WO2022027532A1 - 耐高温高强度触变型凝胶堵漏剂及其制备方法与应用 - Google Patents
耐高温高强度触变型凝胶堵漏剂及其制备方法与应用 Download PDFInfo
- Publication number
- WO2022027532A1 WO2022027532A1 PCT/CN2020/107600 CN2020107600W WO2022027532A1 WO 2022027532 A1 WO2022027532 A1 WO 2022027532A1 CN 2020107600 W CN2020107600 W CN 2020107600W WO 2022027532 A1 WO2022027532 A1 WO 2022027532A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resistant
- temperature
- plugging agent
- agent
- strength
- Prior art date
Links
- 230000009974 thixotropic effect Effects 0.000 title claims abstract description 50
- 238000002360 preparation method Methods 0.000 title claims abstract description 25
- 239000003112 inhibitor Substances 0.000 title abstract 4
- 239000003431 cross linking reagent Substances 0.000 claims abstract description 42
- 229920000642 polymer Polymers 0.000 claims abstract description 38
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229920000620 organic polymer Polymers 0.000 claims abstract description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 238000005553 drilling Methods 0.000 claims abstract description 18
- 238000004132 cross linking Methods 0.000 claims abstract description 16
- 239000012745 toughening agent Substances 0.000 claims abstract description 16
- 229920005989 resin Polymers 0.000 claims abstract description 14
- 239000011347 resin Substances 0.000 claims abstract description 14
- 239000012530 fluid Substances 0.000 claims abstract description 12
- 239000002994 raw material Substances 0.000 claims abstract description 11
- 239000003795 chemical substances by application Substances 0.000 claims description 99
- 239000000243 solution Substances 0.000 claims description 57
- 238000003756 stirring Methods 0.000 claims description 35
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 26
- 239000003995 emulsifying agent Substances 0.000 claims description 24
- 239000011259 mixed solution Substances 0.000 claims description 24
- 239000004530 micro-emulsion Substances 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 18
- 239000012071 phase Substances 0.000 claims description 14
- 239000002904 solvent Substances 0.000 claims description 14
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 13
- 239000003999 initiator Substances 0.000 claims description 12
- 239000000178 monomer Substances 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 229920001214 Polysorbate 60 Polymers 0.000 claims description 10
- NWGKJDSIEKMTRX-AAZCQSIUSA-N Sorbitan monooleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-AAZCQSIUSA-N 0.000 claims description 10
- HVUMOYIDDBPOLL-XGKPLOKHSA-N [2-[(2r,3r,4s)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl] octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XGKPLOKHSA-N 0.000 claims description 10
- 230000001376 precipitating effect Effects 0.000 claims description 9
- 239000008367 deionised water Substances 0.000 claims description 8
- 229910021641 deionized water Inorganic materials 0.000 claims description 8
- 230000002209 hydrophobic effect Effects 0.000 claims description 8
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 claims description 8
- 239000007790 solid phase Substances 0.000 claims description 8
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 7
- 229920001807 Urea-formaldehyde Polymers 0.000 claims description 7
- GZCGUPFRVQAUEE-SLPGGIOYSA-N aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-SLPGGIOYSA-N 0.000 claims description 7
- 229910052744 lithium Inorganic materials 0.000 claims description 7
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 claims description 7
- 229920000053 polysorbate 80 Polymers 0.000 claims description 7
- 238000005406 washing Methods 0.000 claims description 7
- 239000004970 Chain extender Substances 0.000 claims description 6
- 239000006185 dispersion Substances 0.000 claims description 6
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 claims description 5
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 5
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical group OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 claims description 5
- 238000007789 sealing Methods 0.000 claims description 5
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 4
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 claims description 4
- 229910052901 montmorillonite Inorganic materials 0.000 claims description 4
- 229920013730 reactive polymer Polymers 0.000 claims description 4
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims description 3
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 claims description 3
- 239000003350 kerosene Substances 0.000 claims description 3
- 229940057995 liquid paraffin Drugs 0.000 claims description 3
- -1 methylol group Chemical group 0.000 claims description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims description 2
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 claims description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 claims description 2
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical group [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 claims description 2
- 229920003180 amino resin Polymers 0.000 claims description 2
- IPGANOYOHAODGA-UHFFFAOYSA-N dilithium;dimagnesium;dioxido(oxo)silane Chemical compound [Li+].[Li+].[Mg+2].[Mg+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O IPGANOYOHAODGA-UHFFFAOYSA-N 0.000 claims description 2
- 239000003822 epoxy resin Substances 0.000 claims description 2
- 239000003292 glue Substances 0.000 claims description 2
- 229920001568 phenolic resin Polymers 0.000 claims description 2
- 239000005011 phenolic resin Substances 0.000 claims description 2
- 229920000647 polyepoxide Polymers 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- 239000000600 sorbitol Substances 0.000 claims description 2
- 229960000935 dehydrated alcohol Drugs 0.000 claims 1
- 239000002689 soil Substances 0.000 claims 1
- 238000010792 warming Methods 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 15
- 238000005755 formation reaction Methods 0.000 abstract description 15
- 238000000034 method Methods 0.000 abstract description 7
- 230000008569 process Effects 0.000 abstract description 4
- 238000005086 pumping Methods 0.000 abstract description 3
- 239000000853 adhesive Substances 0.000 abstract description 2
- 230000001070 adhesive effect Effects 0.000 abstract description 2
- 238000002955 isolation Methods 0.000 abstract 1
- 239000000499 gel Substances 0.000 description 104
- 230000000694 effects Effects 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 16
- 238000013508 migration Methods 0.000 description 9
- 230000005012 migration Effects 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 239000002775 capsule Substances 0.000 description 7
- 238000006116 polymerization reaction Methods 0.000 description 7
- 238000002329 infrared spectrum Methods 0.000 description 6
- 238000010998 test method Methods 0.000 description 6
- 239000000440 bentonite Substances 0.000 description 5
- 229910000278 bentonite Inorganic materials 0.000 description 5
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000002981 blocking agent Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/02—Well-drilling compositions
- C09K8/03—Specific additives for general use in well-drilling compositions
- C09K8/035—Organic additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/42—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
- C09K8/426—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells for plugging
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/32—Polymerisation in water-in-oil emulsions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/24—Homopolymers or copolymers of amides or imides
- C08L33/26—Homopolymers or copolymers of acrylamide or methacrylamide
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/42—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
- C09K8/424—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells using "spacer" compositions
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/42—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
- C09K8/44—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing organic binders only
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/50—Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
- C09K8/504—Compositions based on water or polar solvents
- C09K8/506—Compositions based on water or polar solvents containing organic compounds
- C09K8/508—Compositions based on water or polar solvents containing organic compounds macromolecular compounds
- C09K8/512—Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/50—Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
- C09K8/516—Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls characterised by their form or by the form of their components, e.g. encapsulated material
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/003—Means for stopping loss of drilling fluid
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/13—Methods or devices for cementing, for plugging holes, crevices or the like
- E21B33/138—Plastering the borehole wall; Injecting into the formation
Definitions
- the invention relates to a high temperature-resistant and high-strength thixotropic gel plugging agent, a preparation method and application thereof, and belongs to the technical field of drilling fluid plugging.
- Loss of circulation is a phenomenon in which a large amount of drilling fluid leaks into the stratum drilled during drilling construction, and is the most common drilling engineering problem in complex fractured strata. Loss of circulation not only consumes drilling time, but also loses a large amount of drilling fluid. Improper handling may also cause complex downhole accidents such as well collapse, blowout, and sticking, and even lead to the scrapping of the wellbore, resulting in significant economic losses. Therefore, effectively solving the lost circulation problem is crucial to ensure downhole safety, increase drilling speed and save drilling costs.
- Polymer gel plugging agent is one of the commonly used and effective lost circulation agents. By injecting a certain amount of gel lost circulation agent solution into the lost horizon, it will seal the fractures after solidification, so as to isolate the drilling fluid from the formation fluid. effect. Among them, the performance of the gel plugging agent is the key to the success of plugging.
- the currently used gel plugging agent has achieved good results in field application, but with the expansion of oil and gas exploration and development to deep layers, high temperature and high pressure have become one of the main problems faced by drilling and lost circulation. High temperature and high pressure sealing performance put forward higher requirements.
- it is difficult to effectively fill the vertical fracture space with conventional lost circulation plugging agent solution resulting in poor plugging effect in the middle and upper part of the fracture.
- the shear-responsive gel plugging agent is mainly composed of polymer composite monomers, solid-phase organic macromolecular cross-linking agents, initiators, rheology regulators and toughening agents. Thickening" shear response properties.
- the anti-high temperature gel plugging agent is mainly composed of vinyl polymerized monomer, solid phase organic macromolecular crosslinking agent, initiator, particle toughening agent and fiber toughening agent.
- the main gel-forming principle of the above two gels is the polymerization reaction between vinyl monomers and vinyl groups on the solid-phase organic macromolecular cross-linking agent to form a polymer-based skeleton structure, which is different from conventional gels. Compared with the temperature resistance after gel formation, it is still difficult to apply to the high-strength long-term plugging requirements of high-temperature formations greater than 120 °C.
