WO2022082481A1 - 一种码本发送方法、终端设备和网络设备 - Google Patents
一种码本发送方法、终端设备和网络设备 Download PDFInfo
- Publication number
- WO2022082481A1 WO2022082481A1 PCT/CN2020/122372 CN2020122372W WO2022082481A1 WO 2022082481 A1 WO2022082481 A1 WO 2022082481A1 CN 2020122372 W CN2020122372 W CN 2020122372W WO 2022082481 A1 WO2022082481 A1 WO 2022082481A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency domain
- indication information
- length
- information
- vector
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 138
- 239000013598 vector Substances 0.000 claims abstract description 503
- 238000004590 computer program Methods 0.000 claims description 33
- 239000011159 matrix material Substances 0.000 claims description 28
- 238000010187 selection method Methods 0.000 claims description 13
- 238000004891 communication Methods 0.000 abstract description 28
- 238000010586 diagram Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 11
- 230000006870 function Effects 0.000 description 9
- 238000001228 spectrum Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 5
- 230000001360 synchronised effect Effects 0.000 description 5
- 230000007774 longterm Effects 0.000 description 4
- 238000007726 management method Methods 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
Definitions
- the present application relates to the field of communications, and more particularly, to a method for sending a codebook, a terminal device, and a network device.
- the terminal device reports the NR type II codebook used to represent the channel state information (CSI, Channel state information) to the network device.
- CSI channel state information
- the existing NR type II codebook is independently coded in the frequency domain (each subband). Due to the high spatial quantization accuracy, the total feedback amount is too large. By feeding back the frequency domain-space joint codebook, in Under the condition of ensuring NR performance, the amount of feedback can be greatly saved.
- the NR type II codebook can be expressed as:
- W 1 indicates 2L spatial beams (beams), Used to determine M discrete Fourier transform (DFT, Discrete fourier transformation) basis vectors, (2L*M) indicates the weighting coefficients of any spatial beam, frequency domain DFT vector pair.
- DFT discrete Fourier transform
- the entire frequency domain range can only be carried in one beam, so the required channel state information-reference signal (CSI-RS, Channel state information-reference signal) overhead is relatively large.
- CSI-RS Channel state information-reference signal
- the embodiments of the present application provide a codebook sending method, terminal equipment, and network equipment, which can implement multiple beams in different frequency domains and reduce the overhead of required CSI-RS.
- An embodiment of the present application provides a method for sending a codebook, including:
- the terminal device divides the plurality of frequency domain subbands into at least one frequency domain subband set, and each frequency domain subband set includes a plurality of frequency domain units;
- the terminal device selects at least one frequency domain subband set from the at least one frequency domain subband set, and sends codebook information of the selected frequency domain subband set, where the codebook information includes at least one of the following:
- LCC Linear combination coefficient
- the embodiment of the present application also provides a codebook receiving method, including:
- the network device receives codebook information of the frequency domain subband set selected by the terminal device, where the codebook information includes at least one of the following:
- the embodiment of the present application also provides a terminal device, including:
- a dividing module configured to divide the plurality of frequency domain subbands into at least one frequency domain subband set, each frequency domain subband set including a plurality of frequency domain units;
- a selection module for selecting part or all of the frequency domain subband sets from at least one frequency domain subband set
- a sending module configured to send codebook information of the selected frequency domain subband set, where the codebook information includes at least one of the following:
- the embodiment of the present application also provides a network device, including:
- a receiving module configured to receive codebook information of the frequency domain subband set selected by the terminal device, where the codebook information includes at least one of the following:
- Embodiments of the present application further provide a terminal device, including: a processor and a memory, where the memory is used to store a computer program, and the processor invokes and runs the computer program stored in the memory to execute the above method.
- An embodiment of the present application further provides a network device, including: a processor and a memory, where the memory is used to store a computer program, and the processor invokes and executes the computer program stored in the memory to execute the above method.
- An embodiment of the present application further provides a chip, including: a processor, configured to call and run a computer program from a memory, so that a device on which the chip is installed executes the above method.
- Embodiments of the present application further provide a computer-readable storage medium for storing a computer program, wherein the computer program causes a computer to execute the above method.
- Embodiments of the present application also provide a computer program product, including computer program instructions, wherein the computer program instructions cause a computer to execute the above method.
- the embodiments of the present application also provide a computer program, the computer program enables a computer to execute the above method.
- the terminal device divides the frequency domain range into at least one frequency domain subband set, selects all or part of the divided frequency domain subband set, and reports the codebook information of the selected frequency domain subband set, so that Different frequency domains can carry multiple beams, thereby reducing the overhead of required CSI-RS.
- FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
- FIG. 2 is an implementation flowchart of a method 200 for sending a codebook according to an embodiment of the present application.
- FIG. 3 is a schematic diagram of a manner of dividing a frequency domain subband set according to an embodiment of the present application.
- FIG. 4 is a schematic diagram of another manner of dividing a frequency domain subband set according to an embodiment of the present application.
- FIG. 5 is a schematic diagram of another manner of dividing a frequency domain subband set according to an embodiment of the present application.
- FIG. 6 is an implementation flowchart of a method 600 for receiving a codebook according to an embodiment of the present application.
- FIG. 7 is a schematic structural diagram of a terminal device 700 according to an embodiment of the present application.
- FIG. 8 is a schematic structural diagram of a network device 800 according to an embodiment of the present application.
- FIG. 9 is a schematic structural diagram of a communication device 900 according to an embodiment of the present application.
- FIG. 10 is a schematic structural diagram of a chip 1000 according to an embodiment of the present application.
- GSM Global System of Mobile communication
- CDMA Code Division Multiple Access
- CDMA Wideband Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- GPRS General Packet Radio Service
- LTE Long Term Evolution
- LTE-A Advanced Long Term Evolution
- NR New Radio
- UMTS Universal Mobile Telecommunication System
- WLAN Wireless Local Area Networks
- WiFi Wireless Fidelity
- 5G 5th-Generation
- the communication system in this embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) distribution. web scene.
- Carrier Aggregation, CA Carrier Aggregation, CA
- DC Dual Connectivity
- SA standalone
- This embodiment of the present application does not limit the applied spectrum.
- the embodiments of the present application may be applied to licensed spectrum, and may also be applied to unlicensed spectrum.
- terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
- UE User Equipment
- access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
- the terminal device can be a station (STAION, ST) in the WLAN, can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and next-generation communication systems, such as terminal devices in NR networks or Terminal equipment in the future evolved Public Land Mobile Network (Public Land Mobile Network, PLMN) network, etc.
- STAION, ST in the WLAN
- SIP Session Initiation Protocol
- WLL Wireless Local Loop
- PDA Personal Digital Assistant
- the terminal device may also be a wearable device.
- Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
- a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
- wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
- a network device can be a device used to communicate with a mobile device.
- the network device can be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA, or a WCDMA
- a base station NodeB, NB
- it can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, wearable device, and network equipment (gNB) in NR networks Or network equipment in the PLMN network that evolves in the future.
- AP Access Point
- BTS Base Transceiver Station
- gNB network equipment
- a network device provides services for a cell
- a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell
- the cell may be a network device (for example, a frequency domain resource).
- the cell corresponding to the base station), the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell), where the small cell can include: Metro cell, Micro cell, Pico cell cell), Femto cell, etc.
- These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-speed data transmission services.
- FIG. 1 exemplarily shows one network device 110 and two terminal devices 120.
- the wireless communication system 100 may include a plurality of network devices 110, and the coverage of each network device 110 may include other numbers
- the terminal device 120 is not limited in this embodiment of the present application.
- the embodiments of the present application may be applied to one terminal device 120 and one network device 110 , and may also be applied to one terminal device 120 and another terminal device 120 .
- the wireless communication system 100 may further include other network entities such as a mobility management entity (Mobility Management Entity, MME), an access and mobility management function (Access and Mobility Management Function, AMF). This is not limited.
- MME Mobility Management Entity
- AMF Access and Mobility Management Function
- the "instruction" mentioned in the embodiments of the present application may be a direct instruction, an indirect instruction, or an associated relationship.
- a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
- corresponding may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
- the NR type II codebook can be expressed as:
- W represents the NR type II codebook, that is, the frequency domain-space joint codebook.
- W 1 represents the DFT vector of the 2L spatial beams.
- W f represents the DFT basis vectors of the M frequency domains.
- represents the transpose of Wf . represents the weighting coefficient of the spatial frequency domain pair, is a matrix of size 2L*M.
- the CSI content reported by the UE includes the L beams indicated by W 1 , The indicated M DFT basis vectors, and the quantized The base station obtains the downlink CSI of each layer by calculating the product of the three.
- FIG. 2 is a schematic flowchart of a method 200 for sending a codebook according to an embodiment of the present application.
- the method can optionally be applied to the system shown in FIG. 1 , but It doesn't stop there.
- the method includes at least some of the following.
- the terminal device divides multiple frequency domain subbands into at least one frequency domain subband set, and each frequency domain subband set includes multiple frequency domain units;
- the terminal device selects part or all of the frequency domain subband sets from the at least one frequency domain subband set, and sends codebook information of the selected frequency domain subband set, where the codebook information includes at least one of the following:
- LCC linear combining coefficient
- the above frequency domain subband may specifically be a Precoding Matrix Indicator (PMI, Precoding Matrix Indicator) subband.
- the terminal device divides the N 3 PMI subbands into 0 3 frequency domain subband sets, each frequency domain subband set includes N PMI subbands, and each PMI subband includes 1 frequency domain unit; wherein,
- FIG. 3 is a schematic diagram of a manner of dividing a frequency domain subband set according to an embodiment of the present application.
- the manner in which the terminal device divides the N 3 PMI subbands into O 3 frequency domain subband sets includes:
- the sequence numbers of the N 3 PMI subbands are respectively integers in the range of [0, N 3 ); i is an integer in the range of [0, O 3 ); m is an integer in the range of [0, N ).
- each frequency domain subband set includes N PMI subbands, and each PMI subband includes one frequency domain unit.
- the frequency domain subband set with sequence number 0 includes PMI subbands with sequence numbers 0, 4, and 8
- the frequency domain subband set with sequence number 1 includes PMI subbands with sequence numbers 1, 5, and 9.
- the frequency domain subband set with sequence number 2 includes PMI subbands with sequence numbers 2, 6, and 10
- the frequency domain subband set with sequence number 3 includes PMI subbands with sequence numbers 3, 7, and 11.
- one PMI subband includes one frequency domain unit, or one PMI subband can be considered to be equivalent to one frequency domain unit; therefore, one frequency domain subband set includes N PMI subbands, or one can be considered as one The frequency domain subband set includes N frequency domain units.
- R is a parameter determined by the high layer; N sb is the number of CQI subbands; is a predetermined parameter; n is an integer.
- O 3 is a parameter determined by a high layer or a fixed parameter.
- the value manner of O 3 can include at least one of the following:
- the process of dividing the frequency domain subband set by the terminal device includes:
- the N 3 PMI subbands are divided, and each PMI subband is divided into 0 3 frequency domain units;
- FIG. 4 is a schematic diagram of another manner of dividing a frequency domain subband set according to an embodiment of the present application.
- a frequency domain unit is selected from each PMI subband to form a frequency domain subband set, thereby forming two frequency domain subband sets.
- the PMI subband with sequence number 0 (PMI subband 0 for short) is divided into two frequency domain units, including frequency domain unit 0 and frequency domain unit 1;
- the subband (referred to as PMI subband 1) is divided into two frequency domain units, including frequency domain unit 0 and frequency domain unit 1.
- each frequency domain subband set contains a frequency domain unit extracted from each PMI subband, so the frequency domain unit value contained in each frequency domain subband set is the same as the PMI subband.
- the values of the bands are the same.
- each frequency domain unit is composed of It consists of a resource block (RB, (Resource Block).
- the process of dividing the frequency domain subband set by the terminal device includes:
- FIG. 5 is a schematic diagram of another manner of dividing a frequency domain subband set according to an embodiment of the present application.
- a frequency domain unit is selected from each PMI subband to form a frequency domain subband set, thereby forming four frequency domain subband sets.
- the CQI subband with sequence number 0 (CQI subband 0 for short) is divided into 4 frequency domain units, including frequency domain unit 0, frequency domain unit 1, frequency domain unit 2 and frequency domain unit 3.
- the CQI subband with sequence number 1 (CQI subband 1 for short) is divided into 4 frequency domain units, including frequency domain unit 0, frequency domain unit 1, frequency domain unit 2 and frequency domain unit 3.
- extract frequency domain unit 0 of PMI subband 0 and frequency domain unit 0 of PMI subband 1 to form a frequency domain subband set with sequence number 0; in the same way, extract frequency domain unit 1 of PMI subband 0 and the frequency domain unit 1 of the PMI subband 1 to form a frequency domain subband set with a serial number of 1; extract the frequency domain unit 2 of the PMI subband 0 and the frequency domain unit 2 of the PMI subband 1 to form a serial number of 2 Frequency domain subband set; extract frequency domain unit 3 of PMI subband 0 and frequency domain unit 3 of PMI subband 1 to form a frequency domain subband set with sequence number 3.
- each frequency domain subband set contains a frequency domain unit extracted from each CQI subband, so the frequency domain unit value contained in each frequency domain subband set is the same as the CQI subband.
- the values of the bands are the same.
- each frequency domain unit is composed of composed of RBs.
- the UE may select some or all (for example, the number is K) frequency domain subbands from the divided frequency domain subband set according to at least one of high-level parameter configuration, predetermined selection method and dynamic indication information Band set, reporting codebook information to the selected frequency domain subband set.
- the base station selects K frequency domain subband sets through O 3 bit indication.
- the frequency domain vector included in the above codebook information includes a first frequency domain vector and/or a second frequency domain vector, for example, expressed by the following formula:
- K is a vector of length K whose optional values are also equal to K.
- N is a vector of length N whose optional values are also equal to N.
- a Kronecker product is an operation between two matrices. and Representing two vectors, a matrix is a special kind of matrix. right and Calculate the Kronecker product to get a vector of length K*N, the frequency domain vector.
- the first frequency domain vector The selectable values of include the vector formed by the elements of each row or column of the K-order unit matrix, that is, the vector with the qth element being 1 and the remaining elements being 0.
- the K-order identity matrix is as follows:
- the selectable values include 4, namely vector(1,0,0,0), vector(0,1,0,0), (0,0,1,0) and vector(0,0,0, 1).
- the first frequency domain vector The selectable values of include a vector of elements in each row or column of a K-order Hadamard matrix.
- the selectable values include 2, namely vector(1,-1) and vector(-1,1).
- the selectable values include 4, namely vector(1,1,1,1), vector(1,-1,1,-1), (1,1,-1,-1) and vector(1, -1,-1,1).
- the first frequency domain vector The selectable value of is a column in the following matrix:
- the first frequency domain vector There are 2 available values for , namely any two of vector(1,0), vector(0,1) and vector(1,1).
- the first frequency domain vector The selectable value of is a column in the following matrix:
- the selectable values include 4, namely vector(1,0,0,0), vector(0,1,0,0), (0,0,1,0), vector(0,0,0, 1), vector(1,1,0,0), (0,0,1,1), vector(1,0,1,0), vector(0,1,0,0) and vector(1, 1,1,1) any four.
