[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022143612A1 - 一种高强度、高耐热生物基聚酰胺组合物及其制备方法 - Google Patents

一种高强度、高耐热生物基聚酰胺组合物及其制备方法 Download PDF

Info

Publication number
WO2022143612A1
WO2022143612A1 PCT/CN2021/141935 CN2021141935W WO2022143612A1 WO 2022143612 A1 WO2022143612 A1 WO 2022143612A1 CN 2021141935 W CN2021141935 W CN 2021141935W WO 2022143612 A1 WO2022143612 A1 WO 2022143612A1
Authority
WO
WIPO (PCT)
Prior art keywords
bio
based polyamide
heat
strength
polyamide composition
Prior art date
Application number
PCT/CN2021/141935
Other languages
English (en)
French (fr)
Inventor
张海生
陈剑锐
杜国毅
许建稳
闫廷龙
蔡莹
周炳
颜瑞祥
王溢
徐美玲
张千惠
蔡青
周文
Original Assignee
上海普利特复合材料股份有限公司
浙江普利特新材料有限公司
重庆普利特新材料有限公司
上海普利特化工新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海普利特复合材料股份有限公司, 浙江普利特新材料有限公司, 重庆普利特新材料有限公司, 上海普利特化工新材料有限公司 filed Critical 上海普利特复合材料股份有限公司
Priority to US18/268,308 priority Critical patent/US20240093030A1/en
Publication of WO2022143612A1 publication Critical patent/WO2022143612A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3435Piperidines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/30Applications used for thermoforming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2310/00Masterbatches