- the present invention provides a high temperature-resistant and high-strength thixotropic gel plugging agent and a preparation method and application thereof.
- the gel solution of the invention has low apparent viscosity during the shear flow process, and is easy to be pumped into the wellbore and into the formation leakage channel; the viscosity of the gel solution increases rapidly after the pumping is stopped, and has strong adhesive force, and is easy to be pumped into the wellbore.
- Residue in the leakage channel cross-link and solidify under certain temperature conditions to form gel, form a high temperature resistant and high-strength sealing layer in the leakage channel, isolate the wellbore and the formation, and prevent the drilling fluid from continuing to leak.
- a high-temperature-resistant and high-strength thixotropic gel plugging agent comprising the following raw materials by mass percentage: 8-20% of acrylamide monomer, 0.05-0.5% of active polymer, 0.1-1.0% of organic polymer cross-linking agent, Resin toughening agent 3.0-8.0%, flow regulator 1.0-5.0%, cross-linking regulator 0.01-0.5%, and the balance is water.
- the high temperature-resistant and high-strength thixotropic gel plugging agent comprises the following raw materials in mass percentage: 12-18% of acrylamide monomer, 0.1-0.3% of active polymer, organic polymer 0.3-0.8% of cross-linking agent, 4.0-7.0% of resin toughening agent, 2.0-4.0% of flow regulator, 0.05-0.2% of cross-linking regulator, and the balance is water.
- the active polymer is a polycondensable macromolecular polymer with a methylol group (-CH 2 OH) on the surface, and the viscosity-average molecular weight of the active polymer is 5-13 million.
- the reactive polymer is prepared as follows:
- the oil phase solvent described in step (1) is one or a combination of two or more of cyclohexane, kerosene, and liquid paraffin.
- the lipophilic emulsifier described in step (1) is a mixture of Span60 and Span80, and the mass ratio of Span60 and Span80 in the mixture is 0.2-0.6:1, more preferably 0.3-0.5:1; the The mass of the lipophilic emulsifier is 0.5-2.5% of the mass of the oil phase solvent, more preferably 0.8-1.8%.
- the hydrophilic emulsifier described in step (1) is a mixture of Tween60 and Tween80, and the mass ratio of Tween60 and Twee80 in the mixture is 1-4:1, more preferably 1.5-2.5:1;
- the mass of the hydrophilic emulsifier is 0.25-1.2% of the mass of the oil phase solvent, more preferably 0.4-0.9%.
- the hydrophobic monomer is one or a combination of two or more selected from styrene, ⁇ -methylstyrene and 4-methylstyrene; the quality of the hydrophobic monomer is oil 5-12% of the mass of the phase solvent, more preferably 6-10%.
- the mass ratio of the acrylamide monomer to deionized water in step (2) is 0.05-0.20:1; the mass ratio of the acrylamide monomer to the hydrophobic monomer is 5-15: 1.
- the functional cross-linking agent in step (2) is N-methylol acrylamide; the quality of the functional cross-linking agent is 5-25% of the mass of the acrylamide monomer, more preferably 8- 17%.
- the mass of EDTA in step (2) is 0.03-0.2% of the mass of acrylamide monomer, more preferably 0.05-0.1%.
- the chain extender in step (3) is one or a combination of two or more selected from ethylenediamine, triethanolamine, trimethylolpropane and sorbitol, and the chain extender
- the mass of the acrylamide monomer is 2-12%, more preferably 3.5-7%.
- the initiator in step (3) is potassium persulfate and/or ammonium persulfate, and the mass of the initiator is 0.2-2.5% of the mass of the acrylamide monomer, more preferably 0.5-1.3%.
- the reaction time described in step (3) is 6-12h.
- the precipitating agent in step (4) is absolute ethanol
- the volume ratio of the precipitating agent to the microemulsion C is 0.5-1.0:1; the washing is washing with absolute ethanol.
- the organic polymer crosslinking agent can be prepared according to the prior art.
- the organic polymer crosslinking agent is prepared as follows:
- the mass ratio of the solution D1 to the microemulsion F is 1:5-20, more preferably 1:7-15.
- the mass ratio of the solution D2 to the microemulsion F is 1:30-60, more preferably 1:40-45.
- the dosage of the acrylamide monomer is 5-15 wt%, the dosage of the initiator is 0.02-0.1 wt%, and the dosage of the lipophilic emulsifier is 4 -10wt%, the amount of the hydrophilic emulsifier is 10-20wt%, the amount of the oil phase solvent is 45-70wt%, and the amount of the functional crosslinking agent is 1-3.5wt%; more preferably Based on the total weight of the microemulsion F, the dosage of the acrylamide monomer is 5-10wt%, the dosage of the initiator is 0.04-0.08wt%, and the dosage of the lipophilic emulsifier is 5- 8wt%, the amount of the hydrophilic emulsifier is 12-16wt%, the amount of the oil phase solvent is 50-65wt%, and the amount of the functional crosslinking agent is 1.5-3wt%.
- the initiator is potassium persulfate and/or ammonium persulfate.
- the lipophilic emulsifier is a mixture of Span60 and Span80, and the mass ratio of Span60 and Span80 in the mixture is 0.2-0.6:1, more preferably 0.3-0.5:1.
- the hydrophilic emulsifier is a mixture of Tween60 and Tween80, and the mass ratio of Tween60 and Twee80 in the mixture is 1-4:1, more preferably 1.5-2.5:1.
- the oil phase solvent is one or a combination of two or more of cyclohexane, kerosene and liquid paraffin;
- the functional crosslinking agent is N-methylol acrylamide.
- the precipitating agent is absolute ethanol
- the volume ratio of the precipitating agent and the microemulsion I is 0.5-1.0:1; the washing is washing with absolute ethanol.
- the resin toughening agent is a solid resin toughening agent; further preferably, the solid resin toughening agent is one of phenolic resin, epoxy resin, urea-formaldehyde resin, and amino resin or a combination of two or more.
- the flow regulator is one or a combination of two or more selected from magnesium aluminum silicate, magnesium lithium silicate, sodium-based montmorillonite, and lithium-based montmorillonite.
- the crosslinking regulator is one or a combination of two or more selected from the group consisting of capsule-type potassium persulfate, capsule-type sodium persulfate, and capsule-type ammonium persulfate. That is: adding potassium persulfate, sodium persulfate and ammonium persulfate into the outer capsule structure, by adjusting the degradation rate of the outer capsule structure, regulating the release rate of potassium persulfate, sodium persulfate or ammonium persulfate, and triggering a polymerization reaction, Therefore, it is suitable for different formation temperatures.
- the preparation method of the above-mentioned high-temperature resistant and high-strength thixotropic gel plugging agent comprises the following steps:
- the stirring rate in step (a) is 100-400 rev/min, more preferably 200-300 rev/min; the stirring rate in step (b) is 100-400 rev/min , further preferably 200-300 rev/min; the stirring rate described in step (c) is 200-600 rev/min, more preferably 300-400 rev/min; the stirring rate described in step (d) is 100-600 rpm 400 rpm, more preferably 200-300 rpm.
- the curing temperature is 40-180°C, more preferably 60-150°C; the curing time is 2-12h, more preferably 3-8h.
- the application of the above-mentioned high temperature-resistant and high-strength thixotropic gel plugging agent is used for drilling fluid plugging.
- the polycondensable macromolecular polymer with methylol group (-CH 2 OH) can undergo polycondensation reaction with the polyacrylamide formed by self-polymerization of acrylamide and the amide group (-CONH 2 ) on the organic polymer cross-linking agent , can also be used as a cross-linking agent to cross-link the polymer molecular chains.
- the complex three-dimensional network structure of strength is the second body type network skeleton.
- the presence of the first and second body-shaped composite network structures greatly improves the temperature resistance and gel-forming strength of the gels of the present invention.
- the resin toughening agent is added to the high temperature-resistant and high-strength thixotropic gel plugging agent provided by the present invention, which can cause self-polymerization and curing reaction at a certain temperature to form a hybrid third-body structure, that is, a resin network skeleton,
- the temperature resistance and gel forming strength of the gel of the present invention are further improved, which is beneficial to improve the high pressure-bearing blocking ability of the leakage channel of large cracks after the gel leakage blocking agent is cured.
- the high temperature resistant and high strength thixotropic gel plugging agent provided by the present invention has shear thixotropic properties due to the addition of the flow regulator, the solution before curing has shear thixotropic properties; the apparent viscosity is low during the flow process, and it is easy to be pumped into the wellbore And enter the formation leakage channel; the viscosity of the gel solution increases rapidly after stopping pumping, and has strong adhesion, and is easy to reside in the leakage channel, especially in the vertical large fractures; cross-linking and curing under certain temperature conditions, forming The gel forms a high-strength sealing layer in the leakage channel, which isolates the wellbore and the formation and prevents the continuous loss of drilling fluid.
- the high-temperature-resistant and high-strength thixotropic gel plugging agent provided by the present invention uses a capsule-type cross-linking regulator. By adjusting the degradation rate of the outer capsule structure under different temperature conditions, potassium persulfate, sodium persulfate or persulfate The release rate of ammonium sulfate is suitable for different formation temperatures.