- the first frequency domain vector is the DFT vector, that is or Among them, q,k ⁇ [0,1,...,K-1].
- the second frequency domain vector is a vector of length N and each element takes a fixed value.
- each element takes a fixed value.
- the second frequency domain vector is the DFT vector for the second frequency domain vector, or Among them, N,k ⁇ [0,1,...,K-1]. .
- the sequence number k of the DFT vector is fixed, or indicated by the base station, or reported by the UE to the base station.
- the UE determines and and report to the base station the determined and The base station determines W f in the codebook information reported by the UE accordingly. And, the UE selects a port from 2 N 1 N 2 ports, and reports the corresponding port selection vector to the base station, where N 1 is the number of antenna ports in the horizontal direction, and N 2 is the number of antenna ports in the vertical direction. In addition, the UE also reports to the base station other codebook information such as the location information of the non-zero coefficients, the sum of the non-zero coefficients, and the priority of the non-zero coefficients.
- the first frequency domain vector is represented by first indication information; the length of the first indication information is determined by at least one of the following: K; the number of first frequency domain vectors included in the codebook information; non-zero coefficients number; number of layers.
- the length of the above-mentioned first indication information is or K; wherein, M is the number of first frequency domain vectors included in the codebook information; K nz is the number of non-zero coefficients.
- the length of the first indication information is or Wherein, M is the number of first frequency domain vectors of each layer included in the codebook information; v is the number of layers.
- an independent selection method for each layer may be adopted, and each layer is indicated by an independent first indication information.
- the first frequency domain vector is represented by one first indication information for each layer;
- the length of the first indication information corresponding to each layer is in,
- M l is the number of the first frequency domain vectors of the lth layer included in the codebook information.
- each layer when the number of layers v is greater than 1, each layer may be independently selected, and the layers are grouped, and the layers included in each group are indicated by a piece of first indication information.
- the first frequency domain vector is represented by at least two pieces of first indication information, and each first indication information corresponds to the first frequency domain vector of a partial layer included in the codebook information.
- the first frequency domain vectors of layers 2 and 3 are represented by another first indication information.
- a joint selection method may be adopted, for example, one indication information is used to indicate the optional range of the first frequency domain vector, and the other indication information is used to indicate the The first frequency domain vector selected in the optional range.
- the above-mentioned first frequency domain vector is represented by the second indication information and the third indication information;
- M 0 is a parameter determined by a high layer or a parameter determined by a terminal device (representing the optional range of the above-mentioned first frequency domain vector);
- the length of the third indication information is Wherein, v is the number of layers, and M is the number of first frequency domain vectors of each layer included in the codebook information.
- the first frequency domain vector is represented by the fourth indication information and the fifth indication information;
- the length of the fourth indication information is The fourth indication information is used to indicate the starting position of the first frequency domain vector of each layer included in the codebook information;
- the length of the fifth indication information is Among them, v is the number of layers; K W is the window length of the first frequency domain vector of each layer starting from the starting position, and M is the number of first frequency domain vectors of each layer included in the codebook information.
- the second frequency domain vector is represented by sixth indication information; the length of the sixth indication information is determined by at least one of the following: N; the number of second frequency domain vectors included in the codebook information; the number of layers; Layer serial number.
- the length of the above-mentioned sixth indication information is wherein, M is the number of second frequency domain vectors included in the codebook information.
- a method of independently selecting each layer may be adopted, and all layers are indicated by the same sixth indication information.
- the length of the sixth indication information is in,
- M is the number of second frequency domain vectors of each layer included in the codebook information
- v is the number of layers.
- each layer is indicated by an independent sixth indication information.
- a combined selection method may be adopted, for example, one indication information is used to indicate the optional range of the second frequency domain vector, and the other indication information is used to indicate the A second frequency domain vector selected in an optional range.
- the above-mentioned second frequency domain vector is represented by the seventh indication information and the eighth indication information;
- M 0 is a parameter determined by a higher layer or a parameter determined by a terminal device (representing the optional range of the above-mentioned second frequency domain vector);
- the length of the eighth indication information is Wherein, v is the number of layers, and M is the number of second frequency domain vectors of each layer included in the codebook information.
- the port selection vector is represented by the ninth indication information
- the length of the ninth indication information is determined by at least one of the following: N 1 ; N 2 ; the number of port selection vectors included in the codebook information; the number of layers; wherein, N 1 is the number of antenna ports in the horizontal direction, N 2 is the number of antenna ports in the vertical direction.
- the length of the above ninth indication information is or Among them, 2L is the number of port selection vectors included in the codebook information.
- each layer may be independently selected, and all layers are indicated by the same ninth indication information.
- the length of the ninth indication information is or Among them, 2L is the number of port selection vectors of each layer included in the codebook information.
- v is the number of layers.
- each layer may be indicated by using an independent ninth indication information.
- the port selection vector is represented by one ninth indication information for each layer;
- the length of the ninth indication information corresponding to each layer is or Wherein, 2L l is the number of port selection vectors of the lth layer included in the codebook information. N 1 is the number of antenna ports in the horizontal direction; N 2 is the number of antenna ports in the vertical direction.
- each layer when the number of layers v is greater than 1, each layer may be independently selected, and the layers are grouped, and the layers included in each group are indicated by ninth indication information.
- a combined selection method may be adopted.
- one indication information is used to indicate the optional range of the port selection vector, and the other indication information is used to indicate the optional range of the port selection vector.
- the above port selection vector is represented by the tenth indication information and the eleventh indication information;
- the length of the tenth indication information is or Wherein, N 1 is the number of antenna ports in the horizontal direction, N 2 is the number of antenna ports in the vertical direction, and L 0 is a parameter determined by a higher layer or a parameter determined by a terminal device (representing the optional range of the above-mentioned port selection vector);
- the length of the eleventh indication information is Among them, v is the number of layers, and 2L is the number of port selection vectors of each layer included in the codebook information.
- the port selection vector is represented by the twelfth indication information and the thirteenth indication information
- the length of the twelfth indication information is or
- the twelfth indication information is used to indicate the starting position of the port selection vector of each layer included in the codebook information;
- the length of the thirteenth indication information is or Among them, v is the number of layers, L W is the window length of the port selection vector of each layer starting from the above-mentioned starting position, and 2L is the number of first frequency domain vectors of each layer included in the codebook information.
- the above introduces the first frequency domain vector second frequency domain vector and port selection vector indication.
- the UE reports the foregoing content.
- the above codebook information may further include non-zero coefficient position information.
- the UE may also send information such as the sum of the non-zero coefficients and the priority of the non-zero coefficients to the base station.
- the above-mentioned non-zero coefficient position information is represented by the fourteenth indication information; the length of the fourteenth indication information is 2LM, or Among them, L is the number of beams; K 0 is the number of the largest non-zero coefficients; M is the number of the first frequency domain vectors included in the codebook information; N 1 is the number of antenna ports in the horizontal direction; N 2 is the antenna in the vertical direction Number of ports; K nz is the number of non-zero coefficients.
- each layer is indicated by an independent fourteenth indication information.
- each layer of the non-zero coefficient position information is represented by one fourteenth indication information;
- the length of the fourteenth indication information corresponding to each layer is Wherein, M is the number of first frequency domain vectors of each layer included in the codebook information; K nz is the number of non-zero coefficients of each layer included in the codebook information.
- each layer when the number of layers v is greater than 1, each layer may be independently selected, and the layers are grouped, and the layers included in each group are indicated by a fourteenth indication message.
- the non-zero coefficient position information is represented by at least two fourteenth indication information, and each fourteenth indication information corresponds to the non-zero coefficient position of the partial layer included in the non-zero coefficient position information.
- the non-zero coefficient positions of layers 2 and 3 are represented by another fourteenth indication information.
- a joint selection method may be adopted, for example, one indication information is used to indicate the optional range of non-zero coefficient positions, and the other Selected non-zero coefficient positions within the selection range.
- the above-mentioned non-zero coefficient position information is represented by the fifteenth indication information and the sixteenth indication information;
- the length of the fifteenth indication information is or Wherein, L is the number of beams, M is the number of the first frequency domain vectors of each layer included in the codebook information, and K nz,0 is a parameter determined by a high layer or a parameter determined by a terminal device;
- the length of the sixteenth indication information is Among them, v is the number of layers, and K nz,i is the number of non-zero coefficients of the i-th layer included in the codebook information.
- the UE selects 2L ports from 2N 1 N 2 ports, and the length is or The indication information (unit is bit) reports the port selection vector; the UE selects from N Choose M from then the length is report of instructions UE from K choose one then the length is Or report the instruction information of K
- the UE selects 2 ports from 2N 1 N 2 ports, and the length is or The indication information reports port selection vector; UE selects from K Choose from K nz then the length is (or Kbits) indication information reporting
- the UE selects 2L ports from 2N 1 N 2 ports, and the length is or The indication information (unit is bit) reports the port selection vector; the UE selects from K Choose M from then the length is (or Kbits) indication information reporting The UE selects K nz non-zero coefficients from the 2LM non-zero coefficients, and the length is (or 2LMbits) the indication information reports the position of the non-zero coefficient.
- the UE selects 2L ports from 2N 1 N 2 ports, and the length is or The indication information (unit is bit) is reported to the port selection vector; the UE selects K nz non-zero coefficients from the 2LK non-zero coefficients, and the length is (or 2LKbits) to report the position of non-zero coefficients.
- the UE selects K nz non-zero coefficients from 2N 1 N 2 K non-zero coefficients, and the length is (or 2N 1 N 2 K bits) the indication information reports the position of the non-zero coefficient.
- the UE selects K nz non-zero coefficients from 2N 1 N 2 K non-zero coefficients, and the length is (or 2N 1 N 2 K bits) the indication information reports the position of the non-zero coefficient.
- K nz represents the number of non-zero coefficients, and its value cannot exceed the maximum number of non-zero coefficients or the sum of the number of non-zero coefficients of all layers.
- the maximum number of non-zero coefficients can be represented by K 0 , or or or or or Among them, ⁇ is a parameter configured by the high layer for configuring the maximum number of non-zero coefficients.
- an independent selection method for example, the UE can select the port, or position of non-zero coefficients for independent selection. specifically:
- the UE independently selects the ports of each layer, and each layer selects 2L ports from 2N 1 N 2 ports, then for all layers, a length of or The indication information is reported to the port selection vector.
- the UE selects the same port for each layer, and can use a length of or The indication information is reported to the port selection vector.
- the UE Independent selection each layer from N Choose M from Then for all layers, the length of report of instructions Alternatively, the UE selects the same for each layer For all layers, lengths of report of instructions
- the UE Independent selection, each layer from K choose 1 Then for all layers, the length of report of instructions Alternatively, the UE selects the same for each layer For all layers, lengths of report of instructions
- the UE Independent selection each layer from K Choose M from Then for all layers, the length of report of instructions Alternatively, the UE selects the same for each layer For all layers, lengths of report of instructions
- one indication information is used for the layers with sequence numbers 0 and 1 to indicate the port selected by the UE, and another indication information is used for the layers with sequence numbers 2 and 3 to indicate the UE to select the port. port.
- the number of ports selected, L 1 and L 2 can be the same or different.
- one indication information is used for each layer to indicate the port selected by the UE.
- the length is or The indication information indicates the port selected by the UE in layer 1.
- L 1 represents the number of ports selected in the first layer, and the number of ports selected in each layer may be the same or different.
- an indication message is used for each layer to indicate the UE selected
- the length is The indication information indicates that the UE selects the Among them, M 1 represents the selected in the lth layer number, selected at each layer The number can be the same or different.
- the pass length is The indication information (or 2LMbits) indicates the positions of non-zero coefficients of all layers, and at the same time, the amplitude mapping table may contain 0 amplitudes.
- a joint selection method may be adopted, for example, the UE selects ports, or position of non-zero coefficients for joint selection. specifically:
- the UE performs joint selection of ports, and uses two indication information to indicate the port selected by the UE, one of which indicates the port selected from each layer of ports (the number is denoted as L 0 ), and the other indication information Indicates the ports selected by each layer from the L 0 ports. For example, using a length of or The indication information indicates L 0 ports selected from each layer of ports, using a length of The indication information indicates the final port selected from L 0 ports at each layer.
- L 0 may be a parameter determined by a higher layer or a parameter reported by the UE; if L 0 is a parameter reported by the UE, it may be reported in the first part (part1) of the CSI uplink control information (UCI, Uplink control information).
- UCI Uplink control information
- the UE pairs Joint selection is performed, and two indication information is used to indicate the UE selected
- One of the instructions indicates that the selected in (the number is recorded as M 0 ), and another indication information indicates that each layer starts from the M 0 selected in
- M 0 may be a parameter determined by a higher layer or a parameter reported by the UE; if M 0 is a parameter reported by the UE, it may be reported in the CSI UCI part1.
- the UE pairs Joint selection is performed, and two indication information is used to indicate the UE selected
- One of the instructions indicates that the selected in (the number is recorded as M 0 ), and another indication information indicates that each layer starts from the M 0 selected in
- M 0 may be a parameter determined by a higher layer or a parameter reported by the UE; if M 0 is a parameter reported by the UE, it may be reported in the CSI UCI part1.
- the UE jointly selects the non-zero coefficients, and uses two indication information to indicate the non-zero coefficients selected by the UE, one of which indicates the non-zero coefficients selected from the non-zero coefficients of each layer (the number is denoted as K nz,0 ), another indication information indicates the non-zero coefficients selected by each layer from the K nz,0 non-zero coefficients. For example, using a length of or or or The indication information indicates K nz, 0 non-zero coefficients selected from the non-zero coefficients of each layer, and each layer adopts a length of The indication information indicates the final non-zero coefficient selected by this layer from the K nz,0 non-zero coefficients. where K nz,0 is determined by high-level parameters.
- K nz_total coefficients are selected from the 2Lv non-zero coefficients by The bit indication information is reported to the base station.
- the method of block indication can be adopted, for example, the port of the UE for each layer, Or the position of the non-zero coefficient for block indication, that is, indicating the port, or the starting position of the non-zero coefficient, and the port determined within the range determined by the starting position, or non-zero coefficients.
- the position of the non-zero coefficient for block indication that is, indicating the port, or the starting position of the non-zero coefficient, and the port determined within the range determined by the starting position, or non-zero coefficients.
- the UE uses indication information with a length of log 2 (2N 1 N 2 ) or log 2 (N 1 N 2 ) to indicate the starting position of the port, and passes the length of or The indication information is used to determine the port determined by the UE within the range determined by the starting position.
- the indication information of can correspond to the case where polarizations are independent and Lw ports are selected from 2N 1 N 2 ports; the length is The indication information of can correspond to the case where polarizations are independent and Lw ports are selected from N 1 N 2 ports; the length is The indication information of can correspond to the case where the polarizations are the same.
- the UE uses indication information with a length of log 2 (K) to indicate the starting position, and through the length of The indication information to determine the range of each layer determined by the UE within the range determined by the starting position
- the UE may also report the sum of the non-zero coefficients of all layers in the CSI UCI part1, and the sum of the non-zero coefficients of all layers may be 0.
- K 0 represents the maximum number of non-zero coefficients.
- the UE does not report the CSI group 0/group1/group2 part2.