Definitions

  • the invention relates to the field of polymer materials, in particular to a high-strength, high-heat-resistance bio-based polyamide composition and a preparation method thereof.
  • Bio-based materials refer to a new class of materials produced by biological, chemical and physical methods using renewable biomass, including crops, trees, other plants and their residues and inclusions as raw materials. With the characteristics of greenness, resource saving and environmental friendliness, it is a major focus of the future development of materials. According to the research report released by Occasm Research, the current global output of bio-based chemicals and polymer materials is about 50 million tons, and it is estimated that by 2021 The output value can reach 10 billion to 15 billion US dollars. Bio-based materials help solve the problems of resource and energy shortages and environmental pollution faced by global economic and social development, and are one of the hot spots in the development and competition of new materials in the world today.
  • polyamide materials As engineering plastics, polyamide materials have excellent mechanical properties, wear resistance, self-lubricating properties, and heat resistance. They are widely used in automobiles, electronic appliances, power tools, special equipment and other fields, and continue to improve the mechanical properties of polyamide materials. and heat resistance are the research hotspots of polyamide materials in recent years.
  • Chinese patent CN 110229515A discloses that by selecting polyamide chips with high-end amino groups and low-end carboxyl groups, adding epoxy resin in the formula design can form a "protective shield" on the surface of the polyamide composition, effectively blocking polyamide and oxygen.
  • the polyamide resin composition prepared by adding a ketone carbonyl polymer containing a ketone carbonyl content and an alkali metal salt compound has excellent long-term thermal oxidation resistance, 85 °C and 90% relative humidity Under the condition of excellent damp heat aging, PA66-GF30 is placed under the conditions of 85 °C and 90% relative humidity for 21 days. After 150 °C, 1000h aging treatment, the tensile strength retention rate can reach up to 92%, which can adapt to severe application environment.
  • the polyamide composition is in an environment combining periodic thermal oxygen aging (210-230°C) and periodic high temperature and high humidity (85°C, 85%RH).
  • the conditions are different from the working conditions of the automobile engine system, which cannot objectively reflect the material properties under the real working conditions, thus limiting the application scope of the polyamide composition.
  • the present invention provides a high-strength, high-heat-resistance bio-based polyamide composition and a preparation method thereof, which simulates the working environment of an automobile engine system, and the bio-based polyamide composition prepared by the method is in 210 -230°C, 3000h long-term thermal oxidation aging and 210-230°C, 3000h and 85°C, 85%RH, 3000h alternate experimental conditions have excellent mechanical property retention rate.
  • a high-strength, high-heat-resistance bio-based polyamide composition is composed of the following raw materials in parts by weight:
  • the bio-based polyamide resin chips are bio-based polyamide resin chips PA56 obtained by a stepwise polycondensation process of pentamethylene diamine and adipic acid, or by a stepwise polycondensation process of pentamethylene diamine, adipic acid and terephthalic acid.
  • Bio-based polyamide resin chips PA56T wherein, the pentamethylene diamine is obtained by fermentation of starch, the content of bio-based in the PA56 chips is 45% (weight ratio), the PA56 chips have a melting point of 235-260 ° C, and a relative viscosity of 2.7 ⁇ 0.5,; the content of bio-based in PA56T slices is about 40% (weight ratio), the melting point of PA56T slices is 255-275°C, and the relative viscosity is 2.6 ⁇ 0.5.
  • the PA56 slices have a melting point of 255°C; the PA56T slices have a melting point of 267°C.
  • the reinforcing body can be one or more of fibrous fillers such as glass fiber, carbon fiber, and basalt fiber.
  • the preferred reinforcement in this method is glass fiber with alkali content ⁇ 0.8%, bulk density 0.50-0.8g/cm 3 , monofilament fiber diameter: 6-18 ⁇ m, chopped length: 3mm, and moisture content ⁇ 0.05%.
  • the metal ions in the rare earth compound are selected from elements of group IIIB of the periodic table, preferably lanthanum.
  • the anion paired with the metal ion may be at least one of oxygen ion, acetate ion, carbonate ion, nitrate ion, halogen anion, preferably one of acetate ion or oxygen ion.
  • the copper salt antioxidant combination is a complex of potassium halide and monovalent copper halide or organic chelate compound in a ratio of 3-16:1, and the halogen element is preferably iodine or bromine. a kind of.
  • the free radical scavenger is a carbon-based radical ion scavenger, belongs to the benzofuranone system, and is a multifunctional lactone type heat stabilizer and antioxidant. Its structural formula is:
  • the thermally conductive masterbatch is a single-walled carbon nanotube with high thermal conductivity
  • the carrier is an ester lubricant synthesized from fatty acid and pentaerythritol
  • the active ingredient content of carbon nanotubes in the thermally conductive masterbatch is 10%-20%
  • the processing stabilizer is N,N'-bis(2,2,6,6-tetramethyl-4-pyridyl)-1,3-benzenedicarboxamide, molecular weight 442.64, melting point 270-274°C, CAS No.42774-15-2; has a very good effect on melt stabilization during the processing of polyamide materials.
  • the dispersant is a partially saponified montanate wax, dropping point: 95-100° C., acid value 10-25 mgKOH/g.
  • the preparation method of the bio-based polyamide composition comprises the following steps:
  • the moisture content of bio-based polyamide resin chips is not higher than 2000ppm;
  • bio-based polyamide resin slices, rare earth compounds, copper salt antioxidant assemblies, free radical scavengers, thermally conductive master batches, processing stabilizers and dispersants Mix evenly with a high-speed mixer, set aside, and weigh the reinforcement according to the ratio, set aside;
  • bio-based polyamide composition can be applied to automobile engine system parts such as intercooler intake chambers, compact turbocharged intake manifolds, charge air coolers and the like.
  • the advantage of the present invention is that the bio-based polyamide resin chips are prepared from pentamethylene diamine and adipic acid by a stepwise polycondensation process or pentamethylenediamine, adipic acid and terephthalic acid are prepared by a stepwise polycondensation process, wherein the pentamethylene diamine is prepared by a stepwise polycondensation process
  • the polyamide resin prepared from starch fermentation belongs to an environmentally friendly engineering plastic.
