[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022036720A1 - 码本处理方法、终端设备和网络设备 - Google Patents

码本处理方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2022036720A1
WO2022036720A1 PCT/CN2020/110625 CN2020110625W WO2022036720A1 WO 2022036720 A1 WO2022036720 A1 WO 2022036720A1 CN 2020110625 W CN2020110625 W CN 2020110625W WO 2022036720 A1 WO2022036720 A1 WO 2022036720A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
layer
csi
ports
indication information
Prior art date
Application number
PCT/CN2020/110625
Other languages
English (en)
French (fr)
Inventor
黄莹沛
陈文洪
史志华
方昀
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/110625 priority Critical patent/WO2022036720A1/zh
Priority to CN202080104472.5A priority patent/CN116158017A/zh
Publication of WO2022036720A1 publication Critical patent/WO2022036720A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the embodiments of the present application relate to the field of communications, and more particularly, to a codebook processing method, a terminal device, and a network device.
  • the Precoding Matrix Indicator (PMI) codebook is supported in the New Radio (NR) system.
  • NR New Radio
  • the codebook overhead of the PMI codebook is relatively large. How to reduce the codebook overhead of the PMI codebook is An urgent problem to be solved.
  • the embodiments of the present application provide a codebook processing method, a terminal device, and a network device, which can reduce the codebook overhead of the PMI codebook and improve the feedback efficiency.
  • a codebook processing method comprising:
  • the terminal device sends first information, where the first information is used to report channel state information;
  • the first information includes at least one of the following:
  • a codebook processing method comprising:
  • the network device receives the first information, where the first information is used to report the channel state information;
  • the first information includes at least one of the following:
  • a terminal device for executing the method in the above-mentioned first aspect.
  • the terminal device includes functional modules for executing the method in the first aspect.
  • a network device for executing the method in the second aspect.
  • the network device includes functional modules for executing the method in the second aspect above.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the first aspect.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect.
  • an apparatus for implementing the method in any one of the above-mentioned first to second aspects.
  • the apparatus includes: a processor for invoking and running a computer program from a memory, so that a device on which the apparatus is installed executes the method in any one of the first to second aspects above.
  • a computer-readable storage medium for storing a computer program, the computer program causing a computer to execute the method in any one of the first to second aspects above.
  • a computer program product comprising computer program instructions, the computer program instructions causing a computer to perform the method in any one of the first to second aspects above.
  • a computer program which, when run on a computer, causes the computer to perform the method of any one of the above-mentioned first to second aspects.
  • the network device can determine the PMI codebook based on the port selection information and/or weighting coefficient information reported by the terminal device, which can reduce the codebook overhead of the PMI codebook and improve feedback efficiency.
  • FIG. 1 is a schematic diagram of a communication system architecture to which an embodiment of the present application is applied.
  • FIG. 2 is a schematic flowchart of a codebook processing method provided according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a parameter N provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a codebook processing provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a port selection position indicated by fourth indication information provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another codebook processing provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of partial overlap of different PMI subband groups in the frequency domain provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of sampling at equal intervals on a PMI subband by a port selected by a PMI subband group according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a network device provided according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of an apparatus provided according to an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • Wireless Fidelity Wireless Fidelity
  • WiFi fifth-generation communication
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in this embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) distribution. web scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA standalone
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered unshared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, where the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device can be a station (STATION, ST) in the WLAN, can be a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, next-generation communication systems such as end devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • a mobile phone Mobile Phone
  • a tablet computer Pad
  • a computer with a wireless transceiver function a virtual reality (Virtual Reality, VR) terminal device
  • augmented reality (Augmented Reality, AR) terminal Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the network device may be a device for communicating with a mobile device, and the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA , it can also be a base station (NodeB, NB) in WCDMA, it can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or an access point, or a vehicle-mounted device, a wearable device, and an NR network
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a High Elliptical Orbit (HEO) ) satellite etc.
  • the network device may also be a base station set in a location such as land or water.
  • a network device may provide services for a cell, and a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device (
  • the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • Pico cell Femto cell (Femto cell), etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or referred to as a communication terminal, a terminal).
  • the network device 110 may provide communication coverage for a particular geographic area, and may communicate with terminal devices located within the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 with a communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller, a mobility management entity, etc., which are not limited in this embodiment of the present application.
  • the "instruction" mentioned in the embodiments of the present application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • corresponding may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
  • the frequency domain-space codebook (also known as the NR type (type) II codebook, or the frequency domain-space joint codebook) is in the frequency domain. Domain (each subband) is independently coded. Due to the high spatial quantization accuracy, the total feedback amount is too large. By feeding back the frequency domain-spatial joint codebook, the feedback amount can be greatly saved under the condition of ensuring the NR performance.
  • the frequency domain-spatial codebook can be expressed as:
  • W represents the frequency domain-spatial codebook
  • W 1 represents the discrete Fourier transform (Discrete fourier transformation, DFT) vectors of 2L spatial beams (beams)
  • W f represents the DFT basis vectors of M frequency domains.
  • W 1 can be represented by 2N 1 N 2 *2L, where N 1 is the number of ports in the vertical direction, and N 2 is the number of ports in the horizontal direction. It can be represented by 2L*M, and the value of 2L is The number of rows, M is the number of columns. It can be represented by M*N 3 , where N 3 is the number of DFT basis vectors in the frequency domain.
  • the content of the channel information (such as Channel State Information (CSI)) reported to the network device includes: DFT vectors of the L spatial beams of W 1 , W The M frequency-domain DFT basis vectors of f , and the quantized The network device obtains the downlink CSI of each layer through the product of the three.
  • CSI Channel State Information
  • the base station obtains the statistical characteristics of uplink space and delay through uplink Sounding Reference Signal (SRS), and determines the spatial and frequency domains.
  • the precoding matrix or the joint precoding matrix is used to precode the channel state information reference signal (Channel State Information Reference Signal, CSI-RS).
  • the terminal device estimates the CSI-RS and selects one or more ports, and reports the port's Amplitude and phase information.
  • CSI-RS Channel State Information Reference Signal
  • the terminal device estimates the CSI-RS and selects one or more ports, and reports the port's Amplitude and phase information.
  • the dimension of Wi is f ⁇ Nt
  • f is the size of frequency domain precoding
  • Nt is the number of antennas, which is calculated by the base station.
  • the signal sent by the originator is
  • the existing codebook does not consider the joint distribution of multiple-in-multiple-out (MIMO) channel space and delay.
  • MIMO multiple-in-multiple-out
  • the present application proposes a codebook processing scheme.
  • the codebook overhead is compressed and the feedback is improved. effectiveness.
  • FIG. 2 is a schematic flowchart of a codebook processing method 200 according to an embodiment of the present application. As shown in FIG. 2 , the method 200 may include at least part of the following contents:
  • the terminal device sends first information to the network device, where the first information is used to report channel state information;
  • the first information includes at least one of the following:
  • the network device receives the first information.
  • the network device may determine the PMI codebook according to the first information.
  • the network device may determine a port selection codebook according to the port selection information, and determine a PMI codebook according to the port selection codebook and the weighting coefficient information.
  • the port may be a CSI-RS port.
  • the PMI codebook can be expressed as Equation 1 below.
  • W represents the PMI codebook
  • W 1 represents the port selection codebook
  • W 2 represents the weighting coefficient
  • c also represents the weighting coefficient
  • w rx represents M DFT vectors of length N
  • M and N are positive integers
  • W 1 can be composed of vm , and vm is A column vector of elements, each column containing a 1 whose position is In addition, other positions of each column are 0, wherein, P CSI-RS is the total number of ports, m is an integer, and m is a parameter configured by a high layer.
  • the M DFT vectors are continuous, or the M DFT vectors include a frequency-domain basis vector 0 (FD-basis 0), or the M DFT vectors are all-1 vectors.
  • the network device may configure or indicate the M DFT vectors of length N through high-layer signaling.
  • the terminal device determines the frequency domain basis vector f (FD-basis f) through the high-level parameters s and M, And take the determined FD-basis f as a candidate set, and select FD-basis from the candidate set as the M DFT vectors of length N.
  • the network device may configure or indicate the parameter N through high-layer signaling.
  • N R*N sb , or,
  • R is a high-level configuration parameter
  • N sb is the number of channel quality indicator (Channel Quantity Indicator, CQI) subbands
  • d is a high-level configuration parameter
  • d is a positive integer.
  • R is a value in the second value group, wherein,
  • the second value group includes one of the following:
  • R satisfies the following formula:
  • the M DFT vectors with a length of N are configured or indicated by the network device, or the M DFT vectors with a length of N are pre-configured or agreed in a protocol, or the M DFT vectors with a length of N are The vector is determined for this end device.
  • the terminal device sends second information to the network device, where the second information is used to indicate the M DFT vectors of length N .
  • the second information via The bits indicate the M length-N DFT vectors.
  • the network device sends a signal
  • the terminal device determines the frequency domain-space channel coefficient
  • the terminal device calculates the port selection codebook W 1 and the weighting coefficient W 2 in combination with wrx .
  • the terminal device may determine the PMI codebook according to the port selection information, the weighting coefficient information, and M DFT vectors of length N.
  • the terminal device can determine the PMI codebook based on the above formula 1.
  • the network device may determine the PMI codebook according to the port selection information, the weighting coefficient information, and M DFT vectors of length N.
  • the network device may determine the PMI codebook based on the above formula 1.
  • the network device may instruct the terminal device to select a port selection codebook through high-layer signaling and/or downlink control information (Downlink Control Information, DCI). That is, the port selection information may be some information used to reflect the port selection codebook selected by the terminal device.
  • DCI Downlink Control Information
  • the terminal device receives third information sent by the network device, where the third information is used to instruct the terminal device to select a port selection codebook.
  • the third information is higher layer signaling, or the third information is DCI.
  • the port selection information includes first indication information, where the first indication information is used to indicate port selection.
  • the first indication information indicates the port selection position by a first combination number, wherein the first combination number is Alternatively, the first combination number is N 1 N 2 is a parameter configured by a high layer, and L is an integer determined by a high layer parameter.
  • L is a value in a first value group, wherein the first value group includes one of the following:
  • P CSI-RS is the total number of ports, and a is a high-level configuration parameter.
  • the first indication information indicates the port selection position by a second combination number, wherein the second combination number is P CSI-RS is the total number of ports, and D is a high-level configuration parameter.
  • the port selection information includes second indication information, where the second indication information is used to indicate a position corresponding to a strongest coefficient indicator (Strongest coefficient indicator, SCI).
  • SCI strongest coefficient indicator
  • the second indication information indicates the position corresponding to the SCI through log 2 P CSI-RS , where P CSI-RS is the total number of ports.
  • the second indication information indicates the position corresponding to the SCI through log 2 (K nz ), where K nz is the number of non-zero coefficients.
  • the magnitude of the strongest coefficient indication (SCI) is 1 and the phase is 0, and the terminal device does not need to report the strongest coefficient indication (SCI) to the network.
  • Rank Indication (Rank Indication, RI)>1, some or all of the multiple layers use the same port.
  • the first layer and the second layer use the same port
  • the third layer and the fourth layer use the same port
  • the port selection information includes fourth indication information, where,
  • the fourth indication information indicates the port selection position of each layer by the position of the non-zero coefficient of each layer in the union of the non-zero coefficients of the plurality of layers; or,
  • the fourth indication information indicates the port selection position of each layer by the position of the port adopted by each layer in the union of the ports adopted by the multiple layers.
  • the non-zero coefficients of layer 1 are located at ports 0, 2, and 3, the non-zero coefficients of layer 2 are located at ports 0, 3, 4, and 5, and the non-zero coefficients of layer 3 are located at Port 1, Port 2, and Port 4.
  • the union of the non-zero coefficients of the three layers is port 0-port 5.
  • the fourth indication information may indicate that the non-zero coefficients of layer 1 are located at position 0 in port 0-port 5.
