[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022172419A1 - 電力変換装置、モータ駆動装置および空気調和機 - Google Patents

電力変換装置、モータ駆動装置および空気調和機 Download PDF

Info

Publication number
WO2022172419A1
WO2022172419A1 PCT/JP2021/005359 JP2021005359W WO2022172419A1 WO 2022172419 A1 WO2022172419 A1 WO 2022172419A1 JP 2021005359 W JP2021005359 W JP 2021005359W WO 2022172419 A1 WO2022172419 A1 WO 2022172419A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
configuration
air conditioner
control
capacitor
Prior art date
Application number
PCT/JP2021/005359
Other languages
English (en)
French (fr)
Inventor
浩一 有澤
卓也 下麥
貴昭 ▲高▼原
遥 松尾
啓介 植村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/005359 priority Critical patent/WO2022172419A1/ja
Priority to CN202180092773.5A priority patent/CN116897498A/zh
Priority to US18/259,430 priority patent/US20240128912A1/en
Priority to JP2022581132A priority patent/JP7387038B2/ja
Publication of WO2022172419A1 publication Critical patent/WO2022172419A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode

Definitions

  • the present disclosure relates to a power conversion device, a motor drive device, and an air conditioner that convert AC power into desired power.
  • a power conversion device that converts AC power supplied from an AC power supply into desired AC power and supplies it to a load such as an air conditioner.
  • a power converter which is a control device for an air conditioner, rectifies AC power supplied from an AC power supply with a diode stack, which is a rectifier, and smoothes the power with a smoothing capacitor.
  • a technology is disclosed in which the AC power is converted into a desired AC power by an inverter composed of switching elements and output to a compressor motor, which is a load.
  • the present disclosure has been made in view of the above, and an object thereof is to obtain a power conversion device capable of suppressing an increase in device size while suppressing deterioration of a smoothing capacitor.
  • the present disclosure is a power conversion device mounted on an air conditioner.
  • the power conversion device rectifies first AC power supplied from a commercial power source, and includes a rectifying and boosting unit that boosts the voltage of the first AC power, a capacitor connected to an output end of the rectifying and boosting unit, and a capacitor and converts the power output from the rectifier booster and the capacitor into the second AC power, and controls the operation of the inverter and the rectifier booster that is output to the equipment on which the motor is mounted, and controls the rectifier booster.
  • control unit that controls the operation of the inverter so as to output second AC power including pulsation corresponding to the pulsation of the power flowing into the capacitor from the inverter to the device, and suppresses the current flowing through the capacitor.
  • the controller operates according to the air conditioning conditions of the air conditioner.
  • the power converter according to the present disclosure has the effect of suppressing the deterioration of the smoothing capacitor and suppressing the enlargement of the device.
  • FIG. 1 is a first diagram showing a configuration example of a power converter according to Embodiment 1; A second diagram showing a configuration example of the power converter according to Embodiment 1 A third diagram showing a configuration example of the power converter according to Embodiment 1
  • the smoothing unit smoothes the current output from the boosting unit and shows an example of each current and the capacitor voltage of the smoothing unit when the current flowing through the inverter is kept constant.
  • FIG. 4 is a diagram showing examples of currents and capacitor voltages of capacitors in the smoothing unit when the control unit of the power converter according to Embodiment 1 controls the operation of the inverter to reduce the current flowing in the smoothing unit;
  • FIG. 1 is a first diagram showing a configuration example of a power converter according to Embodiment 1
  • a second diagram showing a configuration example of the power converter according to Embodiment 1 A third diagram showing a configuration example of the power converter according to Embodiment 1
  • the smoothing unit smoothes the current output from the boosting unit
  • FIG. 1 shows operation modes of the power converter according to Embodiment 1 and the contents of the operation modes;
  • FIG. 1 is a first diagram showing an example of a hardware configuration of an air conditioner in which the power conversion device according to Embodiment 1 is mounted;
  • FIG. 2 is a second diagram showing an example of a hardware configuration of an air conditioner in which the power conversion device according to Embodiment 1 is mounted;
  • FIG. 4 is a diagram showing the relationship between air conditioning conditions and operation modes in the case where the configuration of the air conditioner in which the power conversion device according to Embodiment 1 is mounted is Configuration 101;
  • FIG. 4 is a diagram showing the relationship between air conditioning conditions and operation modes in the case where the configuration of the air conditioner in which the power conversion device according to Embodiment 1 is mounted is configuration 102;
  • FIG. 3 is a diagram showing the relationship between air conditioning conditions and operation modes in the case where the configuration of the air conditioner equipped with the power converter according to Embodiment 1 is Configuration 103;
  • FIG. 4 is a diagram showing the relationship between air conditioning conditions and operation modes in the case where the configuration of the air conditioner in which the power converter according to Embodiment 1 is mounted is configuration 104;
  • FIG. 4 is a diagram showing the relationship between air conditioning conditions and operation modes in the case where the configuration of the air conditioner equipped with the power converter according to Embodiment 1 is configuration 105;
  • FIG. 4 is a diagram showing the relationship between air conditioning conditions and operation modes in the case where the configuration of the air conditioner in which the power conversion device according to Embodiment 1 is mounted is configuration 106;
  • FIG. 10 is a diagram showing the relationship between air conditioning conditions and operation modes in the case where the configuration of the air conditioner equipped with the power converter according to Embodiment 1 is Configuration 107;
  • FIG. 4 is a diagram showing the relationship between air conditioning conditions and operation modes in the case where the configuration of the air conditioner in which the power converter according to Embodiment 1 is mounted is configuration 108;
  • FIG. 10 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power conversion device according to Embodiment 1 is mounted is configuration 109;
  • FIG. 4 is a diagram showing the relationship between air conditioning conditions and operation modes in the case where the configuration of the air conditioner in which the power conversion device according to Embodiment 1 is mounted is configuration 110;
  • FIG. 4 is a diagram showing the relationship between air conditioning conditions and operation modes in the case where the configuration of the air conditioner in which the power conversion device according to Embodiment 1 is mounted is Configuration 111;
  • FIG. 4 is a diagram showing the relationship between air conditioning conditions and operation modes in the case where the configuration of the air conditioner in which the power converter according to Embodiment 1 is mounted is configuration 112;
  • FIG. 4 is a diagram showing the relationship between air conditioning conditions and operation modes in the case where the configuration of the air conditioner in which the power conversion device according to Embodiment 1 is mounted is configuration 113;
  • FIG. 4 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter according to Embodiment 1 is mounted is configuration 114;
  • FIG. 4 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter according to Embodiment 1 is mounted is Configuration 115;
  • FIG. 11 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power conversion device according to Embodiment 1 is mounted is configuration 116;
  • 117 is a diagram showing the relationship between air conditioning conditions and operation modes in the case where the configuration of the air conditioner in which the power converter according to Embodiment 1 is mounted is Configuration 117.
  • FIG. 4 is a diagram showing the relationship between air conditioning conditions and operation modes in the case where the configuration of the air conditioner in which the power converter according to Embodiment 1 is mounted is configuration 118; 119 is a diagram showing the relationship between air conditioning conditions and operation modes in the case where the configuration of the air conditioner in which the power conversion device according to Embodiment 1 is mounted is configuration 119.
  • FIG. FIG. 4 is a diagram showing the relationship between air conditioning conditions and operation modes in the case where the configuration of the air conditioner in which the power converter according to Embodiment 1 is mounted is configuration 120;
  • FIG. 4 is a diagram showing the relationship between air conditioning conditions and operation modes in the case where the configuration of the air conditioner in which the power conversion device according to Embodiment 1 is mounted is configuration 121;
  • FIG. 4 is a diagram showing the relationship between air conditioning conditions and operation modes in the case where the configuration of the air conditioner in which the power converter according to Embodiment 1 is mounted is configuration 122;
  • FIG. 4 is a diagram showing the relationship between air conditioning conditions and operation modes in the case where the configuration of the air conditioner in which the power converter according to Embodiment 1 is mounted is Configuration 123;
  • FIG. 4 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner equipped with the power converter according to Embodiment 1 is Configuration 124;
  • FIG. 4 is a diagram showing an example of change in power consumption during cooling operation of an air conditioner equipped with the power conversion device according to Embodiment 1;
  • a power conversion device, a motor drive device, and an air conditioner according to embodiments of the present disclosure will be described below in detail based on the drawings.
  • FIG. 1 is a first diagram showing a configuration example of a power conversion device 1 according to Embodiment 1.
  • FIG. Power converter 1 is connected to commercial power source 110 and compressor 315 .
  • Power converter 1 converts first AC power having power supply voltage Vs supplied from commercial power supply 110 into second AC power having a desired amplitude and phase, and supplies the second AC power to compressor 315 .
  • the power converter 1 includes a rectifying section 130, a boosting section 600, a current detecting section 501, a smoothing section 200, a current detecting section 502, an inverter 310, current detecting sections 313a and 313b, a control section 400, Prepare.
  • the rectifying section 130 and the boosting section 600 constitute a rectifying and boosting section 700 .
  • a motor drive device 2 is configured by the power conversion device 1 and the motor 314 included in the compressor 315 .
  • the rectifying section 130 has a bridge circuit composed of rectifying elements 131 to 134, rectifies the first AC power of the power supply voltage Vs supplied from the commercial power supply 110, and outputs it.
  • the rectifier 130 performs full-wave rectification.
  • the booster section 600 has a reactor 631 , a switching element 632 and a diode 633 .
  • Boosting section 600 turns switching element 632 on and off under the control of control section 400 , boosts the power output from rectifying section 130 , and outputs the boosted power to smoothing section 200 .
  • the boosting unit 600 is controlled by the control unit 400 in full PAM (Pulse Amplitude Modulation) in which the switching element 632 continuously performs switching operations.
  • the power converter 1 performs power factor improvement control of the commercial power source 110 by the step-up unit 600 to make the capacitor voltage Vdc of the capacitor 210 of the smoothing unit 200 higher than the power supply voltage Vs.
  • Rectifying and boosting section 700 rectifies the first AC power supplied from commercial power supply 110 and boosts the voltage of the first AC power supplied from commercial power supply 110 by means of rectifying section 130 and boosting section 600 .
  • rectifying section 130 and boosting section 600 are connected in series.
  • the current detection unit 501 detects the current value of the power boosted by the booster unit 600 and outputs the detected current value to the control unit 400 .
  • the smoothing section 200 is connected to the output terminal of the boosting section 600 .
  • Smoothing section 200 has capacitor 210 as a smoothing element, and smoothes the power boosted by boosting section 600 .
  • Capacitor 210 is, for example, an electrolytic capacitor, a film capacitor, or the like.
  • Capacitor 210 has a capacity for smoothing the power rectified by rectifying section 130, and the voltage generated in capacitor 210 by the smoothing does not have the shape of a full-wave rectified waveform of commercial power supply 110, but the DC component of the commercial power supply. It has a waveform shape in which voltage ripples corresponding to the frequency of 110 are superimposed, and does not pulsate greatly.
  • the frequency of this voltage ripple is a component twice the frequency of the power supply voltage Vs when the commercial power supply 110 is single-phase, and the main component is a frequency component six times the frequency of the power supply voltage Vs when the commercial power supply 110 is three-phase. If the power input from commercial power supply 110 and the power output from inverter 310 do not change, the amplitude of this voltage ripple is determined by the capacitance of capacitor 210 . For example, it pulsates in such a range that the maximum value of the voltage ripple generated in the capacitor 210 is less than twice the minimum value.
  • the current detection unit 502 detects the current value of the current flowing through the inverter 310 and outputs the detected current value to the control unit 400 .
  • the inverter 310 is connected to both ends of the smoothing section 200 , that is, the capacitor 210 .
  • Inverter 310 has switching elements 311a-311f and freewheeling diodes 312a-312f.
  • Inverter 310 turns on and off switching elements 311a to 311f under the control of control unit 400, converts the power output from rectifying/boosting unit 700 and smoothing unit 200 into second AC power having desired amplitude and phase,
  • the power is output to a compressor 315, which is a device on which a motor 314 is mounted.
  • Current detection units 313 a and 313 b each detect a current value of one phase out of three-phase currents output from inverter 310 and output the detected current value to control unit 400 .
  • Control unit 400 acquires two-phase current values among the three-phase current values output from inverter 310, thereby calculating the remaining one-phase current value output from inverter 310.
  • Compressor 315 is a load having a motor 314 for driving the compressor. Motor 314 rotates according to the amplitude and phase of the second AC power supplied from inverter 310 to perform compression operation.
  • the compressor 315 is a hermetic compressor used in an air conditioner or the like
  • the load torque of the compressor 315 can often be regarded as a constant torque load.
  • FIG. 1 shows a case where the motor windings are Y-connected, but this is an example and the present invention is not limited to this.
  • the motor windings of the motor 314 may be delta-connection, or may be switchable between Y-connection and delta-connection.
  • the rectifying and boosting unit 700 includes four switching elements, and turns on and off the four switching elements under the control of the control unit 400 to rectify and boost the first AC power output from the commercial power supply 110. Power may be output to smoothing section 200 . Further, the rectifying/boosting section 700 may be configured such that the boosting section is connected in parallel with the rectifying section 130 .
  • FIG. 2 is a second diagram showing a configuration example of the power converter 1 according to the first embodiment.
  • the power conversion device 1 is obtained by replacing the rectification/boost section 700 with a rectification/boost section 701 in the power conversion device 1 shown in FIG.
  • a motor drive device 2 is configured by the power conversion device 1 and the motor 314 included in the compressor 315 .
  • Rectifying and boosting section 701 has a reactor 631, switching elements 611-614, and rectifying elements 621-624 each connected in parallel to one of switching elements 611-614.
  • the reactor 631 of this configuration is inserted only in the one-side connection line between the commercial power source 110 and the rectifying/boosting section 701, it may be inserted in the both-side connection line.
  • Rectifying and boosting section 701 turns switching elements 611 to 614 on and off under the control of control section 400, rectifies and boosts the first AC power output from commercial power supply 110, and outputs the boosted power to smoothing section 200. do.
  • the rectifying/boosting unit 701 is controlled by the control unit 400 in full PAM, in which the switching elements 611 to 614 continuously perform switching operations.
  • FIG. 3 is a third diagram showing a configuration example of the power converter 1 according to the first embodiment.
  • the power conversion device 1 is obtained by replacing the rectification/boost section 700 with a rectification/boost section 702 in the power conversion device 1 shown in FIG.
  • a motor drive device 2 is configured by the power conversion device 1 and the motor 314 included in the compressor 315 .
  • Rectifying and boosting section 702 has reactor 120 , rectifying section 130 , and boosting section 601 .
  • Boosting section 601 has rectifying elements 621 to 624 and switching element 611 .
  • Boosting section 601 turns switching element 611 on and off under the control of control section 400 , boosts the first AC power output from commercial power supply 110 , and outputs the boosted power to rectifying section 130 .
  • the boosting unit 601 of the rectifying boosting unit 702 is controlled by the control unit 400 to perform the switching operation of the switching element 611 once or a plurality of times per half cycle of the frequency of the first AC power supplied from the commercial power supply 110 . Controlled by switching.
  • the power converter 1 shown in FIG. 1 will be used as an example.
  • the current detection units 501, 502, 313a, and 313b may be collectively referred to as a detection unit.
  • the current values detected by the current detection units 501, 502, 313a, and 313b may be referred to as detection values.
  • the power electronics device 1 may include a detector other than the detector described above. Although omitted in FIG. 1, the power conversion device 1 generally includes a detection unit that detects the capacitor voltage Vdc.
  • the power conversion device 1 may include a detection unit that detects the voltage, current, and the like of the first AC power supplied from the commercial power source 110 .
  • the control unit 400 acquires the current value of the power boosted by the boosting unit 600 from the current detection unit 501, acquires the current value of the current flowing through the inverter 310 from the current detection unit 502, and acquires the current value of the current flowing through the inverter 310 from the current detection units 313a and 313b. Obtain the current value of the second AC power having the desired amplitude and phase converted by 310 .
  • the control unit 400 controls the operation of the boosting unit 600 of the rectifying/boosting unit 700, specifically, the switching element 632 included in the boosting unit 600, by using the detection values detected by the respective detection units.
  • control unit 400 controls the operation of the inverter 310, specifically, ON/OFF of the switching elements 311a to 311f included in the inverter 310, using the detection values detected by the respective detection units.
  • the control unit 400 controls the operation of the rectifying/boosting unit 700 .
  • Control unit 400 controls the operation of rectifying and boosting unit 700 , performs power factor improvement control of the first AC power supplied from commercial power supply 110 , and average voltage control of capacitor 210 of smoothing unit 200 .
  • control unit 400 causes inverter 310 to output second AC power including pulsation corresponding to the pulsation of power flowing into capacitor 210 of smoothing unit 200 from rectifying and boosting unit 700 to compressor 315 as a load.
  • the pulsation corresponding to the pulsation of the power flowing into the capacitor 210 of the smoothing section 200 is, for example, the pulsation that varies depending on the frequency of the pulsation of the power flowing into the capacitor 210 of the smoothing section 200 .
  • the control unit 400 suppresses the current flowing through the capacitor 210 of the smoothing unit 200 . Note that the control unit 400 does not have to use all the detection values acquired from each detection unit, and may perform control using some of the detection values.
  • the load generated by inverter 310 and compressor 315 can be regarded as a constant load.
  • the following description assumes that a current load is connected.
  • the current flowing from boosting section 600 is current I1
  • the current flowing to inverter 310 is current I2
  • the current flowing from smoothing section 200 is current I3.
  • the current I2 is the sum of the currents I1 and I3.
  • Current I3 can be expressed as the difference between currents I2 and I1, ie current I2-current I1.
  • the current I3 has a positive direction in the discharging direction of the smoothing section 200 and a negative direction in the charging direction of the smoothing section 200 . That is, current may flow into or out of the smoothing section 200 .
  • FIG. 4 shows, as a comparative example, currents I1 to I3 and the capacitor 210 of the smoothing unit 200 when the current output from the boosting unit 600 is smoothed by the smoothing unit 200 and the current I2 flowing through the inverter 310 is kept constant.
  • FIG. 4 is a diagram showing an example of voltage Vdc; From the top, current I1, current I2, current I3, and capacitor voltage Vdc of capacitor 210 generated in response to current I3 are shown.
  • the vertical axis of currents I1, I2, and I3 indicates current values, and the vertical axis of capacitor voltage Vdc indicates voltage values. All horizontal axes indicate time t.
  • control unit 400 controls current I2 flowing through inverter 310, that is, controls the operation of inverter 310, so as to reduce current I3 flowing through smoothing unit 200.
  • FIG. 5 shows the respective currents I1 to I3 and the capacitor of the smoothing unit 200 when the control unit 400 of the power converter 1 according to Embodiment 1 controls the operation of the inverter 310 to reduce the current I3 flowing through the smoothing unit 200.
  • 210 is a diagram showing an example of the capacitor voltage Vdc of 210.
  • FIG. From the top current I1, current I2, current I3, and capacitor voltage Vdc of capacitor 210 generated in response to current I3 are shown.
  • the vertical axis of currents I1, I2, and I3 indicates current values, and the vertical axis of capacitor voltage Vdc indicates voltage values. All horizontal axes indicate time t.
  • the control unit 400 of the power conversion device 1 controls the operation of the inverter 310 so that the current I2 shown in FIG.
  • the frequency component of the current flowing into the smoothing section 200 can be reduced, and the current I3 flowing into the smoothing section 200 can be reduced.
  • control unit 400 controls the operation of inverter 310 so that current I2 containing a pulsating current whose main component is the frequency component of current I1 flows through inverter 310 .
  • the frequency component of the current I1 is determined by the frequency of the alternating current supplied from the commercial power supply 110, the configuration of the rectifying section 130, and the switching speed of the switching element 632 of the boosting section 600. Therefore, control unit 400 can make the frequency component of the pulsating current superimposed on current I2 a component having a predetermined amplitude and phase.
  • the frequency component of the pulsating current superimposed on the current I2 has a waveform similar to that of the current I1.
  • the control unit 400 reduces the current I3 flowing through the smoothing unit 200 and reduces the pulsating voltage generated in the capacitor voltage Vdc. can do.
  • Controlling the pulsation of the current flowing through the inverter 310 by controlling the operation of the inverter 310 by the control unit 400 is the same as controlling the pulsation of the second AC power output from the inverter 310 to the compressor 315. is.
  • Control unit 400 controls the operation of inverter 310 so that the pulsation contained in the second AC power output from inverter 310 is smaller than the pulsation of the power output from rectifying and boosting unit 700 .
  • Control unit 400 controls that the voltage ripple of capacitor voltage Vdc, that is, the voltage ripple generated in capacitor 210 does not include pulsation corresponding to the pulsation of the power flowing into capacitor 210 in the second AC power output from inverter 310.
  • the amplitude and phase of the pulsation contained in the second AC power output from inverter 310 are controlled so as to be smaller than the voltage ripple generated in capacitor 210 when the voltage is high.
