[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022025054A1 - Ammonia production method - Google Patents

Ammonia production method Download PDF

Info

Publication number
WO2022025054A1
WO2022025054A1 PCT/JP2021/027734 JP2021027734W WO2022025054A1 WO 2022025054 A1 WO2022025054 A1 WO 2022025054A1 JP 2021027734 W JP2021027734 W JP 2021027734W WO 2022025054 A1 WO2022025054 A1 WO 2022025054A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
selenium
molybdenum complex
atom
formula
Prior art date
Application number
PCT/JP2021/027734
Other languages
French (fr)
Japanese (ja)
Inventor
仁昭 西林
和也 荒芝
裕也 芦田
章一 近藤
隆正 菊池
Original Assignee
国立大学法人東京大学
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 日産化学株式会社 filed Critical 国立大学法人東京大学
Publication of WO2022025054A1 publication Critical patent/WO2022025054A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing ammonia.
  • Non-Patent Document 1 There is a report example on the production of ammonia using a molybdenum complex as a catalyst and water as a proton source in a method for producing ammonia from nitrogen molecules (Non-Patent Document 1). Furthermore, there is a report on the production of ammonia using a molybdenum complex as a catalyst, samarium (II) iodide as a reducing agent, and alcohols or water as a proton source (Non-Patent Document 2).
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to create a molybdenum complex capable of reacting at high speed from the initial stage of reaction initiation.
  • the present inventors have found a pincer-type ligand having three bond sites of two phosphines and carben carbon of a benzoimidazole ring in a molecule derived from a molybdenum complex. It was found that there is a correlation between the chemical shift value of selenium on the carben carbon of 77 SeNMR of the selenium adduct in which the selenium atom is bonded to the three bonding sites and the catalytic activity, and the chemical shift value is lower than 170 ppm.
  • a selenium adduct of a pincer-type ligand indicating a magnetic field value is molecularly designed or synthesized, and the catalyst rotation frequency (Turnover Chemistry (hereinafter abbreviated as TOF)), which is the amount of substance conversion performed by one catalyst molecule per unit time, is determined.
  • TOF Teurnover Chemistry
  • the present invention is, as a first aspect, a production method including a step of producing ammonia from nitrogen molecules in the presence of a molybdenum complex, a reducing agent and a proton source.
  • the proton source is alcohol or water.
  • the molybdenum complex has the formula (1): (In the formula (1), R 1 and R 2 each independently represent an alkyl group having 3 to 6 carbon atoms. X is an iodine atom, a bromine atom or a chlorine atom, R 3 and R 4 each independently represent a hydrogen atom or an electron-withdrawing group.
  • the second aspect is a method for evaluating the catalytic performance of a molybdenum complex when producing ammonia from nitrogen molecules in the presence of a molybdenum complex, a reducing agent and a proton source.
  • the molybdenum complex has the formula (1): (In the formula (1), R 1 and R 2 each independently represent an alkyl group having 3 to 6 carbon atoms. X is an iodine atom, a bromine atom or a chlorine atom, R 3 and R 4 each independently represent a hydrogen atom or an electron-withdrawing group. ) It is a molybdenum complex represented by A formula that is a selenium adduct in which a selenium atom is bonded to the three bonding sites of a pincer-type ligand having three bonding sites of two phosphines and carbene carbon of a benzimidazole ring in a molecule derived from the molybdenum complex.
  • R 1 and R 2 each independently represent an alkyl group having 3 to 6 carbon atoms.
  • X is an iodine atom, a bromine atom or a chlorine atom
  • R 3 and R 4 each independently represent a hydrogen atom or an electron-withdrawing group.
  • R 3 is a fluorine atom
  • R 4 is not a fluorine atom
  • R 4 is not a trifluoromethyl group.
  • a method capable of producing ammonia from the initial stage of reaction initiation is provided by using a molybdenum complex capable of reacting at high speed.
  • 77 of the selenium adduct in which a selenium atom is bonded to the three bonding sites of a pincer-type ligand having three bonding sites of two phosphines and carbene carbon of the benzoimidazole ring in the molecule derived from the molybdenum complex is provided.
  • n stands for normal, “i” stands for iso, “s” stands for secondary, “t” stands for tertiary, “c” stands for cyclo, “o” stands for ortho, and “m”. "” Represents meta, and “p” represents para.
  • Me represents a methyl group
  • Et represents an ethyl group
  • tBu represents a tertiary butyl group
  • TMS represents a trimethylsilyl group
  • thf represents a tetrahydrofuran.
  • R 1 and R 2 each independently represent an alkyl group having 3 to 6 carbon atoms.
  • examples of the alkyl group having 3 to 6 carbon atoms include an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, an n-pentyl group, and an isopentyl group.
  • X represents an iodine atom, a bromine atom or a chlorine atom.
  • X is preferably an iodine atom or a chlorine atom.
  • R 3 and R 4 each independently represent an electron-withdrawing group.
  • An electron-withdrawing group is also called an electron-withdrawing group or an electron-accepting group. In.), It represents a substituent that attracts an electron from the bonded electron side as compared with a hydrogen atom due to a mesomeric effect or an induced effect.
  • R 3 and R 4 have two bonding sites of phosphine and carbene carbon of the benzoimidazole ring in the molecule derived from the molybdenum complex represented by the formula (2).
  • the chemical shift value of 77 SeNMR of selenium on the carbene carbon of the benzoimidazole ring is a substitution showing a value of a magnetic field lower than 170 ppm. It may be a basis. If the combination of R 3 and R 4 satisfies the above chemical shift value, R 3 and R 4 may be electron-withdrawing groups, and if R 3 is an electron-withdrawing group, R 4 is a hydrogen atom. It may be.
  • Examples of the electron-attracting group include substituents whose mesomeric effect and induced effect are electron-attracting, and more specifically, a quaternary ammonium group having an anion as a counter ion, trifluoromethyl.
  • Group perfluoroalkyl group, trichloromethyl group, cyano group, nitro group, formyl group, carboxylic acid group, carbonyl (C 1-6 alkyl) group, carbonyl (C 1-6 alkoxy) group, carbonyl (Ar 6-10 ) Aryl) group, carbonylamino group, carbonyl (C 1-6 alkyl) amino group, carbonyl di (C 1-6 alkyl) amino group, sulfonic acid group, sulfonyl amino group, sulfonyl (C 1-6 alkyl) amino group, Examples thereof include a sulfonyldi (C 1-6 alkyl) amino group and an Ar 6-10 aryl group.
  • C 1-6 alkyl represents an alkyl group having 1 to 6 carbon atoms.
  • specific examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, a trifluoromethyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and an s-butyl group.
  • examples thereof include t-butyl group, n-pentyl group, isopentyl group, neopentyl group, t-pentyl group, 1,1-dimethylpropyl group, n-hexyl group, isohexyl group and cyclohexyl group.
  • C 1-6 alkoxy represents a monovalent group in which the above C 1-6 alkyl is bonded to oxygen.
  • specific examples of the alkoxy group having 1 to 6 carbon atoms include a methoxy group, a trifluoromethoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group and an s-butoxy group.
  • Ar 6-10 aryl represents a substituent obtained by removing one hydrogen atom from the aromatic ring of an aromatic hydrocarbon having 6 to 10 carbon atoms, and is substituted with, for example, at least one of a phenyl group and a 2-position to a 6-position.
  • 2-naphthyl group having is mentioned.
  • Substituents on the aromatic ring of Ar 6-10 aryl include fluoro groups, chloro groups, bromo groups and iodo groups, which are halogen atoms, as well as methyl groups, trifluoromethyl groups, ethyl groups, n-propyl groups and isopropyl. Examples thereof include a group, an n-butyl group, an isobutyl group, an s-butyl group and a t-butyl group.
  • Ar 6-10 aryl examples include phenyl group, o-fluorophenyl group, m-fluorophenyl group, p-fluorophenyl group, o-trifluoromethylphenyl group, m-trifluoromethylphenyl group and p-.
  • Trifluoromethylphenyl group Trifluoromethylphenyl group, o-chlorophenyl group, m-chlorophenyl group, p-chlorophenyl group, o-bromophenyl group, m-bromophenyl group, p-bromophenyl group, o-tolyl group, m-tolyl group, p -Trill group, o-ethylphenyl group, m-ethylphenyl group, p-ethylphenyl group, o- (t-butyl) phenyl group, m- (t-butyl) phenyl group, p- (t-butyl) phenyl Group, 3,5-dimethylphenyl group, 3,5-bistrifluoromethylphenyl group, 3,4,5-trifluorophenyl group, o-methoxyphenyl group, m-methoxyphenyl group, p-me
  • examples of the anion which is the counter ion of the quaternary ammonium group include hexafluorophosphate ion, hexachloroantimonate ion, trifluoromethanesulfonate ion, tetrafluoroborate ion, and phosphate.
  • Ions, ammonium ions, chlorides, bromides, iodides, hydroxydos and the like can be mentioned.
  • the ammonium cation of the quaternary ammonium group includes, for example, -NH 3 cation, -N mono (C 1-12 alkyl) H 2 cation, and -N di (C 1-12 ).
  • C 1-12 alkyl) di (Ar 6-10 aryl) cations are mentioned, where the "-" above represents a bond.
  • the above-mentioned C 1-12 alkyl in the ammonium cation of the quaternary ammonium group independently represents an alkyl group having 1 to 12 carbon atoms.
  • examples of the alkyl group having 1 to 12 carbon atoms include a methyl group, a trifluoromethyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, and t.
  • n-pentyl group isopentyl group, neopentyl group, t-pentyl group, 1,1-dimethylpropyl group, n-hexyl group, isohexyl group, cyclohexyl group, 1-methylhexyl group, n-heptyl group, Isoheptyl group, 1,1,3,3-tetramethylbutyl group, 1-methylheptyl group, 3-methylheptyl group, n-octyl group, 2-ethylhexyl group, 1,1,3-trimethylhexyl group, 1, Examples thereof include 1,3,3-tetramethylpentyl group, n-nonyl group, n-decyl group, n-undecyl group, 1-methylundecyl group, n-dodecyl group, and methyl group, trifluoromethyl group, and the like.
  • the above-mentioned Ar 6-10 aryl in the ammonium cation of the quaternary ammonium group includes the same as the above-mentioned description, and a phenyl group, an o-trifluoromethylphenyl group, and the like.
  • a phenyl group, an o-trifluoromethylphenyl group, and the like Preferably, m-trifluoromethylphenyl group, p-trifluoromethylphenyl group, 3,5-bistrifluoromethylphenyl group, 3,4,5-trifluorophenyl group, 1-naphthyl group and 2-naphthyl group.
  • ammonium cation of the quaternary ammonium group for example, -NH 3 cation, -N trimethyl cation, -N triethyl cation, and -N dimethyl phenyl cation are preferable.
  • examples of the perfluoroalkyl group include ⁇ CF 2 CF 3 , ⁇ (CF 2 ) 2 CF 3 , ⁇ (CF 2 ) 3 CF 3 , ⁇ (CF 2 ) 4 CF. 3 ,-(CF 2 ) 5 CF 3 ,-(CF 2 ) 6 CF 3 ,-(CF 2 ) 7 CF 3 ,-(CF 2 ) 8 CF 3 ,-(CF 2 ) 9 CF 3 ,-(CF 2) 2 ) 10 CF 3 , ⁇ (CF 2 ) 11 CF 3 and the like can be mentioned, with ⁇ (CF 2 ) 9 CF 3 and ⁇ (CF 2 ) 11 CF 3 being preferred.
  • the C 1-6 alkyl in the carbonyl (C 1-6 alkyl) group may be the same as described above, and specific examples of the carbonyl (C 1-6 alkyl) group include the same as described above. Is preferably a carbonylmethyl group, a carbonyltrifluoromethyl group, a carbonylethyl group, a carbonyl n-propyl group, a carbonylisopropyl group, a carbonyl n-butyl group, a carbonylisobutyl group, a carbonyls-butyl group, or a carbonyl t-butyl group.
  • the C 1-6 alkoxy in the carbonyl (C 1-6 alkoxy) group is the same as described above, and specific examples of the carbonyl (C 1-6 alkoxy) group include the same as described above.
  • a carbonyl methoxy group a carbonyl trifluoromethoxy group
  • a carbonyl ethoxy group a carbonyl n-propoxy group
  • a carbonyl isopropoxy group a carbonyl n-butoxy group
  • a carbonyl isobutoxy group a carbonyl s-butoxy group
  • the Ar 6-10 aryl in the carbonyl (Ar 6-10 aryl) group may be the same as described above, and as a specific example of the carbonyl (Ar 6-10 aryl) group.
  • the C 1-6 alkyl in the carbonyl (C 1-6 alkyl) amino group may be the same as described above, and the specific of the carbonyl (C 1-6 alkyl) amino group may be mentioned.
  • Examples include carbonylmethylamino group, carbonyltrifluoromethylamino group, carbonylethylamino group, carbonyl n-propylamino group, carbonylisopropylamino group, carbonyl n-butylamino group, carbonylisobutylamino group, carbonyls-butylamino.
  • the C 1-6 alkyl in the carbonyl di (C 1-6 alkyl) amino group includes the same as described above, and the carbonyl di (C 1-6 alkyl) amino group is mentioned.
  • Specific examples of the above include a carbonyldimethylamino group, a carbonylbis (trifluoromethyl) amino group, a carbonyldiethylamino group, a carbonyldi n-propylamino group, a carbonyldiisopropylamino group, a carbonyldin-butylamino group, and a carbonyldiisobutylamino group.
  • Carbonyldi s-butylamino group, carbonyldi t-butylamino group are preferred.
  • the C 1-6 alkyl in the sulfonyl (C 1-6 alkyl) amino group includes the same as the above description, and the specific of the sulfonyl (C 1-6 alkyl) amino group.
  • Examples include sulfonylmethylamino group, sulfonyltrifluoromethylamino group, sulfonylethylamino group, sulfonyln-propylamino group, sulfonylisopropylamino group, sulfonyln-butylamino group, sulfonylisobutylamino group, sulfonyls-butylamino.
  • Groups, sulfonylt-butylamino groups are preferred.
  • the C 1-6 alkyl in the sulfonyl di (C 1-6 alkyl) amino group includes the same as described above, and the sulfonyl di (C 1-6 alkyl) amino group can be mentioned.
  • sulfonyldimethylamino group examples include a sulfonyldimethylamino group, a sulfonylbis (trifluoromethyl) amino group, a sulfonyldiethylamino group, a sulfonyldin-propylamino group, a sulfonyldiisopropylamino group, a sulfonyldin-butylamino group, and a sulfonyldiisobutylamino group.
  • Ssulfonyldi s-butylamino group, sulfonyldi t-butylamino group are preferred.
  • the Ar 6-10 aryl group includes the same as described above, and specific examples of the Ar 6-10 aryl group include a phenyl group and an o-trifluoromethylphenyl group.
  • M-trifluoromethylphenyl group, p-trifluoromethylphenyl group, 3,5-bistrifluoromethylphenyl group, 3,4,5-trifluorophenyl group, 1-naphthyl group and 2-naphthyl group are preferable.
  • more preferable electron attracting groups are -NH 3 cation, -N trimethyl cation, -N triethyl cation, -N dimethylphenyl cation,-(CF 2 ) 9 CF 3 and-(. CF 2 ) 11 CF 3 , a fluorine atom, a chlorine atom and a trifluoromethyl group, and particularly preferable electron-electron attracting groups are a fluorine atom, a chlorine atom and a trifluoromethyl group.
  • examples of the reducing agent include a halogenated product (II) of a lanthanoid-based metal
  • examples of the lanthanoid-based metal include La, Ce, Pr, Nd, Pm, Sm, Eu, and Gd.
  • examples thereof include Tb, Dy, Ho, Er, Tm, Yb and Lu, of which Sm is preferable
  • examples of the halogen include chlorine, bromine and iodine, of which iodine is preferable. Therefore, as the halide (II) of the lanthanoid-based metal, samarium halide (II) is preferable, and samarium iodide (II) is more preferable.
  • examples of the proton source include alcohol and water.
  • the alcohol to be used glycol may be used, or ROH (R may be a chain, cyclic or branched alkyl group having 1 to 6 carbon atoms in which a hydrogen atom may be replaced with a fluorine atom, or an alkyl.
  • a phenyl group which may have a group may be used.
  • the glycol include ethylene glycol, propylene glycol and diethylene glycol.
  • ROH examples include methanol, ethanol, propanol, isopropanol, n-butyl alcohol, s-butyl alcohol, isobutyl alcohol, t-butyl alcohol and the like as chain or branched alkyl alcohols
  • examples of the cyclic alcohol alcohol include cyclic alcohols. Examples thereof include cyclopropanol, cyclopentanol, cyclohexanol and the like, and examples of the alcohol containing a fluorine atom include trifluoroethyl alcohol and tetrafluoroethyl alcohol, and a phenyl group which may have an alkyl group.
  • examples of the alcohol contained include phenol, cresol, xylenol and the like.
  • preferable proton sources are water and ethylene glycol, and water is more preferable.
  • the solvent is not particularly limited, and examples thereof include a cyclic ether solvent, a chain ether solvent, a nitrile solvent, a hydrocarbon solvent, and a halogen-containing hydrocarbon solvent.
  • examples of the cyclic ether solvent include tetrahydrofuran, 1,4-dioxane and the like.
  • examples of the chain ether solvent include diethyl ether, diisopropyl ether, 1,2-dimethoxyethane, cyclopentyl methyl ether and the like.
  • the nitrile-based solvent include acetonitrile, propionitrile and the like.
  • hydrocarbon solvent examples include aromatic hydrocarbons such as toluene and o-xylene, and saturated hydrocarbons such as hexane, heptane and petroleum ether.
  • halogen-containing hydrocarbon solvent examples include dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, 1,1,1-trichloroethane, trichlorethylene, tetrachlorethylene and the like.
  • a preferred solvent is tetrahydrofuran.
  • dichloromethane is a preferable solvent when the molybdenum complex used as a catalyst is added.
  • the yield of produced ammonia can be measured by a known method.
  • Ammonia in an aqueous sulfuric acid solution can be quantified using, for example, a known Indophenol method (Analytical Chemistry, 1967, Vol. 39, pp. 971-974).
  • a pincer-type ligand having three bonding sites of two phosphines and carbene carbon of a benzimidazole ring in a molecule derived from a molybdenum complex is a ligand represented by the following formula (4). show. R 1 , R 2 , R 3 and R 4 in the equation are the same as those described in the equation (1).
  • a selenium atom is bonded to the three bonding sites of a pincer-type ligand having three bonding sites of two phosphines and a carbene carbon of a benzimidazole ring in a molecule derived from the molybdenum complex represented by the formula (2).
  • Selenium adduct In, R 1 , R 2 , R 3 and R 4 in the formula are the same as those described in the formula (1).
  • selenium in which a selenium atom is bonded to the three bonding sites of a pincer-type ligand having three bonding sites of two phosphines and carbene carbon of a benzoimidazole ring in a molecule derived from a molybdenum complex.
  • the adduct is also referred to as a selenium adduct of a pincer-type ligand.
  • the chemical shift value and catalyst of 77 SeNMR of selenium on the carbene carbon of the benzimidazole ring in the structure There is a correlation between rotation frequency (TOF).
  • the selenium of the pincer-type ligand such that the chemical shift value of 77 SeNMR of the selenium atom bonded to the carbene carbon of the benzoimidazole ring in the structure of the selenium adduct of the pincer-type ligand shows a value of a magnetic field lower than 170 ppm.
  • a molybdenum complex having a pincer-type ligand corresponding to an adduct is a molybdenum complex having a TOF of more than 200 (1 / min).
  • the selenium adduct of the pincer-type ligand can be prepared as a very stable compound and is easy to handle. Further, compared to molybdenum, 77 Se has better sensitivity to NMR and is superior in that the electronic state of the molybdenum complex can be quantitatively estimated.
  • Molybdenum complex (1a) as a catalyst was used to produce ammonia from nitrogen molecules.
  • a 0.05 mmol / L dichloromethane solution of the molybdenum complex (1a) was prepared in a Schlenk reaction vessel. Under normal pressure nitrogen atmosphere, a dichloromethane solution (500 ⁇ L, 25 nmol) of the molybdenum complex (1a) as a catalyst and diiodobis (tetrahydrofuran) samarium (II) (397.6 mg, 0.725 mmol) as a reducing agent were placed in a reaction vessel.
  • the reaction vessel was distilled under reduced pressure and the distillate was recovered with a sulfuric acid aqueous solution (0.5 M, 10 mL).
  • the amount of ammonia in the aqueous sulfuric acid solution was determined by the indophenol method. As a result, 8000 equivalents of ammonia was produced per catalyst (molybdenum complex).
  • the TOF which is the catalyst rotation frequency, was 267 (1 / min).
  • Example 2 to 5 In Examples 2 to 5, the molybdenum complex (1a) as a catalyst is changed, the molybdenum complex (1c) is changed in Example 2, the molybdenum complex (1d) is used in Example 3, and the molybdenum complex (1d) is used in Example 4. 1e), molybdenum complex (1f) in Example 5
  • the experimental operations other than those used were the same as in Example 1 to produce ammonia from nitrogen molecules.
  • Table 1 shows the amount of ammonia per molybdenum complex used as a catalyst and the results of TOF.
  • reaction mixture was concentrated to 5 mL, filtered through a filter paper, and then dried under vacuum.
  • the obtained solid was washed twice with toluene (5 mL), and then the solution dissolved in dichloromethane (20 mL) was filtered through Celite. Hexane (30 mL) was gently added to the filtered filtrate and then allowed to stand for 5 days to generate crystals. The supernatant liquid that produced the crystals was removed, washed with hexane (5 mL) three times, and then dried under vacuum to turn the molybdenum complex (1a) into brown crystals in 166.3 mg (0.24 mmol, 13% yield). ).
  • Anal. Calcd. for C 25 H 42 C l5 MoN 2 P 2 C, 42.55; H, 6.00; N, 3.97, Found: C, 41.66; H, 5.68; N, 3.20.
  • the synthesis of the molybdenum complex (1d) was carried out using 1,2-diaminobenzene.
  • the synthesis of the molybdenum complex (1e) was carried out using 1,2-diamino-4,5-difluorobenzene.
  • the synthesis of the molybdenum complex (1f) was carried out using 1,2-diamino-4-trifluoromethylbenzene. Can be synthesized.
  • the synthesis of the selenium adduct (6d) was carried out using 1,2-diaminobenzene.
  • the synthesis of the selenium adduct (6e) was carried out using 1,2-diamino-4,5-difluorobenzene.
  • the synthesis of the selenium adduct (6f) was carried out using 1,2-diamino-4-trifluoromethylbenzene.
  • the compounds represented by the formulas (3c) to (3f) can be synthesized with reference to the description of [Synthesis Example 1], and the formulas (6c) to 6c can be synthesized with reference to the description of [Synthesis Example 6].
  • a selenium adduct of a pincer-type ligand represented by the formula (6f) can be synthesized.
  • a selenium adduct of a pincer-type ligand represented by the formula (6c) Melting point: 239.5 ° C to 240.7 ° C 1 H NNR (THF-d 8 ): ⁇ 8.44 (s, 2H), 5.78 (br, 4H), 2.33 (s, 6H), 1.46 (d, J 15.6Hz, 36H) ).
  • FIG. 1 is a diagram in which the measured value of TOF, which is the amount of substance conversion performed by one molecule of the catalyst of the molybdenum complex represented by the formulas (1a) to (1f) corresponding to the selenium adduct, is plotted on the vertical axis. Shown in.
  • the pincer-type ligand having an electron-withdrawing group introduced into R 3 and R 4 or the molybdenum complex coordinated with the pincer-type ligand having an electron-withdrawing group introduced into R 3 is affected by the electron-withdrawing group. It was confirmed that the catalytic activity of the molybdenum complex was improved. One of the reasons for this is considered to be that the ⁇ -acceptability of the benzimidazole ring in the partial structure of the pincer-type ligand becomes stronger.
  • the chemical shift value of 77 SeNMR of selenium on the carbene carbon of the benzimidazole ring is lower than 170 ppm. It can be inferred that the catalytic activity of the molybdenum complex in which an electron-withdrawing group is introduced into R 3 and R 4 corresponding to the above is a molybdenum complex having a TOF of more than 200 (1 / min). ..
  • the present invention can be used as a method for producing ammonia.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