  • the fourth indication information may indicate that the non-zero coefficients of layer 2 are located at position 0, position 3, position 4 and position 5 in port 0-port 5, and the fourth indication information may indicate the non-zero coefficient of layer 3
  • the coefficients are located at position 1, position 2, and position 4 in port 0-port 5, and each position index corresponds to a port index. Therefore, the network device can determine, based on the fourth indication information, that the ports selected by layer 1 are port 0, port 2 and port 3, the ports selected by layer 2 are port 0, port 3, port 4 and port 5, and the ports selected by layer 3 are Port 1, Port 2, and Port 4.
  • the fourth indication information passes through Indicates the union of nonzero coefficients of multiple layers, and by Indicates the position of the non-zero coefficient of the i-th layer in the union of non-zero coefficients of multiple layers, N 1 N 2 is the parameter configured by the high-level, U 1 is the number of non-zero coefficients included in the union of non-zero coefficients, K i is the number of non-zero coefficients of the i-th layer, 1 ⁇ i ⁇ the number of layers of multiple layers; or,
  • the fourth indication information passes through Indicates the union of ports taken by multiple layers, and the Indicates the position of the port used by the i-th layer in the union of the ports used by multiple layers, N 1 N 2 is the parameter configured by the upper layer, U 2 is the number of ports included in the union of ports, and Qi is the i -th layer.
  • the number of ports used 1 ⁇ i ⁇ the number of layers of multiple layers.
  • the fourth indication information passes through Indicates the port selection position of the i-th layer, v is the number of layers of multiple layers, U 1 is the number of non-zero coefficients included in the union of non-zero coefficients, K i is the number of non-zero coefficients of the i-th layer, 1 ⁇ i ⁇ v; or,
  • the fourth indication information passes through Indicates the port selection position of the i-th layer, v is the number of layers of multiple layers, U 2 is the number of ports included in the union of ports, Qi is the number of ports adopted by the i -th layer, 1 ⁇ i ⁇ v.
  • the fourth indication information is applicable to the case of RI>1.
  • the port selection information includes a port selection quantity, and the port selection quantity is carried in the first part of the CSI (CSI part1).
  • the number of port selections may also be the number of non-zero coefficients. That is, the terminal device indicates the number of port selections by reporting the number of non-zero coefficients.
  • the port selection quantity includes one of the following:
  • P CSI-RS is the total number of ports
  • N 1 , N 2 , and f are parameters configured by higher layers.
  • f may be the number of ports in the frequency domain.
  • the P CSI-RS may be specifically shown in Table 1 below.
  • the number of ports that can be configured by the network device may be greater than 32, which meets the requirement of frequency domain-spatial domain joint precoding.
  • the terminal device uses at least one CSI resource in multiple CSI resource sets to calculate the PMI codebook, wherein the multiple CSI resource sets are associated with one CSI report, and the multiple CSI resource sets are associated with one CSI report. for channel measurement.
  • the terminal device uses at least one CSI resource in a first CSI resource set to calculate a PMI codebook, wherein the first CSI resource set is associated with one CSI report, and the first CSI resource set for channel measurement.
  • the number of ports corresponding to the CSI-RS resources needs to meet the number of ports of the PMI codebook.
  • the 8-port PMI codebook mapping sequence can be one of the following:
  • the PMI codebook may be expressed as the following formula 2.
  • W represents the PMI codebook
  • W1 represents the port selection codebook
  • W2 represents the weighting coefficient
  • c1 represents the weighting coefficient of the PMI subband group 1
  • c2 represents the weighting coefficient of the PMI subband group 2
  • cn represents the PMI weighting coefficients for subband group n
  • M DFT vectors of length N corresponding to PMI subband group 1 represents M DFT vectors of length N corresponding to PMI subband group 2
  • cn represents the PMI weighting coefficients for subband group n
  • M DFT vectors of length N corresponding to PMI subband group 1 represents M DFT vectors of length N corresponding to PMI subband group 2
  • cn represents the PMI weighting coefficients for subband group n
  • M DFT vectors of length N corresponding to PMI subband group 1 represents M DFT vectors of length N corresponding to PMI subband group 2
  • cn represents the PMI weighting coefficients for subband group n
  • the terminal device determines n PMI subband groups, selects ports for each PMI subband group, and calculates a weighting coefficient for each PMI subband group.
  • the network device performs frequency domain-spatial precoding on each PMI subband group, and determines the port and weighting coefficient selected for each PMI subband group.
  • Equation 2 That is, DFT vectors corresponding to different PMI subband groups may be the same.
  • the DFT vectors corresponding to different PMI subband groups can also be different, that is, Or, the DFT vectors corresponding to at least some of the n PMI subband groups are different.
  • the PMI subband is divided into a PMI subband group 1 and a PMI subband group 2, wherein the terminal device indicates that the ports selected by the PMI subband group 1 are 0, 1, and 2. ,3, the ports selected by PMI subband group 2 are 4,5,6,7.
  • the network device obtains the port selected by the PMI subband group 1 and the weighting coefficient c 1 , and the corresponding port of the PMI subband group 1 (W_rx,1 in the figure), and obtain the port selected by the PMI subband group 2, the weighting coefficient c 2 , and the corresponding PMI subband group 2 (W_rx, 2 in the figure), and determine the PMI codebook in combination with W f .
  • the channel state information is determined by n PMI subband groups, and n vectors and/or vectors of length n, where n is an integer, and n ⁇ 1.
  • the vector is a DFT vector.
  • vectors corresponding to different PMI subband groups are the same; or, vectors corresponding to different PMI subband groups are different.
  • the vector is a DFT vector.
  • the terminal device may determine the PMI codebook according to the port selection information and the weighting coefficient information. That is, the terminal device can determine the PMI codebook based on the above formula 2.
  • the network device may determine the PMI codebook according to the port selection information and the weighting coefficient information. That is, the network device may determine the PMI codebook based on the above formula 2.
  • the port selection information includes third indication information, where the third indication information is used to determine the number of PMI subbands in the PMI subband group.
  • the third indication information is used to determine the number of PMI subbands in each of the n PMI subband groups.
  • the weighting coefficient information includes weighting coefficients corresponding to the n PMI subband groups respectively.
  • different PMI subband groups in the n PMI subband groups have the same frequency domain length.
  • different PMI subband groups in the n PMI subband groups have different frequency domain lengths.
  • the n PMI subband groups include PMI subband group 1 and PMI subband group 2, the frequency domain length of PMI subband group 1 is 5, and the frequency domain length of PMI subband group 2 is 3.
  • different PMI subband groups in the n PMI subband groups partially overlap in the frequency domain.
  • the overlap length may be configured by the network device.
  • the n PMI subband groups include PMI subband group 1 and PMI subband group 2, and PMI subband group 1 includes subband 0, subband 1, subband 2, subband 3, Subband 4, Subband 5, PMI Subband Group 2 includes Subband 2, Subband 3, Subband 4, Subband 5, Subband 6, Subband 7, PMI Subband Group 1 and PMI Subband Group 2 are The overlapping parts in the frequency domain are sub-band 2, sub-band 3, sub-band 4, and sub-band 5.
  • the ports selected by one PMI subband group are formed by sampling at equal intervals on the PMI subbands.
  • the n PMI subband groups include PMI subband group 1 and PMI subband group 2, PMI subband group 1 selects port 0, port 2, port 4, and port 6, and PMI subband group 2Select Port 1, Port 3, Port 5, Port 7. That is, for PMI subband group 1, the selected port PMI subbands are sampled at equal intervals (with an interval of 2); for PMI subband group 2, the selected ports are composed of equally spaced samples on the PMI subbands (with an interval of 2) .
  • the network device can determine the PMI codebook based on port selection information and/or weighting coefficient information reported by the terminal device, which can reduce the codebook overhead of the PMI codebook and improve feedback efficiency.
  • the present application compresses codebook overhead and improves feedback efficiency by estimating the characteristics of space domain and time delay (DFT transform domain) from the uplink channel SRS.
  • DFT transform domain space domain and time delay
  • FIG. 9 shows a schematic block diagram of a terminal device 300 according to an embodiment of the present application.
  • the terminal device 300 includes:
  • a communication unit 310 configured to send first information, where the first information is used to report channel state information
  • the first information includes at least one of the following:
  • the port selection information includes first indication information, where the first indication information is used to indicate port selection.
  • the first indication information indicates the port selection position by a first combination number, wherein the first combination number is Alternatively, the first combination number is N 1 N 2 is a parameter configured by a high layer, and L is an integer determined by a high layer parameter.
  • L is a value in the first value group, wherein,
  • the first value group includes one of the following:
  • P CSI-RS is the total number of ports, and a is a high-level configuration parameter.
  • the first indication information indicates the port selection position by a second combination number, wherein the second combination number is P CSI-RS is the total number of ports, and D is a high-level configuration parameter.
  • the port selection information includes second indication information, where the second indication information is used to indicate that the strongest coefficient indicates the position corresponding to the SCI.
  • the second indication information indicates the position corresponding to the SCI through log 2 P CSI-RS , where P CSI-RS is the total number of ports; or,
  • the second indication information indicates the position corresponding to the SCI through log 2 (K nz ), where K nz is the number of non-zero coefficients.
  • the port selection information includes third indication information, where the third indication information is used to determine the number of PMI subbands in the PMI subband group indicated by the precoding matrix.
  • the frequency domain lengths of different PMI subband groups are the same; or,
  • Different PMI subband groups have different lengths in the frequency domain.
  • different PMI subband groups partially overlap in the frequency domain.
  • the overlap length is configured by the network device.
  • the ports selected by one PMI subband group are formed by sampling at equal intervals on the PMI subbands.
  • the channel state information is determined by n PMI subband groups, and n vectors and/or vectors of length n, where n is an integer, and n ⁇ 1.
  • the vectors corresponding to different PMI subband groups are the same; or,
  • the vector is a discrete Fourier transform DFT vector.
  • the weighting coefficient information includes weighting coefficients corresponding to n PMI subband groups, where n is an integer, and n ⁇ 1.
  • P CSI-RS is the total number of ports
  • N 1 , N 2 , and f are parameters configured by higher layers.
  • the terminal device further includes: a processing unit, wherein,
  • the processing unit is configured to use at least one CSI resource in multiple channel state information CSI resource sets to calculate a PMI codebook, wherein the multiple CSI resource sets are associated with one CSI report, and the multiple CSI resource sets are used for channel measurement.
  • the terminal device further includes: a processing unit, wherein,
  • the processing unit is configured to use at least one CSI resource in a first CSI resource set to calculate a PMI codebook, wherein the first CSI resource set is associated with one CSI report, and the first CSI resource set is used for channel measurement.
  • some or all of the multiple layers select different numbers of ports.
  • the first layer and the second layer use the same port
  • the third layer and the fourth layer use the same port
  • the port selection information includes fourth indication information, wherein,
  • the fourth indication information indicates the port selection position of each layer by the position of the non-zero coefficient of each layer in the union of the non-zero coefficients of the plurality of layers; or,
  • the fourth indication information indicates the port selection position of each layer by the position of the port adopted by each layer in the union of the ports adopted by the multiple layers.
  • the fourth indication information passes through Indicates the union of nonzero coefficients of multiple layers, and by Indicates the position of the non-zero coefficient of the i-th layer in the union of non-zero coefficients of multiple layers, N 1 N 2 is the parameter configured by the high-level, U 1 is the number of non-zero coefficients included in the union of non-zero coefficients, K i is the number of non-zero coefficients of the i-th layer, 1 ⁇ i ⁇ the number of layers of multiple layers; or,
  • the fourth indication information passes through Indicates the union of ports taken by multiple layers, and the Indicates the position of the port used by the i-th layer in the union of the ports used by multiple layers, N 1 N 2 is the parameter configured by the upper layer, U 2 is the number of ports included in the union of ports, and Qi is the i -th layer.