- the preparation method of the high-temperature-resistant and high-strength thixotropic gel plugging agent provided by the present invention is simple and easy to operate, and can be dispensed and injected at the drilling site.
- Figure 1 is an infrared spectrum of the organic polymer crosslinking agent prepared in Preparation Example 1.
- FIG. 2 is an infrared spectrum of the reactive polymer prepared in Preparation Example 2.
- the organic polymer cross-linking agent and active polymer used in the examples and comparative examples were prepared by the methods described in the following Preparation Example 1 and Preparation Example 2, respectively.
- a preparation method of an organic polymer crosslinking agent comprising the steps of:
- the infrared spectrum of the prepared organic polymer cross-linking agent was tested by infrared spectrometer.
- a preparation method of active polymer comprising the steps of:
- the infrared spectrum of the prepared reactive polymer was tested by using an infrared spectrometer, and its infrared spectrum is shown in Figure 2. It can be seen from Figure 2 that the NH-H vibrations in the amide at around 3196 cm -1 and 1610 cm -1 are respectively The peaks and scissor vibration peaks, combined with the peaks around 1665 cm -1 and 1416 cm- 1 , can prove the existence of the -CONH 2 group.
- a high-temperature-resistant and high-strength thixotropic gel plugging agent comprising the following raw materials by mass percentage: 18% of acrylamide monomer, 0.8% of organic polymer cross-linking agent, 0.3% of active polymer, 7.0% of urea-formaldehyde resin, lithium Base bentonite 4.0%, capsule type ammonium persulfate 0.2%, and the balance is water.
- a high-temperature-resistant and high-strength thixotropic gel plugging agent comprising the following raw materials by mass percentage: 15% of acrylamide monomer, 0.55% of organic polymer cross-linking agent, 0.2% of active polymer, 5.5% of urea-formaldehyde resin, lithium Base bentonite 3.0%, capsule type ammonium persulfate 0.1%, and the balance is water.
- the preparation method of the above-mentioned high temperature-resistant and high-strength thixotropic gel leakage plugging agent is as described in Example 1, to obtain the high-temperature-resistant and high-strength thixotropic type gel leakage plugging agent I 2 .
- a high-temperature-resistant and high-strength thixotropic gel plugging agent comprising the following raw materials by mass percentage: 12% of acrylamide monomer, 0.3% of organic polymer cross-linking agent, 0.1% of active polymer, 4.0% of urea-formaldehyde resin, lithium Base bentonite 2.0%, capsule type ammonium persulfate 0.05%, and the balance is water.
- the preparation method of the above-mentioned high-temperature-resistant and high-strength thixotropic gel leakage plugging agent is as described in Example 1, and a high-temperature-resistant and high-strength thixotropic type gel leakage plugging agent I 3 is obtained.
- a high-temperature resistant and high-strength thixotropic gel plugging agent comprising the following raw materials by mass percentage: 8% of acrylamide monomer, 0.1% of organic polymer cross-linking agent, 0.05% of active polymer, 3.0% of urea-formaldehyde resin, lithium Base bentonite 1.0%, capsule type ammonium persulfate 0.01%, and the balance is water.
- the preparation method of the above-mentioned high temperature-resistant and high-strength thixotropic gel leakage plugging agent is as described in Example 1, and a high-temperature resistant and high-strength thixotropic type gel leakage plugging agent I 4 is obtained.
- a gel plugging agent is as described in Example 1, except that the content of acrylamide monomer is 5%.
- the preparation method of the above-mentioned gel loss-stopping agent is as described in Example 1, and the gel loss-stopping agent II 1 is obtained.
- a gel plugging agent is as described in Example 1, except that no organic polymer cross-linking agent is added.
- the preparation method of the above-mentioned gel loss-stopping agent is as described in Example 1, and the gel loss-stopping agent II 2 is obtained.
- a gel plugging agent is as described in Example 1, except that no active polymer is added.
- the preparation method of the above-mentioned gel loss-stopping agent is as described in Example 1, and the gel loss-stopping agent II 3 is obtained.
- a gel plugging agent is as described in Example 1, the difference is that no urea-formaldehyde resin is added.
- the preparation method of the above-mentioned gel loss-stopping agent is as described in Example 1, and the gel loss-stopping agent II 4 is obtained.
- a gel plugging agent is as described in Example 1, except that no lithium-based bentonite is added.
- the preparation method of the above-mentioned gel loss-stopping agent is as described in Example 1, and the gel loss-stopping agent II 5 is obtained.
- the thixotropy test method of the solution of the gel plugging agent using the HAAKE RS6000 rotational rheometer to test the appearance of the solution before the solidification of the gel plugging agent under different shear rate conditions (1.0-1000 1/s) Viscosity, shear rate first increased from low, and then decreased according to the original value. Among them, compared with the initial apparent viscosity (shear rate 1.0 1/s), the apparent viscosity value of the gel solution after high shear (100-1000 1/s) was reduced to 1.0 1/s shear rate The closer to the initial apparent viscosity, the better the thixotropy. The results are shown in Table 1.
- Test method for mechanical and mechanical properties of the gelled leakage plugging agent after curing The tensile mechanical and mechanical properties of the gelled leakage plugging agent were tested by a universal electronic tensile testing machine. Among them, the larger the gel fracture stress, the higher the tensile strength of the gel after curing. Specifically, the test condition of the universal electronic tensile testing machine is that the tensile rate is 1 mm/s, and the results are shown in Table 2.
- Test method for the migration and filling effect of the gel loss-stopping agent solution in vertical fractures a visual fracture model with a fracture length of 50 cm, a fracture height of 30 cm, and a fracture width of 5 mm is used to test the migration and filling effect of the gel loss-stopping agent solution in vertical fractures. Shift fill effect.
- the specific test method is as follows: put 1000mL of dyed gel plugging agent solution into the intermediate container, use a large-displacement advective pump to inject water into the intermediate container at a rate of 10mL/min, and inject the gel solution into the vertical visualization by pushing the piston
- the fracture space is equally divided into upper and lower parts according to the height, and the distribution state of the gel solution in the vertical fracture space is observed in real time and measured according to the dyed area based on the total injection amount being half the volume of the fracture space.
- Test method for the plugging effect of the gel plugging agent use a high temperature and high pressure plugging test device to test the plugging effect of the gel plugging agent on the fracture, and use a steel fracture model with a length of 10cm and a fracture width of 3.0mm to simulate the leakage channel .
- Specific test method Pour 500mL of gel plugging agent solution (adding crosslinking regulator) into the water loss cylinder of the plugging device; put a movable piston on the upper part, and then tighten the cylinder cover to seal; after curing for 8 hours, A large displacement advection pump is used to inject drilling fluid for pressure, and the pressure at the inlet end of the fracture model is recorded in real time. The highest pressure when the drilling fluid leaks from the outlet end of the fracture model is used as the maximum plugging pressure of the gel on the fracture.
- the test temperature is 150°C , and the results are shown in Table 2.
- the initial apparent viscosity of the gel solution is very high when the shear rate of the gel solution before the solidification of the lost circulation agent prepared in the embodiment of the present invention is 1.01/s.
- the apparent viscosity of the gel solution decreased.
- the shear rate gradually decreased, and the apparent viscosity began to slowly rise.
- the shear rate decreased to 1.0 1/s
- the apparent viscosity was basically Return to the initial apparent viscosity when the initial shear rate is 1.0 1/s, indicating that the gel before the solidification of the gel plugging agent prepared by the present invention is subjected to shearing when the solution is sheared.
- the apparent viscosity is not affected by the shearing process, and has excellent thixotropic properties; while the solutions of the gel plugging agents prepared in Comparative Examples 1-4 before curing are not very different before and after shearing, and have good thixotropic properties.