[Problem] To provide an ammonia production method using a molybdenum complex. [Solution] This ammonia production method comprises a step for generating ammonia from a nitrogen molecule in the presence of a molybdenum complex, a reducing agent, and a proton source, wherein: the proton source is alcohol or water; the molybdenum complex is a molybdenum complex represented by formula (1) (in formula (1), R1 and R2 each independently represent a C3-C6 alkyl group, X is an iodine atom, a bromine atom, or a chlorine atom, and R3 and R4 each independently represent a hydrogen atom or an electron-withdrawing group); and in a selenium adduct of a pincer-type ligand represented by formula (2) (in formula (2), R1, R2, R3, and R4 are the same as above), which is a selenium adduct in which selenium atoms are bonded to three bonding sites of a pincer-type ligand having the three bonding sites including two phosphines and carbene carbon of a benzimidazole ring in a molecule derived from the molybdenum complex, the 77SeNMR chemical shift value of selenium on the carbene carbon of the benzimidazole ring is a value of a magnetic field lower than 170 ppm.

Description

アンモニアの製造方法Ammonia production method
 本発明は、アンモニアの製造方法に関する。 The present invention relates to a method for producing ammonia.
 窒素分子からアンモニアを製造する方法において、触媒にモリブデン錯体を使用して、プロトン源に水を用いたアンモニアの製造に関する報告例がある(非特許文献1)。さらには、触媒にモリブデン錯体を使用して、還元剤としてヨウ化サマリウム(II)を、プロトン源としてアルコール類又は水を用いたアンモニアの製造に関する報告例がある(非特許文献2)。 There is a report example on the production of ammonia using a molybdenum complex as a catalyst and water as a proton source in a method for producing ammonia from nitrogen molecules (Non-Patent Document 1). Furthermore, there is a report on the production of ammonia using a molybdenum complex as a catalyst, samarium (II) iodide as a reducing agent, and alcohols or water as a proton source (Non-Patent Document 2).
 窒素分子からアンモニアを製造する方法において、触媒にモリブデン錯体を用いた場合に、実用化の観点から必要時に直ちにアンモニアを得られることも一つの重要な観点であり、反応開始の初期から高速で反応できる触媒がのぞまれている。 In the method of producing ammonia from nitrogen molecules, when a molybdenum complex is used as a catalyst, it is also an important point of view that ammonia can be obtained immediately when necessary from the viewpoint of practical use, and the reaction is carried out at high speed from the initial stage of the reaction start. A catalyst that can be produced is desired.
 本発明は、上述した課題を解決するためになされたものであり、反応開始の初期から高速で反応できるモリブデン錯体を創出することを主目的とする。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to create a molybdenum complex capable of reacting at high speed from the initial stage of reaction initiation.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、モリブデン錯体から導かれる分子内に二つのホスフィンとベンゾイミダゾール環のカルベン炭素の3つの結合箇所を持つピンサー型配位子の当該3つの結合箇所にセレン原子が結合したセレン付加体の77SeNMRのカルベン炭素上のセレンの化学シフト値と触媒活性の間に相関関係があることを見出し、該化学シフト値が170ppmよりも低磁場の値を示すピンサー型配位子のセレン付加体を分子設計又は合成し、触媒1分子が単位時間当たりに行う物質変換量である触媒回転頻度(Turnover Frequency(以下、TOFと略す。)が200(1/分)を超えるモリブデン錯体を見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have found a pincer-type ligand having three bond sites of two phosphines and carben carbon of a benzoimidazole ring in a molecule derived from a molybdenum complex. It was found that there is a correlation between the chemical shift value of selenium on the carben carbon of 77 SeNMR of the selenium adduct in which the selenium atom is bonded to the three bonding sites and the catalytic activity, and the chemical shift value is lower than 170 ppm. A selenium adduct of a pincer-type ligand indicating a magnetic field value is molecularly designed or synthesized, and the catalyst rotation frequency (Turnover Chemistry (hereinafter abbreviated as TOF)), which is the amount of substance conversion performed by one catalyst molecule per unit time, is determined. We have found more than 200 (1 / min) molybdenum complexes and have completed the present invention.
 即ち、すなわち本発明は、第1観点として、モリブデン錯体、還元剤及びプロトン源の存在下、窒素分子からアンモニアを生成する工程を含む製造方法であって、
 前記プロトン源は、アルコール又は水であり、
 前記モリブデン錯体は、式(1):
Figure JPOXMLDOC01-appb-C000007
(式(1)中、R及びRは、各々独立して、炭素原子数3乃至6のアルキル基を表し、
 Xはヨウ素原子、臭素原子又は塩素原子であり、
 R及びRは、各々独立して、水素原子、または、電子求引基を表す。)
で表されるモリブデン錯体であり、
 該モリブデン錯体から導かれる分子内に二つのホスフィンとベンゾイミダゾール環のカルベン炭素の3つの結合箇所を持つピンサー型配位子の当該3つの結合箇所にセレン原子が結合したセレン付加体である式(2):
Figure JPOXMLDOC01-appb-C000008
(式(2)中、R、R、R及びRは、上記と同じ。)
で表されるピンサー型配位子のセレン付加体において、ベンゾイミダゾール環のカルベン炭素上のセレンの77SeNMRの化学シフト値が170ppmよりも低磁場の値である、
アンモニアの製造方法に関する。
 第2観点として、モリブデン錯体、還元剤及びプロトン源の存在下、窒素分子からアンモニアを製造する際のモリブデン錯体の触媒性能を評価する方法であって、
 前記モリブデン錯体は、式(1):
Figure JPOXMLDOC01-appb-C000009
(式(1)中、R及びRは、各々独立して、炭素原子数3乃至6のアルキル基を表し、
 Xはヨウ素原子、臭素原子又は塩素原子であり、
 R及びRは、各々独立して、水素原子、または、電子求引基を表す。)
で表されるモリブデン錯体であり、
該モリブデン錯体から導かれる分子内に二つのホスフィンとベンゾイミダゾール環のカルベン炭素の3つの結合箇所を持つピンサー型配位子の当該3つの結合箇所にセレン原子が結合したセレン付加体である式(2):
Figure JPOXMLDOC01-appb-C000010
(式(2)中、R、R、R及びRは、上記と同じ。)
で表されるピンサー型配位子のセレン付加体を調製する工程、並びに
当該ピンサー型配位子のセレン付加体の77SeNMRを測定する工程を含む、
ベンゾイミダゾール環のカルベン炭素上のセレンの77SeNMRの化学シフト値が170ppmよりも低磁場の値であるか否かで、触媒回転頻度(Turnover Frequency)が200(1/分)を超えるモリブデン錯体であるか否かを判断する、方法に関する。
 第3観点として、下記式(1)で表されるモリブデン錯体であり、
Figure JPOXMLDOC01-appb-C000011
(式(1)中、R及びRは、各々独立して、炭素原子数3乃至6のアルキル基を表し、
 Xはヨウ素原子、臭素原子又は塩素原子であり、
 R及びRは、各々独立して、水素原子、または、電子求引基を表す。
 ただし、Rがフッ素原子のとき、Rは、フッ素原子ではなく、Rが水素原子のとき、Rはトリフルオロメチル基ではない。)
該モリブデン錯体から導かれる分子内に二つのホスフィンとベンゾイミダゾール環のカルベン炭素の3つの結合箇所を持つピンサー型配位子の当該3つの結合箇所にセレン原子が結合したセレン付加体である式(2):
Figure JPOXMLDOC01-appb-C000012
(式(2)中、R、R、R及びRは、上記と同じ。)
で表されるピンサー型配位子のセレン付加体において、ベンゾイミダゾール環のカルベン炭素上のセレンの77SeNMRの化学シフト値が170ppmよりも低磁場の値である、モリブデン錯体に関する。
That is, the present invention is, as a first aspect, a production method including a step of producing ammonia from nitrogen molecules in the presence of a molybdenum complex, a reducing agent and a proton source.
The proton source is alcohol or water.
The molybdenum complex has the formula (1):
Figure JPOXMLDOC01-appb-C000007
(In the formula (1), R 1 and R 2 each independently represent an alkyl group having 3 to 6 carbon atoms.
X is an iodine atom, a bromine atom or a chlorine atom,
R 3 and R 4 each independently represent a hydrogen atom or an electron-withdrawing group. )
It is a molybdenum complex represented by
A formula that is a selenium adduct in which a selenium atom is bonded to the three bonding sites of a pincer-type ligand having three bonding sites of two phosphines and carbene carbon of a benzimidazole ring in a molecule derived from the molybdenum complex. 2):
Figure JPOXMLDOC01-appb-C000008
(In equation (2), R 1 , R 2 , R 3 and R 4 are the same as above.)
In the selenium adduct of the pincer-type ligand represented by, the chemical shift value of 77 SeNMR of selenium on the carbene carbon of the benzimidazole ring is a value in a magnetic field lower than 170 ppm.
Regarding the method of producing ammonia.
The second aspect is a method for evaluating the catalytic performance of a molybdenum complex when producing ammonia from nitrogen molecules in the presence of a molybdenum complex, a reducing agent and a proton source.
The molybdenum complex has the formula (1):
Figure JPOXMLDOC01-appb-C000009
(In the formula (1), R 1 and R 2 each independently represent an alkyl group having 3 to 6 carbon atoms.
X is an iodine atom, a bromine atom or a chlorine atom,
R 3 and R 4 each independently represent a hydrogen atom or an electron-withdrawing group. )
It is a molybdenum complex represented by
A formula that is a selenium adduct in which a selenium atom is bonded to the three bonding sites of a pincer-type ligand having three bonding sites of two phosphines and carbene carbon of a benzimidazole ring in a molecule derived from the molybdenum complex. 2):
Figure JPOXMLDOC01-appb-C000010
(In equation (2), R 1 , R 2 , R 3 and R 4 are the same as above.)
A step of preparing a selenium adduct of a pincer-type ligand represented by the above, and a step of measuring 77 SeNMR of the selenium adduct of the pincer-type ligand.
In a molybdenum complex having a Turnover Frequency of more than 200 (1 / min), depending on whether the chemical shift value of 77 SeNMR of selenium on the carbene carbon of the benzimidazole ring is a value in a magnetic field lower than 170 ppm. Regarding the method of determining whether or not there is.
As a third viewpoint, it is a molybdenum complex represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000011
(In the formula (1), R 1 and R 2 each independently represent an alkyl group having 3 to 6 carbon atoms.
X is an iodine atom, a bromine atom or a chlorine atom,
R 3 and R 4 each independently represent a hydrogen atom or an electron-withdrawing group.
However, when R 3 is a fluorine atom, R 4 is not a fluorine atom, and when R 3 is a hydrogen atom, R 4 is not a trifluoromethyl group. )
A formula that is a selenium adduct in which a selenium atom is bonded to the three bonding sites of a pincer-type ligand having three bonding sites of two phosphines and carbene carbon of a benzimidazole ring in a molecule derived from the molybdenum complex. 2):
Figure JPOXMLDOC01-appb-C000012
(In equation (2), R 1 , R 2 , R 3 and R 4 are the same as above.)
It relates to a molybdenum complex in which the chemical shift value of 77 SeNMR of selenium on the carbene carbon of the benzimidazole ring is a value in a magnetic field lower than 170 ppm in the selenium adduct of the pincer type ligand represented by.
 本発明のアンモニアの製造方法によれば、高速で反応できるモリブデン錯体を用いることで、反応開始の初期からアンモニア製造を実施できる方法を提供する。
 また、上記モリブデン錯体から導かれる分子内に二つのホスフィンとベンゾイミダゾール環のカルベン炭素の3つの結合箇所を持つピンサー型配位子の当該3つの結合箇所にセレン原子が結合したセレン付加体の77SeNMRを測定することで、上記モリブデン錯体の触媒性能を評価できる方法を提供する。
According to the method for producing ammonia of the present invention, a method capable of producing ammonia from the initial stage of reaction initiation is provided by using a molybdenum complex capable of reacting at high speed.
In addition, 77 of the selenium adduct in which a selenium atom is bonded to the three bonding sites of a pincer-type ligand having three bonding sites of two phosphines and carbene carbon of the benzoimidazole ring in the molecule derived from the molybdenum complex. Provided is a method capable of evaluating the catalytic performance of the molybdenum complex by measuring SeNMR.
式(6’)で示したR及びRに種々の置換基を導入したピンサー型配位子のセレン付加体のベンゾイミダゾール環のカルベン炭素上のセレンの77SeNMRの化学シフト値に対して、それぞれのピンサー型配位子のセレン付加体に対応する式(1’)で示したモリブデン錯体が触媒するアンモニア合成のTOF(1/分)の値をプロットしたグラフである。For the 77 SeNMR chemical shift value of selenium on the carbene carbon of the benzoimidazole ring of the selenium adduct of the pincer-type ligand having various substituents introduced into R 3 and R 4 represented by the formula (6'). , Is a graph plotting the TOF (1 / min) value of ammonia synthesis catalyzed by the molybdenum complex represented by the formula (1') corresponding to the selenium adduct of each pincer-type ligand.
 本明細書における「n」はノルマルを、「i」はイソを、「s」はセカンダリーを、「t」はターシャリーを、「c」はシクロを表し、「o」はオルトを、「m」はメタを、「p」はパラを表す。「Me」はメチル基を、「Et」はエチル基を、「Bu」はターシャリーブチル基を、「TMS」はトリメチルシリル基を、「thf」はテトラヒドロフランを表す。
 本発明のアンモニアの製造方法、及び該製造方法に用いる式(1)で表されるモリブデン錯体の好適な実施形態を以下に示す。
 本発明のアンモニアの製造方法及び製造装置の好適な実施形態を以下に示す。
In the present specification, "n" stands for normal, "i" stands for iso, "s" stands for secondary, "t" stands for tertiary, "c" stands for cyclo, "o" stands for ortho, and "m". "" Represents meta, and "p" represents para. “Me” represents a methyl group, “Et” represents an ethyl group, “ tBu ” represents a tertiary butyl group, “TMS” represents a trimethylsilyl group, and “thf” represents a tetrahydrofuran.
The method for producing ammonia of the present invention and the preferred embodiment of the molybdenum complex represented by the formula (1) used in the production method are shown below.
Suitable embodiments of the method and apparatus for producing ammonia of the present invention are shown below.
 式(1)で表されるモリブデン錯体において、
 R及びRは、各々独立して、炭素原子数3乃至6のアルキル基を表す。ここで、炭素原子数3乃至6のアルキル基としては、例えば、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、1,1-ジメチルプロピル基、n-ヘキシル基、イソヘキシル基、及びシクロヘキシル基等が挙げられ、t-ブチル基が好ましい。
 Xはヨウ素原子、臭素原子又は塩素原子を表す。ここで、Xはヨウ素原子及び塩素原子が好ましい。
In the molybdenum complex represented by the formula (1)
R 1 and R 2 each independently represent an alkyl group having 3 to 6 carbon atoms. Here, examples of the alkyl group having 3 to 6 carbon atoms include an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, an n-pentyl group, and an isopentyl group. , Neopentyl group, t-pentyl group, 1,1-dimethylpropyl group, n-hexyl group, isohexyl group, cyclohexyl group and the like, and t-butyl group is preferable.
X represents an iodine atom, a bromine atom or a chlorine atom. Here, X is preferably an iodine atom or a chlorine atom.
 R及びRは、各々独立して、電子求引基を表す。電子求引基とは、電子吸引基、電子受容性基とも言われ、電子説(電子説は反応物質の電子密度や結合状態の変化に注目してできるだけ統一的に解釈しようとする理論をいう。)において、メソメリー効果や誘起効果により、水素原子と比較して結合電子側から電子を引き付ける置換基のことを表す。 R 3 and R 4 each independently represent an electron-withdrawing group. An electron-withdrawing group is also called an electron-withdrawing group or an electron-accepting group. In.), It represents a substituent that attracts an electron from the bonded electron side as compared with a hydrogen atom due to a mesomeric effect or an induced effect.
 本実施形態のアンモニアの製造方法においてのR及びRは、式(2)で表されるモリブデン錯体から導かれる分子内に二つのホスフィンとベンゾイミダゾール環のカルベン炭素の3つの結合箇所を持つピンサー型配位子の当該3つの結合箇所にセレン原子が結合したセレン付加体において、ベンゾイミダゾール環のカルベン炭素上のセレンの77SeNMRの化学シフト値が、170ppmよりも低磁場の値を示す置換基であればよい。上記の化学シフト値を満たすR及びRの組み合わせであれば、R及びRが電子求引基であってよいし、Rが電子求引基の場合、Rは、水素原子であってもよい。 In the method for producing ammonia of the present embodiment, R 3 and R 4 have two bonding sites of phosphine and carbene carbon of the benzoimidazole ring in the molecule derived from the molybdenum complex represented by the formula (2). In a selenium adduct in which a selenium atom is bonded to the three bonds of a pincer-type ligand, the chemical shift value of 77 SeNMR of selenium on the carbene carbon of the benzoimidazole ring is a substitution showing a value of a magnetic field lower than 170 ppm. It may be a basis. If the combination of R 3 and R 4 satisfies the above chemical shift value, R 3 and R 4 may be electron-withdrawing groups, and if R 3 is an electron-withdrawing group, R 4 is a hydrogen atom. It may be.