- the indication information of the sum of non-zero coefficients reported by the UE may be for any CQI.
- the UE can also report the strongest coefficient indication information, for example:
- the length of the pass is indication information, or the length of each layer is The indication information reports the strongest coefficient indication.
- the terminal device divides the frequency domain range into at least one frequency domain subband set, selects all or part of the divided frequency domain subband sets, and reports the selected frequency domain subband set. codebook information, so that multiple beams can be carried in different frequency domains to reduce the overhead of the required CSI-RS.
- the embodiments of the present application further compress codebook overhead, improve feedback efficiency, and improve system robustness by estimating the characteristics of space domain and time delay (DFT transform domain) from the uplink channel SRS.
- DFT transform domain space domain and time delay
- FIG. 6 is a schematic flowchart of a method 600 for receiving a codebook according to an embodiment of the present application.
- the method can optionally be applied to the system shown in FIG. 1 . But it doesn't stop there.
- the method includes at least some of the following.
- the network device receives codebook information of the frequency domain subband set selected by the terminal device, where the codebook information includes at least one of the following:
- the above-mentioned frequency domain vector includes a first frequency domain vector and/or a second frequency domain vector.
- the length of the first frequency domain vector and the number of selectable values are K, where K is the number of selected frequency domain subband sets.
- the selectable values of the above-mentioned first frequency domain vector include:
- a vector of elements in each row or column of a Hadamard matrix of order K is a vector of elements in each row or column of a Hadamard matrix of order K.
- the above-mentioned first frequency domain vector is a discrete Fourier transform DFT vector.
- the above-mentioned first frequency domain vector is represented by the first indication information
- the length of the first indication information is determined by at least one of the following items: K; the number of first frequency domain vectors included in the codebook information; the number of non-zero coefficients; and the number of layers.
- the length of the above-mentioned first indication information is or K; wherein, M is the number of first frequency domain vectors included in the codebook information; K nz is the number of non-zero coefficients.
- the length of the above-mentioned first indication information is or Wherein, M is the number of first frequency domain vectors of each layer included in the codebook information; v is the number of layers.
- the above-mentioned first frequency domain vector is represented by one piece of first indication information for each layer;
- the length of the first indication information corresponding to each layer is Wherein, M l is the number of the first frequency domain vectors of the lth layer included in the codebook information.
- the above-mentioned first frequency domain vector is represented by at least two pieces of first indication information, and each first indication information corresponds to the first frequency domain vector of a partial layer included in the codebook information.
- the above-mentioned first frequency domain vector is represented by the second indication information and the third indication information;
- the length of the second indication information is wherein, M 0 is a parameter determined by a higher layer or a parameter determined by a terminal device;
- the length of the third indication information is Wherein, v is the number of layers, and M is the number of first frequency domain vectors of each layer included in the codebook information.
- the above-mentioned first frequency domain vector is represented by the fourth indication information and the fifth indication information;
- the length of the fourth indication information is The fourth indication information is used to indicate the starting position of the first frequency domain vector of each layer included in the codebook information;
- the length of the fifth indication information is Among them, v is the number of layers; K W is the window length of the first frequency domain vector of each layer from the starting position, and M is the number of the first frequency domain vector of each layer contained in the codebook information.
- the length of the second frequency domain vector and the number of possible values are N, where N is the number of frequency domain units included in each frequency domain subband set.
- the above-mentioned second frequency domain vector is a vector whose length is N and the value of each element is a fixed value.
- the above-mentioned second frequency domain vector is a discrete Fourier transform DFT vector.
- the above-mentioned second frequency domain vector is represented by the sixth indication information
- the length of the sixth indication information is determined by at least one of the following: N; the number of second frequency domain vectors included in the codebook information; the number of layers; and the layer sequence number.
- the length of the above-mentioned sixth indication information is in,
- M is the number of second frequency domain vectors included in the codebook information.
- the length of the above-mentioned sixth indication information is wherein, M is the number of second frequency domain vectors of each layer included in the codebook information; v is the number of layers.
- the above-mentioned second frequency domain vector is represented by the seventh indication information and the eighth indication information;
- the length of the seventh indication information is wherein, M 0 is a parameter determined by a higher layer or a parameter determined by a terminal device;
- the length of the eighth indication information is Wherein, v is the number of layers, and M is the number of second frequency domain vectors of each layer included in the codebook information.
- the above-mentioned port selection vector is represented by ninth indication information; the length of the ninth indication information is determined by at least one of the following: N 1 ; N 2 ; the number of port selection vectors included in the codebook information; the number of layers; Among them, N 1 is the number of antenna ports in the horizontal direction, and N 2 is the number of antenna ports in the vertical direction.
- the length of the above ninth indication information is or in,
- 2L is the number of port selection vectors included in the codebook information.
- the length of the above ninth indication information is or Among them, 2L is the number of port selection vectors of each layer included in the codebook information. v is the number of layers.
- the above-mentioned port selection vector is represented by one ninth indication information for each layer;
- the length of the ninth indication information corresponding to each layer is or Wherein, 2L l is the number of port selection vectors of the lth layer included in the codebook information. N 1 is the number of antenna ports in the horizontal direction; N 2 is the number of antenna ports in the vertical direction.
- the above port selection vector is represented by at least two ninth indication information, and each ninth indication information corresponds to a port selection vector of a part of the layers included in the codebook information.
- the above-mentioned port selection vector is represented by the tenth indication information and the eleventh indication information;
- the length of the tenth indication information is or Wherein, N 1 is the number of antenna ports in the horizontal direction, N 2 is the number of antenna ports in the vertical direction, and L 0 is a parameter determined by a high layer or a parameter determined by a terminal device;
- the length of the eleventh indication information is Among them, v is the number of layers, and 2L is the number of port selection vectors of each layer included in the codebook information.
- the above-mentioned port selection vector is represented by the twelfth indication information and the thirteenth indication information;
- the length of the twelfth indication information is or The twelfth indication information is used to indicate the starting position of the port selection vector of each layer included in the codebook information; wherein, N 1 is the number of antenna ports in the horizontal direction, and N 2 is the number of antenna ports in the vertical direction;
- the length of the thirteenth indication information is or Among them, v is the number of layers, L W is the window length of the port selection vector of each layer from the starting position, and 2L is the number of port selection vectors of each layer contained in the codebook information.
- the above codebook information further includes non-zero coefficient position information.
- the above-mentioned non-zero coefficient position information is represented by the fourteenth indication information
- the length of the fourteenth indication information is or Among them, L is the number of beams; K 0 is the number of the largest non-zero coefficients; M is the number of the first frequency domain vectors included in the codebook information; N 1 is the number of antenna ports in the horizontal direction; N 2 is the antenna in the vertical direction Number of ports; K nz is the number of non-zero coefficients.
- each layer of the above-mentioned non-zero coefficient position information is represented by one fourteenth indication information
- the length of the fourteenth indication information corresponding to each layer is Wherein, M is the number of first frequency domain vectors of each layer included in the codebook information; K nz is the number of non-zero coefficients of each layer included in the codebook information.
- the above-mentioned non-zero coefficient position information is represented by at least two fourteenth indication information, and each fourteenth indication information corresponds to the non-zero coefficient position of some layers included in the non-zero coefficient position information.
- the above-mentioned non-zero coefficient position information is represented by the fifteenth indication information and the sixteenth indication information;
- the length of the fifteenth indication information is or Wherein, L is the number of beams, M is the number of the first frequency domain vectors of each layer included in the codebook information, and K nz,0 is a parameter determined by a high layer or a parameter determined by a terminal device;
- the length of the sixteenth indication information is Among them, v is the number of layers, and K nz,i is the number of non-zero coefficients of the i-th layer included in the codebook information.
- the above-mentioned terminal device receives the sum of non-zero coefficients.
- the length of the sum of the above non-zero coefficients is or The indication information of ; wherein, K 0 is the maximum number of non-zero coefficients.
- the above method further comprises: receiving a non-zero coefficient priority from the terminal device.
- FIG. 7 is a schematic structural diagram of a terminal device 700 according to an embodiment of the present application, including:
- a division module 710 the application divides the multiple frequency domain subbands into at least one frequency domain subband set, and each frequency domain subband set includes a plurality of frequency domain units;
- a selection module 720 configured to select part or all of the frequency domain subband sets from the at least one frequency domain subband set
- a sending module 730 configured to send codebook information of the selected frequency domain subband set, where the codebook information includes at least one of the following: an identifier of the selected frequency domain subband set; a linear combination corresponding to the selected frequency domain subband set coefficient LCC; port selection vector; frequency domain vector.
- the foregoing dividing module 710 is configured to: divide the N 3 PMI subbands into 0 3 frequency domain subband sets, each frequency domain subband set includes N PMI subbands, and each PMI subband includes 1 frequency domain units; wherein, N 3 is a positive integer; O 3 is a positive integer; N is equal to N 3 /O 3 .
- the above-mentioned dividing module 710 is used for: dividing the PMI subband whose sequence number is i+ m03 into a frequency domain subband set whose sequence number is i; wherein, the sequence numbers of the N 3 PMI subbands are respectively [ 0, N 3 ) is an integer in the range; i is an integer in the [0, O 3 ) range; m is an integer in the [0, N) range.
- the above-mentioned dividing module 710 is used for: dividing N 3 PMI subbands, respectively dividing each PMI subband into 03 frequency domain units; respectively extracting the same sequence number from each PMI subband
- the frequency domain unit, the frequency domain unit with the same serial number is formed into a frequency domain subband set, and O 3 frequency domain subband sets are obtained, and each frequency domain subband set includes N frequency domain units; wherein, N 3 is positive Integer; O 3 is a positive integer; N equals N 3 .
- the above-mentioned dividing module 710 is used for:
- the N 3 CQI subbands are divided, and each CQI subband is divided into 0 3 frequency domain units respectively; the frequency domain units with the same sequence number are extracted from each CQI subband, and the frequency domain units with the same sequence number are respectively extracted.
- the units form a frequency domain subband set, and O 3 frequency domain subband sets are obtained, and each frequency domain subband set includes N 3 frequency domain units; wherein, N 3 is a positive integer; O 3 is a positive integer; N equals to N 3 .
- N 3 N sb R
- R is a parameter determined by the high layer
- N sb is the number of CQI subbands
- n is an integer.
- the above O 3 is a parameter determined by a high layer or a fixed parameter.
- the value manner of the above O 3 is at least one of the following:
- O 3 R/2 m , where m is an integer
- N 1 is the number of antenna ports in the horizontal direction
- N 2 is the number of antenna ports in the vertical direction
- T is the preset threshold
- L is the number of beams
- K 0 is the maximum non-zero coefficient. number.
- the above-mentioned selection module 720 is used for:
- the device selects K frequency domain subband sets from at least one frequency domain subband set according to at least one of high layer parameter configuration, predetermined selection method and dynamic indication information, where K is a positive integer.
- the above-mentioned frequency domain vector includes a first frequency domain vector and/or a second frequency domain vector.
- the length of the first frequency domain vector and the number of selectable values are K, where K is the number of selected frequency domain subband sets.
- the selectable values of the above-mentioned first frequency domain vector include:
- a vector of elements in each row or column of a Hadamard matrix of order K is a vector of elements in each row or column of a Hadamard matrix of order K.
- the above-mentioned first frequency domain vector is a discrete Fourier transform DFT vector.
- the above-mentioned first frequency domain vector is represented by the first indication information
- the length of the first indication information is determined by at least one of the following items: K; the number of first frequency domain vectors included in the codebook information; the number of non-zero coefficients; and the number of layers.
- the length of the above-mentioned first indication information is or K;
- M is the number of the first frequency domain vectors included in the codebook information
- K nz is the number of non-zero coefficients.
- the length of the above-mentioned first indication information is or Wherein, M is the number of first frequency domain vectors of each layer included in the codebook information; v is the number of layers.
- the above-mentioned first frequency domain vector is represented by one piece of first indication information for each layer;
- the length of the first indication information corresponding to each layer is Wherein, M l is the number of the first frequency domain vectors of the lth layer included in the codebook information.
- the above-mentioned first frequency domain vector is represented by at least two pieces of first indication information, and each of the first indication information corresponds to the first frequency domain vector of a partial layer included in the codebook information.
- the above-mentioned first frequency domain vector is represented by the second indication information and the third indication information;
- the length of the second indication information is wherein, M 0 is a parameter determined by a higher layer or a parameter determined by a terminal device;
- the length of the third indication information is Wherein, v is the number of layers, and M is the number of first frequency domain vectors of each layer included in the codebook information.
- the above-mentioned first frequency domain vector is represented by the fourth indication information and the fifth indication information;
- the length of the fourth indication information is The fourth indication information is used to indicate the starting position of the first frequency domain vector of each layer included in the codebook information;
- the length of the fifth indication information is Among them, v is the number of layers; K W is the window length of the first frequency domain vector of each layer from the starting position, and M is the number of the first frequency domain vector of each layer contained in the codebook information.
- the length of the second frequency domain vector and the number of possible values are N.
- the above-mentioned second frequency domain vector is a vector whose length is N and the value of each element is a fixed value.
- the above-mentioned second frequency domain vector is a discrete Fourier transform DFT vector.
- the above-mentioned second frequency domain vector is represented by the sixth indication information
- the length of the sixth indication information is determined by at least one of the following:
- the length of the above-mentioned sixth indication information is in,
- M is the number of second frequency domain vectors included in the codebook information.
- the length of the above-mentioned sixth indication information is in,
- M is the number of second frequency domain vectors of each layer included in the codebook information
- v is the number of layers.
- the above-mentioned second frequency domain vector is represented by the seventh indication information and the eighth indication information;
- the length of the seventh indication information is wherein, M 0 is a parameter determined by a higher layer or a parameter determined by a terminal device;
- the length of the eighth indication information is Wherein, v is the number of layers, and M is the number of second frequency domain vectors of each layer included in the codebook information.
- the above-mentioned port selection vector is represented by ninth indication information
- the length of the ninth indication information is determined by at least one of the following: N 1 ; N 2 ; the number of port selection vectors included in the codebook information; the number of layers; wherein, N 1 is the number of antenna ports in the horizontal direction, and N 2 is the vertical direction Number of directional antenna ports.
- the length of the above ninth indication information is or in,
- 2L is the number of port selection vectors included in the codebook information.
- the length of the above ninth indication information is or in,
- 2L is the number of port selection vectors of each layer included in the codebook information.
- v is the number of layers.
- the above-mentioned port selection vector is represented by one ninth indication information for each layer;
- the length of the ninth indication information corresponding to each layer is or in,
- 2L l is the number of port selection vectors of the lth layer included in the codebook information.
- N 1 is the number of antenna ports in the horizontal direction
- N 2 is the number of antenna ports in the vertical direction.
- the above port selection vector is represented by at least two ninth indication information, and each ninth indication information corresponds to a port selection vector of a part of the layers included in the codebook information.
- the above-mentioned port selection vector is represented by the tenth indication information and the eleventh indication information;
- the length of the tenth indication information is or Wherein, N 1 is the number of antenna ports in the horizontal direction, N 2 is the number of antenna ports in the vertical direction, and L 0 is a parameter determined by a high layer or a parameter determined by a terminal device;
- the length of the eleventh indication information is Among them, v is the number of layers, and 2L is the number of port selection vectors of each layer included in the codebook information.
