WO2022156383A1 - 一种可连续补锂/钠的蓄电池 - Google Patents
一种可连续补锂/钠的蓄电池 Download PDFInfo
- Publication number
- WO2022156383A1 WO2022156383A1 PCT/CN2021/135401 CN2021135401W WO2022156383A1 WO 2022156383 A1 WO2022156383 A1 WO 2022156383A1 CN 2021135401 W CN2021135401 W CN 2021135401W WO 2022156383 A1 WO2022156383 A1 WO 2022156383A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- electrode sheet
- pole piece
- negative electrode
- sodium
- Prior art date
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 117
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 116
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 title claims abstract description 73
- 229910052708 sodium Inorganic materials 0.000 title claims abstract description 73
- 239000011734 sodium Substances 0.000 title claims abstract description 73
- 238000003860 storage Methods 0.000 title abstract description 11
- 230000009469 supplementation Effects 0.000 claims abstract description 23
- 230000001502 supplementing effect Effects 0.000 claims abstract description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 32
- 229910052782 aluminium Inorganic materials 0.000 claims description 30
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 30
- 239000011889 copper foil Substances 0.000 claims description 23
- 239000011888 foil Substances 0.000 claims description 22
- 239000002131 composite material Substances 0.000 claims description 17
- 239000004020 conductor Substances 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 239000007769 metal material Substances 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 9
- 239000003575 carbonaceous material Substances 0.000 claims description 6
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 39
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 38
- 230000002441 reversible effect Effects 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 35
- 239000007773 negative electrode material Substances 0.000 description 19
- 229910001415 sodium ion Inorganic materials 0.000 description 10
- 229910052814 silicon oxide Inorganic materials 0.000 description 9
- 239000013589 supplement Substances 0.000 description 9
- 239000010703 silicon Substances 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 239000011149 active material Substances 0.000 description 6
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 6
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 6
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000002427 irreversible effect Effects 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 239000011868 silicon-carbon composite negative electrode material Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 229910000681 Silicon-tin Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- LQJIDIOGYJAQMF-UHFFFAOYSA-N lambda2-silanylidenetin Chemical compound [Si].[Sn] LQJIDIOGYJAQMF-UHFFFAOYSA-N 0.000 description 2
- 238000006138 lithiation reaction Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002733 tin-carbon composite material Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 150000002641 lithium Chemical class 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4242—Regeneration of electrolyte or reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to the technical field of storage batteries, in particular to a storage battery capable of continuously replenishing lithium/sodium.
- the pre-lithiation of the negative electrode is the addition of an additional lithium source to compensate for the loss of active lithium ions in the positive electrode material when the SEI film is formed on the negative electrode surface, which can improve the reversible discharge capacity of the battery.
- the Chinese invention patent with the application number 201310094757.7 discloses a method for continuously replenishing lithium powder on both sides of the negative electrode sheet of a lithium ion battery. The lithium powder is dispersed on the upper and lower surfaces of the negative electrode electrode sheet through the combination of external electric field adsorption and rolling technology.
- the Chinese invention patent with the application number of 201520748174.6 discloses a lithium ion battery pole piece lithium replenishing device, which achieves the effect of replenishing lithium to the electrode piece by contacting the lithium supply device and the electrode piece in a lithium ion-containing electrolyte tank.
- the Chinese invention patent with the application number of 201910761270.7 discloses a lithium ion battery negative electrode plate lithium replenishing device and a lithium replenishing method, and the lithium replenishing process of the negative electrode plate is completed by an electrochemical lithium replenishing method.
- the Chinese invention patent with the application number of 201210351225.2 discloses a method for replenishing lithium to the negative electrode sheet of a lithium ion battery. It is reduced to metallic lithium and embedded in the negative electrode sheet to realize "wet lithium replenishment".
- the Chinese invention patent with the application number of 202010534027.4 discloses a composite lithium supplement and a preparation method and application thereof.
- the composite lithium supplement is composed of an inorganic salt compound, a catalyst and a conductive agent, and the composite lithium supplement is added to the positive pole piece or diaphragm. Close to the positive side, during the charging process of the battery, the lithium supplementation agent decomposes and releases active lithium ions to supplement lithium for the battery, making up for the irreversible lithium loss of the negative electrode during the first charge and discharge of the battery.
- the above lithium replenishment method can compensate the active lithium consumption during the first charge-discharge cycle of the battery, and improve the first coulombic efficiency and discharge specific capacity of the battery, but it cannot continuously replenish lithium during the cycle of the lithium-ion battery, and the battery still has activity during the cycle.
- the problem of continuous lithium consumption cannot obtain ideal cycle performance.
- the Chinese invention patent with the application number of 201710116105.7 discloses a secondary battery with a supplementary lithium electrode and a preparation method thereof.
- the positive electrode can be supplemented with lithium or the negative electrode can be supplemented, so as to achieve high coulombic efficiency and improve cycle characteristics; this lithium supplement technology can supplement lithium for the first time or during the cycle, but considering that lithium-ion batteries are integrated in electronic devices In the process of lithium replenishment, the lithium replenishment electrode and the positive or negative electrode need to be connected separately.
- the lithium replenishment process is very cumbersome, and the operability is poor in practical applications, and it is impossible to realize real-time lithium replenishment of the battery.
- Designing a reasonable battery structure, introducing lithium replenishment electrodes, and realizing real-time automatic lithium replenishment of the battery can greatly improve the utilization rate of positive active materials and the specific energy of the whole battery, charge-discharge coulombic efficiency, cycle stability and service life of lithium-ion batteries.
- the first purpose of the present invention is to solve the problem that the reversible capacity and cycle stability of the lithium-ion battery are reduced due to the consumption of active lithium during the first time and during the cycle, and provide a battery structure that can automatically replenish lithium in real time.
- the second purpose of the present invention is to solve the problem that the reversible capacity and cycle stability of the sodium-ion battery are reduced due to the consumption of active sodium during the first time and during the cycle, and provide a battery structure that can automatically replenish sodium in real time.
- a kind of accumulator that can continuously supplement lithium comprise positive electrode sheet I, negative electrode sheet I and at least one lithium supplementing electrode sheet, any one lithium supplementing electrode sheet is all connected with negative electrode sheet I by diode unit 1, and described diode unit 1 includes at least one Diode, the described lithium-replenishing pole piece, the diode unit I and the negative pole piece I are connected in series by wires, the anode of the diode unit 1 is connected with the negative pole piece I, the cathode is connected with the lithium-replenishing pole piece, and the described lithium-replenishing pole piece,
- the positive electrode sheet I and the negative electrode sheet I are separated from each other by the separator I, and the lithium supplementing electrode sheet is arranged at any position inside the battery core.
- the lithium-replenishing pole piece is a metal lithium piece or a lithium-containing pole piece compounded with a conductive material.
- the diodes are connected in series or in parallel, so as to ensure the normal progress of the lithium replenishment process.