 本実施形態のアンモニアの製造方法において、電子求引基としては、例えば、メソメリー効果は電子供与性であるが誘起効果の電子求引性の寄与が大きい置換基が挙げられ、より具体的には、フッ素原子、塩素原子、臭素原子、ヨウ素原子、-CHCl又は-CH=CHNOが挙げられる。また、電子求引基としては、例えば、メソメリー効果及び誘起効果が電子求引性である置換基が挙げられ、より具体的には、アニオンを対イオンとする第四級アンモニウム基、トリフルオロメチル基、パーフルオロアルキル基、トリクロロメチル基、シアノ基、ニトロ基、ホルミル基、カルボン酸基、カルボニル(C1-6アルキル)基、カルボニル(C1-6アルコキシ)基、カルボニル(Ar6-10アリール)基、カルボニルアミノ基、カルボニル(C1-6アルキル)アミノ基、カルボニルジ(C1-6アルキル)アミノ基、スルホン酸基、スルホニルアミノ基、スルホニル(C1-6アルキル)アミノ基、スルホニルジ(C1-6アルキル)アミノ基、Ar6-10アリール基が挙げられる。 In the method for producing ammonia of the present embodiment, examples of the electron-withdrawing group include a substituent whose mesomeric effect is electron-donating but the inductive effect has a large contribution to the electron-withdrawing property, and more specifically. , Fluorine atom, chlorine atom, bromine atom, iodine atom, -CH 2 Cl or -CH = CHNO 2 . Examples of the electron-attracting group include substituents whose mesomeric effect and induced effect are electron-attracting, and more specifically, a quaternary ammonium group having an anion as a counter ion, trifluoromethyl. Group, perfluoroalkyl group, trichloromethyl group, cyano group, nitro group, formyl group, carboxylic acid group, carbonyl (C 1-6 alkyl) group, carbonyl (C 1-6 alkoxy) group, carbonyl (Ar 6-10 ) Aryl) group, carbonylamino group, carbonyl (C 1-6 alkyl) amino group, carbonyl di (C 1-6 alkyl) amino group, sulfonic acid group, sulfonyl amino group, sulfonyl (C 1-6 alkyl) amino group, Examples thereof include a sulfonyldi (C 1-6 alkyl) amino group and an Ar 6-10 aryl group.
 C1-6アルキルは、炭素原子数1乃至6のアルキル基を表す。ここで、炭素原子数1乃至6のアルキル基の具体例としては、メチル基、トリフルオロメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、1,1-ジメチルプロピル基、n-ヘキシル基、イソヘキシル基、シクロヘキシル基等が挙げられる。 C 1-6 alkyl represents an alkyl group having 1 to 6 carbon atoms. Here, specific examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, a trifluoromethyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and an s-butyl group. Examples thereof include t-butyl group, n-pentyl group, isopentyl group, neopentyl group, t-pentyl group, 1,1-dimethylpropyl group, n-hexyl group, isohexyl group and cyclohexyl group.
 C1-6アルコキシは、前記のC1-6アルキルが、酸素と結合した形の一価の基を表す。ここで、炭素原子数1乃至6のアルコキシ基の具体例としては、メトキシ基、トリフルオロメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基、n-ペントキシ基、イソペントキシ基、ネオペントキシ基、t-ペントキシ基、1,1-ジメチルプロポキシ基、n-ヘキソキシ基、イソヘキソキシ基、シクロヘキソキシ基等が挙げられる。 C 1-6 alkoxy represents a monovalent group in which the above C 1-6 alkyl is bonded to oxygen. Here, specific examples of the alkoxy group having 1 to 6 carbon atoms include a methoxy group, a trifluoromethoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group and an s-butoxy group. , T-butoxy group, n-pentoxy group, isopentoxy group, neopentoxy group, t-pentoxy group, 1,1-dimethylpropoxy group, n-hexoxy group, isohexoxy group, cyclohexoxy group and the like.
 Ar6-10アリールとしては、炭素原子数6乃至10の芳香族炭化水素の芳香環からひとつの水素原子を取り去った置換基を表し、例えばフェニル基、2位から6位の少なくとも1つに置換基を有するフェニル基、1-ナフチル基、2位から8位の少なくとも1つに置換基を有する1-ナフチル基、2-ナフチル基及び1位及び3位から8位の少なくとも1つに置換基を有する2-ナフチル基等が挙げられる。Ar6-10アリールの芳香環上の置換基をしては、ハロゲン原子であるフルオロ基、クロロ基、ブロモ基及びヨード基並びにメチル基、トリフルオロメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基及びt-ブチル基等が挙げられる。Ar6-10アリールの具体例としては、フェニル基、o-フルオロフェニル基、m-フルオロフェニル基、p-フルオロフェニル基、o-トリフルオロメチルフェニル基、m-トリフルオロメチルフェニル基、p-トリフルオロメチルフェニル基、o-クロロフェニル基、m-クロロフェニル基、p-クロロフェニル基、o-ブロモフェニル基、m-ブロモフェニル基、p-ブロモフェニル基、o-トリル基、m-トリル基、p-トリル基、o-エチルフェニル基、m-エチルフェニル基、p-エチルフェニル基、o-(t-ブチル)フェニル基、m-(t-ブチル)フェニル基、p-(t-ブチル)フェニル基、3,5-ジメチルフェニル基、3,5-ビストリフルオロメチルフェニル基、3,4,5-トリフルオロフェニル基、o-メトキシフェニル基、m-メトキシフェニル基、p-メトキシフェニル基、1-ナフチル基、2-ナフチル基、2-フルオロナフタレン-1-イル基、3-フルオロナフタレン-1-イル基、4-フルオロナフタレン-1-イル基、5-フルオロナフタレン-1-イル基、6-フルオロナフタレン-1-イル基、7-フルオロナフタレン-1-イル基、8-フルオロナフタレン-1-イル基、2-クロロナフタレン-1-イル基、3-クロロナフタレン-1-イル基、4-クロロナフタレン-1-イル基、5-クロロナフタレン-1-イル基、6-クロロナフタレン-1-イル基、7-クロロナフタレン-1-イル基、8-クロロナフタレン-1-イル基、2-ブロモナフタレン-1-イル基、3-ブロモナフタレン-1-イル基、4-ブロモナフタレン-1-イル基、5-ブロモナフタレン-1-イル基、6-ブロモナフタレン-1-イル基、7-ブロモナフタレン-1-イル基、8-ブロモナフタレン-1-イル基、2-ヨードナフタレン-1-イル基、3-ヨードナフタレン-1-イル基、4-ヨードナフタレン-1-イル基、5-ヨードナフタレン-1-イル基、6-ヨードナフタレン-1-イル基、7-ヨードナフタレン-1-イル基、8-ヨードナフタレン-1-イル基、2-メチルナフタレン-1-イル基、3-メチルナフタレン-1-イル基、4-メチルナフタレン-1-イル基、5-メチルナフタレン-1-イル基、6-メチルナフタレン-1-イル基、7-メチルナフタレン-1-イル基、8-メチルナフタレン-1-イル基、2-エチルナフタレン-1-イル基、3-エチルナフタレン-1-イル基、4-エチルナフタレン-1-イル基、5-エチルナフタレン-1-イル基、6-エチルナフタレン-1-イル基、7-エチルナフタレン-1-イル基、8-エチルナフタレン-1-イル基、2-n-プロピルナフタレン-1-イル基、3-n-プロピルナフタレン-1-イル基、4-n-プロピルナフタレン-1-イル基、5-n-プロピルナフタレン-1-イル基、6-n-プロピルナフタレン-1-イル基、7-n-プロピルナフタレン-1-イル基、8-n-プロピルナフタレン-1-イル基、2-i-プロピルナフタレン-1-イル基、3-i-プロピルナフタレン-1-イル基、4-i-プロピルナフタレン-1-イル基、5-i-プロピルナフタレン-1-イル基、6-i-プロピルナフタレン-1-イル基、7-i-プロピルナフタレン-1-イル基、8-i-プロピルナフタレン-1-イル基、2-c-プロピルナフタレン-1-イル基、3-c-プロピルナフタレン-1-イル基、4-c-プロピルナフタレン-1-イル基、5-c-プロピルナフタレン-1-イル基、6-c-プロピルナフタレン-1-イル基、7-c-プロピルナフタレン-1-イル基、8-c-プロピルナフタレン-1-イル基、2-n-ブチルナフタレン-1-イル基、3-n-ブチルナフタレン-1-イル基、4-n-ブチルナフタレン-1-イル基、5-n-ブチルナフタレン-1-イル基、6-n-ブチルナフタレン-1-イル基、7-n-ブチルナフタレン-1-イル基、8-n-ブチルナフタレン-1-イル基、1-フルオロナフタレン-2-イル基、3-フルオロナフタレン-2-イル基、4-フルオロナフタレン-2-イル基、5-フルオロナフタレン-2-イル基、6-フルオロナフタレン-2-イル基、7-フルオロナフタレン-2-イル基、8-フルオロナフタレン-2-イル基、1-クロロナフタレン-2-イル基、3-クロロナフタレン-2-イル基、4-クロロナフタレン-2-イル基、5-クロロナフタレン-2-イル基、6-クロロナフタレン-2-イル基、7-クロロナフタレン-2-イル基、8-クロロナフタレン-2-イル基、1-ブロモナフタレン-2-イル基、3-ブロモナフタレン-2-イル基、4-ブロモナフタレン-2-イル基、5-ブロモナフタレン-2-イル基、6-ブロモナフタレン-2-イル基、7-ブロモナフタレン-2-イル基、8-ブロモナフタレン-2-イル基、1-ヨードナフタレン-2-イル基、3-ヨードナフタレン-2-イル基、4-ヨードナフタレン-2-イル基、5-ヨードナフタレン-2-イル基、6-ヨードナフタレン-2-イル基、7-ヨードナフタレン-2-イル基、8-ヨードナフタレン-2-イル基、1-メチルナフタレン-2-イル基、3-メチルナフタレン-2-イル基、4-メチルナフタレン-2-イル基、5-メチルナフタレン-2-イル基、6-メチルナフタレン-2-イル基、7-メチルナフタレン-2-イル基、8-メチルナフタレン-2-イル基、1-エチルナフタレン-2-イル基、3-エチルナフタレン-2-イル基、4-エチルナフタレン-2-イル基、5-エチルナフタレン-2-イル基、6-エチルナフタレン-2-イル基、7-エチルナフタレン-2-イル基、8-エチルナフタレン-2-イル基、1-n-プロピルナフタレン-2-イル基、3-n-プロピルナフタレン-2-イル基、4-n-プロピルナフタレン-2-イル基、5-n-プロピルナフタレン-2-イル基、6-n-プロピルナフタレン-2-イル基、7-n-プロピルナフタレン-2-イル基、8-n-プロピルナフタレン-2-イル基、1-i-プロピルナフタレン-2-イル基、3-i-プロピルナフタレン-2-イル基、4-i-プロピルナフタレン-2-イル基、5-i-プロピルナフタレン-2-イル基、6-i-プロピルナフタレン-2-イル基、7-i-プロピルナフタレン-2-イル基、8-i-プロピルナフタレン-2-イル基、1-c-プロピルナフタレン-2-イル基、3-c-プロピルナフタレン-2-イル基、4-c-プロピルナフタレン-2-イル基、5-c-プロピルナフタレン-2-イル基、6-c-プロピルナフタレン-2-イル基、7-c-プロピルナフタレン-2-イル基、8-c-プロピルナフタレン-2-イル基、1-n-ブチルナフタレン-2-イル基、3-n-ブチルナフタレン-2-イル基、4-n-ブチルナフタレン-2-イル基、5-n-ブチルナフタレン-2-イル基、6-n-ブチルナフタレン-2-イル基、7-n-ブチルナフタレン-2-イル基及び8-n-ブチルナフタレン-2-イル基等が挙げられる。 Ar 6-10 aryl represents a substituent obtained by removing one hydrogen atom from the aromatic ring of an aromatic hydrocarbon having 6 to 10 carbon atoms, and is substituted with, for example, at least one of a phenyl group and a 2-position to a 6-position. A phenyl group having a group, a 1-naphthyl group, a 1-naphthyl group having a substituent at at least one of the 2-position to 8-position, a 2-naphthyl group and a substituent at at least one of the 1-position and 3-position to 8-position. 2-naphthyl group having is mentioned. Substituents on the aromatic ring of Ar 6-10 aryl include fluoro groups, chloro groups, bromo groups and iodo groups, which are halogen atoms, as well as methyl groups, trifluoromethyl groups, ethyl groups, n-propyl groups and isopropyl. Examples thereof include a group, an n-butyl group, an isobutyl group, an s-butyl group and a t-butyl group. Specific examples of Ar 6-10 aryl include phenyl group, o-fluorophenyl group, m-fluorophenyl group, p-fluorophenyl group, o-trifluoromethylphenyl group, m-trifluoromethylphenyl group and p-. Trifluoromethylphenyl group, o-chlorophenyl group, m-chlorophenyl group, p-chlorophenyl group, o-bromophenyl group, m-bromophenyl group, p-bromophenyl group, o-tolyl group, m-tolyl group, p -Trill group, o-ethylphenyl group, m-ethylphenyl group, p-ethylphenyl group, o- (t-butyl) phenyl group, m- (t-butyl) phenyl group, p- (t-butyl) phenyl Group, 3,5-dimethylphenyl group, 3,5-bistrifluoromethylphenyl group, 3,4,5-trifluorophenyl group, o-methoxyphenyl group, m-methoxyphenyl group, p-methoxyphenyl group, 1 -Naphenyl group, 2-naphthyl group, 2-fluoronaphthalene-1-yl group, 3-fluoronaphthalene-1-yl group, 4-fluoronaphthalene-1-yl group, 5-fluoronaphthalene-1-yl group, 6 -Fluoronaphthalene-1-yl group, 7-fluoronaphthalene-1-yl group, 8-fluoronaphthalene-1-yl group, 2-chloronaphthalene-1-yl group, 3-chloronaphthalene-1-yl group, 4 -Chloronaphthalene-1-yl group, 5-chloronaphthalene-1-yl group, 6-chloronaphthalene-1-yl group, 7-chloronaphthalene-1-yl group, 8-chloronaphthalene-1-yl group, 2 -Bromonaphthalene-1-yl group, 3-bromonaphthalene-1-yl group, 4-bromonaphthalene-1-yl group, 5-bromonaphthalene-1-yl group, 6-bromonaphthalene-1-yl group, 7 -Bromonaphthalene-1-yl group, 8-bromonaphthalen-1-yl group, 2-iodonaphthalene-1-yl group, 3-iodonaphthalene-1-yl group, 4-iodonaphthalene-1-yl group, 5 -Iodonaphthalen-1-yl group, 6-iodonaphthalene-1-yl group, 7-iodonaphthalene-1-yl group, 8-iodonaphthalene-1-yl group, 2-methylnaphthalen-1-yl group, 3 -Methylnaphthalen-1-yl group, 4-methylnaphthalen-1-yl group, 5-methylnaphthalen-1-yl group, 6-methylnaphthalen-1-yl group, 7-methylnaphthalen-1-yl group, 8 -Methylnaphthalen-1-yl group, 2-ethylnaphthalen-1-yl Group, 3-ethylnaphthalen-1-yl group, 4-ethylnaphthalen-1-yl group, 5-ethylnaphthalen-1-yl group, 6-ethylnaphthalen-1-yl group, 7-ethylnaphthalen-1-yl group Group, 8-ethylnaphthalen-1-yl group, 2-n-propylnaphthalene-1-yl group, 3-n-propylnaphthalene-1-yl group, 4-n-propylnaphthalen-1-yl group, 5- n-propylnaphthalen-1-yl group, 6-n-propylnaphthalen-1-yl group, 7-n-propylnaphthalen-1-yl group, 8-n-propylnaphthalen-1-yl group, 2-i- Propylnaphthalen-1-yl group, 3-i-propylnaphthalen-1-yl group, 4-i-propylnaphthalen-1-yl group, 5-i-propylnaphthalen-1-yl group, 6-i-propylnaphthalene -1-yl group, 7-i-propylnaphthalene-1-yl group, 8-i-propylnaphthalene-1-yl group, 2-c-propylnaphthalene-1-yl group, 3-c-propylnaphthalene-1 -Il group, 4-c-propylnaphthalene-1-yl group, 5-c-propylnaphthalen-1-yl group, 6-c-propylnaphthalen-1-yl group, 7-c-propylnaphthalene-1-yl group Group, 8-c-propylnaphthalene-1-yl group, 2-n-butylnaphthalene-1-yl group, 3-n-butylnaphthalene-1-yl group, 4-n-butylnaphthalene-1-yl group, 5-n-butylnaphthalene-1-yl group, 6-n-butylnaphthalene-1-yl group, 7-n-butylnaphthalene-1-yl group, 8-n-butylnaphthalene-1-yl group, 1- Fluoronaphthalene-2-yl group, 3-fluoronaphthalen-2-yl group, 4-fluoronaphthalene-2-yl group, 5-fluoronaphthalen-2-yl group, 6-fluoronaphthalene-2-yl group, 7- Fluoronaphthalene-2-yl group, 8-fluoronaphthalen-2-yl group, 1-chloronaphthalene-2-yl group, 3-chloronaphthalen-2-yl group, 4-chloronaphthalene-2-yl group, 5- Chloronaphthalene-2-yl group, 6-chloronaphthalen-2-yl group, 7-chloronaphthalen-2-yl group, 8-chloronaphthalen-2-yl group, 1-bromonaphthalene-2-yl group, 3- Bromonaphthalene-2-yl group, 4-bromonaphthalen-2-yl group, 5-bromonaphthalene-2-yl group, 6-bromonaphthalen-2-yl group, 7-bromonaphthalene-2-yl Il group, 8-bromonaphthalen-2-yl group, 1-iodonaphthalene-2-yl group, 3-iodonaphthalene-2-yl group, 4-iodonaphthalene-2-yl group, 5-iodonaphthalene-2- Ill Group, 6-Idonaphthalen-2-yl Group, 7-Idonaphthalen-2-yl Group, 8-Iodonaphthalen-2-yl Group, 1-Methylnaphthalen-2-yl Group, 3-Methylnaphthalen-2- Il group, 4-methylnaphthalen-2-yl group, 5-methylnaphthalen-2-yl group, 6-methylnaphthalen-2-yl group, 7-methylnaphthalen-2-yl group, 8-methylnaphthalen-2- Il group, 1-ethylnaphthalen-2-yl group, 3-ethylnaphthalen-2-yl group, 4-ethylnaphthalen-2-yl group, 5-ethylnaphthalen-2-yl group, 6-ethylnaphthalen-2- Il group, 7-ethylnaphthalen-2-yl group, 8-ethylnaphthalen-2-yl group, 1-n-propylnaphthalen-2-yl group, 3-n-propylnaphthalen-2-yl group, 4-n -Propylnaphthalen-2-yl group, 5-n-propylnaphthalen-2-yl group, 6-n-propylnaphthalen-2-yl group, 7-n-propylnaphthalen-2-yl group, 8-n-propyl Naphthalene-2-yl group, 1-i-propylnaphthalen-2-yl group, 3-i-propylnaphthalene-2-yl group, 4-i-propylnaphthalen-2-yl group, 5-i-propylnaphthalene- 2-yl group, 6-i-propylnaphthalen-2-yl group, 7-i-propylnaphthalene-2-yl group, 8-i-propylnaphthalen-2-yl group, 1-c-propylnaphthalen-2- Il group, 3-c-propylnaphthalen-2-yl group, 4-c-propylnaphthalen-2-yl group, 5-c-propylnaphthalen-2-yl group, 6-c-propylnaphthalene-2-yl group , 7-c-Propylnaphthalen-2-yl group, 8-c-propylnaphthalen-2-yl group, 1-n-butylnaphthalen-2-yl group, 3-n-butylnaphthalene-2-yl group, 4 -N-butylnaphthalen-2-yl group, 5-n-butylnaphthalene-2-yl group, 6-n-butylnaphthalen-2-yl group, 7-n-butylnaphthalen-2-yl group and 8-n -Butylnaphthalene-2-yl group and the like can be mentioned.
 本実施形態の電子求引基において、第四級アンモニウム基の対イオンであるアニオンとしては、例えば、ヘキサフルオロホスファートイオン、ヘキサクロロアンチモナートイオン、トリフルオロメタンスルホナートイオン、テトラフルオロボラートイオン、ホスフェートイオン、スルホナートイオン、クロリド、ブロミド、ヨージド、ヒドロキシド等が挙げられる。 In the electron attractant of the present embodiment, examples of the anion which is the counter ion of the quaternary ammonium group include hexafluorophosphate ion, hexachloroantimonate ion, trifluoromethanesulfonate ion, tetrafluoroborate ion, and phosphate. Ions, ammonium ions, chlorides, bromides, iodides, hydroxydos and the like can be mentioned.
 本実施形態の電子求引基において、第四級アンモニウム基のアンモニウムカチオンとしては、例えば、-NHカチオン、-Nモノ(C1-12アルキル)Hカチオン、-Nジ(C1-12アルキル)Hカチオン、-Nトリ(C1-12アルキル)カチオン、-Nモノ(Ar6-10アリール)Hカチオン、-Nジ(Ar6-10アリール)Hカチオン、-Nトリ(Ar6-10アリール)カチオン、-N(C1-12アルキル)(Ar6-10アリール)Hカチオン、-Nジ(C1-12アルキル)モノ(Ar6-10アリール)カチオン、又は-Nモノ(C1-12アルキル)ジ(Ar6-10アリール)カチオンが挙げられ、上記の「-」は結合を表す。 In the electron attracting group of the present embodiment, the ammonium cation of the quaternary ammonium group includes, for example, -NH 3 cation, -N mono (C 1-12 alkyl) H 2 cation, and -N di (C 1-12 ). Alkyl) H cation, -N tri (C 1-12 alkyl) cation, -N mono (Ar 6-10 aryl) H 2 cation, -N di (Ar 6-10 aryl) H cation, -N tri (Ar 6 ) -10 aryl) cations, -N (C 1-12 alkyl) (Ar 6-10 aryl) H cations, -N di (C 1-12 alkyl) mono (Ar 6-10 aryl) cations, or -N mono (Ar 6-10 aryl) cations. C 1-12 alkyl) di (Ar 6-10 aryl) cations are mentioned, where the "-" above represents a bond.