- the above-mentioned port selection vector is represented by the twelfth indication information and the thirteenth indication information;
- the length of the twelfth indication information is or The twelfth indication information is used to indicate the starting position of the port selection vector of each layer included in the codebook information; wherein, N 1 is the number of antenna ports in the horizontal direction, and N 2 is the number of antenna ports in the vertical direction;
- the length of the thirteenth indication information is or Among them, v is the number of layers, L W is the window length of the port selection vector of each layer from the starting position, and 2L is the number of port selection vectors of each layer contained in the codebook information.
- the above codebook information further includes non-zero coefficient position information.
- the above-mentioned non-zero coefficient position information is represented by the fourteenth indication information
- the length of the fourteenth indication information is 2LM, or Among them, L is the number of beams; K 0 is the number of the largest non-zero coefficients; M is the number of the first frequency domain vectors included in the codebook information; N 1 is the number of antenna ports in the horizontal direction; N 2 is the antenna in the vertical direction Number of ports; K nz is the number of non-zero coefficients.
- each layer of the above-mentioned non-zero coefficient position information is represented by one fourteenth indication information
- the length of the fourteenth indication information corresponding to each layer is in,
- M is the number of the first frequency domain vectors of each layer included in the codebook information
- K nz is the number of non-zero coefficients of each layer included in the codebook information.
- the above-mentioned non-zero coefficient position information is represented by at least two fourteenth indication information, and each fourteenth indication information corresponds to the non-zero coefficient position of some layers included in the non-zero coefficient position information.
- the above-mentioned non-zero coefficient position information is represented by the fifteenth indication information and the sixteenth indication information;
- the length of the fifteenth indication information is or Wherein, L is the number of beams, M is the number of the first frequency domain vectors of each layer included in the codebook information, and K nz,0 is a parameter determined by a high layer or a parameter determined by a terminal device;
- the length of the sixteenth indication information is Among them, v is the number of layers, and K nz,i is the number of non-zero coefficients of the i-th layer included in the codebook information.
- the above-mentioned sending module 730 is further configured to send the sum of non-zero coefficients.
- the length of the sum of the above non-zero coefficients is or The indication information of ; wherein, K 0 is the maximum number of non-zero coefficients.
- the above-mentioned sending module 730 is further configured to send the non-zero coefficient priority.
- FIG. 8 is a schematic structural diagram of a network device 800 according to an embodiment of the present application, including:
- the receiving module 810 is configured to receive codebook information of the frequency domain subband set selected by the terminal device, where the codebook information includes at least one of the following:
- the above-mentioned frequency domain vector includes a first frequency domain vector and/or a second frequency domain vector.
- the length of the first frequency domain vector and the number of selectable values are K, where K is the number of selected frequency domain subband sets.
- the selectable values of the above-mentioned first frequency domain vector include:
- a vector of elements in each row or column of a Hadamard matrix of order K is a vector of elements in each row or column of a Hadamard matrix of order K.
- the above-mentioned first frequency domain vector is a discrete Fourier transform DFT vector.
- the above-mentioned first frequency domain vector is represented by first indication information
- the length of the first indication information is determined by at least one of the following items: K; the number of first frequency domain vectors included in the codebook information; the number of non-zero coefficients; and the number of layers.
- the length of the above-mentioned first indication information is or K;
- M is the number of the first frequency domain vectors included in the codebook information
- K nz is the number of non-zero coefficients.
- the length of the above-mentioned first indication information is or in,
- M is the number of the first frequency domain vectors of each layer included in the codebook information
- v is the number of layers.
- the above-mentioned first frequency domain vector is represented by one piece of first indication information for each layer;
- the length of the first indication information corresponding to each layer is in,
- M l is the number of the first frequency domain vectors of the lth layer included in the codebook information.
- the above-mentioned first frequency domain vector is represented by at least two pieces of first indication information, and each of the first indication information corresponds to the first frequency domain vector of a partial layer included in the codebook information.
- the above-mentioned first frequency domain vector is represented by the second indication information and the third indication information;
- the length of the second indication information is wherein, M 0 is a parameter determined by a higher layer or a parameter determined by a terminal device;
- the length of the third indication information is Wherein, v is the number of layers, and M is the number of first frequency domain vectors of each layer included in the codebook information.
- the above-mentioned first frequency domain vector is represented by the fourth indication information and the fifth indication information;
- the length of the fourth indication information is The fourth indication information is used to indicate the starting position of the first frequency domain vector of each layer included in the codebook information;
- the length of the fifth indication information is Among them, v is the number of layers; K W is the window length of the first frequency domain vector of each layer from the starting position, and M is the number of the first frequency domain vector of each layer contained in the codebook information.
- the length of the second frequency domain vector and the number of possible values are N, where N is the number of frequency domain units included in each frequency domain subband set.
- the above-mentioned second frequency domain vector is a vector whose length is N and the value of each element is a fixed value.
- the above-mentioned second frequency domain vector is a discrete Fourier transform DFT vector.
- the above-mentioned second frequency domain vector is represented by the sixth indication information
- the length of the sixth indication information is determined by at least one of the following: N; the number of second frequency domain vectors included in the codebook information; the number of layers; and the layer sequence number.
- the length of the above-mentioned sixth indication information is in,
- M is the number of second frequency domain vectors included in the codebook information.
- the length of the above-mentioned sixth indication information is in,
- M is the number of second frequency domain vectors of each layer included in the codebook information
- v is the number of layers.
- the above-mentioned second frequency domain vector is represented by the seventh indication information and the eighth indication information;
- the length of the seventh indication information is wherein, M 0 is a parameter determined by a higher layer or a parameter determined by a terminal device;
- the length of the eighth indication information is Wherein, v is the number of layers, and M is the number of second frequency domain vectors of each layer included in the codebook information.
- the above-mentioned port selection vector is represented by ninth indication information
- the length of the ninth indication information is determined by at least one of the following: N 1 ; N 2 ; the number of port selection vectors included in the codebook information; the number of layers; wherein, N 1 is the number of antenna ports in the horizontal direction, and N 2 is the vertical direction Number of directional antenna ports.
- the length of the above ninth indication information is or in,
- 2L is the number of port selection vectors included in the codebook information.
- the length of the above ninth indication information is or in,
- 2L is the number of port selection vectors of each layer included in the codebook information.
- v is the number of layers.
- the above-mentioned port selection vector is represented by one ninth indication information for each layer;
- the length of the ninth indication information corresponding to each layer is or in,
- 2L l is the number of port selection vectors of the lth layer included in the codebook information.
- N 1 is the number of antenna ports in the horizontal direction
- N 2 is the number of antenna ports in the vertical direction.
- the above port selection vector is represented by at least two ninth indication information, and each ninth indication information corresponds to a port selection vector of a part of the layers included in the codebook information.
- the above-mentioned port selection vector is represented by the tenth indication information and the eleventh indication information;
- the length of the tenth indication information is or Wherein, N 1 is the number of antenna ports in the horizontal direction, N 2 is the number of antenna ports in the vertical direction, and L 0 is a parameter determined by a high layer or a parameter determined by a terminal device;
- the length of the eleventh indication information is Among them, v is the number of layers, and 2L is the number of port selection vectors of each layer included in the codebook information.
- the above-mentioned port selection vector is represented by the twelfth indication information and the thirteenth indication information;
- the length of the twelfth indication information is or The twelfth indication information is used to indicate the starting position of the port selection vector of each layer included in the codebook information; wherein, N 1 is the number of antenna ports in the horizontal direction, and N 2 is the number of antenna ports in the vertical direction;
- the length of the thirteenth indication information is or Among them, v is the number of layers, L W is the window length of the port selection vector of each layer from the starting position, and 2L is the number of port selection vectors of each layer contained in the codebook information.
- the above codebook information further includes non-zero coefficient position information.
- the above-mentioned non-zero coefficient position information is represented by the fourteenth indication information
- the length of the fourteenth indication information is 2LM, or Among them, L is the number of beams; K 0 is the number of the largest non-zero coefficients; M is the number of the first frequency domain vectors included in the codebook information; N 1 is the number of antenna ports in the horizontal direction; N 2 is the antenna in the vertical direction Number of ports; K nz is the number of non-zero coefficients.
- each layer of the above-mentioned non-zero coefficient position information is represented by one fourteenth indication information
- the length of the fourteenth indication information corresponding to each layer is in,
- M is the number of the first frequency domain vectors of each layer included in the codebook information
- K nz is the number of non-zero coefficients of each layer included in the codebook information.
- the above-mentioned non-zero coefficient position information is represented by at least two fourteenth indication information, and each fourteenth indication information corresponds to the non-zero coefficient position of some layers included in the non-zero coefficient position information.
- the above-mentioned non-zero coefficient position information is represented by the fifteenth indication information and the sixteenth indication information;
- the length of the fifteenth indication information is or Wherein, L is the number of beams, M is the number of the first frequency domain vectors of each layer included in the codebook information, and K nz,0 is a parameter determined by a high layer or a parameter determined by a terminal device;
- the length of the sixteenth indication information is Among them, v is the number of layers, and K nz,i is the number of non-zero coefficients of the i-th layer included in the codebook information.
- the above receiving module 810 is further configured to receive the sum of non-zero coefficients from the terminal device.
- the length of the sum of the above non-zero coefficients is or The indication information of ; wherein, K 0 is the maximum number of non-zero coefficients.
- the foregoing receiving module 810 is further configured to receive the non-zero coefficient priority from the terminal device.
- FIG. 9 is a schematic structural diagram of a communication device 900 according to an embodiment of the present application.
- the communication device 900 shown in FIG. 9 includes a processor 910, and the processor 910 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
- the communication device 900 may further include a memory 920 .
- the processor 910 may call and run a computer program from the memory 920 to implement the methods in the embodiments of the present application.
- the memory 920 may be a separate device independent of the processor 910 , or may be integrated in the processor 910 .
- the communication device 900 may further include a transceiver 930, and the processor 910 may control the transceiver 930 to communicate with other devices, specifically, may send information or data to other devices, or receive other Information or data sent by the device.
- the processor 910 may control the transceiver 930 to communicate with other devices, specifically, may send information or data to other devices, or receive other Information or data sent by the device.
- the transceiver 930 may include a transmitter and a receiver.
- the transceiver 930 may further include antennas, and the number of the antennas may be one or more.
- the communication device 900 may be a terminal device of this embodiment of the present application, and the communication device 900 may implement corresponding processes implemented by the terminal device in each method of the embodiment of the present application, which is not repeated here for brevity.
- the communication device 900 may be a network device in this embodiment of the present application, and the communication device 900 may implement the corresponding processes implemented by the network device in each method in this embodiment of the present application, which is not repeated here for brevity.
- FIG. 10 is a schematic structural diagram of a chip 1000 according to an embodiment of the present application.
- the chip 1000 shown in FIG. 10 includes a processor 1010, and the processor 1010 can call and run a computer program from a memory, so as to implement the method in this embodiment of the present application.
- the chip 1000 may further include a memory 1020 .
- the processor 1010 may call and run a computer program from the memory 1020 to implement the methods in the embodiments of the present application.
- the memory 1020 may be a separate device independent of the processor 1010, or may be integrated in the processor 1010.
- the chip 1000 may further include an input interface 1030 .
- the processor 1010 can control the input interface 1030 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
- the chip 1000 may further include an output interface 1040 .
- the processor 1010 may control the output interface 1040 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
- the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application, which is not repeated here for brevity.
- the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
- the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
- the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an off-the-shelf programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC) or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
- DSP digital signal processor
- FPGA field programmable gate array
- ASIC application specific integrated circuit
- the general-purpose processor mentioned above may be a microprocessor or any conventional processor or the like.
- the memory mentioned above may be either volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
- the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
- Volatile memory may be random access memory (RAM).
- the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
- the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
- software it can be implemented in whole or in part in the form of a computer program product.
- the computer program product includes one or more computer instructions.
- the computer program instructions When the computer program instructions are loaded and executed on a computer, the procedures or functions according to the embodiments of the present application are generated in whole or in part.
- the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
- the computer instructions may be stored on or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be transmitted over a wire from a website site, computer, server or data center (eg coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) means to another website site, computer, server or data center.
- the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc., that includes one or more available media integrated.
- the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), and the like.