- the positive electrode sheet 1 comprises a laminated positive electrode sheet, a wound positive electrode sheet or a composite positive electrode sheet of winding and lamination
- the negative electrode sheet 1 includes a laminated negative electrode sheet, a wound negative electrode sheet or a rolled negative electrode sheet. Winding and lamination composite negative electrode.
- the active material in the negative electrode sheet 1 is one of carbon-based negative electrode material, silicon-based negative electrode material, tin-based negative electrode material, silicon-carbon composite negative electrode material, tin-carbon composite negative electrode material, and silicon-tin composite negative electrode material.
- the conductive material includes conductive carbon material or conductive metal material I, wherein the conductive metal material I includes one of copper foil, foamed copper, copper mesh or pocket-type copper foil, and the pocket-type copper foil is a cavity-containing copper foil
- the conductive metal material I includes one of copper foil, foamed copper, copper mesh or pocket-type copper foil, and the pocket-type copper foil is a cavity-containing copper foil
- the lithium source is placed in the chamber of the pocket copper foil
- the surface of the pocket copper foil is provided with through holes, and the through holes are used for the dissolution of lithium ions.
- a battery capable of continuous sodium supplementation comprising a positive electrode sheet II, a negative electrode sheet II and at least one sodium supplementing electrode sheet, and any one sodium supplementing electrode sheet is connected to the negative electrode sheet II through a diode unit II, and the diode unit II includes at least one Diode, the sodium supplementary pole piece, diode unit II and negative pole piece II are connected in series by wires, the anode of the diode unit II is connected with the negative pole piece II, the cathode is connected with the sodium supplementation pole piece, the sodium supplementation pole piece, The positive electrode sheet II and the negative electrode sheet II are separated from each other by the separator II, and the sodium supplementary electrode sheet is arranged at any position inside the battery core.
- the sodium-supplementing pole piece is a metal sodium piece or a sodium-containing pole piece compounded with a conductive material.
- the diodes are connected in series or in parallel to ensure the normal progress of the sodium supplementation process.
- the positive electrode sheet II includes a laminated positive electrode sheet, a wound positive electrode sheet, or a wound and laminated composite positive electrode sheet
- the negative electrode sheet II includes a laminated negative electrode sheet, a wound negative electrode sheet, or a rolled negative electrode sheet. Winding and lamination composite negative electrode.
- the active material in the negative electrode sheet II is a combination of one or more of a carbon-based negative electrode material, a tin-based negative electrode material, and a transition metal phosphide negative electrode material.
- the conductive material includes conductive carbon material or conductive metal material II, wherein the conductive metal material II includes one of aluminum foil, foamed aluminum, aluminum mesh or pocket aluminum foil, and the pocket aluminum foil is an aluminum foil containing a cavity , the sodium source is placed in the cavity of the bag-type aluminum foil, and the surface of the bag-type aluminum foil is provided with through holes, and the through holes are used for the dissolution of sodium ions.
- the invention cleverly utilizes the forward characteristic in the volt-ampere characteristic of the diode, and connects the diode unit between the lithium supplementary pole piece or the sodium supplementation pole piece and its corresponding negative pole piece, wherein the anode of the diode unit is connected with the negative pole piece of the battery, and the The cathode is connected with the corresponding lithium-replenishing pole piece or sodium-replenishing pole piece, so that the real-time automatic lithium-ion replenishment of the lithium-ion battery or the real-time automatic sodium-supplementation of the sodium-ion battery can be realized.
- the present invention can realize real-time automatic lithium replenishment or real-time automatic sodium replenishment of lithium ion or sodium ion storage battery in any cycle process.
- the type, quantity and series-parallel connection of the diodes in the diode unit can be adjusted according to the working voltage characteristics of the lithium anode to be replenished or the sodium anode to be replenished.
- Diodes with high forward voltage can be selected or multiple diodes with low forward voltage can be connected in series.
- a single diode can be selected; when the lithium electrode is supplemented Or when the current generated between the sodium supplementation electrode and its corresponding negative electrode is large during the process of lithium supplementation or sodium supplementation, high-power diodes or multiple low-power diodes can be used in parallel to reduce the operating power of a single diode and ensure that the diodes do not operate properly. Burned by high current.
- the lithium-replenishing pole piece or the sodium-replenishing pole piece and the diode unit can be encapsulated inside the battery, and the lithium-replenishing or sodium-replenishing process does not require human intervention or special circuit settings, and does not consume additional energy.
- the thickness of the lithium-supplemented pole piece or the sodium-supplemented pole piece in the present invention will gradually decrease during the cycle, thereby releasing a certain free volume to provide a certain buffer space for the volume expansion of the battery. Therefore, the present invention can reduce Volume expansion problem during cycling of small batteries.
- the present invention can continuously compensate for the loss of positive active lithium/active sodium in the cycle process, and greatly improves the positive electrode active material utilization rate and battery specific energy of lithium/sodium ion batteries. Charge-discharge coulombic efficiency, cycle stability and service life.
- Fig. 1 the structural representation of the storage battery of the present invention that can be continuously supplemented with lithium;
- Fig. 2 the structural representation of the storage battery of the present invention that can continuously supplement sodium;
- Figure 3 Lithium cobalt oxide positive electrode-silicon oxide negative electrode lithium-ion battery first charge and discharge curve
- Figure 4 Cycle performance diagram of lithium cobalt oxide positive electrode-silicon oxide negative electrode lithium ion battery containing lithium supplementary electrode
- Figure 5 Cycle performance diagram of lithium cobalt oxide positive electrode-silicon oxide negative electrode lithium ion battery without lithium supplementary electrode
- a battery capable of continuously supplementing lithium comprising a positive electrode sheet I1, a negative electrode sheet I2, a lithium supplementing electrode sheet 3 and a diode unit I4, the diode unit I4 includes at least one diode, the lithium supplementing electrode sheet 3,
- the diode unit 14 and the negative electrode sheet 12 are connected in series by a wire, the anode of the diode unit 14 is connected with the negative electrode sheet 12, and the cathode is connected with the supplementary lithium electrode piece 3, and the lithium supplemented electrode piece 3 and the positive electrode sheet 1 1 and the negative electrode sheet I2 are separated from each other by the separator I5.
- the lithium-replenishing pole piece 3 is a metal lithium piece or a lithium-containing pole piece compounded with a conductive material, and the number, position and thickness of the lithium-replenishing pole piece can be adjusted according to the capacity and cycle life requirements of the battery, so as to improve the replenishment. Lithium efficiency.