  • rare earth compounds, copper salt antioxidant combinations, free radicals are introduced into the formula design.
  • the components such as scavenger and thermally conductive masterbatch endow the bio-based polyamide material with excellent resistance to long-cycle thermo-oxidative aging. After 85°C and 85%RH long-cycle humid heat aging and 210-230°C long-cycle thermo-oxidative aging cycle experiments The strength retention rate is above 50%. It has the characteristics of environmental protection concept and high performance. It can replace metal materials or special engineering plastics such as PPA, PPS, PA66, etc. Application requirements for automotive engine system parts such as intake manifold and charge air cooler
  • the resin of the present invention selects one of bio-based polyamides PA56 and PA56T, which endows them with environmental protection value.
  • PA56 has high density of amide bonds and low molecular chain regularity.
  • the performance impact brought by the difference in structure is that PA56 has the characteristics of high water absorption and low crystallinity compared with PA6, PA66 and other materials.
  • the cyclic thermo-oxidative aging performance is quite different, especially the long-term thermo-oxidative aging and damp-heat aging cycle experiments. long-term application.
  • the thermal conductivity masterbatch selects single-walled carbon nanotubes with high thermal conductivity, which can rapidly carbonize the surface of the polyamide composition in a high temperature environment to form a "protective shield", effectively blocking the contact between polyamide and oxygen and reducing high temperature. Generation of free radicals in the environment.
  • the surface carbonized layer plays the first layer of sealing protection, and the inner carbon nanotubes form a nano-network structure, which blocks the water molecules for the second time.
  • the aging mechanism of polyamide materials produces carbon free radicals, which react with oxygen to generate peroxy free radicals.
  • the high half-life of carbon free radical activity is only 10-3 to 10-6 seconds, the activity is strong, and the capture is difficult.
  • Conventional antioxidants can only capture peroxy radicals with a long half-life.
  • the free radical scavenger used in the present invention has high reactivity and high capture efficiency for carbon radicals generated in polyamide high temperature environment, which improves the polyamide material. Long-cycle thermo-oxidative aging performance.
  • the stabilizer introduced in the formula has very good effect on the stability of melt stability and auxiliary agent during processing, and increases the processing stability of the bio-based polyamide composition.
  • the bio-based polyamide composition achieves high strength and long-cycle thermo-oxidative aging resistance, endows the environmental protection concept and the characteristics of high performance.
  • Embodiments of the present invention and comparative examples adopt the following materials, but are not limited to the following materials:
  • Polyamide resin PA56 the trade name is Ecopent E-1273, produced by Shanghai Kaisai Biotechnology Co., Ltd.;
  • Polyamide resin PA56T the trade name is Ecopent E-2260, produced by Shanghai Kaisai Biotechnology Co., Ltd.;
  • Polyamide resin PA66 the trade name is EPR27, produced by Shenma Engineering Plastics Co., Ltd.;
  • Polyamide resin PA66/6T the trade name is EP523HT, produced by the Polyamide Division of Huafeng Group Co., Ltd.;
  • Glass fiber the trade name is ECS301HP-3, produced by Chongqing International Composite Materials Co., Ltd.;
  • Copper salt antioxidant combination KI:CuI is 9:1 (weight ratio), commercially available;
  • Free radical scavenger trade name Revonox 501, produced by Chitec Technology Co., Ltd;
  • Stabilizer the trade name is S-EED, produced by Suqian Zhenxing Chemical Co., Ltd.;
  • Dispersant trade name LICOWAX OP, from CLARIANT;
  • Antioxidant 1098 hindered phenolic antioxidant, commercially available
  • Antioxidant 168 phosphite antioxidant, commercially available
  • the high-strength, high-heat-resistance bio-based polyamide composition is obtained by the screw extruder at 220-300° C. after melt extrusion, granulation, drying and other processes.
  • the above materials were dried in a blast drying oven at 120° C. for 4 hours and then injection-molded into standard splines at an injection temperature of 280-300° C.
  • the mechanical properties of the injection-molded specimens were tested in a standard laboratory environment (23° C., 50% RH) for 24 hours after conditioning.
  • Tensile properties according to ISO 527 method, spline size: 170*10*4mm, test speed 5mm/min.
  • Bending performance According to ISO 178 method, spline size: 80*10*4mm, test speed 2mm/min.
  • Notched impact performance According to ISO 179 method, spline size: 80*10*4mm.
  • Table 1 Composition and properties of bio-based polyamide compositions of Examples 1-10:
  • Table 2 Composition and properties of bio-based polyamide compositions of comparative examples 1-9:
  • Table 3 Composition and properties of bio-based polyamide compositions of Examples 11-20:
  • Table 4 Composition and properties of bio-based polyamide compositions of comparative examples 10-18:
  • the bio-based polyamide PA56 of the same formulation system has a lower tensile strength retention rate than the PA66 system after 210-230 ° C, 3000h thermal oxygen aging, 500h moist heat aging cycle test (Comparative Example 3 and Comparative Example 4, on Example 12 and Comparative Example 13).
  • the material formulation system (Example 1-Example 20) composed of bio-based polyamide resin, reinforcement, rare earth compound, copper salt assembly, thermally conductive masterbatch, stabilizer and free radical scavenger was heated at 210-230 ° C for 3000 h
  • the tensile strength retention rate can be above 60% after oxygen aging and 210-230 °C, 3000h thermal oxygen aging, 500h moist heat aging cycle test, the formula system composed of bio-based polyamide resin, reinforcement, rare earth compound, copper salt combination (Comparative Example 3, Comparative Example 12) only meet the requirements of 210-230 ° C, 3000h thermal oxygen aging tensile strength retention rate of more than 50%, and the addition of thermally conductive masterbatch, free radical scavenger and stabilizer for tensile strength retention rate It is further increased by 15-20% (Example 1 and Comparative Example 3, Example 11 and Comparative Example 12), this technical invention fills the technical gap in the field of bio-based polyamide long-term heat aging resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明公开了一种高强度、高耐热生物基聚酰胺组合物及其制备方法,由以下按重量份数计的原料组成:生物基聚酰胺树脂切片43.50-89.95%;增强体:10-50%;稀土化合物:0.01-2%;铜盐类抗氧剂组合体:0.01-1%;自由基捕捉剂:0.01-1%;导热母粒:0.01-0.5%;稳定剂:0.01-1%;分散剂:0-1%。本发明的优势在于生物基聚酰胺树脂切片是由戊二胺和己二酸通过逐步缩聚工艺制备或戊二胺、己二酸和对苯二甲酸通过逐步缩聚工艺制备的,其中戊二胺是经过淀粉发酵而来,所制备的聚酰胺树脂属于一种环保工程塑料,为了填补生物基聚酰胺材料高耐热领域技术空白在配方设计中引入稀土化合物、铜盐类抗氧剂组合体、自由基捕捉剂、导热母粒等组份赋予生物基聚酰胺材料优异的耐长周期热氧老化性能。