- the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
本申请实施例涉及码本发送方法、终端设备和通信设备,其中方法包括,终端设备将多个频域子带划分为至少一个频域子带集合,每个频域子带集合包括多个频域单元;终端设备从至少一个频域子带集合中选择部分或全部频域子带集合,发送选择的频域子带集合的码本信息,码本信息包括以下至少一项:选择的频域子带集合的标识;选择的频域子带集合对应的线性合并系数;端口选择向量;频域向量。本申请实施例可以使不同频域可以承载多个波束,从而降低所需信道状态信息-参考信号(CSI-RS)的开销。
Description
本申请涉及通信领域,并且更具体地,涉及一种码本发送方法、终端设备和网络设备。
第五代移动通信(5G,5th Genetation)新无线(NR,New Radio)系统中,终端设备向网络设备上报用于表征信道状态信息(CSI,Channel state information)的NR type II码本。对于每一层码本,现有NR type II码本在频域(每个子带)独立编码,由于空间量化精度高,导致总的反馈量太大,通过反馈频域-空间联合码本,在保证NR性能的条件下,可以大大节省反馈量。NR type II码本可以表示为:
其中,W
1指示2L个空间波束(beam),
用来确定M个离散傅里叶变换(DFT,Discrete fourier transformation)基向量,
(2L*M)指示任意空间beam、频域DFT向量对的加权系数。
现有NR type II码本的上报技术中,整个频域范围只能承载在一个波束中,因此所需信道状态信息-参考信号(CSI-RS,Channel state information-reference signal)的开销较大。
发明内容
本申请实施例提供一种码本发送方法、终端设备和网络设备,可以实现不同频域承载多个波束,降低所需CSI-RS的开销。
本申请实施例提供一种码本发送方法,包括:
终端设备将多个频域子带划分为至少一个频域子带集合,每个频域子带集合包括多个频域单元;
终端设备从至少一个频域子带集合中选择至少一个频域子带集合,发送选择的频域子带集合的码本信息,码本信息包括以下至少一项:
选择的频域子带集合的标识;选择的频域子带集合对应的线性合并系数(LCC,Linear combination coefficient);端口选择向量;频域向量。
本申请实施例还提供一种码本接收方法,包括:
网络设备接收终端设备选择的频域子带集合的码本信息,该码本信息包括以下至少一项:
选择的频域子带集合的标识;选择的频域子带集合对应的线性合并系数LCC;端口选择向量;频域向量。
本申请实施例还提供一种终端设备,包括:
划分模块,用于将多个频域子带划分为至少一个频域子带集合,每个频域子带集合包括多个频域单元;
选择模块,用于从至少一个频域子带集合中选择部分或全部频域子带集合;
发送模块,用于发送选择的频域子带集合的码本信息,码本信息包括以下至少一项:
选择的频域子带集合的标识;选择的频域子带集合对应的线性合并系数LCC;端口选择向量;频域向量。
本申请实施例还提供一种网络设备,包括:
接收模块,用于接收终端设备选择的频域子带集合的码本信息,码本信息包括以下至少一项:
选择的频域子带集合的标识;选择的频域子带集合对应的线性合并系数LCC;端口选择向量;频域向量。
本申请实施例还提供一种终端设备,包括:处理器和存储器,存储器用于存储计算机程序,处理器调用并运行存储器中存储的计算机程序,执行如上所述的方法。
本申请实施例还提供一种网络设备,包括:处理器和存储器,存储器用于存储计算机程序,处理器调用并运行存储器中存储的计算机程序,执行如上所述的方法。
本申请实施例还提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有芯片的设备执行如上所述的方法。
本申请实施例还提供一种计算机可读存储介质,用于存储计算机程序,其中,计算机程序使得计算机执行如上所述的方法。
本申请实施例还提供一种计算机程序产品,包括计算机程序指令,其中,计算机程序指令使得 计算机执行如上所述的方法。
本申请实施例还提供一种计算机程序,计算机程序使得计算机执行如上所述的方法。
本申请实施例通过终端设备将频域范围划分为至少一个频域子带集合,并从划分的频域子带集合中选择全部或部分,上报选择的频域子带集合的码本信息,使不同频域可以承载多个波束,从而降低所需CSI-RS的开销。
图1是本申请实施例的应用场景的示意图。
图2是根据本申请实施例的一种码本发送方法200的实现流程图。
图3是本申请实施例的一种划分频域子带集合的方式示意图。
图4是本申请实施例的另一种划分频域子带集合的方式示意图。
图5是本申请实施例的另一种划分频域子带集合的方式示意图。
图6是根据本申请实施例的一种码本接收方法600的实现流程图。
图7是根据本申请实施例的终端设备700的结构示意图。
图8是根据本申请实施例的网络设备800的结构示意图。
图9是根据本申请实施例的通信设备900示意性结构图;
图10是根据本申请实施例的芯片1000的示意性结构图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
需要说明的是,本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。同时描述的“第一”、“第二”描述的对象可以相同,也可以不同。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中:终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或 者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一个网络设备110和两个终端设备120,可选地,该无线通信系统100可以包括多个网络设备110,并且每个网络设备110的覆盖范围内可以包括其它数量的终端设备120,本申请实施例对此不做限定。本申请实施例可以应用于一个终端设备120与一个网络设备110,也可以应用于一个终端设备120与另一个终端设备120。
可选地,该无线通信系统100还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
其中,W表示NR type II码本,即频域-空间联合码本。W
1代表2L个空间波束的DFT向量。W
f代表M个频域的DFT基向量。
代表W
f的转置。
代表空间频域对的加权系数,
是一个大小为2L*M的矩阵。
本申请实施例提出一种码本发送方法,图2是根据本申请实施例的一种码本发送方法200的示意性流程图,该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S210:终端设备将多个频域子带划分为至少一个频域子带集合,每个频域子带集合包括多个频域单元;
S220:终端设备从该至少一个频域子带集合中选择部分或全部频域子带集合,发送选择的频域子带集合的码本信息,该码本信息包括以下至少一项:
选择的频域子带集合的标识;选择的频域子带集合对应的线性合并系数(LCC);端口选择向量;频域向量。
一种实现中,上述频域子带可以具体为预编码矩阵指示(PMI,Precoding Matrix Indicator)子带。终端设备将N
3个PMI子带划分为O
3个频域子带集合,每个频域子带集合包括N个PMI子带, 每个PMI子带包括1个频域单元;其中,
N
3为正整数;O
3为正整数;N等于N
3/O
3。
图3是本申请实施例的一种划分频域子带集合的方式示意图。在图3所示的示例中,终端设备将N
3个PMI子带划分为O
3个频域子带集合的方式包括:
将序列号为i+mO
3的PMI子带划分至序列号为i的频域子带集合;其中,
N
3个PMI子带的序列号分别为[0,N
3)范围内的整数;i为[0,O
3)范围内的整数;m为[0,N)范围内的整数。
如图3所示,UE对N
3个PMI子带进行划分,其中N
3=12,各个PMI子带的序列号分别为0、1、…11。UE将12个PMI子带划分为O
3个频域子带集合,其中O
3=4,各个频域子带集合的序列号分别为0、1、2、3。划分后每个频域子带集合中包含N个PMI子带,每个PMI子带包含1个频域单元。如图3中,N=N
3/O
3=3,即每个频域子带集合中包含3个PMI子带,也就是包含3个频域单元。
如图3所示,序列号为i的频域子带集合中包含的PMI子带的序列号为i+mO
3,其中m为[0,N)范围内的整数,即m=0、1、…、N-1。例如,序列号为0的频域子带集合包含序列号为0、4、8的PMI子带,序列号为1的频域子带集合包含序列号为1、5、9的PMI子带,序列号为2的频域子带集合包含序列号为2、6、10的PMI子带,序列号为3的频域子带集合包含序列号为3、7、11的PMI子带。在本实施方式中,一个PMI子带包含一个频域单元、或者可以认为一个PMI子带等同于一个频域单元;因此,一个频域子带集合中包含N个PMI子带、或者可以认为一个频域子带集合中包含N个频域单元。
可选地,上述N
3=N
sbR;其中,
可选地,上述O
3为高层确定的参数或者固定的参数。O
3的取值方式可以包括以下至少一种:
O
3=R;或者,当R=4时,O
3∈{2,4};当R=2时,O
3=2;或者,O
3=2;或者,O
3=4;或者,O
3=R/2
m,其中m为整数;或者,O
3满足mod(N
3,O
3)=0;或者,当N
3<T时,O
3=1;否则(即N
3≥T),O
3>1;或者,当N
1N
2<T或2N
1N
2<T或2L<T或K
0<T时,O
3=1;当N
1N
2≥T或2N
1N
2≥T或2L≥T或K
0≥T时,O
3>1;其中,上述的N
1为水平方向天线端口数,N
2为垂直方向天线端口数,T为预先设置的门限,L为波束数目,K
0为最大非零系数的个数。
另一种实现中,终端设备划分频域子带集合的过程包括:
对N
3个PMI子带进行划分,分别将每个PMI子带划分为O
3个频域单元;
分别从每个PMI子带中抽取序列号相同的频域单元,将序列号相同的频域单元组成一个频域子带集合,得到O
3个频域子带集合,每个频域子带集合包括N个频域单元;其中,
N
3为正整数;O
3为正整数;N等于N
3。
图4是本申请实施例的另一种划分频域子带集合的方式示意图。在图4所示的示例中,终端设备将N
3(图4的示例中N
3=2)个PMI子带进行划分,分别将每个PMI子带划分为2个频域单元,再分别从各个PMI子带中选出一个频域单元,构成一个频域子带集合,以此来构成2个频域子带集合。例如,图4的示例中将序列号为0的PMI子带(简称PMI子带0)划分为2个频域单元,包括频域单元0和频域单元1;同时将序列号为1的PMI子带(简称PMI子带1)划分为2个频域单元,包括频域单元0和频域单元1。之后,抽取PMI子带0的频域单元0和PMI子带1的频域单元0,组成序列号为0的频域子带集合;采用同样的方式,抽取PMI子带0的频域单元1和PMI子带1的频域单元1,组成序列号为1的频域子带集合。
可以看出,这种方式下,N=N3。即如图4所示的示例,每个频域子带集合中包含从分别各个PMI子带中抽取的一个频域单元,因此每个频域子带集合中包含的频域单元数值与PMI子带的数值相同。
另一种实现中,终端设备划分频域子带集合的过程包括:
对N
3个(CQI,channel quality indication)子带进行划分,分别将每个CQI子带划分为O
3个频域单元;
分别从每个CQI子带中抽取序列号相同的频域单元,将序列号相同的频域单元组成一个频域子带集合,得到O
3个频域子带集合,每个频域子带集合包括N个频域单元;其中,N
3为正整数;O
3为正整数;N等于N
3。
图5是本申请实施例的另一种划分频域子带集合的方式示意图。在图5所示的示例中,终端设备将N
3(图5的示例中N
3=2)个CQI子带进行划分,分别将每个CQI子带划分为4个频域单元,再分别从各个PMI子带中选出一个频域单元,构成一个频域子带集合,以此来构成4个频域子带集合。例如,图5的示例中将序列号为0的CQI子带(简称CQI子带0)划分为4个频域单元,包括频域单元0、频域单元1、频域单元2和频域单元3;同时将序列号为1的CQI子带(简称CQI子带1)划分为4个频域单元,包括频域单元0、频域单元1、频域单元2和频域单元3。之后,抽取PMI子带0的频域单元0和PMI子带1的频域单元0,组成序列号为0的频域子带集合;采用同样的方式,抽取PMI子带0的频域单元1和PMI子带1的频域单元1,组成序列号为1的频域子带集合;抽取PMI子带0的频域单元2和PMI子带1的频域单元2,组成序列号为2的频域子带集合;抽取PMI子带0的频域单元3和PMI子带1的频域单元3,组成序列号为3的频域子带集合。
可以看出,这种方式下,N=N3。即如图5所示的示例,每个频域子带集合中包含从分别各个CQI子带中抽取的一个频域单元,因此每个频域子带集合中包含的频域单元数值与CQI子带的数值相同。
以上介绍了UE划分频域子带集合的方式。划分频域子带集合之后,UE可以按照高层参数配置、预定选择方式及动态指示信息中的至少一项,从划分的频域子带集合中选择部分或全部(例如数量为K)频域子带集合,对选择的频域子带集合上报码本信息。可选地,基站通过O
3个比特指示选择K个频域子带集合。
一种实现中,上述码本信息中包括的频域向量包括第一频域向量和/或第二频域向量,例如采用下式表示:
例如,K=2时,K阶单位矩阵如下:
又如,K=4时,K阶单位矩阵如下:
例如,K=2时,K阶Hadamard矩阵如下:
又如,K=4时,K阶Hadamard矩阵如下:
则第一频域向量
的可选取值包括4个,即向量(1,0,0,0)、向量(0,1,0,0)、(0,0,1,0)、向量(0,0,0,1)、向量(1,1,0,0)、(0,0,1,1)、向量(1,0,1,0)、向量(0,1,0,0)和向量(1,1,1,1)中的任意四个。
UE确定
和
并向基站上报确定出的
和
基站据此确定UE上报的码本信息中的W
f。并且,UE从2 N
1 N
2个端口中选择端口,并将对应的端口选择向量上报至基站,其中,N
1为水平方向天线端口数,N
2为垂直方向天线端口数。此外,UE还向基站上报非零系数位置信息、非零系数的和、非零系数优先级等其他的码本信息。
可选地,第一频域向量采用第一指示信息表示;该第一指示信息的长度由以下至少一项确定:K;码本信息中包含的第一频域向量的个数;非零系数个数;层数。
可选地,本申请实施例对于层数v大于1的情况,可以采用每层独立选择的方式,并且所有层采用同一个第一指示信息进行指示。具体地,第一指示信息的长度为
或
其中,M为码本信息中包含的每一层的第一频域向量的个数;v为层数。
可选地,本申请实施例对于层数v大于1的情况,可以采用每层独立选择的方式,并且每一层采用一个独立的第一指示信息进行指示。可选地,第一频域向量针对每一层采用1个第一指示信息表示;
M
l为码本信息中包含的第l层的第一频域向量的个数。
可选地,本申请实施例对于层数v大于1的情况,可以采用每层独立选择的方式,并且将层进行分组,每一个分组中包括的层采用一个第一指示信息进行指示。可选地,第一频域向量采用至少两个第一指示信息表示,每个第一指示信息对应码本信息中包含的部分层的第一频域向量。例如,对于V=4的情况,将层0和层1的第一频域向量采用一个第一指示信息进行表示,将层2和层3的第一频域向量采用另一个第一指示信息进行表示。
可选地,本申请实施例对于层数v大于1的情况,可以采用联合选择的方式,如一个指示信息用于指示第一频域向量的可选范围,另一个指示信息用于指示在该可选范围内选择的第一频域向量。
例如,上述第一频域向量采用第二指示信息和第三指示信息表示;
可选地,本申请实施例对于层数v大于1的情况,可以采用分块选择的方式,如第一频域向量采用第四指示信息和第五指示信息表示;
可选地,第二频域向量采用第六指示信息表示;该第六指示信息的长度由以下至少一项确定:N;码本信息中包含的第二频域向量的个数;层数;层序列号。
M为码本信息中包含的每一层的第二频域向量的个数;
v为层数。
可选地,本申请实施例对于层数v大于1的情况,可以采用每层独立选择的方式,并且每一层采用一个独立的第六指示信息进行指示。
可选地,本申请实施例对于层数v大于1的情况,可以采用组合选择的方式,如一个指示信息用于指示第二频域向量的可选范围,另一个指示信息用于指示在该可选范围内选择的第二频域向量。
例如,上述第二频域向量采用第七指示信息和第八指示信息表示;
对于端口选择向量,本申请实施方式提出以下表示方式:
端口选择向量采用第九指示信息表示;
可选地,第九指示信息的长度由以下至少一项确定:N
1;N
2;码本信息中包含的端口选择向量的个数;层数;其中,N
1为水平方向天线端口数,N
2为垂直方向天线端口数。
可选地,本申请实施例对于层数v大于1的情况,可以采用每层独立选择的方式,并且所有层采用同一个第九指示信息进行指示。具体地,第九指示信息的长度为
或
其中,2L为码本信息中包含的每一层的端口选择向量的个数。v为层数。
可选地,本申请实施例对于层数v大于1的情况,可以采用每层独立选择的方式,并且每一层采用一个独立的第九指示信息进行指示。可选地,端口选择向量针对每一层采用1个第九指示信息表示;
可选地,本申请实施例对于层数v大于1的情况,可以采用每层独立选择的方式,并且将层进行分组,每一个分组中包括的层采用一个第九指示信息进行指示。可选地,端口选择向量采用至少两个第九指示信息表示,每个第九指示信息对应码本信息中包含的部分层的端口选择向量。例如,对于V=4的情况,将层0和层1的端口选择向量采用一个第九指示信息进行表示,将层2和层3 的端口选择向量采用另一个第九指示信息进行表示。