- the maximum tensile fracture stress of the gel lost circulation stopper prepared in Examples 1-3 of the present invention after curing is 245KPa, 238KPa, and 220KPa, respectively, indicating that the gel lost circulation blocking agent of the present invention has excellent tensile mechanical and mechanical properties;
- the ratios of the injection amount of the solution in the upper and lower parts of the fracture before curing of the gel lost circulation stopper prepared in Examples 1-3 of the invention are 0.98, 0.95, and 0.94, indicating that the gel lost circulation stopper of the present invention has excellent migration
- the filling effect can evenly fill the vertical fracture space; at the same time, the gel leakage plugging agent prepared by the present invention has a higher maximum plugging pressure after curing, indicating that the gel leakage plugging agent of the present invention has an excellent plugging effect; Comparative Example 1
- the amount of acrylamide monomer in the medium is less, although the solution of the obtained gel plugging agent before curing has good migration and filling effect, but its tensile mechanical and mechanical properties
- the gel leakage plugging agent prepared in the embodiment of the present invention has excellent thixotropic properties, mechanical properties, migration and filling ability and plugging performance, indicating that the gel leakage plugging agent of the present invention has high temperature resistance. , high strength and thixotropy, can be used to solve the problem of lost circulation in high temperature deep fractured leakage formations.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Geochemistry & Mineralogy (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Mechanical Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明提供了一种耐高温高强度触变型凝胶堵漏剂及其制备方法与应用,所述凝胶堵漏剂包括以下质量百分比的原料组成:丙烯酰胺单体8-20%,活性聚合物0.05-0.5%,有机聚合物交联剂0.1-1.0%,树脂增韧剂3.0-8.0%,流型调节剂1.0-5.0%,交联调节剂0.01-0.5%,余量为水。本发明的凝胶溶液在剪切流动过程中表观黏度较低,容易泵入井筒并进入地层漏失通道;停止泵入后凝胶溶液黏度迅速增大,且具有很强粘附力,易在漏失通道内驻留,形成高强度封隔层,隔断井筒和地层,防止钻井液继续漏失。本发明的凝胶堵漏剂具有耐高温、高强度和触变性的优点,可用以解决高温深层裂缝性漏失地层的井漏难题。
Description
本发明涉及一种耐高温高强度触变型凝胶堵漏剂及其制备方法与应用,属于钻井液堵漏技术领域。
井漏是一种钻井施工过程中钻井液大量漏入所钻地层的现象,是裂缝性复杂地层最常见的钻井工程难题。井漏不仅耗费钻井时间,损失大量钻井液,处理不当还可能引起井塌、井喷、卡钻等井下复杂事故,甚至导致井眼报废,造成重大经济损失。因此,有效解决井漏问题对于确保井下安全、提高钻井速度、节约钻井成本至关重要。
高分子凝胶堵漏剂是常用且有效的堵漏剂之一,通过向漏失层位注入一定量的凝胶堵漏剂溶液,固化后将裂缝封堵,起到隔离钻井液与地层流体的作用。其中,凝胶堵漏剂的性能好坏是堵漏成功与否的关键。目前采用的凝胶堵漏剂在现场应用已取得比较好的效果,但是随着油气勘探开发向深层拓展,高温、高压成为钻井堵漏面临的主要难题之一,对凝胶堵漏剂的抗高温和高承压封堵性能提出了更高要求。此外,对于裂缝性发育地层,由于重力沉降等因素影响,常规堵漏剂溶液对垂向裂缝空间难以实现有效充填,导致裂缝中上部封堵效果差。
针对上述问题,本申请发明人所在团队分别通过中国专利文件CN109825269A和CN109796949A提供了一种剪切响应型凝胶堵漏剂和一种抗高温凝胶堵漏剂。剪切响应型凝胶堵漏剂主要由聚合物复合单体、固相有机大分子交联剂、引发剂、流变调控剂和增韧剂组成,凝胶溶液具有“剪切稀释、静置增稠”的剪切响应性质。抗高温凝胶堵漏剂主要由乙烯基聚合单体、固相有机大分子交联剂、引发剂、粒子增韧剂和纤维增韧剂组成。上述两种凝胶的主要成胶原理是乙烯基单体与固相有机大分子交联剂上的乙烯基之间的聚合反应,形成以聚合物为主的体型骨架结构,与常规凝胶相比成胶后抗温性能有所提升,但仍难以适用于大于120℃高温地层的高强度长期封堵要求。
因此,有必要研发一种兼具耐高温、高强度和高触变性质的凝胶堵漏剂,用以解决高温深层裂缝性漏失地层的井漏难题。
发明内容
针对现有技术的不足,本发明提供了一种耐高温高强度触变型凝胶堵漏剂及其制备方法与应用。本发明的凝胶溶液在剪切流动过程中表观黏度较低,容易泵入井筒并进入地层漏失通道;停止泵入后凝胶溶液黏度迅速增大,且具有很强粘附力,容易在漏失通道内驻留;在一定温度条件下交联固化,生成凝胶,在漏失通道中形成耐高温高强度封隔层,隔断井筒和地层,防止钻井液继续漏失。
本发明的技术方案如下:
一种耐高温高强度触变型凝胶堵漏剂,包括以下质量百分比的原料组成:丙烯酰胺单体8-20%,活性聚合物0.05-0.5%,有机聚合物交联剂0.1-1.0%,树脂增韧剂3.0-8.0%,流型调节剂1.0-5.0%,交联调节剂0.01-0.5%,余量为水。
根据本发明,优选的,所述的耐高温高强度触变型凝胶堵漏剂,包括以下质量百分比的原料组成:丙烯酰胺单体12-18%,活性聚合物0.1-0.3%,有机聚合物交联剂0.3-0.8%,树脂增韧剂4.0-7.0%,流型调节剂2.0-4.0%,交联调节剂0.05-0.2%,余量为水。
根据本发明,优选的,所述活性聚合物为表面带有羟甲基基团(-CH
2OH)的可缩聚大分子聚合物,所述活性聚合物的粘均分子量为500-1300万。
根据本发明,优选的,所述活性聚合物按如下方法制备得到:
(1)向油相溶剂中加入亲油性乳化剂、亲水性乳化剂,搅拌均匀,之后向体系中缓慢滴加疏水单体,搅拌均匀,得到溶液A;
(2)将丙烯酰胺单体和功能型交联剂加入至除氧去离子水中,搅拌至完全溶解,然后加入乙二胺四乙酸,搅拌至完全溶解,得到溶液B;
(3)将溶液A缓慢滴加至溶液B中,搅拌均匀,升温至40-60℃后,依次加入扩链剂和引发剂,搅拌进行反应,得到微乳液C;
(4)向微乳液C中加入沉淀剂,析出固相物质,经洗涤、干燥,得到活性聚合物。
根据本发明,优选的,步骤(1)中所述的油相溶剂为环己烷、煤油、液体石蜡中的一种或两种以上的组合。
优选的,步骤(1)中所述的亲油性乳化剂为Span60和Span80的混合物,所述混合物中Span60和Span80的质量比为0.2-0.6:1,进一步优选为0.3-0.5:1;所述亲油性乳化剂的质量为油相溶剂质量的0.5-2.5%,进一步优选为0.8-1.8%。
优选的,步骤(1)中所述的亲水性乳化剂为Tween60和Tween80的混合物,所述 混合物中Tween60和Twee80的质量比为1-4:1,进一步优选为1.5-2.5:1;所述亲水性乳化剂的质量为油相溶剂质量的0.25-1.2%,进一步优选为0.4-0.9%。
优选的,步骤(1)中所述疏水单体为苯乙烯、α-甲基苯乙烯、4-甲基苯乙烯中的一种或两种以上的组合;所述疏水单体的质量为油相溶剂质量的5-12%,进一步优选为6-10%。