- the conductive material includes a conductive carbon material or a conductive metal material I, wherein the conductive metal material I includes one of copper foil, foamed copper, copper mesh or pocket copper foil, and the pocket copper foil is a cavity-containing copper foil Foil, the surface of the bag-type copper foil is provided with through holes, and the through holes are used for the dissolution of lithium ions; the lithium-containing pole piece compounded with the conductive material can be made by rolling or evaporating metal lithium on the surface of the copper foil. Lithium pole piece, lithium-containing pole piece prepared by filling molten metal lithium in the pores of foam copper, lithium-containing pole piece prepared by rolling and compounding metal lithium and copper mesh, or lithium source placed in the cavity of pocket copper foil to obtain of lithium-containing pole pieces.
- the lithium-replenishing pole piece 3 is preferably a lithium-containing pole piece obtained by rolling or vapor-depositing metallic lithium on the surface of the copper foil or a lithium-containing pole piece obtained by placing a lithium source in a pocket copper foil chamber.
- the high bonding force between the pole piece and the copper current collector can improve the structural stability of the lithium-replenishing electrode and the utilization rate of the lithium source, and ensure the continuous lithium-replenishing effect in the long cycle process.
- the diodes are connected in series, in parallel, or in a combination of series and parallel.
- the forward conduction voltage diodes are connected in series to ensure normal lithium replenishment.
- the parallel connection can reduce the working current of a single diode and ensure that the diode does not Burned by high power heat.
- the positive electrode sheet I1 includes a laminated positive electrode sheet, a wound positive electrode sheet or a wound and laminated composite positive electrode sheet
- the negative electrode sheet I2 includes a laminated negative electrode sheet and a wound negative electrode sheet. Or wound and laminated composite negative electrode.
- the diodes in the diode unit I4 may be silicon diodes or germanium diodes.
- the active material in the negative electrode sheet 12 is a carbon-based negative electrode material, a silicon-based negative electrode material, a tin-based negative electrode material, a silicon-carbon composite negative electrode material, a tin-carbon composite negative electrode material, and a silicon-tin composite negative electrode material.
- the silicon carbon composite negative electrode material or silicon oxide negative electrode material with a silicon mass ratio of 5%-50% is preferred.
- the above negative electrode material has high specific energy. Matching the high voltage positive electrode can significantly improve the energy density of the battery, but its first cycle irreversible capacity It is relatively large, and the active lithium in the positive electrode will continue to be consumed due to the film formation problem on the surface of the negative electrode during the cycle, and the ideal cycle stability cannot be obtained. The effect of cycle stability to obtain lithium-ion secondary batteries with high energy density and high cycle stability.
- the electrode potential of the negative electrode sheet I 2 is higher than the forward conduction voltage of the diode unit I 4 , the lithium supplementary electrode sheet 3 and the negative electrode sheet I 2 are electronically conductive, and the lithium supplementary electrode sheet 3-
- the battery structure of the diode unit 14-negative electrode sheet 12, the lithium-replenishing electrode sheet 3 dissolves to supplement lithium for the negative electrode sheet 12, and is used for the formation of the negative electrode SEI film.
- the electronic channel between the lithium-replenishing pole piece 3 and the negative pole piece I2 is automatically closed; during the battery charging process, the active material in the negative pole piece I2 undergoes a lithiation reaction, and the negative pole piece I2 The electrode potential drops further, and the diode unit I 4 is always in a closed state. Therefore, the lithium-replenishing pole piece 3 does not participate in the charging process of the battery; during the battery discharge process, lithium ions are dissolved from the negative electrode, and the electrode potential of the negative electrode piece I 2 gradually increases.
- the lithium supplementary electrode sheet 3 and its corresponding negative electrode sheet I 2 are electronically conductive, and the lithium supplementary electrode sheet 3 dissolves and releases.
- Lithium ions compensate for the loss of active lithium ions of the positive electrode during the charging process, and the negative electrode sheet I 2 and the diode unit I 4 maintain electronic conduction until the end of the battery discharge process.
- a battery capable of continuously supplementing sodium comprising a positive electrode sheet II 6, a negative electrode sheet II 7, a sodium supplementing electrode sheet 8 and a diode unit II9
- the diode unit II 9 includes at least one diode
- the sodium supplementing electrode sheet 8 the diode
- the unit II 9 and the negative electrode sheet II 7 are connected in series by wires, the anode of the diode unit II 9 is connected with the negative electrode sheet II 7, and the cathode is connected with the sodium supplementation electrode piece 8, and the sodium supplementation electrode sheet 8 and the positive electrode sheet II 6 are connected. and the negative electrode sheet II 7 are separated from each other by the separator II 10.
- the sodium replenishing pole piece 8 is a metal sodium piece or a sodium-containing pole piece compounded with a conductive material, and the number, position and thickness of the sodium replenishing pole piece can be adjusted according to the capacity and cycle life requirements of the battery to improve the replenishment.
- Sodium Efficiency is a metal sodium piece or a sodium-containing pole piece compounded with a conductive material, and the number, position and thickness of the sodium replenishing pole piece can be adjusted according to the capacity and cycle life requirements of the battery to improve the replenishment.
- the conductive material includes conductive carbon material or conductive metal material II, wherein the conductive metal material II includes one of aluminum foil, foamed aluminum, aluminum mesh, or pocket aluminum foil, and the pocket aluminum foil is an aluminum foil containing a cavity, and the The surface of the bag-type aluminum foil is provided with through holes, and the through holes are used for the dissolution of sodium ions;
- the sodium-containing pole piece compounded with the conductive material can be a sodium-containing pole piece, foamed aluminum pole piece made by rolling or evaporating metal sodium on the surface of the aluminum foil
- the sodium-supplementing pole piece 8 is preferably a sodium-containing pole piece obtained by rolling or evaporating metal sodium on the surface of aluminum foil or a sodium-containing pole piece obtained by placing a sodium source in a bag-type aluminum foil chamber. It has a high binding force with the aluminum current collector, which can improve the structural stability of the sodium-supplemented electrode and the utilization rate of the sodium source, and ensure the continuous sodium-supplementation effect in the long cycle process.
- the diodes are connected in series, in parallel, or in a combination of series and parallel.
- the diodes with forward conduction voltage are connected in series.
- the positive electrode sheet II 6 includes a laminated positive electrode sheet, a wound positive electrode sheet or a wound and laminated composite positive electrode sheet
- the negative electrode sheet II 7 includes a laminated negative electrode sheet and a wound negative electrode sheet. Or wound and laminated composite negative electrode.
- the diodes in the diode unit II9 may be silicon diodes or germanium diodes.
- the active material in the negative electrode sheet II7 is a combination of one or more of carbon-based negative electrode materials, tin-based negative electrode materials, and transition metal phosphide negative electrode materials.
- the electrode potential of the negative electrode sheet II 7 is higher than the forward conduction voltage of the diode unit II 9, the sodium supplementary electrode sheet 8 and the negative electrode sheet II 7 are electronically connected, and the sodium supplementary electrode sheet 8-
- the electrode potential of the negative electrode sheet II 7 drops, it enters the diode unit II
- the dead zone voltage of 9 is in the range of the dead zone voltage
- the electron channel between the sodium-supplementing pole piece 8 and the negative pole piece II 7 is automatically closed; during the battery charging process, the active material in the negative pole piece II 7 undergoes a sodium reaction, and the negative pole piece II 7 has a sodium reaction.