可选地,本申请实施例对于层数v大于1的情况,可以采用组合选择的方式,如一个指示信息用于指示端口选择向量的可选范围,另一个指示信息用于指示在该可选范围内选择的端口选择向量。
例如,上述端口选择向量采用第十指示信息和第十一指示信息表示;
可选地,本申请实施例对于层数v大于1的情况,可以采用分块选择的方式,如端口选择向量采用第十二指示信息和第十三指示信息表示;
另外,上述码本信息还可以包括非零系数位置信息。并且,UE还可以向基站发送非零系数的和、非零系数优先级等信息。
可选地,上述非零系数位置信息采用第十四指示信息表示;该第十四指示信息的长度为
2LM、
或
其中,L为波束数目;K
0为最大非零系数的个数;M为码本信息中包含的第一频域向量的个数;N
1为水平方向天线端口数;N
2为垂直方向天线端口数;K
nz为非零系数个数。
可选地,本申请实施例对于层数v大于1的情况,可以采用每层独立选择的方式,并且每一层采用一个独立的第十四指示信息进行指示。可选地,非零系数位置信息的每一层采用1个第十四指示信息表示;
可选地,本申请实施例对于层数v大于1的情况,可以采用每层独立选择的方式,并且将层进行分组,每一个分组中包括的层采用一个第十四指示信息进行指示。可选地,非零系数位置信息采用至少两个第十四指示信息表示,每个第十四指示信息对应非零系数位置信息中包含的部分层的非零系数位置。例如,对于V=4的情况,将层0和层1的非零系数位置采用一个第十四指示信息进行表示,将层2和层3的非零系数位置采用另一个第十四指示信息进行表示。
可选地,本申请实施例对于层数v大于1的情况,可以采用联合选择的方式,如一个指示信息用于指示非零系数位置的可选范围,另一个指示信息用于指示在该可选范围内选择的非零系数位置。
例如,上述非零系数位置信息采用第十五指示信息和第十六指示信息表示;
一种实现中,UE从2N
1N
2个端口中选择2L个端口,则采用长度为
或
(单位为bit)的指示信息上报端口选择向量;UE从N个
中选择M个
则采用长度为
的指示信息上报
UE从K个
中选择一个
则采用长度为
或K的指示信息上报
一种实现中,UE从2N
1N
2个端口中选择2L个端口,则采用长度为
或
(单位为bit)的指示信息上报端口选择向量;UE从K个
中选择M个
则采用长度为
(或Kbits)的指示信息上报
UE从2LM个非零系数中选择K
nz个非零系数,则采用长度为
(或2LMbits)的指示信息上报非零系数的位置。
一种实现中,UE从2N
1N
2个端口中选择2L个端口,则采用长度为
或
(单位为bit)的指示信息上报端口选择向量;UE从2LK个非零系数中选择K
nz个非零系数,则采用长度为
(或2LKbits)的指示信息上报非零系数的位置。
在上述多种实现中,K
nz表示非零系数的个数,其取值不能超过最大非零系数个数或所有层的非零系数个数之和。
一种实现中,UE对每层端口独立选择,每层从2N
1N
2个端口中选择2L个端口,则针对所有层可以采用长度为
或
的指示信息上报端口选择向量。或者,UE对每层都选择相同的端口,针对所有层可以采用长度为
或
的指示信息上报端口选择向量。
一种实现中,针对层数v=4的情况,对序列号为0和1的层采用一个指示信息指示UE选择的端口,对序列号为2和3的层采用另一个指示信息指示UE选择的端口。
例如,l=0,1时,采用长度为
或
的指示信息指示UE在第0层和第1层中选择的端口;l=2,3时,采用长度为
或
的指示信息指示UE在第2层和第3层中选择的端口;其中,L
1表示在第0层和第1层中选择的端口个数,L
2表示在 第2层和第3层中选择的端口个数,L
1和L
2可以相同或不同。
一种实现中,针对每一层采用一个指示信息指示UE选择的端口。例如,对于层l,采用长度为
或
的指示信息指示UE在第l层中选择的端口。其中,L
1表示在第l层中选择的端口个数,在各层选择的端口个数可以相同或不同。
与端口选择向量和频域资源指示类似,非零系数的位置也可以是针对不同层进行指示的,例如,对于v=4的情况,对第0层和第1层采用一个指示信息指示非零系数的位置,对第2层和第3层采用另一个指示信息指示非零系数的位置。
一种实现中,UE对端口进行联合选择,采用两个指示信息指示UE选择的端口,其中一个指示信息指示从每一层端口中选择的端口(个数记为L
0),另一个指示信息指示各层从该L
0个端口中选择的端口。例如,采用长度为
或
的指示信息指示从每一层端口选择的L
0个端口,采用长度为
的指示信息指示每层从L
0个端口中最终选择的端口。其中,L
0可以为高层确定的参数或UE上报的参数;如果L
0为UE上报的参数,则可以在CSI上行控制信息(UCI,Uplink control information)第一部分(part1)中上报。
一种实现中,UE对
进行联合选择,采用两个指示信息指示UE选择的
其中一个指示信息指示从每一层
中选择的
(个数记为M
0),另一个指示信息指示各层从该M
0个
中选择的
例如,采用长度为
的指示信息指示从每一层
选择的M
0个
采用长度为
的指示信息指示每层从M
0个
中最终选择的
其中,M
0可以为高层确定的参数或UE上报的参数;如果M
0为UE上报的参数,则可以在CSI UCI part1中上报。
一种实现中,UE对
进行联合选择,采用两个指示信息指示UE选择的
其中一个指示信息指示从每一层
中选择的
(个数记为M
0),另一个指示信息指示各层从该M
0个
中选择的
例如,采用长度为
的指示信息指示从每一层
选择的M
0个
采用 长度为
的指示信息指示每层从M
0个
中最终选择的
其中,M
0可以为高层确定的参数或UE上报的参数;如果M
0为UE上报的参数,则可以在CSI UCI part1中上报。
一种实现中,UE对非零系数进行联合选择,采用两个指示信息指示UE选择的非零系数,其中一个指示信息指示从每一层非零系数中选择的非零系数(个数记为K
nz,0),另一个指示信息指示各层从该K
nz,0个非零系数中选择的非零系数。例如,采用长度为
或
或
或
的指示信息指示从每一层非零系数选择的K
nz,0个非零系数,每层采用长度为
的指示信息指示该层从K
nz,0个非零系数中最终选择的非零系数。其中,K
nz,0由高层参数确定。
在本申请实施方式中,对于层数v>1的情况,可以采用分块指示的方式,例如UE针对每一层的端口、
或非零系数的位置进行分块指示,即指示端口、
或非零系数的起始位置、以及在该起始位置确定的范围内确定的端口、
或非零系数。具体地:
一种实现中,UE采用长度为log
2(2N
1N
2)或log
2(N
1N
2)的指示信息指示端口的起始位置,并通过长度为
或
的指示信息来确定在该起始位置确定的范围内UE确定的端口。其中,长度为
的指示信息可以对应于极化间独立,且从2N
1N
2个端口中选择Lw个端口的情况;长度为
的指示信息可以对应于极化间独立,且从N
1N
2个端口中选择Lw个端口的情况;长度为
的指示信息可以对应于极化间相同的情况。
除了上报上述实施方式中介绍的信息之外,UE还可以在CSI UCI part1中上报所有层的非零系数之和,所有层的非零系数之和可以为0。可选地,对于秩(rank)=1的情况,采用长度为log
2(K
0+1)的指示信息进行上报;对于rank>1的情况,采用长度为log
2(2K
0+1)的指示信息进行上报。其中,K
0表示最大非零系数的个数。
可选地,在上报的非零系数之和为0时,UE不上报CSI组(group)0/group1/group2 part2。
可选地,UE上报的非零系数之和的指示信息可以是针对任意CQI的。
进一步地,UE还可以上报最强系数指示信息,例如:
当v=1时,通过长度为log
2(K
nz)的指示信息上报最强系数指示。
进一步地,UE还可以上报非零系数优先级,包括:Pri(l,i,f)=2*L*v*f+v*i+l;其中,Pri(l,i,f)表示上报的非零系数优先级;
l、i、f分别表示层的序号,频域向量的序号,端口的序号;l=1,2,…,v;i=0,1,…,2L-1;f=0,1,…,Mv-1;Mv是对应不同层数的参数。
或者,Pri(l,i,f)=2*Mv*v*i+v*f+l;其中,Pri(l,i,f)表示上报的非零系数优先级;l、i、f分别表示层的序号,频域向量的序号,端口的序号;l=1,2,…,v;i=0,1,…,2L-1;f=0,1,…,Mv-1;Mv是对应不同层数的参数。
由上述实施方式可见,本申请实施方式由终端设备将频域范围划分为至少一个频域子带集合,并从划分的频域子带集合中选择全部或部分,上报选择的频域子带集合的码本信息,从而使不同频域可以承载多个波束,以降低所需CSI-RS的开销。在考虑上下行信道互异条件下,本申请实施方式通过从上行信道SRS估计空间域与时延(DFT转换域)的特性,进一步压缩码本开销,提高反馈效率,提高系统鲁棒性。
本申请实施方式还提出一种码本接收方法,图6是根据本申请实施例的一种码本接收方法600的示意性流程图,该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S610:网络设备接收终端设备选择的频域子带集合的码本信息,该码本信息包括以下至少一项:
选择的频域子带集合的标识;选择的频域子带集合对应的线性合并系数LCC;端口选择向量;频域向量。
可选地,上述频域向量包括第一频域向量和/或第二频域向量。
可选地,上述第一频域向量的长度及可选取值的个数为K,K为选择的频域子带集合的个数。
可选地,上述第一频域向量的可选取值包括:
K阶单位矩阵的每一行或每一列元素构成的向量;或者,
K阶哈达玛矩阵的每一行或每一列元素构成的向量。
可选地,上述第一频域向量为离散傅里叶变换DFT向量。
可选地,上述第一频域向量采用第一指示信息表示;
第一指示信息的长度由以下至少一项确定:K;码本信息中包含的第一频域向量的个数;非零系数个数;层数。
可选地,上述第一频域向量针对每一层采用1个第一指示信息表示;
可选地,上述第一频域向量采用至少两个第一指示信息表示,每个第一指示信息对应码本信息中包含的部分层的第一频域向量。
可选地,上述第一频域向量采用第二指示信息和第三指示信息表示;
可选地,上述第一频域向量采用第四指示信息和第五指示信息表示;
可选地,上述第二频域向量的长度及可能取值的个数为N,N为每个频域子带集合包含的频域单元的个数。
可选地,上述第二频域向量为长度为N并且每个元素的取值为固定值的向量。
可选地,上述第二频域向量为离散傅里叶变换DFT向量。
可选地,上述第二频域向量采用第六指示信息表示;
第六指示信息的长度由以下至少一项确定:N;码本信息中包含的第二频域向量的个数;层数;层序列号。
M为码本信息中包含的第二频域向量的个数。
可选地,上述第二频域向量采用第七指示信息和第八指示信息表示;
可选地,上述端口选择向量采用第九指示信息表示;第九指示信息的长度由以下至少一项确定:N
1;N
2;码本信息中包含的端口选择向量的个数;层数;其中,N
1为水平方向天线端口数,N
2为垂直方向天线端口数。
2L为码本信息中包含的端口选择向量的个数。
可选地,上述端口选择向量针对每一层采用1个第九指示信息表示;
可选地,上述端口选择向量采用至少两个第九指示信息表示,每个第九指示信息对应码本信息中包含的部分层的端口选择向量。
可选地,上述端口选择向量采用第十指示信息和第十一指示信息表示;
可选地,上述端口选择向量采用第十二指示信息和第十三指示信息表示;
可选地,上述码本信息还包括非零系数位置信息。
可选地,上述非零系数位置信息采用第十四指示信息表示;
可选地,上述非零系数位置信息的每一层采用1个第十四指示信息表示;
可选地,上述非零系数位置信息采用至少两个第十四指示信息表示,每个第十四指示信息对应非零系数位置信息中包含的部分层的非零系数位置。
可选地,上述非零系数位置信息采用第十五指示信息和第十六指示信息表示;
可选地,上述述终端设备接收非零系数的和。
可选地,上述方法还包括:从终端设备接收非零系数优先级。
本申请实施例还提出一种终端设备,图7是根据本申请实施例的终端设备700结构示意图,包括:
划分模块710,应用将多个频域子带划分为至少一个频域子带集合,每个频域子带集合包括多个频域单元;
选择模块720,用于从该至少一个频域子带集合中选择部分或全部频域子带集合;
发送模块730,用于发送选择的频域子带集合的码本信息,该码本信息包括以下至少一项:选择的频域子带集合的标识;选择的频域子带集合对应的线性合并系数LCC;端口选择向量;频域向量。
可选地,上述划分模块710用于:将N
3个PMI子带划分为O
3个频域子带集合,每个频域子带集合包括N个PMI子带,每个PMI子带包括1个频域单元;其中,N
3为正整数;O
3为正整数;N等于N
3/O
3。
可选地,上述划分模块710用于:将序列号为i+mO
3的PMI子带划分至序列号为i的频域子带集合;其中,N
3个PMI子带的序列号分别为[0,N
3)范围内的整数;i为[0,O
3)范围内的整数;m为[0,N)范围内的整数。
可选地,上述划分模块710用于:对N
3个PMI子带进行划分,分别将每个PMI子带划分为O
3个频域单元;分别从每个PMI子带中抽取序列号相同的频域单元,将序列号相同的频域单元组成 一个频域子带集合,得到O
3个频域子带集合,每个频域子带集合包括N个频域单元;其中,N
3为正整数;O
3为正整数;N等于N
3。
可选地,上述划分模块710用于:
对N
3个CQI子带进行划分,分别将每个CQI子带划分为O
3个频域单元;分别从每个CQI子带中抽取序列号相同的频域单元,将序列号相同的频域单元组成一个频域子带集合,得到O
3个频域子带集合,每个频域子带集合包括N
3个频域单元;其中,N
3为正整数;O
3为正整数;N等于N
3。
可选地,上述终端设备,其中,
N
3=N
sbR,
R为高层确定的参数;
N
sb为CQI子带的个数;
n为整数。
可选地,上述O
3为高层确定的参数或者固定的参数。
可选地,上述O
3的取值方式为以下至少一种:
O
3=R;
当R=4时,O
3∈{2,4};当R=2时,O
3=2;
O
3=2;
O
3=4;
O
3=R/2
m,其中m为整数;
O
3满足mod(N
3,O
3)=0;
当N
3<T时,O
3=1;否则,O
3>1;
当N
1N
2<T或2N
1N
2<T或2L<T或K
0<T时,O
3=1;当N
1N
2≥T或2N
1N
2≥T或2L≥T或K
0≥T时,O
3>1;其中,N
1为水平方向天线端口数,N
2为垂直方向天线端口数,T为预先设置的门限,L为波束数目,K
0为最大非零系数的个数。
可选地,上述选择模块720用于:
设备按照高层参数配置、预定选择方式及动态指示信息中的至少一项,从至少一个频域子带集合中选择K个频域子带集合,K为正整数。
可选地,上述频域向量包括第一频域向量和/或第二频域向量。
可选地,上述第一频域向量的长度及可选取值的个数为K,K为选择的频域子带集合的个数。
可选地,上述第一频域向量的可选取值包括:
K阶单位矩阵的每一行或每一列元素构成的向量;或者,
K阶哈达玛矩阵的每一行或每一列元素构成的向量。
可选地,上述第一频域向量为离散傅里叶变换DFT向量。
可选地,上述第一频域向量采用第一指示信息表示;
第一指示信息的长度由以下至少一项确定:K;码本信息中包含的第一频域向量的个数;非零系数个数;层数。
M为码本信息中包含的第一频域向量的个数;
K
nz为非零系数个数。
可选地,上述第一频域向量针对每一层采用1个第一指示信息表示;
可选地,上述第一频域向量采用至少两个第一指示信息表示,每个第一指示信息对应码本信息中包含的部分层的第一频域向量。
可选地,上述第一频域向量采用第二指示信息和第三指示信息表示;
可选地,上述第一频域向量采用第四指示信息和第五指示信息表示;
可选地,上述第二频域向量的长度及可能取值的个数为N。
可选地,上述第二频域向量为长度为N并且每个元素的取值为固定值的向量。
可选地,上述第二频域向量为离散傅里叶变换DFT向量。
可选地,上述第二频域向量采用第六指示信息表示;
第六指示信息的长度由以下至少一项确定:
N;
码本信息中包含的第二频域向量的个数;
层数;
层序列号。
M为码本信息中包含的第二频域向量的个数。
M为码本信息中包含的每一层的第二频域向量的个数;
v为层数。
可选地,上述第二频域向量采用第七指示信息和第八指示信息表示;
可选地,上述端口选择向量采用第九指示信息表示;
第九指示信息的长度由以下至少一项确定:N
1;N
2;码本信息中包含的端口选择向量的个数;层数;其中,N
1为水平方向天线端口数,N
2为垂直方向天线端口数。
2L为码本信息中包含的端口选择向量的个数。
2L为码本信息中包含的每一层的端口选择向量的个数。
v为层数。
可选地,上述端口选择向量针对每一层采用1个第九指示信息表示;
2L
l为码本信息中包含的第l层的端口选择向量的个数。
N
1为水平方向天线端口数;
N
2为垂直方向天线端口数。
可选地,上述端口选择向量采用至少两个第九指示信息表示,每个第九指示信息对应码本信息中包含的部分层的端口选择向量。
可选地,上述端口选择向量采用第十指示信息和第十一指示信息表示;
可选地,上述端口选择向量采用第十二指示信息和第十三指示信息表示;
可选地,上述码本信息还包括非零系数位置信息。
可选地,上述非零系数位置信息采用第十四指示信息表示;
第十四指示信息的长度为
2LM、
或
其中,L为波束数目;K
0为最大非零系数的个数;M为码本信息中包含的第一频域向量的个数;N
1为水平方向天线端口数;N
2为垂直方向天线端口数;K
nz为非零系数个数。
可选地,上述非零系数位置信息的每一层采用1个第十四指示信息表示;