根据本发明,优选的,步骤(2)中所述丙烯酰胺单体与去离子水的质量比为0.05-0.20:1;所述丙烯酰胺单体与疏水单体的质量比为5-15:1。
优选的,步骤(2)中所述功能型交联剂为N-羟甲基丙烯酰胺;所述功能型交联剂的质量为丙烯酰胺单体质量的5-25%,进一步优选为8-17%。
优选的,步骤(2)中所述的乙二胺四乙酸的质量为丙烯酰胺单体质量的0.03-0.2%,进一步优选为0.05-0.1%。
根据本发明,优选的,步骤(3)中所述扩链剂为乙二胺、三乙醇胺、三羟甲基丙烷、山梨醇中的一种或两种以上的组合,所述的扩链剂的质量为丙烯酰胺单体质量的2-12%,进一步优选为3.5-7%。
优选的,步骤(3)中所述引发剂为过硫酸钾和/或过硫酸铵,所述的引发剂的质量为丙烯酰胺单体质量的0.2-2.5%,进一步优选为0.5-1.3%。
优选的,步骤(3)中所述的反应时间为6-12h。
根据本发明,优选的,步骤(4)中所述沉淀剂为无水乙醇,所述沉淀剂与微乳液C的体积比为0.5-1.0:1;所述洗涤为用无水乙醇进行洗涤。
根据本发明,优选的,所述有机聚合物交联剂为表面带有乙烯基团(CH
2=CH)的可聚合大分子聚合物。所述有机聚合物交联剂可按现有技术制备得到。
根据本发明,优选的,所述有机聚合物交联剂按如下方法制备得到:
将丙烯酰胺单体与引发剂分别溶解于除氧去离子水中,得到溶液D1和D2;将亲油性乳化剂、亲水性乳化剂与油相溶剂搅拌均匀,得到溶液E;将溶液D1和D2依次缓慢滴加至溶液E中,搅拌均匀,50-70℃下静置反应4-8h后,加入功能型交联剂,得到微乳液F,使用质量分数为10%的盐酸溶液调整微乳液F的pH至4-6后得到微乳液I;向微乳液I中加入沉淀剂,析出固相物质,经洗涤、干燥,得到有机聚合物交联剂。
根据本发明,优选的,所述溶液D1与微乳液F的质量比为1:5-20,进一步优选为1:7-15。
优选的,所述溶液D2与微乳液F的质量比为1:30-60,进一步优选为1:40-45。
优选的,以微乳液F的总重量为基准,所述丙烯酰胺单体的用量为5-15wt%,所述引发剂的用量为0.02-0.1wt%,所述亲油性乳化剂的用量为4-10wt%,所述亲水性乳化剂的用量为10-20wt%,所述油相溶剂的用量为45-70wt%,所述功能型交联剂的用量为1-3.5wt%;进一步优选的,以微乳液F的总重量为基准,所述丙烯酰胺单体的用量为5-10wt%,所述引发剂的用量为0.04-0.08wt%,所述亲油性乳化剂的用量为5-8wt%,所述亲水性乳化剂的用量为12-16wt%,所述油相溶剂的用量为50-65wt%,所述功能型交联剂的用量为1.5-3wt%。
优选的,所述引发剂为过硫酸钾和/或过硫酸铵。
优选的,所述亲油性乳化剂为Span60和Span80的混合物,所述混合物中Span60和Span80的质量比为0.2-0.6:1,进一步优选为0.3-0.5:1。
优选的,所述亲水性乳化剂为Tween60和Tween80的混合物,所述混合物中Tween60和Twee80的质量比为1-4:1,进一步优选为1.5-2.5:1。
优选的,所述油相溶剂为环己烷、煤油和液体石蜡中的一种或两种以上的组合;
优选的,所述功能型交联剂为N-羟甲基丙烯酰胺。
优选的,所述的沉淀剂为无水乙醇,所述沉淀剂与微乳液I的体积比为0.5-1.0:1;所述洗涤为用无水乙醇进行洗涤。
根据本发明,优选的,所述树脂增韧剂为固态状树脂增韧剂;进一步优选的,所述固态状树脂增韧剂为酚醛树脂、环氧树脂、脲醛树脂、氨基树脂中的一种或两种以上的组合。
根据本发明,优选的,所述流型调节剂为硅酸镁铝、硅酸镁锂、钠基蒙脱土、锂基蒙脱土中的一种或两种以上的组合。
根据本发明,优选的,所述交联调节剂为胶囊型过硫酸钾、胶囊型过硫酸钠、胶囊型过硫酸铵中的一种或两种以上的组合。即:将过硫酸钾、过硫酸钠、过硫酸铵加入到外胶囊结构中,通过调节外胶囊结构的降解速率,调控过硫酸钾、过硫酸钠或过硫酸铵的释放速率,引发聚合反应,从而适用不同地层温度。
根据本发明,上述耐高温高强度触变型凝胶堵漏剂的制备方法,包括以下步骤:
(a)将丙烯酰胺单体、有机聚合物交联剂和活性聚合物依次加入到水中,搅拌至完全溶解,得到混合液G;
(b)将树脂增韧剂加入混合液G中,搅拌至分散均匀,得到混合液H;
(c)将流型调节剂加入混合液H中,搅拌至分散均匀,得到混合液J;
(d)将交联调节剂加入混合液J中,搅拌至完全溶解,得到混合液K;
(e)将混合液K密封静置,固化成胶,得到耐高温高强度触变型凝胶堵漏剂。
根据本发明,优选的,步骤(a)中所述搅拌速率为100-400转/分钟,进一步优选为200-300转/分钟;步骤(b)中所述搅拌速率为100-400转/分钟,进一步优选为200-300转/分钟;步骤(c)中所述搅拌速率为200-600转/分钟,进一步优选为300-400转/分钟;步骤(d)中所述搅拌速率为100-400转/分钟,进一步优选为200-300转/分钟。
根据本发明,优选的,步骤(e)中,固化温度为40-180℃,进一步优选为60-150℃;固化成胶时间为2-12h,进一步优选为3-8h。
根据本发明,上述耐高温高强度触变型凝胶堵漏剂的应用,用于钻井液堵漏。
本发明的技术特点及有益效果如下:
1、本发明提供的耐高温高强度触变型凝胶堵漏剂中加入了有机聚合物交联剂和活性聚合物;其中,有机聚合物交联剂为表面带有乙烯基团(CH
2=CH)的可聚合大分子聚合物,在一定条件下可与丙烯酰胺单体上的乙烯基团(CH
2=CH)发生聚合反应,生成第一体型网络骨架;所述活性聚合物为表面带有羟甲基基团(-CH
2OH)的可缩聚大分子聚合物,可以与丙烯酰胺自聚生成的聚丙烯酰胺以及有机聚合物交联剂上的酰胺基(-CONH
2)发生缩聚反应,也可作为交联剂,把聚合物分子链交联起来,相比于常规交联剂,含有更多的交联键,在交联聚合过程中的交联密度更大,可形成更高强度的复杂三维网络结构即第二体型网络骨架。与常规聚合物凝胶相比,第一和第二体型复合网络结构的存在使得本发明凝胶的耐温性和成胶强度得以大幅提升。
2、本发明提供的耐高温高强度触变型凝胶堵漏剂中加入了树脂增韧剂,可在一定温度下发生自聚合固化反应,形成杂化的第三体型结构,即树脂网络骨架,进一步提高了本发明凝胶的耐温性和成胶强度,有利于提高凝胶堵漏剂固化后对大裂缝漏失通道的高承压封堵能力。
3、本发明提供的耐高温高强度触变型凝胶堵漏剂由于流型调节剂的加入,固化前的溶液具有剪切触变特性;在流动过程中表观黏度较低,容易泵入井筒并进入地层漏失通道;停止泵入后凝胶溶液黏度迅速增大,且具有很强粘附力,容易在漏失通道尤其是垂向大裂缝内驻留;在一定温度条件下交联固化,生成凝胶,在漏失通道中形成高强度 封隔层,隔断井筒和地层,防止钻井液继续漏失。
4、本发明所提供的耐高温高强度触变型凝胶堵漏剂使用了胶囊型交联调节剂,通过调节不同温度条件下外胶囊结构的降解速率,调控过硫酸钾、过硫酸钠或过硫酸铵的释放速率,从而适用不同地层温度。
6、本发明所提供的耐高温高强度触变型凝胶堵漏剂的制备方法简单易操作,可以在钻井现场现配现注。
图1为制备例1中制备得到的有机聚合物交联剂的红外光谱图。
图2为制备例2中制备得到的活性聚合物的红外光谱图。
下面结合具体实施例对本发明做进一步说明,但不限于此。实施例中所用原料均为常规原料,可市购获得;所述方法如无特殊说明均为现有技术。
实施例和对比例中所用有机聚合物交联剂和活性聚合物分别采用如下制备例1以及制备例2所述的方法制备得到。
制备例1
一种有机聚合物交联剂的制备方法,包括步骤如下:
(1)将6g丙烯酰胺单体溶解于5mL除氧去离子水中,得到溶液D1,将0.06g过硫酸铵溶解于2mL除氧去离子水中,得到溶液D2;
(2)将6g亲油性乳化剂Span60/Span80混合物(Span60和Span80质量比0.4:1)、14g亲水性乳化剂Tween60/Tween80混合物(Tween60和Tween80质量比2:1)与63mL环己烷搅拌均匀,得到溶液E;
(3)将溶液D1和溶液D2依次缓慢滴加至溶液E中,搅拌均匀,60℃下静置反应6h后加入2g N-羟甲基丙烯酰胺,得到微乳液F,并使用质量分数为10%的盐酸溶液调整pH值至5.5后得到微乳液I;
(4)向微乳液I中加入70mL无水乙醇,析出固相物质,经无水乙醇洗涤后干燥,得到有机聚合物交联剂。
使用红外光谱仪对制备得到有机聚合物交联剂进行红外光谱测试,其红外光谱图如图1所示,从图1中可以看出,1605cm
-1左右处为C=C双键振动峰,可证明乙烯基的存在。
制备例2
一种活性聚合物的制备方法,包括步骤如下:
(1)将0.12g亲油性乳化剂Span60/Span80混合物(Span60和Span80质量比0.4:1)、0.06g亲水性乳化剂Tween60/Tween80混合物(Tween60和Tween80质量比2:1)与7.1g环己烷搅拌均匀,之后向体系中缓慢滴加0.7gα-甲基苯乙烯,搅拌均匀,得到溶液A;
(2)将7g丙烯酰胺单体和0.8g N-羟甲基丙烯酰胺加入至55g除氧去离子水中,搅拌至完全溶解,而后加入0.005g乙二胺四乙酸,搅拌至完全溶解,得到溶液B;
(3)使用滴液漏斗将溶液A缓慢滴加至溶液B中,持续搅拌均匀,升温至50℃,依次加入0.35g乙二胺和0.08g过硫酸铵,持续搅拌反应8h后,得到微乳液C;
(4)向微乳液C中加入50mL无水乙醇,析出固相物质,经无水乙醇洗涤后干燥,得到活性聚合物。
使用红外光谱仪对制备的活性聚合物进行红外光谱测试,其红外光谱图如图2所示,从图2中可以看出,3196cm
-1和1610cm
-1左右处分别为酰胺中的NH-H振动峰和剪式振动峰,再结合1665cm
-1和1416cm
-1左右处的峰,可证明-CONH