 本実施形態の電子求引基において、第四級アンモニウム基のアンモニウムカチオンにおける、上記のC1-12アルキルは、各々独立して、炭素原子数1乃至12のアルキル基を表す。ここで、炭素原子数1乃至12のアルキル基としては、例えば、メチル基、トリフルオロメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、1,1-ジメチルプロピル基、n-ヘキシル基、イソヘキシル基、シクロヘキシル基、1-メチルヘキシル基、n-ヘプチル基、イソヘプチル基、1,1,3,3-テトラメチルブチル基、1-メチルヘプチル基、3-メチルヘプチル基、n-オクチル基、2-エチルヘキシル基、1,1,3-トリメチルヘキシル基、1,1,3,3-テトラメチルペンチル基、n-ノニル基、n-デシル基、n-ウンデシル基、1-メチルウンデシル基、n-ドデシル基等が挙げられ、メチル基、トリフルオロメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基が好ましい。 In the electron-withdrawing group of the present embodiment, the above-mentioned C 1-12 alkyl in the ammonium cation of the quaternary ammonium group independently represents an alkyl group having 1 to 12 carbon atoms. Here, examples of the alkyl group having 1 to 12 carbon atoms include a methyl group, a trifluoromethyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, and t. -Butyl group, n-pentyl group, isopentyl group, neopentyl group, t-pentyl group, 1,1-dimethylpropyl group, n-hexyl group, isohexyl group, cyclohexyl group, 1-methylhexyl group, n-heptyl group, Isoheptyl group, 1,1,3,3-tetramethylbutyl group, 1-methylheptyl group, 3-methylheptyl group, n-octyl group, 2-ethylhexyl group, 1,1,3-trimethylhexyl group, 1, Examples thereof include 1,3,3-tetramethylpentyl group, n-nonyl group, n-decyl group, n-undecyl group, 1-methylundecyl group, n-dodecyl group, and methyl group, trifluoromethyl group, and the like. Ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n-hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group , N-Undecyl group, n-dodecyl group are preferable.
 本実施形態の電子求引基において、第四級アンモニウム基のアンモニウムカチオンにおける、上記のAr6-10アリールは、上記の記載と同じものが挙げられ、フェニル基、o-トリフルオロメチルフェニル基、m-トリフルオロメチルフェニル基、p-トリフルオロメチルフェニル基、3,5-ビストリフルオロメチルフェニル基、3,4,5-トリフルオロフェニル基、1-ナフチル基、2-ナフチル基が好ましい。 In the electron attracting group of the present embodiment, the above-mentioned Ar 6-10 aryl in the ammonium cation of the quaternary ammonium group includes the same as the above-mentioned description, and a phenyl group, an o-trifluoromethylphenyl group, and the like. Preferably, m-trifluoromethylphenyl group, p-trifluoromethylphenyl group, 3,5-bistrifluoromethylphenyl group, 3,4,5-trifluorophenyl group, 1-naphthyl group and 2-naphthyl group.
 本実施形態の電子求引基において、第四級アンモニウム基のアンモニウムカチオンとしては、例えば、-NHカチオン、-Nトリメチルカチオン、-Nトリエチルカチオン、-Nジメチルフェニルカチオンが好ましい。 In the electron attracting group of the present embodiment, as the ammonium cation of the quaternary ammonium group, for example, -NH 3 cation, -N trimethyl cation, -N triethyl cation, and -N dimethyl phenyl cation are preferable.
 本実施形態の電子求引基において、パーフルオロアルキル基としては、例えば、-CFCF、-(CFCF、-(CFCF、-(CFCF、-(CFCF、-(CFCF、-(CFCF、-(CFCF、-(CFCF、-(CF10CF、-(CF11CF等が挙げられ、-(CFCF及び-(CF11CFが好ましい。 In the electron-withdrawing group of the present embodiment, examples of the perfluoroalkyl group include −CF 2 CF 3 , − (CF 2 ) 2 CF 3 , − (CF 2 ) 3 CF 3 , − (CF 2 ) 4 CF. 3 ,-(CF 2 ) 5 CF 3 ,-(CF 2 ) 6 CF 3 ,-(CF 2 ) 7 CF 3 ,-(CF 2 ) 8 CF 3 ,-(CF 2 ) 9 CF 3 ,-(CF 2) 2 ) 10 CF 3 , − (CF 2 ) 11 CF 3 and the like can be mentioned, with − (CF 2 ) 9 CF 3 and − (CF 2 ) 11 CF 3 being preferred.
 本実施形態の電子求引基において、カルボニル(C1-6アルキル)基におけるC1-6アルキルは、上記の記載と同じものが挙げられ、カルボニル(C1-6アルキル)基の具体例としては、カルボニルメチル基、カルボニルトリフルオロメチル基、カルボニルエチル基、カルボニルn-プロピル基、カルボニルイソプロピル基、カルボニルn-ブチル基、カルボニルイソブチル基、カルボニルs-ブチル基、カルボニルt-ブチル基が好ましい。 In the electron attracting group of the present embodiment, the C 1-6 alkyl in the carbonyl (C 1-6 alkyl) group may be the same as described above, and specific examples of the carbonyl (C 1-6 alkyl) group include the same as described above. Is preferably a carbonylmethyl group, a carbonyltrifluoromethyl group, a carbonylethyl group, a carbonyl n-propyl group, a carbonylisopropyl group, a carbonyl n-butyl group, a carbonylisobutyl group, a carbonyls-butyl group, or a carbonyl t-butyl group.
 本実施形態の電子求引基において、カルボニル(C1-6アルコキシ)基におけるC1-6アルコキシは、上記の記載と同じものが挙げられ、カルボニル(C1-6アルコキシ)基の具体例としては、カルボニルメトキシ基、カルボニルトリフルオロメトキシ基、カルボニルエトキシ基、カルボニルn-プロポキシ基、カルボニルイソプロポキシ基、カルボニルn-ブトキシ基、カルボニルイソブトキシ基、カルボニルs-ブトキシ基、カルボニルt-ブトキシ基が好ましい。 In the electron-withdrawing group of the present embodiment, the C 1-6 alkoxy in the carbonyl (C 1-6 alkoxy) group is the same as described above, and specific examples of the carbonyl (C 1-6 alkoxy) group include the same as described above. Is a carbonyl methoxy group, a carbonyl trifluoromethoxy group, a carbonyl ethoxy group, a carbonyl n-propoxy group, a carbonyl isopropoxy group, a carbonyl n-butoxy group, a carbonyl isobutoxy group, a carbonyl s-butoxy group, and a carbonyl t-butoxy group. preferable.
 本実施形態の電子求引基において、カルボニル(Ar6-10アリール)基におけるAr6-10アリールは、上記の記載と同じものが挙げられ、カルボニル(Ar6-10アリール)基の具体例としては、カルボニルフェニル基、カルボニルo-トリフルオロメチルフェニル基、カルボニルm-トリフルオロメチルフェニル基、カルボニルp-トリフルオロメチルフェニル基、カルボニル3,5-ビストリフルオロメチルフェニル基、カルボニル3,4,5-トリフルオロフェニル基、カルボニル1-ナフチル基及びカルボニル2-ナフチル基が好ましい。 In the electron-withdrawing group of the present embodiment, the Ar 6-10 aryl in the carbonyl (Ar 6-10 aryl) group may be the same as described above, and as a specific example of the carbonyl (Ar 6-10 aryl) group. Is a carbonyl phenyl group, a carbonyl o-trifluoromethyl phenyl group, a carbonyl m-trifluoromethyl phenyl group, a carbonyl p-trifluoromethyl phenyl group, a carbonyl 3,5-bistrifluoromethyl phenyl group, a carbonyl 3, 4, 5 -Trifluorophenyl group, carbonyl1-naphthyl group and carbonyl2-naphthyl group are preferred.
 本実施形態の電子求引基において、カルボニル(C1-6アルキル)アミノ基におけるC1-6アルキルは、上記の記載と同じものが挙げられ、カルボニル(C1-6アルキル)アミノ基の具体例としては、カルボニルメチルアミノ基、カルボニルトリフルオロメチルアミノ基、カルボニルエチルアミノ基、カルボニルn-プロピルアミノ基、カルボニルイソプロピルアミノ基、カルボニルn-ブチルアミノ基、カルボニルイソブチルアミノ基、カルボニルs-ブチルアミノ基、カルボニルt-ブチルアミノ基が好ましい。 In the electron attracting group of the present embodiment, the C 1-6 alkyl in the carbonyl (C 1-6 alkyl) amino group may be the same as described above, and the specific of the carbonyl (C 1-6 alkyl) amino group may be mentioned. Examples include carbonylmethylamino group, carbonyltrifluoromethylamino group, carbonylethylamino group, carbonyl n-propylamino group, carbonylisopropylamino group, carbonyl n-butylamino group, carbonylisobutylamino group, carbonyls-butylamino. A group, a carbonyl t-butylamino group, is preferable.
 本実施形態の電子求引基において、カルボニルジ(C1-6アルキル)アミノ基におけるC1-6アルキルは、上記の記載と同じものが挙げられ、カルボニルジ(C1-6アルキル)アミノ基の具体例としては、カルボニルジメチルアミノ基、カルボニルビス(トリフルオロメチル)アミノ基、カルボニルジエチルアミノ基、カルボニルジn-プロピルアミノ基、カルボニルジイソプロピルアミノ基、カルボニルジn-ブチルアミノ基、カルボニルジイソブチルアミノ基、カルボニルジs-ブチルアミノ基、カルボニルジt-ブチルアミノ基が好ましい。 In the electron attracting group of the present embodiment, the C 1-6 alkyl in the carbonyl di (C 1-6 alkyl) amino group includes the same as described above, and the carbonyl di (C 1-6 alkyl) amino group is mentioned. Specific examples of the above include a carbonyldimethylamino group, a carbonylbis (trifluoromethyl) amino group, a carbonyldiethylamino group, a carbonyldi n-propylamino group, a carbonyldiisopropylamino group, a carbonyldin-butylamino group, and a carbonyldiisobutylamino group. , Carbonyldi s-butylamino group, carbonyldi t-butylamino group are preferred.
 本実施形態の電子求引基において、スルホニル(C1-6アルキル)アミノ基におけるC1-6アルキルは、上記の記載と同じものが挙げられ、スルホニル(C1-6アルキル)アミノ基の具体例としては、スルホニルメチルアミノ基、スルホニルトリフルオロメチルアミノ基、スルホニルエチルアミノ基、スルホニルn-プロピルアミノ基、スルホニルイソプロピルアミノ基、スルホニルn-ブチルアミノ基、スルホニルイソブチルアミノ基、スルホニルs-ブチルアミノ基、スルホニルt-ブチルアミノ基が好ましい。 In the electron attracting group of the present embodiment, the C 1-6 alkyl in the sulfonyl (C 1-6 alkyl) amino group includes the same as the above description, and the specific of the sulfonyl (C 1-6 alkyl) amino group. Examples include sulfonylmethylamino group, sulfonyltrifluoromethylamino group, sulfonylethylamino group, sulfonyln-propylamino group, sulfonylisopropylamino group, sulfonyln-butylamino group, sulfonylisobutylamino group, sulfonyls-butylamino. Groups, sulfonylt-butylamino groups are preferred.
 本実施形態の電子求引基において、スルホニルジ(C1-6アルキル)アミノ基におけるC1-6アルキルは、上記の記載と同じものが挙げられ、スルホニルジ(C1-6アルキル)アミノ基の具体例としては、スルホニルジメチルアミノ基、スルホニルビス(トリフルオロメチル)アミノ基、スルホニルジエチルアミノ基、スルホニルジn-プロピルアミノ基、スルホニルジイソプロピルアミノ基、スルホニルジn-ブチルアミノ基、スルホニルジイソブチルアミノ基、スルホニルジs-ブチルアミノ基、スルホニルジt-ブチルアミノ基が好ましい。 In the electron attracting group of the present embodiment, the C 1-6 alkyl in the sulfonyl di (C 1-6 alkyl) amino group includes the same as described above, and the sulfonyl di (C 1-6 alkyl) amino group can be mentioned. Specific examples of the above include a sulfonyldimethylamino group, a sulfonylbis (trifluoromethyl) amino group, a sulfonyldiethylamino group, a sulfonyldin-propylamino group, a sulfonyldiisopropylamino group, a sulfonyldin-butylamino group, and a sulfonyldiisobutylamino group. , Ssulfonyldi s-butylamino group, sulfonyldi t-butylamino group are preferred.
 本実施形態の電子求引基において、Ar6-10アリール基は、上記の記載と同じものが挙げられ、Ar6-10アリール基の具体例としては、フェニル基、o-トリフルオロメチルフェニル基、m-トリフルオロメチルフェニル基、p-トリフルオロメチルフェニル基、3,5-ビストリフルオロメチルフェニル基、3,4,5-トリフルオロフェニル基、1-ナフチル基及び2-ナフチル基が好ましい。 In the electron attracting group of the present embodiment, the Ar 6-10 aryl group includes the same as described above, and specific examples of the Ar 6-10 aryl group include a phenyl group and an o-trifluoromethylphenyl group. , M-trifluoromethylphenyl group, p-trifluoromethylphenyl group, 3,5-bistrifluoromethylphenyl group, 3,4,5-trifluorophenyl group, 1-naphthyl group and 2-naphthyl group are preferable.
 本実施形態のアンモニアの製造方法において、より好ましい電子求引基は、-NHカチオン、-Nトリメチルカチオン、-Nトリエチルカチオン、-Nジメチルフェニルカチオン、-(CFCF及び-(CF11CF、フッ素原子、塩素原子及びトリフルオロメチル基であり、特に好ましい電子電子求引基は、フッ素原子、塩素原子及びトリフルオロメチル基である。 In the method for producing ammonia of the present embodiment, more preferable electron attracting groups are -NH 3 cation, -N trimethyl cation, -N triethyl cation, -N dimethylphenyl cation,-(CF 2 ) 9 CF 3 and-(. CF 2 ) 11 CF 3 , a fluorine atom, a chlorine atom and a trifluoromethyl group, and particularly preferable electron-electron attracting groups are a fluorine atom, a chlorine atom and a trifluoromethyl group.
 本実施形態のアンモニアの製造方法において、還元剤としては、ランタノイド系金属のハロゲン化物(II)が挙げられ、ランタノイド系金属としては、La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb及びLu等が挙げられ、このうちSmが好ましく、ハロゲンとしては塩素、臭素、ヨウ素が挙げられ、このうちヨウ素が好ましい。
 したがって、ランタノイド系金属のハロゲン化物(II)としては、ハロゲン化サマリウム(II)が好ましく、ヨウ化サマリウム(II)がより好ましい。
In the method for producing ammonia of the present embodiment, examples of the reducing agent include a halogenated product (II) of a lanthanoid-based metal, and examples of the lanthanoid-based metal include La, Ce, Pr, Nd, Pm, Sm, Eu, and Gd. Examples thereof include Tb, Dy, Ho, Er, Tm, Yb and Lu, of which Sm is preferable, and examples of the halogen include chlorine, bromine and iodine, of which iodine is preferable.
Therefore, as the halide (II) of the lanthanoid-based metal, samarium halide (II) is preferable, and samarium iodide (II) is more preferable.
 本実施形態のアンモニアの製造方法において、プロトン源は、アルコール及び水が挙げられる。用いるアルコールとしては、グリコールを用いてもよいし、ROH(Rは水素原子がフッ素原子で置換されていてもよい炭素原子数1乃至6の鎖状、環状又は分岐状のアルキル基、又は、アルキル基を有していてもよいフェニル基)を用いてもよい。
 グリコールとしては、例えば、エチレングリコール、プロピレングリコール及びジエチレングリコール等が挙げられる。
 ROHは、例えば、鎖状又は分岐状のアルキルアルコールとして、メタノール、エタノール、プロパノール、イソプロパノール、n-ブチルアルコール、s-ブチルアルコール、イソブチルアルコール及びt-ブチルアルコール等が挙げられ、環状のアルキルアルコールとしては、シクロプロパノール、シクロペンタノール及びシクロヘキサノール等が挙げられ、フッ素原子を含むアルコールとしては、トリフルオロエチルアルコール及びテトラフルオロエチルアルコール等が挙げられ、アルキル基を有していてもよいフェニル基を含むアルコールとしては、フェノール、クレゾール及びキシレノール等が挙げられる。
In the method for producing ammonia of the present embodiment, examples of the proton source include alcohol and water. As the alcohol to be used, glycol may be used, or ROH (R may be a chain, cyclic or branched alkyl group having 1 to 6 carbon atoms in which a hydrogen atom may be replaced with a fluorine atom, or an alkyl. A phenyl group which may have a group) may be used.
Examples of the glycol include ethylene glycol, propylene glycol and diethylene glycol.
Examples of the ROH include methanol, ethanol, propanol, isopropanol, n-butyl alcohol, s-butyl alcohol, isobutyl alcohol, t-butyl alcohol and the like as chain or branched alkyl alcohols, and examples of the cyclic alcohol alcohol include cyclic alcohols. Examples thereof include cyclopropanol, cyclopentanol, cyclohexanol and the like, and examples of the alcohol containing a fluorine atom include trifluoroethyl alcohol and tetrafluoroethyl alcohol, and a phenyl group which may have an alkyl group. Examples of the alcohol contained include phenol, cresol, xylenol and the like.
 本実施形態のアンモニアの製造方法において、好ましいプロトン源は、水及びエチレングリコールであり、水がより好ましい。 In the method for producing ammonia of the present embodiment, preferable proton sources are water and ethylene glycol, and water is more preferable.
 本実施形態のアンモニアの製造方法において、窒素分子からアンモニアを製造するにあたっては、溶媒中で行ってもよい。溶媒としては、特に限定するものではないが、環状エーテル系溶媒、鎖状エーテル系溶媒、ニトリル系溶媒、炭化水素系溶媒、及び含ハロゲン炭化水素溶媒が挙げられる。環状エーテル系溶媒としては、例えばテトラヒドロフラン及び1,4-ジオキサン等が挙げられる。鎖状エーテル系溶媒としては、例えばジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、及びシクロペンチルメチルエーテル等が挙げられる。ニトリル系溶媒としては、例えばアセトニトリル及びプロピオニトリル等が挙げられる。炭化水素系溶媒としては、例えばトルエン及びo-キシレン等の芳香族炭化水素、並びにヘキサン、ヘプタン及び石油エーテル等などの飽和炭化水素等が挙げられる。含ハロゲン炭化水素溶媒としては、例えば、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、1,1,1-トリクロロエタン、トリクロロエチレン及びテトラクロロエチレン等が挙げられる。本実施形態のアンモニアの製造方法において、好ましい溶媒は、テトラヒドロフランである。また、本実施形態のアンモニアの製造方法において、触媒に用いるモリブデン錯体を加える際に、好ましい溶媒は、ジクロロメタンである。 In the method for producing ammonia of the present embodiment, when producing ammonia from nitrogen molecules, it may be carried out in a solvent. The solvent is not particularly limited, and examples thereof include a cyclic ether solvent, a chain ether solvent, a nitrile solvent, a hydrocarbon solvent, and a halogen-containing hydrocarbon solvent. Examples of the cyclic ether solvent include tetrahydrofuran, 1,4-dioxane and the like. Examples of the chain ether solvent include diethyl ether, diisopropyl ether, 1,2-dimethoxyethane, cyclopentyl methyl ether and the like. Examples of the nitrile-based solvent include acetonitrile, propionitrile and the like. Examples of the hydrocarbon solvent include aromatic hydrocarbons such as toluene and o-xylene, and saturated hydrocarbons such as hexane, heptane and petroleum ether. Examples of the halogen-containing hydrocarbon solvent include dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, 1,1,1-trichloroethane, trichlorethylene, tetrachlorethylene and the like. In the method for producing ammonia of the present embodiment, a preferred solvent is tetrahydrofuran. Further, in the method for producing ammonia of the present embodiment, dichloromethane is a preferable solvent when the molybdenum complex used as a catalyst is added.
 生成したアンモニアの収量は公知の方法により測定できる。硫酸水溶液中のアンモニアの定量は、例えば、公知のインドフェノール法(Analytical Chemistry,1967年,39巻,971-974ページ)を用いて行うことができる。 The yield of produced ammonia can be measured by a known method. Ammonia in an aqueous sulfuric acid solution can be quantified using, for example, a known Indophenol method (Analytical Chemistry, 1967, Vol. 39, pp. 971-974).