Description

一种高强度、高耐热生物基聚酰胺组合物及其制备方法 技术领域
本发明涉及高分子材料领域,尤其是涉及一种高强度、高耐热生物基聚酰胺组合物及其制备方法。
背景技术
生物基材料是指利用可再生生物质,包括农作物、树木、其它植物及其残体和内含物为原料,通过生物、化学以及物理等方法制造的一类新材料。具有绿色、资源节约、环境友好等特点,是材料未来发展的一大重点,根据Occasm Research发布的研究报告,目前全球化生物基化学品和高分子材料产量在5000万吨左右,预计到2021年产值可达100亿~150亿美元。生物基材料有助于解决全球经济社会发展所面临的资源和能源短缺以及环境污染等问题,是当今世界新材料发展竞争的热点之一。
聚酰胺材料作为工程塑料具有优异的力学性能、耐磨性能、自润滑性能、耐热性能,在汽车、电子电器、电动工具、特种装备等领域得到广泛应用,持续的提升聚酰胺材料的力学性能和耐热性能是聚酰胺材料近年来的研究热点。
中国专利CN 110229515A公布了通过选择高端氨基、低端羧基的聚酰胺切片,在配方设计中加入环氧树脂可以在聚酰胺组合物表层形成一层“保护盾”,有效的阻隔聚酰胺和氧气的接触,降低高温环境中自由基的产生,进行了210*1000h和230℃*1000h热氧老化测试,长周期热氧老化前后PA66-GF35弯曲强度保持率在80%左右;美国专利US15190934选用柠檬酸和EDTA在高温作用下在树脂表面迅速形成致密的氧化膜起到阻隔氧气的作用,玻纤增强PA6T和PA66混合树脂在180℃,1000h力学性能保持率得到提升。欧洲专利EP11873964.8通过制备了一种熔点在280℃的聚酰胺树脂并且通过填充物、耐光照助剂、耐老化助剂和加工助剂对其进行改性,用于LED制品的零件。国际专利PCT/CN/2019/070352通过添加含有酮羰基含量的酮羰基聚合物以及碱金属盐化合物制备得到的聚酰胺树脂组合物具有优良的耐长期热氧老化性能、85℃和90%相对湿度的条件下优良的 湿热老化,PA66-GF30在85℃和90%相对湿度的条件下放置21天,经过150℃,1000h老化处理后拉伸强度保持率最高可以做到92%,能够适应严苛的应用环境。但是,目前公开的专利大部分都是针对石油基聚酰胺组合物长周期热氧老化性能的研究,没有专门针对生物基聚酰胺长周期热氧老化的研究,提升的手段往往是通过合成更高耐热的树脂、提升聚酰胺表面对氧气的阻隔、抗氧剂的使用等单一手段,难以兼顾性能和经济效益,并且老化处理条件一般集中在150-230℃,1000h,或者是经过80℃和90%相对湿度的条件存放后进行高温长周期热氧老化测试。但汽车工作实际工况下聚酰胺组合物是处在周期性热氧老化(210-230℃)与周期性高温高湿(85℃,85%RH)相结合的环境下,以往专利中的测试条件与汽车发动机系统的工作条件存在差异,无法客观反映真实工况下的材料性能,因此限制了聚酰胺组合物的应用范围。
发明内容
为了填补现有技术的空白,本发明提供了一种高强度、高耐热生物基聚酰胺组合物及其制备方法,模拟汽车发动机系统工作环境,该方法制备的生物基聚酰胺组合物在210-230℃,3000h长周期热氧老化和210-230℃,3000h和85℃,85%RH,3000h交替实验条件下具有优异的力学性能保持率。
本发明通过以下技术方案实现的:
一种高强度、高耐热生物基聚酰胺组合物,按照以下按重量份数计的原料组成:
Figure PCTCN2021141935-appb-000001
所述生物基聚酰胺树脂切片是由戊二胺和己二酸通过逐步缩聚工艺制得的生物基聚酰胺树脂切片PA56,或者戊二胺、己二酸和对苯二甲酸通过逐步缩聚工艺制得的生物基聚酰胺树脂切片PA56T,其中,所述戊二胺是淀粉经过发酵制得,PA56切片中生物基的含量45%(重量比),PA56切片为熔点235-260℃,相对粘度2.7±0.5,;PA56T切片中生物基的含量约40%(重量比),PA56T切片为熔点255-275℃,相对粘度2.6±0.5。优选的,所述PA56切片为熔点255℃;PA56T切片为熔点267℃。
所述的增强体可以是玻璃纤维、碳纤维、玄武岩纤维等纤维状填充物的一种或多种。本方法优选的增强体是碱含量<0.8%,体积密度0.50-0.8g/cm 3,单丝纤维直径:6-18μm,短切长度:3mm,含水率≤0.05%的玻璃纤维。
所述的稀土化合物中的金属离子选自元素周期表ⅢB族元素,优选镧元素。与金属离子配对的阴离子可以是氧离子、醋酸根离子、碳酸根离子、硝酸根离子、卤素阴离子中的至少一种,优先醋酸根离子或氧离子的一种。
所述的铜盐类抗氧剂组合体是由卤化钾与一价铜的卤化物或有机螯合物的复配物,按照3-16:1比例复配而成,卤素元素优选碘或溴的一种。
所述的自由基捕捉剂是一种碳中基自由基离子捕捉剂,属于苯并呋喃酮体系,是一种多重功能的内酯型热稳定剂和抗氧剂。其结构式为:
Figure PCTCN2021141935-appb-000002