  • the number of ports used 1 ⁇ i ⁇ the number of layers of multiple layers.
  • the fourth indication information passes through Indicates the port selection position of the i-th layer, v is the number of layers of multiple layers, U 1 is the number of non-zero coefficients included in the union of non-zero coefficients, K i is the number of non-zero coefficients of the i-th layer, 1 ⁇ i ⁇ v; or,
  • the fourth indication information passes through Indicates the port selection position of the i-th layer, v is the number of layers of multiple layers, U 2 is the number of ports included in the union of ports, Qi is the number of ports adopted by the i -th layer, 1 ⁇ i ⁇ v.
  • the fourth indication information is applicable to the case of RI>1.
  • the port selection information includes the number of non-zero coefficients, and the number of non-zero coefficients is carried in the first part of the CSI.
  • the number of non-zero coefficients includes one of the following:
  • the terminal device further includes: a processing unit 320, wherein:
  • the processing unit 320 is configured to determine a PMI codebook according to the port selection information, the weighting coefficient information and M DFT vectors of length N, where M and N are positive integers.
  • the M DFT vectors are continuous, or the M DFT vectors include a frequency domain basis vector 0.
  • N R*N sb , or,
  • R is a high-level configuration parameter
  • N sb is the number of CQI subbands for channel quality indication
  • d is a high-level configuration parameter
  • d is a positive integer.
  • R is a value in the second value group, wherein,
  • the second value group includes one of the following:
  • R satisfies the following formula:
  • the M DFT vectors with a length of N are configured or indicated by the network device, or the M DFT vectors with a length of N are pre-configured or agreed in a protocol, or the M DFT vectors with a length of N are The vector is determined for this end device.
  • the communication unit 310 is further configured to send second information, where the second information is used to indicate the M DFT vectors of length N.
  • the second information is passed through
  • the bits indicate the M length-N DFT vectors.
  • the communication unit 310 is further configured to receive third information, where the third information is used to instruct the terminal device to select a port selection codebook.
  • the third information is higher layer signaling, or the third information is downlink control information DCI.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 300 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of the various units in the terminal device 300 are respectively for realizing the method shown in FIG. 2 .
  • the corresponding process of the terminal device in 200 is not repeated here for brevity.
  • FIG. 10 shows a schematic block diagram of a network device 400 according to an embodiment of the present application.
  • the network device 400 includes:
  • a communication unit 410 configured to receive first information sent by the terminal device, where the first information is used to report channel state information
  • the first information includes at least one of the following:
  • the port selection information includes first indication information, where the first indication information is used to indicate port selection.
  • the first indication information indicates the port selection position by a first combination number, wherein the first combination number is Alternatively, the first combination number is N 1 N 2 is a parameter configured by a high layer, and L is an integer determined by a high layer parameter.
  • L is a value in the first value group, wherein,
  • the first value group includes one of the following:
  • P CSI-RS is the total number of ports, and a is a high-level configuration parameter.
  • the first indication information indicates the port selection position by a second combination number, wherein the second combination number is P CSI-RS is the total number of ports, and D is a high-level configuration parameter.
  • the port selection information includes second indication information, where the second indication information is used to indicate that the strongest coefficient indicates the position corresponding to the SCI.
  • the second indication information indicates the position corresponding to the SCI through log 2 P CSI-RS , where P CSI-RS is the total number of ports; or,
  • the second indication information indicates the position corresponding to the SCI through log 2 (K nz ), where K nz is the number of non-zero coefficients.
  • the port selection information includes third indication information, where the third indication information is used to determine the number of PMI subbands in the PMI subband group indicated by the precoding matrix.
  • the frequency domain lengths of different PMI subband groups are the same; or,
  • Different PMI subband groups have different lengths in the frequency domain.
  • different PMI subband groups partially overlap in the frequency domain.
  • the overlap length is configured by the network device.
  • the ports selected by one PMI subband group are formed by sampling at equal intervals on the PMI subbands.
  • the channel state information is determined by n PMI subband groups, and n vectors and/or vectors of length n, where n is an integer, and n ⁇ 1.
  • the vectors corresponding to different PMI subband groups are the same; or,
  • the vector is a discrete Fourier transform DFT vector.
  • the weighting coefficient information includes weighting coefficients corresponding to n PMI subband groups, where n is an integer, and n ⁇ 1.
  • P CSI-RS is the total number of ports
  • N 1 , N 2 , and f are parameters configured by higher layers.
  • the PMI codebook is calculated by the terminal device using at least one CSI resource in multiple channel state information CSI resource sets, wherein the multiple CSI resource sets are associated with one CSI report, and the multiple CSI resource sets are used for for channel measurement.
  • the PMI codebook is calculated by the terminal device using at least one CSI resource in the first CSI resource set, wherein the first CSI resource set is associated with one CSI report, and the first CSI resource set is used for channel measurement .
  • some or all of the multiple layers select different numbers of ports.
  • the first layer and the second layer use the same port
  • the third layer and the fourth layer use the same port
  • the port selection information includes fourth indication information, wherein,
  • the fourth indication information indicates the port selection position of each layer by the position of the non-zero coefficient of each layer in the union of the non-zero coefficients of the plurality of layers; or,
  • the fourth indication information indicates the port selection position of each layer by the position of the port adopted by each layer in the union of the ports adopted by the multiple layers.
  • the fourth indication information passes through Indicates the union of nonzero coefficients of multiple layers, and by Indicates the position of the non-zero coefficient of the i-th layer in the union of non-zero coefficients of multiple layers, N 1 N 2 is the parameter configured by the high-level, U 1 is the number of non-zero coefficients included in the union of non-zero coefficients, K i is the number of non-zero coefficients of the i-th layer, 1 ⁇ i ⁇ the number of layers of multiple layers; or,
  • the fourth indication information passes through Indicates the union of ports taken by multiple layers, and the Indicates the position of the port used by the i-th layer in the union of the ports used by multiple layers, N 1 N 2 is the parameter configured by the upper layer, U 2 is the number of ports included in the union of ports, and Qi is the i -th layer.
  • the number of ports used 1 ⁇ i ⁇ the number of layers of multiple layers.
  • the fourth indication information passes through Indicates the port selection position of the i-th layer, v is the number of layers of multiple layers, U 1 is the number of non-zero coefficients included in the union of non-zero coefficients, K i is the number of non-zero coefficients of the i-th layer, 1 ⁇ i ⁇ v; or,
  • the fourth indication information passes through Indicates the port selection position of the i-th layer, v is the number of layers of multiple layers, U 2 is the number of ports included in the union of ports, Qi is the number of ports adopted by the i -th layer, 1 ⁇ i ⁇ v.
  • the fourth indication information is applicable to the case of RI>1.
  • the port selection information includes the number of non-zero coefficients, and the number of non-zero coefficients is carried in the first part of the CSI.
  • the number of non-zero coefficients includes one of the following:
  • the network device further includes: a processing unit 420, wherein:
  • the processing unit 420 is configured to determine a PMI codebook according to the port selection information, the weighting coefficient information and M DFT vectors of length N, where M and N are positive integers.
  • the M DFT vectors are continuous, or the M DFT vectors include a frequency domain basis vector 0.
  • N R*N sb , or,
  • R is a high-level configuration parameter
  • N sb is the number of CQI subbands for channel quality indication
  • d is a high-level configuration parameter
  • d is a positive integer.
  • R is a value in the second value group, wherein,
  • the second value group includes one of the following:
  • R satisfies the following formula:
  • the M DFT vectors with a length of N are configured or indicated by the network device, or the M DFT vectors with a length of N are pre-configured or agreed in a protocol, or the M DFT vectors with a length of N are The vector is determined for this end device.
  • the communication unit 410 is further configured to receive second information sent by the terminal device, where the second information is used to indicate that the M lengths are DFT vector of N.
  • the second information is passed through
  • the bits indicate the M length-N DFT vectors.
  • the communication unit 410 is further configured to send third information to the terminal device, where the third information is used to instruct the terminal device to select a port selection codebook.
  • the third information is higher layer signaling, or the third information is downlink control information DCI.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the network device 400 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 400 are respectively for realizing the method shown in FIG. 2 .
  • the corresponding process of the network device in 200 is not repeated here for brevity.
  • FIG. 11 is a schematic structural diagram of a communication device 500 provided by an embodiment of the present application.
  • the communication device 500 shown in FIG. 11 includes a processor 510, and the processor 510 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 500 may further include a memory 520 .
  • the processor 510 may call and run a computer program from the memory 520 to implement the methods in the embodiments of the present application.
  • the memory 520 may be a separate device independent of the processor 510 , or may be integrated in the processor 510 .
  • the communication device 500 may further include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices, specifically, may send information or data to other devices, or receive other Information or data sent by a device.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 500 may specifically be a network device in this embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the network device in each method in the embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 500 may specifically be the mobile terminal/terminal device of the embodiments of the present application, and the communication device 500 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, for the sake of brevity. , and will not be repeated here.
  • FIG. 12 is a schematic structural diagram of an apparatus according to an embodiment of the present application.
  • the apparatus 600 shown in FIG. 12 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in this embodiment of the present application.
  • the apparatus 600 may further include a memory 620 .
  • the processor 610 may call and run a computer program from the memory 620 to implement the methods in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated in the processor 610 .
  • the apparatus 600 may further include an input interface 630 .
  • the processor 610 may control the input interface 630 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the apparatus 600 may further include an output interface 640 .
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the apparatus can be applied to the network equipment in the embodiments of the present application, and the apparatus can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application, which are not repeated here for brevity.
  • the apparatus can be applied to the mobile terminal/terminal equipment in the embodiments of the present application, and the apparatus can implement the corresponding processes implemented by the mobile terminal/terminal equipment in each method of the embodiments of the present application.
  • the apparatus can implement the corresponding processes implemented by the mobile terminal/terminal equipment in each method of the embodiments of the present application.
  • the apparatus can implement the corresponding processes implemented by the mobile terminal/terminal equipment in each method of the embodiments of the present application.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it can be a system-on-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
  • FIG. 13 is a schematic block diagram of a communication system 700 provided by an embodiment of the present application. As shown in FIG. 13 , the communication system 700 includes a terminal device 710 and a network device 720 .
  • the terminal device 710 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 720 can be used to implement the corresponding functions implemented by the network device in the above method. For brevity, details are not repeated here. .
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity. , and will not be repeated here.