 本明細書において、モリブデン錯体から導かれる分子内に二つのホスフィンとベンゾイミダゾール環のカルベン炭素の3つの結合箇所を持つピンサー型配位子とは下記式(4)で表される配位子を示す。
Figure JPOXMLDOC01-appb-C000013
式中のR、R、R及びRは、式(1)中で記載したものと同じである。
In the present specification, a pincer-type ligand having three bonding sites of two phosphines and carbene carbon of a benzimidazole ring in a molecule derived from a molybdenum complex is a ligand represented by the following formula (4). show.
Figure JPOXMLDOC01-appb-C000013
R 1 , R 2 , R 3 and R 4 in the equation are the same as those described in the equation (1).
 式(2)で表されるモリブデン錯体から導かれる分子内に二つのホスフィンとベンゾイミダゾール環のカルベン炭素の3つの結合箇所を持つピンサー型配位子の当該3つの結合箇所にセレン原子が結合したセレン付加体
Figure JPOXMLDOC01-appb-C000014
において、式中のR、R、R及びRは、式(1)中で記載したものと同じである。なお、本明細書では、モリブデン錯体から導かれる分子内に二つのホスフィンとベンゾイミダゾール環のカルベン炭素の3つの結合箇所を持つピンサー型配位子の当該3つの結合箇所にセレン原子が結合したセレン付加体を、ピンサー型配位子のセレン付加体とも称する。
A selenium atom is bonded to the three bonding sites of a pincer-type ligand having three bonding sites of two phosphines and a carbene carbon of a benzimidazole ring in a molecule derived from the molybdenum complex represented by the formula (2). Selenium adduct
Figure JPOXMLDOC01-appb-C000014
In, R 1 , R 2 , R 3 and R 4 in the formula are the same as those described in the formula (1). In the present specification, selenium in which a selenium atom is bonded to the three bonding sites of a pincer-type ligand having three bonding sites of two phosphines and carbene carbon of a benzoimidazole ring in a molecule derived from a molybdenum complex. The adduct is also referred to as a selenium adduct of a pincer-type ligand.
 後述する実施例でも示されるように、式(2)で表されるピンサー型配位子のセレン付加体において、構造中のベンゾイミダゾール環のカルベン炭素上のセレンの77SeNMRの化学シフト値と触媒回転頻度(TOF)の間に相関関係がある。ピンサー型配位子のセレン付加体の構造中のベンゾイミダゾール環のカルベン炭素に結合したセレン原子の77SeNMRの化学シフト値が170ppmよりも低磁場の値を示すようなピンサー型配位子のセレン付加体に対応するピンサー型配位子を有するモリブデン錯体は、TOFが200(1/分)を超えるモリブデン錯体となる。 As shown in Examples described later, in the selenium adduct of the pincer-type ligand represented by the formula (2), the chemical shift value and catalyst of 77 SeNMR of selenium on the carbene carbon of the benzimidazole ring in the structure. There is a correlation between rotation frequency (TOF). The selenium of the pincer-type ligand such that the chemical shift value of 77 SeNMR of the selenium atom bonded to the carbene carbon of the benzoimidazole ring in the structure of the selenium adduct of the pincer-type ligand shows a value of a magnetic field lower than 170 ppm. A molybdenum complex having a pincer-type ligand corresponding to an adduct is a molybdenum complex having a TOF of more than 200 (1 / min).
 錯体の構造や電子状態から、その錯体の触媒活性を見積もることは、触媒活性を検証する際の資材や時間を節約することができるので、非常に有用である。 Estimating the catalytic activity of the complex from the structure and electronic state of the complex is very useful because it saves materials and time when verifying the catalytic activity.
 しかし、本発明に記載のモリブデン錯体の場合は、錯体の調製が煩雑な上に、錯体の取扱いには特殊な環境と技術が必要となるので、錯体そのものを評価することは、あまり有用とは言えない。 However, in the case of the molybdenum complex described in the present invention, it is not very useful to evaluate the complex itself because the preparation of the complex is complicated and the handling of the complex requires a special environment and technique. I can not say.
 一方で、ピンサー型配位子のセレン付加体は、非常に安定な化合物として調製可能であり、取り扱いも容易である。更にモリブデンに比べ、77SeはNMRに対する感度が良好であり、上記モリブデン錯体の電子状態を定量的に見積もることができる点で優れている。 On the other hand, the selenium adduct of the pincer-type ligand can be prepared as a very stable compound and is easy to handle. Further, compared to molybdenum, 77 Se has better sensitivity to NMR and is superior in that the electronic state of the molybdenum complex can be quantitatively estimated.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It is needless to say that the present invention is not limited to the above-described embodiment and can be carried out in various embodiments as long as it belongs to the technical scope of the present invention.
 以下に、本発明の実施例について説明する。なお、以下の実施例は本発明を何ら限定するものではない。 Hereinafter, examples of the present invention will be described. The following examples do not limit the present invention in any way.
[実施例1]
 触媒としてモリブデン錯体(1a)
Figure JPOXMLDOC01-appb-C000015
を用いて、窒素分子からアンモニアを製造した。シュレンク反応容器に、モリブデン錯体(1a)の0.05mmol/Lのジクロロメタン溶液を調製した。常圧の窒素雰囲気下、反応容器に、触媒である該モリブデン錯体(1a)のジクロロメタン溶液(500μL、25nmol)と還元剤であるジヨードビス(テトラヒドロフラン)サマリウム(II)(397.6mg、0.725mmol、モリブデン錯体のモル数に対して29000当量)のテトラヒドロフラン溶液(5mL)を加え、次にプロトン源である水(13.1mg,0.725mmol,モリブデン錯体のモル数に対して29000当量)のテトラヒドロフラン溶液(1mL)を加え、室温である20℃乃至25℃にて30分間攪拌した。その後、反応を停止するため、水酸化カリウム水溶液(30質量%、5mL)を反応容器に加えた。次に本反応で発生したアンモニア量を定量するため、反応容器を減圧蒸留して蒸留液を硫酸水溶液(0.5M、10mL)にて回収した。該硫酸水溶液中のアンモニア量はインドフェノール法にて決定した。その結果、触媒(モリブデン錯体)当たり8000当量のアンモニアが生成した。触媒回転頻度であるTOFは、267(1/分)であった。
[Example 1]
Molybdenum complex (1a) as a catalyst
Figure JPOXMLDOC01-appb-C000015
Was used to produce ammonia from nitrogen molecules. A 0.05 mmol / L dichloromethane solution of the molybdenum complex (1a) was prepared in a Schlenk reaction vessel. Under normal pressure nitrogen atmosphere, a dichloromethane solution (500 μL, 25 nmol) of the molybdenum complex (1a) as a catalyst and diiodobis (tetrahydrofuran) samarium (II) (397.6 mg, 0.725 mmol) as a reducing agent were placed in a reaction vessel. Add a solution of tetrahydrofuran (5 mL) to the number of moles of the molybdenum complex (29000 eq) and then a solution of water (13.1 mg, 0.725 mmol, 29000 eq to the number of moles of the molybdenum complex) as a proton source. (1 mL) was added, and the mixture was stirred at room temperature of 20 ° C to 25 ° C for 30 minutes. Then, in order to stop the reaction, an aqueous potassium hydroxide solution (30% by mass, 5 mL) was added to the reaction vessel. Next, in order to quantify the amount of ammonia generated in this reaction, the reaction vessel was distilled under reduced pressure and the distillate was recovered with a sulfuric acid aqueous solution (0.5 M, 10 mL). The amount of ammonia in the aqueous sulfuric acid solution was determined by the indophenol method. As a result, 8000 equivalents of ammonia was produced per catalyst (molybdenum complex). The TOF, which is the catalyst rotation frequency, was 267 (1 / min).
[実施例2乃至実施例5]
 実施例2乃至実施例5では、触媒であるモリブデン錯体(1a)を変更し、実施例2ではモリブデン錯体(1c)を、実施例3ではモリブデン錯体(1d)を、実施例4ではモリブデン錯体(1e)を、実施例5ではモリブデン錯体(1f)を
Figure JPOXMLDOC01-appb-C000016
使用した以外の実験操作は、実施例1と同様の操作を行い、窒素分子からアンモニアを製造した。触媒として使用したモリブデン錯体当たりのアンモニア量とTOFの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000017
[Examples 2 to 5]
In Examples 2 to 5, the molybdenum complex (1a) as a catalyst is changed, the molybdenum complex (1c) is changed in Example 2, the molybdenum complex (1d) is used in Example 3, and the molybdenum complex (1d) is used in Example 4. 1e), molybdenum complex (1f) in Example 5
Figure JPOXMLDOC01-appb-C000016
The experimental operations other than those used were the same as in Example 1 to produce ammonia from nitrogen molecules. Table 1 shows the amount of ammonia per molybdenum complex used as a catalyst and the results of TOF.
Figure JPOXMLDOC01-appb-T000017
[合成例1]
 触媒として用いたモリブデン錯体(1a)の合成ルートを、下記に示し説明する。
Figure JPOXMLDOC01-appb-C000018
[Synthesis Example 1]
The synthetic route of the molybdenum complex (1a) used as a catalyst will be described below.
Figure JPOXMLDOC01-appb-C000018
化合物(2a)の合成
Figure JPOXMLDOC01-appb-C000019
 化合物(2a)の合成を以下に示す。反応容器にジ-tert-ブチルホスフィン(2.25g、14.9mmol)及びパラホルムアルデヒド(450mg、15.0mmol)を加え、窒素雰囲気下60℃で16時間攪拌した。その後、反応容器に、ジクロロエタン(150mL)及び式(5a)で表される1,2-ジアミノ-4,5-ジクロロベンゼン(1.07g、6.02mmol)を加えて、窒素雰囲気下60℃で24時間攪拌した。次に、セレン(1.26g、16.0mmol)を加えて、窒素雰囲気下室温である20℃乃至25℃にて24時間攪拌した。反応物を濃縮し、得られた固体をシリカゲルカラムクロマトグラフィー(ジクロロメタン:ヘキサン=1/1)により分離した。回収したフラクションを濃縮し、真空下乾固することで化合物(2a)を白色固体として2.58g(3.97mmol、66%収率)で単離した。
融点:195.4℃乃至196.5℃
H NNR(CDCl):δ6.66(s,2H),4.85(br,2H),3.30(d,J=7.2Hz,4H),1.42(d、J=15.2Hz,36H).
13C NNR(CDCl):δ137.2(s),121.7(s),112.4(s),37.1(d,J=32.6Hz),34.6(d,J=40.3Hz),28.0(s).
31P NMR(CDCl):δ79.7(s with Se satellites,J=706.1Hz).
Synthesis of compound (2a)
Figure JPOXMLDOC01-appb-C000019
The synthesis of compound (2a) is shown below. Di-tert-butylphosphine (2.25 g, 14.9 mmol) and paraformaldehyde (450 mg, 15.0 mmol) were added to the reaction vessel, and the mixture was stirred at 60 ° C. for 16 hours under a nitrogen atmosphere. Then, dichloroethane (150 mL) and 1,2-diamino-4,5-dichlorobenzene (1.07 g, 6.02 mmol) represented by the formula (5a) are added to the reaction vessel at 60 ° C. under a nitrogen atmosphere. The mixture was stirred for 24 hours. Next, selenium (1.26 g, 16.0 mmol) was added, and the mixture was stirred at room temperature of 20 ° C to 25 ° C under a nitrogen atmosphere for 24 hours. The reaction was concentrated and the resulting solid was separated by silica gel column chromatography (dichloromethane: hexane = 1/1). The recovered fraction was concentrated and dried under vacuum to isolate compound (2a) as a white solid in 2.58 g (3.97 mmol, 66% yield).
Melting point: 195.4 ° C to 196.5 ° C
1 H NNR (CDCl 3 ): δ6.66 (s, 2H), 4.85 (br, 2H), 3.30 (d, J = 7.2Hz, 4H), 1.42 (d, J = 15) .2Hz, 36H).
13 C NNR (CDCl 3 ): δ137.2 (s), 121.7 (s), 112.4 (s), 37.1 (d, J = 32.6Hz), 34.6 (d, J = 40.3Hz), 28.0 (s).
31 P NMR (CDCl 3 ): δ79.7 (s with Se satellites, J = 706.1 Hz).
化合物(3a)の合成
Figure JPOXMLDOC01-appb-C000020
 化合物(3a)の合成を以下に示す。反応容器に、化合物(2a)(2.48g、3.81mmol)、オルトギ酸トリエチル(10mL)及びヘキサフルオロリン酸アンモニウム(629mg、3.86mmol)を加えた後、空気下、120℃で3時間攪拌した。次に応混合物を濃縮した後、ジクロロメタン(4mL)及びジエチルエーテル(8mL)からなる混合溶液を用いて2回洗浄し、更にジエチルエーテル(10mL)で1回洗浄した。この反応混合物を真空下で乾燥して、化合物(3a)を白色固体として2.49g(3.09mmol、81%収率)で単離した。
H NNR(Acetone-d):δ10.69(s,1H),8.69(s,2H),5.57(d,J=2.8Hz,4H),1.50(d、J=16.4Hz,36H).
13C NNR(Acetone-d):δ144.6(s),132.1(s),131.7(s),117.0(s),40.8(d,J=26.8Hz),39.2(d,J=30.7Hz),28.0(s).
31P NMR(Acetone-d):δ-143.9(seq,J=708.3Hz),83.1(s with Se satellites,J=732.3Hz).
Synthesis of compound (3a)
Figure JPOXMLDOC01-appb-C000020
The synthesis of compound (3a) is shown below. After adding compound (2a) (2.48 g, 3.81 mmol), triethyl orthoformate (10 mL) and ammonium hexafluorophosphate (629 mg, 3.86 mmol) to the reaction vessel, the mixture was added to the reaction vessel at 120 ° C. for 3 hours under air. Stirred. The mixture was then concentrated, washed twice with a mixed solution of dichloromethane (4 mL) and diethyl ether (8 mL), and further washed once with diethyl ether (10 mL). The reaction mixture was dried under vacuum and the compound (3a) was isolated as a white solid in 2.49 g (3.09 mmol, 81% yield).
1 H NNR (Acetone-d 6 ): δ10.69 (s, 1H), 8.69 (s, 2H), 5.57 (d, J = 2.8Hz, 4H), 1.50 (d, J) = 16.4Hz, 36H).
13 C NNR (Acetone-d 6 ): δ144.6 (s), 132.1 (s), 131.7 (s), 117.0 (s), 40.8 (d, J = 26.8Hz) , 39.2 (d, J = 30.7Hz), 28.0 (s).
31 P NMR (Acetone-d 6 ): δ-143.9 (seq, J = 708.3 Hz), 83.1 (s with Se satellites, J = 732.3 Hz).
化合物(4a)の合成
Figure JPOXMLDOC01-appb-C000021
 化合物(4a)の合成を以下に示す。反応容器に、化合物(3a)(2.58g、3.20mmol)、トリス(ジメチルアミノ)ホスフィン(1.5mL)及びジクロロメタン(40mL)を加えた後、窒素雰囲気下、室温である20℃乃至25℃にて4時間攪拌した。次に応混合物を濃縮した後、トルエン(7mL)で3回洗浄し、この反応混合物を真空下で乾燥して、化合物(4a)を白色固体として1.83g(2.81mmol、88%収率)で単離した。
H NNR(THF-d):δ9.87(s,1H),8.42(s,2H),4.81(s,4H),1.23(d、J=12.0Hz,36H).
13C NNR(THF-d):δ145.8(t,J=12.0Hz),132.5(s),131.7(s),117.1(d,J=6.7Hz),43.6(d,J=28.7Hz),32.8(d,J=20.1Hz),29.5(d,J=13.5Hz).
31P NMR(THF-d):δ-146.0(seq,J=711.9Hz),24.7(s).
Synthesis of compound (4a)
Figure JPOXMLDOC01-appb-C000021
The synthesis of compound (4a) is shown below. After adding compound (3a) (2.58 g, 3.20 mmol), tris (dimethylamino) phosphine (1.5 mL) and dichloromethane (40 mL) to the reaction vessel, the temperature is 20 ° C to 25 at room temperature under a nitrogen atmosphere. The mixture was stirred at ° C. for 4 hours. The mixture was then concentrated, washed 3 times with toluene (7 mL) and dried under vacuum to give compound (4a) 1.83 g (2.81 mmol, 88% yield) as a white solid. ).
1 H NNR (THF-d 8 ): δ9.87 (s, 1H), 8.42 (s, 2H), 4.81 (s, 4H), 1.23 (d, J = 12.0Hz, 36H) ).
13 C NNR (THF-d 8 ): δ145.8 (t, J = 12.0 Hz), 132.5 (s), 131.7 (s), 117.1 (d, J = 6.7 Hz), 43.6 (d, J = 28.7 Hz), 32.8 (d, J = 20.1 Hz), 29.5 (d, J = 13.5 Hz).
31 P NMR (THF-d 8 ): δ-146.0 (seq, J = 711.9 Hz), 24.7 (s).
モリブデン錯体(1a)の合成
Figure JPOXMLDOC01-appb-C000022
 モリブデン錯体(1a)の合成を以下に示す。反応容器に化合物(4a)(1.30g、2.00mmol)、カリウムビス(トリメチルシリル)アミド(561mg、2.81mmol)及びトルエン(45mL)を加えた後、アルゴン雰囲気下、室温である20℃乃至25℃にて1時間攪拌した。次に、反応混合物をセライトにて濾過した後、トリクロロトリス(テトラヒドロフラン)モリブデン(III)(756mg、1.81mmol)を加えて、80℃で26時間攪拌した。更に、反応混合物を5mLまで濃縮し、濾紙を用いて濾過した後、真空下にて乾固させた。得られた固体をトルエン(5mL)で2回洗浄した後、ジクロロメタン(20mL)に溶解させた溶液を、セライトを用いて濾過をした。濾過した濾液に、ヘキサン(30mL)を静かに加えた後、5日間静置させて結晶を生成させた。該結晶を生成させた上澄み液を取り除き、ヘキサン(5mL)で3回洗浄した後、真空下で乾燥することでモリブデン錯体(1a)を茶色結晶として166.3mg(0.24mmol、13%収率)で単離した。
Anal. 
Calcd. for C2542l5MoN
C,42.55; H,6.00; N,3.97,
Found:
C,41.66; H,5.68; N,3.20.
Synthesis of molybdenum complex (1a)
Figure JPOXMLDOC01-appb-C000022
The synthesis of the molybdenum complex (1a) is shown below. After adding compound (4a) (1.30 g, 2.00 mmol), potassium bis (trimethylsilyl) amide (561 mg, 2.81 mmol) and toluene (45 mL) to the reaction vessel, the temperature is 20 ° C. to room temperature under an argon atmosphere. The mixture was stirred at 25 ° C. for 1 hour. Next, the reaction mixture was filtered through Celite, trichlorotris (tetrahydrofuran) molybdenum (III) (756 mg, 1.81 mmol) was added, and the mixture was stirred at 80 ° C. for 26 hours. Further, the reaction mixture was concentrated to 5 mL, filtered through a filter paper, and then dried under vacuum. The obtained solid was washed twice with toluene (5 mL), and then the solution dissolved in dichloromethane (20 mL) was filtered through Celite. Hexane (30 mL) was gently added to the filtered filtrate and then allowed to stand for 5 days to generate crystals. The supernatant liquid that produced the crystals was removed, washed with hexane (5 mL) three times, and then dried under vacuum to turn the molybdenum complex (1a) into brown crystals in 166.3 mg (0.24 mmol, 13% yield). ).
Anal.
Calcd. for C 25 H 42 C l5 MoN 2 P 2 :
C, 42.55; H, 6.00; N, 3.97,
Found:
C, 41.66; H, 5.68; N, 3.20.
[合成例2乃至合成例5]
 モリブデン錯体(1c)乃至(1f)の合成は、非特許論文Nature 2019年,568巻,536-540ページの記載及び本明細書の[合成例1]の記載を参考に合成できる。
Figure JPOXMLDOC01-appb-C000023