- the electrode potential drops further, and the diode unit II 9 is always in a closed state. Therefore, the sodium-supplementing electrode piece 8 does not participate in the charging process of the battery; during the battery discharge process, the sodium ions are dissolved from the negative electrode, and the electrode potential of the negative electrode piece II 7 gradually increases.
- the sodium supplementary electrode sheet 8 is electronically conducted with its corresponding negative electrode sheet II 7, and the sodium supplementary electrode sheet 8 is dissolved and released.
- Sodium ions compensate for the loss of active sodium ions of the positive electrode during the charging process, and the negative electrode sheet II 7 and the diode unit II 9 maintain electronic conduction until the end of the battery discharge process.
- a single-side coated lithium cobalt oxide positive electrode with a surface capacity of 4.1mAh/cm 2 and a size of 6.3cm ⁇ 4.5cm and a single-side coated anode with a theoretical surface capacity of 4.305mAh/cm 2 and a size of 6.5cm ⁇ 4.7cm were oxidized
- Sub-silicon negative electrode stack the lithium-containing electrode sheet with 20 ⁇ m thickness of lithium metal rolled on the surface of copper foil is used as the supplementary lithium electrode plate 3 and placed on the uncoated side of the sub-silicon oxide negative electrode sheet, and the electrodes are separated by commercial diaphragms.
- a silicon diode forward conduction voltage 0.7V, rated power 0.5W
- the anode of the silicon diode is connected to the silicon oxide negative electrode piece, and the cathode is connected to the lithium supplementary electrode piece.
- 3 Turn on, put the laminated battery in the aluminum-plastic film shell, weld the tabs of the positive electrode 1 and the negative electrode 2 respectively, and package them after vacuum injection.
- the rate is 0.2C
- the charging and discharging range is 2.5-4.48V
- the test temperature is room temperature.
- the structure of the lithium-ion battery of the comparative example is the same as that of Example 1, the difference is that the battery cell of the comparative example does not contain the supplementary lithium pole piece 3 and the diode unit I4. , the charge-discharge rate is 0.2C, the charge-discharge range is 2.5-4.48V, and the test temperature is room temperature.
- the initial charging voltage of the lithium-ion battery without the lithium-supplementary pole piece 3 is about 0.3V for the first time, while the lithium-ion battery with the lithium-supplementary pole piece 3 rests for 90 hours, and the initial charging voltage of the battery is about 2.5V. , and the time for the slow rise of the voltage in the early stage of charging is greatly shortened.
- the lithium-supplemented pole piece 3 effectively pre-lithiated the silicon oxide negative piece during the early standing process; in addition, the lithium-supplemented pole piece 3
- the electrochemical polarization during the charging and discharging process of the lithium-ion battery is smaller, the first charge and discharge capacities are 110.883mAh and 83.088mAh, respectively, and the Coulomb efficiency is 74.933%, while the first charge and discharge capacity of the lithium-ion battery without the lithium supplementary electrode 3 is only are 104.7mAh and 72.15mAh, and the first charge-discharge Coulomb efficiency is only 68.934%.