  • the computer program may be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program is run on the computer, the mobile terminal/terminal device implements the various methods of the computer program in the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种码本处理方法、终端设备和网络设备,能够降低PMI码本的码本开销,提高反馈效率。该码本处理方法包括:终端设备发送第一信息,所述第一信息用于上报信道状态信息;其中,所述第一信息包括以下中的至少一种:端口选择信息、加权系数信息。

Description

码本处理方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种码本处理方法、终端设备和网络设备。
背景技术
在新空口(New Radio,NR)系统中支持预编码矩阵指示(Precoding Matrix Indicator,PMI)码本,然而,目前PMI码本的码本开销较大,如何降低PMI码本的码本开销,是一个亟待解决的问题。
发明内容
本申请实施例提供了一种码本处理方法、终端设备和网络设备,能够降低PMI码本的码本开销,提高反馈效率。
第一方面,提供了一种码本处理方法,该方法包括:
终端设备发送第一信息,所述第一信息用于上报信道状态信息;
其中,所述第一信息包括以下中的至少一种:
端口选择信息、加权系数信息。
第二方面,提供了一种码本处理方法,该方法包括:
网络设备接收第一信息,该第一信息用于上报信道状态信息;
其中,该第一信息包括以下中的至少一种:
端口选择信息、加权系数信息。
第三方面,提供了一种终端设备,用于执行上述第一方面中的方法。
具体地,该终端设备包括用于执行上述第一方面中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面中的方法。
具体地,该网络设备包括用于执行上述第二方面中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
通过上述技术方案,网络设备可以基于终端设备上报的端口选择信息和/或加权系数信息确定PMI码本,能够降低PMI码本的码本开销,提高反馈效率。
附图说明
图1是本申请实施例应用的一种通信系统架构的示意性图。
图2是根据本申请实施例提供的一种码本处理方法的示意性流程图。
图3是本申请实施例提供的一种参数N的示意性图。
图4是本申请实施例提供的一种码本处理的示意性图。
图5是本申请实施例提供的第四指示信息指示端口选择位置的示意性图。
图6是本申请实施例提供的另一种码本处理的示意性图。
图7是本申请实施例提供的不同的PMI子带组在频域上部分重叠的示意性图。
图8是本申请实施例提供的一个PMI子带组选择的端口在PMI子带上等间隔采样的示意性图。
图9是根据本申请实施例提供的一种终端设备的示意性框图。
图10是根据本申请实施例提供的一种网络设备的示意性框图。
图11是根据本申请实施例提供的一种通信设备的示意性框图。
图12是根据本申请实施例提供的一种装置的示意性框图。
图13是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新空口(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB), 或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为了便于理解本申请实施例的技术方案,以下对频域-空间码本的相关概念进行说明。
在版本(release,Rel)16中,对于每一层码本,频域-空间码本(也可以称之为NR类型(type)II码本,或者,频域-空间联合码本)在频域(每个子带)独立编码,由于空间量化精度高,导致总的反馈量太大,通过反馈频域-空间联合码本,在保证NR性能的条件下,可以大大节省反馈量。
频域-空间码本可以表示为:
Figure PCTCN2020110625-appb-000001
其中,W代表频域-空间码本,W 1代表2L个空间波束(beam)的离散傅里叶变换(Discrete fourier transformation,DFT)向量,W f代表M个频域的DFT基向量。
Figure PCTCN2020110625-appb-000002
代表W f的转置。
Figure PCTCN2020110625-appb-000003
代表空间频域对的加权系数,
Figure PCTCN2020110625-appb-000004
为一个大小为2L*M的矩阵。W 1可以由2N 1N 2*2L表示,N 1为垂直方向的端口数,N 2为水平方向的端口数。
Figure PCTCN2020110625-appb-000005
可以由2L*M表示,2L值为
Figure PCTCN2020110625-appb-000006
的行数,M值为
Figure PCTCN2020110625-appb-000007
的列数。
Figure PCTCN2020110625-appb-000008
可以由M*N 3表示,N 3为DFT基向量在频域上的数量。
终端设备向网络设备反馈频域-空间码本时,向网络设备上报的信道信息(如信道状态信息(Channel State Information,CSI))的内容包括:W 1的L个空间波束的DFT向量,W f的M个频 域的DFT基向量,以及量化的
Figure PCTCN2020110625-appb-000009
网络设备通过三者积得到每一层下行链路的CSI。
为了便于理解本申请实施例的技术方案,以下端口选择码本的相关概念进行说明。
Rel 15或者Rel 16的端口选择(port selection)码本与频域-空间码本的区别在于W 1,端口选择(port selection)码本中的W 1的每一列包含一个1,其余为0,并通过采样率d来选择对应的L个端口(port),d=1,2,3,4。
对于基于频分复用(Frequency-division Duplex,FDD)的上下行互易信道,基站通过上行探测参考信号(Sounding Reference Signal,SRS)得到上行空间、时延的统计特性,确定空间和频域的预编码矩阵或者是联合的预编码矩阵,对信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)进行预编码,终端设备估计CSI-RS选择一个或者多个端口,同时上报该端口的幅度和相位信息。对于一个端口x i,如果用预编码W i进行预编码,W i的维度为f×Nt,f为频域预编码的大小,Nt为天线数量,由基站计算得到。发端的发送信号为
Figure PCTCN2020110625-appb-000010
在考虑上下行信道互异条件下,现有码本没有考虑多进多出(multiple in multiple out,MIMO)信道空间和时延的联合分布。
基于上述问题,本申请提出了一种码本处理方案,通过从上行信道探测参考信号(Sounding Reference Signal,SRS)估计空间域与时延(DFT转换域)的特性,压缩码本开销,提高反馈效率。
以下通过具体实施例详述本申请的技术方案。
图2是根据本申请实施例的码本处理方法200的示意性流程图,如图2所示,该方法200可以包括如下内容中的至少部分内容:
S210,终端设备向网络设备发送第一信息,该第一信息用于上报信道状态信息;
其中,该第一信息包括以下中的至少一种:
端口选择信息、加权系数信息;
S220,该网络设备接收该第一信息。
在本申请实施例中,该网络设备可以根据该第一信息确定PMI码本。
在一些实施例中,该网络设备可以根据该端口选择信息确定端口选择码本,以及根据该端口选择码本和该加权系数信息确定PMI码本。
需要说明的是,在本申请实施例中,端口可以是CSI-RS端口。
可选地,在一些实施例中,PMI码本可以表示为如下公式1。
Figure PCTCN2020110625-appb-000011
其中,W代表PMI码本,W 1代表端口选择码本,W 2代表加权系数,c也代表加权系数,w rx代表M个长度为N的DFT向量,M和N为正整数,
Figure PCTCN2020110625-appb-000012
代表w rx的转置。
需要说明的是,W 1可以由v m构成,v m
Figure PCTCN2020110625-appb-000013
个元素的列向量,每一个列包含1个1,1的位置为
Figure PCTCN2020110625-appb-000014
并且,每一列的其他位置为0,其中,P CSI-RS为端口的总数量,m为整数,且m为高层配置的参数。
可选地,M个DFT向量为连续的,或者,M个DFT向量包括频域基向量0(FD-basis 0),或者,M个DFT向量为全1向量。
可选地,该网络设备可以通过高层信令配置或指示该M个长度为N的DFT向量。
例如,终端设备通过高层参数s和M确定频域基向量f(FD-basis f),
Figure PCTCN2020110625-appb-000015
以及将所确定的FD-basis f作为候选集合,并从该候选集合中选择FD-basis作为该M个长度为N的DFT向量。
可选地,该网络设备可以通过高层信令配置或指示参数N。
可选地,N=R*N sb,或者,
Figure PCTCN2020110625-appb-000016
其中,R为高层配置参数,N sb为信道质量指示(Channel Quantity Indicator,CQI)子带数量,d为高层配置参数,d为正整数。
在本申请实施例中,对于
Figure PCTCN2020110625-appb-000017
可以减少频域上报的数量。
例如,如图3所示,N sb为13,R=1,对于情况1,d=1,即N=13;对于情况2,d=2,即N=7;对于情况3,d=3,即N=5。
可选地,R为第二数值组中的一个值,其中,
该第二数值组包括以下中的一个:
{1,2,4},{1,2,4,8}。
可选地,R满足如下公式:
mod(N sb,R)=0,mod()表示取模运算。
可选地,该M个长度为N的DFT向量为网络设备配置或者指示的,或者,该M个长度为N的DFT向量为预配置或者协议约定的,或者,该M个长度为N的DFT向量为该终端设备确定的。
可选地,若该M个长度为N的DFT向量为该终端设备确定的,该终端设备发送向该网络设备发送第二信息,该第二信息用于指示该M个长度为N的DFT向量。
例如,该第二信息通过
Figure PCTCN2020110625-appb-000018
比特指示该M个长度为N的DFT向量。
可选地,作为是一个示例,如图4所示,网络设备发送信号,终端设备确定频域-空间信道系数,以及终端设备结合w rx计算端口选择码本W 1和加权系数W 2
可选地,在本申请实施例中,该终端设备可以根据该端口选择信息、该加权系数信息和M个长度为N的DFT向量,确定PMI码本。
也就是说,该终端设备可以基于上述公式1确定PMI码本。
可选地,在本申请实施例中,该网络设备可以根据该端口选择信息、该加权系数信息和M个长度为N的DFT向量,确定PMI码本。
也就是说,该网络设备可以基于上述公式1确定PMI码本。
可选地,在本申请一些实施例中,该网络设备可以通过高层信令和/或下行控制信息(Downlink Control Information,DCI)指示终端设备选择端口选择码本。也即,该端口选择信息可以是用于反映终端设备选择的端口选择码本的一些信息。
具体例如,该终端设备接收该网络设备发送的第三信息,该第三信息用于指示该终端设备选择端口选择码本。
可选地,该第三信息为高层信令,或者,该第三信息为DCI。
可选地,在本申请实施例中,该端口选择信息包括第一指示信息,该第一指示信息用于指示端口的选择。
在一些实施例中,该第一指示信息通过P比特的比特位图指示端口选择位置,其中,P=P CSI-RS,或者,P=P CSI-RS/2,P CSI-RS为端口的总数量。
在一些实施例中,该第一指示信息通过第一组合数指示端口选择位置,其中,该第一组合数为
Figure PCTCN2020110625-appb-000019
或者,该第一组合数为
Figure PCTCN2020110625-appb-000020
N 1N 2为高层配置的参数,L为高层参数确定的整数。
可选地,L为第一数值组中的一个值,其中,该第一数值组包括以下中的一个:
{2,3,4},{2,4,6},{2,3,4,6},{2,4,6,8},{2,4,6,8,16}。
可选地,
Figure PCTCN2020110625-appb-000021
或者,
Figure PCTCN2020110625-appb-000022
P CSI-RS为端口的总数量,a为高层配置参数。
在一些实施例中,该第一指示信息通过第二组合数指示端口选择位置,其中,该第二组合数为
Figure PCTCN2020110625-appb-000023
P CSI-RS为端口的总数量,D为高层配置参数。
可选地,在本申请实施例中,该端口选择信息包括第二指示信息,该第二指示信息用于指示最强系数指示(Strongest coefficient indicator,SCI)对应的位置。
例如,该第二指示信息通过log 2P CSI-RS指示SCI对应的位置,P CSI-RS为端口的总数量。
又例如,该第二指示信息通过log 2(K nz)指示SCI对应的位置,K nz为非零系数的数量。
需要说明的是,最强系数指示(SCI)的幅度为1,相位为0,且终端设备无需向网络上报最强系数指示(SCI)。
可选地,在本申请实施例中,在秩指示(Rank Indication,RI)>1的情况下,多个层中的部分或者全部采用相同的端口。
可选地,在本申请实施例中,在RI>1的情况下,多个层中的部分或者全部选择的端口数量不同。
可选地,在本申请实施例中,在RI=3或者RI=4的情况下,第一层和第二层采用相同的端口,第三层和第四层采用相同的端口。
例如,在RI=3或者RI=4的情况下,层1和层2采用相同的端口,层3和层4采用相同的端口。
可选地,在本申请实施例中,该端口选择信息包括第四指示信息,其中,
该第四指示信息通过每个层的非零系数在多个层的非零系数的并集中的位置指示每个层的端口选择位置;或者,
该第四指示信息通过每个层采用的端口在多个层采用的端口的并集中的位置指示每个层的端口选择位置。
例如,如图5所示,层1的非零系数位于端口0、端口2和端口3,层2的非零系数位于端口0、端口3、端口4和端口5,层3的非零系数位于端口1、端口2和端口4。如图4所示,3个层的非零系数的并集为端口0-端口5,此种情况下,第四指示信息可以指示层1的非零系数位于端口0-端口5中的位置0、位置2和位置3,第四指示信息可以指示层2的非零系数位于端口0-端口5中的位置0、位置3、位置4和位置5,第四指示信息可以指示层3的非零系数位于端口0-端口5中的位置1、位置2和位置4,每一位置索引对应一个端口索引。从而,网络设备可以基于第四指示信息确定层1选择的端口为端口0、端口2和端口3,层2选择的端口为端口0、端口3、端口4和端口5,层3选择的端口为端口1、端口2和端口4。