M为码本信息中包含的每一层的第一频域向量的个数;
K
nz为码本信息中包含的每一层的非零系数的个数。
可选地,上述非零系数位置信息采用至少两个第十四指示信息表示,每个第十四指示信息对应非零系数位置信息中包含的部分层的非零系数位置。
可选地,上述非零系数位置信息采用第十五指示信息和第十六指示信息表示;
可选地,上述发送模块730还用于,发送非零系数的和。
可选地,上述发送模块730还用于,发送非零系数优先级。
应理解,根据本申请实施例的终端设备中的模块的上述及其他操作和/或功能分别为了实现图2的方法200中的终端设备的相应流程,为了简洁,在此不再赘述。
本申请实施例还提出一种网络设备,图8是根据本申请实施例的网络设备800结构示意图,包括:
接收模块810,用于接收终端设备选择的频域子带集合的码本信息,该码本信息包括以下至少一项:
选择的频域子带集合的标识;选择的频域子带集合对应的线性合并系数LCC;端口选择向量;频域向量。
可选地,上述频域向量包括第一频域向量和/或第二频域向量。
可选地,上述第一频域向量的长度及可选取值的个数为K,K为选择的频域子带集合的个数。
可选地,上述第一频域向量的可选取值包括:
K阶单位矩阵的每一行或每一列元素构成的向量;或者,
K阶哈达玛矩阵的每一行或每一列元素构成的向量。
可选地,上述第一频域向量为离散傅里叶变换DFT向量。
可选地,上述述第一频域向量采用第一指示信息表示;
第一指示信息的长度由以下至少一项确定:K;码本信息中包含的第一频域向量的个数;非零系数个数;层数。
M为码本信息中包含的第一频域向量的个数;
K
nz为非零系数个数。
M为码本信息中包含的每一层的第一频域向量的个数;
v为层数。
可选地,上述第一频域向量针对每一层采用1个第一指示信息表示;
M
l为码本信息中包含的第l层的第一频域向量的个数。
可选地,上述第一频域向量采用至少两个第一指示信息表示,每个第一指示信息对应码本信息中包含的部分层的第一频域向量。
可选地,上述第一频域向量采用第二指示信息和第三指示信息表示;
可选地,上述第一频域向量采用第四指示信息和第五指示信息表示;
可选地,上述第二频域向量的长度及可能取值的个数为N,N为每个频域子带集合包含的频域单元的个数。
可选地,上述第二频域向量为长度为N并且每个元素的取值为固定值的向量。
可选地,上述第二频域向量为离散傅里叶变换DFT向量。
可选地,上述第二频域向量采用第六指示信息表示;
第六指示信息的长度由以下至少一项确定:N;码本信息中包含的第二频域向量的个数;层数;层序列号。
M为码本信息中包含的第二频域向量的个数。
M为码本信息中包含的每一层的第二频域向量的个数;
v为层数。
可选地,上述第二频域向量采用第七指示信息和第八指示信息表示;
可选地,上述端口选择向量采用第九指示信息表示;
第九指示信息的长度由以下至少一项确定:N
1;N
2;码本信息中包含的端口选择向量的个数;层数;其中,N
1为水平方向天线端口数,N
2为垂直方向天线端口数。
2L为码本信息中包含的端口选择向量的个数。
2L为码本信息中包含的每一层的端口选择向量的个数。
v为层数。
可选地,上述端口选择向量针对每一层采用1个第九指示信息表示;
2L
l为码本信息中包含的第l层的端口选择向量的个数。
N
1为水平方向天线端口数;
N
2为垂直方向天线端口数。
可选地,上述端口选择向量采用至少两个第九指示信息表示,每个第九指示信息对应码本信息中包含的部分层的端口选择向量。
可选地,上述端口选择向量采用第十指示信息和第十一指示信息表示;
可选地,上述端口选择向量采用第十二指示信息和第十三指示信息表示;
可选地,上述码本信息还包括非零系数位置信息。
可选地,上述非零系数位置信息采用第十四指示信息表示;
第十四指示信息的长度为
2LM、
或
其中,L为波束数目;K
0为最大非零系数的个数;M为码本信息中包含的第一频域向量的个数;N
1为水平方向天线端口数;N
2为垂直方向天线端口数;K
nz为非零系数个数。
可选地,上述非零系数位置信息的每一层采用1个第十四指示信息表示;
M为码本信息中包含的每一层的第一频域向量的个数;
K
nz为码本信息中包含的每一层的非零系数的个数。
可选地,上述非零系数位置信息采用至少两个第十四指示信息表示,每个第十四指示信息对应非零系数位置信息中包含的部分层的非零系数位置。
可选地,上述非零系数位置信息采用第十五指示信息和第十六指示信息表示;
可选地,上述接收模块810还用于,从终端设备接收非零系数的和。
可选地,上述接收模块810还用于,从终端设备接收非零系数优先级。
应理解,根据本申请实施例的网络设备中的模块的上述及其他操作和/或功能分别为了实现图6的方法600中的网络设备的相应流程,为了简洁,在此不再赘述。
图9是根据本申请实施例的通信设备900示意性结构图。图9所示的通信设备900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,通信设备900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,如图9所示,通信设备900还可以包括收发器930,处理器910可以控制该收发器930与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器930可以包括发射机和接收机。收发器930还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备900可为本申请实施例的终端设备,并且该通信设备900可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备900可为本申请实施例的网络设备,并且该通信设备900可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
图10是根据本申请实施例的芯片1000的示意性结构图。图10所示的芯片1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,芯片1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,该芯片1000还可以包括输入接口1030。其中,处理器1010可以控制该输入接口1030与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1000还可以包括输出接口1040。其中,处理器1010可以控制该输出接口1040与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设 备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。
Claims (166)
- 一种码本发送方法,包括:终端设备将多个频域子带划分为至少一个频域子带集合,每个所述频域子带集合包括多个频域单元;终端设备从所述至少一个频域子带集合中选择部分或全部频域子带集合,发送选择的频域子带集合的码本信息,所述码本信息包括以下至少一项:所述选择的频域子带集合的标识;所述选择的频域子带集合对应的线性合并系数LCC;端口选择向量;频域向量。
- 根据权利要求1所述的方法,其中,所述终端设备将多个频域子带划分为至少一个频域子带集合,每个所述频域子带集合包括多个频域单元包括:终端设备将N 3个PMI子带划分为O 3个频域子带集合,每个所述频域子带集合包括N个PMI子带,每个所述PMI子带包括1个所述频域单元;其中,所述N 3为正整数;所述O 3为正整数;所述N等于N 3/O 3。
- 根据权利要求2所述的方法,其中,所述终端设备将N 3个PMI子带划分为O 3个频域子带集合,包括:将序列号为i+mO 3的PMI子带划分至序列号为i的频域子带集合;其中,所述N 3个PMI子带的序列号分别为[0,N 3)范围内的整数;所述i为[0,O 3)范围内的整数;所述m为[0,N)范围内的整数。
- 根据权利要求1所述的方法,其中,所述终端设备将多个频域子带划分为至少一个频域子带集合,每个所述频域子带集合包括多个频域单元包括:终端设备对N 3个PMI子带进行划分,分别将每个所述PMI子带划分为O 3个频域单元;分别从每个所述PMI子带中抽取序列号相同的频域单元,将序列号相同的频域单元组成一个频域子带集合,得到O 3个频域子带集合,每个所述频域子带集合包括N个频域单元;其中,所述N 3为正整数;所述O 3为正整数;所述N等于N 3。
- 根据权利要求1所述的方法,其中,所述终端设备将多个频域子带划分为至少一个频域子带集合,每个所述频域子带集合包括多个频域单元包括:终端设备对N 3个CQI子带进行划分,分别将每个CQI子带划分为O 3个频域单元;分别从每个所述CQI子带中抽取序列号相同的频域单元,将序列号相同的频域单元组成一个频域子带集合,得到O 3个频域子带集合,每个所述频域子带集合包括N 3个频域单元;其中,所述N 3为正整数;所述O 3为正整数;所述N等于N 3。
- 根据权利要求6所述的方法,其中,所述O 3为高层确定的参数或者固定的参数。
- 根据权利要求6或7所述的方法,其中,所述O 3的取值方式为以下至少一种:O 3=R;当R=4时,所述O 3∈{2,4};当R=2时,所述O 3=2;O 3=2;O 3=4;O 3=R/2 m,其中m为整数;所述O 3满足mod(N 3,O 3)=0;当N 3<T时,O 3=1;否则,O 3>1;当N 1N 2<T或2N 1N 2<T或2L<T或K 0<T时,O 3=1;当N 1N 2≥T或2N 1N 2≥T或2L≥T或K 0≥T时,O 3>1;其中,所述N 1为水平方向天线端口数,所述N 2为垂直方向天线端口数,所述T为预先设置的门限,所述L为波束数目,所述K 0为最大非零系数的个数。
- 根据权利要求1至10任一所述的方法,其中,所述终端设备从所述至少一个频域子带集合中选择部分或全部频域子带集合,包括:所述终端设备按照高层参数配置、预定选择方式及动态指示信息中的至少一项,从所述至少一个频域子带集合中选择K个频域子带集合,所述K为正整数。
- 根据权利要求2至11任一所述的方法,其中,所述频域向量包括第一频域向量和/或第二频域向量。
- 根据权利要求12所述的方法,其中,所述第一频域向量的长度及可选取值的个数为K,所述K为所述选择的频域子带集合的个数。
- 根据权利要求13所述的方法,其中,所述第一频域向量的可选取值包括:K阶单位矩阵的每一行或每一列元素构成的向量;或者,K阶哈达玛矩阵的每一行或每一列元素构成的向量。
- 根据权利要求13所述的方法,其中,所述第一频域向量为离散傅里叶变换DFT向量。
- 根据权利要求13至15任一所述的方法,其中,所述第一频域向量采用第一指示信息表示;所述第一指示信息的长度由以下至少一项确定:所述K;所述码本信息中包含的第一频域向量的个数;非零系数个数;层数。
- 根据权利要求13至15任一所述的方法,其中,所述第一频域向量采用至少两个第一指示信息表示,每个所述第一指示信息对应所述码本信息中包含的部分层的第一频域向量。
- 根据权利要求12所述的方法,其中,所述第二频域向量的长度及可能取值的个数为所述N。
- 根据权利要求23所述的方法,其中,所述第二频域向量为长度为N并且每个元素的取值为固定值的向量。
- 根据权利要求23所述的方法,其中,所述第二频域向量为离散傅里叶变换DFT向量。
- 根据权利要求23或25所述的方法,其中,所述第二频域向量采用第六指示信息表示;所述第六指示信息的长度由以下至少一项确定:所述N;所述码本信息中包含的第二频域向量的个数;层数;层序列号。
- 根据权利要求1至29任一所述的方法,其中,所述端口选择向量采用第九指示信息表示;所述第九指示信息的长度由以下至少一项确定:N 1;N 2;所述码本信息中包含的端口选择向量的个数;层数;其中,所述N 1为水平方向天线端口数,所述N 2为垂直方向天线端口数。
- 根据权利要求1至29任一所述的方法,其中,所述端口选择向量采用至少两个第九指示信息表示,每个所述第九指示信息对应所述码本信息中包含的部分层的端口选择向量。
- 根据权利要求12至36任一所述的方法,其中,所述码本信息还包括非零系数位置信息。
- 根据权利要求37所述的方法,其中,所述非零系数位置信息采用至少两个第十四指示信息表示,每个所述第十四指示信息对应所述非零系数位置信息中包含的部分层的非零系数位置。
- 根据权利要求1至41任一所述的方法,还包括:所述终端设备发送非零系数的和。
- 根据权利要求1至43任一所述的方法,还包括:所述终端设备发送非零系数优先级。
- 一种码本接收方法,包括:网络设备接收终端设备选择的频域子带集合的码本信息,所述码本信息包括以下至少一项:所述选择的频域子带集合的标识;所述选择的频域子带集合对应的线性合并系数LCC;端口选择向量;频域向量。
- 根据权利要求45所述的方法,其中,所述频域向量包括第一频域向量和/或第二频域向量。
- 根据权利要求46所述的方法,其中,所述第一频域向量的长度及可选取值的个数为K,所述K为所述选择的频域子带集合的个数。
- 根据权利要求47所述的方法,其中,所述第一频域向量的可选取值包括:K阶单位矩阵的每一行或每一列元素构成的向量;或者,K阶哈达玛矩阵的每一行或每一列元素构成的向量。
- 根据权利要求46所述的方法,其中,所述第一频域向量为离散傅里叶变换DFT向量。
- 根据权利要求46至49任一所述的方法,其中,所述第一频域向量采用第一指示信息表示;所述第一指示信息的长度由以下至少一项确定:所述K;所述码本信息中包含的第一频域向量的个数;非零系数个数;层数。
- 根据权利要求46至49任一所述的方法,其中,所述第一频域向量采用至少两个第一指示信息表示,每个所述第一指示信息对应所述码本信息中包含的部分层的第一频域向量。
- 根据权利要求46所述的方法,其中,所述第二频域向量的长度及可能取值的个数为N,所述N为每个所述频域子带集合包含的频域单元的个数。
- 根据权利要求57所述的方法,其中,所述第二频域向量为长度为N并且每个元素的取值为固定值的向量。
- 根据权利要求57所述的方法,其中,所述第二频域向量为离散傅里叶变换DFT向量。
- 根据权利要求57或59所述的方法,其中,所述第二频域向量采用第六指示信息表示;所述第六指示信息的长度由以下至少一项确定:所述N;所述码本信息中包含的第二频域向量的个数;层数;层序列号。
- 根据权利要求45至63任一所述的方法,其中,所述端口选择向量采用第九指示信息表示;所述第九指示信息的长度由以下至少一项确定:N 1;N 2;所述码本信息中包含的端口选择向量的个数;层数;其中,所述N 1为水平方向天线端口数,所述N 2为垂直方向天线端口数。
- 根据权利要求45至63任一所述的方法,其中,所述端口选择向量采用至少两个第九指示信息表示,每个所述第九指示信息对应所述码本信息中包含的部分层的端口选择向量。
- 根据权利要求46至70任一所述的方法,其中,所述码本信息还包括非零系数位置信息。
- 根据权利要求71所述的方法,其中,所述非零系数位置信息采用至少两个第十四指示信息表示,每个所述第十四指示信息对应所述非零系数位置信息中包含的部分层的非零系数位置。
- 根据权利要求46至75任一所述的方法,还包括:从所述终端设备接收非零系数的和。
- 根据权利要求46至77任一所述的方法,还包括:从所述终端设备接收非零系数优先级。
- 一种终端设备,包括:划分模块,用于将多个频域子带划分为至少一个频域子带集合,每个所述频域子带集合包括多个频域单元;选择模块,用于从所述至少一个频域子带集合中选择部分或全部频域子带集合;发送模块,用于发送选择的频域子带集合的码本信息,所述码本信息包括以下至少一项:所述选择的频域子带集合的标识;所述选择的频域子带集合对应的线性合并系数LCC;端口选择向量;频域向量。
- 根据权利要求79所述的终端设备,其中,所述划分模块用于:将N 3个PMI子带划分为O 3个频域子带集合,每个所述频域子带集合包括N个PMI子带,每个所述PMI子带包括1个所述频域单元;其中,所述N 3为正整数;所述O 3为正整数;所述N等于N 3/O 3。
- 根据权利要求80所述的终端设备,其中,所述划分模块用于:将序列号为i+mO 3的PMI子带划分至序列号为i的频域子带集合;其中,所述N 3个PMI子带的序列号分别为[0,N 3)范围内的整数;所述i为[0,O 3)范围内的整数;所述m为[0,N)范围内的整数。
- 根据权利要求79所述的终端设备,其中,所述划分模块用于:对N 3个PMI子带进行划分,分别将每个所述PMI子带划分为O 3个频域单元;分别从每个所述PMI子带中抽取序列号相同的频域单元,将序列号相同的频域单元组成一个频域子带集合,得到O 3个频域子带集合,每个所述频域子带集合包括N个频域单元;其中,所述N 3为正整数;所述O 3为正整数;所述N等于N 3。
- 根据权利要求79所述的终端设备,其中,所述划分模块用于:对N 3个CQI子带进行划分,分别将每个CQI子带划分为O 3个频域单元;分别从每个所述CQI子带中抽取序列号相同的频域单元,将序列号相同的频域单元组成一个频域子带集合,得到O 3个频域子带集合,每个所述频域子带集合包括N 3个频域单元;其中,所述N 3为正整数;所述O 3为正整数;所述N等于N 3。
- 根据权利要求84所述的终端设备,其中,所述O 3为高层确定的参数或者固定的参数。