2基团的存在。
实施例1
一种耐高温高强度触变型凝胶堵漏剂,包括以下质量百分比的原料组成:丙烯酰胺单体18%,有机聚合物交联剂0.8%,活性聚合物0.3%,脲醛树脂7.0%,锂基膨润土4.0%,胶囊型过硫酸铵0.2%,余量为水。
上述耐高温高强度触变型凝胶堵漏剂的制备方法,包括步骤如下:
(a)将丙烯酰胺单体、有机聚合物交联剂和活性聚合物依次加入到水中,以250转/分钟搅拌至完全溶解,得到混合液G;
(b)将树脂增韧剂加入上述混合液G中,以250转/分钟搅拌至分散均匀,得到混合液H;
(c)将流型调节剂加入上述混合液H中,以400转/分钟搅拌至分散均匀,得到混合液J;
(d)将交联调节剂加入上述混合液J中,以250转/分钟搅拌至完全溶解,得到混合液K;
(e)将混合液K密封静置,150℃条件下固化8h,得到耐高温高强度触变型凝胶堵漏剂Ⅰ
1。
实施例2
一种耐高温高强度触变型凝胶堵漏剂,包括以下质量百分比的原料组成:丙烯酰胺单体15%,有机聚合物交联剂0.55%,活性聚合物0.2%,脲醛树脂5.5%,锂基膨润土3.0%,胶囊型过硫酸铵0.1%,余量为水。
上述耐高温高强度触变型凝胶堵漏剂的制备方法如实施例1所述,得到耐高温高强度触变型凝胶堵漏剂Ⅰ
2。
实施例3
一种耐高温高强度触变型凝胶堵漏剂,包括以下质量百分比的原料组成:丙烯酰胺单体12%,有机聚合物交联剂0.3%,活性聚合物0.1%,脲醛树脂4.0%,锂基膨润土2.0%,胶囊型过硫酸铵0.05%,余量为水。
上述耐高温高强度触变型凝胶堵漏剂的制备方法如实施例1所述,得到耐高温高强度触变型凝胶堵漏剂Ⅰ
3。
实施例4
一种耐高温高强度触变型凝胶堵漏剂,包括以下质量百分比的原料组成:丙烯酰胺单体8%,有机聚合物交联剂0.1%,活性聚合物0.05%,脲醛树脂3.0%,锂基膨润土1.0%,胶囊型过硫酸铵0.01%,余量为水。
上述耐高温高强度触变型凝胶堵漏剂的制备方法如实施例1所述,得到耐高温高强度触变型凝胶堵漏剂Ⅰ
4。
对比例1
一种凝胶堵漏剂如实施例1所述,所不同的是丙烯酰胺单体含量为5%。
上述凝胶堵漏剂的制备方法如实施例1所述,得到凝胶堵漏剂Ⅱ
1。
对比例2
一种凝胶堵漏剂如实施例1所述,所不同的是不加入有机聚合物交联剂。
上述凝胶堵漏剂的制备方法如实施例1所述,得到凝胶堵漏剂Ⅱ
2。
对比例3
一种凝胶堵漏剂如实施例1所述,所不同的是不加入活性聚合物。
上述凝胶堵漏剂的制备方法如实施例1所述,得到凝胶堵漏剂Ⅱ
3。
对比例4
一种凝胶堵漏剂如实施例1所述,所不同的是不加入脲醛树脂。
上述凝胶堵漏剂的制备方法如实施例1所述,得到凝胶堵漏剂Ⅱ
4。
对比例5
一种凝胶堵漏剂如实施例1所述,所不同的是不加入锂基膨润土。
上述凝胶堵漏剂的制备方法如实施例1所述,得到凝胶堵漏剂Ⅱ
5。
试验例
将实施例1-3以及对比例1-5制备的凝胶堵漏剂进行触变性、机械力学性能、运移充填效果以及封堵效果的测试。
凝胶堵漏剂溶液的触变性测试方法:采用哈克(HAAKE)RS6000型旋转流变仪测试不同剪切速率条件(1.0-1000 1/s)下凝胶堵漏剂固化前溶液的表观粘度,剪切速率先由低升高,而后按照原数值降低。其中,与初始表观粘度(剪切速率1.0 1/s)相比,高速剪切(100-1000 1/s)后重新降低剪切速率为1.0 1/s后凝胶溶液的表观粘度值越接近初始表观粘度,表示其触变性越好,其结果如表1所示。
凝胶堵漏剂固化后的机械力学性能测试方法:采用万能电子拉伸试验机测试凝胶堵漏剂成胶后的抗拉伸机械力学性能。其中,凝胶断裂应力越大,表明凝胶固化后的抗拉伸强度越高。具体的,万能电子拉伸试验机的测试条件为拉伸速率为1mm/s,其结果如表2所示。
凝胶堵漏剂溶液在垂直裂缝中的运移充填效果测试方法:采用缝长为50cm、缝高为30cm、缝宽为5mm的可视化裂缝模型测试凝胶堵漏剂溶液在垂直裂缝中的运移充填效果。具体测试方法如下:将1000mL染色凝胶堵漏剂溶液装入中间容器中,使用大排量平流泵以10mL/min的速率向中间容器注水,通过活塞推动将凝胶溶液注入到垂直放置的可视化裂缝模型中;按照高度将裂缝空间平分为上、下两部分,以注入总量为裂缝空间体积的一半时为基准,实时观测并根据染色区域计量凝胶溶液在垂直裂缝空间中的分布状态,以凝胶在裂缝上、下两部分中的注入量的比值为参考,比值越接近1,表明凝胶溶液在垂向裂缝中的分布越均匀,充填效果越好,以此评价其在裂缝中的充填效果,其结果如表2所示。
凝胶堵漏剂的封堵效果测试方法:采用高温高压堵漏测试装置测试凝胶堵漏剂对裂缝的封堵效果,使用长度为10cm、裂缝宽度为3.0mm的钢制裂缝模型模拟漏失通道。具体测试方法:将500mL凝胶堵漏剂溶液(加入交联调节剂)倒入堵漏装置失水筒中;在其上部放入可移动活塞,然后旋紧筒盖密封;待其固化8h后,使用大排量平流泵注 入钻井液进行加压,实时记录裂缝模型入口端压力,以钻井液从裂缝模型出口端漏失时的最高压力作为凝胶对裂缝的最高封堵压力,测试温度为150℃,其结果如表2所示。
表1凝胶堵漏剂固化前溶液的触变性测试数据
表2凝胶堵漏剂固化后的机械力学性能、运移填充效果及裂缝封堵效果的测试数据
综合表1和表2可以看出,本发明实施例制备的凝胶堵漏剂固化前的溶液在剪切速率为1.0 1/s时,凝胶溶液的初始表观粘度很高,当剪切速率增大至1000 1/s时,凝胶溶液的表观粘度降低,此后,剪切速率逐渐降低,表观粘度开始缓慢回升,当剪切速率降至1.0 1/s时,表观粘度基本恢复至最初剪切速率为1.0 1/s时的初始表观粘度,说明本发明制备的凝胶堵漏剂固化前溶液受剪切时结构破坏,粘度降低,无剪切时溶液可以重新建立表观粘度,不受剪切过程的影响,具有优异的触变特性;而对比例1-4制备的凝 胶堵漏剂固化前的溶液在剪切前后相差不是很大,具有良好的触变特性;而对比例5未添加流型调节剂所得凝胶堵漏剂固化前的溶液在当剪切速率为1.0 1/s时,凝胶溶液的表观粘度较低,为132mPa·s;当剪切速率增大至1000 1/s时,凝胶溶液的表观粘度为10mPa·s;当剪切速率降至1.0 1/s时,最终重新升高至83mPa·s,说明对比例5制备的凝胶堵漏剂的触变特性较差。
本发明实施例1-3制备的凝胶堵漏剂固化后的最大拉伸断裂应力分别为245KPa、238Kpa、220KPa,说明本发明的凝胶堵漏剂具有优异的抗拉伸机械力学性能;本发明实施例1-3制备的凝胶堵漏剂固化前溶液在裂缝上、下两部分中的注入量的比值为0.98、0.95、0.94,说明本发明的凝胶堵漏剂具有优异的运移充填效果,可以均匀充填垂直裂缝空间;同时本发明制备的凝胶堵漏剂固化后对裂缝最高封堵压力较高,说明本发明的凝胶堵漏剂具有优异的封堵效果;对比例1中丙烯酰胺单体量较少,所得凝胶堵漏剂固化前溶液虽然具有较好的运移充填效果,但是其抗拉伸机械力学性能以及封堵效果较差;对比例2-4制备的凝胶堵漏剂固化前溶液虽然具有较好的运移充填效果,但是其抗拉伸机械力学性能以及封堵效果较差,并且通过实施例1和对比例2可以看出,本发明活性聚合物的加入可以大幅度提高凝胶堵漏剂的抗拉伸机械力学性能及封堵性能,通过对比例2和对比例3可以看出,活性聚合物对凝胶堵漏剂的抗拉伸机械力学性能及封堵性能的提高大于有机交联剂聚合物;对比例5制备的凝胶堵漏剂虽然其抗拉伸能力及封堵能力较高,但是其固化前溶液的运移充填效果较差,不能均匀充填垂直裂缝空间。
通过以上数据可以看出,本发明实施例制备的凝胶堵漏剂具有优异的触变性能、机械力学性能、运移充填能力以及封堵性能,说明本发明的凝胶堵漏剂具有耐高温、高强度和触变性的优点,可用以解决高温深层裂缝性漏失地层的井漏难题。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。
Claims (15)
- 一种耐高温高强度触变型凝胶堵漏剂,其特征在于,该凝胶堵漏剂包括以下质量百分比的原料组成:丙烯酰胺单体8-20%,活性聚合物0.05-0.5%,有机聚合物交联剂0.1-1.0%,树脂增韧剂3.0-8.0%,流型调节剂1.0-5.0%,交联调节剂0.01-0.5%,余量为水。
- 根据权利要求1所述的耐高温高强度触变型凝胶堵漏剂,其特征在于,所述耐高温高强度触变型凝胶堵漏剂包括以下质量百分比的原料组成:丙烯酰胺单体12-18%,活性聚合物0.1-0.3%,有机聚合物交联剂0.3-0.8%,树脂增韧剂4.0-7.0%,流型调节剂2.0-4.0%,交联调节剂0.05-0.2%,余量为水。
- 根据权利要求1所述的耐高温高强度触变型凝胶堵漏剂,其特征在于,所述活性聚合物为表面带有羟甲基基团(-CH 2OH)的可缩聚大分子聚合物。
- 根据权利要求1所述的耐高温高强度触变型凝胶堵漏剂,其特征在于,所述活性聚合物的粘均分子量为500-1300万。
- 根据权利要求1所述的耐高温高强度触变型凝胶堵漏剂,其特征在于,所述有机聚合物交联剂为表面带有乙烯基团(CH 2=CH)的可聚合大分子聚合物。
- 根据权利要求1所述的耐高温高强度触变型凝胶堵漏剂,其特征在于,所述树脂增韧剂为酚醛树脂、环氧树脂、脲醛树脂、氨基树脂中的一种或两种以上的组合。
- 根据权利要求1所述的耐高温高强度触变型凝胶堵漏剂,其特征在于,所述流型调节剂为硅酸镁铝、硅酸镁锂、钠基蒙脱土、锂基蒙脱土中的一种或两种以上的组合。
- 根据权利要求1所述的耐高温高强度触变型凝胶堵漏剂,其特征在于,所述交联调节剂为胶囊型过硫酸钾、胶囊型过硫酸钠、胶囊型过硫酸铵中的一种或两种以上的组合。