所述导热母粒是高导热系数的单壁碳纳米管,载体为脂肪酸和季戊四醇合成的酯类润滑剂,导热母粒中碳纳米管有效成份含量10%-20%,碳纳米管导热率>10W/mK,通过密炼工艺制备成母粒。
所述加工稳定剂是N,N′-双(2,2,6,6-四甲基-4-吡啶基)-1,3-苯二甲酰胺,分子量442.64,熔点270-274℃,CAS No.42774-15-2;对于聚酰胺材料加工过程熔体稳定具有非常好的效果。
所述分散剂是一种部分皂化的蒙旦酯蜡,滴点:95-100℃,酸值10-25mgKOH/g。
所述的生物基聚酰胺组合物的制备方法,包括以下步骤:
(1)生物基聚酰胺树脂切片的含水率不高于2000ppm;
(2)按配方比例称取干燥后的各种原料;将生物基聚酰胺树脂切片、稀土化合物、铜盐类抗氧剂组合体、自由基捕捉剂、导热母粒、加工稳定剂和分散剂通过高速搅拌机然混合均匀,备用,按照配比称取增强体,备用;
(3)将上述树脂和助剂混合原料通过双螺杆挤出机的主喂料口加入,增强体从双螺杆挤出机的侧喂料口加入,经过熔融挤出、造粒、干燥处理等工序后得到所述的高强度、高耐热生物基聚酰胺材料。
上述生物基聚酰胺组合物可以应用在中冷器进气室、紧凑型涡轮增压进气歧管、增压空气冷却器等汽车发动机系统零件。
本发明的优势在于生物基聚酰胺树脂切片是由戊二胺和己二酸通过逐步缩聚工艺制备或戊二胺、己二酸和对苯二甲酸通过逐步缩聚工艺制备的,其中戊二胺是经过淀粉发酵而来,所制备的聚酰胺树脂属于一种环保工程塑料,为了填补生物基聚酰胺材料高耐热领域技术空白在配方设计中引入稀土化合物、铜盐类抗氧剂组合体、自由基捕捉剂、导热母粒等组份赋予生物基聚酰胺材料优异的耐长周期热氧老化性能,85℃和85%RH长周期湿热老化和210-230℃长周期热氧老化循环实验后拉伸强度保持率在50%以上,兼具环保理念和高性能的特征,可以替代金属材料或PPA、PPS、PA66等特种工程塑料、工程塑料,进而满足中冷器进气室、紧凑型涡轮增压进气歧管、增压空气冷却器等汽车发动机系统零件应用要求
本发明的有益效果为:
1)本发明树脂选择生物基聚酰胺PA56、PA56T的一种,赋予环保价值。PA56与常规的PA6、PA66结构相比酰胺键的密度高、分子链规整度低,结构的差异带来的性能影响是PA56相比PA6、PA66等材料吸水率高、结晶度低的特性,长周期热氧老化性能与PA6、PA66相比存在较大的差异,尤其是长周期热氧老化和湿热老化循环实验存在较大差异,本发明实现了生物基聚酰胺PA56、PA56T在高温环境中的长时间应用。
2)本发明生物基聚酰胺组合物长周期耐热氧老化测试与高温、高湿环境相结合(85℃,85%RH),更符合汽车发动机系统材料工作环境。
3)利用稀土化合物、铜盐与酰胺键之间的相互作用,在配方设计中加入稀土化合物,利用稀土活化铜盐,在“稀土-铜”界面形成特殊的原子结构,在大幅度提升生物基聚酰胺长周期热氧老化性能上获得了意想不到的效果;并且利用稀土化合物在加热和冷却过程中结合氧原子能力的差异性特征,提升聚酰胺周期性热氧老化与周期性高温、高湿相结合环境下的老化性能,填补了该领域技术的空白。
4)导热母粒选择了导热系数高的单壁碳纳米管,可以使聚酰胺组合物在高温环境中表层快速碳化形成一层“保护盾”,有效的阻隔聚酰胺和氧气的接触,降低高温环境中自由基的产生。在高温、高湿环境下,一方面由表层碳化层起第一层密封性防护,内部碳纳米管形成纳米网络结构,对水分子进行第二道阻隔。
5)聚酰胺材料的老化机理产生碳自由基,碳自由基与氧气反应生成过氧自由基,碳自由基活性高半衰期只有10 -3至10 -6秒,活性较强,捕捉难度较大,常规的抗氧剂只能捕捉半衰期较长的过氧自由基,本发明采用的自由基捕捉剂反应活性高,对聚酰胺高温环境中产生的碳自由基捕捉的效率高,提升了聚酰胺材料长周期热氧老化性能。同时在配方引入的稳定剂对加工过程熔体稳定和助剂的稳定具有非常好的效果,增加了生物基聚酰胺组合物的加工稳定性。
通过上述有益效果实现了生物基聚酰胺组合物高强度和耐长周期热氧老化性能,赋予环保理念和高性能的特征。
具体实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚,下面将结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。
本发明的实施例和对比例采用下列物料,但不限于下列物料:
聚酰胺树脂PA56,商品名称为Ecopent E-1273,产自上海凯赛生物技术股份有限公司;
聚酰胺树脂PA56T,商品名称为Ecopent E-2260,产自上海凯赛生物技术股份有限公司;
聚酰胺树脂PA66,商品名称为EPR27,产自神马工程塑料有限责任公司;
聚酰胺树脂PA66/6T,商品名称为EP523HT,产自华峰集团有限公司聚酰胺事业部;
醋酸镧,购自上海麦克林生化科技有限公司;
氧化镧,购自上海麦克林生化科技有限公司;
玻璃纤维,商品名称为ECS301HP-3,产自重庆国际复合材料有限公司;