  • the second AC power output from inverter 310 does not include pulsation corresponding to the pulsation of the power flowing into capacitor 210, it means control as shown in FIG.
  • the alternating current supplied from the commercial power supply 110 is not particularly limited, and may be single-phase or three-phase.
  • Control unit 400 may determine the frequency component of the pulsating current superimposed on current I2 according to the first AC power supplied from commercial power supply 110 . Specifically, when the first AC power supplied from commercial power supply 110 is single-phase, control unit 400 sets the pulsating waveform of current I2 flowing in inverter 310 to twice the frequency of the first AC power. In the case where the first AC power supplied from the commercial power supply 110 is three-phase, the pulsation waveform having the frequency component six times the frequency of the first AC power as the main component is added with the DC component. Control.
  • the pulsation waveform is, for example, the shape of the absolute value of a sine wave or the shape of a sine wave.
  • the control unit 400 may add at least one frequency component of integral multiples of the sine wave frequency to the pulsating waveform as a predetermined amplitude.
  • the pulsating waveform may be in the shape of a rectangular wave or in the shape of a triangular wave. In this case, control unit 400 may set the amplitude and phase of the pulsation waveform to predetermined values.
  • Control unit 400 may use the voltage applied to capacitor 210 or the current flowing through capacitor 210 to calculate the amount of pulsation included in the second AC power output from inverter 310 , or The voltage or current of the supplied first AC power may be used to calculate the amount of pulsation included in the second AC power output from inverter 310 .
  • control unit 400 controls inverter 310 so that second AC power including frequency components different from the frequency components of first AC power supplied from commercial power supply 110 is output from inverter 310 to compressor 315 .
  • the frequency component included in the second AC power output from inverter 310 to compressor 315 may be superimposed on the driving signal for turning on/off switching element 632 of booster 600 .
  • the control unit 400 controls the first AC power or, if the first AC power supplied from the commercial power supply 110 is three-phase, the power containing a fluctuating frequency component other than the frequency component six times the frequency of the first AC power.
  • the operation of the rectifying/boosting section 700 specifically, the operation of the switching element 632 of the boosting section 600 is controlled so as to output from the rectifying/boosting section 700 .
  • Control unit 400 may control the fluctuating frequency component using a command value for commercial power supply 110, or may control the fluctuating frequency component to the 40th order of the frequency of the first AC power supplied from commercial power supply 110. It may be controlled so as not to be an integral multiple component, or to be a specified value, for example, a desired standard value or less.
  • the operation of the power converter 1 when the power converter 1 is mounted on a refrigeration cycle application device will be described.
  • the operation mode of the power conversion device 1 greatly changes depending on the operating state of the air conditioner. For example, in a room to be air-conditioned by the air conditioner, if the temperature difference between the user's set temperature, that is, the user's desired temperature and the current room temperature is large, the load of the power converter 1 mounted on the air conditioner becomes larger. On the other hand, when the temperature difference between the user's desired temperature and the current room temperature is small, the load on the power conversion device 1 mounted on the air conditioner is small.
  • the control unit 400 reduces the current I3 flowing through the smoothing unit 200 as described above, and reduces the pulsating voltage generated in the capacitor voltage Vdc. It is conceivable that it is not necessary to dare to reduce the control. Therefore, in the power conversion device 1, the control unit 400 performs the various controls described above according to the load state, which is the operating state of the load, and determines the operation mode.
  • the load is the inverter 310, the motor 314, and the device on which the motor 314 is mounted.
  • the device equipped with the motor 314 is, for example, the aforementioned compressor 315, the fan installed in the air conditioner, or the like, but is not limited to these.
  • FIG. 6 is a first diagram showing operation modes of the power converter 1 according to Embodiment 1 and the contents of the operation modes.
  • FIG. 7 is a diagram showing an operation mode when the boosting operation of the boosting unit 600 is on in the power converter 1. be.
  • the step-up operation is an operation in which the step-up section 600 steps up the power supply voltage Vs supplied from the commercial power source 110 in order to ensure the drive range of the motor 314 due to high rotation.
  • the control unit 400 controls on/off of the switching element 632 of the boosting unit 600 .
  • Vibration suppression control suppresses vibration by adjusting the torque applied from inverter 310 to the load torque fluctuation when vibration occurs due to load torque fluctuation caused by a mechanical mechanism such as compressor 315 during one rotation of motor 314 . It is control to suppress.
  • the overmodulation control is a control that increases the output voltage of the inverter 310 in order to drive the motor 314 in a high speed range.
  • the power converter 1 has a limited supply voltage. Therefore, when the power converter 1 rotates the motor 314 at a high speed, the electromotive force of the motor 314 becomes larger than the supply voltage, making it difficult to rotate.
  • the third harmonic component By including the third harmonic component, the fundamental wave component of the output voltage is slightly raised. As a result, the power conversion device 1 can increase the high rotation region of the motor 314 .
  • Constant torque control is control that keeps the torque given to the motor 314 from the inverter 310 constant. Constant torque control is also called constant current control. Even in a system with load torque fluctuations, the amount of vibration is not so large when operating in a relatively light load region. Therefore, by keeping the torque applied from the inverter 310 constant, the current waveform of the motor 314 becomes a sinusoidal waveform, that is, a waveform without pulsation, and high-efficiency operation can be performed. Constant torque control can be used when vibration is acceptable even in the high load region.
  • Power supply ripple compensation control is control to suppress ripple current caused by power supply ripple flowing through capacitor 210 of smoothing section 200 as described above. Ripple current caused by power supply pulsation passes through the capacitor 210 and transmits power to the load, thereby reducing stress on the capacitor 210 .
  • the operation mode that is, the operation of the power conversion device 1 by the control unit 400, includes the operation of the rectification and boosting unit 700, vibration suppression control for reducing vibration of the motor 314 or the equipment on which the motor 314 is mounted, overmodulation control of the inverter 310, motor It is determined by a combination of presence/absence of constant torque control for 314 and power supply pulsation compensation control for suppressing charging/discharging current of capacitor 210 .
  • Control unit 400 determines whether or not each control shown in FIGS. 6 and 7 is performed according to the load state. That is, the control unit 400 determines the presence or absence of each control according to the load state, and maintains or switches the operation mode.
  • the five items were mentioned as the specific content of the operation mode, it is an example and is not limited to these. Some of the five items may be controlled, or items other than the five items may be controlled. Items other than the five items include, for example, flux-weakening control. That is, operation may include flux weakening control.
  • the flux-weakening control is a control that widens the high rotation range of the motor 314 by applying a negative d-axis current to the motor 314 to reduce the apparent electromotive force.
  • the power converter 1 can detect the current I1 based on the current value, for example, the value detected by the current detection unit 501, and the current I2 based on the value detected by the current detection unit 502. In addition, the power conversion device 1 determines the load state based on the temperature, for example, the detected value of the temperature sensor of the indoor unit provided in the air conditioner, the detected value of the temperature sensor of the outdoor unit, etc. when installed in the air conditioner. can be detected.
  • the power conversion device 1 may include a temperature sensor around the substrate of the inverter 310 to detect the temperature around the substrate of the inverter 310 , or may include a temperature sensor around the motor 314 to detect the temperature around the motor 314 . may be detected.
  • the power converter 1 generates the operating speed, for example, the operating speed of the motor 314 of the compressor 315, the fan (not shown) mounted on the air conditioner, etc. in the process of control by the control unit 400 for the load state. It can be directly or indirectly detected from a command value to be applied or an estimated value estimated from the operating frequency in the process of control by the control unit 400 .
  • the load state includes the detection value of the detection unit that detects the physical quantity of the inverter 310 or the motor 314 or the compressor 315, the command value generated in the control process of the control unit 400, and the control unit 400 obtained by at least one of the estimated values estimated in the course of the control of
  • the physical quantity may be, for example, a voltage value in addition to the aforementioned current value and temperature.
  • Operation mode 1 is a combination of no boost operation, no vibration suppression control, no overmodulation control, no constant torque control, and no power supply ripple compensation control.
  • the operation mode 1 is used for operation when no boosting operation is performed, mechanically-induced vibration is small, motor voltage saturation is not reached, and load current ripple and power supply current ripple are small.
  • Operation mode 2 is a combination of no boost operation, no vibration suppression control, no overmodulation control, no constant torque control, and power supply ripple compensation control. Operation mode 2 does not perform boosting operation, causes less mechanical vibration, does not reach motor voltage saturation, and causes less load current pulsation.
  • Operation mode 3 is a combination of no boost operation, vibration suppression control, no overmodulation control, no constant torque control, and no power supply ripple compensation control. Operation mode 3 does not perform boosting operation, does not reach motor voltage saturation, and is used for operation when it is desired to suppress mechanically-induced vibrations, although load current pulsation and power supply current pulsation are small.
  • Operation mode 4 is a combination of no boost operation, vibration suppression control, no overmodulation control, no constant torque control, and power supply ripple compensation control. Operation mode 4 does not perform boosting operation, does not reach motor voltage saturation, and has small load current pulsation, but is used for operation when it is desired to suppress mechanically-induced vibration and power supply current pulsation.
  • Operation mode 5 is a combination of no boost operation, no vibration suppression control, overmodulation control, no constant torque control, and no power supply ripple compensation control. Operation mode 5 does not perform boosting operation, and is used for operation, etc., when it is desired to take countermeasures against motor voltage saturation, although mechanically-induced vibration is small and load current pulsation and power supply current pulsation are small.
  • Operation mode 6 is a combination of no boost operation, no vibration suppression control, overmodulation control, no constant torque control, and power supply ripple compensation control. Operation mode 6 does not perform boosting operation, and is used for operation when it is desired to take countermeasures against motor voltage saturation and power supply current pulsation suppression, although mechanically-induced vibration is small and load current pulsation is small.
  • Operation mode 7 is a combination of no boost operation, vibration suppression control, overmodulation control, constant torque control, and power supply ripple compensation control. Operation mode 7 does not perform boosting operation, and is used for operation when it is desired to suppress mechanically-induced vibration and prevent motor voltage saturation, although load current pulsation and power supply current pulsation are small.
  • Operation mode 8 is a combination of no boost operation, vibration suppression control, overmodulation control, constant torque control, and power supply ripple compensation control. Operation mode 8 does not perform boosting operation, and although load current pulsation is small, it is used for operation when it is desired to suppress mechanically-induced vibration and take measures against motor voltage saturation and power supply current pulsation.
  • Operation mode 9 is a combination of no boost operation, no vibration suppression control, no overmodulation control, constant torque control, and no power supply ripple compensation control. Operation mode 9 does not perform boosting operation, the vibration caused by the mechanism is small, the motor voltage is not saturated, and the power supply current ripple is small. Used for driving, etc.
  • Operation mode 10 is a combination of no boost operation, no vibration suppression control, no overmodulation control, constant torque control, and power supply ripple compensation control. Operation mode 10 does not perform boosting operation, the vibration caused by the mechanism is small, and the motor voltage does not reach saturation, but suppresses the decrease in efficiency due to load current pulsation (energy saving operation), and the operation when it is desired to suppress power supply current pulsation. used for
  • Operation mode 11 is a combination of no boost operation, no vibration suppression control, overmodulation control, constant torque control, and no power supply ripple compensation control. Operation mode 11 does not perform boosting operation, has small mechanically-induced vibration, and has small power supply current pulsation. used for
  • Operation mode 12 is a combination of no boost operation, no vibration suppression control, overmodulation control, constant torque control, and power supply ripple compensation control. Operation mode 12 does not perform voltage step-up operation, and although mechanically-induced vibration is small, measures against motor voltage saturation are taken to suppress efficiency drops due to load current pulsations (energy-saving operation), and power supply current pulsations are to be taken. etc.
  • Operation mode 13 is a combination of boost operation, vibration suppression control, overmodulation control, constant torque control, and power supply ripple compensation control.
  • the operation mode 13 is used for operation when the vibration caused by the mechanism is small, the motor voltage is not saturated, and the load current pulsation and the power supply current pulsation are small when the voltage boosting operation is performed.
  • Operation mode 14 is a combination of boost operation, vibration suppression control, overmodulation control, constant torque control, and power supply ripple compensation control. Operation mode 14 is used for operation when power source current pulsation is desired to be suppressed, although mechanically-induced vibration is small, motor voltage saturation does not occur, and load current pulsation is small when step-up operation is performed.
  • Operation mode 15 is a combination of boost operation, vibration suppression control, overmodulation control, constant torque control, and power supply ripple compensation control.
  • the operation mode 15 is used when the motor voltage is not saturated and the load current pulsation and the power supply current pulsation are small when performing the boosting operation, but it is desired to suppress mechanical vibrations.
  • Operation mode 16 is a combination of boost operation, vibration suppression control, overmodulation control, constant torque control, and power supply ripple compensation control.
  • the operation mode 16 is used when the motor voltage is not saturated and the load current pulsation is small when the voltage boosting operation is performed, but it is desired to suppress mechanically-induced vibration and power supply current pulsation.
  • Operation mode 17 is a combination of boost operation, vibration suppression control, overmodulation control, constant torque control, and power supply ripple compensation control.
  • the operation mode 17 is used for operation when the vibration caused by the mechanism is small, and the load current pulsation and the power supply current pulsation are small when the step-up operation is performed, but the motor voltage saturation countermeasure is to be taken.
  • Operation mode 18 is a combination of boost operation, vibration suppression control, overmodulation control, constant torque control, and power supply ripple compensation control.
  • the operation mode 18 is used for operation when the vibration due to the mechanism is small and the load current ripple is small when performing the boosting operation, but the motor voltage saturation countermeasure and the power supply current ripple suppression are desired.
  • Operation mode 19 is a combination of boost operation, vibration suppression control, overmodulation control, constant torque control, and power supply ripple compensation control.
  • the operation mode 19 is used for operation when the load current pulsation and the power supply current pulsation are small when the voltage boosting operation is performed, but the mechanically-induced vibration is suppressed and the motor voltage saturation countermeasure is to be taken.
  • Operation mode 20 is a combination of boost operation, vibration suppression control, overmodulation control, constant torque control, and power supply ripple compensation control.
  • the operation mode 20 is used for operation when the load current pulsation is small when performing the boosting operation, but mechanically-induced vibration is suppressed, and countermeasures against motor voltage saturation and power supply current pulsation are desired.
  • Operation mode 21 is a combination of boost operation, no vibration suppression control, no overmodulation control, constant torque control, and no power supply ripple compensation control. Operation mode 21 is used when boosting the voltage, the mechanical vibration is small, the motor voltage is not saturated, and the power supply current ripple is small. Used for driving, etc.
  • Operation mode 22 is a combination of boost operation, vibration suppression control, overmodulation control, constant torque control, and power supply ripple compensation control.
  • the operation mode 22 when the voltage is boosted, the vibration caused by the mechanism is small, and the motor voltage is not saturated, but the efficiency drop due to the load current pulsation is suppressed (energy-saving operation), and the power supply current pulsation is suppressed. used for
  • Operation mode 23 is a combination of boost operation, vibration suppression control, overmodulation control, constant torque control, and power supply ripple compensation control.
  • Operation mode 23 is an operation in which the vibration caused by the mechanism is small and the power supply current pulsation is small when performing the boosting operation, but it is desired to suppress the efficiency drop due to the load current pulsation by taking measures against the motor voltage saturation (energy-saving operation). used for
  • Operation mode 24 is a combination of boost operation, vibration suppression control, overmodulation control, constant torque control, and power supply ripple compensation control.
  • the mechanically-induced vibration is small when boosting, but the motor voltage saturation countermeasure is taken to suppress the efficiency drop due to the load current pulsation (energy-saving operation). etc.
  • control unit 400 can determine whether or not to perform power supply ripple compensation control according to the capacity of the capacitor 210, for example. In addition, the control unit 400 can determine whether or not to perform vibration suppression control according to the amount of work of the device in which the motor 314 is mounted, that is, the compressor 315 .
  • FIG. 8 is a first diagram showing an example of a hardware configuration of an air conditioner in which the power conversion device 1 according to Embodiment 1 is installed.
  • FIG. 9 is a second diagram illustrating an example of a hardware configuration of an air conditioner in which the power conversion device 1 according to Embodiment 1 is mounted.
  • 8 shows a case where the commercial power supply 110 connected to the power converter 1 is a single-phase power supply
  • FIG. 9 shows a case where the commercial power supply 110 connected to the power converter 1 is a three-phase power supply.
  • the components are the number of phases of the power supply, the converter, the capacitor 210, the motor 314, and the mechanical mechanism. 8 and 9, the number of phases of the power supply and the converter are collectively referred to as a DC power supply.
  • single-phase and multi-phase power supplies such as the commercial power supply 110 .
  • the commercial power supply 110 there are single-phase and multi-phase power supplies such as the commercial power supply 110 .
  • three phases are common.
  • Single-phase power supplies are used in relatively small electrical products, such as household appliances.
  • Three-phase power supplies are used in relatively large electrical products such as industrial electrical equipment.
  • Air conditioners that use a single-phase power supply are mainly room air conditioners and commercial air conditioners.
  • Air conditioners that use a three-phase power supply are mainly commercial air conditioners, commercial multi-air conditioners, and the like.
  • a converter is a part that converts AC power into DC power, and is, for example, the aforementioned rectifying and boosting units 700, 701, and 702.
  • Converters have a passive structure that converts to DC power by rectification, and a switch system that varies the DC voltage by switching before or after rectification, or that improves the power factor and power harmonics ).
  • a passive configuration consists mainly of a reactor and a rectifier.
  • the passive configuration is a configuration in which the switching element 632 is removed from the rectifying/boosting section 700 of the power converter 1 shown in FIG.
  • the SW system is mainly composed of a reactor, a rectifier, a switching element, a backflow prevention element, and the like.
  • the switching element and the backflow prevention element may also serve as a rectifier.
  • the operation of the SW system there are a partial SW system that performs switching partially with respect to the power cycle and a full SW system that performs switching throughout the power cycle.
  • the partial SW system is the aforementioned simple switching, and switches the operation of the switching element.
  • the full SW system is the aforementioned full PAM, and always operates the switching elements.
  • the applications of the partial SW system and the full SW system are distinguished by, for example, regulation of power source harmonics. For example, for a model to be shipped to an area where regulations on power source harmonics are relatively strict, the converter is always operated in a full SW system to improve power source harmonics in both cases of light load and high load.
  • the converter is operated only in the load region required by the partial SW system to improve power source harmonics.
  • the applications of the partial SW system and the full SW system are distinguished according to, for example, the operating range of the air conditioner.
  • a full SW system that always operates the converter has the advantage of being able to reduce the inductance value of the reactor, but has the disadvantage of generating switching loss.
  • the partial SW system, which operates the converter only in the required load range has the advantage of reducing switching loss, but has the disadvantage of requiring a large reactor inductance value.
  • the capacitor 210 is an electrolytic capacitor, a film capacitor, or the like, as described above.
  • Motor 314 is mounted to compressor 315 as previously described.
  • Compressors 315 used in air conditioners include rotary compressors and scroll compressors.
  • Rotary compressors include a system called a single rotary system and a twin rotary system.
  • the single rotary system has a structure with one cylinder, and the vibration of 1f of the rotation period appears prominently.
  • the twin-rotary system has a structure having two cylinders, and a vibration with a rotation period of 2f remarkably appears.
  • the scroll compressor is of a type having a spiral body, which is called a fixed scroll type, an oscillating scroll type, or the like. In the scroll compressor, the vibration of 1f to 3f of the rotation period appears prominently, but the vibration peaks are dispersed.
  • FIG. 34 is a diagram showing an example of changes in power consumption during cooling operation of an air conditioner in which the power conversion device 1 according to Embodiment 1 is mounted.