- 根据权利要求3所述的耐高温高强度触变型凝胶堵漏剂,其特征在于,所述活性聚合物按如下方法制备得到:(1)向油相溶剂中加入亲油性乳化剂、亲水性乳化剂,搅拌均匀,之后向体系中缓慢滴加疏水单体,搅拌均匀,得到溶液A;(2)将丙烯酰胺单体和功能型交联剂加入至除氧去离子水中,搅拌至完全溶解,然后加入乙二胺四乙酸,搅拌至完全溶解,得到溶液B;(3)将溶液A缓慢滴加至溶液B中,搅拌均匀,升温至40-60℃后,依次加入扩 链剂和引发剂,进行反应,得到微乳液C;(4)向微乳液C中加入沉淀剂,析出固相物质,经洗涤、干燥,得到活性聚合物。
- 根据权利要求9所述的耐高温高强度触变型凝胶堵漏剂,其特征在于,步骤(1)中包括以下条件中的一项或多项:ⅰ.所述的油相溶剂为环己烷、煤油、液体石蜡中的一种或两种以上的组合;ⅱ.所述的亲油性乳化剂为Span60和Span80的混合物,所述混合物中Span60和Span80的质量比为0.2-0.6:1,优选为0.3-0.5:1;所述亲油性乳化剂的质量为油相溶剂质量的0.5-2.5%,优选为0.8-1.8%;ⅲ.所述亲水性乳化剂为Tween60和Tween80的混合物,所述混合物中Tween60和Twee80的质量比为1-4:1,优选为1.5-2.5:1;所述亲水性乳化剂的质量为油相溶剂质量的0.25-1.2%,优选为0.4-0.9%;ⅳ.所述疏水单体为苯乙烯、α-甲基苯乙烯、4-甲基苯乙烯中的一种或两种以上的组合;所述疏水单体的质量为油相溶剂质量的5-12%,优选为6-10%。
- 根据权利要求9所述的耐高温高强度触变型凝胶堵漏剂,其特征在于,步骤(2)中包括以下条件中的一项或多项:ⅰ.所述丙烯酰胺单体与去离子水的质量比为0.05-0.20:1;ⅱ.所述丙烯酰胺单体与疏水单体的质量比为5-15:1;ⅲ.所述功能型交联剂为N-羟甲基丙烯酰胺;所述功能型交联剂的质量为丙烯酰胺单体质量的5-25%,优选为8-17%;ⅳ.所述的乙二胺四乙酸的质量为丙烯酰胺单体质量的0.03-0.2%,优选为0.05-0.1%。
- 根据权利要求9所述的耐高温高强度触变型凝胶堵漏剂,其特征在于,包括以下条件中的一项或多项:ⅰ.步骤(3)中所述扩链剂为乙二胺、三乙醇胺、三羟甲基丙烷、山梨醇中的一种或两种以上的组合;所述的扩链剂的质量为丙烯酰胺单体质量的2-12%,优选为3.5-7%;ⅱ.步骤(3)中所述引发剂为过硫酸钾和/或过硫酸铵,所述的引发剂的质量为丙烯酰胺单体质量的0.2-2.5%,优选为0.5-1.3%;ⅲ.步骤(3)中所述的反应时间为6-12h;ⅳ.步骤(4)中所述沉淀剂为无水乙醇,所述沉淀剂与微乳液C的体积比为0.5-1.0: 1;ⅴ.步骤(4)中所述洗涤为用无水乙醇进行洗涤。
- 权利要求1-12任一项所述的耐高温高强度触变型凝胶堵漏剂的制备方法,包括以下步骤:(a)将丙烯酰胺单体、有机聚合物交联剂和活性聚合物依次加入到水中,搅拌至完全溶解,得到混合液G;(b)将树脂增韧剂加入混合液G中,搅拌至分散均匀,得到混合液H;(c)将流型调节剂加入混合液H中,搅拌至分散均匀,得到混合液J;(d)将交联调节剂加入混合液J中,搅拌至完全溶解,得到混合液K;(e)将混合液K密封静置,固化成胶,得到耐高温高强度触变型凝胶堵漏剂。
- 根据权利要求13所述的耐高温高强度触变型凝胶堵漏剂的制备方法,其特征在于,包括以下条件中的一项或多项:ⅰ.步骤(a)中所述搅拌速率为100-400转/分钟,优选为200-300转/分钟;ⅱ.步骤(b)中所述搅拌速率为100-400转/分钟,优选为200-300转/分钟;ⅲ.步骤(c)所述搅拌速率为200-600转/分钟,优选为300-400转/分钟;ⅳ.步骤(d)中所述搅拌速率为100-400转/分钟,优选为200-300转/分钟;ⅴ.步骤(e)中,固化温度为40-180℃,优选为60-150℃;固化成胶时间为2-12h,优选为3-8h。
- 权利要求1-14任一项所述的耐高温高强度触变型凝胶堵漏剂的应用,用于钻井液堵漏。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010771976.4 | 2020-08-04 | ||
CN202010771976.4A CN111961452B (zh) | 2020-08-04 | 2020-08-04 | 耐高温高强度触变型凝胶堵漏剂及其制备方法与应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022027532A1 true WO2022027532A1 (zh) | 2022-02-10 |
Family
ID=73364248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/107600 WO2022027532A1 (zh) | 2020-08-04 | 2020-08-07 | 耐高温高强度触变型凝胶堵漏剂及其制备方法与应用 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11421140B2 (zh) |
CN (1) | CN111961452B (zh) |
WO (1) | WO2022027532A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116731355A (zh) * | 2023-05-29 | 2023-09-12 | 西安工程大学 | 树脂凝胶互穿网络构型封堵调剖剂及制备方法 |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110734751B (zh) * | 2019-09-24 | 2021-09-28 | 陕西延长石油(集团)有限责任公司研究院 | 一种耐高温复合强化凝胶堵漏剂及其制备方法 |
CN112175596B (zh) * | 2020-04-02 | 2022-11-04 | 中国石油大学(华东) | 用于深层油气储层缝内高效封堵压裂的暂堵剂及其制备方法、以及大缝高压裂工艺 |
CN112877045B (zh) * | 2021-01-12 | 2022-07-05 | 中国石油大学(华东) | 一种体膨型高效段塞凝胶堵漏剂及其制备方法 |
CN115232607B (zh) * | 2021-04-22 | 2023-08-01 | 中国石油化工股份有限公司 | 一种水基钻井液用堵漏剂及其制备方法 |
CN113604206B (zh) * | 2021-06-11 | 2023-01-10 | 中国石油天然气股份有限公司 | 含油污泥暂堵剂及其制备方法 |
CN115536778A (zh) * | 2021-06-29 | 2022-12-30 | 中国石油天然气集团有限公司 | 一种凝胶微球乳液堵漏剂及其制备方法与凝胶微球和油基钻井液 |
CN113429528A (zh) * | 2021-07-01 | 2021-09-24 | 华美孚泰油气增产技术服务有限责任公司 | 一种逆向温敏凝胶压裂液增稠剂及其制备方法 |
CN113265025B (zh) * | 2021-07-21 | 2021-09-17 | 山东诺尔生物科技有限公司 | 一种水基高分子聚合物悬浮乳液及其制备方法 |
CN113549434B (zh) * | 2021-09-18 | 2021-12-07 | 中国石油大学(华东) | 一种保护储层的抗高温可降解凝胶堵漏体系及制备与应用 |
CN113943558B (zh) * | 2021-10-15 | 2023-03-31 | 中国石油大学(华东) | 一种共价键-非共价键复合作用的自愈合凝胶随钻防漏剂及其制备方法与应用 |
CN114163467A (zh) * | 2021-11-05 | 2022-03-11 | 中国石油大学(华东) | 一种适用于裂缝性漏失地层的水基凝胶固结型堵漏体系及其制备方法及应用 |
CN116333704B (zh) * | 2021-12-22 | 2024-05-10 | 中国石油化工股份有限公司 | 一种高温高盐条件下快速成胶的冻胶体系及其配制方法 |
CN114106257B (zh) * | 2021-12-30 | 2022-06-07 | 石家庄华莱鼎盛科技有限公司 | 钻井液用防塌稀释降滤失剂改性多元树脂 |
CN114214047A (zh) * | 2022-01-24 | 2022-03-22 | 西南石油大学 | 一种外柔内刚多壁碳纳米管纳米封堵剂及油基钻井液 |
CN115160998B (zh) * | 2022-02-22 | 2024-05-10 | 中国石油大学(华东) | 一种抗高温高强度可固化树脂凝胶堵漏剂及其制备方法与应用 |
CN114573792B (zh) * | 2022-03-29 | 2023-07-18 | 中海石油(中国)有限公司 | 一种动态交联可降解环氧树脂及其制备方法与高温堵漏应用 |
CN115448640B (zh) * | 2022-08-17 | 2023-09-26 | 中煤科工西安研究院(集团)有限公司 | 高韧性、吸水膨胀性复合注浆材料及其制备方法和应用 |
CN116023914B (zh) * | 2023-01-06 | 2023-07-18 | 山东滨州昱诚化工科技有限公司 | 一种凝胶堵漏剂及其制备方法和应用 |
CN116284607B (zh) * | 2023-03-24 | 2024-06-25 | 中国石油大学(华东) | 一种水溶性可控固化树脂堵漏剂及其制备方法与应用 |
CN116162206B (zh) * | 2023-03-28 | 2024-07-02 | 中国石油大学(北京) | 一种高强度凝胶颗粒及其制备方法 |