具体例如,
该第四指示信息通过
Figure PCTCN2020110625-appb-000024
指示多个层的非零系数的并集,以及通过
Figure PCTCN2020110625-appb-000025
指示第i层的非零系数在多个层的非零系数的并集中的位置,N 1N 2为高层配置的参数,U 1为非零系数的并集中所包括的非零系数的数量,K i为第i层的非零系数的数量,1≤i≤多个层的层数;或者,
该第四指示信息通过
Figure PCTCN2020110625-appb-000026
指示多个层采用的端口的并集,以及通过
Figure PCTCN2020110625-appb-000027
指示第i层采用的端口在多个层采用的端口的并集中的位置,N 1N 2为高层配置的参数,U 2为端口的并集中所包括的端口的数量,Q i为第i层采用的端口数量,1≤i≤多个层的层数。
具体又例如,
该第四指示信息通过
Figure PCTCN2020110625-appb-000028
指示第i层的端口选择位置,v为多个层的层数,U 1为非零系数的并集中所包括的非零系数的数量,K i为第i层的非零系数的数量,1≤i≤v;或者,
该第四指示信息通过
Figure PCTCN2020110625-appb-000029
指示第i层的端口选择位置,v为多个层的层数,U 2为端口的并集中所包括的端口的数量,Q i为第i层采用的端口数量,1≤i≤v。
可选地,该第四指示信息适用于RI>1的情况。
可选地,在本申请实施例中,该端口选择信息包括端口选择数量,且该端口选择数量承载在CSI的第一部分(CSI part1)中。
可选地,该端口选择数量也可以是非零系数的数量。即终端设备通过上报非零系数的数量指示该端口选择数量。
需要说明的是,端口选择数量与非零系数的数量相同。
可选地,在本申请实施例中,
在RI>1的情况下,该端口选择数量包括以下中的一种:
多个层总的端口选择数量,多个层中每个层的端口选择数量。
可选地,在本申请实施例中,
P CSI-RS=2N 1N 2*f,
其中,P CSI-RS为端口的总数量,N 1、N 2、f为高层配置的参数。
需要说明的是,f可以是频域的端口数量。
例如,P CSI-RS具体可以如下表1所示。
表1
Figure PCTCN2020110625-appb-000030
也就是说,在本申请实施例中,网络设备可以配置的端口数量可以大于32,满足频域-空域联合预编码的需求。
可选地,在一些实施例中,该终端设备使用多个CSI资源集合中的至少一个CSI资源计算PMI码本,其中,该多个CSI资源集合关联一个CSI上报,且该多个CSI资源集合用于信道测量。
可选地,在一些实施例中,该终端设备使用第一CSI资源集合中的至少一个CSI资源计算PMI码本,其中,该第一CSI资源集合关联一个CSI上报,且该第一CSI资源集合用于信道测量。
可选地,该PMI码本的端口与该至少一个CSI资源中的CSI-RS端口之间存在第一对应关系。
也就是说,对应CSI-RS资源的端口数量需要满足PMI码本的端口数量。
例如,两个4端口CSI-RS资源{3000-3003},则8端口PMI码本映射顺序可以为如下中的一种:
a.先分别映射CSI-RS资源1的4个端口{3000-3003},再分别映射CSI-RS资源2的4个端口{3000-3003};
b.依次映射:CSI-RS资源1的3000端口,CSI-RS资源2的3000端口,CSI-RS资源1的3001端口,CSI-RS资源2的3001端口,CSI-RS资源1的3002端口,CSI-RS资源2的3002端口,CSI-RS资源1的3003端口,CSI-RS资源2的3003端口。
可选地,在另一些实施例中,该PMI码本可以表示为如下公式2。
Figure PCTCN2020110625-appb-000031
其中,W代表PMI码本,W 1代表端口选择码本,W 2代表加权系数,c 1代表PMI子带组1的加权系数,c 2代表PMI子带组2的加权系数,c n代表PMI子带组n的加权系数,
Figure PCTCN2020110625-appb-000032
代表PMI子带组1对应的M个长度为N的DFT向量,
Figure PCTCN2020110625-appb-000033
代表PMI子带组2对应的M个长度为N的DFT向量,
Figure PCTCN2020110625-appb-000034
代表PMI子带组n对应的M个长度为N的DFT向量,
Figure PCTCN2020110625-appb-000035
代表
Figure PCTCN2020110625-appb-000036
的转置,
Figure PCTCN2020110625-appb-000037
代表
Figure PCTCN2020110625-appb-000038
的转置,
Figure PCTCN2020110625-appb-000039
代表
Figure PCTCN2020110625-appb-000040
的转置,W f代表长度为n的DFT矩阵,
Figure PCTCN2020110625-appb-000041
代表W f的转置,n为PMI子带组的数量,n为整数,且n≥1。
需要说明的是,n个PMI子带组中的PMI子带数量N可以为:N=R*N sb,R为高层配置参数,N sb为CQI子带数量。
可选地,终端设备确定n个PMI子带组,以及为每个PMI子带组所选择的端口及计算每个PMI子带组的加权系数。
相应的,网络设备对每个PMI子带组进行频域-空间预编码,以及确定每个PMI子带组所选择的端口及加权系数。
可选地,在公式2中,
Figure PCTCN2020110625-appb-000042
也即,不同PMI子带组对应的DFT向量可以相同。
当然,不同PMI子带组对应的DFT向量也可以不同,即
Figure PCTCN2020110625-appb-000043
或者,n个PMI子带组中至少部分PMI子带组对应的DFT向量不同。
可选地,作为一个示例,如图6所示,PMI子带分为PMI子带组1和PMI子带组2,其中,终端设备指示PMI子带组1选择的端口为0,1,2,3,PMI子带组2选择的端口为4,5,6,7。网络设备获取 PMI子带组1选择的端口、加权系数c 1,PMI子带组1对应的
Figure PCTCN2020110625-appb-000044
(图中为W_rx,1),以及获取PMI子带组2选择的端口、加权系数c 2,PMI子带组2对应的
Figure PCTCN2020110625-appb-000045
(图中为W_rx,2),并结合W f确定PMI码本。
可选地,在本申请实施例中,该信道状态信息由n个PMI子带组,以及n个向量和/或长度为n的向量确定,n为整数,且n≥1。例如,该向量为DFT向量。
可选地,不同的PMI子带组对应的向量相同;或者,不同的PMI子带组对应的向量不同。例如,该向量为DFT向量。
可选地,在本申请实施例中,该终端设备可以根据该端口选择信息、该加权系数信息,确定PMI码本。也就是说,该终端设备可以基于上述公式2确定PMI码本。
可选地,在本申请实施例中,该网络设备可以根据该端口选择信息、该加权系数信息,确定PMI码本。也就是说,该网络设备可以基于上述公式2确定PMI码本。
可选地,该端口选择信息包括第三指示信息,其中,该第三指示信息用于确定PMI子带组中PMI子带的数量。
具体例如,该第三指示信息用于确定n个PMI子带组中的每个PMI子带组中PMI子带的数量。
可选地,该加权系数信息包括n个PMI子带组分别对应的加权系数。
可选地,该n个PMI子带组中不同的PMI子带组的频域长度相同。
例如,8个PMI子带,每2个PMI子带分为一个PMI子带组,则总共有4个PMI子带组。
又例如,8个PMI子带,每4个PMI子带分为一个PMI子带组,则总共有2个PMI子带组。
可选地,该n个PMI子带组中不同的PMI子带组的频域长度不同。
例如,该n个PMI子带组包括PMI子带组1和PMI子带组2,PMI子带组1的频域长度为5,PMI子带组2的频域长度为3。
可选地,该n个PMI子带组中不同的PMI子带组在频域上部分重叠。
可选地,重叠长度可以是网络设备配置的。
例如,如图7所示,该n个PMI子带组包括PMI子带组1和PMI子带组2,PMI子带组1包括子带0、子带1、子带2、子带3、子带4、子带5,PMI子带组2包括子带2、子带3、子带4、子带5、子带6、子带7,PMI子带组1和PMI子带组2在频域上的重叠部分为子带2、子带3、子带4、子带5。
可选地,一个PMI子带组选择的端口在PMI子带上等间隔采样构成。
例如,如图8所示,该n个PMI子带组包括PMI子带组1和PMI子带组2,PMI子带组1选择端口0、端口2、端口4、端口6,PMI子带组2选择端口1、端口3、端口5、端口7。即对于PMI子带组1,其选择的端口PMI子带上等间隔采样构成(间隔为2);对于PMI子带组2,其选择的端口PMI子带上等间隔采样构成(间隔为2)。
因此,在本申请实施例中,网络设备可以基于终端设备上报的端口选择信息和/或加权系数信息确定PMI码本,能够降低PMI码本的码本开销,提高反馈效率。
进一步的,本申请通过从上行信道SRS估计空间域与时延(DFT转换域)的特性,压缩码本开销,提高反馈效率。
上文结合图2至图8,详细描述了本申请的方法实施例,下文结合图9至图13,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图9示出了根据本申请实施例的终端设备300的示意性框图。如图9所示,该终端设备300包括:
通信单元310,用于发送第一信息,该第一信息用于上报信道状态信息;
其中,该第一信息包括以下中的至少一种:
端口选择信息、加权系数信息。
可选地,该端口选择信息包括第一指示信息,该第一指示信息用于指示端口的选择。
可选地,该第一指示信息通过P比特的比特位图指示端口选择位置,其中,P=P CSI-RS,或者,P=P CSI-RS/2,P CSI-RS为端口的总数量。
可选地,该第一指示信息通过第一组合数指示端口选择位置,其中,该第一组合数为
Figure PCTCN2020110625-appb-000046
或者,该第一组合数为
Figure PCTCN2020110625-appb-000047
N 1N 2为高层配置的参数,L为高层参数确定的整数。
可选地,L为第一数值组中的一个值,其中,
该第一数值组包括以下中的一个:
{2,3,4},{2,4,6},{2,3,4,6},{2,4,6,8},{2,4,6,8,16}。
可选地,
Figure PCTCN2020110625-appb-000048
或者,
Figure PCTCN2020110625-appb-000049
P CSI-RS为端口的总数量,a为高层配置参数。
可选地,该第一指示信息通过第二组合数指示端口选择位置,其中,该第二组合数为
Figure PCTCN2020110625-appb-000050
P CSI-RS为端口的总数量,D为高层配置参数。
可选地,该端口选择信息包括第二指示信息,该第二指示信息用于指示最强系数指示SCI对应的位置。
可选地,该第二指示信息通过log 2P CSI-RS指示SCI对应的位置,P CSI-RS为端口的总数量;或者,
该第二指示信息通过log 2(K nz)指示SCI对应的位置,K nz为非零系数的数量。
可选地,该端口选择信息包括第三指示信息,其中,该第三指示信息用于确定预编码矩阵指示PMI子带组中PMI子带的数量。
可选地,不同的PMI子带组的频域长度相同;或者,
不同的PMI子带组的频域长度不同。
可选地,不同的PMI子带组在频域上部分重叠。
可选地,重叠长度为网络设备配置的。
可选地,一个PMI子带组选择的端口在PMI子带上等间隔采样构成。
可选地,该信道状态信息由n个PMI子带组,以及n个向量和/或长度为n的向量确定,n为整数,且n≥1。
可选地,不同的PMI子带组对应的向量相同;或者,
不同的PMI子带组对应的向量不同。
可选地,该向量为离散傅里叶变换DFT向量。
可选地,该加权系数信息包括n个PMI子带组分别对应的加权系数,n为整数,且n≥1。
可选地,P CSI-RS=2N 1N 2*f,
其中,P CSI-RS为端口的总数量,N 1、N 2、f为高层配置的参数。
可选地,该终端设备还包括:处理单元,其中,
该处理单元用于使用多个信道状态信息CSI资源集合中的至少一个CSI资源计算PMI码本,其中,该多个CSI资源集合关联一个CSI上报,且该多个CSI资源集合用于信道测量。
可选地,该终端设备还包括:处理单元,其中,
该处理单元用于使用第一CSI资源集合中的至少一个CSI资源计算PMI码本,其中,该第一CSI资源集合关联一个CSI上报,且该第一CSI资源集合用于信道测量。
可选地,该PMI码本的端口与该至少一个CSI资源中的CSI-RS端口之间存在第一对应关系。
可选地,在秩指示RI>1的情况下,多个层中的部分或者全部采用相同的端口。
可选地,在RI>1的情况下,多个层中的部分或者全部选择的端口数量不同。
可选地,在RI=3或者RI=4的情况下,第一层和第二层采用相同的端口,第三层和第四层采用相同的端口。
可选地,该端口选择信息包括第四指示信息,其中,
该第四指示信息通过每个层的非零系数在多个层的非零系数的并集中的位置指示每个层的端口选择位置;或者,
该第四指示信息通过每个层采用的端口在多个层采用的端口的并集中的位置指示每个层的端口选择位置。
可选地,该第四指示信息通过
Figure PCTCN2020110625-appb-000051
指示多个层的非零系数的并集,以及通过
Figure PCTCN2020110625-appb-000052
指示第i层的非零系数在多个层的非零系数的并集中的位置,N 1N 2为高层配置的参数,U 1为非零系数的并集中所包括的非零系数的数量,K i为第i层的非零系数的数量,1≤i≤多个层的层数;或者,
该第四指示信息通过
Figure PCTCN2020110625-appb-000053
指示多个层采用的端口的并集,以及通过
Figure PCTCN2020110625-appb-000054
指示第i层采用的端口在多个层采用的端口的并集中的位置,N 1N 2为高层配置的参数,U 2为端口的并集中所包括的端口的数量,Q i为第i层采用的端口数量,1≤i≤多个层的层数。
可选地,该第四指示信息通过
Figure PCTCN2020110625-appb-000055
指示第i层的端口选择位置,v为多个层的层数,U 1为非零系数的并集中所包括的非零系数的数量,K i为第i层的非零系数的数量,1≤i≤v;或者,
该第四指示信息通过
