれかに記載の空気清浄機。 An ozone decomposing unit disposed downstream of the corona discharge unit in the wind tunnel;
The air cleaner according to any one of claims 1 to 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017506157A JPWO2016147792A1 (en) | 2015-03-19 | 2016-02-19 | Air cleaner |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015056809 | 2015-03-19 | ||
JP2015-056809 | 2015-03-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016147792A1 true WO2016147792A1 (en) | 2016-09-22 |
Family
ID=56918869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/054885 WO2016147792A1 (en) | 2015-03-19 | 2016-02-19 | Air purifier |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2016147792A1 (en) |
WO (1) | WO2016147792A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019143191A1 (en) * | 2018-01-22 | 2019-07-25 | 서울바이오시스 주식회사 | Deodorization module and drying apparatus comprising same |
JP6979724B1 (en) * | 2020-08-04 | 2021-12-15 | カルテック株式会社 | Sterilization device and sterilization system |
CN117685617A (en) * | 2024-02-02 | 2024-03-12 | 深圳市德尼环境技术有限公司 | Clean workshop ventilation system |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01139139A (en) * | 1987-11-26 | 1989-05-31 | Nippon Sheet Glass Co Ltd | Deodorization/sterilization equipment |
JPH03114512A (en) * | 1989-09-29 | 1991-05-15 | Senichi Masuda | Air cleaner |
JP2001355958A (en) * | 2000-06-16 | 2001-12-26 | Toshiba Corp | Refrigerator and deodorization device |
JP2002336653A (en) * | 2001-05-21 | 2002-11-26 | Daikin Ind Ltd | Plasma catalytic reactor, air cleaning apparatus, nitrogen oxide cleaning apparatus, waste combustion gas cleaning apparatus, dioxine decomposing apparatus and fluorocarbon gas decomposing apparatus |
JP2004028433A (en) * | 2002-06-25 | 2004-01-29 | Daikin Ind Ltd | Air cleaner |
JP2006320467A (en) * | 2005-05-18 | 2006-11-30 | Sintokogio Ltd | Cleaning filter unit and air cleaning apparatus using the same |
JP3179715U (en) * | 2012-09-03 | 2012-11-15 | 株式会社Ihiシバウラ | Air purifier |
JP2014057660A (en) * | 2012-09-14 | 2014-04-03 | Daikin Ind Ltd | Air cleaner |
-
2016
- 2016-02-19 JP JP2017506157A patent/JPWO2016147792A1/en active Pending
- 2016-02-19 WO PCT/JP2016/054885 patent/WO2016147792A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01139139A (en) * | 1987-11-26 | 1989-05-31 | Nippon Sheet Glass Co Ltd | Deodorization/sterilization equipment |
JPH03114512A (en) * | 1989-09-29 | 1991-05-15 | Senichi Masuda | Air cleaner |
JP2001355958A (en) * | 2000-06-16 | 2001-12-26 | Toshiba Corp | Refrigerator and deodorization device |
JP2002336653A (en) * | 2001-05-21 | 2002-11-26 | Daikin Ind Ltd | Plasma catalytic reactor, air cleaning apparatus, nitrogen oxide cleaning apparatus, waste combustion gas cleaning apparatus, dioxine decomposing apparatus and fluorocarbon gas decomposing apparatus |
JP2004028433A (en) * | 2002-06-25 | 2004-01-29 | Daikin Ind Ltd | Air cleaner |
JP2006320467A (en) * | 2005-05-18 | 2006-11-30 | Sintokogio Ltd | Cleaning filter unit and air cleaning apparatus using the same |
JP3179715U (en) * | 2012-09-03 | 2012-11-15 | 株式会社Ihiシバウラ | Air purifier |
JP2014057660A (en) * | 2012-09-14 | 2014-04-03 | Daikin Ind Ltd | Air cleaner |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019143191A1 (en) * | 2018-01-22 | 2019-07-25 | 서울바이오시스 주식회사 | Deodorization module and drying apparatus comprising same |
KR20190089328A (en) * | 2018-01-22 | 2019-07-31 | 서울바이오시스 주식회사 | Deodorizing module and exsiccating device including the same |
KR102627891B1 (en) | 2018-01-22 | 2024-01-23 | 서울바이오시스 주식회사 | Deodorizing module and exsiccating device including the same |
US12084805B2 (en) | 2018-01-22 | 2024-09-10 | Seoul Viosys Co., Ltd. | Deodorization module and drying apparatus including a deodorization module |
JP6979724B1 (en) * | 2020-08-04 | 2021-12-15 | カルテック株式会社 | Sterilization device and sterilization system |
JP2022029099A (en) * | 2020-08-04 | 2022-02-17 | カルテック株式会社 | Sterilization device and sterilization system |
CN117685617A (en) * | 2024-02-02 | 2024-03-12 | 深圳市德尼环境技术有限公司 | Clean workshop ventilation system |
CN117685617B (en) * | 2024-02-02 | 2024-04-05 | 深圳市德尼环境技术有限公司 | Clean workshop ventilation system |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016147792A1 (en) | 2018-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3773767B2 (en) | Air purifier and air conditioner equipped with an ion generator | |
US9138504B2 (en) | Plasma driven catalyst system for disinfection and purification of gases | |
US7767169B2 (en) | Electro-kinetic air transporter-conditioner system and method to oxidize volatile organic compounds | |
RU2398614C1 (en) | Air cleaner | |
KR101305762B1 (en) | Reclamated Air Cleaner Using Plasma | |
WO2010023980A1 (en) | Ion generating device and air cleaning device | |
KR20200041014A (en) | Air purifier that efficiently removes ultrafine dust with a particle size of 0.1 μm or more, and comprising a photocatalytic system with improved sterilization ability | |
JP2011104359A (en) | Air cleaner | |
JP2008289801A (en) | Gas purification device | |
RU94669U1 (en) | DEVICE FOR SANITARY-HYGIENIC AIR TREATMENT | |
WO2016147792A1 (en) | Air purifier | |
KR20180012021A (en) | Disinfection-type air purification system | |
JPWO2012117547A1 (en) | Air purifier | |
JP3000056B2 (en) | Air purifier | |
JP2018194188A (en) | Ventilation device | |
JP2010075664A (en) | Ion generating device and air cleaning device | |
JP2004008517A (en) | Air cleaner | |
KR102267005B1 (en) | Low temperature plasma air cleaner with high wind speed and low power | |
JP2006043550A (en) | Air cleaner | |
JP7196550B2 (en) | air purifier | |
JP2000279492A (en) | Gas cracking structure and gas cracking device and air conditioner using the same | |
KR20180076960A (en) | electric dust collector apparatus having moisture eliminator | |
JPH10238799A (en) | Air-conditioner | |
JP2013165742A (en) | Air cleaning apparatus | |
JP7221500B2 (en) | air purifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16764622 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017506157 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16764622 Country of ref document: EP Kind code of ref document: A1 |