CN116333702B (zh) * | 2023-05-23 | 2023-08-22 | 奥联图(西安)能源有限公司 | 一种触变堵漏剂及堵漏方法和制备方法 |
CN117447649B (zh) * | 2023-12-06 | 2024-04-02 | 成都理工大学 | 一种凝胶颗粒封堵剂及制备方法 |
CN117946644B (zh) * | 2024-03-27 | 2024-06-07 | 中国石油大学(华东) | 一种可降解树脂堵漏剂及其制备方法与应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101899291A (zh) * | 2009-05-27 | 2010-12-01 | 中国石油天然气股份有限公司 | 一种水平井堵水用环空化学封隔器材料 |
CN102516431A (zh) * | 2011-12-15 | 2012-06-27 | 中国石油天然气股份有限公司 | 一种堵水用丙烯酰胺凝胶用大分子交联剂及其制备方法 |
CN109666097A (zh) * | 2017-10-17 | 2019-04-23 | 中国石油化工股份有限公司 | 疏水缔合聚合物凝胶微球调剖剂及其制备方法 |
CN109796949A (zh) * | 2019-03-12 | 2019-05-24 | 中国石油大学(华东) | 抗高温凝胶堵漏剂以及制备方法与应用 |
CN109825269A (zh) * | 2019-03-12 | 2019-05-31 | 中国石油大学(华东) | 剪切响应型凝胶堵漏剂及其制备方法与应用 |
CN110734751A (zh) * | 2019-09-24 | 2020-01-31 | 陕西延长石油(集团)有限责任公司研究院 | 一种耐高温复合强化凝胶堵漏剂及其制备方法 |
US20200207927A1 (en) * | 2018-12-26 | 2020-07-02 | Ypf Tecnología S.A. | Hydrogels derived from acrylamide for controlling circulation losses and methods of fabrication thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102504292B (zh) * | 2011-10-31 | 2013-10-02 | 扬州润达油田化学剂有限公司 | 聚合物驱油用有机交联体系及交联剂制备方法 |
CN103967466B (zh) * | 2013-01-27 | 2016-03-09 | 陕西慷麟石油技术开发有限公司 | Pgz油田关停井恢复开采及增产新技术 |
NZ631343A (en) * | 2013-02-28 | 2017-06-30 | Kemira Oyj | Gel compositions for hydraulic fracturing applications |
WO2018009753A1 (en) * | 2016-07-07 | 2018-01-11 | Iowa State University Research Foundaton, Inc. | Multiblock copolymer and method of making thereof |
-
2020
- 2020-08-04 CN CN202010771976.4A patent/CN111961452B/zh active Active
- 2020-08-07 WO PCT/CN2020/107600 patent/WO2022027532A1/zh active Application Filing
- 2020-12-03 US US17/111,291 patent/US11421140B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101899291A (zh) * | 2009-05-27 | 2010-12-01 | 中国石油天然气股份有限公司 | 一种水平井堵水用环空化学封隔器材料 |
CN102516431A (zh) * | 2011-12-15 | 2012-06-27 | 中国石油天然气股份有限公司 | 一种堵水用丙烯酰胺凝胶用大分子交联剂及其制备方法 |
CN109666097A (zh) * | 2017-10-17 | 2019-04-23 | 中国石油化工股份有限公司 | 疏水缔合聚合物凝胶微球调剖剂及其制备方法 |
US20200207927A1 (en) * | 2018-12-26 | 2020-07-02 | Ypf Tecnología S.A. | Hydrogels derived from acrylamide for controlling circulation losses and methods of fabrication thereof |
CN109796949A (zh) * | 2019-03-12 | 2019-05-24 | 中国石油大学(华东) | 抗高温凝胶堵漏剂以及制备方法与应用 |
CN109825269A (zh) * | 2019-03-12 | 2019-05-31 | 中国石油大学(华东) | 剪切响应型凝胶堵漏剂及其制备方法与应用 |
CN110734751A (zh) * | 2019-09-24 | 2020-01-31 | 陕西延长石油(集团)有限责任公司研究院 | 一种耐高温复合强化凝胶堵漏剂及其制备方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116731355A (zh) * | 2023-05-29 | 2023-09-12 | 西安工程大学 | 树脂凝胶互穿网络构型封堵调剖剂及制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111961452B (zh) | 2021-05-07 |
US11421140B2 (en) | 2022-08-23 |
CN111961452A (zh) | 2020-11-20 |
US20210087453A1 (en) | 2021-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022027532A1 (zh) | 耐高温高强度触变型凝胶堵漏剂及其制备方法与应用 | |
CN105441047B (zh) | 一种油溶性水力压裂暂堵转向剂及其制备方法 | |
CN101906292B (zh) | 一种高强度暂堵剂及其制备方法 | |
CN108315003A (zh) | 聚丙烯酰胺类微球深部调驱剂及其制备方法和应用 | |
CN113549434B (zh) | 一种保护储层的抗高温可降解凝胶堵漏体系及制备与应用 | |
CN109337660A (zh) | 一种低压碳酸盐岩储层气井暂堵修井液及其制备、应用方法 | |
CN111410941B (zh) | 一种适用于裂缝性漏失地层的温敏凝胶颗粒堵漏剂及其制备方法与应用 | |
CN109825269B (zh) | 剪切响应型凝胶堵漏剂及其制备方法与应用 | |
CN106317321B (zh) | 用于制备井下交联复合凝胶的组合物以及由其制备的交联复合凝胶 | |
CN110105933A (zh) | 凝胶颗粒堵漏剂及其制备方法和应用 | |
CN103409118B (zh) | 一种水基钻井液超高温稳定剂的合成方法 | |
CN114507515B (zh) | 一种用于裂缝性地层的超分子凝胶堵漏剂及其制备方法与应用 | |
CN110129013A (zh) | 有机-无机复合凝胶堵漏剂及其制备方法与应用 | |
CN111040752B (zh) | 一种低吸附压裂液体系及其制备方法 | |
CN104449655B (zh) | 缝洞型油藏降滤失剂组合物与缝洞型油藏降滤失方法 | |
CN112341997B (zh) | 一种油基钻井液用抗高温凝胶堵漏剂及其制备方法与应用 | |
CN105602543B (zh) | 一种酸压暂堵剂及其制备方法 | |
CN112980407B (zh) | 一种温度可控的凝胶堵漏剂及其制备方法和应用 | |
CN106590560A (zh) | 一种冻胶暂堵剂 | |
CN111961160B (zh) | 一种高分子凝胶堵漏剂用活性聚合物及其制备方法与应用 | |
CN108441196A (zh) | 一种用于低温、裂缝地层地下合成凝胶调剖剂及其制备方法和应用 | |
CN103484087B (zh) | 粘弹性固井封隔材料 | |
CN106467598A (zh) | 一种两性交联聚合物线团及其制备方法 | |
CN116536035B (zh) | 一种适用于恶性井漏地层的可控固化树脂堵漏体系及其制备方法与应用 | |
CN106566492A (zh) | 钻井液用凝胶堵漏剂及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20948578 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20948578 Country of ref document: EP Kind code of ref document: A1 |