  • FIG. 35 is a diagram showing an example of changes in power consumption during the heating operation of the air conditioner equipped with the power conversion device 1 according to Embodiment 1.
  • the horizontal axis indicates time
  • the vertical axis indicates power consumption.
  • the air conditioning conditions for the air conditioner shown in FIGS. The description also includes a mode in which protection is entered from the low temperature heating air conditioning condition, which is the load area.
  • the air conditioning conditions in the middle of cooling and in the middle of heating are collectively defined as an intermediate load region.
  • the room temperature is far from the set temperature.
  • the compressor 315 is in a state where the motor 314 is operating at high speed and the amount of work is large.
  • Such a state represents an air conditioning condition called cooling rating, and the power consumption is in a high state.
  • the room temperature is close to the set temperature.
  • the compressor 315 operates with the motor 314 shifting to low speed rotation, and the amount of work is reduced.
  • Such a state represents an air conditioning condition called intermediate cooling, in which the power consumption is low.
  • the rotational speed of the motor 314 of the compressor 315 may temporarily shift from high speed to low speed for the purpose of protecting the temperature of the heat cycle.
  • the motor 314 rotates at a low speed, the amount of work of the compressor 315 is relatively large.
  • the room temperature is far from the set temperature.
  • the compressor 315 is in a state where the motor 314 is operating at high speed and the amount of work is large.
  • Such a state represents an air conditioning condition called a heating rating, and power consumption is in a high state.
  • heating low temperature which is an operation mode in an environment where the outside air temperature is lower than the heating rated time. Heating low temperature has a higher load than the heating rating, and the power consumption is even higher.
  • the rotation speed of the motor 314 of the compressor 315 may be temporarily shifted from high speed to low speed for the purpose of protecting the temperature of the heat cycle.
  • the motor 314 rotates at a low speed
  • the amount of work of the compressor 315 is relatively large.
  • frost formation there is a phenomenon called frost formation in which frost forms on the heat exchanger portion of the outdoor unit.
  • frost forms heat exchange cannot be performed well, the load increases, and it becomes difficult to obtain the air conditioning effect of the air conditioner. Therefore, a defrosting operation called defrosting is sometimes performed.
  • the power consumption of the defrosting operation itself is small, since the indoor heating operation cannot be performed during the defrosting operation, the room temperature drops and the operation is performed with a relatively large load after recovery.
  • the control unit 400 of the power converter 1 actually performs the control of switching the operation mode according to the air conditioning conditions.
  • the control unit 400 operates according to the air conditioning conditions of the air conditioner.
  • the air conditioning conditions include at least one of cooling medium, cooling rated, heating medium, heating rated, and heating low.
  • the control unit 400 controls the air conditioning conditions based on the user's setting for the air conditioner, the temperature of the outdoor where the outdoor unit of the air conditioner is installed, the temperature of the room where the indoor unit of the air conditioner is installed, and the operation of the air conditioner. It can be obtained directly or indirectly from time or the like.
  • the control unit 400 may obtain the air conditioning conditions using all of them, or may obtain the air conditioning conditions using at least one of them.
  • FIG. 10 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter 1 according to Embodiment 1 is mounted is configuration 101.
  • the configuration 101 has a relatively simple hardware configuration among those compatible with a single-phase power supply.
  • the direct-current power supply unit includes a rectifier that supports single-phase operation, and a passive converter that includes a reactor before or after the rectifier.
  • the DC power supply portion of configuration 101 has a configuration in which the switching element 632, the diode 633, and the like are removed from the rectifying and boosting section 700 of the power conversion device 1 shown in FIG.
  • Capacitor 210 has a relatively large capacity.
  • the electromotive force of motor 314 of compressor 315 is relatively large.
  • the mechanical mechanism of the compressor 315 is a single rotary or the like, and the mechanical pulsation is relatively large.
  • the air conditioner When the air conditioner performs cooling operation in configuration 101, it operates in operation mode 1 because it operates at the cooling rating immediately after starting operation. After that, when the room temperature approaches the set temperature, the air conditioner switches from the rated cooling to the intermediate cooling under the switching condition, such as setting a threshold value for the difference, but it operates at a low speed and vibrates due to the mechanical mechanism. appears remarkably, the operation mode is switched to operation mode 3 with vibration suppression control. The air conditioner switches to operation mode 7 when entering protection. In addition, when the air conditioner performs the heating operation, it operates in the operation mode 1 because it operates at the heating rating immediately after the start of operation. Alternatively, the air conditioner operates in operation mode 5 because it operates at a low heating temperature depending on the outside air temperature.
  • the air conditioner switches from the rated heating to the intermediate heating under the switching conditions such as setting a threshold for the difference, but it operates at a low speed and vibrates due to the mechanical mechanism. appears remarkably, the operation mode is switched to operation mode 3 with vibration suppression control.
  • the air conditioner switches to operation mode 7 when entering protection. Before and after the defrosting operation, the air conditioner is in a heavy load state, so it operates in operation mode 1 or operation mode 5 according to the outside air temperature. In this way, in the configuration 101, the air conditioner can switch between operation modes 1, 3, 5, and 7 to provide optimal product operation for each air conditioning condition. Become.
  • FIG. 11 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter 1 according to Embodiment 1 is mounted is configuration 102.
  • the configuration 102 of the air conditioner differs from the configuration 101 in that it operates in operation mode 1 in the intermediate load range.
  • FIG. 12 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter 1 according to Embodiment 1 is mounted is configuration 103.
  • FIG. A configuration 103 is a configuration in which the motor electromotive force is improved, ie, reduced, by, for example, increasing the number of turns of the motor 314 compared to the configuration 101 .
  • the configuration 103 differs from the configuration 101 in that the air conditioner operates in the operation mode 11 in the rated load range and in the low heating temperature.
  • FIG. 13 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter 1 according to Embodiment 1 is mounted is configuration 104.
  • FIG. 104 is a configuration in which the mechanical mechanism of the compressor 315 is a twin rotary, scroll, or the like, and the mechanical pulsation is relatively small.
  • the configuration 104 differs from the configuration 103 in that the air conditioner operates in the operation mode 9 in the intermediate load range.
  • FIG. 14 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter 1 according to Embodiment 1 is mounted is configuration 105.
  • FIG. A configuration 105 is a configuration in which the capacitance of the capacitor 210 is reduced compared to the configuration 101 .
  • the configuration 105 of the air conditioner differs from the configuration 101 in the presence or absence of power supply ripple compensation control. As a result, the air conditioner operates in operation mode 2, operation mode 4, operation mode 6, and operation mode 8.
  • FIG. 15 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter 1 according to Embodiment 1 is mounted is Configuration 106.
  • FIG. 106 is a configuration in which the mechanical mechanism of the compressor 315 is a twin rotary, scroll, or the like, and the mechanical pulsation is relatively small.
  • the configuration 106 of the air conditioner differs from the configuration 105 in that it operates in operation mode 2 in the intermediate load region.
  • FIG. 16 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter 1 according to Embodiment 1 is mounted is configuration 107.
  • FIG. A configuration 107 is a configuration in which the motor electromotive force is improved, ie, reduced, by, for example, increasing the number of turns of the motor 314 compared to the configuration 105 .
  • the configuration 107 of the air conditioner differs from the configuration 105 in that it operates in the operation mode 12 in the rated load range and in the heating low temperature.
  • FIG. 17 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter 1 according to Embodiment 1 is mounted is Configuration 108.
  • FIG. 108 is a configuration in which the mechanical mechanism of the compressor 315 is a twin rotary, scroll, or the like, and the mechanical pulsation is relatively small.
  • the configuration 108 differs from the configuration 107 in that the air conditioner operates in the operation mode 10 in the intermediate load region.
  • FIG. 18 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter 1 according to Embodiment 1 is mounted is configuration 109.
  • FIG. Configuration 109 is a configuration in which the converter is changed from a passive configuration to a partial SW system in comparison with configuration 101 .
  • the configuration 109 of the air conditioner differs from the configuration 101 in the presence or absence of the boost operation.
  • the air conditioner operates in operation mode 1, operation mode 3, operation mode 5, and operation mode 7 in the configuration 101, and operation mode 13, operation mode 3, operation mode 17, and operation mode 109 in the configuration 109. and operation mode 19.
  • FIG. 19 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter 1 according to Embodiment 1 is mounted is Configuration 110.
  • FIG. 110 is a configuration in which the mechanical mechanism of the compressor 315 is a twin rotary, scroll, or the like, and the mechanical pulsation is relatively small.
  • the configuration 110 of the air conditioner differs from the configuration 109 in that it operates in operation mode 1 in the intermediate load range.
  • FIG. 20 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter 1 according to Embodiment 1 is mounted is configuration 111.
  • FIG. A configuration 111 is a configuration in which the motor electromotive force is improved, ie, reduced, such as by increasing the number of turns of the motor 314 compared to the configuration 109 .
  • the configuration 111 differs from the configuration 109 in that the air conditioner operates in the operation mode 21 when it is in the rated load region and operates in the operation mode 23 when the heating temperature is low.
  • FIG. 21 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter 1 according to Embodiment 1 is mounted is configuration 112.
  • FIG. 112 is a configuration in which the mechanical mechanism of the compressor 315 is a twin rotary, scroll, or the like, and the mechanical pulsation is relatively small.
  • the configuration 112 of the air conditioner differs from the configuration 111 in that it operates in operation mode 9 in the intermediate load range.
  • FIG. 22 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter 1 according to Embodiment 1 is mounted is configuration 113.
  • FIG. A configuration 113 is a configuration in which the capacity of the capacitor 210 is reduced compared to the configuration 109 .
  • the configuration 113 of the air conditioner differs from the configuration 109 in the presence or absence of power supply ripple compensation control. As a result, the air conditioner operates in operation mode 4, operation mode 14, operation mode 18, And the operation is performed in the operation mode 20.
  • FIG. 23 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter 1 according to Embodiment 1 is mounted is Configuration 114.
  • FIG. 114 is a configuration in which the mechanical mechanism of the compressor 315 is a twin rotary, scroll, or the like, and the mechanical pulsation is relatively small.
  • the configuration 114 of the air conditioner differs from the configuration 113 in that it operates in operation mode 2 in the intermediate load region.
  • FIG. 24 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter 1 according to Embodiment 1 is mounted is configuration 115.
  • FIG. A configuration 115 is a configuration in which the motor electromotive force is improved, ie, reduced, such as by increasing the number of turns of the motor 314 compared to the configuration 113 .
  • the configuration 115 differs from the configuration 113 in that the air conditioner operates in the operation mode 22 in the rated load region and in the operation mode 24 in the heating low temperature.
  • FIG. 25 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter 1 according to Embodiment 1 is mounted is Configuration 116.
  • FIG. 116 is a configuration in which the mechanical mechanism of the compressor 315 is a twin rotary, scroll, or the like, and the mechanical pulsation is relatively small.
  • the configuration 116 of the air conditioner differs from the configuration 115 in that it operates in the operation mode 10 in the intermediate load range.
  • FIG. 26 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter 1 according to Embodiment 1 is mounted is Configuration 117.
  • FIG. Configuration 117 is a configuration in which the converter is changed from a passive configuration to a full SW system in comparison with configuration 101 .
  • the configuration 117 of the air conditioner differs from the configuration 101 in the presence or absence of the boost operation.
  • the air conditioner operates in operation mode 1, operation mode 3, operation mode 5, and operation mode 7 in the configuration 101, and operation mode 13, operation mode 15, operation mode 17, and operation mode 117 in the configuration 117. and operation mode 19.
  • FIG. 27 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter 1 according to Embodiment 1 is mounted is Configuration 118.
  • FIG. 118 is a configuration in which the mechanical mechanism of the compressor 315 is a twin rotary, scroll, or the like, and the mechanical pulsation is relatively small.
  • the configuration 118 of the air conditioner differs from the configuration 117 in that it operates in operation mode 13 in the intermediate load range.
  • FIG. 28 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter 1 according to Embodiment 1 is mounted is configuration 119.
  • FIG. The configuration 119 is a configuration in which the motor electromotive force is improved, ie, reduced, such as by increasing the number of turns of the motor 314 compared to the configuration 117 .
  • the configuration 119 differs from the configuration 117 in that the air conditioner operates in the operation mode 21 in the rated load region and in the operation mode 23 in the heating low temperature.
  • FIG. 29 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter 1 according to Embodiment 1 is mounted is configuration 120.
  • the configuration 120 is a configuration in which the mechanical mechanism of the compressor 315 is a twin rotary, scroll, or the like, and the mechanical pulsation is relatively small.
  • the configuration 120 differs from the configuration 119 in that the air conditioner operates in the operation mode 21 in the intermediate load region.
  • FIG. 30 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter 1 according to Embodiment 1 is mounted is Configuration 121.
  • FIG. A configuration 121 is a configuration in which the capacity of the capacitor 210 is reduced compared to the configuration 117 .
  • the configuration 121 of the air conditioner differs from the configuration 117 in the presence or absence of power supply ripple compensation control. As a result, the air conditioner operates in operation mode 14, operation mode 16, operation mode 18, And the operation is performed in the operation mode 20.
  • FIG. 31 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power conversion device 1 according to Embodiment 1 is mounted is configuration 122.
  • FIG. 122 is a configuration in which the mechanical mechanism of the compressor 315 is a twin rotary, scroll, or the like, and the mechanical pulsation is relatively small.
  • the configuration 122 differs from the configuration 121 in that the air conditioner operates in the operation mode 14 in the intermediate load region.
  • FIG. 32 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter 1 according to Embodiment 1 is mounted is configuration 123.
  • FIG. The configuration 123 is a configuration in which the motor electromotive force is improved, ie, reduced, such as by increasing the number of turns of the motor 314 compared to the configuration 121 .
  • the configuration 123 differs from the configuration 121 in that the air conditioner operates in the operation mode 22 in the rated load region and in the operation mode 24 in the heating low temperature.
  • FIG. 33 is a diagram showing the relationship between air conditioning conditions and operation modes when the configuration of the air conditioner in which the power converter 1 according to Embodiment 1 is mounted is configuration 124.
  • FIG. 124 is a configuration in which the mechanical mechanism of the compressor 315 is a twin rotary, scroll, or the like, and the mechanical pulsation is relatively small.
  • the configuration 124 differs from the configuration 123 in that the air conditioner operates in the operation mode 22 in the intermediate load region.
  • the control unit 400 can determine whether or not to perform power supply ripple compensation control according to the capacity of the capacitor 210, for example. Further, the control unit 400 can determine whether or not to perform vibration suppression control according to the mechanism of the compressor 315, which is a device. Further, the control unit 400 can determine whether or not to operate the rectifying/boosting unit 700 and each control according to the electromotive force of the motor 314 .
  • FIG. 36 is a flow chart showing the operation of the control unit 400 included in the power converter 1 according to Embodiment 1.
  • the control unit 400 acquires the air conditioning conditions of the power converter 1 (step S1).
  • the control unit 400 determines the presence or absence of each control from the acquired air conditioning conditions, and determines the operation mode according to the air conditioning conditions (step S2).
  • the control unit 400 confirms whether or not the determined operation mode is the same as the previous time (step S3). If the operation mode is the same as last time (step S3: Yes), the control unit 400 maintains the previous operation mode (step S4). If the operating mode is different from the last time (step S3: No), the control unit 400 switches the operating mode (step S5).
  • FIG. 37 is a diagram showing an example of a hardware configuration that implements the control unit 400 included in the power converter 1 according to Embodiment 1. As shown in FIG. Control unit 400 is implemented by processor 91 and memory 92 .
  • the processor 91 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP (Digital Signal Processor)), or a system LSI (Large Scale Integration).
  • the memory 92 is a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory), a volatile memory or a non-volatile Read Only memory.
  • a semiconductor memory can be exemplified.
  • the memory 92 is not limited to these, and may be a magnetic disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc).
  • the control unit 400 controls the operation of the inverter 310 based on the detection values acquired from the respective detection units, and the current I2 flowing through the inverter 310 Furthermore, by superimposing the pulsation of the frequency component corresponding to the frequency component of the current I1 flowing from the rectifying unit 130, the current I3 flowing through the smoothing unit 200 is reduced. As a result, the electric power conversion device 1 reduces the current I3 flowing through the smoothing unit 200, so that the capacitor 210 having a smaller ripple current resistance can be used as compared with the case where the control of the present embodiment is not performed. .
  • power conversion device 1 can reduce the capacity of capacitor 210 to be mounted as compared with the case where the control of the present embodiment is not performed, by reducing the pulsating voltage of capacitor voltage Vdc.
  • the power conversion device 1 can reduce the number of capacitors 210 configuring the smoothing unit 200 .
  • the power conversion device 1 controls the operation of the inverter 310 so that the pulsation contained in the second AC power is smaller than the pulsation of the power output from the rectifying unit 130, so that the current flowing through the inverter 310 is reduced. It is possible to suppress the pulsation component superimposed on I2 from becoming excessive. The superimposition of the pulsating component increases the effective value of the current flowing through the inverter 310, the motor 314, etc. compared to the non-superimposed state. It is possible to provide a system that suppresses the current capacity of the inverter 310, the loss increase of the inverter 310, the loss increase of the motor 314, and the like.
  • the power converter 1 can suppress the vibration of the compressor 315 caused by the pulsation of the current I2 by performing the control of the present embodiment.
  • the power conversion device 1 can increase the capacitor voltage Vdc of the capacitor 210 and expand the output voltage range of the inverter 310 by performing the boosting operation of the booster 600 .
  • the control unit 400 superimposes the pulsation frequency component included in the second AC power output from the inverter 310 on the driving signal for the switching element 632 of the boosting unit 600, thereby increasing the frequency component.
  • the resulting pulsation of current I3 and capacitor voltage Vdc can be reduced.
  • the power conversion device 1 switches the operation mode according to the air conditioning conditions.
  • the power electronics device 1 can perform energy-saving operation when possible without increasing the processing load unnecessarily.
  • FIG. 38 is a diagram showing a configuration example of a refrigeration cycle equipment 900 according to Embodiment 2.
  • a refrigerating cycle-applied equipment 900 according to the second embodiment includes the power converter 1 described in the first embodiment.
  • the refrigerating cycle applied equipment 900 according to Embodiment 2 can be applied to products equipped with a refrigerating cycle, such as air conditioners, refrigerators, freezers, and heat pump water heaters.
  • a refrigerating cycle such as air conditioners, refrigerators, freezers, and heat pump water heaters.
  • an air conditioner is assumed as the refrigeration cycle applied equipment 900 .
  • constituent elements having functions similar to those of the first embodiment are denoted by the same reference numerals as those of the first embodiment.
  • Refrigerating cycle applied equipment 900 includes compressor 315 incorporating motor 314 according to Embodiment 1, four-way valve 902, indoor heat exchanger 906, expansion valve 908, and outdoor heat exchanger 910 with refrigerant pipe 912. attached through
  • a compression mechanism 904 that compresses the refrigerant and a motor 314 that operates the compression mechanism 904 are provided inside the compressor 315 .
  • the refrigeration cycle applied equipment 900 can perform heating operation or cooling operation by switching operation of the four-way valve 902 .
  • the compression mechanism 904 is driven by a variable speed controlled motor 314 .
  • the refrigerant is pressurized by the compression mechanism 904 and sent out through the four-way valve 902, the indoor heat exchanger 906, the expansion valve 908, the outdoor heat exchanger 910, and the four-way valve 902. Return to compression mechanism 904 .
  • the refrigerant is pressurized by the compression mechanism 904 and sent through the four-way valve 902, the outdoor heat exchanger 910, the expansion valve 908, the indoor heat exchanger 906, and the four-way valve 902. Return to compression mechanism 904 .
  • the indoor heat exchanger 906 acts as a condenser to release heat, and the outdoor heat exchanger 910 acts as an evaporator to absorb heat.
  • the outdoor heat exchanger 910 acts as a condenser to release heat, and the indoor heat exchanger 906 acts as an evaporator to absorb heat.
  • the expansion valve 908 reduces the pressure of the refrigerant to expand it.
  • 1 power conversion device, 2 motor drive device, 110 commercial power supply, 120, 631 reactor, 130 rectification section, 131 to 134, 621 to 624 rectification element, 200 smoothing section, 210 capacitor, 310 inverter, 311a to 311f, 611 to 614 , 632 switching elements, 312a to 312f freewheeling diodes, 313a, 313b, 501, 502 current detectors, 314 motors, 315 compressors, 400 controllers, 600, 601 boosters, 633 diodes, 700, 701, 702 rectifier boosters , 900 refrigeration cycle application equipment, 902 four-way valve, 904 compression mechanism, 906 indoor heat exchanger, 908 expansion valve, 910 outdoor heat exchanger, 912 refrigerant piping.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