- Figures 4 and 5 are the cycle performance diagrams of the lithium cobalt oxide positive electrode-silicon oxide negative electrode lithium ion battery with the lithium supplementary electrode 3 and the lithium cobalt oxide positive electrode-silicon oxide negative lithium ion battery without the lithium supplementary electrode 3, respectively.
- Cycle performance diagram it can be seen from the figure that the cycle stability of the lithium-ion battery with the supplementary lithium pole piece 3 is obviously better than that of the lithium-ion battery without the lithium supplementary pole piece 3, and the lithium ion battery with the lithium supplementary pole piece 3 is in the top 24
- the average coulombic efficiency during the second cycle is 98.24%, which is significantly higher than 97.39% of the lithium-ion battery without the lithium-supplemented pole piece 3, which proves that the lithium-supplemented pole piece 3 can continuously replenish the battery during the cycle process, thereby improving the battery. cyclic stability.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
本发明提供一种可续补锂/钠的蓄电池,涉及蓄电池技术领域,具体方案如下:一种可连续补锂的蓄电池,包括正极片I、负极片I和至少一个补锂极片,任意一个补锂极片均通过二极管单元I与负极片I连接,所述二极管单元I包括至少一个二极管,所述补锂极片、二极管单元I与负极片I通过导线串联,所述二极管单元I的阳极与负极片I导通,阴极与补锂极片导通,所述补锂极片、正极片I和负极片I相互之间通过隔膜I隔离,所述补锂极片设置在电芯内部的任意位置。本发明可以实现锂离子蓄电池的实时自动补锂,大幅提升锂离子蓄电池的可逆容量、充放电库伦效率、循环稳定性和使用寿命。
Description
本发明涉及蓄电池技术领域,具体涉及一种可连续补锂/钠的蓄电池。
锂离子电池首次充放电(化成)过程中会因为在负极活性材料表面形成固态电解质界面膜(SEI)而造成正极活性锂的不可逆消耗,且SEI膜在循环过程中存在反复破坏和再生的现象,进而导致电池的库伦效率、可逆容量、比能量、循环稳定性和续航能力的下降;钠离子电池也存在同样的问题。
负极预锂化即添加额外锂源以补偿负极表面形成SEI膜时正极材料中活性锂离子的损耗,可以提升电池的可逆放电容量。申请号为201310094757.7的中国发明专利公开了一种向锂离子电池负极片双面连续补充锂粉的方法,通过外加电场吸附和辊压技术相结合将锂粉分散于负极极片的上下表面。申请号为201520748174.6的中国发明专利公开了一种锂离子电池极片补锂装置,通过将供锂装置与电极片在含锂离子电解液槽中接触达到对电极片补锂的效果。申请号为201910761270.7的中国发明专利公开了一种锂离子电池负极极片补锂装置及补锂方法,通过电化学补锂方法完成负极片的补锂过程。申请号为201210351225.2的中国发明专利公开了一种向锂离子电池负极片补锂的方法,通过在惰性气氛中将有机锂溶液喷洒或滴加于负极片表面,使有机锂溶液中的锂离子被还原成金属锂并嵌入负极片中,实现“湿法补锂”。申请号为202010534027.4的中国发明专利公开了一种复合补锂剂及其制备方法和应用,复合补锂剂由无机盐化合物、催化剂和导电剂组成,将复合补锂剂添加到正极极片或者隔膜靠近正极一侧,在电池充电过程中,补锂剂分解释放活性锂离子为电池补锂,弥补电池首次充放电负极不可逆锂损失。上述补锂方法能够补偿电池首次充放电循环过程中的活性锂消耗,提升电池首次库伦效率和放电比容量,但无法在锂离子电池循环过程中进行连续补锂,电池在循环过程中依然存在活性锂持续消耗的问题,无法获得理想的循环性能。申请号为201710116105.7的中国发明专利公开了一种具有补锂电极的二次电池及其制备方法,通过向电池中引入补锂极片,当补锂极片与正极片或负极片通过极耳连接时,可以实现正极补锂或负极补锂,实现高的库伦效率,改善循环特性;该补锂技术可以在首次或循环过程中对电池进行补锂,但考虑到锂离子电池是集成在电子器件中,而补锂过程需要单独连接补锂电极与正极或负极,补锂过程十分繁琐,实际应用中可操作性差,无法实现电池的实时补锂。设计合理的电池结构,引入补锂电极, 实现电池的实时自动补锂,可以大幅提升锂离子电池的正极活性物质利用率和全电池比能量、充放电库伦效率、循环稳定性和使用寿命。
发明内容
本发明的第一个目的在于解决锂离子蓄电池首次及循环过程中因活性锂消耗而造成电池可逆容量和循环稳定性下降的问题,提供一种可以实时自动补锂的蓄电池结构。
本发明的第二个目的在于解决钠离子蓄电池首次及循环过程中因活性钠消耗而造成电池可逆容量和循环稳定性下降的问题,提供一种可以实时自动补钠的蓄电池结构。
一种可连续补锂的蓄电池,包括正极片I、负极片I和至少一个补锂极片,任意一个补锂极片均通过二极管单元I与负极片I连接,所述二极管单元I包括至少一个二极管,所述补锂极片、二极管单元I与负极片I通过导线串联,所述二极管单元I的阳极与负极片I导通,阴极与补锂极片导通,所述补锂极片、正极片I和负极片I相互之间通过隔膜I隔离,所述补锂极片设置在电芯内部的任意位置。
进一步的,所述补锂极片为金属锂片或与导电材料复合的含锂极片。
进一步的,所述二极管单元I中的二极管数量大于1时,二极管之间采用串联或并联的方式连接,以保证补锂过程的正常进行。
进一步的,所述正极片I包括叠片式正极片、卷绕式正极片或卷绕与叠片复合式正极片,所述负极片I包括叠片式负极片、卷绕式负极片或卷绕与叠片复合式负极片。
进一步的,所述负极片I中的活性材料为碳基负极材料、硅基负极材料、锡基负极材料、硅碳复合负极材料、锡碳复合负极材料、硅锡复合负极材料中的一种。
进一步的,所述导电材料包括导电碳材料或导电金属材料I,其中导电金属材料I包括铜箔、泡沫铜、铜网或袋式铜箔中的一种,所述袋式铜箔为含腔室的铜箔,锂源置于袋式铜箔的腔室之中,所述袋式铜箔的表面设置有通孔,通孔用于锂离子的溶出。
一种可连续补钠的蓄电池,包括正极片II、负极片II和至少一个补钠极片,任意一个补钠极片均通过二极管单元II与负极片II连接,所述二极管单元II包括至少一个二极管,所述补钠极片、二极管单元II与负极片II通过导线串联,所述二极管单元II的阳极与负极片II导通,阴极与补钠极片导通,所述补钠极片、正极片II和负极片II相互之间通过隔膜II隔离,所述补钠极片设置在电芯内部的任意位置。
进一步的,所述补钠极片为金属钠片或与导电材料复合的含钠极片。
进一步的,所述二极管单元II中的二极管数量大于1时,二极管之间采用串联或并联的方式连接,以保证补钠过程的正常进行。
进一步的,所述正极片II包括叠片式正极片、卷绕式正极片或卷绕与叠片复合式正极片,所述负极片II包括叠片式负极片、卷绕式负极片或卷绕与叠片复合式负极片。
进一步的,所述负极片II中的活性材料为碳基负极材料、锡基负极材料、过渡金属磷化物负极材料中的一种或多种的组合。
进一步的,所述导电材料包括导电碳材料或导电金属材料II,其中导电金属材料II包括铝箔、泡沫铝、铝网或袋式铝箔中的一种,所述袋式铝箔为含腔室的铝箔,钠源置于袋式铝箔的腔室之中,所述袋式铝箔的表面设置有通孔,通孔用于钠离子的溶出。