 各々のモリブデン錯体の合成に関しては、[合成例1]で用いた式(5a)で表される1,2-ジアミノ-4,5-ジクロロベンゼンの代わりに、
モリブデン錯体(1c)の合成は、1,2-ジアミノ-4,5-ジメチルベンゼンを用いて、
モリブデン錯体(1d)の合成は、1,2-ジアミノベンゼンを用いて、
モリブデン錯体(1e)の合成は、1,2-ジアミノ-4,5-ジフルオロベンゼンを用いて、
モリブデン錯体(1f)の合成は、1,2-ジアミノ-4-トリフルオロメチルベンゼンを用いて、
合成することができる。
[Synthesis Example 2 to Synthesis Example 5]
The synthesis of the molybdenum complexes (1c) to (1f) can be synthesized with reference to the description of the non-patent paper Nature 2019, Vol. 568, pp. 536-540 and the description of [Synthesis Example 1] of the present specification.
Figure JPOXMLDOC01-appb-C000023
Regarding the synthesis of each molybdenum complex, instead of 1,2-diamino-4,5-dichlorobenzene represented by the formula (5a) used in [Synthesis Example 1],
The synthesis of the molybdenum complex (1c) was carried out using 1,2-diamino-4,5-dimethylbenzene.
The synthesis of the molybdenum complex (1d) was carried out using 1,2-diaminobenzene.
The synthesis of the molybdenum complex (1e) was carried out using 1,2-diamino-4,5-difluorobenzene.
The synthesis of the molybdenum complex (1f) was carried out using 1,2-diamino-4-trifluoromethylbenzene.
Can be synthesized.
[合成例6]
 式(6a)で表されるピンサー型配位子のセレン付加体の合成ルートを、下記に示し説明する。
Figure JPOXMLDOC01-appb-C000024
 式(6a)で表されるピンサー型配位子のセレン付加体の合成を以下に示す。反応容器に化合物(3a)(80.7mg、0.10mmol)、セレン(39.5mg、0.50mmol)、ナトリウムビス(トリメチルシリル)アミド(560mg、2.81mmol)及びトルエン(5mL)を加えた後、アルゴン雰囲気下、室温である20℃乃至25℃にて18時間攪拌した。次に反応混合物の溶媒を留去し、反応容器にジクロロメタン加えた後、セライトにて濾過した濾液を真空下にて乾固させた。得られた固体をヘキサン(5mL)で2回洗浄した後、真空下で乾燥することで、式(6a)で表されるピンサー型配位子のセレン付加体を白色結晶として56.3mg(0.076mmol、76%収率)で単離した。
融点:226.3℃乃至227.8℃
H NNR(THF-d):δ8.84(br,2H),5.68(br,4H),1.47(d,J=15.2Hz,36H).
13C NNR(THF-d):δ173.2(s),134.2(s),127.3(s),116.9(s),47.9(d,J=30.8Hz),39.5(d,J=29.7Hz),28.5(s).
31P NMR(THF-d):δ71.6(s with Se satellites,J=732.8Hz).
77Se NMR(THF-d):δ177.3(s),-383.2(d,J=732.8Hz).
[Synthesis Example 6]
The synthetic route of the selenium adduct of the pincer-type ligand represented by the formula (6a) will be described below.
Figure JPOXMLDOC01-appb-C000024
The synthesis of the selenium adduct of the pincer-type ligand represented by the formula (6a) is shown below. After adding compound (3a) (80.7 mg, 0.10 mmol), selenium (39.5 mg, 0.50 mmol), sodium bis (trimethylsilyl) amide (560 mg, 2.81 mmol) and toluene (5 mL) to the reaction vessel. The mixture was stirred at room temperature of 20 ° C. to 25 ° C. for 18 hours under an argon atmosphere. Next, the solvent of the reaction mixture was distilled off, dichloromethane was added to the reaction vessel, and the filtrate filtered through Celite was dried under vacuum. The obtained solid was washed twice with hexane (5 mL) and then dried under vacuum to obtain 56.3 mg (0) of the selenium adduct of the pincer-type ligand represented by the formula (6a) as white crystals. Isolated at 0.76 mmol (76% yield).
Melting point: 226.3 ° C to 227.8 ° C
1 H NNR (THF-d 8 ): δ8.84 (br, 2H), 5.68 (br, 4H), 1.47 (d, J = 15.2 Hz, 36H).
13 C NNR (THF-d 8 ): δ173.2 (s), 134.2 (s), 127.3 (s), 116.9 (s), 47.9 (d, J = 30.8Hz) , 39.5 (d, J = 29.7 Hz), 28.5 (s).
31 P NMR (THF-d 8 ): δ71.6 (s with Se satellites, J = 732.8 Hz).
77 Se NMR (THF-d 8 ): δ177.3 (s), 383.2 (d, J = 732.8 Hz).
[合成例7]
 式(6b)で表されるピンサー型配位子のセレン付加体の合成ルートを、下記に示し説明する。
Figure JPOXMLDOC01-appb-C000025
 式(6b)で表されるピンサー型配位子のセレン付加体の合成を以下に示す。反応容器に化合物(3b)(80.7mg、0.10mmol)、セレン(39.5mg、0.50mmol)、ナトリウムビス(トリメチルシリル)アミド(560mg、2.81mmol)及びトルエン(5mL)を加えた後、アルゴン雰囲気下、室温である20℃乃至25℃にて18時間攪拌した。次に反応混合物の溶媒を留去し、反応容器にジクロロメタン加えた後、セライトにて濾過した濾液を真空下にて乾固させた。得られた固体をヘキサン(5mL)で2回洗浄した後、真空下で乾燥することで、式(6b)で表されるピンサー型配位子のセレン付加体を白色結晶として56.3mg(0.076mmol、76%収率)で単離した。
融点:170℃にて分解
H NNR(THF-d):δ9.11(s,2H),5.72(br,4H),1.49(d,J=14.8Hz,36H).
13C NNR(THF-d):δ175.0(s),136.4(s),124.1(q,J=282.3Hz),121.9-122.2(m),116.3(s),46.6(d,J=30.7Hz),39.5(d,J=30.7Hz),28.4(s).
19F NNR(THF-d):δ-60.8(s).
31P NMR(THF-d):δ72.8(s with Se satellites,J=732.8Hz).
77Se NMR(THF-d):δ196.9(s),-390.9(d,J=732.8Hz).
HRMS(FAB)
Calcd. for C2742Se[M]: 810.0223.
Found: 810.0199.
[合成例8乃至合成例11]
 式(6c)乃至式(6f)で表されるピンサー型配位子のセレン付加体は、上記の[合成例1]及び[合成例6]の記載を参考に合成できる。
Figure JPOXMLDOC01-appb-C000026
[合成例1]で用いた式(5a)で表される1,2-ジアミノ-4,5-ジクロロベンゼンの代わりに、
セレン付加体(6c)の合成は、1,2-ジアミノ-4,5-ジメチルベンゼンを用いて、
セレン付加体(6d)の合成は、1,2-ジアミノベンゼンを用いて、
セレン付加体(6e)の合成は、1,2-ジアミノ-4,5-ジフルオロベンゼンを用いて、
セレン付加体(6f)の合成は、1,2-ジアミノ-4-トリフルオロメチルベンゼンを用いて、
[合成例1]の記載を参考にして、式(3c)乃至式(3f)で表される化合物まで合成することができ、[合成例6]の記載を参考にして、式(6c)乃至式(6f)で表されるピンサー型配位子のセレン付加体を合成できる。
[Synthesis Example 7]
The synthetic route of the selenium adduct of the pincer-type ligand represented by the formula (6b) will be described below.
Figure JPOXMLDOC01-appb-C000025
The synthesis of the selenium adduct of the pincer-type ligand represented by the formula (6b) is shown below. After adding compound (3b) (80.7 mg, 0.10 mmol), selenium (39.5 mg, 0.50 mmol), sodium bis (trimethylsilyl) amide (560 mg, 2.81 mmol) and toluene (5 mL) to the reaction vessel. The mixture was stirred at room temperature of 20 ° C. to 25 ° C. for 18 hours under an argon atmosphere. Next, the solvent of the reaction mixture was distilled off, dichloromethane was added to the reaction vessel, and the filtrate filtered through Celite was dried under vacuum. The obtained solid was washed twice with hexane (5 mL) and then dried under vacuum to obtain 56.3 mg (0) of the selenium adduct of the pincer-type ligand represented by the formula (6b) as white crystals. Isolated at 0.76 mmol (76% yield).
Melting point: Decomposes at 170 ° C
1 H NNR (THF-d 8 ): δ9.11 (s, 2H), 5.72 (br, 4H), 1.49 (d, J = 14.8 Hz, 36H).
13 C NNR (THF-d 8 ): δ175.0 (s), 136.4 (s), 124.1 (q, J = 282.3Hz), 121.9-122.2 (m), 116. 3 (s), 46.6 (d, J = 30.7 Hz), 39.5 (d, J = 30.7 Hz), 28.4 (s).
19 F NNR (THF-d 8 ): δ-60.8 (s).
31 P NMR (THF-d 8 ): δ72.8 (s with Se satellites, J = 732.8 Hz).
77 Se NMR (THF-d 8 ): δ196.9 (s), -390.9 (d, J = 732.8 Hz).
HRMS (FAB)
Calcd. for C 27 H 42 N 2 F 6 P 2 Se 3 [M] + : 810.0223.
Found: 810.199.
[Synthesis Example 8 to Synthesis Example 11]
The selenium adduct of the pincer-type ligand represented by the formulas (6c) to (6f) can be synthesized with reference to the above description of [Synthesis Example 1] and [Synthesis Example 6].
Figure JPOXMLDOC01-appb-C000026
Instead of 1,2-diamino-4,5-dichlorobenzene represented by the formula (5a) used in [Synthesis Example 1],
The synthesis of the selenium adduct (6c) was carried out using 1,2-diamino-4,5-dimethylbenzene.
The synthesis of the selenium adduct (6d) was carried out using 1,2-diaminobenzene.
The synthesis of the selenium adduct (6e) was carried out using 1,2-diamino-4,5-difluorobenzene.
The synthesis of the selenium adduct (6f) was carried out using 1,2-diamino-4-trifluoromethylbenzene.
The compounds represented by the formulas (3c) to (3f) can be synthesized with reference to the description of [Synthesis Example 1], and the formulas (6c) to 6c can be synthesized with reference to the description of [Synthesis Example 6]. A selenium adduct of a pincer-type ligand represented by the formula (6f) can be synthesized.
 式(6c)で表されるピンサー型配位子のセレン付加体
Figure JPOXMLDOC01-appb-C000027
融点:239.5℃乃至240.7℃
H NNR(THF-d):δ8.44(s,2H),5.78(br,4H),2.33(s,6H),1.46(d、J=15.6Hz,36H).
13C NNR(THF-d):δ170.3(s),133.4(s),132.6(s),116.0(s),49.2(d,J=31.7Hz),39.4(d,J=30.8Hz),28.7(s),20.0(s).
31P NMR(THF-d):δ71.2(s with Se satellites,J=732.6Hz).
77Se NMR(THF-d):δ135.2(s),-381.0(d,J=732.6Hz).
HRMS(FAB) 
Calcd. for C2748Se[M]: 702.0788.
Found: 702.0809.
A selenium adduct of a pincer-type ligand represented by the formula (6c)
Figure JPOXMLDOC01-appb-C000027
Melting point: 239.5 ° C to 240.7 ° C
1 H NNR (THF-d 8 ): δ8.44 (s, 2H), 5.78 (br, 4H), 2.33 (s, 6H), 1.46 (d, J = 15.6Hz, 36H) ).
13 C NNR (THF-d 8 ): δ170.3 (s), 133.4 (s), 132.6 (s), 116.0 (s), 49.2 (d, J = 31.7Hz) , 39.4 (d, J = 30.8Hz), 28.7 (s), 20.0 (s).
31 P NMR (THF-d 8 ): δ71.2. (S with Se satellites, J = 732.6 Hz).
77 Se NMR (THF-d 8 ): δ135.2 (s), -381.0 (d, J = 732.6 Hz).
HRMS (FAB)
Calcd. for C 27 H 48 N 2 P 2 Se 3 [M] + : 702.0788.
Found: 702.0809.
 式(6d)で表されるピンサー型配位子のセレン付加体
Figure JPOXMLDOC01-appb-C000028
融点:230.5℃乃至232.0℃
H NNR(THF-d):δ8.60-8.56(m,2H),7.19-7.22(m,2H),5.72(br,4H),1.47(d,J=15.2Hz,36H).
13C NNR(THF-d):δ171.6(s),135.0(s),125.6(s),115.6(s),48.8(d,J=31.6Hz),39.4(d,J=30.7Hz),28.6(s).
31P NMR(THF-d):δ71.6(s with Se satellites,J=732.7Hz).
77Se NMR(THF-d):δ147.1(s),-384.5(d,J=732.7Hz).
HRMS(FAB) 
Calcd. for C2544Se[M]: 674.0475.
Found: 674.0488.
A selenium adduct of a pincer-type ligand represented by the formula (6d)
Figure JPOXMLDOC01-appb-C000028
Melting point: 230.5 ° C to 232.0 ° C
1 H NNR (THF-d 8 ): δ8.60-8.56 (m, 2H), 7.19-7.22 (m, 2H), 5.72 (br, 4H), 1.47 (d) , J = 15.2 Hz, 36H).
13 C NNR (THF-d 8 ): δ171.6 (s), 135.0 (s), 125.6 (s), 115.6 (s), 48.8 (d, J = 31.6Hz) , 39.4 (d, J = 30.7Hz), 28.6 (s).
31 P NMR (THF-d 8 ): δ71.6 (s with Se satellites, J = 732.7 Hz).
77 Se NMR (THF-d 8 ): δ147.1 (s), -384.5 (d, J = 732.7 Hz).
HRMS (FAB)
Calcd. for C 25 H 44 N 2 P 2 Se 3 [M] + : 674.0475.
Found: 674.0488.
 式(6e)で表されるピンサー型配位子のセレン付加体
Figure JPOXMLDOC01-appb-C000029
融点:239.7℃乃至240.4℃
H NNR(THF-d):δ8.65(t,2H),5.68(br,4H),1.47(d、J=15.6Hz,36H).
13C NNR(THF-d):δ171.6(s),147.8(dd,J=245.3,16.3Hz),130.7(s),104.7(dd,J=16.7,9.1Hz),48.4(d,J=31.6Hz),39.5(d,J=30.6Hz),28.5(s).
19F NNR(THF-d):δ-145.5(d,J=17.3Hz).
31P NMR(THF-d):δ71.3(s with Se satellites,J=727.6Hz).
77Se NMR(THF-d):δ170.2(s),-382.0(d,J=727.6Hz).
HRMS(FAB)
Calcd. for C2543Se[M]: 711.0365.
Found: 711.0358.
A selenium adduct of a pincer-type ligand represented by the formula (6e)
Figure JPOXMLDOC01-appb-C000029
Melting point: 239.7 ° C to 240.4 ° C
1 H NNR (THF-d 8 ): δ8.65 (t, 2H), 5.68 (br, 4H), 1.47 (d, J = 15.6Hz, 36H).
13 C NNR (THF-d 8 ): δ171.6 (s), 147.8 (dd, J = 245.3, 16.3 Hz), 130.7 (s), 104.7 (dd, J = 16) .7.7, 9.1 Hz), 48.4 (d, J = 31.6 Hz), 39.5 (d, J = 30.6 Hz), 28.5 (s).
19 F NNR (THF-d 8 ): δ-145.5 (d, J = 17.3 Hz).
31 P NMR (THF-d 8 ): δ71.3. (S with Se satellites, J = 727.6 Hz).
77 Se NMR (THF-d 8 ): δ170.2 (s), -382.0 (d, J = 727.6 Hz).
HRMS (FAB)
Calcd. for C 25 H 43 N 2 F 2 P 2 Se 3 [M] + : 711.0365.
Found: 711.0358.
 式(6f)で表されるピンサー型配位子のセレン付加体
Figure JPOXMLDOC01-appb-C000030
融点:182.0-183.0℃
H NNR(THF-d):δ8.96(br,H),8.68(br,H),7.51(br,H),5.72(br,4H),1.47-1.50(m,36H).
13C NNR(THF-d):δ173.8(s),137.3(s),134.9(s),125.5(q,J=271.8Hz),125.4(q,J=32.6Hz),120.4(s),116.2(s),113.5(s),48.0(d,J=31.7Hz),47.8(d,J=31.7Hz),39.6(d,J=30.7Hz),28.6(s).
19F NNR(THF-d):δ-64.0(s).
31P NMR(THF-d):δ71.9(s with Se satellites,J=727.6Hz).
77Se NMR(THF-d):δ174.3(s),-387.2(d,J=732.6Hz),-387.8(d,J=732.7Hz).
HRMS(FAB)
Calcd. for C2643Se[M]: 742.0349.
Found: 742.0351.
A selenium adduct of a pincer-type ligand represented by the formula (6f)
Figure JPOXMLDOC01-appb-C000030
Melting point: 182.0-183.0 ° C
1 H NNR (THF-d 8 ): δ8.96 (br, H), 8.68 (br, H), 7.51 (br, H), 5.72 (br, 4H), 1.47- 1.50 (m, 36H).
13 C NNR (THF-d 8 ): δ173.8 (s), 137.3 (s), 134.9 (s), 125.5 (q, J = 271.8Hz), 125.4 (q, J = 32.6Hz), 120.4 (s), 116.2 (s), 113.5 (s), 48.0 (d, J = 31.7Hz), 47.8 (d, J = 31) .7Hz), 39.6 (d, J = 30.7Hz), 28.6 (s).
19 F NNR (THF-d 8 ): δ-64.0 (s).
31 P NMR (THF-d 8 ): δ71.9 (s with Se satellites, J = 727.6 Hz).
77 Se NMR (THF-d 8 ): δ174.3 (s), -387.2 (d, J = 732.6 Hz), -387.8 (d, J = 732.7 Hz).
HRMS (FAB)
Calcd. for C 26 H 43 N 2 F 3 P 2 Se 3 [M] + : 742.0349.
Found: 742.0351.
 式(6a)乃至(6f)で表されるピンサー型配位子のセレン付加体のベンゾイミダゾール環のカルベン炭素上のセレンの77SeNMRの化学シフト値を横軸に、それぞれのピンサー型配位子のセレン付加体に対応する式(1a)乃至(1f)で表されるモリブデン錯体の触媒1分子が単位時間当たりに行う物質変換量であるTOFの実測値を縦軸にプロットした図を図1に示す。 The horizontal axis is the chemical shift value of 77 SeNMR of selenium on the carbene carbon of the benzoimidazole ring of the selenium adduct of the pincer-type ligand represented by the formulas (6a) to (6f), and each pincer-type ligand. FIG. 1 is a diagram in which the measured value of TOF, which is the amount of substance conversion performed by one molecule of the catalyst of the molybdenum complex represented by the formulas (1a) to (1f) corresponding to the selenium adduct, is plotted on the vertical axis. Shown in.
 図1に示すように、モリブデン錯体から導かれる分子内に二つのホスフィンとベンゾイミダゾール環のカルベン炭素の3つの結合箇所を持つピンサー型配位子の当該3つの結合箇所にセレン原子が結合したセレン付加体のカルベン炭素上のセレンの77SeNMRの化学シフト値とモリブデン錯体の触媒活性を示すTOFには相関関係があることが確認された。R及びRに電子求引基を導入したピンサー型配位子、又はRに電子求引基を導入したピンサー型配位子が配位したモリブデン錯体は、電子求引基の影響で該モリブデン錯体の触媒活性が向上することが確認された。この原因の一つとしては、ピンサー型配位子の部分構造のベンゾイミダゾール環のπ-受容性が強くなることが考えられる。また、特に、R及びRに電子求引基を導入したピンサー型配位子のセレン付加体において、ベンゾイミダゾール環のカルベン炭素上のセレンの77SeNMRの化学シフト値が170ppmよりも低磁場の値であることが好ましく、前記に対応するR及びRに電子求引基を導入したモリブデン錯体の触媒活性は、TOFが200(1/分)を超えるモリブデン錯体となることが推察できる。 As shown in FIG. 1, selenium in which a selenium atom is bonded to the three bonding sites of a pincer-type ligand having three bonding sites of two phosphines and carbene carbon of a benzoimidazole ring in a molecule derived from a molybdenum complex. It was confirmed that there is a correlation between the chemical shift value of 77 SeNMR of selenium on the carbene carbon of the adduct and the TOF showing the catalytic activity of the molybdenum complex. The pincer-type ligand having an electron-withdrawing group introduced into R 3 and R 4 or the molybdenum complex coordinated with the pincer-type ligand having an electron-withdrawing group introduced into R 3 is affected by the electron-withdrawing group. It was confirmed that the catalytic activity of the molybdenum complex was improved. One of the reasons for this is considered to be that the π-acceptability of the benzimidazole ring in the partial structure of the pincer-type ligand becomes stronger. Further, in particular, in the selenium adduct of the pincer-type ligand having an electron-withdrawing group introduced into R3 and R4 , the chemical shift value of 77 SeNMR of selenium on the carbene carbon of the benzimidazole ring is lower than 170 ppm. It can be inferred that the catalytic activity of the molybdenum complex in which an electron-withdrawing group is introduced into R 3 and R 4 corresponding to the above is a molybdenum complex having a TOF of more than 200 (1 / min). ..
 本発明は、アンモニアの製造方法に利用可能である。 The present invention can be used as a method for producing ammonia.