Figure PCTCN2020110625-appb-000056
指示第i层的端口选择位置,v为多个层的层数,U 2为端口的并集中所包括的端口的数量,Q i为第i层采用的端口数量,1≤i≤v。
可选地,该第四指示信息适用于RI>1的情况。
可选地,该端口选择信息包括非零系数数量,且该非零系数数量承载在CSI的第一部分中。
可选地,在RI>1的情况下,该非零系数数量包括以下中的一种:
多个层总的非零系数数量,多个层中每个层的非零系数数量。
可选地,该终端设备还包括:处理单元320,其中,
该处理单元320用于根据该端口选择信息、该加权系数信息和M个长度为N的DFT向量,确定PMI码本,M和N为正整数。
可选地,M个DFT向量为连续的,或者,M个DFT向量包括频域基向量0。
可选地,N=R*N sb,或者,
Figure PCTCN2020110625-appb-000057
其中,R为高层配置参数,N sb为信道质量指示CQI子带数量,d为高层配置参数,d为正整数。
可选地,R为第二数值组中的一个值,其中,
该第二数值组包括以下中的一个:
{1,2,4},{1,2,4,8}。
可选地,R满足如下公式:
mod(N sb,R)=0,mod()表示取模运算。
可选地,该M个长度为N的DFT向量为网络设备配置或者指示的,或者,该M个长度为N的DFT向量为预配置或者协议约定的,或者,该M个长度为N的DFT向量为该终端设备确定的。
可选地,若该M个长度为N的DFT向量为该终端设备确定的,该通信单元310还用于发送第二信息,该第二信息用于指示该M个长度为N的DFT向量。
可选地,该第二信息通过
Figure PCTCN2020110625-appb-000058
比特指示该M个长度为N的DFT向量。
可选地,该通信单元310还用于接收第三信息,该第三信息用于指示该终端设备选择端口选择码本。
可选地,该第三信息为高层信令,或者,该第三信息为下行控制信息DCI。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备300可对应于本申请方法实施例中的终端设备,并且终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图2所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图10示出了根据本申请实施例的网络设备400的示意性框图。如图10所示,该网络设备400包括:
通信单元410,用于接收终端设备发送的第一信息,该第一信息用于上报信道状态信息;
其中,该第一信息包括以下中的至少一种:
端口选择信息、加权系数信息。
可选地,该端口选择信息包括第一指示信息,该第一指示信息用于指示端口的选择。
可选地,该第一指示信息通过P比特的比特位图指示端口选择位置,其中,P=P CSI-RS,或者,P=P CSI-RS/2,P CSI-RS为端口的总数量。
可选地,该第一指示信息通过第一组合数指示端口选择位置,其中,该第一组合数为
Figure PCTCN2020110625-appb-000059
或者,该第一组合数为
Figure PCTCN2020110625-appb-000060
N 1N 2为高层配置的参数,L为高层参数确定的整数。
可选地,L为第一数值组中的一个值,其中,
该第一数值组包括以下中的一个:
{2,3,4},{2,4,6},{2,3,4,6},{2,4,6,8},{2,4,6,8,16}。
可选地,
Figure PCTCN2020110625-appb-000061
或者,
Figure PCTCN2020110625-appb-000062
P CSI-RS为端口的总数量,a为高层配置参数。
可选地,该第一指示信息通过第二组合数指示端口选择位置,其中,该第二组合数为
Figure PCTCN2020110625-appb-000063
P CSI-RS为端口的总数量,D为高层配置参数。
可选地,该端口选择信息包括第二指示信息,该第二指示信息用于指示最强系数指示SCI对应的位置。
可选地,该第二指示信息通过log 2P CSI-RS指示SCI对应的位置,P CSI-RS为端口的总数量;或者,
该第二指示信息通过log 2(K nz)指示SCI对应的位置,K nz为非零系数的数量。
可选地,该端口选择信息包括第三指示信息,其中,该第三指示信息用于确定预编码矩阵指示PMI子带组中PMI子带的数量。
可选地,不同的PMI子带组的频域长度相同;或者,
不同的PMI子带组的频域长度不同。
可选地,不同的PMI子带组在频域上部分重叠。
可选地,重叠长度为网络设备配置的。
可选地,一个PMI子带组选择的端口在PMI子带上等间隔采样构成。
可选地,该信道状态信息由n个PMI子带组,以及n个向量和/或长度为n的向量确定,n为整数,且n≥1。
可选地,不同的PMI子带组对应的向量相同;或者,
不同的PMI子带组对应的向量不同。
可选地,该向量为离散傅里叶变换DFT向量。
可选地,该加权系数信息包括n个PMI子带组分别对应的加权系数,n为整数,且n≥1。
可选地,P CSI-RS=2N 1N 2*f,
其中,P CSI-RS为端口的总数量,N 1、N 2、f为高层配置的参数。
可选地,PMI码本为该终端设备使用多个信道状态信息CSI资源集合中的至少一个CSI资源计算的,其中,该多个CSI资源集合关联一个CSI上报,且该多个CSI资源集合用于信道测量。
可选地,PMI码本为该终端设备使用第一CSI资源集合中的至少一个CSI资源计算的,其中,该第一CSI资源集合关联一个CSI上报,且该第一CSI资源集合用于信道测量。
可选地,该PMI码本的端口与该至少一个CSI资源中的CSI-RS端口之间存在第一对应关系。
可选地,在秩指示RI>1的情况下,多个层中的部分或者全部采用相同的端口。
可选地,在RI>1的情况下,多个层中的部分或者全部选择的端口数量不同。
可选地,在RI=3或者RI=4的情况下,第一层和第二层采用相同的端口,第三层和第四层采用相同的端口。
可选地,该端口选择信息包括第四指示信息,其中,
该第四指示信息通过每个层的非零系数在多个层的非零系数的并集中的位置指示每个层的端口选择位置;或者,
该第四指示信息通过每个层采用的端口在多个层采用的端口的并集中的位置指示每个层的端口选择位置。
可选地,该第四指示信息通过
Figure PCTCN2020110625-appb-000064
指示多个层的非零系数的并集,以及通过
Figure PCTCN2020110625-appb-000065
指示第i层的非零系数在多个层的非零系数的并集中的位置,N 1N 2为高层配置的参数,U 1为非零系数的并集中所包括的非零系数的数量,K i为第i层的非零系数的数量,1≤i≤多个层的层数;或者,
该第四指示信息通过
Figure PCTCN2020110625-appb-000066
指示多个层采用的端口的并集,以及通过
Figure PCTCN2020110625-appb-000067
指示第i层采用的端口在多个层采用的端口的并集中的位置,N 1N 2为高层配置的参数,U 2为端口的并集中所包括的端口的数量,Q i为第i层采用的端口数量,1≤i≤多个层的层数。
可选地,该第四指示信息通过
Figure PCTCN2020110625-appb-000068
指示第i层的端口选择位置,v为多个层的层数,U 1为非零系数的并集中所包括的非零系数的数量,K i为第i层的非零系数的数量,1≤i≤v;或者,
该第四指示信息通过
Figure PCTCN2020110625-appb-000069
指示第i层的端口选择位置,v为多个层的层数,U 2为端口的并集中所包括的端口的数量,Q i为第i层采用的端口数量,1≤i≤v。
可选地,该第四指示信息适用于RI>1的情况。
可选地,该端口选择信息包括非零系数数量,且该非零系数数量承载在CSI的第一部分中。
可选地,在RI>1的情况下,该非零系数数量包括以下中的一种:
多个层总的非零系数数量,多个层中每个层的非零系数数量。
可选地,该网络设备还包括:处理单元420,其中,
该处理单元420用于根据该端口选择信息、该加权系数信息和M个长度为N的DFT向量,确定PMI码本,M和N为正整数。
可选地,M个DFT向量为连续的,或者,M个DFT向量包括频域基向量0。
可选地,N=R*N sb,或者,
Figure PCTCN2020110625-appb-000070
其中,R为高层配置参数,N sb为信道质量指示CQI子带数量,d为高层配置参数,d为正整数。
可选地,R为第二数值组中的一个值,其中,
该第二数值组包括以下中的一个:
{1,2,4},{1,2,4,8}。
可选地,R满足如下公式:
mod(N sb,R)=0,mod()表示取模运算。
可选地,该M个长度为N的DFT向量为网络设备配置或者指示的,或者,该M个长度为N的DFT向量为预配置或者协议约定的,或者,该M个长度为N的DFT向量为该终端设备确定的。
可选地,若该M个长度为N的DFT向量为该终端设备确定的,该通信单元410还用于接收该终端设备发送的第二信息,该第二信息用于指示该M个长度为N的DFT向量。
可选地,该第二信息通过
Figure PCTCN2020110625-appb-000071
比特指示该M个长度为N的DFT向量。
可选地,该通信单元410还用于向该终端设备发送第三信息,该第三信息用于指示该终端设备选择端口选择码本。
可选地,该第三信息为高层信令,或者,该第三信息为下行控制信息DCI。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备400可对应于本申请方法实施例中的网络设备,并且网络设备400中的各个单元的上述和其它操作和/或功能分别为了实现图2所示方法200中网络设备的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例提供的一种通信设备500示意性结构图。图11所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,通信设备500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
可选地,如图11所示,通信设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备500具体可为本申请实施例的网络设备,并且该通信设备500可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备500具体可为本申请实施例的移动终端/终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例的装置的示意性结构图。图12所示的装置600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,装置600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,该装置600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该装置600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置可应用于本申请实施例中的移动终端/终端设备,并且该装置可以实现本申请实 施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图13是本申请实施例提供的一种通信系统700的示意性框图。如图13所示,该通信系统700包括终端设备710和网络设备720。
其中,该终端设备710可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备720可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为 了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (94)

  1. 一种码本处理方法,其特征在于,包括:
    终端设备发送第一信息,所述第一信息用于上报信道状态信息;
    其中,所述第一信息包括以下中的至少一种:
    端口选择信息、加权系数信息。
  2. 如权利要求1所述的方法,其特征在于,所述端口选择信息包括第一指示信息,所述第一指示信息用于指示端口的选择。
  3. 如权利要求2所述的方法,其特征在于,所述第一指示信息通过P比特的比特位图指示端口选择位置,其中,P=P CSI-RS,或者,P=P CSI-RS/2,P CSI-RS为端口的总数量。
  4. 如权利要求2所述的方法,其特征在于,所述第一指示信息通过第一组合数指示端口选择位置,其中,所述第一组合数为
    Figure PCTCN2020110625-appb-100001
    或者,所述第一组合数为
    Figure PCTCN2020110625-appb-100002
    N 1N 2为高层配置的参数,L为高层参数确定的整数。
  5. 如权利要求4所述的方法,其特征在于,L为第一数值组中的一个值,其中,
    所述第一数值组包括以下中的一个:
    {2,3,4},{2,4,6},{2,3,4,6},{2,4,6,8},{2,4,6,8,16}。
  6. 如权利要求4所述的方法,其特征在于,
    Figure PCTCN2020110625-appb-100003
    或者,
    Figure PCTCN2020110625-appb-100004
    P CSI-RS为端口的总数量,a为高层配置参数。
  7. 如权利要求2所述的方法,其特征在于,所述第一指示信息通过第二组合数指示端口选择位置,其中,所述第二组合数为
    Figure PCTCN2020110625-appb-100005
    P CSI-RS为端口的总数量,D为高层配置参数。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,所述端口选择信息包括第二指示信息,所述第二指示信息用于指示最强系数指示SCI对应的位置。
  9. 如权利要求8所述的方法,其特征在于,
    所述第二指示信息通过log 2P CSI-RS指示SCI对应的位置,P CSI-RS为端口的总数量;或者,
    所述第二指示信息通过log 2(K nz)指示SCI对应的位置,K nz为非零系数的数量。
  10. 如权利要求1所述的方法,其特征在于,所述端口选择信息包括第三指示信息,其中,所述第三指示信息用于确定预编码矩阵指示PMI子带组中PMI子带的数量。
  11. 如权利要求10所述的方法,其特征在于,
    不同的PMI子带组的频域长度相同;或者,
    不同的PMI子带组的频域长度不同。
  12. 如权利要求10或11所述的方法,其特征在于,不同的PMI子带组在频域上部分重叠。
  13. 如权利要求12所述的方法,其特征在于,重叠长度为网络设备配置的。
  14. 如权利要求10至13中任一项所述的方法,其特征在于,
    一个PMI子带组选择的端口在PMI子带上等间隔采样构成。
  15. 如权利要求10至14中任一项所述的方法,其特征在于,
    所述信道状态信息由n个PMI子带组,以及n个向量和/或长度为n的向量确定,n为整数,且n≥1。
  16. 如权利要求10所述的方法,其特征在于,
    不同的PMI子带组对应的向量相同;或者,
    不同的PMI子带组对应的向量不同。
  17. 如权利要求15或16所述的方法,其特征在于,所述向量为离散傅里叶变换DFT向量。
  18. 如权利要求10至17中任一项所述的方法,其特征在于,所述加权系数信息包括n个PMI子带组分别对应的加权系数,n为整数,且n≥1。
  19. 如权利要求1至18中任一项所述的方法,其特征在于,
    P CSI-RS=2N 1N 2*f,
    其中,P CSI-RS为端口的总数量,N 1、N 2、f为高层配置的参数。
  20. 如权利要求19所述的方法,其特征在于,所述方法还包括:
    所述终端设备使用多个信道状态信息CSI资源集合中的至少一个CSI资源计算PMI码本,其中,所述多个CSI资源集合关联一个CSI上报,且所述多个CSI资源集合用于信道测量。
  21. 如权利要求19所述的方法,其特征在于,所述方法还包括:
    所述终端设备使用第一CSI资源集合中的至少一个CSI资源计算PMI码本,其中,所述第一CSI资源集合关联一个CSI上报,且所述第一CSI资源集合用于信道测量。
  22. 如权利要求20或21所述的方法,其特征在于,所述PMI码本的端口与所述至少一个CSI资源中的信道状态信息参考信号CSI-RS端口之间存在第一对应关系。
  23. 如权利要求1至22中任一项所述的方法,其特征在于,
    在秩指示RI>1的情况下,多个层中的部分或者全部采用相同的端口。
  24. 如权利要求1至22中任一项所述的方法,其特征在于,
    在RI>1的情况下,多个层中的部分或者全部选择的端口数量不同。
  25. 如权利要求1至22中任一项所述的方法,其特征在于,
    在RI=3或者RI=4的情况下,第一层和第二层采用相同的端口,第三层和第四层采用相同的端口。
  26. 如权利要求1至25中任一项所述的方法,其特征在于,
    所述端口选择信息包括第四指示信息,其中,
    所述第四指示信息通过每个层的非零系数在多个层的非零系数的并集中的位置指示每个层的端口选择位置;或者,
    所述第四指示信息通过每个层采用的端口在多个层采用的端口的并集中的位置指示每个层的端口选择位置。
  27. 如权利要求26所述的方法,其特征在于,
    所述第四指示信息通过
    Figure PCTCN2020110625-appb-100006
    指示多个层的非零系数的并集,以及通过
    Figure PCTCN2020110625-appb-100007
    指示第i层的非零系数在多个层的非零系数的并集中的位置,N 1N 2为高层配置的参数,U 1为非零系数的并集中所包括的非零系数的数量,K i为第i层的非零系数的数量,1≤i≤多个层的层数;或者,
    所述第四指示信息通过
    Figure PCTCN2020110625-appb-100008
    指示多个层采用的端口的并集,以及通过
    Figure PCTCN2020110625-appb-100009
    指示第i层采用的端口在多个层采用的端口的并集中的位置,N 1N 2为高层配置的参数,U 2为端口的并集中所包括的端口的数量,Q i为第i层采用的端口数量,1≤i≤多个层的层数。
  28. 如权利要求26所述的方法,其特征在于,
    所述第四指示信息通过
    Figure PCTCN2020110625-appb-100010
    指示第i层的端口选择位置,v为多个层的层数,U 1为非零系数的并集中所包括的非零系数的数量,K i为第i层的非零系数的数量,1≤i≤v;或者,
    所述第四指示信息通过
    Figure PCTCN2020110625-appb-100011
    指示第i层的端口选择位置,v为多个层的层数,U 2为端口的并集中所包括的端口的数量,Q i为第i层采用的端口数量,1≤i≤v。
  29. 如权利要求26至28中任一项所述的方法,其特征在于,所述第四指示信息适用于RI>1的情况。
  30. 如权利要求1至29中任一项所述的方法,其特征在于,所述端口选择信息包括非零系数数量,且所述非零系数数量承载在CSI的第一部分中。
  31. 如权利要求30所述的方法,其特征在于,
    在RI>1的情况下,所述非零系数数量包括以下中的一种:
    多个层总的非零系数数量,多个层中每个层的非零系数数量。
  32. 如权利要求1至31中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述端口选择信息、所述加权系数信息和M个长度为N的DFT向量,确定PMI码本,M和N为正整数。
  33. 如权利要求32所述的方法,其特征在于,
    M个DFT向量为连续的,或者,M个DFT向量包括频域基向量0。
  34. 如权利要求32或33所述的方法,其特征在于,
    N=R*N sb,或者,
    Figure PCTCN2020110625-appb-100012
    其中,R为高层配置参数,N sb为信道质量指示CQI子带数量,d为高层配置参数,d为正整数。
  35. 如权利要求34所述的方法,其特征在于,R为第二数值组中的一个值,其中,
    所述第二数值组包括以下中的一个:
    {1,2,4},{1,2,4,8}。
  36. 如权利要求34所述的方法,其特征在于,R满足如下公式:
    mod(N sb,R)=0,mod()表示取模运算。
  37. 如权利要求32至36中任一项所述的方法,其特征在于,所述M个长度为N的DFT向量为网络设备配置或者指示的,或者,所述M个长度为N的DFT向量为预配置或者协议约定的,或者,所述M个长度为N的DFT向量为所述终端设备确定的。
  38. 如权利要求37所述的方法,其特征在于,所述方法还包括:
    若所述M个长度为N的DFT向量为所述终端设备确定的,所述终端设备发送第二信息,所述第二信息用于指示所述M个长度为N的DFT向量。
  39. 如权利要求38所述的方法,其特征在于,所述第二信息通过
    Figure PCTCN2020110625-appb-100013
    比特指示所述M个长度为N的DFT向量。
  40. 如权利要求1至39中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第三信息,所述第三信息用于指示所述终端设备选择端口选择码本。
  41. 如权利要求40所述的方法,其特征在于,所述第三信息为高层信令,或者,所述第三信息为下行控制信息DCI。
  42. 一种码本处理方法,其特征在于,包括:
    网络设备接收终端设备发送的第一信息,所述第一信息用于上报信道状态信息;
    其中,所述第一信息包括以下中的至少一种:
    端口选择信息、加权系数信息。
  43. 如权利要求42所述的方法,其特征在于,所述端口选择信息包括第一指示信息,所述第一指示信息用于指示端口的选择。
  44. 如权利要求43所述的方法,其特征在于,所述第一指示信息通过P比特的比特位图指示端口选择位置,其中,P=P CSI-RS,或者,P=P CSI-RS/2,P CSI-RS为端口的总数量。
  45. 如权利要求43所述的方法,其特征在于,所述第一指示信息通过第一组合数指示端口选择位置,其中,所述第一组合数为
    Figure PCTCN2020110625-appb-100014
    或者,所述第一组合数为
    Figure PCTCN2020110625-appb-100015
    N 1N 2为高层配置的参数,L为高层参数确定的整数。
  46. 如权利要求45所述的方法,其特征在于,L为第一数值组中的一个值,其中,
    所述第一数值组包括以下中的一个:
    {2,3,4},{2,4,6},{2,3,4,6},{2,4,6,8},{2,4,6,8,16}。
  47. 如权利要求45所述的方法,其特征在于,
    Figure PCTCN2020110625-appb-100016
    或者,
    Figure PCTCN2020110625-appb-100017
    P CSI-RS为端口的总数量,a为高层配置参数。
  48. 如权利要求43所述的方法,其特征在于,所述第一指示信息通过第二组合数指示端口选择位置,其中,所述第二组合数为
    Figure PCTCN2020110625-appb-100018
    P CSI-RS为端口的总数量,D为高层配置参数。
  49. 如权利要求42至48中任一项所述的方法,其特征在于,所述端口选择信息包括第二指示信息,所述第二指示信息用于指示最强系数指示SCI对应的位置。
  50. 如权利要求49所述的方法,其特征在于,
    所述第二指示信息通过log 2P CSI-RS指示SCI对应的位置,P CSI-RS为端口的总数量;或者,
    所述第二指示信息通过log 2(K nz)指示SCI对应的位置,K nz为非零系数的数量。
  51. 如权利要求42所述的方法,其特征在于,所述端口选择信息包括第三指示信息,其中,所述第三指示信息用于确定预编码矩阵指示PMI子带组中PMI子带的数量。
  52. 如权利要求51所述的方法,其特征在于,
    不同的PMI子带组的频域长度相同;或者,
    不同的PMI子带组的频域长度不同。
  53. 如权利要求51或52所述的方法,其特征在于,不同的PMI子带组在频域上部分重叠。
  54. 如权利要求53所述的方法,其特征在于,重叠长度为网络设备配置的。
  55. 如权利要求51至54中任一项所述的方法,其特征在于,
    一个PMI子带组选择的端口在PMI子带上等间隔采样构成。
  56. 如权利要求51至55中任一项所述的方法,其特征在于,
    所述信道状态信息由n个PMI子带组,以及n个向量和/或长度为n的向量确定,n为整数,且n ≥1。
  57. 如权利要求51所述的方法,其特征在于,
    不同的PMI子带组对应的向量相同;或者,
    不同的PMI子带组对应的向量不同。
  58. 如权利要求56或57所述的方法,其特征在于,
    所述向量为离散傅里叶变换DFT向量。
  59. 如权利要求51至58中任一项所述的方法,其特征在于,所述加权系数信息包括n个PMI子带组分别对应的加权系数,n为整数,且n≥1。
  60. 如权利要求42至59中任一项所述的方法,其特征在于,
    P CSI-RS=2N 1N 2*f,
    其中,P CSI-RS为端口的总数量,N 1、N 2、f为高层配置的参数。
  61. 如权利要求60所述的方法,其特征在于,
    PMI码本为所述终端设备使用多个信道状态信息CSI资源集合中的至少一个CSI资源计算的,其中,所述多个CSI资源集合关联一个CSI上报,且所述多个CSI资源集合用于信道测量。
  62. 如权利要求60所述的方法,其特征在于,
    PMI码本为所述终端设备使用第一CSI资源集合中的至少一个CSI资源计算的,其中,所述第一CSI资源集合关联一个CSI上报,且所述第一CSI资源集合用于信道测量。
  63. 如权利要求61或62所述的方法,其特征在于,所述PMI码本的端口与所述至少一个CSI资源中的信道状态信息参考信号CSI-RS端口之间存在第一对应关系。
  64. 如权利要求42至63中任一项所述的方法,其特征在于,
    在秩指示RI>1的情况下,多个层中的部分或者全部采用相同的端口。
  65. 如权利要求42至63中任一项所述的方法,其特征在于,
    在RI>1的情况下,多个层中的部分或者全部选择的端口数量不同。
  66. 如权利要求42至63中任一项所述的方法,其特征在于,
    在RI=3或者RI=4的情况下,第一层和第二层采用相同的端口,第三层和第四层采用相同的端口。
  67. 如权利要求42至66中任一项所述的方法,其特征在于,
    所述端口选择信息包括第四指示信息,其中,
    所述第四指示信息通过每个层的非零系数在多个层的非零系数的并集中的位置指示每个层的端口选择位置;或者,
    所述第四指示信息通过每个层采用的端口在多个层采用的端口的并集中的位置指示每个层的端口选择位置。
  68. 如权利要求67所述的方法,其特征在于,
    所述第四指示信息通过
    Figure PCTCN2020110625-appb-100019
    指示多个层的非零系数的并集,以及通过
    Figure PCTCN2020110625-appb-100020
    指示第i层的非零系数在多个层的非零系数的并集中的位置,N 1N 2为高层配置的参数,U 1为非零系数的并集中所包括的非零系数的数量,K i为第i层的非零系数的数量,1≤i≤多个层的层数;或者,
    所述第四指示信息通过
    Figure PCTCN2020110625-appb-100021
    指示多个层采用的端口的并集,以及通过
    Figure PCTCN2020110625-appb-100022
    指示第i层采用的端口在多个层采用的端口的并集中的位置,N 1N 2为高层配置的参数,U 2为端口的并集中所包括的端口的数量,Q i为第i层采用的端口数量,1≤i≤多个层的层数。
  69. 如权利要求67所述的方法,其特征在于,
    所述第四指示信息通过
    Figure PCTCN2020110625-appb-100023
    指示第i层的端口选择位置,v为多个层的层数,U 1为非零系数的并集中所包括的非零系数的数量,K i为第i层的非零系数的数量,1≤i≤v;或者,
    所述第四指示信息通过
    Figure PCTCN2020110625-appb-100024
    指示第i层的端口选择位置,v为多个层的层数,U 2为端口的并集中所包括的端口的数量,Q i为第i层采用的端口数量,1≤i≤v。
  70. 如权利要求67至69中任一项所述的方法,其特征在于,所述第四指示信息适用于RI>1的情况。
  71. 如权利要求42至70中任一项所述的方法,其特征在于,所述端口选择信息包括非零系数数量,且所述非零系数数量承载在CSI的第一部分中。
  72. 如权利要求71所述的方法,其特征在于,
    在RI>1的情况下,所述非零系数数量包括以下中的一种:
    多个层总的非零系数数量,多个层中每个层的非零系数数量。
  73. 如权利要求42至72中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述端口选择信息、所述加权系数信息和M个长度为N的DFT向量,确定PMI码本,M和N为正整数。
  74. 如权利要求73所述的方法,其特征在于,
    M个DFT向量为连续的,或者,M个DFT向量包括频域基向量0。
  75. 如权利要求73或74所述的方法,其特征在于,
    N=R*N sb,或者,
    Figure PCTCN2020110625-appb-100025
    其中,R为高层配置参数,N sb为信道质量指示CQI子带数量,d为高层配置参数,d为正整数。
  76. 如权利要求75所述的方法,其特征在于,R为第二数值组中的一个值,其中,
    所述第二数值组包括以下中的一个:
    {1,2,4},{1,2,4,8}。
  77. 如权利要求75所述的方法,其特征在于,R满足如下公式:
    mod(N sb,R)=0,mod()表示取模运算。
  78. 如权利要求73至77中任一项所述的方法,其特征在于,所述M个长度为N的DFT向量为网络设备配置或者指示的,或者,所述M个长度为N的DFT向量为预配置或者协议约定的,或者,所述M个长度为N的DFT向量为所述终端设备确定的。
  79. 如权利要求78所述的方法,其特征在于,所述方法还包括:
    若所述M个长度为N的DFT向量为所述终端设备确定的,所述网络设备接收所述终端设备发送的第二信息,所述第二信息用于指示所述M个长度为N的DFT向量。
  80. 如权利要求79所述的方法,其特征在于,所述第二信息通过
    Figure PCTCN2020110625-appb-100026
    比特指示所述M个长度为N的DFT向量。
  81. 如权利要求42至80中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第三信息,所述第三信息用于指示所述终端设备选择端口选择码本。
  82. 如权利要求81所述的方法,其特征在于,所述第三信息为高层信令,或者,所述第三信息为下行控制信息DCI。
  83. 一种终端设备,其特征在于,包括:
    通信单元,用于发送第一信息,所述第一信息用于上报信道状态信息;
    其中,所述第一信息包括以下中的至少一种:
    端口选择信息、加权系数信息。
  84. 一种网络设备,其特征在于,包括:
    通信单元,用于接收终端设备发送的第一信息,所述第一信息用于上报信道状态信息;
    其中,所述第一信息包括以下中的至少一种:
    端口选择信息、加权系数信息。
  85. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至41中任一项所述的方法。
  86. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求42至82中任一项所述的方法。
  87. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至41中任一项所述的方法。
  88. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求42至82中任一项所述的方法。
  89. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至41中任一项所述的方法。
  90. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求42至82中任一项所述的方法。
  91. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执 行如权利要求1至41中任一项所述的方法。
  92. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求42至82中任一项所述的方法。
  93. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至41中任一项所述的方法。
  94. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求42至82中任一项所述的方法。
PCT/CN2020/110625 2020-08-21 2020-08-21 码本处理方法、终端设备和网络设备 WO2022036720A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/110625 WO2022036720A1 (zh) 2020-08-21 2020-08-21 码本处理方法、终端设备和网络设备
CN202080104472.5A CN116158017A (zh) 2020-08-21 2020-08-21 码本处理方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/110625 WO2022036720A1 (zh) 2020-08-21 2020-08-21 码本处理方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2022036720A1 true WO2022036720A1 (zh) 2022-02-24

Family

ID=80322487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110625 WO2022036720A1 (zh) 2020-08-21 2020-08-21 码本处理方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN116158017A (zh)
WO (1) WO2022036720A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022237360A1 (zh) * 2021-05-11 2022-11-17 大唐移动通信设备有限公司 码本指示方法、装置及存储介质
US20230318669A1 (en) * 2022-03-31 2023-10-05 Qualcomm Incorporated Resource aggregation for dynamic antenna port adaptation
WO2024094153A1 (zh) * 2022-11-04 2024-05-10 北京紫光展锐通信技术有限公司 码本反馈、接收方法及装置、存储介质、终端设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106537974A (zh) * 2015-04-10 2017-03-22 华为技术有限公司 一种csi的测量和反馈方法、设备
CN108111200A (zh) * 2017-06-16 2018-06-01 中兴通讯股份有限公司 一种信道状态信息反馈的方法和装置
CN108282210A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种信息发送方法、接收方法及装置
US20190020386A1 (en) * 2016-01-12 2019-01-17 Lg Electronics Inc. Method for transmitting and receiving channel state information in multi-antenna wireless communication system, and apparatus therefor
CN109560847A (zh) * 2017-09-26 2019-04-02 华为技术有限公司 信道状态信息反馈和接收方法、发送端设备和接收端设备
EP3672100A1 (en) * 2018-12-22 2020-06-24 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Methods and apparatuses for codebook restriction for type-ii feedback reporting and higher layer configuration and reporting for linear combination codebook in a wireless communications network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106537974A (zh) * 2015-04-10 2017-03-22 华为技术有限公司 一种csi的测量和反馈方法、设备
US20190020386A1 (en) * 2016-01-12 2019-01-17 Lg Electronics Inc. Method for transmitting and receiving channel state information in multi-antenna wireless communication system, and apparatus therefor
CN108282210A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种信息发送方法、接收方法及装置
CN108111200A (zh) * 2017-06-16 2018-06-01 中兴通讯股份有限公司 一种信道状态信息反馈的方法和装置
CN109560847A (zh) * 2017-09-26 2019-04-02 华为技术有限公司 信道状态信息反馈和接收方法、发送端设备和接收端设备
EP3672100A1 (en) * 2018-12-22 2020-06-24 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Methods and apparatuses for codebook restriction for type-ii feedback reporting and higher layer configuration and reporting for linear combination codebook in a wireless communications network

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022237360A1 (zh) * 2021-05-11 2022-11-17 大唐移动通信设备有限公司 码本指示方法、装置及存储介质
US20230318669A1 (en) * 2022-03-31 2023-10-05 Qualcomm Incorporated Resource aggregation for dynamic antenna port adaptation
US12052074B2 (en) * 2022-03-31 2024-07-30 Qualcomm Incorporated Resource aggregation for dynamic antenna port adaptation
WO2024094153A1 (zh) * 2022-11-04 2024-05-10 北京紫光展锐通信技术有限公司 码本反馈、接收方法及装置、存储介质、终端设备

Also Published As

Publication number Publication date
CN116158017A (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
US20220263560A1 (en) Channel state information reporting method and communications apparatus
WO2022036720A1 (zh) 码本处理方法、终端设备和网络设备
CN111886809A (zh) 上行天线的选择方法和装置
JP7371270B2 (ja) チャネル状態情報フィードバック方法及び通信装置
US20230239028A1 (en) Channel measurement method and communication apparatus
WO2023015529A1 (zh) 无线通信的方法、终端设备和网络设备
CN114342517A (zh) 无线通信的方法和终端设备
WO2022227033A1 (zh) 无线通信方法、终端设备和网络设备
WO2022227041A1 (zh) 上行传输方法、终端设备和网络设备
WO2022183378A1 (zh) 码本上报的方法、终端设备和网络设备
US20240007250A1 (en) Wireless communication method, terminal device, and network device
CN116762284A (zh) 一种信道状态信息反馈方法及通信装置
WO2022257042A1 (zh) 码本上报的方法、终端设备和网络设备
WO2021012159A1 (zh) 信道信息处理方法、设备及存储介质
CN116114183A (zh) 一种信息传输的方法、相关装置以及设备
WO2022188081A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022056870A1 (zh) 无线通信方法、终端设备和网络设备
WO2022082511A1 (zh) 无线通信的方法及设备
WO2024087120A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024138494A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022082481A1 (zh) 一种码本发送方法、终端设备和网络设备
WO2023102814A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023240566A1 (zh) 生成序列的方法和设备
WO2024138527A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023123409A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949927

Country of ref document: EP

Kind code of ref document: A1