铜盐类抗氧剂组合体,KI:CuI为9:1(重量比),市售;
自由基捕捉剂,商品名称Revonox 501,产自Chitec Technology Co.,Ltd;
单壁碳纳米管,导热率>10W/mK,市售;
稳定剂,商品名称为S-EED,产自宿迁市振兴化工有限公司;
分散剂,商品名称为LICOWAX OP,产自CLARIANT;
抗氧剂1098,受阻酚类抗氧剂,市售;
抗氧剂168,亚磷酸酯抗氧剂,市售;
实施例1-20及对比例1-18的制备方法:
生物基聚酰胺组合物的制备:
按配方比例称取干燥后的各种原料;将生物基聚酰胺树脂切片、稀土金属、铜盐类抗氧剂组合体、自由基捕捉剂、导热母粒、加工稳定剂和分散剂通过高速搅拌机然混合均匀,按照配比称取增强体,将上述树脂和助剂混合原料通过双螺杆挤出机的主喂料口加入,增强体从双螺杆挤出机的侧喂料口加入,经过双螺杆挤出机在220-300℃熔融挤出、造粒、干燥处理等工序后得到所述的高强度、高耐热生物基聚酰胺组合物。
生物基聚酰胺组合物测试样条的制备:
将上述材料在鼓风干燥烘箱中于120℃干燥4h后在280-300℃的注塑温度下注塑成标准样条。将注塑好的力学性能样条在实验室标准环境中(23℃、50%RH)状态调节24h后进行测试。
各性能指标的测试方法:
拉伸性能:按ISO 527方法,样条尺寸:170*10*4mm,试验速度5mm/min。
弯曲性能:按ISO 178方法,样条尺寸:80*10*4mm,试验速度2mm/min。
缺口冲击性能:按ISO 179方法,样条尺寸:80*10*4mm。
拉伸强度保持率-A:1)将注塑的样条在实验室环境中进行状态调节后按照ISO 527测试的拉伸强度记为老化前的拉伸强度;2)将标准测试样条放置210℃或230℃烘箱中持续放置3000h后,在实验室环境中(23℃、50%RH)状态调节24h后按照ISO 527方法测试拉伸强度记为老化后的拉伸强度-A;3)拉伸强度保持率-A=老化前的拉伸强度/老化后的拉伸强度-A*100%。
拉伸强度保持率-B:1)将注塑的样条在实验室环境中进行状态调节后按照ISO 527测试的拉伸强度记为老化前的拉伸强度;2)将标准测试样条放置210℃或230℃烘箱中持续放置144h后取出冷却至室温放置,然后放在85℃,85%RH的环境箱中放置24h为一个循环,持续放置21个循环,老化结束后在100℃的烘箱中干燥样条至恒重,然后在实验室环境中(23℃、50%RH)状态调节24h后按照ISO 527方法测试拉伸强度记为老化后的拉伸强度-B;3)拉伸强度保持率-B=老化前的拉伸强度/老化后的拉伸强度-B*100%。
表1:实施例1-10生物基聚酰胺组合物组成及性能:
Figure PCTCN2021141935-appb-000003
Figure PCTCN2021141935-appb-000004
表2:对比例1-9生物基聚酰胺组合物组成及性能:
Figure PCTCN2021141935-appb-000005
Figure PCTCN2021141935-appb-000006
表3:实施例11-20生物基聚酰胺组合物组成及性能:
Figure PCTCN2021141935-appb-000007
Figure PCTCN2021141935-appb-000008
表4:对比例10-18生物基聚酰胺组合物组成及性能:
Figure PCTCN2021141935-appb-000009
Figure PCTCN2021141935-appb-000010
通过表1、表2、表3、表4实施例和对比例的结果可以看出,助剂体系的差异对于生物基聚酰胺组合物的力学性能影响较小,亚磷酸酯、受阻酚和自由基捕捉剂复配(对比例7,对比例16),单独添加常规铜盐热稳定剂(对比例5、对比例14),或者添加铜盐热稳定与受阻酚类抗氧剂复配(对比例6、对比例15),对改善生物基聚酰胺体系的耐热老化性能几乎无贡献。因为材料结构的差异相同配方体系的生物基聚酰胺PA56在210-230℃,3000h热氧老化、500h湿热老化循环实验后拉伸强度保持率低于PA66体系(对比例3和对比例4,对比例12和对比例13)。生物基聚酰胺树脂、增强体、稀土化合物、铜盐组合体、导热母粒、稳定剂和自由基捕捉剂组成的材料配方体系(实施例1-实施例20)在210-230℃,3000h热氧老化和210-230℃,3000h热氧老化、500h湿热老化循环实验后拉伸强度保持率可以在60%以上,生物基聚酰胺树脂、增强体、稀土化合物、铜盐组合体组成的配方体系(对比例3,对比例12)仅满足210-230℃,3000h热氧老化拉伸强度保持率50%以上,并且,导热母粒、自由基捕捉剂和稳定剂的加入对于拉伸强度保持率又进一步提升15-20%(实施例1和对比例3,实施例11和对比例12),该技术发明填补了生物基聚酰胺长周期耐热老化领域技术空白,对于生物基聚酰胺材料的应用具有重要的意义。