電力変換装置(1)であって、商用電源(110)から供給される第1の交流電力を整流するとともに、第1の交流電力の電圧を昇圧する整流昇圧部(700)と、整流昇圧部(700)の出力端に接続されるコンデンサ(210)と、コンデンサ(210)の両端に接続され、整流昇圧部(700)およびコンデンサ(210)から出力される電力を第2の交流電力に変換し、モータ(314)が搭載された機器に出力するインバータ(310)と、整流昇圧部(700)の動作を制御するとともに、整流昇圧部(700)からコンデンサ(210)に流入する電力の脈動に応じた脈動を含む第2の交流電力をインバータ(310)から機器に出力するようにインバータ(310)の動作を制御し、コンデンサ(210)に流れる電流を抑制する制御部(400)と、を備え、制御部(400)は、空気調和機の空調条件に応じて運転する。

Description

電力変換装置、モータ駆動装置および空気調和機
 本開示は、交流電力を所望の電力に変換する電力変換装置、モータ駆動装置および空気調和機に関する。
 従来、交流電源から供給される交流電力を所望の交流電力に変換し、空気調和機などの負荷に供給する電力変換装置がある。例えば、特許文献1には、空気調和機の制御装置である電力変換装置が、交流電源から供給される交流電力を整流部であるダイオードスタックで整流し、さらに平滑コンデンサで平滑した電力を、複数のスイッチング素子からなるインバータで所望の交流電力に変換し、負荷である圧縮機モータに出力する技術が開示されている。
特開平7-71805号公報
 しかしながら、上記従来の技術によれば、平滑コンデンサに大きな電流が流れるため、平滑コンデンサの経年劣化が加速する、という問題があった。このような問題に対して、平滑コンデンサの容量を大きくすることでコンデンサ電圧のリプル変化を抑制する、またはリプルによる劣化耐量の大きい平滑コンデンサを使用する方法が考えられるが、コンデンサ部品のコストが高くなり、また装置が大型化してしまう。
 本開示は、上記に鑑みてなされたものであって、平滑用のコンデンサの劣化を抑制しつつ、装置の大型化を抑制可能な電力変換装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本開示は、空気調和機に搭載される電力変換装置である。電力変換装置は、商用電源から供給される第1の交流電力を整流するとともに、第1の交流電力の電圧を昇圧する整流昇圧部と、整流昇圧部の出力端に接続されるコンデンサと、コンデンサの両端に接続され、整流昇圧部およびコンデンサから出力される電力を第2の交流電力に変換し、モータが搭載された機器に出力するインバータと、整流昇圧部の動作を制御するとともに、整流昇圧部からコンデンサに流入する電力の脈動に応じた脈動を含む第2の交流電力をインバータから機器に出力するようにインバータの動作を制御し、コンデンサに流れる電流を抑制する制御部と、を備える。制御部は、空気調和機の空調条件に応じて運転する。
 本開示に係る電力変換装置は、平滑用のコンデンサの劣化を抑制しつつ、装置の大型化を抑制できる、という効果を奏する。
実施の形態1に係る電力変換装置の構成例を示す第1の図 実施の形態1に係る電力変換装置の構成例を示す第2の図 実施の形態1に係る電力変換装置の構成例を示す第3の図 比較例として、平滑部で昇圧部から出力される電流を平滑化し、インバータに流れる電流を一定にした場合の各電流および平滑部のコンデンサのコンデンサ電圧の例を示す図 実施の形態1に係る電力変換装置の制御部がインバータの動作を制御して平滑部に流れる電流を低減したときの各電流および平滑部のコンデンサのコンデンサ電圧の例を示す図 実施の形態1に係る電力変換装置の運転モードおよび運転モードの内容を示す第1の図 実施の形態1に係る電力変換装置の運転モードおよび運転モードの内容を示す第2の図 実施の形態1に係る電力変換装置が搭載される空気調和機のハードウェア構成の例を示す第1の図 実施の形態1に係る電力変換装置が搭載される空気調和機のハードウェア構成の例を示す第2の図 実施の形態1に係る電力変換装置が搭載される空気調和機の構成が構成101の場合における空調条件と運転モードとの関係を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の構成が構成102の場合における空調条件と運転モードとの関係を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の構成が構成103の場合における空調条件と運転モードとの関係を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の構成が構成104の場合における空調条件と運転モードとの関係を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の構成が構成105の場合における空調条件と運転モードとの関係を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の構成が構成106の場合における空調条件と運転モードとの関係を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の構成が構成107の場合における空調条件と運転モードとの関係を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の構成が構成108の場合における空調条件と運転モードとの関係を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の構成が構成109の場合における空調条件と運転モードとの関係を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の構成が構成110の場合における空調条件と運転モードとの関係を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の構成が構成111の場合における空調条件と運転モードとの関係を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の構成が構成112の場合における空調条件と運転モードとの関係を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の構成が構成113の場合における空調条件と運転モードとの関係を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の構成が構成114の場合における空調条件と運転モードとの関係を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の構成が構成115の場合における空調条件と運転モードとの関係を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の構成が構成116の場合における空調条件と運転モードとの関係を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の構成が構成117の場合における空調条件と運転モードとの関係を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の構成が構成118の場合における空調条件と運転モードとの関係を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の構成が構成119の場合における空調条件と運転モードとの関係を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の構成が構成120の場合における空調条件と運転モードとの関係を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の構成が構成121の場合における空調条件と運転モードとの関係を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の構成が構成122の場合における空調条件と運転モードとの関係を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の構成が構成123の場合における空調条件と運転モードとの関係を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の構成が構成124の場合における空調条件と運転モードとの関係を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の冷房運転時の消費電力の変化の例を示す図 実施の形態1に係る電力変換装置が搭載される空気調和機の暖房運転時の消費電力の変化の例を示す図 実施の形態1に係る電力変換装置が備える制御部の動作を示すフローチャート 実施の形態1に係る電力変換装置が備える制御部を実現するハードウェア構成の一例を示す図 実施の形態2に係る冷凍サイクル適用機器の構成例を示す図
 以下に、本開示の実施の形態に係る電力変換装置、モータ駆動装置および空気調和機を図面に基づいて詳細に説明する。
実施の形態1.
 図1は、実施の形態1に係る電力変換装置1の構成例を示す第1の図である。電力変換装置1は、商用電源110および圧縮機315に接続される。電力変換装置1は、商用電源110から供給される電源電圧Vsの第1の交流電力を所望の振幅および位相を有する第2の交流電力に変換し、圧縮機315に供給する。電力変換装置1は、整流部130と、昇圧部600と、電流検出部501と、平滑部200と、電流検出部502と、インバータ310と、電流検出部313a,313bと、制御部400と、を備える。なお、電力変換装置1では、整流部130、および昇圧部600によって整流昇圧部700を構成している。また、電力変換装置1、および圧縮機315が備えるモータ314によって、モータ駆動装置2を構成している。
 整流部130は、整流素子131~134によって構成されるブリッジ回路を有し、商用電源110から供給される電源電圧Vsの第1の交流電力を整流して出力する。整流部130は、全波整流を行うものである。
 昇圧部600は、リアクトル631、スイッチング素子632、およびダイオード633を有する。昇圧部600は、制御部400の制御によって、スイッチング素子632をオンオフし、整流部130から出力された電力を昇圧し、昇圧した電力を平滑部200に出力する。本実施の形態において、昇圧部600は、制御部400によって、スイッチング素子632が連続的にスイッチング動作を行うフルPAM(Pulse Amplitude Modulation)で制御される。電力変換装置1は、昇圧部600によって商用電源110の力率改善制御を行い、平滑部200のコンデンサ210のコンデンサ電圧Vdcを電源電圧Vsよりも高い電圧にする。
 整流昇圧部700は、整流部130および昇圧部600によって、商用電源110から供給される第1の交流電力を整流するとともに、商用電源110から供給される第1の交流電力の電圧を昇圧する。本実施の形態では、整流昇圧部700において、整流部130および昇圧部600は直列に接続されている。
 電流検出部501は、昇圧部600によって昇圧された電力の電流値を検出し、検出した電流値を制御部400に出力する。
 平滑部200は、昇圧部600の出力端に接続される。平滑部200は、平滑素子としてコンデンサ210を有し、昇圧部600によって昇圧された電力を平滑化する。コンデンサ210は、例えば、電解コンデンサ、フィルムコンデンサなどである。コンデンサ210は、整流部130によって整流された電力を平滑化するような容量を有し、平滑化によりコンデンサ210に発生する電圧は商用電源110の全波整流波形形状ではなく、直流成分に商用電源110の周波数に応じた電圧リプルが重畳した波形形状となり、大きく脈動しない。この電圧リプルの周波数は、商用電源110が単相の場合は電源電圧Vsの周波数の2倍成分となり、商用電源110が三相の場合は6倍成分が主成分となる。商用電源110から入力される電力とインバータ310から出力される電力が変化しない場合、この電圧リプルの振幅はコンデンサ210の容量によって決まる。例えば、コンデンサ210に発生する電圧リプルの最大値が最小値の2倍未満となるような範囲で脈動している。
 電流検出部502は、インバータ310に流れる電流の電流値を検出し、検出した電流値を制御部400に出力する。
 インバータ310は、平滑部200、すなわちコンデンサ210の両端に接続される。インバータ310は、スイッチング素子311a~311f、および還流ダイオード312a~312fを有する。インバータ310は、制御部400の制御によってスイッチング素子311a~311fをオンオフし、整流昇圧部700および平滑部200から出力される電力を所望の振幅および位相を有する第2の交流電力に変換して、モータ314が搭載された機器である圧縮機315に出力する。電流検出部313a,313bは、各々、インバータ310から出力される3相の電流のうち1相の電流値を検出し、検出した電流値を制御部400に出力する。なお、制御部400は、インバータ310から出力される3相の電流値のうち2相の電流値を取得することで、インバータ310から出力される残りの1相の電流値を算出することができる。圧縮機315は、圧縮機駆動用のモータ314を有する負荷である。モータ314は、インバータ310から供給される第2の交流電力の振幅および位相に応じて回転し、圧縮動作を行う。例えば、圧縮機315が空気調和機などで使用される密閉型圧縮機の場合、圧縮機315の負荷トルクは定トルク負荷とみなせる場合が多い。モータ314について、図1ではモータ巻線がY結線の場合を示しているが、一例であり、これに限定されない。モータ314のモータ巻線は、Δ結線であってもよいし、Y結線とΔ結線とが切り替え可能な仕様であってもよい。
 なお、電力変換装置1において、図1に示す各部の構成および配置は一例であり、各部の構成および配置は図1で示される例に限定されない。例えば、整流昇圧部700は、4つのスイッチング素子を備え、制御部400の制御によって4つのスイッチング素子をオンオフし、商用電源110から出力された第1の交流電力を整流するとともに昇圧し、昇圧した電力を平滑部200に出力してもよい。また、整流昇圧部700は、整流部130に対して昇圧部が並列に接続されるような構成であってもよい。
 図2は、実施の形態1に係る電力変換装置1の構成例を示す第2の図である。電力変換装置1は、図1に示す電力変換装置1に対して、整流昇圧部700を整流昇圧部701に置き換えたものである。なお、電力変換装置1、および圧縮機315が備えるモータ314によって、モータ駆動装置2を構成している。整流昇圧部701は、リアクトル631、スイッチング素子611~614、および各々がスイッチング素子611~614のうちの1つに並列に接続される整流素子621~624を有する。また、本構成のリアクトル631は、商用電源110と整流昇圧部701との片側接続線のみに挿入されているが、両側接続線に挿入されていてもよい。整流昇圧部701は、制御部400の制御によって、スイッチング素子611~614をオンオフし、商用電源110から出力された第1の交流電力を整流するとともに昇圧し、昇圧した電力を平滑部200に出力する。整流昇圧部701は、制御部400によって、スイッチング素子611~614が連続的にスイッチング動作を行うフルPAMで制御される。
 図3は、実施の形態1に係る電力変換装置1の構成例を示す第3の図である。電力変換装置1は、図1に示す電力変換装置1に対して、整流昇圧部700を整流昇圧部702に置き換えたものである。なお、電力変換装置1、および圧縮機315が備えるモータ314によって、モータ駆動装置2を構成している。整流昇圧部702は、リアクトル120、整流部130、および昇圧部601を有する。図1に示す電力変換装置1において、昇圧部600は、整流部130の後段、すなわち電力変換装置1の内部で整流部130と直列に接続されていたが、昇圧部601は、電力変換装置1の内部で整流部130と並列に接続されている。昇圧部601は、整流素子621~624、およびスイッチング素子611を有する。昇圧部601は、制御部400の制御によって、スイッチング素子611をオンオフし、商用電源110から出力された第1の交流電力を昇圧し、昇圧した電力を整流部130に出力する。整流昇圧部702の昇圧部601は、制御部400の制御によって、商用電源110から供給される第1の交流電力の周波数の半周期に1回または複数回、スイッチング素子611のスイッチング動作を行う簡易スイッチングで制御される。
 以降では、特に断らない限り、図1に示す電力変換装置1を例にして説明する。また、以降の説明において、電流検出部501,502,313a,313bをまとめて検出部と称することがある。また、電流検出部501,502,313a,313bで検出された電流値を検出値と称することがある。電力変換装置1は、前述の検出部以外の検出部を備えていてもよい。図1では省略しているが、電力変換装置1は、一般的にコンデンサ電圧Vdcを検出する検出部を備えている。電力変換装置1は、商用電源110から供給される第1の交流電力の電圧、電流などを検出する検出部を備えていてもよい。