本发明相对于现有技术的有益效果:
本发明巧妙利用二极管伏安特性中的正向特性,在补锂极片或补钠极片与其对应的负极片之间连接二极管单元,其中二极管单元的阳极与电池的负极片连接,二极管单元的阴极与相应的补锂极片或补钠极片连接,即可实现锂离子电池的实时自动补锂或钠离子电池的实时自动补钠。本发明可以实现锂离子或钠离子蓄电池在任意一次循环过程中的实时自动补锂或实时自动补钠。二极管单元中二极管的类型、数量及串并联方式可以根据待补锂负极片或待补钠负极片的工作电压特性进行调整,当待补锂负极或待补钠负极的工作电压平台较高时,可以选择高正向导通电压的二极管或将多个低正向导通电压的二极管进行串联,当待补锂负极或待补钠负极的工作电压平台较低时,可以选择单个二极管;当补锂电极或补钠电极与其相对应的负极之间在补锂或补钠过程中产生的电流较大时,可以采用大功率二极管或将多个低功率二极管并联以降低单个二极管的运行功率,保证二极管不被大电流烧毁。此外,补锂极片或补钠极片与二极管单元均可封装在电池内部,补锂或补钠过程无需人为干预或特殊电路设置,也不消耗额外的能量。同时,本发明中的补锂极片或补钠极片的厚度会在循环过程中逐渐下降,进而释放出一定的自由体积,为电池的体积膨胀提供一定的缓冲空间,因此,本发明能够减小电池循环过程中的体积膨胀问题。相比其它一次性或阶段性补锂/补钠方法,本发明可以在循环过程中持续补偿正极活性锂/活性钠损失,大幅提升锂/钠离子蓄电池的正极活性物质利用率和电池比能量、充放电库伦效率、循环稳定性和使用寿命。
图1:本发明所述的可连续补锂的蓄电池的结构示意图;
图2:本发明所述的可连续补钠的蓄电池的结构示意图;
图3:钴酸锂正极-氧化亚硅负极锂离子电池首次充放电曲线图;实线为含补锂极片,虚线为不含补锂极片;
图4:含补锂极片的钴酸锂正极-氧化亚硅负极锂离子电池循环性能图;
图5:不含补锂极片的钴酸锂正极-氧化亚硅负极锂离子电池循环性能图;
图中:1、正极片I;2、负极片I;3、补锂极片;4、二极管单元I;5、隔膜I;6、正极片II;7、负极片II;8、补钠极片;9、二极管单元II;10、隔膜II。
具体实施方式一
一种可连续补锂的蓄电池,包括正极片I 1、负极片I 2、补锂极片3和二极管单元I 4,所述二极管单元I 4包括至少一个二极管,所述补锂极片3、二极管单元I 4与负极片I 2通过导线串联,所述二极管单元I 4的阳极与负极片I 2导通,阴极与补锂极片3导通,所述补锂极片3、正极片I 1和负极片I 2相互之间通过隔膜I 5隔离。
进一步的,所述补锂极片3为金属锂片或与导电材料复合的含锂极片,补锂极片的数量、位置和厚度可以根据电池的容量和循环寿命要求进行调整,以提升补锂效率。所述导电材料包括导电碳材料或导电金属材料I,其中导电金属材料I包括铜箔、泡沫铜、铜网或袋式铜箔中的一种,所述袋式铜箔为含腔室的铜箔,所述袋式铜箔的表面设置有通孔,通孔用于锂离子的溶出;与导电材料复合的含锂极片可以是在铜箔表面压延或蒸镀金属锂后制得的含锂极片、泡沫铜孔隙中填充熔融金属锂后制得的含锂极片、金属锂与铜网压延复合制得的含锂极片或锂源置于袋式铜箔的腔室之中得到的含锂极片。所述补锂极片3优选在铜箔表面压延或蒸镀金属锂后制得的含锂极片或将锂源置于袋式铜箔腔室之中得到的含锂极片,上述含锂极片与铜集流体之间具有高的结合力,可以提高补锂电极的结构稳定性与锂源的利用率,保证长循环过程中的连续补锂效果。
进一步的,所述二极管单元I 4中的二极管数量大于1时,二极管之间采用串联、并联或串联和并联结合的方式连接,当待补锂负极的工作电压平台较高时,采用多个低正向导通电压的二极管串联的方式可以保证其正常补锂,当补锂电极与负极之间的补锂过程产生的电流较大时,采用并联的方式可以降低单个二极管的工作电流,保证二极管不被高功率发热烧毁。
进一步的,所述正极片I 1包括叠片式正极片、卷绕式正极片或卷绕与叠片复合式正极片,所述负极片I 2包括叠片式负极片、卷绕式负极片或卷绕与叠片复合式负极片。
进一步的,所述二极管单元I 4中的二极管可以是硅二极管或锗二极管。
优选的,所述负极片I 2中的活性材料为碳基负极材料、硅基负极材料、锡基负极材料、硅碳复合负极材料、锡碳复合负极材料、硅锡复合负极材料中的一种。优选硅质量占比 5%-50%的硅碳复合负极材料或氧化亚硅负极材料,上述负极材料具有高的比能量,匹配高电压正极可以显著提升电池的能量密度,但是其首次循环不可逆容量较大,且循环过程中仍会因负极表面成膜问题而持续消耗正极中的活性锂,无法获得理想的循环稳定性,而本发明的实时补锂特性可以降低上述高比能负极材料对电池循环稳定性的影响,获得高能量密度和高循环稳定性的锂离子二次电池。
在电池首次充放电之前,负极片I 2的电极电位高于二极管单元I 4的正向导通电压,补锂极片3与负极片I 2电子导通,在电池内部形成补锂极片3-二极管单元I 4-负极片I 2的电池结构,补锂极片3发生溶解对负极片I 2进行补锂,用于负极SEI膜的形成,当负极片I 2的电极电位下降进入二极管单元I 4的死区电压区间时,补锂极片3与负极片I 2之间的电子通道自动关闭;在电池充电过程中,负极片I 2中的活性材料发生锂化反应,负极片I 2的电极电位进一步下降,二极管单元I 4一直处于关闭状态,因此,补锂极片3不参与电池的充电过程;在电池放电过程中,锂离子从负极溶出,负极片I 2的电极电位逐渐增大,当负极片I 2的电极电位超过二极管单元I 4的死区电压区间上限电压时,补锂极片3与其相对应的负极片I 2电子导通,补锂极片3发生溶解并释放出锂离子,补偿充电过程中正极活性锂离子的损耗,负极片I 2与二极管单元I 4保持电子导通直至电池放电过程结束。
具体实施方式二
一种可连续补钠的蓄电池,包括正极片II 6、负极片II 7、补钠极片8和二极管单元II9,所述二极管单元II 9包括至少一个二极管,所述补钠极片8、二极管单元II 9与负极片II 7通过导线串联,所述二极管单元II 9的阳极与负极片II 7导通,阴极与补钠极片8导通,所述补钠极片8、正极片II 6和负极片II 7相互之间通过隔膜II 10隔离。
进一步的,所述补钠极片8为金属钠片或与导电材料复合的含钠极片,补钠极片的数量、位置和厚度可以根据电池的容量和循环寿命要求进行调整,以提升补钠效率。所述导电材料包括导电碳材料或导电金属材料II,其中导电金属材料II包括铝箔、泡沫铝、铝网或袋式铝箔中的一种,所述袋式铝箔为含腔室的铝箔,所述袋式铝箔的表面设置有通孔,通孔用于钠离子的溶出;与导电材料复合的含钠极片可以是在铝箔表面压延或蒸镀金属钠后制得的含钠极片、泡沫铝孔隙中填充熔融金属钠后制得的含钠极片、金属钠与铝网压延复合制得的含钠极片或钠源置于袋式铝箔的腔室之中得到的含钠极片。所述补钠极片8优选在铝箔表面压延或蒸镀金属钠后制得的含钠极片或将钠源置于袋式铝箔腔室之中得到的含钠极片,上述含钠极片与铝集流体之间具有高的结合力,可以提高补钠电极的结构稳定性与钠源的利用率,保证长循环过程中的连续补钠效果。
进一步的,所述二极管单元II 9中的二极管数量大于1时,二极管之间采用串联、并联或串联和并联结合的方式连接,当待补钠负极的工作电压平台较高时,采用多个低正向导通电压的二极管串联,当补钠电极与负极之间的补钠过程产生的电流较大时,采用并联的方式可以降低单个二极管的工作电流,保证二极管不被高功率发热烧毁。
进一步的,所述正极片II 6包括叠片式正极片、卷绕式正极片或卷绕与叠片复合式正极片,所述负极片II 7包括叠片式负极片、卷绕式负极片或卷绕与叠片复合式负极片。
进一步的,所述二极管单元II 9中的二极管可以是硅二极管或锗二极管。
优选的,所述负极片II 7中的活性材料为碳基负极材料、锡基负极材料、过渡金属磷化物负极材料中的一种或多种的组合。