Claims (15)

  1. 一种高强度、高耐热生物基聚酰胺组合物,,其特征在于:按照以下按重量份数计的原料组成:
    Figure PCTCN2021141935-appb-100001
  2. 根据权利要求1所述的一种高强度、高耐热生物基聚酰胺组合物,其特征在于:所述生物基聚酰胺树脂切片是由戊二胺和己二酸通过逐步缩聚工艺制得的生物基聚酰胺树脂切片PA56,或者戊二胺、己二酸和对苯二甲酸通过逐步缩聚工艺制得的生物基聚酰胺树脂切片PA56T.
  3. 根据权利要求2所述的一种高强度、高耐热生物基聚酰胺组合物,,其特征在于:所述戊二胺是淀粉经过发酵制得,PA56切片中生物基的含量45%(重量比),PA56切片为熔点235-260℃,相对粘度2.7±0.5,;PA56T切片中生物基的含量约40%(重量比),PA56T切片为熔点255-275℃,相对粘度2.6±0.5。
  4. 根据权利要求3所述的一种高强度、高耐热生物基聚酰胺组合物,,其特征在于:所述PA56切片为熔点255℃;PA56T切片为熔点267℃。
  5. 根据权利要求1所述的一种高强度、高耐热生物基聚酰胺组合物,,其特征在于:所述的增强体是玻璃纤维、碳纤维、玄武岩纤维等纤维状填充物的一种或多种。
  6. 根据权利要求5所述的一种高强度、高耐热生物基聚酰胺组合物,,其特征在于:所述增强体是碱含量<0.8%,体积密度0.50-0.8g/cm 3,单丝纤维直径:6-18μm,短切长度:3mm,含水率≤0.05%的玻璃纤维。
  7. 根据权利要求1所述的一种高强度、高耐热生物基聚酰胺组合物,其特征在于:所述的稀土化合物中的金属离子选自元素周期表ⅢB族元素,与金属离子配对的阴离子可以是氧离子、醋酸根离子、碳酸根离子、硝酸根离子、卤素阴离子中的至少一种。
  8. 根据权利要求7所述的一种高强度、高耐热生物基聚酰胺组合物,,其特征在于:所述的稀土化合物中的金属离子选自镧元素;阴离子选自醋酸根离子或氧离子中的一种。
  9. 根据权利要求1所述的一种高强度、高耐热生物基聚酰胺组合物,,其特征在于:所述的铜盐类抗氧剂组合体是由卤化钾与一价铜的卤化物或有机螯合物的复配物,按照3-16:1比例复配而成,卤素元素优选碘或溴的一种。
  10. 根据权利要求1所述的一种高强度、高耐热生物基聚酰胺组合物,,其特征在于:所述的自由基捕捉剂是一种碳中基自由基离子捕捉剂,属于苯并呋喃酮体系,是一种多重功能的内酯型热稳定剂和抗氧剂,其结构式为:
    Figure PCTCN2021141935-appb-100002
  11. 根据权利要求1所述的一种高强度、高耐热生物基聚酰胺组合物,,其特征在于:所述导热母粒是高导热系数的单壁碳纳米管,载体为脂肪酸和季戊四醇合成的酯类润滑剂,导热母粒中碳纳米管有效成份含含量10%-20%,碳纳米管导热率>10W/mK,通过密炼工艺制备成母粒。
  12. 根据权利要求1所述的一种高强度、高耐热生物基聚酰胺组合物,,其特征在于:所述加工稳定剂是N,N′-双(2,2,6,6-四甲基-4-吡啶基)-1,3-苯二甲酰胺,分子量442.64,熔点270-274℃,CAS No.42774-15-2。
  13. 根据权利要求1所述的一种高强度、高耐热生物基聚酰胺组合物,,其特征在于:所述分散剂是一种部分皂化的蒙旦酯蜡,滴点:95-100℃,酸值10-25mgKOH/g。
  14. 根据权利要求1-13任意之一所述高强度、高耐热聚酰胺组合物的制备方法,其特征在于:包括以下步骤:
    (1)生物基聚酰胺树脂切片的含水率不高于2000ppm;
    (2)按配方比例称取干燥后的各种原料;将生物基聚酰胺树脂切片、稀土化合物、铜盐类抗氧剂组合体、自由基捕捉剂、导热母粒、加工稳定剂和分散剂通过高速搅拌机然混合均匀,备用,按照配比称取增强体,备用;
    (3)将上述树脂和助剂混合原料通过双螺杆挤出机的主喂料口加入,增强体从双螺杆挤出机的侧喂料口加入,经过熔融挤出、造粒、干燥处理等工序后得到所述的高强度、高耐热生物基聚酰胺材料。
  15. 根据权利要求1-13任意之一所述高强度、高耐热聚酰胺组合物,其特征在于:该生物基聚酰胺组合物应用于在中冷器进气室、紧凑型涡轮增压进气歧管、增压空气冷却器等汽车发动机系统零件。
PCT/CN2021/141935 2020-12-29 2021-12-28 一种高强度、高耐热生物基聚酰胺组合物及其制备方法 WO2022143612A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/268,308 US20240093030A1 (en) 2020-12-29 2021-12-28 High-strength and high-heat-resistant bio-based polyamide composition and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011597323.5A CN112724670B (zh) 2020-12-29 2020-12-29 一种高强度、高耐热生物基聚酰胺组合物及其制备方法
CN202011597323.5 2020-12-29

Publications (1)

Publication Number Publication Date
WO2022143612A1 true WO2022143612A1 (zh) 2022-07-07

Family

ID=75611357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141935 WO2022143612A1 (zh) 2020-12-29 2021-12-28 一种高强度、高耐热生物基聚酰胺组合物及其制备方法

Country Status (3)

Country Link
US (1) US20240093030A1 (zh)
CN (1) CN112724670B (zh)
WO (1) WO2022143612A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115716988A (zh) * 2022-10-28 2023-02-28 江苏金发科技新材料有限公司 一种长碳链聚酰胺组合物及其制备方法和应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112724670B (zh) * 2020-12-29 2023-03-17 上海普利特复合材料股份有限公司 一种高强度、高耐热生物基聚酰胺组合物及其制备方法
CN115260752A (zh) * 2021-04-30 2022-11-01 上海凯赛生物技术股份有限公司 聚酰胺56树脂组合物及连续纤维增强聚酰胺56复合材料
CN115785659B (zh) * 2021-09-10 2024-02-09 上海凯赛生物技术股份有限公司 长纤维增强耐磨自润滑生物基聚酰胺复合材料及其制备方法
CN114181522B (zh) * 2021-11-03 2024-08-09 横店集团得邦工程塑料有限公司 一种耐醇解热稳定型ppa复合材料及其制备方法
CN114350145B (zh) * 2021-12-30 2024-02-20 上海普利特复合材料股份有限公司 一种交联结构长玻纤增强多元共聚生物基高温聚酰胺组合物及其制备方法和应用
JPWO2023157854A1 (zh) * 2022-02-18 2023-08-24