 制御部400は、電流検出部501から昇圧部600によって昇圧された電力の電流値を取得し、電流検出部502からインバータ310に流れる電流の電流値を取得し、電流検出部313a,313bからインバータ310によって変換された所望の振幅および位相を有する第2の交流電力の電流値を取得する。制御部400は、各検出部によって検出された検出値を用いて、整流昇圧部700の昇圧部600の動作、具体的には、昇圧部600が有するスイッチング素子632のオンオフを制御する。また、制御部400は、各検出部によって検出された検出値を用いて、インバータ310の動作、具体的には、インバータ310が有するスイッチング素子311a~311fのオンオフを制御する。本実施の形態において、制御部400は、整流昇圧部700の動作を制御する。制御部400は、整流昇圧部700の動作を制御し、商用電源110から供給される第1の交流電力の力率改善制御、および平滑部200のコンデンサ210の平均電圧制御を行う。また、制御部400は、整流昇圧部700から平滑部200のコンデンサ210に流入する電力の脈動に応じた脈動を含む第2の交流電力をインバータ310から負荷である圧縮機315に出力するようにインバータ310の動作を制御する。平滑部200のコンデンサ210に流入する電力の脈動に応じた脈動とは、例えば、平滑部200のコンデンサ210に流入する電力の脈動の周波数などによって変動する脈動である。これにより、制御部400は、平滑部200のコンデンサ210に流れる電流を抑制する。なお、制御部400は、各検出部から取得した全ての検出値を用いなくてもよく、一部の検出値を用いて制御を行ってもよい。
 つづいて、電力変換装置1が備える制御部400の動作について説明する。本実施の形態では、電力変換装置1において、インバータ310および圧縮機315によって発生する負荷が一定の負荷とみなすことができ、平滑部200から出力される電流で見た場合、平滑部200に定電流負荷が接続されているものとして、以降の説明を行う。ここで、図1に示すように、昇圧部600から流れる電流を電流I1とし、インバータ310に流れる電流を電流I2とし、平滑部200から流れる電流を電流I3とする。電流I2は、電流I1と電流I3とを併せた電流となる。電流I3は、電流I2と電流I1との差分、すなわち電流I2-電流I1として表すことができる。電流I3は、平滑部200の放電方向を正方向とし、平滑部200の充電方向を負方向とする。すなわち、平滑部200には、電流が流入することもあり、電流が流出することもある。
 図4は、比較例として、平滑部200で昇圧部600から出力される電流を平滑化し、インバータ310に流れる電流I2を一定にした場合の各電流I1~I3および平滑部200のコンデンサ210のコンデンサ電圧Vdcの例を示す図である。上から順に、電流I1、電流I2、電流I3、および電流I3に応じて発生するコンデンサ210のコンデンサ電圧Vdcを示している。電流I1,I2,I3の縦軸は電流値を示し、コンデンサ電圧Vdcの縦軸は電圧値を示している。横軸は全て時間tを示している。なお、電流I2,I3には、実際にはインバータ310のキャリア成分が重畳されるが、ここでは省略する。以降についても同様とする。図4に示すように、電力変換装置1において、仮に、昇圧部600から流れる電流I1が平滑部200によって十分に平滑化された場合、インバータ310に流れる電流I2は一定の電流値となる。しかしながら、平滑部200のコンデンサ210には、大きな電流I3が流れ、劣化の要因となる。そのため、本実施の形態では、電力変換装置1において、制御部400は、平滑部200に流れる電流I3を低減するように、インバータ310に流れる電流I2を制御、すなわちインバータ310の動作を制御する。
 図5は、実施の形態1に係る電力変換装置1の制御部400がインバータ310の動作を制御して平滑部200に流れる電流I3を低減したときの各電流I1~I3および平滑部200のコンデンサ210のコンデンサ電圧Vdcの例を示す図である。上から順に、電流I1、電流I2、電流I3、および電流I3に応じて発生するコンデンサ210のコンデンサ電圧Vdcを示している。電流I1,I2,I3の縦軸は電流値を示し、コンデンサ電圧Vdcの縦軸は電圧値を示している。横軸は全て時間tを示している。電力変換装置1の制御部400は、図5に示すような電流I2がインバータ310に流れるようにインバータ310の動作を制御することによって、図4の例と比較して、昇圧部600から平滑部200に流れ込む電流の周波数成分を低減し、平滑部200に流れる電流I3を低減することができる。具体的には、制御部400は、電流I1の周波数成分を主成分とした脈動電流を含む電流I2がインバータ310に流れるようにインバータ310の動作を制御する。
 電流I1の周波数成分は、商用電源110から供給される交流電流の周波数、整流部130の構成、および昇圧部600のスイッチング素子632のスイッチング速度によって決定される。そのため、制御部400は、電流I2に重畳する脈動電流の周波数成分を、予め定めた振幅および位相を有する成分とすることができる。電流I2に重畳される脈動電流の周波数成分は、電流I1の周波数成分の相似波形となる。制御部400は、電流I2に重畳する脈動電流の周波数成分を電流I1の周波数成分に近付けていくに連れて、平滑部200に流れる電流I3を低減し、コンデンサ電圧Vdcに発生する脈動電圧を低減することができる。
 制御部400が、インバータ310の動作を制御することによってインバータ310に流れる電流の脈動を制御することは、インバータ310から圧縮機315に出力される第2の交流電力の脈動を制御することと同じである。制御部400は、インバータ310から出力される第2の交流電力に含まれる脈動が、整流昇圧部700から出力される電力の脈動よりも小さくなるようにインバータ310の動作を制御する。制御部400は、コンデンサ電圧Vdcの電圧リプル、すなわちコンデンサ210に発生する電圧リプルが、インバータ310から出力される第2の交流電力にコンデンサ210に流入する電力の脈動に応じた脈動が含まれないときのコンデンサ210に発生する電圧リプルよりも小さくなるように、インバータ310から出力される第2の交流電力に含まれる脈動の振幅および位相を制御する。インバータ310から出力される第2の交流電力にコンデンサ210に流入する電力の脈動に応じた脈動が含まれないときとは、図4に示すような制御のことである。
 なお、商用電源110から供給される交流電流については、特に限定されず、単相であってもよいし、3相であってもよい。制御部400は、電流I2に重畳する脈動電流の周波数成分について、商用電源110から供給される第1の交流電力に応じて決定すればよい。具体的には、制御部400は、インバータ310に流れる電流I2の脈動波形を、商用電源110から供給される第1の交流電力が単相の場合は第1の交流電力の周波数の2倍の周波数成分、または商用電源110から供給される第1の交流電力が3相の場合は第1の交流電力の周波数の6倍の周波数成分を主成分とする脈動波形に直流分を加算した形状に制御する。脈動波形は、例えば、正弦波の絶対値の形状、または正弦波の形状とする。この場合、制御部400は、正弦波の周波数の整数倍の成分のうち少なくとも1つの周波数成分を予め規定された振幅として脈動波形に加算してもよい。また、脈動波形は、矩形波の形状、または三角波の形状であってもよい。この場合、制御部400は、脈動波形の振幅および位相を予め規定された値としてもよい。
 制御部400は、コンデンサ210にかかる電圧またはコンデンサ210に流れる電流を用いて、インバータ310から出力される第2の交流電力に含まれる脈動の脈動量を演算してもよいし、商用電源110から供給される第1の交流電力の電圧または電流を用いて、インバータ310から出力される第2の交流電力に含まれる脈動の脈動量を演算してもよい。
 また、制御部400は、商用電源110から供給される第1の交流電力の周波数成分と異なる周波数成分を含む第2の交流電力をインバータ310から圧縮機315に出力させるようにインバータ310を制御する場合、インバータ310から圧縮機315に出力される第2の交流電力に含まれる周波数成分を、昇圧部600のスイッチング素子632をオンオフするための駆動信号に重畳させてもよい。すなわち、制御部400は、インバータ310から圧縮機315に出力する第2の交流電力の電力脈動のうち、商用電源110から供給される第1の交流電力が単相の場合は第1の交流電力の周波数の2倍の周波数成分、または商用電源110から供給される第1の交流電力が3相の場合は第1の交流電力の周波数の6倍の周波数成分以外の変動周波数成分を含む電力が整流昇圧部700から出力されるように、整流昇圧部700の動作、具体的には、昇圧部600のスイッチング素子632の動作を制御する。制御部400は、変動周波数成分を、商用電源110に対する指令値を用いて制御してもよいし、変動周波数成分を、商用電源110から供給される第1の交流電力の周波数の40次までの整数倍の成分としない、または規定された値、例えば、所望の規格値以下になるように制御してもよい。
 つぎに、電力変換装置1が冷凍サイクル適用機器に搭載された場合における、電力変換装置1の動作について説明する。例えば、電力変換装置1が冷凍サイクル適用機器である空気調和機に搭載された場合、電力変換装置1の運転モードは、空気調和機の動作状態によって大きく変化する。例えば、空気調和機が空調制御対象とする室内において、ユーザの設定温度、すなわちユーザの所望温度と現在の室内温度との温度差が大きい場合、空気調和機に搭載された電力変換装置1の負荷は大きくなる。一方、ユーザの所望温度と現在の室内温度との温度差が小さい場合、空気調和機に搭載された電力変換装置1の負荷は小さくなる。また、空気調和機の運転状態によって平滑部200に流れる電流I3が十分小さい場合、制御部400は、前述のような、平滑部200に流れる電流I3を低減し、コンデンサ電圧Vdcに発生する脈動電圧を低減する制御を敢えて行わなくてもよいことも考えられる。そのため、電力変換装置1において、制御部400は、負荷の動作状態である負荷状態に応じて前述した各種の制御を行い、運転モードを判定する。負荷とは、インバータ310、モータ314、およびモータ314が搭載された機器である。モータ314が搭載された機器とは、例えば、前述の圧縮機315、空気調和機に搭載されたファンなどであるが、これらに限定されない。
 図6は、実施の形態1に係る電力変換装置1の運転モードおよび運転モードの内容を示す第1の図である。図7は、実施の形態1に係る電力変換装置1の運転モードおよび運転モードの内容を示す第2の図である。図6は電力変換装置1において昇圧部600の昇圧動作オフの場合の運転モードを示す図であり、図7は電力変換装置1において昇圧部600の昇圧動作オンの場合の運転モードを示す図である。
 昇圧動作は、高回転によるモータ314の駆動範囲を確保するため、昇圧部600が商用電源110から供給される電源電圧Vsを昇圧させる動作である。具体的には、制御部400が、昇圧部600のスイッチング素子632のオンオフを制御する。
 振動抑制制御は、モータ314の1回転中における圧縮機315などの機械的な機構に起因する負荷トルク変動によって振動が発生する場合に、インバータ310から与えるトルクを負荷トルク変動に合わせることで振動を抑制する制御である。
 過変調制御は、モータ314を高回転領域で駆動可能とする駆動のため、インバータ310の出力電圧を大きくする制御である。電力変換装置1は、商用電源110を利用する場合、供給電圧に限りがある。そのため、電力変換装置1は、モータ314を高速回転する場合、供給電圧よりもモータ314の起電力が大きくなり回転が困難となるため、インバータ310からの出力電圧を歪ませて、具体的には3次の高調波成分を含めることで出力電圧の基本波成分を少し持ち上げる。これにより、電力変換装置1は、モータ314の高回転領域を増やすことができる。
 定トルク制御は、インバータ310からモータ314に与えるトルクを一定とする制御である。定トルク制御は、定電流制御とも呼ばれる。負荷トルク変動を有するシステムであっても、比較的負荷が軽い領域で運転する場合にはそれほど振動量は大きくない。そのため、インバータ310から与えるトルクを一定とすることで、モータ314の電流波形が正弦波状、すなわち脈動を有さない波形となり、高効率運転ができる。なお、高負荷領域であっても振動が許容できる場合には、定トルク制御を使用可能である。
 電源脈動補償制御は、前述のように平滑部200のコンデンサ210に流れる電源脈動に起因するリプル電流を抑制する制御である。電源脈動に起因するリプル電流はコンデンサ210をスルーし、負荷に電力を伝達することで、コンデンサ210のストレスを軽減することができる。
 運転モード、すなわち制御部400による電力変換装置1の運転は、整流昇圧部700の動作、モータ314またはモータ314が搭載された機器の振動を低減する振動抑制制御、インバータ310の過変調制御、モータ314に対する定トルク制御、およびコンデンサ210の充放電電流を抑制する電源脈動補償制御、の各有無の組み合わせにより定まる。図6および図7に示す各制御の有無については、制御部400が、負荷状態に応じて判定する。すなわち、制御部400は、負荷状態に応じて、各制御の有無を判定し、運転モードを維持または切り替える。なお、図6および図7の例では、運転モードの具体的な内容として5つの項目を挙げたが、一例であり、これらに限定されない。5つの項目のうち一部の項目を制御の対象にしてもよいし、5つの項目以外の項目をさらに制御の対象にしてもよい。5つの項目以外の項目とは、例えば、弱め磁束制御がある。すなわち、運転には、弱め磁束制御が含まれてもよい。弱め磁束制御は、モータ314に負のd軸電流を与えて見かけ上の起電力を小さくすることで、モータ314の高回転領域を広げる制御である。
 電力変換装置1は、負荷状態について、電流値、例えば、電流検出部501の検出値によって電流I1を検出し、電流検出部502の検出値によって電流I2を検出することができる。また、電力変換装置1は、負荷状態について、温度、例えば、空気調和機に搭載される場合、空気調和機が備える室内機の温度センサの検出値、室外機の温度センサの検出値などによって温度を検出することができる。なお、電力変換装置1は、インバータ310の基板周辺に温度センサを備えてインバータ310の基板周辺の温度を検出してもよいし、モータ314の周辺に温度センサを備えてモータ314の周辺の温度を検出してもよい。また、電力変換装置1は、負荷状態について、運転速度、例えば、圧縮機315のモータ314、空気調和機に搭載される図示しないファンなどの運転速度を、制御部400の制御の過程で生成される指令値、または制御部400の制御の過程で運転周波数から推定される推定値などから直接的、または間接的に検出することができる。このように、負荷状態は、インバータ310またはモータ314または圧縮機315を検出対象とした物理量を検出する検出部の検出値、制御部400の制御の過程で生成される指令値、および制御部400の制御の過程で推定される推定値のうち少なくとも1つによって得られる。物理量は、前述の電流値、温度の他、例えば、電圧値などであってもよい。
 以下、電力変換装置1が冷凍サイクル適用機器として空気調和機に搭載される場合における、図6および図7に示す各運転モードの概要について説明する。
 運転モード1は、昇圧動作無し、振動抑制制御無し、過変調制御無し、定トルク制御無し、および電源脈動補償制御無しの組み合わせである。運転モード1は、昇圧動作は行わず、メカ起因の振動も小さく、またモータ電圧飽和にも至らず、且つ負荷電流脈動、電源電流脈動も小さい場合の運転等に用いる。
 運転モード2は、昇圧動作無し、振動抑制制御無し、過変調制御無し、定トルク制御無し、および電源脈動補償制御有りの組み合わせである。運転モード2は、昇圧動作は行わず、メカ起因の振動も小さく、またモータ電圧飽和にも至らず、且つ負荷電流脈動も小さいが、電源電流脈動を抑制したい場合の運転等に用いる。
 運転モード3は、昇圧動作無し、振動抑制制御有り、過変調制御無し、定トルク制御無し、および電源脈動補償制御無しの組み合わせである。運転モード3は、昇圧動作は行わず、モータ電圧飽和にも至らず、また負荷電流脈動や電源電流脈動は小さいが、メカ起因の振動を抑制したい場合の運転等に用いる。
 運転モード4は、昇圧動作無し、振動抑制制御有り、過変調制御無し、定トルク制御無し、および電源脈動補償制御有りの組み合わせである。運転モード4は、昇圧動作は行わず、モータ電圧飽和にも至らず、また負荷電流脈動も小さいが、メカ起因の振動と電源電流脈動を抑制したい場合の運転等に用いる。
 運転モード5は、昇圧動作無し、振動抑制制御無し、過変調制御有り、定トルク制御無し、および電源脈動補償制御無しの組み合わせである。運転モード5は、昇圧動作は行わず、メカ起因の振動は小さく、また負荷電流脈動や電源電流脈動は小さいが、モータ電圧飽和対策を行いたい場合の運転等に用いる。
 運転モード6は、昇圧動作無し、振動抑制制御無し、過変調制御有り、定トルク制御無し、および電源脈動補償制御有りの組み合わせである。運転モード6は、昇圧動作は行わず、メカ起因の振動は小さく、また負荷電流脈動は小さいが、モータ電圧飽和対策と電源電流脈動抑制を行いたい場合の運転等に用いる。
 運転モード7は、昇圧動作無し、振動抑制制御有り、過変調制御有り、定トルク制御無し、および電源脈動補償制御無しの組み合わせである。運転モード7は、昇圧動作は行わず、負荷電流脈動や電源電流脈動は小さいが、メカ起因の振動抑制とモータ電圧飽和対策を行いたい場合の運転等に用いる。