在电池首次充放电之前,负极片II 7的电极电位高于二极管单元II 9的正向导通电压,补钠极片8与负极片II 7电子导通,在电池内部形成补钠极片8-二极管单元II 9-负极片II 7的电池结构,补钠极片8发生溶解对负极片II 7进行补钠,用于负极SEI膜的形成,当负极片II 7的电极电位下降进入二极管单元II 9的死区电压区间时,补钠极片8与负极片II 7之间的电子通道自动关闭;在电池充电过程中,负极片II 7中的活性材料发生钠化反应,负极片II 7的电极电位进一步下降,二极管单元II 9一直处于关闭状态,因此,补钠极片8不参与电池的充电过程;在电池放电过程中,钠离子从负极溶出,负极片II 7的电极电位逐渐增大,当负极片II 7的电极电位超过二极管单元II 9的死区电压区间上限电压时,补钠极片8与其相对应的负极片II 7电子导通,补钠极片8发生溶解并释放出钠离子,补偿充电过程中正极活性钠离子的损耗,负极片II 7与二极管单元II 9保持电子导通直至电池放电过程结束。
实施例1
将面容量为4.1mAh/cm
2、尺寸为6.3cm×4.5cm的单面涂布钴酸锂正极与理论面容量为4.305mAh/cm
2、尺寸为6.5cm×4.7cm的单面涂布氧化亚硅负极叠片,将铜箔表面压延有20μm厚度锂金属的含锂极片作为补锂极片3置于氧化亚硅负极片无涂层一侧,电极相互之间采用商业隔膜隔离,在负极片2与补锂极片3之间采用导线串联一个硅二极管(正向导通电压0.7V,额定功率0.5W),硅二极管的阳极与氧化亚硅负极片导通,阴极与补锂极片3导通,将叠片电芯置于铝塑膜壳中,正极片1和负极片2分别焊接极耳,真空注液后封装,室温静置90h后对其进行充放电循环测试,充放电倍率为0.2C,充放电区间为2.5-4.48V,测试温度为室温。
对比例1
对比例锂离子电池结构与实施例1相同,不同之处在于对比例电池电芯中不包含补锂极片3和二极管单元Ⅰ4,电池注液封装后同样室温静置90h后进行充放电循环测试,充放电倍率为0.2C,充放电区间为2.5-4.48V,测试温度为室温。
由图3可知,不含补锂极片3的锂离子电池首次充电初始电压值在0.3V左右,而含补锂极片3的锂离子电池静置90h后,电池充电初始电压在2.5V左右,且充电前期电压缓慢上升的时间大幅缩短,以上现象均证明补锂极片3在前期静置过程中对氧化亚硅负极片进行了有效的预锂化;此外,含补锂极片3的锂离子电池充放过程中的电化学极化更小,首次充放电容量分别为110.883mAh和83.088mAh,库伦效率为74.933%,而不含补锂极片3的锂离子电池首次充放电容量仅为104.7mAh和72.15mAh,首次充放电库伦效率仅为68.934%。
图4和图5分别为含补锂极片3的钴酸锂正极-氧化亚硅负极锂离子电池循环性能图和不含补锂极片3的钴酸锂正极-氧化亚硅负极锂离子电池循环性能图,由图可知,含补锂极片3的锂离子电池循环稳定性明显优于不含补锂极片3的锂离子电池,且含补锂极片3的锂离子电池在前24次循环过程中平均库伦效率为98.24%,明显高于不含补锂极片3的锂离子电池的97.39%,证明补锂极片3可以在循环过程中对电池进行持续补锂,从而提升电池的循环稳定性。
Claims (10)
- 一种可连续补锂的蓄电池,包括正极片I(1)、负极片I(2),其特征在于:所述可连续补锂的蓄电池还包括至少一个补锂极片(3),任意一个补锂极片(3)均通过二极管单元I(4)与负极片I(2)连接,所述二极管单元I(4)包括至少一个二极管,所述补锂极片(3)、二极管单元I(4)与负极片I(2)通过导线串联,所述二极管单元I(4)的阳极与负极片I(2)导通,阴极与补锂极片(3)导通。
- 根据权利要求1所述的一种可连续补锂的蓄电池,其特征在于:所述补锂极片(3)为金属锂片或与导电材料复合的含锂极片。
- 根据权利要求1所述的一种可连续补锂的蓄电池,其特征在于:所述二极管单元I(4)中的二极管数量大于1时,二极管之间采用串联或并联的方式连接。
- 根据权利要求1所述的一种可连续补锂的蓄电池,其特征在于:所述正极片I(1)包括叠片式正极片、卷绕式正极片或卷绕与叠片复合式正极片,所述负极片I(2)包括叠片式负极片、卷绕式负极片或卷绕与叠片复合式负极片。
- 根据权利要求2所述的一种可连续补锂的蓄电池,其特征在于:所述导电材料包括导电碳材料或导电金属材料I,其中导电金属材料I包括铜箔、泡沫铜、铜网或袋式铜箔中的一种,所述袋式铜箔为含腔室的铜箔,锂源置于袋式铜箔的腔室之中,所述袋式铜箔的表面设置有通孔。
- 一种可连续补钠的蓄电池,包括正极片II(6)、负极片II(7),其特征在于:所述可连续补钠的蓄电池还包括至少一个补钠极片(8),任意一个补钠极片(8)均通过二极管单元II(9)与负极片II(7)连接,所述二极管单元II(9)包括至少一个二极管,所述补钠极片(8)、二极管单元II(9)与负极片II(7)通过导线串联,所述二极管单元II(9)的阳极与负极片II(7)导通,阴极与补钠极片(8)导通。
- 根据权利要求6所述的一种可连续补钠的蓄电池,其特征在于:所述补钠极片(8)为金属钠片或与导电材料复合的含钠极片。
- 根据权利要求6所述的一种可连续补钠的蓄电池,其特征在于:所述二极管单元II(9)中的二极管数量大于1时,二极管之间采用串联或并联的方式连接。
- 根据权利要求6所述的一种可连续补钠的蓄电池,其特征在于:所述正极片II(6)包括叠片式正极片、卷绕式正极片或卷绕与叠片复合式正极片,所述负极片II(7)包括叠片式负极片、卷绕式负极片或卷绕与叠片复合式负极片。
- 根据权利要求7所述的一种可连续补钠的蓄电池,其特征在于:所述导电材料包括导电碳材料或导电金属材料II,其中导电金属材料II包括铝箔、泡沫铝、铝网或袋式铝箔中的一种,所述袋式铝箔为含腔室的铝箔,钠源置于袋式铝箔的腔室之中,所述袋 式铝箔的表面设置有通孔。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202190000374.7U CN220474692U (zh) | 2021-01-25 | 2021-12-03 | 一种可连续补锂/钠的蓄电池 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110109420.3 | 2021-01-25 | ||
CN202110109420 | 2021-01-25 | ||
CN202110711214.X | 2021-06-25 | ||
CN202110711214.XA CN114792848A (zh) | 2021-01-25 | 2021-06-25 | 一种可连续补锂/钠的蓄电池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022156383A1 true WO2022156383A1 (zh) | 2022-07-28 |
Family
ID=82460221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/135401 WO2022156383A1 (zh) | 2021-01-25 | 2021-12-03 | 一种可连续补锂/钠的蓄电池 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN114792848A (zh) |
WO (1) | WO2022156383A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115332725A (zh) * | 2022-08-22 | 2022-11-11 | 珠海冠宇动力电池有限公司 | 一种隔膜和电池 |
CN115395116A (zh) * | 2022-10-26 | 2022-11-25 | 星恒电源股份有限公司 | 一种钠离子电池正极极片及其制备方法、钠离子电池 |
CN115473008A (zh) * | 2022-09-28 | 2022-12-13 | 东莞正力新能电池技术有限公司 | 一种补锂型隔离膜、电芯及二次电池 |
CN116789191A (zh) * | 2023-07-25 | 2023-09-22 | 宁德时代新能源科技股份有限公司 | 补钠材料及其制备方法、正极极片、电极组件、电池和用电装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107394285A (zh) * | 2016-05-17 | 2017-11-24 | 财团法人工业技术研究院 | 金属离子电池 |
CN207765567U (zh) * | 2018-01-26 | 2018-08-24 | 东莞一鸣电子科技有限公司 | 一种锂离子电芯 |
CN108539124A (zh) * | 2017-03-01 | 2018-09-14 | 北京卫蓝新能源科技有限公司 | 具有补锂电极的二次电池及其制备方法 |
CN109786662A (zh) * | 2019-01-18 | 2019-05-21 | 湖北锂诺新能源科技有限公司 | 一种锂离子电池负极补锂极片及其制备方法 |
CN211907608U (zh) * | 2020-05-07 | 2020-11-10 | 浙江浙能技术研究院有限公司 | 锂离子电池结构 |
CN112072078A (zh) * | 2020-09-15 | 2020-12-11 | 昆山宝创新能源科技有限公司 | 预锂化负极片及其制备方法和应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7662509B2 (en) * | 2004-10-29 | 2010-02-16 | Medtronic, Inc. | Lithium-ion battery |
KR20200044231A (ko) * | 2018-10-18 | 2020-04-29 | 주식회사 엘지화학 | 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지 및 그의 제조방법 |
-
2021
- 2021-06-25 CN CN202110711214.XA patent/CN114792848A/zh active Pending
- 2021-12-03 CN CN202190000374.7U patent/CN220474692U/zh active Active
- 2021-12-03 WO PCT/CN2021/135401 patent/WO2022156383A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107394285A (zh) * | 2016-05-17 | 2017-11-24 | 财团法人工业技术研究院 | 金属离子电池 |
CN108539124A (zh) * | 2017-03-01 | 2018-09-14 | 北京卫蓝新能源科技有限公司 | 具有补锂电极的二次电池及其制备方法 |
CN207765567U (zh) * | 2018-01-26 | 2018-08-24 | 东莞一鸣电子科技有限公司 | 一种锂离子电芯 |
CN109786662A (zh) * | 2019-01-18 | 2019-05-21 | 湖北锂诺新能源科技有限公司 | 一种锂离子电池负极补锂极片及其制备方法 |
CN211907608U (zh) * | 2020-05-07 | 2020-11-10 | 浙江浙能技术研究院有限公司 | 锂离子电池结构 |
CN112072078A (zh) * | 2020-09-15 | 2020-12-11 | 昆山宝创新能源科技有限公司 | 预锂化负极片及其制备方法和应用 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115332725A (zh) * | 2022-08-22 | 2022-11-11 | 珠海冠宇动力电池有限公司 | 一种隔膜和电池 |
CN115473008A (zh) * | 2022-09-28 | 2022-12-13 | 东莞正力新能电池技术有限公司 | 一种补锂型隔离膜、电芯及二次电池 |
CN115473008B (zh) * | 2022-09-28 | 2023-08-01 | 东莞正力新能电池技术有限公司 | 一种补锂型隔离膜、电芯及二次电池 |
CN115395116A (zh) * | 2022-10-26 | 2022-11-25 | 星恒电源股份有限公司 | 一种钠离子电池正极极片及其制备方法、钠离子电池 |
CN115395116B (zh) * | 2022-10-26 | 2023-01-20 | 星恒电源股份有限公司 | 一种钠离子电池正极极片及其制备方法、钠离子电池 |
CN116789191A (zh) * | 2023-07-25 | 2023-09-22 | 宁德时代新能源科技股份有限公司 | 补钠材料及其制备方法、正极极片、电极组件、电池和用电装置 |
CN116789191B (zh) * | 2023-07-25 | 2024-01-12 | 宁德时代新能源科技股份有限公司 | 补钠材料及其制备方法、正极极片、电极组件、电池和用电装置 |
Also Published As
Publication number | Publication date |
---|---|
CN220474692U (zh) | 2024-02-09 |
CN114792848A (zh) | 2022-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022156383A1 (zh) | 一种可连续补锂/钠的蓄电池 | |
US20210391572A1 (en) | Negative electrode plate, secondary battery, and apparatus thereof | |
JP3097347B2 (ja) | ニッケル・水素蓄電池 | |
CN211045593U (zh) | 一种弹性分层硅基负极极片及包含该负极极片的锂电池 | |
WO2014032594A1 (zh) | 电池 | |
CN101154750A (zh) | 高倍率凝胶聚合物锂离子动力电池及其制造方法 | |
WO2021208299A1 (zh) | 一种水系钠基混合离子二次电池 | |
WO2024016891A1 (zh) | 预锂化极片及其制备方法、二次电池和用电装置 | |
TW201248977A (en) | Battery electrode and battery | |
CN113161602A (zh) | 一种锂离子电池电芯、锂离子电池及制备方法 | |
CN112635915A (zh) | 一种用于金属锂负极的改性隔膜及其制备方法和应用 | |
CN111129573A (zh) | 一种全固态锂金属电池的热处理方法 | |
CN111403678A (zh) | 一种三维柔性金属负极及其制备方法 | |
WO2023029002A1 (zh) | 负极集流体、含有其的二次电池、电池模块、电池包及用电装置 | |
JP4162510B2 (ja) | 非水電解質二次電池 | |
CN218867198U (zh) | 电池及用电设备 | |
WO2022027823A1 (zh) | 一种三电极可修复锂离子电池 | |
WO2023088078A1 (zh) | 金属锂负极、二次电池、电池模块、电池包及用电装置 | |
CN212182476U (zh) | 一种高能量密度高功率密度铝离子电池 | |
CN211629216U (zh) | 一种锂电池的负极结构 | |
JPH0787102B2 (ja) | 密閉形ニッケル・亜鉛蓄電池 | |
CN208706458U (zh) | 电化学储能装置的电极构造 | |
CN113675376A (zh) | 一种无枝晶的基于负极表面固/液相转化的碱金属离子电池 | |
May | Battery options for hybrid electric vehicles | |
JP7554500B2 (ja) | 電池システム、充電装置及び充電方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21920757 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202190000374.7 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21920757 Country of ref document: EP Kind code of ref document: A1 |