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105492536A (zh) * 2013-08-29 2016-04-13 Ems专利股份公司 聚酰胺模塑材料和由其制备的模塑制品
US20190300709A1 (en) * 2018-03-30 2019-10-03 Ascend Performance Materials Operations Llc Cerium-stabilized polyamides and processes for making same
CN112724670A (zh) * 2020-12-29 2021-04-30 上海普利特复合材料股份有限公司 一种高强度、高耐热生物基聚酰胺组合物及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1103386C (zh) * 2000-03-10 2003-03-19 营口化学纤维厂 聚酰胺66耐高温抗氧化纤维的制造方法
US9150691B2 (en) * 2011-07-08 2015-10-06 Rhodia Operations Polyamide, process for preparing same and uses thereof
CN103087310B (zh) * 2013-01-14 2014-10-15 金发科技股份有限公司 一种聚酰胺树脂和其应用以及由其组成的聚酰胺组合物
CN104327494A (zh) * 2014-09-11 2015-02-04 苏州大学 一种聚酰胺用热氧化稳定添加剂
CN107778853A (zh) * 2016-08-29 2018-03-09 合肥杰事杰新材料股份有限公司 一种耐热氧老化耐水解连续玻纤增强聚酰胺复合材料及其制备方法
CN109957239B (zh) * 2017-12-14 2021-10-15 凯赛(乌苏)生物材料有限公司 一种热塑性增强生物基pa56/pa66合金及其制备方法
CN108276769B (zh) * 2018-01-12 2019-12-13 金发科技股份有限公司 一种聚酰胺树脂组合物及其制备方法
CN108329687B (zh) * 2018-01-12 2019-12-13 金发科技股份有限公司 一种聚酰胺树脂组合物及其制备方法
CN111117231A (zh) * 2019-12-31 2020-05-08 会通新材料(上海)有限公司 一种不含卤素的耐热空气长期老化的聚酰胺56组合物及其应用
CN112063171A (zh) * 2020-09-23 2020-12-11 华东理工大学 一种抗老化增韧型生物基尼龙复合材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105492536A (zh) * 2013-08-29 2016-04-13 Ems专利股份公司 聚酰胺模塑材料和由其制备的模塑制品
US20190300709A1 (en) * 2018-03-30 2019-10-03 Ascend Performance Materials Operations Llc Cerium-stabilized polyamides and processes for making same
CN112724670A (zh) * 2020-12-29 2021-04-30 上海普利特复合材料股份有限公司 一种高强度、高耐热生物基聚酰胺组合物及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115716988A (zh) * 2022-10-28 2023-02-28 江苏金发科技新材料有限公司 一种长碳链聚酰胺组合物及其制备方法和应用
CN115716988B (zh) * 2022-10-28 2024-02-23 江苏金发科技新材料有限公司 一种长碳链聚酰胺组合物及其制备方法和应用

Also Published As

Publication number Publication date
US20240093030A1 (en) 2024-03-21
CN112724670A (zh) 2021-04-30
CN112724670B (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
WO2022143612A1 (zh) 一种高强度、高耐热生物基聚酰胺组合物及其制备方法
Chen et al. Effect of hydrophobic nano‐silica/β‐nucleating agent on the crystallization behavior and mechanical properties of polypropylene random copolymers
US20130338260A1 (en) Thermoplastic melt-mixed composition with epoxy-carboxylic acid compound heat stabilizer
CN103030972A (zh) 一种高耐热低翘曲尼龙66复合材料及其制备方法
CN111621123A (zh) 一种低翘曲pet/pbt复合材料及其制备方法
KR101838784B1 (ko) 자동차용 열가소성 수지 조성물 및 이로부터 제조된 자동차용 성형품
CN111253739B (zh) 一种dopo衍生物/碳纳米管协效阻燃玻纤尼龙复合材料
CN110172242B (zh) 耐热级吹塑成型增强改性聚酰胺复合材料
CN104098832A (zh) 一种聚丙烯耐热耐侯母粒、制备方法及其应用
CN112028929A (zh) 笼型倍半硅氧烷负载取代芳基杂环磷酸酯或盐类成核剂的制备方法与应用
CN108624040A (zh) 一种发动机进气歧管用复合材料及其制备方法
CN108587147A (zh) 一种尼龙6组合物及其制备方法和应用
KR20160070252A (ko) 자동차용 열가소성 수지 조성물 및 이로부터 제조된 자동차용 성형품
CN111117237A (zh) 聚酰胺复合材料及其制备方法
CN116285328A (zh) 一种高强度、低析出无卤阻燃聚酰胺组合物及其制备方法
JP5304040B2 (ja) ガス発生低減化された熱可塑性樹脂組成物及びそれを用いた成形品
CN112708204A (zh) 一种增韧高性能聚丙烯组合物及其制备方法
CN111712544A (zh) 热塑性树脂组合物及将其成型而成的成型体
KR101793326B1 (ko) 자동차용 열가소성 수지 조성물 및 이로부터 제조된 자동차용 성형품
CN112608576A (zh) 一种低voc释放的asa 3d打印线材及其制备方法
CN114316584B (zh) 一种溴系阻燃高耐热生物基聚酰胺组合物及其制备方法
CN111087778A (zh) 流动性能改善的导热聚碳酸酯组合物及制备方法和应用
CN113372715A (zh) 一种红磷阻燃增强尼龙复合材料及其应用
CN113980461B (zh) 一种尼龙/碳纳米管阻燃导热复合材料及其制备方法
CN107880312B (zh) 一种高光耐热低收缩聚丙烯用的复合添加剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914347

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18268308

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914347

Country of ref document: EP

Kind code of ref document: A1