Claims (3)

  1.  モリブデン錯体、還元剤及びプロトン源の存在下、窒素分子からアンモニアを生成する工程を含む製造方法であって、
     前記プロトン源は、アルコール又は水であり、
     前記モリブデン錯体は、式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R及びRは、各々独立して、炭素原子数3乃至6のアルキル基を表し、
     Xはヨウ素原子、臭素原子又は塩素原子であり、
     R及びRは、各々独立して、水素原子、または、電子求引基を表す。)
    で表されるモリブデン錯体であり、
     該モリブデン錯体から導かれる分子内に二つのホスフィンとベンゾイミダゾール環のカルベン炭素の3つの結合箇所を持つピンサー型配位子の当該3つの結合箇所にセレン原子が結合したセレン付加体である式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R、R、R及びRは、上記と同じ。)
    で表されるピンサー型配位子のセレン付加体において、ベンゾイミダゾール環のカルベン炭素上のセレンの77SeNMRの化学シフト値が170ppmよりも低磁場の値である、
    アンモニアの製造方法。
    A production method comprising the step of producing ammonia from nitrogen molecules in the presence of a molybdenum complex, a reducing agent and a proton source.
    The proton source is alcohol or water.
    The molybdenum complex has the formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), R 1 and R 2 each independently represent an alkyl group having 3 to 6 carbon atoms.
    X is an iodine atom, a bromine atom or a chlorine atom,
    R 3 and R 4 each independently represent a hydrogen atom or an electron-withdrawing group. )
    It is a molybdenum complex represented by
    A formula that is a selenium adduct in which a selenium atom is bonded to the three bonding sites of a pincer-type ligand having three bonding sites of two phosphines and carbene carbon of a benzimidazole ring in a molecule derived from the molybdenum complex. 2):
    Figure JPOXMLDOC01-appb-C000002
    (In equation (2), R 1 , R 2 , R 3 and R 4 are the same as above.)
    In the selenium adduct of the pincer-type ligand represented by, the chemical shift value of 77 SeNMR of selenium on the carbene carbon of the benzimidazole ring is a value in a magnetic field lower than 170 ppm.
    Ammonia production method.
  2.  モリブデン錯体、還元剤及びプロトン源の存在下、窒素分子からアンモニアを製造する際のモリブデン錯体の触媒性能を評価する方法であって、
     前記モリブデン錯体は、式(1):
    Figure JPOXMLDOC01-appb-C000003
    (式(1)中、R及びRは、各々独立して、炭素原子数3乃至6のアルキル基を表し、
     Xはヨウ素原子、臭素原子又は塩素原子であり、
     R及びRは、各々独立して、水素原子、または、電子求引基を表す。)
    で表されるモリブデン錯体であり、
    該モリブデン錯体から導かれる分子内に二つのホスフィンとベンゾイミダゾール環のカルベン炭素の3つの結合箇所を持つピンサー型配位子の当該3つの結合箇所にセレン原子が結合したセレン付加体である式(2):
    Figure JPOXMLDOC01-appb-C000004
    (式(2)中、R、R、R及びRは、上記と同じ。)
    で表されるピンサー型配位子のセレン付加体を調製する工程、並びに
    当該ピンサー型配位子のセレン付加体の77SeNMRを測定する工程を含む、
    ベンゾイミダゾール環のカルベン炭素上のセレンの77SeNMRの化学シフト値が170ppmよりも低磁場の値であるか否かで、触媒回転頻度(Turnover Frequency)が200(1/分)を超えるモリブデン錯体であるか否かを判断する、方法。
    A method for evaluating the catalytic performance of a molybdenum complex when producing ammonia from nitrogen molecules in the presence of a molybdenum complex, a reducing agent and a proton source.
    The molybdenum complex has the formula (1):
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (1), R 1 and R 2 each independently represent an alkyl group having 3 to 6 carbon atoms.
    X is an iodine atom, a bromine atom or a chlorine atom,
    R 3 and R 4 each independently represent a hydrogen atom or an electron-withdrawing group. )
    It is a molybdenum complex represented by
    A formula that is a selenium adduct in which a selenium atom is bonded to the three bonding sites of a pincer-type ligand having three bonding sites of two phosphines and carbene carbon of a benzimidazole ring in a molecule derived from the molybdenum complex. 2):
    Figure JPOXMLDOC01-appb-C000004
    (In equation (2), R 1 , R 2 , R 3 and R 4 are the same as above.)
    A step of preparing a selenium adduct of a pincer-type ligand represented by the above, and a step of measuring 77 SeNMR of the selenium adduct of the pincer-type ligand.
    In a molybdenum complex having a Turnover Frequency of more than 200 (1 / min), depending on whether the chemical shift value of 77 SeNMR of selenium on the carbene carbon of the benzimidazole ring is a value in a magnetic field lower than 170 ppm. A way to determine if there is one.
  3. 下記式(1)で表されるモリブデン錯体であり、
    Figure JPOXMLDOC01-appb-C000005
    (式(1)中、R及びRは、各々独立して、炭素原子数3乃至6のアルキル基を表し、
     Xはヨウ素原子、臭素原子又は塩素原子であり、
     R及びRは、各々独立して、水素原子、または、電子求引基を表す。
     ただし、Rがフッ素原子のとき、Rは、フッ素原子ではなく、Rが水素原子のとき、Rはトリフルオロメチル基ではない。)
    該モリブデン錯体から導かれる分子内に二つのホスフィンとベンゾイミダゾール環のカルベン炭素の3つの結合箇所を持つピンサー型配位子の当該3つの結合箇所にセレン原子が結合したセレン付加体である式(2):
    Figure JPOXMLDOC01-appb-C000006
    (式(2)中、R、R、R及びRは、上記と同じ。)
    で表されるピンサー型配位子のセレン付加体において、ベンゾイミダゾール環のカルベン炭素上のセレンの77SeNMRの化学シフト値が170ppmよりも低磁場の値である、モリブデン錯体。
     