 運転モード8は、昇圧動作無し、振動抑制制御有り、過変調制御有り、定トルク制御無し、および電源脈動補償制御有りの組み合わせである。運転モード8は、昇圧動作は行わず、負荷電流脈動は小さいが、メカ起因の振動を抑制し、モータ電圧飽和対策と電源電流脈動対策を行いたい場合の運転等に用いる。
 運転モード9は、昇圧動作無し、振動抑制制御無し、過変調制御無し、定トルク制御有り、および電源脈動補償制御無しの組み合わせである。運転モード9は、昇圧動作は行わず、メカ起因の振動は小さく、またモータ電圧飽和に至っておらず、且つ電源電流脈動も小さいが、負荷電流脈動による効率低下を抑制(省エネ運転)したい場合の運転等に用いる。
 運転モード10は、昇圧動作無し、振動抑制制御無し、過変調制御無し、定トルク制御有り、および電源脈動補償制御有りの組み合わせである。運転モード10は、昇圧動作は行わず、メカ起因の振動は小さく、またモータ電圧飽和に至っていないが、負荷電流脈動による効率低下を抑え(省エネ運転)、電源電流脈動を抑制したい場合の運転等に用いる。
 運転モード11は、昇圧動作無し、振動抑制制御無し、過変調制御有り、定トルク制御有り、および電源脈動補償制御無しの組み合わせである。運転モード11は、昇圧動作は行わず、メカ起因の振動は小さく、また電源電流脈動は小さいが、モータ電圧飽和対策を行い、負荷電流脈動による効率低下を抑えたい(省エネ運転)場合の運転等に用いる。
 運転モード12は、昇圧動作無し、振動抑制制御無し、過変調制御有り、定トルク制御有り、および電源脈動補償制御有りの組み合わせである。運転モード12は、昇圧動作は行わず、メカ起因の振動は小さいが、モータ電圧飽和対策を行い、負荷電流脈動による効率低下を抑え(省エネ運転)、且つ電源電流脈動対策を行いたい場合の運転等に用いる。
 運転モード13は、昇圧動作有り、振動抑制制御無し、過変調制御無し、定トルク制御無し、および電源脈動補償制御無しの組み合わせである。運転モード13は、昇圧動作を行う際、メカ起因の振動も小さく、またモータ電圧飽和にも至らず、且つ負荷電流脈動・電源電流脈動も小さい場合の運転等に用いる。
 運転モード14は、昇圧動作有り、振動抑制制御無し、過変調制御無し、定トルク制御無し、および電源脈動補償制御有りの組み合わせである。運転モード14は、昇圧動作を行う際、メカ起因の振動は小さく、モータ電圧飽和にも至らず、また負荷電流脈動も小さいが、電源電流脈動を抑制したい場合の運転等に用いる。
 運転モード15は、昇圧動作有り、振動抑制制御有り、過変調制御無し、定トルク制御無し、および電源脈動補償制御無しの組み合わせである。運転モード15は、昇圧動作を行う際、モータ電圧飽和にも至らず、また負荷電流脈動や電源電流脈動は小さいが、メカ起因の振動を抑制したい場合の運転等に用いる。
 運転モード16は、昇圧動作有り、振動抑制制御有り、過変調制御無し、定トルク制御無し、および電源脈動補償制御有りの組み合わせである。運転モード16は、昇圧動作を行う際、モータ電圧飽和にも至らず、また負荷電流脈動も小さいが、メカ起因の振動と電源電流脈動を抑制したい場合の運転等に用いる。
 運転モード17は、昇圧動作有り、振動抑制制御無し、過変調制御有り、定トルク制御無し、および電源脈動補償制御無しの組み合わせである。運転モード17は、昇圧動作を行う際、メカ起因の振動は小さく、また負荷電流脈動や電源電流脈動は小さいが、モータ電圧飽和対策を行いたい場合の運転等に用いる。
 運転モード18は、昇圧動作有り、振動抑制制御無し、過変調制御有り、定トルク制御無し、および電源脈動補償制御有りの組み合わせである。運転モード18は、昇圧動作を行う際、メカ起因の振動は小さく、また負荷電流脈動は小さいが、モータ電圧飽和対策と電源電流脈動抑制を行いたい場合の運転等に用いる。
 運転モード19は、昇圧動作有り、振動抑制制御有り、過変調制御有り、定トルク制御無し、および電源脈動補償制御無しの組み合わせである。運転モード19は、昇圧動作を行う際、負荷電流脈動や電源電流脈動は小さいが、メカ起因の振動を抑制し、モータ電圧飽和対策を行いたい場合の運転等に用いる。
 運転モード20は、昇圧動作有り、振動抑制制御有り、過変調制御有り、定トルク制御無し、および電源脈動補償制御有りの組み合わせである。運転モード20は、昇圧動作を行う際、負荷電流脈動は小さいが、メカ起因の振動を抑制し、モータ電圧飽和対策と電源電流脈動対策を行いたい場合の運転等に用いる。
 運転モード21は、昇圧動作有り、振動抑制制御無し、過変調制御無し、定トルク制御有り、および電源脈動補償制御無しの組み合わせである。運転モード21は、昇圧動作を行う際、メカ起因の振動は小さく、またモータ電圧飽和に至っておらず、且つ電源電流脈動も小さいが、負荷電流脈動による効率低下を抑制したい(省エネ運転)場合の運転等に用いる。
 運転モード22は、昇圧動作有り、振動抑制制御無し、過変調制御無し、定トルク制御有り、および電源脈動補償制御有りの組み合わせである。運転モード22は、昇圧動作を行う際、メカ起因の振動は小さく、またモータ電圧飽和に至っていないが、負荷電流脈動による効率低下を抑え(省エネ運転)、電源電流脈動を抑制したい場合の運転等に用いる。
 運転モード23は、昇圧動作有り、振動抑制制御無し、過変調制御有り、定トルク制御有り、および電源脈動補償制御無しの組み合わせである。運転モード23は、昇圧動作を行う際、メカ起因の振動は小さく、また電源電流脈動は小さいが、モータ電圧飽和対策を行い、負荷電流脈動による効率低下を抑えたい(省エネ運転)場合の運転等に用いる。
 運転モード24は、昇圧動作有り、振動抑制制御無し、過変調制御有り、定トルク制御有り、および電源脈動補償制御有りの組み合わせである。運転モード24は、昇圧動作を行う際、メカ起因の振動は小さいが、モータ電圧飽和対策を行い、負荷電流脈動による効率低下を抑え(省エネ運転)、且つ電源電流脈動対策を行いたい場合の運転等に用いる。
 運転モード1から運転モード24において、制御部400は、例えば、コンデンサ210の容量に応じて電源脈動補償制御の有無を決定することができる。また、制御部400は、モータ314が搭載された機器、すなわち圧縮機315の仕事量に応じて振動抑制制御の有無を決定することができる。
 ここで、電力変換装置1は、前述のように空気調和機に搭載される場合、空気調和機の空調条件に応じて運転モードを判定することも可能である。図8は、実施の形態1に係る電力変換装置1が搭載される空気調和機のハードウェア構成の例を示す第1の図である。図9は、実施の形態1に係る電力変換装置1が搭載される空気調和機のハードウェア構成の例を示す第2の図である。図8は、電力変換装置1に接続される商用電源110が単相電源の場合を示し、図9は、電力変換装置1に接続される商用電源110が三相電源の場合を示している。図8および図9において、構成要素は、電源相数、コンバータ、コンデンサ210、モータ314、およびメカ機構である。なお、図8および図9では、電源相数、およびコンバータを併せて直流電源装置としている。
 電源相数について、商用電源110などの電源には単相および多相がある。多相の場合、三相が一般的である。単相電源は、家電製品など、比較的小さな電気製品で用いられる。三相電源は、産業用の電気機器など、比較的大きな電気製品で用いられる。空気調和機において単相電源を用いる機種は、主にルームエアコン、業務用エアコンなどがある。空気調和機において三相電源を用いる機種は、主に業務用エアコン、業務用マルチエアコンなどがある。
 コンバータは、交流電力を直流電力に変換する部分であり、例えば、前述の整流昇圧部700,701,702である。コンバータには、整流することで直流電力に変換するパッシブ構成、整流前または整流後にスイッチングすることで直流電圧を可変する、または電源力率、電源高調波などを改善するスイッチ系(以下、SW系と称する。)がある。パッシブ構成の場合、主にリアクトルと整流器で構成される。パッシブ構成は、図1に示す電力変換装置1の整流昇圧部700からスイッチング素子632を削除したような構成である。SW系の場合、主にリアクトル、整流器、スイッチング素子、逆流防止素子などで構成される。SW系の構成によっては、スイッチング素子および逆流防止素子が整流器の役割を兼ねる場合もある。SW系の動作としては、電源周期に対し部分的にスイッチングを行う部分SW系と、電源周期に対し全域でスイッチングを行うフルSW系とがある。部分SW系は、前述の簡易スイッチングであり、スイッチング素子に対する動作を切り替える。フルSW系は、前述のフルPAMであり、スイッチング素子を常に動作させる。部分SW系とフルSW系とは、例えば、電源高調波の規制によって用途が区別される。例えば、電源高調波の規制が比較的厳しい地域へ出荷する機種については、フルSW系で常にコンバータを動作させ、軽負荷および高負荷の場合においてともに電源高調波を改善する。一方で、電源高調波の規制が比較的厳しくない地域へ出荷する機種については、部分SW系で必要な負荷領域のみコンバータを動作させ、電源高調波を改善する。部分SW系とフルSW系とは、例えば、空気調和機の運転範囲によって用途が区別される。空気調和機の高負荷領域の運転範囲拡大のためには、負荷に印加する直流電圧を昇圧する必要があるので、昇圧比を高くできるフルSW系が好ましい。常にコンバータを動作させるフルSW系は、リアクトルのインダクタンス値を小さくできるメリットがあるが、スイッチング損失が発生するデメリットがある。必要な負荷領域のみコンバータを動作させる部分SW系は、スイッチング損失を小さくできるメリットがあるが、リアクトルのインダクタンス値を大きくする必要があるデメリットがある。
 コンデンサ210は、前述のように、電解コンデンサ、フィルムコンデンサなどである。モータ314は、前述のように圧縮機315に搭載される。
 メカ機構は、圧縮機315の機構を示すものである。空気調和機で使用される圧縮機315には、ロータリー圧縮機、スクロール圧縮機などがある。ロータリー圧縮機には、シングルロータリ方式、ツインロータリ方式と呼ばれる方式がある。シングルロータリ方式は、シリンダーを1つ有する構造であり、回転周期の1fの振動が顕著に表れる。ツインロータリ方式は、シリンダーを2つ有する構造であり、回転周期の2fの振動が顕著に表れる。スクロール圧縮機は、スクロール方式として、固定スクロール方式、揺動スクロール方式などと呼ばれる渦巻体を持つ方式である。スクロール圧縮機は、回転周期の1f~3fの振動が顕著に表れるが、振動のピークは分散している。振動の面では、シングルロータリ方式、ツインロータリ方式、スクロール方式の順で大きいという傾向がある。コストの面では、シングルロータリ方式、ツインロータリ方式、スクロール方式の順で低いという傾向がある。
 図10から図33は、実施の形態1に係る電力変換装置1が搭載される空気調和機において、図8に示した単相電源に対応した機種の構成における空調条件と、図6および図7に示した運転モードとの関係を示す図である。図10から図33の詳細については後述する。図34は、実施の形態1に係る電力変換装置1が搭載される空気調和機の冷房運転時の消費電力の変化の例を示す図である。図35は、実施の形態1に係る電力変換装置1が搭載される空気調和機の暖房運転時の消費電力の変化の例を示す図である。図34および図35において、横軸は時間を示し、縦軸は消費電力を示している。図10から図33で示される空気調和機としての空調条件は、冷房中間、冷房定格、暖房中間、暖房定格、および暖房低温があり、さらに、定格負荷領域である冷房定格および暖房定格、さらに高負荷領域である暖房低温の空調条件から保護に入るモードを加えて記載している。なお、冷房中間および暖房中間の空調条件をまとめて中間負荷領域としている。
 図34に示すように、ユーザ操作によって冷房動作モードに入った運転開始直後は、室内温度と設定された温度とが離れている状態である。圧縮機315は、モータ314が高速回転で運転し、仕事量が多い状態である。このような状態が冷房定格と呼ばれる空調条件を表し、消費電力は高い状態にある。冷房定格で十分に動作を行った時点では、室内温度と設定された温度とが近くなった状態である。圧縮機315は、モータ314が低速回転に移行して運転し、仕事量が少ない状態となる。このような状態が冷房中間と呼ばれる空調条件を表し、消費電力は低い状態にある。また、冷房定格の負荷条件において、熱サイクルの温度を保護するなどの目的で、圧縮機315のモータ314の回転数を高速回転から低速回転に一時的に移行する場合がある。このような保護動作を行った場合、モータ314が低速回転ではあるが、圧縮機315の仕事量が比較的大きい状態となる。
 また、図35に示すように、ユーザ操作によって暖房動作モードに入った運転開始直後は、室内温度と設定された温度とが離れている状態である。圧縮機315は、モータ314が高速回転で運転し、仕事量が多い状態である。このような状態が暖房定格と呼ばれる空調条件を表し、消費電力は高い状態にある。暖房運転においては、暖房定格時よりも外気温が低い環境での動作モードである、暖房低温と呼ばれる空調条件が存在する。暖房低温は、暖房定格よりも負荷が大きく、消費電力はさらに高い状態にある。また、暖房定格、暖房低温などの空調条件において、熱サイクルの温度を保護するなどの目的で、圧縮機315のモータ314の回転数を高速回転から低速回転に一時的に移行する場合がある。このような保護動作を行った場合、モータ314が低速回転ではあるが、圧縮機315の仕事量が比較的大きい状態となる。さらに、暖房運転においては、室外機の熱交換器部分に霜が付く着霜という現象がある。着霜すると熱交換がうまく行えず、負荷が大きくなるうえに空気調和機の空調効果が得られにくくなる。そこで、除霜と呼ばれる霜取りの運転が入ることがある。除霜運転自体の消費電力は小さいものの、除霜運転の間室内の暖房運転は行えないため、室温が下がり、復帰後は比較的負荷が大きい状態での運転となる。
 これらの空調条件の変化に対する運転モードの切り替えについて説明する。なお、空気調和機を主体にして説明するが、空調条件に応じて運転モードを切り替える制御は、実際には電力変換装置1の制御部400が行っている。制御部400は、空気調和機の空調条件に応じて運転する。空調条件には、冷房中間、冷房定格、暖房中間、暖房定格、および暖房低温のうち少なくとも1つが含まれる。制御部400は、空調条件について、空気調和機に対するユーザの設定、空気調和機の室外機が設置される室外の温度、空気調和機の室内機が設置される室内の温度、空気調和機の運転時間などから直接的、または間接的に取得することができる。制御部400は、これらの全てを用いて空調条件を得てもよいし、少なくとも1つによって得てもよい。
 図10は、実施の形態1に係る電力変換装置1が搭載される空気調和機の構成が構成101の場合における空調条件と運転モードとの関係を示す図である。構成101は、単相電源に対応した中でも比較的簡素なハードウェア構成となっている。直流電源装置部分は、単相に対応した整流器と、整流器の前段または後段にリアクトルを設けたパッシブ構成のコンバータと、を備える。構成101の直流電源装置部分は、図1に示す電力変換装置1の整流昇圧部700からスイッチング素子632、ダイオード633などを削除したような構成である。コンデンサ210の容量は比較的大きい。圧縮機315のモータ314の起電力は比較的大きい。圧縮機315のメカ機構は、シングルロータリなどとし、機械的脈動は比較的大きい。
 空気調和機は、構成101で冷房運転を行うケースでは、運転開始直後に冷房定格で運転するため、運転モード1での運転となる。空気調和機は、その後、室内温度と設定された温度とが近づくと、例えば、差分に閾値を設けるなどの切替条件で冷房定格から冷房中間に切り替えるが、低速運転となってメカ機構起因の振動が顕著に表れるため、振動抑制制御有りの運転モード3に切り替える。空気調和機は、保護に入る場合、運転モード7に切り替える。また、空気調和機は、暖房運転を行うケースでは、運転開始直後に暖房定格で運転するため、運転モード1での運転となる。または、空気調和機は、外気温によっては暖房低温で運転するため、運転モード5で運転する。空気調和機は、その後、室内温度と設定された温度とが近づくと、例えば、差分に閾値を設けるなどの切替条件で暖房定格から暖房中間に切り替えるが、低速運転となってメカ機構起因の振動が顕著に表れるため、振動抑制制御有りの運転モード3に切り替える。空気調和機は、保護に入る場合、運転モード7に切り替える。空気調和機は、除霜運転の前後では、負荷が大きい状態であるので外気温に応じて、運転モード1または運転モード5にて運転を行う。このように、空気調和機は、構成101においては、運転モード1、運転モード3、運転モード5、および運転モード7を切り替えることで、各空調条件に最適な製品動作を提供することが可能となる。
 図11は、実施の形態1に係る電力変換装置1が搭載される空気調和機の構成が構成102の場合における空調条件と運転モードとの関係を示す図である。構成102は、構成101に対し、圧縮機315のメカ機構をツインロータリ、スクロールなどとし、機械的脈動を比較的小さくした構成である。空気調和機は、構成102の場合、中間負荷領域のときに運転モード1で運転を行う点が構成101の場合と異なる。
 図12は、実施の形態1に係る電力変換装置1が搭載される空気調和機の構成が構成103の場合における空調条件と運転モードとの関係を示す図である。構成103は、構成101に対し、モータ314を高巻数にするなどモータ起電力を向上させた、すなわち小さくした構成である。空気調和機は、構成103の場合、定格負荷領域および暖房低温のときに運転モード11で運転を行う点が構成101の場合と異なる。
 図13は、実施の形態1に係る電力変換装置1が搭載される空気調和機の構成が構成104の場合における空調条件と運転モードとの関係を示す図である。構成104は、構成103に対し、圧縮機315のメカ機構をツインロータリ、スクロールなどとし、機械的脈動を比較的小さくした構成である。空気調和機は、構成104の場合、中間負荷領域のときに運転モード9で運転を行う点が構成103の場合と異なる。
 図14は、実施の形態1に係る電力変換装置1が搭載される空気調和機の構成が構成105の場合における空調条件と運転モードとの関係を示す図である。構成105は、構成101に対し、コンデンサ210の容量を小さくした構成である。空気調和機は、構成105の場合、電源脈動補償制御の有無が構成101の場合と異なる。その結果、空気調和機は、構成101の場合の運転モード1、運転モード3、運転モード5、および運転モード7に対して、構成105の場合は運転モード2、運転モード4、運転モード6、および運転モード8で運転を行う。
 図15は、実施の形態1に係る電力変換装置1が搭載される空気調和機の構成が構成106の場合における空調条件と運転モードとの関係を示す図である。構成106は、構成105に対し、圧縮機315のメカ機構をツインロータリ、スクロールなどとし、機械的脈動を比較的小さくした構成である。空気調和機は、構成106の場合、中間負荷領域のときに運転モード2で運転を行う点が構成105の場合と異なる。
 図16は、実施の形態1に係る電力変換装置1が搭載される空気調和機の構成が構成107の場合における空調条件と運転モードとの関係を示す図である。構成107は、構成105に対し、モータ314を高巻数にするなどモータ起電力を向上させた、すなわち小さくした構成である。空気調和機は、構成107の場合、定格負荷領域および暖房低温のときに運転モード12で運転を行う点が構成105の場合と異なる。
 図17は、実施の形態1に係る電力変換装置1が搭載される空気調和機の構成が構成108の場合における空調条件と運転モードとの関係を示す図である。構成108は、構成107に対し、圧縮機315のメカ機構をツインロータリ、スクロールなどとし、機械的脈動を比較的小さくした構成である。空気調和機は、構成108の場合、中間負荷領域のときに運転モード10で運転を行う点が構成107の場合と異なる。
 図18は、実施の形態1に係る電力変換装置1が搭載される空気調和機の構成が構成109の場合における空調条件と運転モードとの関係を示す図である。構成109は、構成101に対し、コンバータをパッシブ構成から部分SW系に変更した構成である。空気調和機は、構成109の場合、昇圧動作の有無が構成101の場合と異なる。その結果、空気調和機は、構成101の場合の運転モード1、運転モード3、運転モード5、および運転モード7に対して、構成109の場合は運転モード13、運転モード3、運転モード17、および運転モード19で運転を行う。
 図19は、実施の形態1に係る電力変換装置1が搭載される空気調和機の構成が構成110の場合における空調条件と運転モードとの関係を示す図である。構成110は、構成109に対し、圧縮機315のメカ機構をツインロータリ、スクロールなどとし、機械的脈動を比較的小さくした構成である。空気調和機は、構成110の場合、中間負荷領域のときに運転モード1で運転を行う点が構成109の場合と異なる。
 図20は、実施の形態1に係る電力変換装置1が搭載される空気調和機の構成が構成111の場合における空調条件と運転モードとの関係を示す図である。構成111は、構成109に対し、モータ314を高巻数にするなどモータ起電力を向上させた、すなわち小さくした構成である。空気調和機は、構成111の場合、定格負荷領域のときに運転モード21で運転を行い、暖房低温のときに運転モード23で運転を行う点が構成109の場合と異なる。
 図21は、実施の形態1に係る電力変換装置1が搭載される空気調和機の構成が構成112の場合における空調条件と運転モードとの関係を示す図である。構成112は、構成111に対し、圧縮機315のメカ機構をツインロータリ、スクロールなどとし、機械的脈動を比較的小さくした構成である。空気調和機は、構成112の場合、中間負荷領域のときに運転モード9で運転を行う点が構成111の場合と異なる。
 図22は、実施の形態1に係る電力変換装置1が搭載される空気調和機の構成が構成113の場合における空調条件と運転モードとの関係を示す図である。構成113は、構成109に対し、コンデンサ210の容量を小さくした構成である。空気調和機は、構成113の場合、電源脈動補償制御の有無が構成109の場合と異なる。その結果、空気調和機は、構成109の場合の運転モード3、運転モード13、運転モード17、および運転モード19に対して、構成113の場合は運転モード4、運転モード14、運転モード18、および運転モード20で運転を行う。
 図23は、実施の形態1に係る電力変換装置1が搭載される空気調和機の構成が構成114の場合における空調条件と運転モードとの関係を示す図である。構成114は、構成113に対し、圧縮機315のメカ機構をツインロータリ、スクロールなどとし、機械的脈動を比較的小さくした構成である。空気調和機は、構成114の場合、中間負荷領域のときに運転モード2で運転を行う点が構成113の場合と異なる。
 図24は、実施の形態1に係る電力変換装置1が搭載される空気調和機の構成が構成115の場合における空調条件と運転モードとの関係を示す図である。構成115は、構成113に対し、モータ314を高巻数にするなどモータ起電力を向上させた、すなわち小さくした構成である。空気調和機は、構成115の場合、定格負荷領域のときに運転モード22で運転を行い、暖房低温のときに運転モード24で運転を行う点が構成113の場合と異なる。
 図25は、実施の形態1に係る電力変換装置1が搭載される空気調和機の構成が構成116の場合における空調条件と運転モードとの関係を示す図である。構成116は、構成115に対し、圧縮機315のメカ機構をツインロータリ、スクロールなどとし、機械的脈動を比較的小さくした構成である。空気調和機は、構成116の場合、中間負荷領域のときに運転モード10で運転を行う点が構成115の場合と異なる。
 図26は、実施の形態1に係る電力変換装置1が搭載される空気調和機の構成が構成117の場合における空調条件と運転モードとの関係を示す図である。構成117は、構成101に対し、コンバータをパッシブ構成からフルSW系に変更した構成である。空気調和機は、構成117の場合、昇圧動作の有無が構成101の場合と異なる。その結果、空気調和機は、構成101の場合の運転モード1、運転モード3、運転モード5、および運転モード7に対して、構成117の場合は運転モード13、運転モード15、運転モード17、および運転モード19で運転を行う。
 図27は、実施の形態1に係る電力変換装置1が搭載される空気調和機の構成が構成118の場合における空調条件と運転モードとの関係を示す図である。構成118は、構成117に対し、圧縮機315のメカ機構をツインロータリ、スクロールなどとし、機械的脈動を比較的小さくした構成である。空気調和機は、構成118の場合、中間負荷領域のときに運転モード13で運転を行う点が構成117の場合と異なる。
 図28は、実施の形態1に係る電力変換装置1が搭載される空気調和機の構成が構成119の場合における空調条件と運転モードとの関係を示す図である。構成119は、構成117に対し、モータ314を高巻数にするなどモータ起電力を向上させた、すなわち小さくした構成である。空気調和機は、構成119の場合、定格負荷領域のときに運転モード21で運転を行い、暖房低温のときに運転モード23で運転を行う点が構成117の場合と異なる。
 図29は、実施の形態1に係る電力変換装置1が搭載される空気調和機の構成が構成120の場合における空調条件と運転モードとの関係を示す図である。構成120は、構成119に対し、圧縮機315のメカ機構をツインロータリ、スクロールなどとし、機械的脈動を比較的小さくした構成である。空気調和機は、構成120の場合、中間負荷領域のときに運転モード21で運転を行う点が構成119の場合と異なる。
 図30は、実施の形態1に係る電力変換装置1が搭載される空気調和機の構成が構成121の場合における空調条件と運転モードとの関係を示す図である。構成121は、構成117に対し、コンデンサ210の容量を小さくした構成である。空気調和機は、構成121の場合、電源脈動補償制御の有無が構成117の場合と異なる。その結果、空気調和機は、構成117の場合の運転モード13、運転モード15、運転モード17、および運転モード19に対して、構成121の場合は運転モード14、運転モード16、運転モード18、および運転モード20で運転を行う。
 図31は、実施の形態1に係る電力変換装置1が搭載される空気調和機の構成が構成122の場合における空調条件と運転モードとの関係を示す図である。構成122は、構成121に対し、圧縮機315のメカ機構をツインロータリ、スクロールなどとし、機械的脈動を比較的小さくした構成である。空気調和機は、構成122の場合、中間負荷領域のときに運転モード14で運転を行う点が構成121の場合と異なる。
 図32は、実施の形態1に係る電力変換装置1が搭載される空気調和機の構成が構成123の場合における空調条件と運転モードとの関係を示す図である。構成123は、構成121に対し、モータ314を高巻数にするなどモータ起電力を向上させた、すなわち小さくした構成である。空気調和機は、構成123の場合、定格負荷領域のときに運転モード22で運転を行い、暖房低温のときに運転モード24で運転を行う点が構成121の場合と異なる。
 図33は、実施の形態1に係る電力変換装置1が搭載される空気調和機の構成が構成124の場合における空調条件と運転モードとの関係を示す図である。構成124は、構成123に対し、圧縮機315のメカ機構をツインロータリ、スクロールなどとし、機械的脈動を比較的小さくした構成である。空気調和機は、構成124の場合、中間負荷領域のときに運転モード22で運転を行う点が構成123の場合と異なる。
 空気調和機の構成が構成101から構成124の場合において、制御部400は、例えば、コンデンサ210の容量に応じて電源脈動補償制御の有無を決定することができる。また、制御部400は、機器である圧縮機315の機構に応じて振動抑制制御の有無を決定することができる。また、制御部400は、モータ314の起電力に応じて整流昇圧部700の動作および各制御の有無を決定することができる。
 制御部400の動作を、フローチャートを用いて説明する。図36は、実施の形態1に係る電力変換装置1が備える制御部400の動作を示すフローチャートである。制御部400は、電力変換装置1の空調条件を取得する(ステップS1)。制御部400は、取得した空調条件から各制御の有無を決定し、空調条件に応じた運転モードを判定する(ステップS2)。制御部400は、判定した運転モードが前回と同じか否かを確認する(ステップS3)。運転モードが前回と同じ場合(ステップS3:Yes)、制御部400は、前回の運転モードを維持する(ステップS4)。運転モードが前回と異なる場合(ステップS3:No)、制御部400は、運転モードを切り替える(ステップS5)。
 つづいて、電力変換装置1が備える制御部400のハードウェア構成について説明する。図37は、実施の形態1に係る電力変換装置1が備える制御部400を実現するハードウェア構成の一例を示す図である。制御部400は、プロセッサ91およびメモリ92により実現される。
 プロセッサ91は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)、またはシステムLSI(Large Scale Integration)である。メモリ92は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)といった不揮発性または揮発性の半導体メモリを例示できる。またメモリ92は、これらに限定されず、磁気ディスク、光ディスク、コンパクトディスク、ミニディスク、またはDVD(Digital Versatile Disc)でもよい。
 以上説明したように、本実施の形態によれば、電力変換装置1において、制御部400は、各検出部から取得した検出値に基づいてインバータ310の動作を制御し、インバータ310に流れる電流I2に、整流部130から流れる電流I1の周波数成分に応じた周波数成分の脈動を重畳することで、平滑部200に流れる電流I3を低減することとした。これにより、電力変換装置1は、平滑部200に流れる電流I3が低減することによって、本実施の形態の制御を行わない場合と比較して、リプル電流耐量の小さなコンデンサ210の使用が可能となる。また、電力変換装置1は、コンデンサ電圧Vdcの脈動電圧が低下することによって、本実施の形態の制御を行わない場合と比較して、搭載するコンデンサ210の容量を小さくすることができる。電力変換装置1は、例えば、複数のコンデンサ210で平滑部200を構成していた場合、平滑部200を構成するコンデンサ210の本数を低減することができる。
 また、電力変換装置1は、第2の交流電力に含まれる脈動が、整流部130から出力される電力の脈動よりも小さくなるようにインバータ310の動作を制御することによって、インバータ310に流れる電流I2に重畳する脈動成分が過大になるのを抑制できる。脈動成分の重畳は、インバータ310、モータ314などを通流する電流実効値を非重畳状態と比較して増加させることとなるが、重畳する脈動成分が過大になるのを抑制することによって、インバータ310の電流容量、インバータ310の損失増加、モータ314の損失増加などを抑制したシステムを提供することが可能となる。
 また、電力変換装置1は、本実施の形態の制御を行うことによって、電流I2の脈動に起因して発生する圧縮機315の振動を抑制することができる。
 また、電力変換装置1は、昇圧部600が昇圧動作を行うことによって、コンデンサ210のコンデンサ電圧Vdcを上昇させ、インバータ310の出力可能電圧範囲を拡大することができる。電力変換装置1において、制御部400は、昇圧部600のスイッチング素子632に対する駆動信号に、インバータ310から出力する第2の交流電力に含まれる脈動の周波数成分を重畳することで、当該周波数成分に起因する電流I3およびコンデンサ電圧Vdcの脈動を低減することができる。
 また、電力変換装置1は、空調条件に応じて運転モードを切り替える。これにより、電力変換装置1は、不要に処理負荷を上げることなく、可能な場合には省エネ運転を行うことができる。
実施の形態2.
 図38は、実施の形態2に係る冷凍サイクル適用機器900の構成例を示す図である。実施の形態2に係る冷凍サイクル適用機器900は、実施の形態1で説明した電力変換装置1を備える。実施の形態2に係る冷凍サイクル適用機器900は、空気調和機、冷蔵庫、冷凍庫、ヒートポンプ給湯器といった冷凍サイクルを備える製品に適用することが可能である。本実施の形態においては、前述の実施の形態1と同様、具体的には、冷凍サイクル適用機器900として空気調和機を想定している。なお、図38において、実施の形態1と同様の機能を有する構成要素には、実施の形態1と同一の符号を付している。
 冷凍サイクル適用機器900は、実施の形態1におけるモータ314を内蔵した圧縮機315と、四方弁902と、室内熱交換器906と、膨張弁908と、室外熱交換器910とが冷媒配管912を介して取り付けられている。
 圧縮機315の内部には、冷媒を圧縮する圧縮機構904と、圧縮機構904を動作させるモータ314とが設けられている。
 冷凍サイクル適用機器900は、四方弁902の切替動作により暖房運転又は冷房運転をすることができる。圧縮機構904は、可変速制御されるモータ314によって駆動される。
 暖房運転時には、実線矢印で示すように、冷媒が圧縮機構904で加圧されて送り出され、四方弁902、室内熱交換器906、膨張弁908、室外熱交換器910及び四方弁902を通って圧縮機構904に戻る。
 冷房運転時には、破線矢印で示すように、冷媒が圧縮機構904で加圧されて送り出され、四方弁902、室外熱交換器910、膨張弁908、室内熱交換器906及び四方弁902を通って圧縮機構904に戻る。
 暖房運転時には、室内熱交換器906が凝縮器として作用して熱放出を行い、室外熱交換器910が蒸発器として作用して熱吸収を行う。冷房運転時には、室外熱交換器910が凝縮器として作用して熱放出を行い、室内熱交換器906が蒸発器として作用し、熱吸収を行う。膨張弁908は、冷媒を減圧して膨張させる。
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 電力変換装置、2 モータ駆動装置、110 商用電源、120,631 リアクトル、130 整流部、131~134,621~624 整流素子、200 平滑部、210 コンデンサ、310 インバータ、311a~311f,611~614,632 スイッチング素子、312a~312f 還流ダイオード、313a,313b,501,502 電流検出部、314 モータ、315 圧縮機、400 制御部、600,601 昇圧部、633 ダイオード、700,701,702 整流昇圧部、900 冷凍サイクル適用機器、902 四方弁、904 圧縮機構、906 室内熱交換器、908 膨張弁、910 室外熱交換器、912 冷媒配管。

Claims (10)

  1.  空気調和機に搭載される電力変換装置であって、
     商用電源から供給される第1の交流電力を整流するとともに、前記第1の交流電力の電圧を昇圧する整流昇圧部と、
     前記整流昇圧部の出力端に接続されるコンデンサと、
     前記コンデンサの両端に接続され、前記整流昇圧部および前記コンデンサから出力される電力を第2の交流電力に変換し、モータが搭載された機器に出力するインバータと、
     前記整流昇圧部の動作を制御するとともに、前記整流昇圧部から前記コンデンサに流入する電力の脈動に応じた脈動を含む前記第2の交流電力を前記インバータから前記機器に出力するように前記インバータの動作を制御し、前記コンデンサに流れる電流を抑制する制御部と、
     を備え、
     前記制御部は、前記空気調和機の空調条件に応じて運転する電力変換装置。
  2.  前記運転は、前記整流昇圧部の動作、前記モータまたは前記機器の振動を低減する振動抑制制御、前記インバータの過変調制御、前記モータに対する定トルク制御、および前記コンデンサの充放電電流を抑制する電源脈動補償制御の有無により定まる、
     請求項1に記載の電力変換装置。
  3.  前記運転に、弱め磁束制御を含む、
     請求項2に記載の電力変換装置。
  4.  前記制御部は、前記コンデンサの容量に応じて前記電源脈動補償制御の有無を決定する、
     請求項2または3に記載の電力変換装置。
  5.  前記制御部は、前記機器の機構に応じて前記振動抑制制御の有無を決定する、
     請求項2から4のいずれか1つに記載の電力変換装置。
  6.  前記制御部は、前記モータの起電力に応じて前記整流昇圧部の動作および各制御の有無を決定する、
     請求項1から5のいずれか1つに記載の電力変換装置。
  7.  前記空調条件に、冷房中間、冷房定格、暖房中間、暖房定格、および暖房低温のうち少なくとも1つを含む、
     請求項1から6のいずれか1つに記載の電力変換装置。
  8.  前記空調条件は、前記空気調和機に対するユーザの設定、前記空気調和機の室外機が設置される室外の温度、前記空気調和機の室内機が設置される室内の温度、前記空気調和機の運転時間のうち少なくとも1つによって得られる、
     請求項1から7のいずれか1つに記載の電力変換装置。
  9.  請求項1から8のいずれか1つに記載の電力変換装置を備えるモータ駆動装置。
  10.  請求項1から8のいずれか1つに記載の電力変換装置を備える空気調和機。
PCT/JP2021/005359 2021-02-12 2021-02-12 電力変換装置、モータ駆動装置および空気調和機 WO2022172419A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/005359 WO2022172419A1 (ja) 2021-02-12 2021-02-12 電力変換装置、モータ駆動装置および空気調和機
CN202180092773.5A CN116897498A (zh) 2021-02-12 2021-02-12 电力转换装置、马达驱动装置以及空调机
US18/259,430 US20240128912A1 (en) 2021-02-12 2021-02-12 Power converter, motor driving apparatus, and air conditioner
JP2022581132A JP7387038B2 (ja) 2021-02-12 2021-02-12 電力変換装置、モータ駆動装置および空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/005359 WO2022172419A1 (ja) 2021-02-12 2021-02-12 電力変換装置、モータ駆動装置および空気調和機

Publications (1)

Publication Number Publication Date
WO2022172419A1 true WO2022172419A1 (ja) 2022-08-18

Family

ID=82838529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005359 WO2022172419A1 (ja) 2021-02-12 2021-02-12 電力変換装置、モータ駆動装置および空気調和機

Country Status (4)

Country Link
US (1) US20240128912A1 (ja)
JP (1) JP7387038B2 (ja)
CN (1) CN116897498A (ja)
WO (1) WO2022172419A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117200576A (zh) * 2023-11-08 2023-12-08 深圳市方利来科技有限公司 一种可用于冲牙器的稳压控制优化系统
WO2024184960A1 (ja) * 2023-03-03 2024-09-12 三菱電機株式会社 電力変換装置および空気調和機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005020986A (ja) * 2002-12-12 2005-01-20 Matsushita Electric Ind Co Ltd モータ制御装置
JP2007110827A (ja) * 2005-10-13 2007-04-26 Matsushita Electric Ind Co Ltd インバータ装置
JP2007259629A (ja) * 2006-03-24 2007-10-04 Mitsubishi Electric Corp 電動機駆動用電源装置および空気調和装置
JP2013207925A (ja) * 2012-03-28 2013-10-07 Mitsubishi Electric Corp モータ駆動制御装置、及び冷凍空気調和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4760077B2 (ja) * 2005-03-24 2011-08-31 パナソニック株式会社 インバータ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005020986A (ja) * 2002-12-12 2005-01-20 Matsushita Electric Ind Co Ltd モータ制御装置
JP2007110827A (ja) * 2005-10-13 2007-04-26 Matsushita Electric Ind Co Ltd インバータ装置
JP2007259629A (ja) * 2006-03-24 2007-10-04 Mitsubishi Electric Corp 電動機駆動用電源装置および空気調和装置
JP2013207925A (ja) * 2012-03-28 2013-10-07 Mitsubishi Electric Corp モータ駆動制御装置、及び冷凍空気調和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024184960A1 (ja) * 2023-03-03 2024-09-12 三菱電機株式会社 電力変換装置および空気調和機
CN117200576A (zh) * 2023-11-08 2023-12-08 深圳市方利来科技有限公司 一种可用于冲牙器的稳压控制优化系统

Also Published As

Publication number Publication date
CN116897498A (zh) 2023-10-17
JP7387038B2 (ja) 2023-11-27
JPWO2022172419A1 (ja) 2022-08-18
US20240128912A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
US8169180B2 (en) Motor controller of air conditioner
US8164292B2 (en) Motor controller of air conditioner
US9543884B2 (en) Motor control device of air conditioner using distributed power supply
WO2022172419A1 (ja) 電力変換装置、モータ駆動装置および空気調和機
US20050189904A1 (en) System and method for increasing output horsepower and efficiency in a motor
WO2017042889A1 (ja) 電力変換装置及びこの電力変換装置を備えた空気調和装置
JP7345674B2 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
JP6545282B2 (ja) 電力変換装置、及び、この電力変換装置を備えた空気調和装置
WO2022172418A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
JP7471442B2 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
JP7345673B2 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
WO2023238229A1 (ja) 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
WO2023095264A1 (ja) 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
JP2008104315A (ja) モータ駆動装置
WO2023105570A1 (ja) 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
WO2023105676A1 (ja) 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
WO2023105792A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
JP7330401B2 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
JP7507894B2 (ja) 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
US20240039427A1 (en) Power converting apparatus, motor drive apparatus, and refrigeration cycle application device
WO2023084604A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
JP5013922B2 (ja) 三相整流装置及び冷凍サイクル装置
JP2008099485A (ja) モータ駆動装置
WO2023084600A1 (ja) 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
JP2008109722A (ja) モータ駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581132

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18259430

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180092773.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925670

Country of ref document: EP

Kind code of ref document: A1