- 根据权利要求84或85所述的终端设备,其中,所述O 3的取值方式为以下至少一种:O 3=R;当R=4时,所述O 3∈{2,4};当R=2时,所述O 3=2;O 3=2;O 3=4;O 3=R/2 m,其中m为整数;所述O 3满足mod(N 3,O 3)=0;当N 3<T时,O 3=1;否则,O 3>1;当N 1N 2<T或2N 1N 2<T或2L<T或K 0<T时,O 3=1;当N 1N 2≥T或2N 1N 2≥T或2L≥T或K 0≥T时,O 3>1;其中,所述N 1为水平方向天线端口数,所述N 2 为垂直方向天线端口数,所述T为预先设置的门限,所述L为波束数目,所述K 0为最大非零系数的个数。
- 根据权利要求79至88任一所述的终端设备,其中,所述选择模块用于:设备按照高层参数配置、预定选择方式及动态指示信息中的至少一项,从所述至少一个频域子带集合中选择K个频域子带集合,所述K为正整数。
- 根据权利要求80至99任一所述的终端设备,其中,所述频域向量包括第一频域向量和/或第二频域向量。
- 根据权利要求90所述的终端设备,其中,所述第一频域向量的长度及可选取值的个数为K,所述K为所述选择的频域子带集合的个数。
- 根据权利要求91所述的终端设备,其中,所述第一频域向量的可选取值包括:K阶单位矩阵的每一行或每一列元素构成的向量;或者,K阶哈达玛矩阵的每一行或每一列元素构成的向量。
- 根据权利要求91所述的终端设备,其中,所述第一频域向量为离散傅里叶变换DFT向量。
- 根据权利要求91至93任一所述的终端设备,其中,所述第一频域向量采用第一指示信息表示;所述第一指示信息的长度由以下至少一项确定:所述K;所述码本信息中包含的第一频域向量的个数;非零系数个数;层数。
- 根据权利要求91至93任一所述的终端设备,其中,所述第一频域向量采用至少两个第一指示信息表示,每个所述第一指示信息对应所述码本信息中包含的部分层的第一频域向量。
- 根据权利要求90所述的终端设备,其中,所述第二频域向量的长度及可能取值的个数为所述N。
- 根据权利要求101所述的终端设备,其中,所述第二频域向量为长度为N并且每个元素的取值为固定值的向量。
- 根据权利要求101所述的终端设备,其中,所述第二频域向量为离散傅里叶变换DFT向量。
- 根据权利要求101或103所述的终端设备,其中,所述第二频域向量采用第六指示信息表示;所述第六指示信息的长度由以下至少一项确定:所述N;所述码本信息中包含的第二频域向量的个数;层数;层序列号。
- 根据权利要求79至107任一所述的终端设备,其中,所述端口选择向量采用第九指示信息表示;所述第九指示信息的长度由以下至少一项确定:N 1;N 2;所述码本信息中包含的端口选择向量的个数;层数;其中,所述N 1为水平方向天线端口数,所述N 2为垂直方向天线端口数。
- 根据权利要求79至107任一所述的终端设备,其中,所述端口选择向量采用至少两个第九指示信息表示,每个所述第九指示信息对应所述码本信息中包含的部分层的端口选择向量。
- 根据权利要求90至114任一所述的终端设备,其中,所述码本信息还包括非零系数位置信息。
- 根据权利要求115所述的终端设备,其中,所述非零系数位置信息采用至少两个第十四指示信息表示,每个所述第十四指示信息对应所述非零系数位置信息中包含的部分层的非零系数位置。
- 根据权利要求79至119任一所述的终端设备,所述发送模块还用于,发送非零系数的和。
- 根据权利要求79至121任一所述的终端设备,所述发送模块还用于,发送非零系数优先级。
- 一种网络设备,包括:接收模块,用于接收终端设备选择的频域子带集合的码本信息,所述码本信息包括以下至少一项:所述选择的频域子带集合的标识;所述选择的频域子带集合对应的线性合并系数LCC;端口选择向量;频域向量。
- 根据权利要求123所述的网络设备,其中,所述频域向量包括第一频域向量和/或第二频域向量。
- 根据权利要求124所述的网络设备,其中,所述第一频域向量的长度及可选取值的个数为K,所述K为所述选择的频域子带集合的个数。
- 根据权利要求125所述的网络设备,其中,所述第一频域向量的可选取值包括:K阶单位矩阵的每一行或每一列元素构成的向量;或者,K阶哈达玛矩阵的每一行或每一列元素构成的向量。
- 根据权利要求124所述的网络设备,其中,所述第一频域向量为离散傅里叶变换DFT向量。
- 根据权利要求124至127任一所述的网络设备,其中,所述第一频域向量采用第一指示信息表示;所述第一指示信息的长度由以下至少一项确定:所述K;所述码本信息中包含的第一频域向量的个数;非零系数个数;层数。
- 根据权利要求124至127任一所述的网络设备,其中,所述第一频域向量采用至少两个第一指示信息表示,每个所述第一指示信息对应所述码本信息中包含的部分层的第一频域向量。
- 根据权利要求124所述的网络设备,其中,所述第二频域向量的长度及可能取值的个数为N,所述N为每个所述频域子带集合包含的频域单元的个数。
- 根据权利要求135所述的网络设备,其中,所述第二频域向量为长度为N并且每个元素的取值为固定值的向量。
- 根据权利要求135所述的网络设备,其中,所述第二频域向量为离散傅里叶变换DFT向量。
- 根据权利要求135或137所述的网络设备,其中,所述第二频域向量采用第六指示信息表示;所述第六指示信息的长度由以下至少一项确定:所述N;所述码本信息中包含的第二频域向量的个数;层数;层序列号。
- 根据权利要求123至141任一所述的网络设备,其中,所述端口选择向量采用第九指示信息表示;所述第九指示信息的长度由以下至少一项确定:N 1;N 2;所述码本信息中包含的端口选择向量的个数;层数;其中,所述N 1为水平方向天线端口数,所述N 2为垂直方向天线端口数。
- 根据权利要求123至141任一所述的网络设备,其中,所述端口选择向量采用至少两个第九指示信息表示,每个所述第九指示信息对应所述码本信息中包含的部分层的端口选择向量。
- 根据权利要求124至148任一所述的网络设备,其中,所述码本信息还包括非零系数位置信息。
- 根据权利要求149所述的网络设备,其中,所述非零系数位置信息采用至少两个第十四指示信息表示,每个所述第十四指示信息对应所述非零系数位置信息中包含的部分层的非零系数位置。
- 根据权利要求124至153任一所述的网络设备,所述接收模块还用于,从所述终端设备接收非零系数的和。
- 根据权利要求124至155任一所述的网络设备,所述接收模块还用于,从所述终端设备接收非零系数优先级。
- 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至44中任一项所述的方法。
- 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求45至78中任一项所述的方法。
- 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至44中任一项所述的方法。
- 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求45至78中任一项所述的方法。
- 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至44中任一项所述的方法。
- 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求45至78中任一项所述的方法。
- 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至44中任一项所述的方法。
- 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求45至78中任一项所述的方法。
- 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至44中任一项所述的方法。
- 一种计算机程序,所述计算机程序使得计算机执行如权利要求45至78中任一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/122372 WO2022082481A1 (zh) | 2020-10-21 | 2020-10-21 | 一种码本发送方法、终端设备和网络设备 |
CN202080103751.XA CN116158149A (zh) | 2020-10-21 | 2020-10-21 | 一种码本发送方法、终端设备和网络设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/122372 WO2022082481A1 (zh) | 2020-10-21 | 2020-10-21 | 一种码本发送方法、终端设备和网络设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022082481A1 true WO2022082481A1 (zh) | 2022-04-28 |
Family
ID=81291310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/122372 WO2022082481A1 (zh) | 2020-10-21 | 2020-10-21 | 一种码本发送方法、终端设备和网络设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116158149A (zh) |
WO (1) | WO2022082481A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107294570A (zh) * | 2016-03-31 | 2017-10-24 | 中兴通讯股份有限公司 | 信道信息的处理方法及装置 |
CN108810905A (zh) * | 2017-05-04 | 2018-11-13 | 华为技术有限公司 | 传输上行信道的方法和装置及传输下行信道的方法和装置 |
CN109151833A (zh) * | 2017-06-16 | 2019-01-04 | 华为技术有限公司 | 传输控制信息的方法和装置 |
US20200136692A1 (en) * | 2017-05-11 | 2020-04-30 | Zte Corporation | Codebook configuration method, port configuration method, and device |
CN111756420A (zh) * | 2019-03-27 | 2020-10-09 | 华为技术有限公司 | 通信方法和通信装置 |
-
2020
- 2020-10-21 CN CN202080103751.XA patent/CN116158149A/zh active Pending
- 2020-10-21 WO PCT/CN2020/122372 patent/WO2022082481A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107294570A (zh) * | 2016-03-31 | 2017-10-24 | 中兴通讯股份有限公司 | 信道信息的处理方法及装置 |
CN108810905A (zh) * | 2017-05-04 | 2018-11-13 | 华为技术有限公司 | 传输上行信道的方法和装置及传输下行信道的方法和装置 |
US20200136692A1 (en) * | 2017-05-11 | 2020-04-30 | Zte Corporation | Codebook configuration method, port configuration method, and device |
CN109151833A (zh) * | 2017-06-16 | 2019-01-04 | 华为技术有限公司 | 传输控制信息的方法和装置 |
CN111756420A (zh) * | 2019-03-27 | 2020-10-09 | 华为技术有限公司 | 通信方法和通信装置 |
Non-Patent Citations (1)
Title |
---|
SAMSUNG: "Enhancements on MIMO for NR", 3GPP DRAFT; RP-193194, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Sitges, Spain; 20191209 - 20191212, 11 December 2019 (2019-12-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051839150 * |
Also Published As
Publication number | Publication date |
---|---|
CN116158149A8 (zh) | 2024-05-14 |
CN116158149A (zh) | 2023-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4087170B1 (en) | Antenna switching capability indication method, terminal device and communication device | |
US20220368405A1 (en) | Antenna switching method, terminal device and communication device | |
US20200280621A1 (en) | Media access control protocol data unit processing method and apparatus | |
CA3053919C (en) | Communication method, network device, terminal device, computer readable storage medium, computer program product, processing apparatus and communication system | |
US20220394461A1 (en) | Sidelink capability sending method and terminal device | |
US12040854B2 (en) | Wireless communication method, terminal device and network device | |
US20230239014A1 (en) | Information indication method and apparatus | |
WO2022036720A1 (zh) | 码本处理方法、终端设备和网络设备 | |
US20230137907A1 (en) | Wireless communication method, terminal device, and network device | |
US11381288B2 (en) | Communication method, network device, and terminal device | |
WO2022227033A1 (zh) | 无线通信方法、终端设备和网络设备 | |
US20240007250A1 (en) | Wireless communication method, terminal device, and network device | |
US20220302969A1 (en) | Channel information determining method and apparatus | |
WO2022183563A1 (zh) | 码本上报的方法、终端设备和网络设备 | |
WO2022082481A1 (zh) | 一种码本发送方法、终端设备和网络设备 | |
WO2022056870A1 (zh) | 无线通信方法、终端设备和网络设备 | |
WO2022077142A1 (zh) | 物理上行共享信道发送的方法和通信装置 | |
WO2024087120A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
WO2022205366A1 (zh) | 无线通信方法、终端设备和网络设备 | |
WO2022205390A1 (zh) | 信息处理方法和终端设备 | |
WO2022233010A1 (zh) | 确定信道状态信息的方法、终端设备和网络设备 | |
WO2022027683A1 (zh) | 确定传输使用的天线面板的方法和终端设备 | |
WO2021159413A1 (zh) | 下行传输方法和终端设备 | |
WO2021134207A1 (zh) | 一种指示和确定信道状态信息的方法及通信装置 | |
CN116633384A (zh) | 信息传输方法、装置及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20958064 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202080103751.X Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20958064 Country of ref document: EP Kind code of ref document: A1 |