    It is a molybdenum complex represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000005
    (In the formula (1), R 1 and R 2 each independently represent an alkyl group having 3 to 6 carbon atoms.
    X is an iodine atom, a bromine atom or a chlorine atom,
    R 3 and R 4 each independently represent a hydrogen atom or an electron-withdrawing group.
    However, when R 3 is a fluorine atom, R 4 is not a fluorine atom, and when R 3 is a hydrogen atom, R 4 is not a trifluoromethyl group. )
    A formula that is a selenium adduct in which a selenium atom is bonded to the three bonding sites of a pincer-type ligand having three bonding sites of two phosphines and carbene carbon of a benzimidazole ring in a molecule derived from the molybdenum complex. 2):
    Figure JPOXMLDOC01-appb-C000006
    (In equation (2), R 1 , R 2 , R 3 and R 4 are the same as above.)
    A molybdenum complex in which the chemical shift value of 77 SeNMR of selenium on the carbene carbon of the benzimidazole ring is a value in a magnetic field lower than 170 ppm in the selenium adduct of the pincer type ligand represented by.
PCT/JP2021/027734 2020-07-27 2021-07-27 Ammonia production method WO2022025054A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020126528A JP2023126983A (en) 2020-07-27 2020-07-27 Method for producing ammonia
JP2020-126528 2020-07-27

Publications (1)

Publication Number Publication Date
WO2022025054A1 true WO2022025054A1 (en) 2022-02-03

Family

ID=80036617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027734 WO2022025054A1 (en) 2020-07-27 2021-07-27 Ammonia production method

Country Status (2)

Country Link
JP (1) JP2023126983A (en)
WO (1) WO2022025054A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168093A1 (en) * 2018-03-01 2019-09-06 国立大学法人東京大学 Ammonia manufacturing method, molybdenum complex, and benzimidazole compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168093A1 (en) * 2018-03-01 2019-09-06 国立大学法人東京大学 Ammonia manufacturing method, molybdenum complex, and benzimidazole compound

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ASHIDA, YUYA ET AL.: "Molybdenum-Catalyzed Ammonia Formation Using Simple Monodentate and Bidentate Phosphines as Auxiliary Ligands", INORGANIC CHEMISTRY, vol. 58, 25 June 2019 (2019-06-25), pages 8927 - 8932, XP055798754, DOI: 10.1021/acs.inorgchem.9b01340 *
EIZAWA, AY A ET AL.: "Catalytic Reactivity of Molybdenum-Trihalide Complexes Bearing PCP-Type Pincer Ligands", CHEMISTRY AN ASIAN JOURNAL, vol. 14, 2019, pages 2091 - 2096, XP055905457 *

Also Published As

Publication number Publication date
JP2023126983A (en) 2023-09-13

Similar Documents

Publication Publication Date Title
Crocker et al. Large-ring and cyclometalated rhodium complexes from some medium-chain. alpha.,. omega.-diphosphines
JP7318871B2 (en) Method for producing ammonia, molybdenum complex and benzimidazole compound
Yang et al. Nickel-catalyzed phosphorylation of phenol derivatives via C–O/P–H cross-coupling
WO2022025050A1 (en) Method for producing ammonia
US20050038272A1 (en) Process for preparing diphosphines
JP2016525526A (en) Improved process for the preparation of halogenated biphenylanilide and biphenylaniline
WO2022025054A1 (en) Ammonia production method
Bourissou et al. The chemistry of phosphinocarbenes
JP2016166139A (en) Rare earth complex and light emitting device
Iorga et al. Carbanionic displacement reactions at phosphorus. Part III. 1 Cyanomethylphosphonate vs. cyanomethylenediphosphonate. Synthesis and solid-state structures
Shi et al. Photolysis of triarylmethylphosphonic acids and their esters.
WO2018127783A1 (en) Ionic liquid production method
EP4196267B1 (en) Novel ruthenium complexes, methods of their preparation and application thereof in olefin cross metathesis
Bai et al. Highly regio-and stereoselective palladium-catalyzed allene bifunctionalization cascade via π-allyl intermediate
Ono et al. Liquid-phase photofluorination with elemental fluorine. Part II. Synthesis of perfluorotertiary amines
WO2022025046A1 (en) Method for manufacturing ammonia
JP2009057297A (en) Phosphonium ionic liquid, method for producing biaryl compound and method for using ionic liquid
WO2022210567A1 (en) Method for producing ammonia, molybdenum complex used in said production method, and ligand that is raw material of said molybdenum complex
WO2024185802A1 (en) Reducing agent
JPWO2020175495A1 (en) Salt manufacturing method
Barai et al. Kinetics and Mechanism of the Anilinolysis of Aryl N, N-Dimethyl Phosphoroamidochloridates in Acetonitrile
Yamaguchi et al. Asymmetric transformation of. alpha.-amino acids promoted by optically active cobalt (III) complexes. 3. Importance of side-chain intramolecular interligand hydrogen bonding on stereoselectivity
Martín et al. Steric promotion in the cycloplatination of primary amines
EP0418013A2 (en) Direct magnesiation of organic materials
Akiba et al. Novel results obtained by freezing berry pseudorotation of phosphoranes (10‐P‐5)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21851293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21851293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP