WO2022019006A1 - 情報処理システム及び情報処理方法 - Google Patents
情報処理システム及び情報処理方法 Download PDFInfo
- Publication number
- WO2022019006A1 WO2022019006A1 PCT/JP2021/022635 JP2021022635W WO2022019006A1 WO 2022019006 A1 WO2022019006 A1 WO 2022019006A1 JP 2021022635 W JP2021022635 W JP 2021022635W WO 2022019006 A1 WO2022019006 A1 WO 2022019006A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- reagent
- fluorescent dye
- information processing
- fluorescent
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims abstract description 267
- 238000003672 processing method Methods 0.000 title claims description 16
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 342
- 238000005259 measurement Methods 0.000 claims abstract description 123
- 239000007850 fluorescent dye Substances 0.000 claims description 377
- 238000012545 processing Methods 0.000 claims description 270
- 238000002189 fluorescence spectrum Methods 0.000 claims description 60
- 238000000926 separation method Methods 0.000 claims description 37
- 239000002245 particle Substances 0.000 claims description 29
- 238000001228 spectrum Methods 0.000 claims description 19
- 238000001514 detection method Methods 0.000 claims description 17
- 230000005284 excitation Effects 0.000 claims description 13
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 239000000376 reactant Substances 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 81
- 238000013461 design Methods 0.000 abstract description 41
- 239000000049 pigment Substances 0.000 abstract 6
- 238000000034 method Methods 0.000 description 75
- 239000000126 substance Substances 0.000 description 63
- 230000008569 process Effects 0.000 description 49
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 36
- 238000004458 analytical method Methods 0.000 description 30
- 230000010354 integration Effects 0.000 description 23
- 239000010419 fine particle Substances 0.000 description 22
- 239000000523 sample Substances 0.000 description 22
- 230000003595 spectral effect Effects 0.000 description 19
- 238000003860 storage Methods 0.000 description 18
- 239000000427 antigen Substances 0.000 description 16
- 102000036639 antigens Human genes 0.000 description 16
- 108091007433 antigens Proteins 0.000 description 16
- 102100036302 C-C chemokine receptor type 6 Human genes 0.000 description 12
- 101000716068 Homo sapiens C-C chemokine receptor type 6 Proteins 0.000 description 12
- 238000004364 calculation method Methods 0.000 description 12
- 238000000684 flow cytometry Methods 0.000 description 12
- 210000004027 cell Anatomy 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 10
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 10
- 238000001506 fluorescence spectroscopy Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 238000012937 correction Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 238000012854 evaluation process Methods 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000004088 simulation Methods 0.000 description 6
- 239000003086 colorant Substances 0.000 description 5
- 238000007405 data analysis Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 239000012103 Alexa Fluor 488 Substances 0.000 description 4
- 102000004127 Cytokines Human genes 0.000 description 4
- 108090000695 Cytokines Proteins 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000012938 design process Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000001917 fluorescence detection Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 239000011859 microparticle Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000012114 Alexa Fluor 647 Substances 0.000 description 2
- 101000980827 Homo sapiens T-cell surface glycoprotein CD1a Proteins 0.000 description 2
- 102100024219 T-cell surface glycoprotein CD1a Human genes 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000013400 design of experiment Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000799 fluorescence microscopy Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 206010018910 Haemolysis Diseases 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- 206010036618 Premenstrual syndrome Diseases 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- BFMYDTVEBKDAKJ-UHFFFAOYSA-L disodium;(2',7'-dibromo-3',6'-dioxido-3-oxospiro[2-benzofuran-1,9'-xanthene]-4'-yl)mercury;hydrate Chemical compound O.[Na+].[Na+].O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C([O-])C([Hg])=C1OC1=C2C=C(Br)C([O-])=C1 BFMYDTVEBKDAKJ-UHFFFAOYSA-L 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000012632 fluorescent imaging Methods 0.000 description 1
- 230000008588 hemolysis Effects 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1425—Optical investigation techniques, e.g. flow cytometry using an analyser being characterised by its control arrangement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1456—Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
- G01N15/1459—Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N2015/1006—Investigating individual particles for cytology
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6417—Spectrofluorimetric devices
- G01N2021/6419—Excitation at two or more wavelengths
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6417—Spectrofluorimetric devices
- G01N2021/6421—Measuring at two or more wavelengths
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6439—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
- G01N2021/6441—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks with two or more labels
Definitions
- a particle population such as cells, microorganisms, and liposomes is labeled with a fluorescent dye, and each particle of the particle population is irradiated with laser light to measure the intensity and / or pattern of fluorescence generated from the excited fluorescent dye. By doing so, the characteristics of the particles are measured.
- a flow cytometer can be mentioned as a typical example of a particle analyzer that performs the measurement.
- the flow cytometer irradiates particles flowing in a row in a flow path with laser light (excitation light) of a specific wavelength, and detects fluorescence and / or scattered light emitted from each particle.
- the flow cytometer can determine the characteristics of individual particles, such as type, size, and structure, by converting the light detected by the photodetector into an electrical signal, quantifying it, and performing statistical analysis. can.
- Fluorescence-labeled antibodies are often used to label the particle population to be analyzed by a flow cytometer.
- the combination of fluorescent dye-labeled antibodies used in the analysis is also referred to as a panel, and the process for determining the panel is also referred to as panel design.
- the number of fluorescent dye-labeled antibodies used in the analysis is on the rise, which makes it more difficult to manually design the panel. Therefore, if there is an information processing system that automatically executes the panel design, it is considered to contribute to the improvement of convenience for the user who performs the analysis.
- the purpose of this technology is to provide a technique for dealing with at least one of the above problems.
- the information processing device is Based on the biomolecule, the reagent database is searched to identify the reagent corresponding to the biomolecule, and then Among the fluorescent dyes associated with the reagent, the fluorescent signal data of the fluorescent dye associated with the measuring device information can be obtained from the fluorescent dye database.
- the recommended information of the reagent may include information on the reagent associated with the combination of the biomolecule and the fluorescent dye corresponding to the biomolecule acquired by the information processing.
- the information processing system may further include an output unit that displays a screen prompting the input of the measurement target information. The output unit may also display the recommendation information of the reagent.
- the measurement target information includes the name, abbreviation, or number of at least one reagent.
- the fluorescence signal data includes fluorescence spectrum data, and includes fluorescence spectrum data.
- the information processing apparatus acquires measurement spectrum data acquired by irradiating particles labeled with the reagent with excitation light, and then obtains measurement spectrum data.
- the information processing apparatus can perform fluorescence separation processing on the measured spectrum data by using the fluorescence spectrum data of the fluorescent dye as the information processing.
- the information processing system includes a registration processing unit that executes registration processing of reagents.
- the registration processing unit may be configured to perform integrated processing of notational fluctuations of measurement target information, reagents, or fluorescent dyes.
- the reagent database or the fluorescent dye database has a data table for integrated processing referred to for performing integrated processing of notational fluctuations.
- the registration processing unit may register the measurement target information, the reagent, or the fluorescent dye which is determined to be equivalent although there is a notational variation in the existing record in the reagent database or the fluorescent dye database.
- the registration processing unit may set up a new record and register the measurement target information, the reagent, or the fluorescent dye that is not determined to be equivalent in the reagent database or the fluorescent dye database.
- the reagent database contains at least one name of a reagent, a biomolecule, and a fluorescent dye, and / or at least one of a reactive organism, a host organism, an antibody isotype, size, price, and a distributor. good.
- the information processing apparatus can output the recommendation information based on the price and / or the information of the sales company in the reagent database.
- this technology It is executed using a fluorescent dye database that holds the fluorescent signal data of the fluorescent dye associated with the measuring device information and a reagent database that holds the correspondence information regarding the correspondence between the reagent and the fluorescent dye.
- an information processing method including an information processing step of performing information processing using the fluorescent signal data of the fluorescent dye.
- the flow cytometer can be roughly classified into a filter type and a spectral type, for example, from the viewpoint of an optical system for fluorescence measurement. Since the filter type flow cytometer extracts only the target optical information from the target fluorescent dye, the configuration as shown in 1 of FIG. 1 can be adopted. Specifically, the light generated by irradiating the particles with light is branched into a plurality of particles by a wavelength separation means DM such as a dichroic mirror, passed through different filters, and each of the branched lights is divided into a plurality of detectors. For example, it is measured by a photomultiplier tube PMT or the like.
- DM such as a dichroic mirror
- multicolor fluorescence detection is performed by performing fluorescence detection for each wavelength band corresponding to each fluorescent dye using a detector corresponding to each fluorescent dye.
- a fluorescence correction process can be performed in order to calculate a more accurate fluorescence amount.
- the leakage of fluorescence to a detector other than the detector to be detected becomes large, so that the fluorescence correction cannot be performed. It can occur.
- the spectral flow cytometer unmixes the fluorescence data obtained by detecting the light generated by irradiating the particles with light based on the spectral information of the fluorescent dye used for staining, thereby decomposing the fluorescence amount of each particle.
- the spectral flow cytometer uses a prism spectroscopic optical element P to disperse fluorescence.
- the spectral type flow cytometer is replaced with an array type detector, for example, an array type photomultiplier tube PMT, instead of a large number of photodetectors included in the filter type flow cytometer. It is equipped with.
- the spectral type flow cytometer is easier to avoid the influence of fluorescence leakage than the filter type flow cytometer, and is more suitable for analysis using a plurality of fluorescent dyes.
- each detector receives fluorescence from fluorescent dyes other than the target fluorescent dye. Leakage and analysis accuracy are reduced.
- the fluorescence spectral shape It is necessary to have an appropriate panel design (combination design of fluorescent dye and antibody) that takes into account the expression level of the antibody and the brightness of the fluorescent dye.
- the panel design largely depends on the user's experience and adjustment by trial and error.
- the number of colors increases, especially when the number of colors becomes about 20 or more, the number of combinations of fluorescent dyes to be considered increases rapidly, so the optimum dye combination with sufficient decomposition performance is found. That becomes extremely difficult.
- the number of colors is, for example, 10 or more, it is unavoidable that a large overlap occurs between the fluorescence spectra, and it becomes difficult for a person to predict the fluorescence leakage that actually occurs from the appearance overlap of the spectra.
- it is one parameter, it can be adjusted to some extent by manual manual operation, but there are a plurality of independent parameters to be adjusted in the panel design of multicolor analysis.
- the main examples of parameters to be considered include, for example, the fluorescence spectral shape described above, the expression level of the antigen, and the brightness of the fluorescent dye. Further, it is also desirable to consider the excitation characteristics of the fluorescent dye, whether it is available for purchase, and the cost.
- various reagent manufacturers provide various fluorescent dye-labeled antibodies that can be used in panel design.
- various fluorescent dye-labeled antibodies that can be used in panel design.
- a database of fluorescent dye-labeled antibodies can be constructed, not only the users who perform analysis but also the information processing system that automatically executes the panel design. It is considered useful.
- the number of fluorescent dye-labeled antibodies constituting the panel is often large, and moreover, a plurality of reagent manufacturers may give different names to the same fluorescent dye-labeled antibody.
- fluorescent dyes and antibodies There are many types of fluorescent dyes and antibodies, and these may also be given different names.
- the purpose of this technology is to solve at least one of the above problems.
- the present technique may be used to generate a list of combinations of antibodies and phosphors used in particle analysis such as flow cytometry.
- it may be used to generate recommendation information for reagents used in flow cytometry (particularly fluorescent dye-labeled antibodies).
- An example of an experimental flow in the case of applying this technique in flow cytometry will be described with reference to FIG.
- the flow of experiments using a flow cytometer can be broadly classified into an experiment planning process in which cells to be tested and methods for detecting them are examined and an antibody reagent with a fluorescence index is prepared (Fig. 2 "1: Plan”).
- a sample preparation step (“2: Preparation” in the same figure) that actually stains and prepares cells in a state suitable for measurement, and an FCM measurement step that measures the amount of fluorescence of each stained cell with a flow cytometer.
- Fig. "3: FCM” and a data analysis process Fig. "4: Data Analysis” that performs various data processing so that desired analysis results can be obtained from the data recorded by FCM measurement. Then, these steps can be repeated as needed.
- the flow cytometer is used to first determine which molecule (eg, antigen or cytokine) expression is used to determine which molecule (eg, antigen or cytokine) the microparticles (mainly cells) that one wants to detect are to be detected, that is, the microparticles.
- the experimental object is first processed into a state suitable for FCM measurement.
- cell separation and purification can be performed.
- erythrocytes are removed from the blood by hemolysis treatment and density gradient centrifugation, and leukocytes are extracted.
- the extracted cell group of the target is stained with a fluorescently labeled antibody.
- a single-stained sample stained with only one fluorescent dye used as a reference in the analysis and an unstained sample not stained at all may be prepared. Generally recommended.
- the fine particles to be analyzed are not particularly limited, and examples thereof include cells and microbeads.
- the flow cytometer may have a function of recording the fluorescence information of each fine particle acquired by the FCM measurement together with the scattered light information, the time information, and the position information other than the fluorescence information.
- the recording function may be performed primarily by computer memory or disk. In normal cell analysis, thousands to millions of fine particles are analyzed under one experimental condition, so it is necessary to record a large amount of information in an organized state for each experimental condition.
- the information processing system of this technology includes a fluorescent dye database that holds the fluorescent signal data of the fluorescent dye associated with the measuring device information, a reagent database that holds the correspondence information regarding the correspondence between the reagent and the fluorescent dye, and the reagent database.
- the fluorescence signal data of the fluorescent dye corresponding to the reagent is acquired from the fluorescent dye database, and the fluorescent dye Includes an information processing device that performs information processing using fluorescent signal data.
- the information processing system of the present technology can efficiently acquire information on the fluorescent dye by using the correspondence information.
- FIG. 4 shows a configuration example of the information processing apparatus 100.
- the information processing device 100 may include a processing unit 101, a storage unit 102, an input unit 103, an output unit 104, and a communication unit 105.
- the information processing apparatus 100 may be configured by, for example, a general-purpose computer.
- the processing unit 101 executes various information processing executed by the information processing apparatus 100.
- the processing unit 101 may include, for example, a CPU (Central Processing Unit) and a RAM.
- the CPU and RAM may be connected to each other via, for example, a bus.
- An input / output interface may be further connected to the bus.
- the input unit 103, the output unit 104, and the communication unit 105 may be connected to the bus via the input / output interface.
- the storage unit 102 stores various data.
- the storage unit 102 causes an information processing apparatus or information processing system to execute an operating system (for example, WINDOWS (registered trademark), UNIX (registered trademark), LINUX (registered trademark), etc.) and an information processing method according to the present technology. Program for, and various other programs can be stored.
- the storage unit 102 may also store various types of data that are input, generated, or output in accordance with the present technology.
- the storage unit 102 may include, for example, a ROM. Further, the storage unit 102 may include an HDD and / or an SSD.
- the input unit 103 may include an interface configured to accept input of various data.
- the input unit 103 may be configured to be able to receive various data input in the processing described later. Examples of the data include information to be processed.
- the input unit 103 may include, for example, a mouse, a keyboard, a touch panel, and the like as a device for receiving such an operation.
- the output unit 104 may include an interface configured to be able to output various data.
- the output unit 104 may be configured to be able to output various data generated in the processing described later.
- the output unit 104 may include, for example, a display device as a device for outputting these data.
- the communication unit 105 may be configured to connect the information processing device 100 to the network by wire or wirelessly.
- the information processing device 100 can acquire various data (for example, a list related to a fluorescent substance) via a network by the communication unit 105.
- the acquired data can be stored in, for example, the storage unit 102.
- the configuration of the communication unit 105 may be appropriately selected by those skilled in the art.
- the information processing device 100 may include, for example, a drive (not shown).
- the drive can read data recorded on a recording medium (for example, various data used in the present technology) or a program (for example, a program according to the present technology) and output it to RAM.
- the recording medium is, for example, a microSD memory card, an SD memory card, or a flash memory, but is not limited thereto.
- the analyzer 110 may be an analyzer that performs analysis of a sample labeled with a fluorescent dye.
- an analyzer include, but are not limited to, a fine particle analyzer such as a flow cytometer and a microscope apparatus for performing fluorescence imaging, as described in (2) above.
- the server 120 may include a processing unit 121, a storage unit 122, and a communication unit 125, similarly to the information processing device 100.
- the server 120 includes the reagent DB 131 and the fluorescent dye DB 132 shown in FIG. These may be stored in the storage unit 122 of the server 120, for example.
- the server 120 may be configured to be able to obtain information about reagents or fluorescent dyes through a network.
- the reagent DB 131 and / or the fluorescent dye DB 132 may be configured such that the information thus obtained can be added.
- the server 120 includes the registration processing unit 133 shown in FIG.
- the registration processing unit 133 may execute, for example, a reagent registration process.
- the registration processing unit 133 executes registration to the reagent DB 131 or the fluorescent dye DB 132. Further, the registration processing unit 133 may be configured to execute an integrated process of notational fluctuation of the measurement target information, the reagent, or the fluorescent dye. The processing by the registration processing unit 133 may be realized by the processing unit 121. The registration processing unit 133 may be referred to as an integrated processing unit when only the integrated processing is executed without executing the reagent registration.
- the processing unit 121 executes various information processing executed by the server 120.
- the processing unit 121 may include, for example, a registration processing unit 133.
- the processing unit 121 may be composed of, for example, a CPU (Central Processing Unit) and a RAM, and the CPU and the RAM may be connected to each other via, for example, a bus.
- the processing unit 121 may be specialized for the server function.
- the storage unit 122 stores various data.
- the storage unit 122 is used to cause a server or an information processing system to execute an operating system (for example, WINDOWS (registered trademark), UNIX (registered trademark), LINUX (registered trademark), etc.) and an information processing method according to the present technology. Programs and various other programs may be stored.
- the storage unit 122 may also store various types of data that are input, generated, or output according to the present technology.
- the storage unit 102 may include, for example, a ROM. Further, the storage unit 122 may include an HDD and / or an SSD.
- the reagent DB 131 and the fluorescent dye DB 132 may be stored in one server, or may be distributed and stored in two or more servers.
- an information processing system according to the present technology may include one server having the reagent DB 131 and the fluorescent dye DB, or may include one server having the reagent DB 131 and another server having the fluorescent dye DB 132. ..
- the reagent DB 131 and the fluorescent dye DB 132 are stored in a device (server 120) different from the information processing device 100, but in the present technology, the reagent DB 131 and the fluorescent dye DB 132 are stored in a device (server 120).
- the information processing apparatus 100 may have it.
- the reagent DB 131 and the fluorescent dye DB 132 may be stored in the storage unit 102 of the information processing apparatus 100.
- the registration processing unit 133 has a device (server 120) different from the information processing device 100, but in the present technology, the registration processing unit 133 has the information processing device 100. You may.
- the processing unit 101 of the information processing apparatus 100 may be configured to execute processing by the registration processing unit 133.
- FIG. 6 is a flow chart of the information processing.
- the information processing apparatus 100 accepts the input of the measurement target information.
- the measurement target information includes, for example, information on biomolecules.
- the information regarding the biomolecule includes, for example, the name, abbreviation, or number of each biomolecule.
- the measurement target information includes the name, abbreviation, or number of at least one biomolecule, for example, the name, abbreviation, or abbreviation of each of 2 or more, 5 or more, or 10 or more biomolecules. May include numbers.
- the lower limit of the number of biomolecules may be, for example, 1, 2, 5, or 10.
- the upper limit of the biomolecule may be, for example, 300, 200, 150, 100, or 50.
- the numerical range of the number of biomolecules may be a combination of values selected from the example of the lower limit value and the example of the upper limit value, respectively, and may be, for example, 2 to 300, 5 to 200, 5 to 150, or 5 to 100. May be.
- the information on the biomolecule further includes the expression level of each biomolecule.
- the expression level may be, for example, an expression level, or may be a specific numerical value of the expression level.
- the expression level may be, for example, an index expressing the expression level of a biomolecule in a plurality of stages, and is classified into, for example, 2 to 10 stages, particularly 2 to 8 stages, and more particularly 3 to 5 stages. It may be at the same level.
- the measurement target information may further include measurement device information.
- the measuring device information is information about a device that executes the measurement of the measurement target.
- the measuring instrument information may include information about a flow cytometer that performs flow cytometry on the measurement target.
- the measuring device information includes, for example, at least one of the model name of the measuring device, the laser wavelength, and the detection wavelength range of the detector.
- the measuring device information may further include a product number, a manufacturer name, a serial number, a name of a component attached to the measuring device, a software name used by the measuring device, and the like.
- step S101 the processing unit 101 of the information processing apparatus 100 may perform necessary processing on the received measurement target information.
- the treatment may be, for example, categorizing biomolecules based on the expression level.
- the information processing apparatus 100 transmits the measurement target information to the server 120.
- the measurement target information may include, for example, a biomolecule name.
- the biomolecule name can be, for example, an antigen and / or a cytokine.
- step S103 the server 120 receives the measurement target information.
- step S104 the server 120 executes a search process for the reagent DB 121 in response to receiving the measurement target information.
- the server 120 searches the reagent DB 121 using the biomolecule name in the measurement target information as a keyword, and specifies the correspondence information including the biomolecule name.
- the correspondence information may include, for example, information indicating a correspondence between a biomolecule and a reagent.
- the correspondence information may include, for example, information indicating a correspondence between a biomolecule and a reagent, particularly information on a biomolecule and a reagent that captures the biomolecule.
- the reagent can be, for example, a fluorescent dye-labeled antibody.
- the correspondence information may further include information indicating the correspondence between the reagent and the fluorescent dye, particularly information indicating the correspondence between the reagent and the fluorescent dye constituting the reagent.
- one correspondence information includes a name, abbreviation, or number of one reagent, a name, abbreviation, or number of a biomolecule captured by the one reagent, and a name or abbreviation of a fluorescent dye contained in the reagent. , Or a number, and may be included.
- the reagent can be specified based on the input biomolecule name, and further, the fluorescent dye contained in the reagent can be specified. It is also possible to search for a fluorescent dye DB based on the specified fluorescent dye.
- the names, abbreviations, and numbers of reagents may be collectively referred to as "reagent names”.
- the names, abbreviations, and numbers of biomolecules may also be referred to as "biomolecule names”.
- the name, abbreviation, or number of the fluorescent dye may be referred to as "fluorescent dye name”.
- the reagent is, for example, an antibody labeled with a fluorescent dye, in which case the correspondence information is information about the fluorescent dye (eg, the name, abbreviation, or number of the fluorescent dye) and information about the antibody (eg, the name of the antibody, etc.). It may include an abbreviation or number, or the name, abbreviation, or number of an antigen captured by an antibody).
- One correspondence information may correspond to one reagent, that is, one correspondence information may include information about an antibody constituting one fluorescent dye-labeled antibody and information about a fluorescent dye.
- the reagent for capturing the biomolecule can be specified by the name or abbreviation of the biomolecule to be captured by the antibody.
- the reagent DB 131 may include a plurality of correspondence information.
- the plurality of correspondence information may constitute a data table, and the data table is also referred to as a correspondence information data table in the present specification.
- the data table shown in FIG. 7 is a data table listing fluorescent dye-labeled antibodies as reagents.
- One correspondence information is described in each line.
- One correspondence information is the product number (product code column) of the reagent, the name of the reagent (reagent name column), the biomolecular name captured by the reagent (biomolecular name column), and the name of the fluorescent dye contained in the reagent (fluorescent dye).
- each of the correspondence information includes the name of the biomolecule captured by the reagent and the name of the fluorescent dye contained in the reagent. This makes it possible to specify the fluorescent dye using the fluorescent dye DB.
- each correspondence information may include the reagent name and / or the product number.
- the reagent database refers to the name of at least one of the reagents, biomolecules, and fluorochromes, and / or the reactants, host organisms, antibody isotypes, sizes, prices, and distributors. At least one may be registered.
- step S104 the server 120 (particularly, the processing unit 121) searches for the reagent DB 131 using the biomolecule name received in step S103. Then, the processing unit 121 specifies the correspondence information including the biomolecule name.
- the processing unit 121 may specify one correspondence-related information, or may specify two or more correspondence-related information.
- the server 120 specifies the correspondence information by referring to the biomolecule name integration processing table for processing the notation fluctuation of the biomolecule name. sell.
- An example of the table is shown in FIG.
- the table has one or more aliases (one alias, two aliases, ...)
- For one unified name (unified biomolecule name column) used in processing by the server 120. ) Is associated.
- the unified name "CD1a” is associated with the aliases "CD1A” and "CD1”
- the unified name "CD196" is associated with "CCR6" and "BN-1".
- the table has a plurality of data including one unified name and one or more aliases associated with the unified name.
- the server 120 may specify the correspondence information with reference to the table.
- the server 120 refers to the biomolecule name integration processing table and specifies a unified name associated with the biomolecule name. Then, the server 120 can search the reagent DB 131 using the unified name and specify the correspondence information including the unified name. The identified correspondence information is used in step S105.
- the server 120 uses the biomolecule name without referring to the biomolecule name integration processing table. Correspondence information including can be specified in reagent DB131. The identified correspondence information is used in step S105.
- the server 120 transmits the correspondence information specified in step S104 to the information processing apparatus 100.
- the correspondence information transmitted by the server 120 may include, for example, the name or abbreviation of the reagent and the name or abbreviation of the fluorescent dye contained in the reagent.
- the correspondence information transmitted by the server 120 may further include one or more of the information contained in the correspondence information data table described above, such as the name of the biomolecule captured by the antibody contained in the reagent.
- the correspondence information transmitted by the server 120 may be one correspondence information itself constituting the correspondence information data table.
- step S106 the information processing apparatus 100 receives the correspondence information from the server 120.
- steps S103 to S106 described above the information processing apparatus 100 searches the reagent database based on the biomolecule and identifies the reagent corresponding to the biomolecule.
- step S107 the information processing apparatus 100 transmits the correspondence information received in step S106 to the server 120.
- the correspondence information transmitted may include information about the fluorescent dye contained in the reagent (eg, the name, abbreviation, or number of the fluorescent dye).
- the correspondence information may further include the name, abbreviation, or number of the reagent.
- the information processing apparatus 100 may transmit at least one of the information regarding the measurement target and the measurement device information described later to the server 120 in addition to the correspondence information.
- the measuring device information is information about a measuring device that performs measurement using a reagent, and may include, for example, at least one of the model name of the measuring device, the laser wavelength, and the detection wavelength range of the detector.
- step S108 the server 120 receives the correspondence information.
- the server 120 can also receive information on the measurement target and measurement device information described later.
- step S109 the server 120 identifies the fluorescent dye corresponding to the correspondence information from the fluorescent dyes contained in the fluorescent dye DB based on the received correspondence information. For example, the server 120 specifies the fluorescence signal data corresponding to the fluorescent dye name included in the correspondence information.
- the fluorescent dye DB 132 contains fluorescent signal data of the fluorescent dye.
- the fluorescent dye DB 132 may include, for example, a fluorescent dye data table composed of a plurality of fluorescent signal data.
- the fluorescence signal data may include, for example, fluorescence spectrum data of a fluorescent dye.
- the fluorescence signal data enables the panel design process described later.
- the fluorescence signal data may further include fluorescence brightness data generated from the fluorescent dye.
- the fluorescence spectrum data and the brightness data make it possible to design a better panel, for example, from the viewpoint of separation performance.
- the data table shown in FIG. 9 is a data table listing information regarding the fluorescence signal of the fluorescent dye.
- One fluorescence signal data is described in each line.
- One fluorescence signal data includes a name of a fluorescent dye (fluorescent dye name string), a fluorescence spectrum data (spectrum shape data string), and a brightness data (brightness column). It is preferable that each of the fluorescence signal data includes the fluorescence dye name and the fluorescence spectrum data.
- the fluorescent dye database used in the present technology may be an aggregate of fluorescent signal data including the name of the fluorescent dye, the fluorescence spectrum data of the fluorescent dye, and the brightness of the fluorescent dye.
- the fluorescent dye DB 132 may include at least one of the information regarding the measurement target and the measurement device information.
- the information about the measurement target may include at least one of the degree of expression of the target organism and biomolecule.
- the measurement device information includes the number or wavelength of the excitation light source of the measurement device, the number and type of detectors (particularly optical detectors) included in the measurement device, the type, or the exposure gain, and the sample flow included in the measurement device. It may include at least one of the flow paths in the flow path.
- the flow path may be, for example, a flow path in which particles in a sample are irradiated with light and the light generated by the light irradiation is detected.
- it may be a flow path where light irradiation for flow cytometry is performed.
- the server 120 can specify the fluorescence signal data corresponding to the information regarding the measurement target and the measurement device information based on these information and the information received in step S109.
- the fluorescence signal data may be associated with the measuring device information. Since the measurement data regarding the fluorescence generated from the fluorescent dye can change depending on the measuring device, the panel design in consideration of the measuring device becomes possible by the above association.
- the measuring device information is information about a measuring device that performs measurement using a reagent, and may include, for example, at least one of a model name of the measuring device, a laser beam wavelength, and a detection wavelength range of the detector.
- the type of the measuring device information associated with the fluorescence signal data is the same as the type of the measuring device information transmitted by the information processing apparatus 100 in step S107.
- the measurement device information corresponding to the latter measurement device information can be specified in the fluorescent dye DB 132.
- the fluorescent dye DB 132 may include a plurality of fluorescent signal data associated with each of a plurality of types of measuring instruments for one fluorescent dye.
- the plurality of types of measuring instruments may correspond to different model names, or may correspond to other measuring instrument information (for example, the number of fluorescence detectors or the number of lasers).
- the fluorescent dye DB 132 may include a fluorescent dye data table associated with each of a plurality of types of measuring instruments. That is, a fluorescent dye data table may be prepared for each measuring device in the fluorescent dye DB 132. For example, as shown in FIG. 10, a fluorescent dye data table for each of the measuring instruments 1 to 3 may be prepared. As shown in FIG.
- a plurality of types of measuring instruments may be specified by a model name, but are specified by other measuring instrument information (for example, the number or type of fluorescence detectors or the number or wavelength of excitation lasers). May be done.
- a plurality of fluorescent signal data associated with each of the plurality of types of measuring instruments may be included in one fluorescent dye data table.
- the server 120 can specify the fluorescent dye by referring to the fluorescent dye name integrated processing table for processing the notational fluctuation of the fluorescent dye name.
- An example of the table is shown in FIG. As shown in FIG. 11, the table has one or more aliases (one alias, two aliases, ...) For one unified name (unified fluorescent dye name column) used in the processing by the server 120. ) Is associated.
- the unified name "FITC” is associated with the aliases “Fluorescein isothiocyanate” and "Alexa Fluor 488”
- the unified name "PE” is associated with "Phycoerythrin”.
- FITC and Alexa Fluor 488 are not completely the same fluorescent dye, they have almost the same fluorescence spectra.
- two fluorescent dyes having substantially the same fluorescence spectrum may be associated with one unified name.
- the table has a plurality of data including one unified name and one or more aliases associated with the unified name.
- the server 120 may refer to the table to identify the fluorescent dye. For example, when the fluorescent dye name included in the correspondence information received in step S108 does not exist in the fluorescent dye DB 132, the server 120 is associated with the fluorescent dye name by referring to the fluorescent dye name integrated processing table. Identify a unified name. Then, the server 120 can search the fluorescent dye DB 132 using the unified name and specify the fluorescent dye having the unified name. When the fluorescent dye name included in the correspondence information received in step S108 exists in the fluorescent dye DB 132, the server 120 uses the fluorescent dye DB 132 without referring to the fluorescent dye name integrated processing table. Can be identified inside.
- the server 120 transmits the fluorescence signal data of the fluorescent dye specified in step S109 to the information processing apparatus 100.
- the transmitted fluorescence signal data includes fluorescence spectrum data. This enables panel design using fluorescence spectrum data and enables generation of panels with improved separation performance.
- step S111 the information processing apparatus 100 receives the fluorescence signal data transmitted from the server 120.
- the information processing apparatus 100 acquires the fluorescence signal data of the fluorescent dye associated with the measuring device information among the fluorescent dyes associated with the reagent from the fluorescent dye database.
- the information processing apparatus 100 executes information processing using the fluorescent signal data.
- the information processing may be information processing that executes the panel design.
- the information processing apparatus 100 can generate recommended information of a reagent corresponding to an input biomolecule by the information processing (particularly panel design information processing).
- the recommended information of the reagent may include information on the reagent associated with the combination of the biomolecule and the fluorescent dye corresponding to the biomolecule acquired by the information processing. Then, the information processing apparatus 100 can output the recommendation information of the reagent corresponding to the biomolecule by the information processing.
- the information processing apparatus 100 receives the correspondence information from the reagent database, and uses the received correspondence information to obtain the fluorescent dye corresponding to the reagent.
- the fluorescent signal data can be obtained from the fluorescent dye database.
- FIG. 12 is a flow chart of the information processing.
- the reagent DB 131 and the fluorescent dye DB 132 can be stored in two servers, respectively.
- FIG. 13 shows a configuration example of an information processing system of the present technology having two servers.
- the information processing system 2 of the present technology includes an information processing device 100, an analysis device 110, and servers 120-1 and 120-2.
- the server 120-1 has the reagent DB 131
- the server 120-2 has the fluorescent dye DB 132. Since the explanation in (3-1) above applies to these components, these explanations will be omitted.
- Steps S201 to S204 of FIG. 12 are the same as steps S101 to S104 described with reference to FIG. 6 in (3-2-1) above, except that the server 120-1 is used instead of the server 120. , The explanations about these apply.
- the server 120-1 transmits the correspondence information specified in step S204 to the server 120-2.
- the correspondence information transmitted by the server 120-1 may include, for example, the name or abbreviation of the reagent and the name or abbreviation of the fluorescent dye contained in the reagent.
- the correspondence information transmitted by the server 120-1 may further include one or more of the information contained in the correspondence information data table described above, such as the name of the biomolecule captured by the antibody contained in the reagent.
- the correspondence information transmitted by the server 120-1 may be one correspondence information itself constituting the correspondence information data table.
- step S206 the server 120-2 receives the correspondence information from the server 120-1 by the information processing apparatus 100.
- Steps S207 to S210 are the same as steps S109 to S112 described with reference to FIG. 6 in (3-2-1) above, except that the server 120-1 is used instead of the server 120. The description of is applied to steps S207 to S210.
- the information processing apparatus 100 acquires the fluorescence signal data of the fluorescent dye corresponding to the reagent from the fluorescent dye database without receiving the correspondence information from the reagent database. You may.
- the information processing for acquiring the fluorescence signal data described in (3-2-1) and (3-2-2) above may be performed as a part of the information processing for executing the panel design.
- FIG. 14 is a flow chart of the panel design information processing. The following description relates to an application example of this technique in optimizing a combination of an antibody and a fluorescent dye used in flow cytometry.
- step S301 corresponds to steps S101 and 201 described in (3-2-1) and (3-2-2) above.
- step S303 corresponds to steps S102 to S111 and S202 to S209 described in (3-2-1) and (3-2-2) above.
- steps S304 and subsequent steps correspond to steps S112 and S210 described in (3-2-1) and (3-2-2) above.
- step S301 of FIG. 14 the information processing apparatus 100 (particularly, the input unit 103) receives input of a plurality of biomolecules and the expression levels of the plurality of biomolecules.
- the biomolecule may be an antigen to be measured in flow cytometry (for example, a surface antigen or a cytokine), or may be an antibody that captures the antigen to be measured.
- the expression level may be the expression level of the antigen.
- the plurality of biomolecules are antibodies, the expression level may be the expression level of the antigen captured by the antibody.
- the processing unit 101 may display an input reception window for receiving the input on the output unit 104 (particularly a display device) to urge the user to perform the input.
- the input reception window may include a biomolecule input reception column and an expression level reception column, such as the "Antibody” column and the "Expression level” column shown in FIG. 15Aa.
- the information processing system of the present technology may include an output unit that displays a screen for prompting input of measurement target information.
- the biomolecule input reception column may be, for example, a plurality of list boxes LB1 that prompt the selection of a biomolecule, as shown in the “Antibody” column of FIG. 15A.
- the number of list boxes may be, for example, 5 to 300, 10 to 200.
- the processing unit 101 causes a list of biomolecule choices to be displayed above or below the list box.
- the list is closed and the selected biomolecule is displayed.
- FIG. 15A a screen after the user selects a biomolecule is displayed.
- it will be labeled, for example, "CD1a", "CD2", etc., as shown in the figure.
- the expression level reception column may be, for example, a plurality of list boxes LB2 that prompt the selection of the expression level, as shown in the “Expression level” column of FIG. 15A.
- the number of list boxes LB2 prompting the selection of the expression level may be the same as the number of the list boxes LB1 prompting the selection of the biomolecule.
- nine list boxes are described for convenience of explanation, but the number of list boxes is not limited to this.
- the number of list boxes may be, for example, 5 to 300, 10 to 200.
- the processing unit 101 displays a list of expression level options above or below the list box.
- the list is closed and the selected expression level is displayed.
- a screen after the user selects the expression level is displayed.
- “+”, “++”, and “++++” are displayed, as shown in the figure.
- “+” is selected as the expression level of the biomolecule "CD1a”.
- "++” is selected as the expression level of the biomolecule "CD4".
- the symbols "+”, “++", and “++++” mean that the expression level increases in this order.
- the "expression level” may mean, for example, the level of the expression level, or may be a specific numerical value of the expression level.
- expression level means the level of expression level.
- the expression level may be preferably 2 to 20 steps, more preferably 2 to 15 steps, still more preferably 2 to 10 steps, and may be divided into, for example, 3 to 10 steps.
- the processing unit 101 After the selection of the biomolecule and the expression level is completed as described above, for example, when the selection completion button (not shown) in the input reception window is clicked by the user, the processing unit 101 receives a click. Accepts inputs for selected biomolecules and expression levels.
- the processing unit 101 classifies the plurality of biomolecules selected in step S301 based on the expression level selected for each biomolecule, and one or more expression level categories, particularly a plurality of expression level categories.
- the number of expression level categories may be, for example, a value corresponding to the number of expression level levels, preferably 2 or more, more preferably 3 or more.
- the number may be preferably 2 to 20, preferably 3 to 15, and even more preferably 3 to 10.
- the expression level "+”, “++”, or “++++” is selected for each of the plurality of biomolecules.
- the processing unit 101 classifies the selected biomolecule whose expression level is “+” into the expression level category “+”. Similarly, the processing unit 101 classifies the biomolecules having the selected expression level of "++” or “++++” into the expression level category "++” or the expression level category “++++”, respectively. In this way, the processing unit 101 generates three expression level categories.
- Each expression level category includes biomolecules for which the corresponding expression level has been selected.
- three biomolecules having an expression level “+”, four biomolecules having an expression level “++”, and two biomolecules having an expression level “++++” are input.
- step S303 the processing unit 101 acquires a list of phosphors capable of labeling the biomolecule input in step S301.
- the list of the phosphors may be obtained from a database existing outside the information processing apparatus 100, for example, via the communication unit 105, or stored inside the information processing apparatus 100 (for example, the storage unit 102). It may be obtained from the database.
- the list of fluorophores may include, for example, the name and brightness of each fluorophore.
- the list of the fluorophores preferably also includes the fluorescence spectrum of each fluorophore.
- the fluorescence spectrum of each phosphor may be obtained from the database as data separate from the list.
- the list may selectively include fluorophores that can be used in an apparatus in which a sample is analyzed using a combination of a biomolecule and a phosphor (eg, a microparticle analyzer).
- a phosphor eg, a microparticle analyzer
- step S304 the processing unit 101 classifies the fluorescent substances included in the list related to the fluorescent substances acquired in step S303 based on the brightness of each fluorescent substance, and classifies them into one or a plurality of brightness categories, particularly a plurality of brightnesses. Generate a category.
- step S304 preferably, the processing unit 101 generates a brightness category with reference to the expression level category generated in step S302. This makes it possible to more efficiently associate the generated brightness category with the expression level category and generate a combination of the biomolecule and the phosphor.
- the specific contents of the reference will be described below.
- the classification based on the brightness may be a classification based on the amount of fluorescence or the intensity of fluorescence.
- a numerical range of fluorescence amount or fluorescence intensity may be associated with each brightness category.
- the processing unit 101 refers to each of the phosphors included in the list with reference to the fluorescence amount or fluorescence intensity of each phosphor, and the brightness category associated with the numerical range including the fluorescence amount or fluorescence intensity. Can be classified as.
- the processing unit 101 generates a brightness category with reference to the number of expression level categories generated in step S302.
- the processing unit 101 generates brightness categories by the same number as the number of expression level categories generated in step S302.
- the expression level category and the brightness category can be associated with each other on a one-to-one basis.
- the number of brightness categories may be, for example, a value corresponding to the number of expression level categories, preferably 2 or more, and more preferably 3 or more.
- the number may be preferably 2 to 20, preferably 3 to 15, and even more preferably 3 to 10.
- three brightness categories (Bright, Normal, and Dim) may be generated. In these three brightness categories, the brightness is reduced in this order, that is, the fluorescence contained in Bright is brighter than any of the phosphors contained in Normal, and the fluorescence contained in Normal is included. All bodies are brighter than any of the fluorophore contained in Dim.
- step S304 the processing unit 101 generates a brightness category with reference to the number of biomolecules contained in each of the expression level categories generated in step S302.
- the processing unit 101 sets the fluorophore so that the number of biomolecules in the expression level category generated in step S302 or more is included in the associated brightness category. Classify into each brightness category. This makes it possible to prevent the generation of biomolecules to which a phosphor is not assigned in the combination list generation described later.
- step S305 the processing unit 101 associates the expression level category generated in step S302 with the brightness category generated in step S304.
- the processing unit 101 associates one brightness category with one expression level category.
- the processing unit 101 can make a correspondence so that the expression level category and the brightness category have a one-to-one correspondence. That is, the association can be performed so that two or more expression level categories are not associated with one brightness category.
- the processing unit 101 may perform the association so that the expression level category with the lower expression level is associated with the brighter brightness category. For example, the processing unit 101 associates the expression level category with the lowest expression level with the brightness category with the brightest brightness, and associates the expression level category with the next lowest expression level with the brightness category with the next brightest brightness. Correspondence to categories, and similarly, this mapping can be repeated until there are no expression level categories. On the contrary, the processing unit 101 associates the expression level category with the highest expression level with the brightness category with the darkest brightness, and the expression level category with the next highest expression level is the brightness with the next darkest brightness. Correspondence to the category, and similarly, this mapping can be repeated until the expression level category disappears.
- the processing unit 101 sets the expression level categories “+”, “++”, and “+++” to the brightness category “Bright”. , "Normal”, and “Dim” respectively.
- the expression level category in which the biomolecule showing a lower expression level is classified corresponds to the brightness category in which the brighter phosphor is classified. It may be associated with the brightness category.
- the processing unit 101 identifies the optimum fluorophore combination by using the correlation information between the fluorophores.
- the optimum phosphor combination may be, for example, a phosphor combination that is optimal from the viewpoint of correlation between fluorescence spectra, and more particularly, a phosphor combination that is optimal from the viewpoint of the correlation coefficient between fluorescence spectra. Even more particularly, it may be a phosphor combination that is optimal from the viewpoint of the square of the correlation coefficient between the fluorescence spectra.
- the correlation coefficient may be, for example, any of a Pearson correlation coefficient, a Spearman correlation coefficient, or a Kendall correlation coefficient, and is preferably a Pearson correlation coefficient.
- the correlation information between the phosphors may be preferably correlation information between fluorescence spectra. That is, in one preferred embodiment of the present technology, the processing unit 101 identifies the optimum phosphor combination using the correlation information between the fluorescence spectra.
- the Pearson correlation coefficient can be calculated between the two fluorescence spectra X and Y as follows.
- the fluorescence spectra X and Y can be expressed, for example, as follows.
- the average value ⁇ x is the average value of these fluorescence intensities.
- the standard deviation ⁇ x is the standard deviation of these fluorescence intensities.
- the average value ⁇ y is the average value of these fluorescence intensities.
- the standard deviation ⁇ x is the standard deviation of these fluorescence intensities.
- the numerical value "320" is a value set for convenience of explanation, and the numerical value used in the calculation of the correlation coefficient is not limited to this. The numerical value may be appropriately changed depending on the configuration of the fluorescence detector, such as the number of PMTs (photomultiplier tubes) used for fluorescence detection.
- Equation 1 The Pearson correlation coefficient R between these fluorescence spectra X and Y is obtained by the following equation (1).
- Z Xn (n is 1-320) is the standardized fluorescence intensity and is expressed as follows.
- Zx1 (X 1 - ⁇ x) ⁇ ⁇ x
- Zx2 (X 2 - ⁇ x) ⁇ ⁇ x
- ⁇ Zx320 (X 320 - ⁇ x) ⁇ ⁇ x
- Z Yn (n is 1 to 320) is also expressed as follows.
- Zy1 (Y 1- ⁇ y ) ⁇ ⁇ y
- Zy2 (Y 2- ⁇ y ) ⁇ ⁇ y
- ... Zy320 (Y 320- ⁇ y ) ⁇ ⁇ y
- N is the number of data.
- the processing unit 101 selects the same number of biomolecules from a certain brightness category as "the number of biomolecules belonging to the expression level category associated with the certain brightness category". The fluorophore selection is performed for all brightness categories. As a result, the same number of phosphors as "the number of a plurality of biomolecules used for sample analysis" is selected, and in this way, one fluorescent combination combination candidate is obtained.
- the processing unit 101 calculates the square of the correlation coefficient (for example, Pearson correlation coefficient) between the fluorescence spectra for the combination of any two phosphors included in the phosphor combination candidate. The processing unit 101 calculates the square of the correlation coefficient for all combinations. By the calculation process, the processing unit 101 obtains a matrix of correlation coefficient squared values as shown in FIG.
- the processing unit 101 specifies the maximum correlation coefficient squared value from the matrix of the correlation coefficient squared values.
- the correlation coefficient between the fluorescence spectrum of Alexa Fluor 647 and the fluorescence spectrum of APC is 0.934, and the processing unit 101 Specifies that this value is the maximum correlation coefficient squared value (the part surrounded by a rectangle in the upper left of the figure).
- the smaller the squared value of the correlation coefficient the more dissimilar the two phosphor spectra are. That is, it can be meant that the two phosphors having the maximum correlation coefficient squared value are the two phosphors having the most similar fluorescence spectra among the phosphors included in the phosphor combination candidate.
- the processing unit 101 specifies the maximum correlation coefficient squared value for one phosphor combination candidate.
- the processing unit 101 specifies the maximum correlation coefficient squared value for all possible phosphor combination candidates, as described above.
- the processing unit 101 specifies the maximum correlation coefficient squared value of each of the 216 fluorescent substance combination candidates. Then, the processing unit 101 identifies the phosphor combination candidate having the smallest identified maximum correlation coefficient squared value. The processing unit 101 identifies the fluorescent substance combination candidate thus identified as the optimum fluorescent substance combination.
- FIG. 15A c shows the specific result of the optimum fluorophore combination. In c of FIG. 15A, the fluorophore constituting the identified optimal fluorophore combination is marked with an asterisk.
- the processing unit 101 has the next largest correlation coefficient squared for the two or more fluorescent material combination candidates. The values can be compared and the fluorescent combination candidate having the next largest correlation coefficient squared value can be identified as the optimum fluorescent combination. If the next largest correlation coefficient squared value is the same, the next largest correlation coefficient squared value can be compared.
- the maximum correlation coefficient squared value is referred to in order to specify the optimum phosphor combination, but the reference is not limited to this in order to specify the optimum phosphor combination.
- the nth from the largest of the squared values of the correlation coefficient (where n may be any positive number, eg 2-10, especially 2-8, more particularly 2-5. It may be an average value or a total value up to a large value.
- the processing unit 101 may specify the fluorescent substance combination candidate having the smallest average value or the total value as the optimum fluorescent substance combination.
- step S307 the processing unit 101 assigns the fluorescent substances constituting the optimum phosphor combination specified in step S306 to the plurality of biomolecules. More specifically, the processing unit 101 allocates each of the fluorescent substances constituting the optimum fluorescent substance combination to the biomolecule belonging to the expression level category associated with the brightness category to which the fluorescent substance belongs.
- the associated expression level category may also contain two or more biomolecules.
- a fluorescent material having a brighter brightness can be assigned to a biomolecule having a lower expression level (or expected to have a lower expression level).
- FIG. 17 shows a conceptual diagram regarding such allocation.
- the processing unit 101 generates a combination of a phosphor and a biomolecule for each biomolecule by the above allocation processing.
- the processing unit 101 thus generates a list of combinations of fluorescent substances for biomolecules.
- An example of the generation result of the combination list is shown in d of FIG. 15A.
- the processing unit 101 may output the generation result of the combination list.
- the processing unit 101 may output the generation result of each fluorescent dye.
- the fluorescence spectrum may be displayed. By displaying the fluorescence spectrum, the user can visually confirm whether or not the spectra overlap.
- step S308 the processing unit 101 evaluates the separability of the phosphor combination produced in step S307.
- the separability evaluation will be described separately below with reference to FIG.
- the processing unit 101 may proceed to step S309 without executing step S308. If step S308 is not performed, the combination list generated in step S307 is used in step S309.
- step S309 the processing unit 101 may cause, for example, the output unit 104 to output the combination list generated in step S308.
- the combination list may be displayed on the display device. If step S308 is not executed, the processing unit 101 may cause the output unit 104 to output the combination list generated in step S307.
- the processing unit 101 may further display the reagent information corresponding to the combination of the antibody (or antigen) and the fluorescent dye on the output unit 104.
- the reagent information may be obtained from the reagent database described above.
- the reagent information may include, for example, the name of the reagent, the product number, the name of the sales company, the price, and the like.
- the processing unit 101 may, for example, acquire the reagent information from a database existing outside the information processing device 100, or inside the information processing device 100 (for example, the storage unit 102). It may be obtained from the stored database. Further, the information processing apparatus 100 may output the recommendation information based on the price and / or the information of the sales company in the reagent database. This makes it possible to recommend lower price reagent information. Also, by recommending reagents from a smaller number of companies, for example, the number of companies that users should access can be reduced.
- the information processing apparatus 100 may transmit, for example, the combination list to, for example, the server 120 (or the server 120-1).
- the server 120 identifies the correspondence information corresponding to the combination of the antibody and the fluorescent dye contained in the combination list, and the correspondence information. Identify the reagents contained in.
- the correspondence information includes, for example, the name of the reagent, so that the reagent can be specified by specifying the correspondence information.
- the server 120 (or the server 120-1) transmits the reagent information regarding the specified reagent to the information processing apparatus 100.
- the reagent information can be handled by the information processing apparatus 100 as reagent recommendation information.
- the information processing apparatus 100 can display the received reagent information on the output unit 104 as described above. As a result, the output unit 104 can display the recommendation information of the reagent.
- FIG. 15B shows an example of the output result.
- simulation results are also shown.
- the combination of the biomolecule and the phosphor can be optimized, and the optimized combination list can be presented to the user.
- the information processing apparatus included in the information processing system is used for the expression level category in which a plurality of biomolecules used for sample analysis are classified based on the expression level in the sample, and for the analysis of the sample. It is provided with a processing unit that generates a combination list of phosphors for biomolecules based on a brightness category in which a plurality of possible phosphors are classified based on brightness and correlation information between the plurality of phosphors. good.
- the processing unit may select the fluorescent substance to be assigned to the biomolecule in the combination list from the fluorescent substances belonging to the brightness category associated with the expression level category to which the biomolecule belongs.
- the expression level category may be associated with the brightness category so that the expression level category in which the biomolecule showing a lower expression level is classified corresponds to the brightness category in which the brighter phosphor is classified.
- step S401 of FIG. 18 the processing unit 101 starts the separation ability evaluation process.
- the processing unit 101 calculates the stain index between the fluorophores (the stain index is also referred to as “SI” in the present specification).
- the SI can be obtained, for example, by using the data obtained by generating simulation data using the combination list generated in step S307 and performing an unmixing process on the simulation data using a spectral reference.
- the simulation data may be, for example, a group of data as if measured by an apparatus (for example, a flow cytometer) in which analysis is performed using a reagent according to a combination list.
- the device is a fine particle analyzer such as a flow cytometer, it may be a data group obtained when, for example, 100 to 1000 fine particles are actually measured. Conditions such as noise of the device, dyeing variation, and the number of generated data may be taken into consideration for the generation of the data group.
- the processing unit 101 can acquire the inter-fluorescent SI data as shown in FIG. 19, for example.
- the data includes all SIs between two different fluorophores in the group of fluorophores that make up the combination list.
- the processing unit 101 identifies one or a plurality of fluorescent substances having poor separation performance, particularly one fluorescent substance having poor separation performance, based on the calculated inter-fluorescent SI. For example, the processing unit 101 can identify the fluorescent substance treated as positive among the two fluorescent substances for which the smallest inter-fluorescent SI is calculated as one fluorescent substance having poor separation performance.
- step S403 the processing unit 101 treats the inter-fluorescent SI “2.8” as positive (posi) out of the calculated two phosphors.
- the resulting fluorescent substance “PerCP-Cy5.5” is specified as one fluorescent substance having poor separation performance.
- the processing unit 101 identifies a candidate fluorescent substance that substitutes for the fluorescent substance having poor separation performance specified in step S403.
- Candidate phosphors can be specified, for example, as follows. First, the processing unit 101 refers to the brightness category to which the fluorescent material having poor separation performance belongs, and among the fluorescent materials belonging to the brightness category, the fluorescent material not adopted in the combination list is selected as a candidate fluorescent material. Can be specified as. In addition, the processing unit 101 may select the candidate fluorescent substance from the brightness category to which the fluorescent substance having poor separation performance belongs and the brightness category having the closest brightness. The processing unit 101 can specify a fluorescent substance that is not adopted in the combination list among the fluorescent substances belonging to the nearest brightness category as a candidate fluorescent substance.
- the processing unit 101 identifies six fluorescent substances such as “Alexa Fluor 647” as candidate fluorescent substances to replace the fluorescent substance “PerCP-Cy5.5” having poor separation performance.
- six fluorescent substances such as “Alexa Fluor 647” as candidate fluorescent substances to replace the fluorescent substance “PerCP-Cy5.5” having poor separation performance.
- a plurality of candidate fluorescent substances may be specified, or only one candidate fluorescent substance may be specified.
- step S405 the processing unit 101 calculates the inter-fluorescent SI when the fluorescent substance having poor separation performance specified in step S404 is changed to a candidate fluorescent substance. This calculation may be performed for each of the candidate fluorophores, respectively.
- FIGS. 21A and 21B Examples of the calculation result are shown in FIGS. 21A and 21B.
- FIGS. 21A and 21B the inter-fluorescent SI when the fluorescent substance having poor separation performance is changed to the candidate fluorescent substance is shown for each of the six fluorescent substances mentioned with respect to FIG. 20.
- step S406 the processing unit 101 substitutes the candidate fluorescent substance for which the calculation result having the largest minimum value of the inter-fluorescent SI among the calculation results in step S405 is obtained as the fluorescent substance having poor separation performance. Select as.
- the processing unit 101 selects "BV650" as a fluorescent substance to replace "PerCP-Cy5.5".
- step S407 the processing unit 101 determines whether or not there is a better phosphor combination than the combination list in which the fluorophore having poor separation performance is replaced by the fluorophore selected in step S406. For this determination, for example, steps S403 to 406 may be repeated. As a result of repeating steps S403 to 406, the processing unit 101 determines that a better combination of phosphors exists when there is a combination in which the minimum value of SI between phosphors is larger. When the determination is made in this way, the processing unit 101 returns the processing to step S403.
- the processing unit 101 determines that there is no better combination of phosphors when there is no combination in which the minimum value of SI between phosphors is larger.
- the processing unit 101 determines that a better phosphor combination does not exist, the processing unit 101 identifies the phosphor combination in the stage immediately before repeating steps S403 to 306 as an optimized combination list, and proceeds to the process in step S408. ..
- step S408 the processing unit 101 ends the separability evaluation process and proceeds to step S309.
- the processing unit 101 can evaluate the separability of the generated combination list.
- the processing unit 101 can generate simulation data related to the generated combination list and evaluate the separability of the combination list using the simulation data.
- the accuracy of optimization can be improved.
- the processing unit 101 at least one fluorescent substance in the set of fluorescent substances included in the combination list is changed to another fluorescent substance according to the evaluation result of the separation ability. It is possible to further generate a modified combination list and further evaluate the separability of the modified combination list. By generating the modified combination list and evaluating the separability, it is possible to generate a combination list that exhibits better separation performance.
- the evaluation of the separation ability may be, for example, an evaluation using a stain index (Stain-Index), and more preferably an evaluation using a stain index between fluorescent substances.
- the stain index is an index showing the performance of the phosphor (fluorescent dye) itself in the art, and as shown on the left of FIG. 22, for example, the amount of fluorescence of the stained particles and the unstained particles and the unstained particles. Defined by the standard deviation of the data.
- the stain index between the phosphors is obtained by replacing the unstained particle data with particles stained by another phosphor, as shown on the right side of FIG. 19, for example.
- the stain index between the phosphors can be used to evaluate the separation performance between the phosphors in consideration of the leakage amount due to the overlap of the fluorescence spectra, the fluorescence amount, and the noise.
- An example of the results of calculating the stain index between the fluorophores for all combinations of two fluorophores in the group of fluorophores constituting the generated combination list is shown in FIG.
- the processing unit 101 of the present technology can output to the output unit 104 the calculation results for all the combinations of the two phosphors in the phosphor group constituting the combination list generated by the processing unit. This makes it easier for the user to evaluate the separation performance.
- a combination list may be generated based on the expression level category, the brightness category, and the correlation information, and then the separability evaluation using an index such as a stain index may be performed.
- the generated combination list it is possible to know the fluorescent material combination having poor separation performance by the separation ability evaluation, and by changing the fluorescent material combination, it is possible to design a panel having better separation performance. ..
- performing a panel design by generating a combination list based on the above categories and evaluating the separability (and modifying the panel as necessary) is more calculated than performing a panel design by evaluating the separability of all combinations. You can save a lot of time.
- the fluorescent dye DB 132 includes fluorescent signal data of the fluorescent dye, and each fluorescent signal data may include fluorescence spectrum data and brightness data of the fluorescent dye.
- the fluorescence spectrum data and the brightness data are obtained by measuring the fluorescence of each of the plurality of fluorescent dyes constituting the fluorescent dye DB 132 by, for example, a flow cytometer.
- the brightness data is preferably a normalized value, but may be an actually measured value.
- the brightness data of a certain fluorescent dye is expressed as the fluorescence intensity at the peak of the fluorescence spectrum of the certain fluorescent dye with respect to the fluorescence intensity at the peak of the fluorescence spectrum of the reference fluorescent dye. May be done.
- a flow cytometer is used to acquire the peak fluorescence intensity of the reference fluorescence spectrum of FITC under predetermined measurement conditions.
- the peak fluorescence intensity of the fluorescence spectrum measured under the same measurement conditions is acquired.
- the peak fluorescence intensity for FITC is set to 100, and the peak fluorescence intensity for PE is expressed as a relative value with respect to the peak fluorescence intensity for FITC, and is expressed as, for example, 80.
- brightness data represented as relative values is obtained, for example, as shown in FIG.
- the measurement by the flow cytometer may be performed using beads labeled with a fluorescent dye, for example.
- the fluorescence spectrum data is generated from the value measured by a photodetector (for example, PMT (photoelectron doubling tube)) when the fluorescence generated from the fluorescent dye is measured by a flow cytometer.
- the fluorescent dye DB 132 may have the measured value itself.
- the measured value of each PMT can be expressed as a relative value to the measured value of the PMT in which the peak was recorded. From these relative values, the shape of the fluorescence spectrum can be obtained. As a result, fluorescence spectrum data is obtained, for example, as shown in FIG. 25.
- the measurement conditions for acquiring the brightness data and the fluorescence spectrum data of the above fluorescent dye may also be associated with the fluorescence signal data.
- the measurement condition may be the measurement device information described above. Further, the measurement condition may include a set value of the measuring device in the measurement.
- the set value may include, for example, a gain value of a photodetector (for example, each PMT), a flow rate, and the like.
- the reagent DB 131 includes correspondence-related information, and the correspondence-related information includes a reagent name, a biomolecule name constituting the reagent, and a fluorescent dye name constituting the reagent. sell.
- the data contained in the correspondence information can be collected, for example, from a reagent list provided by a reagent manufacturer. The collection may be performed, for example, on a person or may be performed using a curation program.
- the reagent DB is constructed.
- the constructed reagent DB may be updated as needed or periodically.
- the server 120 may periodically execute a curation program to collect data and automatically update only the difference information.
- the server 120 may include a registration processing unit that performs a reagent registration process.
- the registration processing unit may be configured to perform integrated processing of notational fluctuations of measurement target information, reagents, or fluorescent dyes.
- the reagent DB and / or the fluorescent dye DB may have an integrated processing data table referred to for performing the integrated processing of notational fluctuations.
- the registration processing unit may register the measurement target information, the reagent, or the fluorescent dye which is determined to be equivalent although there is a notational variation in the existing record in the reagent database or the fluorescent dye database. Further, the registration processing unit may set up a new record and register the measurement target information, the reagent, or the fluorescent dye that is not determined to be equivalent in the reagent database or the fluorescent dye database.
- the integrated process may be executed, for example, with respect to the biomolecule which is the measurement target information.
- the correspondence information constituting the reagent DB includes a biomolecule name.
- One biomolecule may have a plurality of different names, and different reagent manufacturers may adopt different names.
- the integrated process may be performed, for example, on a fluorescent dye.
- the correspondence information constituting the reagent DB includes the fluorescent dye name.
- the fluorescent dye DB includes a fluorescent dye name.
- the fluorescent dye one fluorescent dye may have a plurality of different names, and different names may be adopted for each reagent manufacturer. In addition, there may be fluctuations in the notation of the fluorescent dye name. Therefore, in order to generate or update the reagent DB, the table for fluorescent dye name integration processing described in (3-2-1) above may be used. That is, in one embodiment of the present technology, the server 120 may have a registration processing unit that executes a reagent registration process in the reagent database or the fluorescent dye database by using the fluorescent dye name integrated processing table.
- the integrated process may be performed, for example, on reagents.
- the reagent is a biomolecule (for example, an antibody) labeled with a fluorescent dye
- the registration processing unit can execute the reagent registration processing using the above two integrated processing tables.
- the registration processing unit may execute the reagent registration processing using both the biomolecule name integration processing table and the fluorescent dye name integration processing table, or may use these tables.
- the reagent registration process may be performed using any one of them.
- FIG. 26 is an example of a flow chart of the process.
- FIG. 27 shows four examples of reagent information to be registered: xxx, yyy, ccc, and zzz. In the following, an example of a process of registering these four reagent information with reference to the integrated processing table of FIGS. 8 and 11 will also be described.
- step S501 the server 120 starts the reagent registration process.
- the server 120 acquires reagent information for each of one reagent or a plurality of reagents.
- the server 120 may acquire the reagent information by receiving the reagent information transmitted from the information processing apparatus 100, or may acquire the reagent information by executing the curation program.
- the registration processing unit 133 provisionally adds the acquired reagent information to the reagent database as new correspondence information.
- the registration processing unit 133 determines whether or not the fluorescent dye name included in the acquired reagent information exists in the fluorescent dye name integrated processing table. The determination may be performed, for example, by executing a search process using the fluorescent dye name as a keyword on the database. If the fluorescent dye name is present in the fluorescent dye name integrated processing table, the registration processing unit 133 proceeds to the process in step S504. If the fluorescent dye name does not exist in the fluorescent dye name integrated processing table, the registration processing unit 133 proceeds to the process in step S505. Of the above four examples, regarding xxx, the registration processing unit 133 has "Alexa Fluor 488" in the table for fluorescent dye name integration processing, so the process proceeds to step S504. As for yyy, ccc, and zzz, there are “FITC”, "PE”, and "PE” in the fluorescent dye name integrated processing table, respectively, so the processing proceeds to step S504.
- the registration processing unit 133 registers the unified name in the data including the fluorescent dye name in the fluorescent dye name integrated processing table in the reagent database as the name of the fluorescent dye included in the fluorescent dye information. In this way, the registration processing unit 133 can register the fluorescent dyes that are determined to be equivalent although there are notational fluctuations in the existing records in the reagent database.
- the registration processing unit 133 has "FITC" as a unified name of "Alexa Fluor 488" in the table for fluorescent dye name integration processing, so that "FITC" is used. Is registered as the name of the fluorescent dye.
- yyy, ccc, and zzz the fluorescent dye name in the reagent information is registered as a unified name in the fluorescent dye name integrated processing table, so that name is registered as the name of the fluorescent dye.
- the registration processing unit 133 registers the fluorescent dye name included in the acquired reagent information in the reagent database as the name of the fluorescent dye contained in the reagent information. Like k, the registration processing unit 133 may launch a new record and register the fluorescent dye name in the record. Further, the registration processing unit 133 may additionally register the fluorescent dye name included in the acquired reagent information in the fluorescent dye name integrated processing table as new fluorescent dye data, particularly as a unified name of the fluorescent dye. .. By additionally registering in this way, the data contained in the table can be expanded.
- step S506 the registration processing unit 133 determines whether the biomolecule name included in the acquired reagent information exists in the biomolecule name integrated processing table. The determination may be performed, for example, by executing a search process using the biomolecule name as a keyword on the database. If the biomolecule name is present in the biomolecule name integration processing table, the registration processing unit 133 advances the processing to step S507. If the biomolecule name does not exist in the biomolecule name integration processing table, the registration processing unit 133 advances the processing to step S508. Of the above four examples, regarding xxx, yyy, and ccc, the registration processing unit 133 has "CCR6", "CD196", and "BN-1" in the biomolecule name integration processing table, and therefore performs processing. Proceed to step S507. As for zzz, since there is no "AAA" in the table for fluorescent dye name integration processing, the processing proceeds to step S508.
- the registration processing unit 133 registers the unified name in the data including the biomolecule name in the biomolecule name integration processing table in the reagent database as the name of the biomolecule included in the reagent information.
- the registration processing unit 133 can register the biomolecule determined to be equivalent although there is a variation in the notation in the existing record in the reagent database.
- the registration processing unit 133 puts "CD196", which is a unified name of "CCR6", in the table for biomolecule name integration processing, and the living body is included in xxx. Register as a molecular name.
- the registration processing unit 133 registers this as a biomolecule name included in yyy.
- the registration processing unit 133 registers "CD196", which is a unified name of "BN-1", as a biomolecule name contained in ccc.
- step S508 the registration processing unit 133 registers the biomolecule name included in the acquired reagent information in the reagent database as the name of the biomolecule included in the reagent information. In this way, the registration processing unit 133 can set up a new record and register it in the reagent database for the measurement target information (for example, a biomolecule) that is not determined to be equivalent. Further, the registration processing unit 133 can additionally register the biomolecule name included in the acquired reagent information in the biomolecule name integration processing table as new biomolecule data. As shown in FIG. 29, of the above four examples, the registration processing unit 133 registers "AAA" for zzz as the name of the biomolecule contained in the reagent zzz. Further, as shown in FIG. 30, the registration processing unit 133 also registers "AAA" in the biomolecule name integration processing table.
- step S509 the server 120 ends the reagent registration process.
- the four reagents are registered in the reagent DB as shown in FIG. 31. That is, the reagent information regarding these four reagents is registered in the reagent DB as four new correspondence information.
- the original name may be displayed in parentheses as shown in FIG. This makes it easier to understand the relationship with the original name. The parentheses may not be displayed.
- the biomolecule name and the fluorescent dye name included in the reagent DB may be abbreviations or numbers instead of the names themselves.
- the reagent database contains An ID number may be registered instead of the unified name.
- “MID: 10” and “mID: 12” in FIG. 32 correspond to “CD196” and “AAA” in FIG. 31, respectively.
- “sID: 1" and “sID: 10" in FIG. 32 correspond to "FITC” and "PE” in FIG. 31, respectively.
- the reagent information is registered in the reagent database as new correspondence information in step S502, and the biomolecule name and fluorescent dye name in the correspondence information are registered in steps S504 and S507. It will be changed to a unified name.
- steps S504 and S507 are executed, the biomolecule name and the fluorescent dye name in the reagent information are changed to a unified name, and then the reagent information after the change to the unified name is registered in the reagent database as correspondence information. May be done.
- the fluorescence signal data acquisition process according to the present technology may be executed to execute the unmixing process, and more specifically, to acquire the spectral reference data (hereinafter, also referred to as SR data) used in the unmixing process. It may be executed.
- SR data spectral reference data
- FIG. 33 is a flow chart of the process.
- the information processing apparatus 100 acquires or generates measurement target information.
- the measurement target information includes information regarding reagents.
- the information about the reagent may include the name, abbreviation, or number of the reagent.
- the measurement target information includes the name, abbreviation, or number of at least one reagent, for example, the name, abbreviation, or number of two or more, five or more, or ten or more reagents.
- the lower limit of the number of reagents may be, for example, 1, 2, 5, or 10.
- the upper limit of the reagent may be, for example, 300, 200, 150, 100, or 50.
- the numerical range of the number of reagents may be a combination of values selected from the example of the lower limit value and the example of the upper limit value, respectively, and may be, for example, 2 to 300, 5 to 200, 5 to 150, or 5 to 100. It may be there.
- the reagent may be, for example, a fluorescent dye-labeled antibody.
- the measurement target information may further include measurement device information.
- the measuring device information is information about a device that performs measurement using a measurement target.
- the measuring instrument information may include information about a flow cytometer that performs flow cytometry using the measurement target.
- the measuring device information includes, for example, at least one of the model name of the measuring device, the laser wavelength, and the detection wavelength range of the detector.
- the measuring device information may further include a product number, a manufacturer name, a serial number, a name of a component attached to the measuring device, a software name used by the measuring device, and the like.
- step S602 the information processing apparatus 100 transmits the measurement target information to the server 120.
- step S603 the server 120 receives the measurement target information.
- step S604 the server 120 executes a search process for the reagent DB 121 in response to receiving the measurement target information.
- the server 120 searches the reagent DB 121 using, for example, the name, abbreviation, product number, or the like of the prefluorescently labeled antibody as a keyword, and specifies the correspondence information including the name or the like.
- the correspondence information may mean information regarding the correspondence between the reagent and the fluorescent dye.
- one correspondence information may include the name or abbreviation of the biomolecule captured by one reagent, and the name or abbreviation of the fluorescent dye contained in the reagent.
- the fluorescent dye constituting the fluorescently labeled antibody can be specified based on the input name of the fluorescently labeled antibody or the like, and the fluorescent dye DB based on the specified fluorescent dye can be searched.
- One correspondence information may correspond to one reagent, that is, one correspondence information may include information about an antibody constituting one fluorescent dye-labeled antibody and information about a fluorescent dye.
- the fluorescent dye constituting the fluorescent dye-labeled antibody can be specified by the name of the fluorescent dye-labeled antibody or the like.
- step S604 the server 120 (particularly, the processing unit 121) searches for the reagent DB 131 using the name of the fluorescent dye-labeled antibody received in step S503 and the like. Then, the processing unit 121 specifies the correspondence information including the name of the fluorescent dye-labeled antibody and the like.
- the processing unit 121 may specify one correspondence-related information, or may specify two or more correspondence-related information.
- step S605 the server 120 transmits the correspondence information specified in step S604 to the information processing apparatus 100.
- the correspondence information transmitted by the server 120 may include, for example, the name or abbreviation of the fluorescent dye contained in the fluorescent dye-labeled antibody.
- the correspondence information transmitted by the server 120 may be one correspondence information itself constituting the correspondence information data table.
- step S606 the information processing apparatus 100 receives the correspondence information from the server 120.
- step S607 the information processing apparatus 100 transmits the correspondence information received in step S606 to the server 120.
- the correspondence information transmitted may include information about the fluorescent dye contained in the fluorescent dye-labeled antibody (for example, the name or abbreviation of the fluorescent dye).
- the correspondence information may further include the name or abbreviation of the fluorescent dye-labeled antibody.
- the information processing apparatus 100 transmits the measurement device information to the server 120 in addition to the correspondence information.
- the measuring device information is information about a measuring device that performs measurement using a fluorescent dye-labeled antibody, and may include, for example, at least one of a model name of the measuring device, a laser wavelength, and a detection wavelength range of the detector.
- the fluorescent signal data included in the fluorescent dye DB 132 the fluorescent signal data of the fluorescent dye associated with the measuring device can be specified.
- step S608 the server 120 receives the correspondence information.
- step S609 the server 120 identifies the fluorescent dye corresponding to the correspondence information from the fluorescent dyes contained in the fluorescent dye DB 132 based on the received correspondence information. For example, the server 120 specifies the fluorescence signal data corresponding to the fluorescent dye name included in the correspondence information.
- each of the fluorescence signal data includes the fluorescence dye name and the fluorescence spectrum data. This enables unmixing processing using the fluorescence spectrum data as a spectral reference.
- the fluorescence signal data may be associated with the measuring device information. Since the measurement data regarding the fluorescence generated from the fluorescent dye can change depending on the measuring device, the unmixing process in consideration of the measuring device becomes possible by the above association.
- the measuring device information is information about a measuring device that performs measurement using a reagent, and may include, for example, at least one of a model name of the measuring device, a laser wavelength, and a detection wavelength range of the detector.
- the type of the measuring device information associated with the fluorescence signal data is the same as the type of the measuring device information transmitted by the information processing apparatus 100 in step S507.
- the measurement device information corresponding to the latter measurement device information can be specified in the fluorescent dye DB 132.
- step S610 the server 120 transmits the fluorescence signal data of the fluorescent dye specified in step S609 to the information processing apparatus 100.
- the transmitted fluorescence signal data includes fluorescence spectrum data. This enables unmixing processing using fluorescence spectrum data.
- step S611 the information processing apparatus 100 receives the fluorescence signal data transmitted from the server 120.
- the processing unit 101 executes information processing using the fluorescence signal data.
- the information processing may include unmixing processing.
- the processing unit 101 can execute the unmixing process using the fluorescence signal data acquired in step S610 as spectral reference data.
- the spectral reference data used in the unmixing process includes spectral data of fluorescence generated when a phosphor labeling a particle is irradiated with a predetermined excitation light.
- the information processing device 100 can acquire the measurement spectrum data to be unmixed from the analyzer 110 configured as, for example, a flow cytometer.
- the acquisition mode of the measurement spectrum data may be changed according to the analyzer.
- the measured spectrum data can be obtained, for example, by irradiating the particles labeled with the reagent with excitation light.
- the information processing apparatus 100 can perform an unmixing process (fluorescence separation process) on the measured spectrum data by using the fluorescence spectrum data of the fluorescent dye as the information processing.
- the processing unit 101 may perform the unmixing process using, for example, a least squares method (Least Square Method, LSM), more preferably a weighted least squares method (WLSM).
- LSM least square Method
- WLSM weighted least squares method
- the unmixing process using the least squares method may be performed, for example, by using the fluorescence intensity correction method described in Japanese Patent No. 5985140.
- the fluorescence intensity correction method can be performed using, for example, the following WLSM mathematical formula (2).
- xn indicates the fluorescence intensity of the nth fluorescent dye
- [ST] indicates the transposition matrix of the spectral reference
- [L] indicates the weight matrix
- [S] indicates the matrix of the spectral reference.
- yi indicates the measured value at the i-th photodetector
- ⁇ i indicates the weight at the i-th photodetector
- max (yi, 0) indicates the detection value of the i-th detector and zero. In comparison, a large value is shown, and offset'indicates a value determined based on the detection value of each detector.
- the fluorescence wavelength distribution of a fluorescent substance may be wide. Therefore, for example, the PMT used for detecting the fluorescence generated from a certain fluorescent substance can also detect the fluorescence generated from another fluorescent substance. That is, the optical data acquired by each PMT may be data in which fluorescence data from a plurality of phosphors are superimposed. Therefore, it is necessary to make corrections to separate the optical data into fluorescence data from each phosphor.
- the unmixing process is a method for the correction, and the unmixing process separates the data on which the fluorescence data from a plurality of phosphors are superimposed into the fluorescence data from each phosphor, and each fluorescence. Fluorescence data from the body can be obtained.
- the processing unit 101 generates output data using the fluorescence data after the unmixing process.
- the output data may be, but is not limited to, a two-dimensional plot for, for example, two of the desired fluorophores used to label the particle population subject to flow cytometry.
- the vertical axis of the two-dimensional plot may be fluorescence data (particularly fluorescence intensity) of fluorescence corresponding to one of the two fluorescent substances, and the horizontal axis may be the other fluorescent substance. It may be the fluorescence data of the corresponding fluorescence (particularly the fluorescence intensity).
- the two-dimensional plot may be, for example, a density plot (dot plot), a contour plot, or both a density and contour plot.
- the gate setting and expansion operation for generating the two-dimensional plot may be appropriately performed by the user depending on the purpose of the particle analysis.
- FIG. 34 is a flow chart of the information processing.
- the reagent DB 131 and the fluorescent dye DB 132 can be stored in two servers, respectively.
- An example of the configuration of the information processing system of the present technology having two servers is as described above with reference to FIG. 11.
- step S705 the server 120-1 transmits the correspondence information specified in step S704 to the server 120-2.
- the correspondence information transmitted by the server 120-1 in step S705 may include, for example, the name or abbreviation of the fluorescent dye-labeled antibody.
- the correspondence information transmitted by the server 120-1 may be one correspondence information itself constituting the correspondence information data table.
- step S706 the server 120-2 receives the correspondence information from the server 120-1 by the information processing apparatus 100.
- Steps S707 to S710 are the same as steps S609 to S612 described in (3-3-1) above, except that the server 120-1 is used instead of the server 120, and the description thereof is described in steps S707 to S707. This applies to S710.
- the information processing method acquires fluorescence signal data of a fluorescent dye corresponding to the reagent from the fluorescent dye database by using the correspondence information regarding the reagent in the reagent database specified based on the input measurement target information.
- Fluorescent signal data acquisition step may be included.
- the fluorescence signal data acquisition step may be executed, for example, as described in the above "1. First embodiment (information processing system)", for example, (3-2-1), (3-2-2). ), (3-3-1), or (3-3-2).
- the information processing method may include an information processing step of performing information processing using the fluorescent signal data of the fluorescent dye.
- the information processing step may be, for example, panel design information processing or unmixing processing.
- the information processing step may be executed, for example, as described in the above "1. First embodiment (information processing system)", for example, (3-2-3), (3-2-4), and so on. Alternatively, it may be executed as described in (3-3-1).
- This technology also provides a fluorescent dye database that holds fluorescent signal data of fluorescent dyes linked to measuring device information.
- the present technology also provides a reagent database that holds correspondence information regarding the correspondence between reagents and fluorescent dyes.
- the present technology also provides a combination of the fluorescent dye database and the reagent database.
- These databases may be as described in "1. First Embodiment (Information Processing System)" above.
- the present technology acquires the fluorescence signal data of the fluorescent dye corresponding to the reagent from the fluorescent dye database by using the correspondence information regarding the reagent in the reagent database specified based on the input measurement target information. Further, an information processing apparatus that performs information processing using the fluorescent signal data of the fluorescent dye is also provided.
- the information processing apparatus may be as described in the above "1. First embodiment (information processing system)".
- the present technology also provides a program for causing an information processing device or an information processing system to execute the information processing method.
- the information processing method is described in 2.
- the program according to the present technology may be recorded, for example, on the recording medium described in (3-1) above, or may be stored in a storage unit included in the information processing apparatus or server described above.
- the present technology can also have the following configurations.
- a fluorescent dye database that holds fluorescent signal data of fluorescent dyes linked to measuring device information
- a reagent database that holds correspondence information on the correspondence between reagents and fluorescent dyes
- the fluorescence signal data of the fluorescent dye corresponding to the reagent is acquired from the fluorescent dye database
- the fluorescent dye An information processing device that performs information processing using fluorescent signal data, Information processing system equipped with.
- the information processing system according to [1] or [2], wherein the measuring device information includes at least one of a model name of the measuring device, a laser beam wavelength, and a detection wavelength range of the detector.
- the information processing device is Receive the correspondence information from the reagent database and Using the received correspondence information, the fluorescence signal data of the fluorescent dye corresponding to the reagent is acquired from the fluorescent dye database.
- the information processing system according to any one of [1] to [3].
- the information processing device is The fluorescence signal data of the fluorescent dye corresponding to the reagent is acquired from the fluorescent dye database without receiving the correspondence information from the reagent database.
- the information processing system according to any one of [1] to [3].
- the information processing system further includes an output unit that displays a screen prompting the input of the measurement target information.
- the output unit also displays recommended information for the reagent.
- the information processing system according to any one of [6] to [8].
- the measurement target information includes the name, abbreviation, or number of at least one reagent.
- the fluorescence signal data includes fluorescence spectrum data, and includes fluorescence spectrum data.
- the information processing apparatus acquires measurement spectrum data acquired by irradiating particles labeled with the reagent with excitation light, and then obtains measurement spectrum data.
- the information processing apparatus uses the fluorescence spectrum data of the fluorescent dye to perform fluorescence separation processing on the measurement spectrum data.
- the information processing system according to any one of [1] to [9].
- the information processing system includes a registration processing unit that executes registration processing of reagents.
- the registration processing unit is configured to perform integrated processing of notational fluctuations of measurement target information, reagents, or fluorescent dyes.
- the information processing system according to any one of [1] to [10].
- the reagent database or the fluorescent dye database has a data table for integrated processing referred to for performing integrated processing of notational fluctuations.
- the registration processing unit registers the measurement target information, the reagent, or the fluorescent dye, which is determined to be equivalent although there is a notational variation, in the reagent database or an existing record in the fluorescent dye database.
- the information processing system described. [13] The registration processing unit launches a new record and registers the measurement target information, the reagent, or the fluorescent dye that is not determined to be equivalent in the reagent database or the fluorescent dye database, [11] or [12]. ]
- the reagent database contains at least one name of a reagent, a biomolecule, and a fluorescent dye, and / or at least one of a reactant, a host organism, an antibody isotype, size, price, and a distributor.
- the information regarding the measurement target includes at least one of the expression levels of the target organism and the biomolecule.
- the measuring instrument information is at least one of the number or wavelength of the excitation light source of the measuring instrument, the number of detectors included in the measuring instrument, the type or exposure gain, and the flow velocity in the sample flow path included in the measuring instrument.
- Information processing system 100 Information processing device 110 Analytical device 120 Server
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Optics & Photonics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
本技術は、パネルデザインを自動的に実行する情報処理システムを提供することを目的とする。 本技術は、測定機器情報に紐づけられている蛍光色素の蛍光信号データを保持する蛍光色素データベースと、試薬と蛍光色素との対応関係に関する対応関係情報を保持する試薬データベースと、入力された測定対象情報に基づき特定された前記試薬データベース中の試薬に関する対応関係情報を利用して、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得し、前記蛍光色素の蛍光信号データを用いて情報処理を実施する情報処理装置と、を具備する情報処理システムを提供する。
Description
本技術は、情報処理システム及び情報処理方法に関する。より詳細には、本技術は、例えば生体分子などの分析において用いられる蛍光色素に関する各種情報処理を実行する情報処理システム及び情報処理方法に関する。
例えば細胞、微生物、及びリポソームなどの粒子集団を蛍光色素によって標識し、当該粒子集団のそれぞれの粒子にレーザ光を照射して励起された蛍光色素から発生する蛍光の強度及び/又はパターンを計測することによって、粒子の特性を測定することが行われている。当該測定を行う粒子分析装置の代表的な例として、フローサイトメータを挙げることができる。
フローサイトメータは、流路内を1列に並んで通流する粒子に特定波長のレーザ光(励起光)を照射して、各粒子から発せられた蛍光及び/又は散乱光を検出することにより、複数の粒子を1個ずつ分析する装置である。フローサイトメータは、光検出器で検出した光を電気的信号に変換して数値化し、統計解析を行うことにより、個々の粒子の特性、例えば種類、大きさ、及び構造などを判定することができる。
フローサイトメータの分析対象である粒子集団を標識するために用いる蛍光色素の選択手法に関してこれまでにいくつかの技術が提案されている。例えば以下の特許文献1には、フローサイトメータのプローブパネルを設計する方法が記載されており、当該方法は、第1チャネルで測定されるように意図される第1標識の発光によって生じる、第2チャネルへの漏れ込み効果を定量化するひずみ係数を決定することと、前記第1標識及び第1プローブを含む、第1プローブ-標識の組み合わせの予測最大信号を入力することと、前記ひずみ係数及び前記第1プローブ-標識の組み合わせの前記予測最大信号に基づいて、前記第2チャネルにおける検出限界の増加を計算することと、前記計算した検出限界の増加に基づいて、前記プローブパネルに含まれるプローブ-標識の組み合わせを選択することと、を含む。
フローサイトメータによる分析の対象である粒子集団を標識するために、しばしば複数の蛍光色素標識抗体が用いられる。当該分析において用いられる蛍光色素標識抗体の組合せはパネルともいい、パネルを決定するためのプロセスはパネルデザインとも呼ばれる。前記分析において用いられる蛍光色素標識抗体の数は増加傾向にあり、これに伴い、パネルデザインを手動で行うことはより困難になってきている。そこで、パネルデザインを自動的に実行する情報処理システムがあれば、分析を行うユーザにとっての利便性向上に資すると考えられる。
また、蛍光色素に関する必要な情報を効率的に取得することや、蛍光色素標識抗体に関するデータベースの構築も、パネルデザインを自動的に実行する情報処理システムにとって重要であると考えられる。
また、パネルを構成する蛍光色素標識抗体の名称並びにこれを構成する蛍光色素及び抗体の名称には表記ゆれが存在する。表記ゆれが存在しても、パネルデザインなどの情報処理又は前記データベース構築を適切に実行することができれば、ユーザにとっての利便性がさらに向上すると考えられる。
そこで、本技術は、以上の課題の少なくとも一つに対処するための技法を提供することを目的とする。
本技術は、
測定機器情報に紐づけられている蛍光色素の蛍光信号データを保持する蛍光色素データベースと、
試薬と蛍光色素との対応関係に関する対応関係情報を保持する試薬データベースと、
入力された測定対象情報に基づき特定された前記試薬データベース中の試薬に関する対応関係情報を利用して、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得し、前記蛍光色素の蛍光信号データを用いて情報処理を実施する情報処理装置と、
を具備する情報処理システムを提供する。
前記蛍光信号データは蛍光スペクトルデータを含みうる。
前記測定機器情報は、測定機器の機種名、レーザ光波長、及び検出器の検出波長域のうちの少なくとも1つを含みうる。
前記情報処理装置は、
前記試薬データベースから前記対応関係情報を受信し、そして、
当該受信した対応関係情報を利用して、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得しうる。
前記情報処理装置は、
前記試薬データベースから前記対応関係情報を受信することなく、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得しうる。
前記測定対象情報は少なくとも1つの生体分子の名称、略称、又は番号を含み、
前記対応関係情報は、前記生体分子と試薬との対応関係を示す情報を含み、
前記情報処理装置は、前記情報処理により前記生体分子に対応する試薬の推薦情報を出力しうる。
前記情報処理装置は、
前記生体分子に基づき前記試薬データベースを検索して前記生体分子に対応する試薬を特定し、そして、
前記試薬に紐づく蛍光色素のうち、測定機器情報に紐づく前記蛍光色素の蛍光信号データを、前記蛍光色素データベースより取得しうる。
前記試薬の推薦情報は、前記情報処理により取得された、前記生体分子と当該生体分子に対応する蛍光色素との組合せに紐づく試薬に関する情報を含みうる。
前記情報処理システムは、前記測定対象情報の入力を促す画面を表示する出力部を更に備えていてよく、
前記出力部は、前記試薬の推薦情報も表示しうる。
前記測定対象情報は少なくとも1つの試薬の名称、略称、又は番号を含み、
前記蛍光信号データは蛍光スペクトルデータを含み、
前記情報処理装置は、前記試薬により標識された粒子に励起光を照射することで取得される測定スペクトルデータを取得し、そして、
前記情報処理装置は、前記情報処理として、前記蛍光色素の蛍光スペクトルデータを用いて、前記測定スペクトルデータに対して蛍光分離処理を実施しうる。
前記情報処理システムは、試薬の登録処理を実行する登録処理部を含み、
前記登録処理部は、測定対象情報、試薬、又は蛍光色素の表記ゆれの統合処理を実行するように構成されていてよい。
前記試薬データベース又は前記蛍光色素データベースは、表記ゆれの統合処理を実行するために参照される統合処理用データテーブルを有し、
前記登録処理部は、表記ゆれはあるが同等であると判定された測定対象情報、試薬、又は蛍光色素を、前記試薬データベース又は前記蛍光色素データベース内の既存のレコードに登録しうる。
前記登録処理部は、同等であると判定されなかった測定対象情報、試薬、又は蛍光色素について、新規のレコードを立ち上げて前記試薬データベース又は前記蛍光色素データベースに登録しうる。
前記試薬データベースは、試薬、生体分子、及び蛍光色素のうち少なくとも1つの名称、並びに/若しくは、反応生物、ホスト生物、抗体のアイソタイプ、サイズ、価格、及び販売会社のうち少なくとも1つが登録されていてよい。
前記情報処理装置は、前記試薬データベース中の前記価格および/又は前記販売会社の情報に基づいて、前記推薦情報を出力しうる。
前記蛍光色素データベースは、測定対象に関する情報及び測定機器情報のうち少なくとも1つを含みうる。
前記測定対象に関する情報は、対象生物及び生体分子の発現の程度のうち少なくとも1つを含みうる。
前記測定機器情報は、測定機器の励起光源の本数又は波長、測定機器に含まれる検出器の数、種類又は露光ゲイン、および測定機器に含まれる試料通流流路内の流速のうち少なくとも1つを含みうる。
前記蛍光色素データベースは、ネットワークを通じて取得された蛍光色素に関する情報が追加可能であるように構成されていてよい。
測定機器情報に紐づけられている蛍光色素の蛍光信号データを保持する蛍光色素データベースと、
試薬と蛍光色素との対応関係に関する対応関係情報を保持する試薬データベースと、
入力された測定対象情報に基づき特定された前記試薬データベース中の試薬に関する対応関係情報を利用して、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得し、前記蛍光色素の蛍光信号データを用いて情報処理を実施する情報処理装置と、
を具備する情報処理システムを提供する。
前記蛍光信号データは蛍光スペクトルデータを含みうる。
前記測定機器情報は、測定機器の機種名、レーザ光波長、及び検出器の検出波長域のうちの少なくとも1つを含みうる。
前記情報処理装置は、
前記試薬データベースから前記対応関係情報を受信し、そして、
当該受信した対応関係情報を利用して、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得しうる。
前記情報処理装置は、
前記試薬データベースから前記対応関係情報を受信することなく、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得しうる。
前記測定対象情報は少なくとも1つの生体分子の名称、略称、又は番号を含み、
前記対応関係情報は、前記生体分子と試薬との対応関係を示す情報を含み、
前記情報処理装置は、前記情報処理により前記生体分子に対応する試薬の推薦情報を出力しうる。
前記情報処理装置は、
前記生体分子に基づき前記試薬データベースを検索して前記生体分子に対応する試薬を特定し、そして、
前記試薬に紐づく蛍光色素のうち、測定機器情報に紐づく前記蛍光色素の蛍光信号データを、前記蛍光色素データベースより取得しうる。
前記試薬の推薦情報は、前記情報処理により取得された、前記生体分子と当該生体分子に対応する蛍光色素との組合せに紐づく試薬に関する情報を含みうる。
前記情報処理システムは、前記測定対象情報の入力を促す画面を表示する出力部を更に備えていてよく、
前記出力部は、前記試薬の推薦情報も表示しうる。
前記測定対象情報は少なくとも1つの試薬の名称、略称、又は番号を含み、
前記蛍光信号データは蛍光スペクトルデータを含み、
前記情報処理装置は、前記試薬により標識された粒子に励起光を照射することで取得される測定スペクトルデータを取得し、そして、
前記情報処理装置は、前記情報処理として、前記蛍光色素の蛍光スペクトルデータを用いて、前記測定スペクトルデータに対して蛍光分離処理を実施しうる。
前記情報処理システムは、試薬の登録処理を実行する登録処理部を含み、
前記登録処理部は、測定対象情報、試薬、又は蛍光色素の表記ゆれの統合処理を実行するように構成されていてよい。
前記試薬データベース又は前記蛍光色素データベースは、表記ゆれの統合処理を実行するために参照される統合処理用データテーブルを有し、
前記登録処理部は、表記ゆれはあるが同等であると判定された測定対象情報、試薬、又は蛍光色素を、前記試薬データベース又は前記蛍光色素データベース内の既存のレコードに登録しうる。
前記登録処理部は、同等であると判定されなかった測定対象情報、試薬、又は蛍光色素について、新規のレコードを立ち上げて前記試薬データベース又は前記蛍光色素データベースに登録しうる。
前記試薬データベースは、試薬、生体分子、及び蛍光色素のうち少なくとも1つの名称、並びに/若しくは、反応生物、ホスト生物、抗体のアイソタイプ、サイズ、価格、及び販売会社のうち少なくとも1つが登録されていてよい。
前記情報処理装置は、前記試薬データベース中の前記価格および/又は前記販売会社の情報に基づいて、前記推薦情報を出力しうる。
前記蛍光色素データベースは、測定対象に関する情報及び測定機器情報のうち少なくとも1つを含みうる。
前記測定対象に関する情報は、対象生物及び生体分子の発現の程度のうち少なくとも1つを含みうる。
前記測定機器情報は、測定機器の励起光源の本数又は波長、測定機器に含まれる検出器の数、種類又は露光ゲイン、および測定機器に含まれる試料通流流路内の流速のうち少なくとも1つを含みうる。
前記蛍光色素データベースは、ネットワークを通じて取得された蛍光色素に関する情報が追加可能であるように構成されていてよい。
また、本技術は、
測定機器情報に紐づけられている蛍光色素の蛍光信号データを保持する蛍光色素データベースと、試薬と蛍光色素との対応関係に関する対応関係情報を保持する試薬データベースと、を用いて実行され、
入力された測定対象情報に基づき特定された前記試薬データベース中の試薬に関する対応関係情報を利用して、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得する蛍光信号データ取得工程と、
前記蛍光色素の蛍光信号データを用いて情報処理を実施する情報処理工程と
を含む情報処理方法も提供する。
測定機器情報に紐づけられている蛍光色素の蛍光信号データを保持する蛍光色素データベースと、試薬と蛍光色素との対応関係に関する対応関係情報を保持する試薬データベースと、を用いて実行され、
入力された測定対象情報に基づき特定された前記試薬データベース中の試薬に関する対応関係情報を利用して、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得する蛍光信号データ取得工程と、
前記蛍光色素の蛍光信号データを用いて情報処理を実施する情報処理工程と
を含む情報処理方法も提供する。
以下、本技術を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態を示したものであり、本技術の範囲がこれらの実施形態のみに限定されることはない。なお、本技術の説明は以下の順序で行う。
1.第1の実施形態(情報処理システム)
(1)発明の課題の詳細
(2)本技術を用いて行われる実験のフロー例
(3)第1の実施形態の説明
(3-1)情報処理システムの構成例
(3-2)情報処理システムによる処理の例(パネルデザイン)
(3-2-1)蛍光信号データの取得のための情報処理の例
(3-2-2)蛍光信号データの取得のための情報処理の他の例
(3-2-3)蛍光信号データ取得処理を含むパネルデザイン情報処理の例
(3-2-4)分離能評価処理の例
(3-2-5)データベースの生成
(3-2-5-1)蛍光色素データベースの生成
(3-2-5-2)試薬データベースの生成
(3-2-5-3)統合処理用テーブルを用いた試薬登録処理
(3-3)情報処理システムによる処理の例(アンミキシング処理)
(3-3-1)蛍光信号データの取得のための情報処理の例
(3-3-2)蛍光信号データの取得のための情報処理の他の例
2.第2の実施形態(情報処理方法)
3.その他の実施形態
1.第1の実施形態(情報処理システム)
(1)発明の課題の詳細
(2)本技術を用いて行われる実験のフロー例
(3)第1の実施形態の説明
(3-1)情報処理システムの構成例
(3-2)情報処理システムによる処理の例(パネルデザイン)
(3-2-1)蛍光信号データの取得のための情報処理の例
(3-2-2)蛍光信号データの取得のための情報処理の他の例
(3-2-3)蛍光信号データ取得処理を含むパネルデザイン情報処理の例
(3-2-4)分離能評価処理の例
(3-2-5)データベースの生成
(3-2-5-1)蛍光色素データベースの生成
(3-2-5-2)試薬データベースの生成
(3-2-5-3)統合処理用テーブルを用いた試薬登録処理
(3-3)情報処理システムによる処理の例(アンミキシング処理)
(3-3-1)蛍光信号データの取得のための情報処理の例
(3-3-2)蛍光信号データの取得のための情報処理の他の例
2.第2の実施形態(情報処理方法)
3.その他の実施形態
1.第1の実施形態(情報処理システム)
(1)発明の課題の詳細
フローサイトメータは、例えば蛍光計測の光学系の観点から、フィルタ型及びスペクトル型に大別されうる。フィルタ型のフローサイトメータは、目的の蛍光色素から目的の光情報のみを取り出すため、図1の1に示されるような構成を採用しうる。具体的には、粒子への光照射により生じた光を、例えばダイクロイックミラーなどの波長分離手段DMで複数に分岐させ、異なるフィルタを通し、そして、分岐したそれぞれの光を、複数の検出器、例えば光電子増倍管PMTなどにより計測する。すなわち、フィルタ型のフローサイトメータでは、各蛍光色素に対応した波長帯域毎の蛍光検出を、各蛍光色素に対応する検出器を用いて行うことで多色の蛍光検出を行っている。その際、蛍光波長が近接した複数の蛍光色素が用いられる場合は、より正確な蛍光量を算出するために蛍光補正処理が行われうる。しかしながら、蛍光スペクトルが非常に近接している複数の蛍光色素が用いられる場合、検出されるべき検出器以外の検出器への蛍光の漏れ込みが大きくなるために、蛍光補正ができないような事象も発生しうる。
スペクトル型フローサイトメータは、粒子への光照射により生じた光の検出により得られた蛍光データを、染色に使用した蛍光色素のスペクトル情報によりデコンボリューション(Unmixing)することで、各粒子の蛍光量を分析する。図1の2に示されるように、スペクトル型フローサイトメータは、プリズム分光光学素子Pを使って蛍光を分光する。また、スペクトル型フローサイトメータは、当該分光された蛍光を検出するために、フィルタ型フローサイトメータが有する多数の光検出器の代わりに、アレイ型検出器、例えばアレイ型光電子増倍管PMTなどを備えている。スペクトル型フローサイトメータは、フィルタ型フローサイトメータと比べて、蛍光の漏れ込みの影響を回避しやすく、複数の蛍光色素を用いた分析により適している。
基礎医学及び臨床分野において、網羅的解釈を進めるために、フローサイトメトリーにおいても、複数の蛍光色素を使用したマルチカラー解析が普及してきている。しかし、マルチカラー分析のように一度の測定で多数の蛍光色素を使用すると、フィルタ型フローサイトメータでは、上記のとおり、それぞれの検出器に、目的とする蛍光色素以外の蛍光色素からの蛍光が漏れ込み、分析精度が低下する。色数が多い場合には、スペクトル型フローサイトメータを用いることにより、蛍光の漏れ込みの問題を或る程度解消することができるが、より適切なマルチカラー解析を行うためには、蛍光スペクトル形状と抗体発現量と蛍光色素の明るさをそれぞれ加味した適切なパネルデザイン(蛍光色素と抗体の組み合わせ設計)が必要である。
パネルデザインは、従来、ユーザの経験と試行錯誤による調整に依存するところが大きかった。しかし、色数が増えるに伴い、特には色数が20程度又はそれ以上になると、考慮すべき蛍光色素の組み合わせの数が急激に増えるため、十分な分解性能を持った最適な色素組み合わせを見つけることは極めて困難になる。
フローサイトメータを販売する装置メーカー及び蛍光色素付き抗体を販売する試薬メーカーなどが、自らの製品の販売促進のための、パネルデザイン用のWebツールを公開している。しかしながら、これらのWebツールは、色数が多くなるにつれて、十分な実用性を発揮できない場合がある。
色数が例えば10以上になると蛍光スペクトル同士に大きな重なりが生じることを回避することができず、人がスペクトルの見た目の重なりから実際に発生する蛍光漏れ込みを予想することが困難になる。1つのパラメータであれば、人による手作業でも或る程度調整可能であるが、マルチカラー解析のパネルデザインには調整するべきパラメータが独立して複数存在する。考慮すべきパラメータの主な例として、例えば、上記で述べた蛍光スペクトル形状、抗原の発現量、及び蛍光色素の明るさを挙げることができる。さらに、蛍光色素の励起特性、購入可能であるか、及びコストが考慮されることも望ましい。そのため、どの蛍光色素を優先して採用すべきかの判断や、蛍光色素の一部の組み合わせの変更による全体への影響の予想は、非常に難しい。蛍光補正に関する基本的な原理や、各蛍光色素及び抗原に関する独立した情報だけでは、適切なパネルデザインにとって十分とはいえず、手作業で最適な組み合わせを見つけることは極めて煩雑である。そこで、パネルデザインを自動的に実行する情報処理システムがあれば、分析を行うユーザにとっての利便性向上に資すると考えられる。
また、適切なパネルデザインのためには、各蛍光色素の特性を考慮することが望ましい。そのため、パネルデザインを自動的に実行する情報処理システムにとって、蛍光色素に関する必要な情報を効率的に取得することが重要であると考えられる。
また、各種試薬メーカーが、パネルデザインにおいて採用されうる様々な蛍光色素標識抗体を提供している。様々な蛍光色素標識抗体を効率的に検討するために、例えば蛍光色素標識抗体のデータベースを構築することができれば、分析を行うユーザだけでなく、パネルデザインを自動的に実行する情報処理システムにとっても有用であると考えられる。
また、パネルを構成する蛍光色素標識抗体の数はしばしば多く、さらに、同じ蛍光色素標識抗体に対して複数の試薬メーカーが互いに異なる名称を付していることがある。蛍光色素及び抗体も多種類あり、これらについても、異なる複数の名称が付与されていることがある。このように、蛍光色素標識抗体の名称並びにこれを構成する蛍光色素及び抗体(又は抗原)の名称には表記ゆれが存在する。このような表記ゆれは、パネルデザインをさらに煩雑なものにしうる。表記ゆれが存在しても、パネルデザインなどの情報処理又はデータベースの構築を適切に実行することができれば、ユーザにとっての利便性がさらに向上すると考えられる。
本技術は、以上の課題の少なくとも1つを解決することを目的とする。
(2)本技術を用いて行われる実験のフロー例
本技術は、例えばフローサイトメトリーなどの粒子分析において用いられる抗体と蛍光体との組合せに関するリストを生成するために用いられてよい。特には、フローサイトメトリーにおいて用いられる試薬(特には蛍光色素標識抗体)の推薦情報を生成するために用いられてよい。フローサイトメトリーにおいて本技術を適用する場合の実験フロー例を、図2を参照しながら説明する。
フローサイトメータを用いた実験の流れは大きく分類すると、実験対象となる細胞と、それ検出するための方法を検討し蛍光指標付き抗体試薬を準備する実験計画工程(図2「1:Plan」)と、実際に細胞を測定に適した状態に染色し準備するサンプル準備工程(同図「2:Preparation」)と、染色された細胞一つ一つの蛍光量をフローサイトメータで測定するFCM測定工程(同図「3:FCM」)と、FCM測定で記録されたデータから所望の分析結果が得られるよう各種データ処理を行うデータ解析工程(同図「4:Data Analysis」)により構成される。そして、これらの工程が、必要に応じて繰り返し行われうる。
前記実験計画工程では、はじめにフローサイトメータを用いて検出したいと考えている微小粒子(主に細胞)をどの分子(例えば抗原又はサイトカインなど)の発現で判定するかを決定し、すなわち微小粒子の検出において用いるマーカーを決定する。当該決定は、例えば過去の実験結果や論文などの情報を基に行われうる。次にそのマーカーに対し、どの蛍光色素により検出するかを検討する。同時に検出したいマーカー数、使用可能なFCM装置のスペック、購入可能な蛍光標識付き試薬、蛍光色素のスペクトルや明るさ、価格、納期などの情報を統合的に判断し、実際の実験に必要な蛍光標識付き抗体試薬の組み合わせを決定する。この試薬の組合せの決定プロセスが、一般的にFCMにおけるパネルデザインと呼ばれている。ここで、パネルデザインより決定された試薬一式のうち不足している試薬については、試薬メーカーに発注し、購入することになる。しかしながら、蛍光標識付き抗体試薬は価格が高く、また比較的珍しい試薬などは発注から納入まで1か月以上掛かることもある。そのため、上記の4つの工程を何度も繰り返して試行錯誤することは現実的ではない。より少ない回数の実験計画工程で所望の結果が得られることが望ましい。
サンプル準備工程では、まず実験対象をFCM測定に適した状態へと処理する。例えば、細胞の分離及び精製が行われうる。例えば血液由来の免疫細胞などは、血液から溶血処理及び密度勾配遠心法により赤血球を除去し、白血球を抽出する。抽出された対象の細胞群に対し、蛍光標識付き抗体を用い染色処理を行う。この際、複数の蛍光色素で同時に染色した解析対象のサンプルに加え、分析の際に基準として用いる一つの蛍光色素のみで染色した単染色サンプルと染色を全く行わない非染色サンプルも準備することが一般的に推奨されている。
FCM測定工程において、微小粒子を光学的に分析する際は、先ず、フローサイトメータの光照射部の光源から励起光を出射し、流路内を流れる微小粒子に照射する。次に、微小粒子から発せられた蛍光をフローサイトメータの検出部により検出する。具体的には、ダイクロイックミラーやバンドパスフィルターなどを使用して、微小粒子から発せられた光から特定波長の光(目的とする蛍光)のみを分離し、それを例えば32チャンネルPMTなどの検出器で検出する。このとき、例えばプリズムや回折格子などを使用して蛍光を分光し、検出器の各チャンネルで異なる波長の光を検出するようにする。これにより、容易に検出光(蛍光)のスペクトラム情報を得ることができる。分析とする微小粒子は、特に限定されるものではないが、例えば細胞やマイクロビーズなどが挙げられる。
フローサイトメータは、FCM測定で取得された各微粒子の蛍光情報を、蛍光情報以外の散乱光情報、時間情報、及び位置情報と併せて記録する機能を有しうる。当該記録機能は、主にコンピュータのメモリ又はディスクにより実行されうる。通常の細胞解析では1つの実験条件において、数千~数百万個の微小粒子の分析を行う為、多数の情報を実験条件ごとに整理された状態で記録されることが必要である。
フローサイトメータは、FCM測定で取得された各微粒子の蛍光情報を、蛍光情報以外の散乱光情報、時間情報、及び位置情報と併せて記録する機能を有しうる。当該記録機能は、主にコンピュータのメモリ又はディスクにより実行されうる。通常の細胞解析では1つの実験条件において、数千~数百万個の微小粒子の分析を行う為、多数の情報を実験条件ごとに整理された状態で記録されることが必要である。
データ解析工程では、コンピュータなどを用いて、FCM測定工程で検出した各波長領域の光強度データを定量化し、使用した蛍光色素ごとの蛍光量(強度)を求める。この解析には実験データから算出された基準を使用した補正方法が用いられる。基準は、一つの蛍光色素のみで染色した微小粒子の測定データと、無染色の微小粒子の測定データの2種類を用い、統計処理によって算出する。算出された蛍光量は、蛍光分子名、測定日、微小粒子の種類等の情報と共に、当該コンピュータに備えられているデータ記録部に記録されうる。データ解析で見積もられたサンプルの蛍光量(蛍光スペクトルデータ)は保存され、目的に応じてグラフで表示して微小粒子の蛍光量分布の解析が行われる。例えば、蛍光量分布の解析により、測定したサンプル中に含まれる検出対象の細胞の割合が算出されうる。
本技術は、上記で述べた工程のうち、例えば実験計画工程におけるパネルデザインのために用いられうる。本技術により、最適化されたパネルを自動的に生成することができる。また、本技術により、パネルデザイン処理に必要な蛍光色素に関する情報を効率的に取得することができる。また、本技術により、当該パネルデザインにおいて、表記ゆれの影響を低減することもできる。これにより、情報処理システムの構成要素間でやり取りされるクエリを簡素化することもできる。
また、本技術は、上記で述べた工程のうち、データ解析工程において用いられてもよく、例えば前記統計処理、より特にはアンミキシング処理において用いられてもよい。本技術により、アンミキシング処理において必要な蛍光データ、例えばスペクトラルリファレンスデータなどを効率的に取得することができる。
また、本技術は、フローサイトメトリー以外の、蛍光色素に関する情報処理を実行する分析において実行されてもよい。例えば、本技術は、閉鎖空間内において微小粒子の分取を行う微小粒子分取装置による分析のための蛍光色素に関する情報処理において適用されてもよい。当該装置は、例えば、微小粒子を分取するかの判定のために、微小粒子が流される流路を有し且つ内部で微小粒子の分取が行われるチップ、当該流路を流れる微小粒子に光を照射する光照射部、当該光照射により生じた光を検出する検出部、当該検出された光に関する情報に基づき微小粒子を分取するかを判定する判定部を備えていてよい。当該微小粒子分取装置の例として、例えば特開2020-041881に記載された装置を挙げることができる。
また、蛍光色素により染色された細胞サンプル又は組織サンプルの顕微鏡装置による分析又は観察のための情報処理においても、本技術は適用されてよい。当該分析又は観察の例として、例えば多色蛍光イメージングなどを挙げることができる。近年、蛍光イメージングにおいても、使用される蛍光色素の数が増加傾向にあり、本技術はこのような分析又は観察においても用いられうる。
(3)第1の実施形態の説明
本技術の情報処理システムは、測定機器情報に紐づけられている蛍光色素の蛍光信号データを保持する蛍光色素データベースと、試薬と蛍光色素との対応関係に関する対応関係情報を保持する試薬データベースと、入力された処理対象情報に基づき特定された前記試薬データベース中の試薬に関する対応関係情報を利用して、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得し、前記蛍光色素の蛍光信号データを用いて情報処理を実施する情報処理装置とを含む。
本技術の情報処理システムは、前記対応関係情報を利用することによって、蛍光色素に関する情報を効率的に取得することができる。
本技術の情報処理システムは、前記対応関係情報を利用することによって、蛍光色素に関する情報を効率的に取得することができる。
(3-1)情報処理システムの構成例
本技術の情報処理システムの構成例を、図3を参照しながら説明する。本技術の情報処理システムは、情報処理装置100、分析装置110、及びサーバ120を含む。これらは、ネットワークを介して、有線又は無線により接続されていてよい。以下で、これらの構成要素についてそれぞれ説明する。
情報処理装置100の構成例を図4に示す。情報処理装置100は、処理部101、記憶部102、入力部103、出力部104、及び通信部105を有しうる。情報処理装置100は、例えば汎用のコンピュータにより構成されてよい。
処理部101は、情報処理装置100により実行される各種情報処理を実行する。処理部101は、例えばCPU(Central Processing Unit)及びRAMを含みうる。CPU及びRAMは、例えばバスを介して相互に接続されていてよい。バスには、さらに入出力インタフェースが接続されていてよい。バスには、当該入出力インタフェースを介して、入力部103、出力部104、及び通信部105が接続されていてよい。
記憶部102は、各種データを記憶する。記憶部102には、オペレーティング・システム(例えば、WINDOWS(登録商標)、UNIX(登録商標)、又はLINUX(登録商標)など)、本技術に従う情報処理方法を情報処理装置又は情報処理システムに実行させるためのプログラム、及び他の種々のプログラムが格納されうる。記憶部102は、本技術に従い入力、生成、又は出力される各種データも格納されてよい。記憶部102は、例えばROMを含みうる。また、記憶部102は、HDD及び/又はSSDを含みうる。
入力部103は、各種データの入力を受け付けることができるように構成されているインタフェースを含みうる。例えば、入力部103は、後述の処理において入力される各種データを受け付けることができるように構成されていてよい。当該データとして、例えば処理対象情報などが挙げられる。入力部103は、そのような操作を受けつける装置として、例えばマウス、キーボード、及びタッチパネルなどを含みうる。
出力部104は、各種データの出力を行うことができるように構成されているインタフェースを含みうる。例えば、出力部104は、後述の処理において生成される各種データを出力できるように構成されていてよい。出力部104は、これらデータの出力を行う装置として例えば表示装置を含みうる。
通信部105は、情報処理装置100をネットワークに有線又は無線で接続するように構成されうる。通信部105によって、情報処理装置100は、ネットワークを介して各種データ(例えば蛍光体に関するリストなど)を取得することができる。取得したデータは、例えば記憶部102に格納されうる。通信部105の構成は当業者により適宜選択されてよい。
情報処理装置100は、例えばドライブ(図示されていない)などを備えていてもよい。ドライブは、記録媒体に記録されているデータ(例えば本技術において用いられる各種データなど)又はプログラム(例えば本技術に従うプログラムなど)を読み出して、RAMに出力することができる。記録媒体は、例えば、microSDメモリカード、SDメモリカード、又はフラッシュメモリであるが、これらに限定されない。
分析装置110は、蛍光色素により標識されたサンプルの分析を実行する分析装置でありうる。このような分析装置の例として、上記(2)で述べたとおり、フローサイトメータなどの微小粒子分析装置及び蛍光イメージングを行う顕微鏡装置などを挙げることができるが、これらに限定されない。
サーバ120の構成例を図5に示す。サーバ120は、情報処理装置100と同様に、処理部121、記憶部122、及び通信部125を含みうる。
サーバ120は、図1に示される試薬DB131及び蛍光色素DB132を含む。これらは、例えば、サーバ120の記憶部122に格納されていてよい。サーバ120は、ネットワークを通じて試薬又は蛍光色素に関する情報を取得することができるように構成されていてよい。試薬DB131及び/又は蛍光色素DB132は、このようにして取得された情報が追加可能であるように構成されうる。
また、サーバ120は、図1に示される登録処理部133を含む。登録処理部133は、例えば試薬の登録処理を実行しうる。登録処理部133は、試薬DB131又は蛍光色素DB132への登録を実行する。また、登録処理部133は、測定対象情報、試薬、又は蛍光色素の表記ゆれの統合処理を実行するように構成されていてもよい。登録処理部133による処理は、処理部121により実現されてよい。なお、登録処理部133は、試薬登録を実行せずに、前記統合処理だけを実行する場合は、統合処理部と呼ばれてもよい。
サーバ120は、図1に示される試薬DB131及び蛍光色素DB132を含む。これらは、例えば、サーバ120の記憶部122に格納されていてよい。サーバ120は、ネットワークを通じて試薬又は蛍光色素に関する情報を取得することができるように構成されていてよい。試薬DB131及び/又は蛍光色素DB132は、このようにして取得された情報が追加可能であるように構成されうる。
また、サーバ120は、図1に示される登録処理部133を含む。登録処理部133は、例えば試薬の登録処理を実行しうる。登録処理部133は、試薬DB131又は蛍光色素DB132への登録を実行する。また、登録処理部133は、測定対象情報、試薬、又は蛍光色素の表記ゆれの統合処理を実行するように構成されていてもよい。登録処理部133による処理は、処理部121により実現されてよい。なお、登録処理部133は、試薬登録を実行せずに、前記統合処理だけを実行する場合は、統合処理部と呼ばれてもよい。
処理部121は、サーバ120により実行される各種情報処理を実行する。処理部121は、例えば登録処理部133を含みうる。処理部121は、例えばCPU(Central Processing Unit)及びRAMにより構成されてよく、CPU及びRAMは、例えばバスを介して相互に接続されていてよい。処理部121は、サーバ機能のために特化されていてよい。
記憶部122は、各種データを記憶する。記憶部122には、オペレーティング・システム(例えば、WINDOWS(登録商標)、UNIX(登録商標)、又はLINUX(登録商標)など)、本技術に従う情報処理方法をサーバ又は情報処理システムに実行させるためのプログラム、及び他の種々のプログラムが格納されうる。記憶部122は、本技術に従い入力、生成、又は出力される各種データも格納されてよい。記憶部102は、例えばROMを含みうる。また、記憶部122は、HDD及び/又はSSDを含みうる。
試薬DB131及び蛍光色素DB132は、1つのサーバに格納されていてよく、又は、2つ以上のサーバに分散されて格納されていてもよい。例えば本技術に従う情報処理システムは、試薬DB131及び蛍光色素DBを有する1つのサーバを含んでいてよく、又は、試薬DB131を有する1つのサーバ及び蛍光色素DB132を有する他のサーバを含んでいてもよい。
図3に示されるシステム構成例では、試薬DB131及び蛍光色素DB132は、情報処理装置100とは別の装置(サーバ120)に格納されているが、本技術において、試薬DB131及び蛍光色素DB132は、情報処理装置100が有していてもよい。例えば、情報処理装置100の記憶部102に試薬DB131及び蛍光色素DB132が格納されていてもよい。
また、図3において、登録処理部133は、情報処理装置100とは別の装置(サーバ120)が有しているが、本技術において、登録処理部133は、情報処理装置100が有していてもよい。例えば、情報処理装置100の処理部101が、登録処理部133による処理を実行するように構成されていてもよい。
図3に示されるシステム構成例では、試薬DB131及び蛍光色素DB132は、情報処理装置100とは別の装置(サーバ120)に格納されているが、本技術において、試薬DB131及び蛍光色素DB132は、情報処理装置100が有していてもよい。例えば、情報処理装置100の記憶部102に試薬DB131及び蛍光色素DB132が格納されていてもよい。
また、図3において、登録処理部133は、情報処理装置100とは別の装置(サーバ120)が有しているが、本技術において、登録処理部133は、情報処理装置100が有していてもよい。例えば、情報処理装置100の処理部101が、登録処理部133による処理を実行するように構成されていてもよい。
(3-2)情報処理システムによる処理の例(パネルデザイン)
(3-2-1)蛍光信号データの取得のための情報処理の例
本技術の情報処理システムによる情報処理の例を、図6を参照しながら説明する。図6は、当該情報処理のフロー図である。
図6のステップS101において、情報処理装置100は、測定対象情報の入力を受け付ける。前記測定対象情報は、例えば生体分子に関する情報を含む。前記生体分子に関する情報は、例えば各生体分子の名称、略称、又は番号などを含む。本技術の一つの実施態様において、前記測定対象情報は、少なくとも1つの生体分子の名称、略称、又は番号を含み、例えば2以上、5以上、若しくは10以上の生体分子それぞれの名称、略称、又は番号を含みうる。生体分子の数の下限値は例えば1、2、5、又は10であってよい。生体分子の上限値は例えば300、200、150、100、又は50であってよい。生体分子の数の数値範囲は、前記下限値の例及び前記上限値の例からそれぞれ選択された値の組合せであってよく、例えば2~300、5~200、5~150、又は5~100であってよい。
前記生体分子に関する情報は、さらに各生体分子の発現量を含む。前記発現量は、例えば発現量レベルであってよく、又は、発現量の具体的な数値であってもよい。前記発現量レベルは、例えば生体分子の発現量を複数の段階で表す指標であってよく、例えば2段階~10段階、特には2段階~8段階、より特には3段階~5段階に区分されたレベルであってよい。
前記測定対象情報はさらに測定機器情報を含みうる。当該測定機器情報は、測定対象の測定を実行する機器に関する情報である。例えば、当該測定機器情報は、測定対象に対してフローサイトメトリーを実行するフローサイトメータに関する情報を含みうる。前記測定機器情報は例えば、測定機器の機種名、レーザ波長、及び検出器の検出波長域のうちの少なくとも1つを含む。前記測定機器情報はさらに、品番、メーカー名、製造番号、測定機器に付属する部品の名称、又は測定機器が利用するソフトウェア名などを含んでもよい。
ステップS101において、情報処理装置100の処理部101は、受け付けた測定対象情報に対して、必要な処理を行ってもよい。当該処理は、例えば、生体分子を、発現量に基づきカテゴリー分けするなどであってよい。
ステップS102において、情報処理装置100は、測定対象情報をサーバ120に送信する。前記測定対象情報は、例えば生体分子名を含んでよい。当該生体分子名は、例えば抗原及び/又はサイトカインでありうる。
ステップS103において、サーバ120は測定対象情報を受信する。
ステップS104において、サーバ120は、前記測定対象情報を受信したことに応じて、試薬DB121に対する検索処理を実行する。例えば、サーバ120は、前記測定対象情報のうちの生体分子名をキーワードとして用いて試薬DB121を検索し、当該生体分子名を含む対応関係情報を特定する。当該特定のために、前記対応関係情報は、例えば生体分子と試薬との対応関係を示す情報を含みうる。
前記対応関係情報は、例えば生体分子と試薬との対応関係を示す情報、特には生体分子と当該生体分子を捕捉する試薬に関する情報を含みうる。当該試薬は、例えば蛍光色素標識抗体でありうる。
前記対応関係情報はさらに、試薬と蛍光色素との対応関係を示す情報、特には試薬と、試薬を構成する蛍光色素との対応関係を示す情報を含みうる。
例えば、1つの対応関係情報は、1つの試薬の名称、略称、若しくは番号と、当該1つの試薬が捕捉する生体分子の名称、略称、若しくは番号と、当該試薬に含まれる蛍光色素の名称、略称、若しくは番号と、を含みうる。
対応関係情報により、入力された生体分子名に基づき、試薬を特定することができ、さらには試薬に含まれる蛍光色素を特定することもできる。また、特定された蛍光色素に基づく蛍光色素DBの検索も可能となる。
なお、本明細書内において、試薬の名称、略称、及び番号のことをまとめて「試薬名」と言及する場合がある。同様に、生体分子の名称、略称、及び番号についても「生体分子名」と言及する場合がある。同様に、蛍光色素の名称、略称、若しくは番号についても「蛍光色素名」と言及する場合がある。
前記対応関係情報はさらに、試薬と蛍光色素との対応関係を示す情報、特には試薬と、試薬を構成する蛍光色素との対応関係を示す情報を含みうる。
例えば、1つの対応関係情報は、1つの試薬の名称、略称、若しくは番号と、当該1つの試薬が捕捉する生体分子の名称、略称、若しくは番号と、当該試薬に含まれる蛍光色素の名称、略称、若しくは番号と、を含みうる。
対応関係情報により、入力された生体分子名に基づき、試薬を特定することができ、さらには試薬に含まれる蛍光色素を特定することもできる。また、特定された蛍光色素に基づく蛍光色素DBの検索も可能となる。
なお、本明細書内において、試薬の名称、略称、及び番号のことをまとめて「試薬名」と言及する場合がある。同様に、生体分子の名称、略称、及び番号についても「生体分子名」と言及する場合がある。同様に、蛍光色素の名称、略称、若しくは番号についても「蛍光色素名」と言及する場合がある。
当該試薬は、例えば蛍光色素により標識された抗体であり、この場合、対応関係情報は、蛍光色素に関する情報(例えば蛍光色素の名称、略称、又は番号など)及び抗体に関する情報(例えば抗体の名称、略称、若しくは番号、又は、抗体が捕捉する抗原の名称、略称、若しくは番号)を含みうる。1つの対応関係情報が1つの試薬に対応していてよく、すなわち、1つの対応関係情報が、1つの蛍光色素標識抗体を構成する抗体に関する情報及び蛍光色素に関する情報を含みうる。これにより、例えば抗体により捕捉されるべき生体分子の名称又は略称によって、当該生体分子を捕捉する試薬を特定することができる。
試薬DB131は、複数の対応関係情報を含みうる。当該複数の対応関係情報は、データテーブルを構成していてよく、本明細書内において、当該データテーブルは対応関係情報データテーブルとも呼ばれる。
試薬DB131に含まれる対応関係情報データテーブルの例を、図7を参照しながら説明する。図7に示されるデータテーブルは、試薬として蛍光色素標識抗体を列挙したデータテーブルである。各行に1つの対応関係情報が記載されている。1つの対応関係情報は、試薬の製品番号(プロダクトコード列)、試薬の名称(試薬名列)、試薬が捕捉する生体分子名(生体分子名列)、試薬に含まれる蛍光色素名(蛍光色素名列)、試薬が捕捉する生体分子の由来する生物名(反応生物列)、試薬を生成するクローン名(クローン列)、試薬が由来する生物名(ホスト生物列)、抗体のアイソタイプ(isotype列)、サイズ
(試薬の量、size列)、試薬の価格(price列)、試薬に関するウェブページURL(url列)、及び、試薬の製造会社名又は販売会社名(company列)を含む。対応関係情報のそれぞれが、試薬が捕捉する生体分子名及び試薬に含まれる蛍光色素名が含むことが好ましい。これにより、蛍光色素DBを用いた蛍光色素の特定が可能となる。さらに好ましくはそれぞれの対応関係情報が、試薬の名称及び/又は製品番号を含みうる。
このように、本技術において、試薬データベースは、試薬、生体分子、及び蛍光色素のうち少なくとも1つの名称、並びに/若しくは、反応生物、ホスト生物、抗体のアイソタイプ、サイズ、価格、及び販売会社のうち少なくとも1つが登録されていてよい。
(試薬の量、size列)、試薬の価格(price列)、試薬に関するウェブページURL(url列)、及び、試薬の製造会社名又は販売会社名(company列)を含む。対応関係情報のそれぞれが、試薬が捕捉する生体分子名及び試薬に含まれる蛍光色素名が含むことが好ましい。これにより、蛍光色素DBを用いた蛍光色素の特定が可能となる。さらに好ましくはそれぞれの対応関係情報が、試薬の名称及び/又は製品番号を含みうる。
このように、本技術において、試薬データベースは、試薬、生体分子、及び蛍光色素のうち少なくとも1つの名称、並びに/若しくは、反応生物、ホスト生物、抗体のアイソタイプ、サイズ、価格、及び販売会社のうち少なくとも1つが登録されていてよい。
ステップS104において、サーバ120(特には処理部121)は、ステップS103において受信した生体分子名を用いて、試薬DB131を検索する。そして、処理部121は、当該生体分子名を含む対応関係情報を特定する。ここで、処理部121は、1つの対応関係情報を特定してよく、又は、2以上の対応関係情報を特定してもよい。
(統合処理用テーブルの参照)
本技術の一つの実施態様において、サーバ120(特には登録処理部133)は、生体分子名の表記ゆれを処理するための生体分子名統合処理用テーブルを参照して、対応関係情報を特定しうる。当該テーブルの例を図8に示す。図8に示されるとおり、当該テーブルは、サーバ120による処理において用いられる1つの統一名称(統一生体分子名列)に対して、1つ以上の別名(別名1列、別名2列、・・・)が関連付けられている。例えば、統一名称「CD1a」に対しては別名「CD1A」及び「CD1」が関連付けられており、統一名称「CD196」に対しては「CCR6」及び「BN-1」が関連付けられている。このように、当該テーブルは、1つの統一名称と当該統一名称に関連付けられた1つ以上の別名とからなるデータを複数有する。
本技術の一つの実施態様において、サーバ120(特には登録処理部133)は、生体分子名の表記ゆれを処理するための生体分子名統合処理用テーブルを参照して、対応関係情報を特定しうる。当該テーブルの例を図8に示す。図8に示されるとおり、当該テーブルは、サーバ120による処理において用いられる1つの統一名称(統一生体分子名列)に対して、1つ以上の別名(別名1列、別名2列、・・・)が関連付けられている。例えば、統一名称「CD1a」に対しては別名「CD1A」及び「CD1」が関連付けられており、統一名称「CD196」に対しては「CCR6」及び「BN-1」が関連付けられている。このように、当該テーブルは、1つの統一名称と当該統一名称に関連付けられた1つ以上の別名とからなるデータを複数有する。
この実施態様において、ステップS104において、サーバ120(特には登録処理部133)は、当該テーブルを参照して、対応関係情報を特定してよい。
例えば、サーバ120は、ステップS103において受信した生体分子名が試薬DB131に存在しない場合に、前記生体分子名統合処理用テーブルを参照して、当該生体分子名に関連付けられた統一名称を特定する。そして、サーバ120は、当該統一名称を用いて、試薬DB131を検索し、当該統一名称を含む対応関係情報を特定しうる。特定された当該対応関係情報が、ステップS105において用いられる。
なお、サーバ120(特には登録処理部133)は、ステップS103において受信した生体分子名が試薬DB131に存在する場合は、前記生体分子名統合処理用テーブルを参照せずに、当該生体分子名を含む対応関係情報を試薬DB131中に特定しうる。特定された当該対応関係情報が、ステップS105において用いられる。
例えば、サーバ120は、ステップS103において受信した生体分子名が試薬DB131に存在しない場合に、前記生体分子名統合処理用テーブルを参照して、当該生体分子名に関連付けられた統一名称を特定する。そして、サーバ120は、当該統一名称を用いて、試薬DB131を検索し、当該統一名称を含む対応関係情報を特定しうる。特定された当該対応関係情報が、ステップS105において用いられる。
なお、サーバ120(特には登録処理部133)は、ステップS103において受信した生体分子名が試薬DB131に存在する場合は、前記生体分子名統合処理用テーブルを参照せずに、当該生体分子名を含む対応関係情報を試薬DB131中に特定しうる。特定された当該対応関係情報が、ステップS105において用いられる。
ステップS105において、サーバ120は、ステップS104において特定された対応関係情報を情報処理装置100に送信する。ステップS105において、サーバ120が送信する対応関係情報は、例えば試薬の名称又は略称と試薬に含まれる蛍光色素の名称又は略称を含みうる。サーバ120が送信する対応関係情報はさらに、例えば試薬に含まれる抗体が捕捉する生体分子名など、上記で説明した対応関係情報データテーブルに含まれる情報の1つ以上を含んでもよい。サーバ120が送信する対応関係情報は、対応関係情報データテーブルを構成する1つの対応関係情報そのものであってもよい。
ステップS106において、情報処理装置100は、対応関係情報をサーバ120から受信する。以上で述べた、ステップS103~S106によって、情報処理装置100は、前記生体分子に基づき前記試薬データベースを検索して前記生体分子に対応する試薬を特定する。
ステップS107において、情報処理装置100は、ステップS106において受信した対応関係情報をサーバ120に送信する。送信される対応関係情報は、試薬に含まれる蛍光色素に関する情報(例えば蛍光色素の名称、略称、又は番号)を含みうる。また、当該対応関係情報はさらに、試薬の名称、略称、又は番号を含んでもよい。
好ましい実施態様において、ステップS107において、情報処理装置100は、対応関係情報に加え、後述の測定対象に関する情報及び測定機器情報のうち少なくとも1つもサーバ120に送信しうる。測定機器情報は、試薬を用いた測定を実行する測定機器に関する情報であり、例えば測定機器の機種名、レーザ波長、及び検出器の検出波長域のうちの少なくとも1つを含みうる。これにより、蛍光色素DB132に含まれる蛍光信号データのうち、測定機器に紐づけられた蛍光色素の蛍光信号データを特定することができる。
ステップS108において、サーバ120は、対応関係情報を受信する。また、サーバ120は、後述の測定対象に関する情報及び測定機器情報も受信しうる。
ステップS109において、サーバ120は、受信した対応関係情報に基づき、蛍光色素DBに含まれる蛍光色素のうちから、当該対応関係情報に対応する蛍光色素を特定する。例えば、サーバ120は、対応関係情報に含まれる蛍光色素名に対応する蛍光信号データを特定する。
蛍光色素DB132は、蛍光色素の蛍光信号データを含む。蛍光色素DB132は、例えば、複数の蛍光信号データから構成される蛍光色素データテーブルを含みうる。
当該蛍光信号データは、例えば、蛍光色素の蛍光スペクトルデータを含んでよい。当該蛍光信号データによって、後述のパネルデザイン処理が可能となる。
当該蛍光信号データはさらに、蛍光色素から生じる蛍光の明るさデータを含んでもよい。前記蛍光スペクトルデータ及び前記明るさデータによって、例えば分離性能の観点からより良いパネルをデザインすることが可能となる。
当該蛍光信号データは、例えば、蛍光色素の蛍光スペクトルデータを含んでよい。当該蛍光信号データによって、後述のパネルデザイン処理が可能となる。
当該蛍光信号データはさらに、蛍光色素から生じる蛍光の明るさデータを含んでもよい。前記蛍光スペクトルデータ及び前記明るさデータによって、例えば分離性能の観点からより良いパネルをデザインすることが可能となる。
蛍光色素DB132に含まれる蛍光色素データテーブルの例を、図9を参照しながら説明する。図9に示されるデータテーブルは、蛍光色素の蛍光信号に関する情報を列挙したデータテーブルである。各行に1つの蛍光信号データが記載されている。1つの蛍光信号データは、蛍光色素の名称(蛍光色素名列)、蛍光スペクトルデータ(スペクトル形状データ列)、及び明るさデータ(明るさ列)を含む。蛍光信号データのそれぞれが、蛍光色素名および蛍光スペクトルデータが含むことが好ましい。このように、本技術において用いられる蛍光色素データベースは、蛍光色素の名称、当該蛍光色素の蛍光スペクトルデータ、及び当該蛍光色素の明るさを含む蛍光信号データの集合体であってよい。このような蛍光色素データベースを利用することにより、蛍光スペクトルデータを利用したパネルデザインが可能となり、分離性能が向上したパネルの生成が可能となる。
また、蛍光色素DB132は、測定対象に関する情報及び測定機器情報のうち少なくとも1つを含みうる。前記測定対象に関する情報は、対象生物及び生体分子の発現の程度のうち少なくとも1つを含みうる。また、前記測定機器情報は、測定機器の励起光源の本数又は波長、測定機器に含まれる検出器(特には光検出器)の数、種類、又は露光ゲイン、および測定機器に含まれる試料通流流路内の流速のうち少なくとも1つを含みうる。前記流路は、例えば試料中の粒子に対して光照射を行い、当該光照射により生じた光が検出される流路でありうる。例えばフローサイトメトリーのための光照射が行われる流路でありうる。これにより、サーバ120は、これらの情報と、ステップS109において受信する情報とに基づき、測定対象に関する情報及び測定機器情報に対応した蛍光信号データを特定することができる。
また、蛍光色素DB132は、測定対象に関する情報及び測定機器情報のうち少なくとも1つを含みうる。前記測定対象に関する情報は、対象生物及び生体分子の発現の程度のうち少なくとも1つを含みうる。また、前記測定機器情報は、測定機器の励起光源の本数又は波長、測定機器に含まれる検出器(特には光検出器)の数、種類、又は露光ゲイン、および測定機器に含まれる試料通流流路内の流速のうち少なくとも1つを含みうる。前記流路は、例えば試料中の粒子に対して光照射を行い、当該光照射により生じた光が検出される流路でありうる。例えばフローサイトメトリーのための光照射が行われる流路でありうる。これにより、サーバ120は、これらの情報と、ステップS109において受信する情報とに基づき、測定対象に関する情報及び測定機器情報に対応した蛍光信号データを特定することができる。
本技術の好ましい実施態様において、蛍光信号データは、測定機器情報に紐づけられていてよい。蛍光色素から生じた蛍光に関する測定データは測定機器に応じて変化しうるので、前記紐づけによって、測定機器を考慮したパネルデザインが可能となる。
前記測定機器情報は、試薬を用いた測定を実行する測定機器に関する情報であり、例えば測定機器の機種名、レーザ光波長、及び検出器の検出波長域のうちの少なくとも1つを含みうる。好ましくは、蛍光信号データに紐づけられている測定機器情報の種類は、ステップS107において情報処理装置100が送信する測定機器情報の種類と同じである。これにより、後者の測定機器情報に対応する測定機器情報を、蛍光色素DB132中に特定することができる。
蛍光色素DB132は、1つの蛍光色素につき、複数種の測定機器それぞれに紐づけられた複数の蛍光信号データを含みうる。当該複数種の測定機器は、異なる機種名に対応するものであってよく、又は、他の測定機器情報(例えば蛍光検出器の数又はレーザの数など)に対応するものであってもよい。
例えば、蛍光色素DB132は、複数種の測定機器それぞれに紐づけられた蛍光色素データテーブルを含みうる。すなわち、蛍光色素DB132中に、各測定機器について、蛍光色素データテーブルが用意されていてよい。例えば、図10に示されるように、測定機器1~3それぞれに関する蛍光色素データテーブルが用意されていてよい。図10に示されるように、複数種の測定機器は、機種名により特定されていてよいが、他の測定機器情報(例えば蛍光検出器の数若しくは種類又は励起レーザの数若しくは波長など)により特定されてもよい。
代替的には、1つの蛍光色素につき、複数種の測定機器それぞれに紐づけられた複数の蛍光信号データが、1つの蛍光色素データテーブル中に含まれていてもよい。
例えば、蛍光色素DB132は、複数種の測定機器それぞれに紐づけられた蛍光色素データテーブルを含みうる。すなわち、蛍光色素DB132中に、各測定機器について、蛍光色素データテーブルが用意されていてよい。例えば、図10に示されるように、測定機器1~3それぞれに関する蛍光色素データテーブルが用意されていてよい。図10に示されるように、複数種の測定機器は、機種名により特定されていてよいが、他の測定機器情報(例えば蛍光検出器の数若しくは種類又は励起レーザの数若しくは波長など)により特定されてもよい。
代替的には、1つの蛍光色素につき、複数種の測定機器それぞれに紐づけられた複数の蛍光信号データが、1つの蛍光色素データテーブル中に含まれていてもよい。
(統合処理用テーブルの参照)
本技術の一つの実施態様において、サーバ120は、蛍光色素名の表記ゆれを処理するための蛍光色素名統合処理用テーブルを参照して、蛍光色素を特定しうる。当該テーブルの例を図11に示す。図11に示されるとおり、当該テーブルは、サーバ120による処理において用いられる1つの統一名称(統一蛍光色素名列)に対して、1つ以上の別名(別名1列、別名2列、・・・)が関連付けられている。例えば、統一名称「FITC」に対しては別名「Fluorescein isothiocyanate」及び「Alexa Fluor 488」が関連付けられており、統一名称「PE」に対しては「Phycoerythrin」が関連付けられている。なお、FITCとAlexa Fluor 488は完全に同一の蛍光色素ではないが、蛍光スペクトルがほぼ同じである。前記テーブルでは、蛍光スペクトルがほぼ同じである2つの蛍光色素を1つの統一名称により関連付けられてもよい。
以上のとおり、当該テーブルは、1つの統一名称と当該統一名称に関連付けられた1つ以上の別名とからなるデータを複数有する。
本技術の一つの実施態様において、サーバ120は、蛍光色素名の表記ゆれを処理するための蛍光色素名統合処理用テーブルを参照して、蛍光色素を特定しうる。当該テーブルの例を図11に示す。図11に示されるとおり、当該テーブルは、サーバ120による処理において用いられる1つの統一名称(統一蛍光色素名列)に対して、1つ以上の別名(別名1列、別名2列、・・・)が関連付けられている。例えば、統一名称「FITC」に対しては別名「Fluorescein isothiocyanate」及び「Alexa Fluor 488」が関連付けられており、統一名称「PE」に対しては「Phycoerythrin」が関連付けられている。なお、FITCとAlexa Fluor 488は完全に同一の蛍光色素ではないが、蛍光スペクトルがほぼ同じである。前記テーブルでは、蛍光スペクトルがほぼ同じである2つの蛍光色素を1つの統一名称により関連付けられてもよい。
以上のとおり、当該テーブルは、1つの統一名称と当該統一名称に関連付けられた1つ以上の別名とからなるデータを複数有する。
この実施態様において、ステップS109において、サーバ120は、当該テーブルを参照して、蛍光色素を特定してよい。
例えば、サーバ120は、ステップS108において受信した対応関係情報に含まれる蛍光色素名が蛍光色素DB132に存在しない場合に、前記蛍光色素名統合処理用テーブルを参照して、当該蛍光色素名に関連付けられた統一名称を特定する。そして、サーバ120は、当該統一名称を用いて、蛍光色素DB132を検索し、当該統一名称を有する蛍光色素を特定しうる。
なお、サーバ120は、ステップS108において受信した対応関係情報に含まれる蛍光色素名が蛍光色素DB132に存在する場合は、前記蛍光色素名統合処理用テーブルを参照せずに、蛍光色素を蛍光色素DB132中に特定しうる。
例えば、サーバ120は、ステップS108において受信した対応関係情報に含まれる蛍光色素名が蛍光色素DB132に存在しない場合に、前記蛍光色素名統合処理用テーブルを参照して、当該蛍光色素名に関連付けられた統一名称を特定する。そして、サーバ120は、当該統一名称を用いて、蛍光色素DB132を検索し、当該統一名称を有する蛍光色素を特定しうる。
なお、サーバ120は、ステップS108において受信した対応関係情報に含まれる蛍光色素名が蛍光色素DB132に存在する場合は、前記蛍光色素名統合処理用テーブルを参照せずに、蛍光色素を蛍光色素DB132中に特定しうる。
ステップS110において、サーバ120は、ステップS109において特定された蛍光色素の蛍光信号データを情報処理装置100に送信する。好ましくは、送信される蛍光信号データは、蛍光スペクトルデータを含む。これにより、蛍光スペクトルデータを利用したパネルデザインが可能となり、分離性能が向上したパネルの生成が可能となる。
ステップS111において、情報処理装置100は、サーバ120から送信された蛍光信号データを受信する。以上のステップS107~S111によって、情報処理装置100は、前記試薬に紐づく蛍光色素のうち、測定機器情報に紐づく前記蛍光色素の蛍光信号データを、前記蛍光色素データベースより取得する。
ステップS112において、情報処理装置100は、前記蛍光信号データを用いて情報処理を実行する。当該情報処理はパネルデザインを実行する情報処理であってよい。パネルデザインに関する情報処理の例については、以下(3-2-3)を参照されたい。情報処理装置100は、前記情報処理(特にはパネルデザイン情報処理)によって、入力された生体分子に対応する試薬の推薦情報を生成しうる。当該試薬の推薦情報は、前記情報処理により取得された、前記生体分子と当該生体分子に対応する蛍光色素との組合せに紐づく試薬に関する情報を含みうる。そして、情報処理装置100は、当該情報処理により前記生体分子に対応する試薬の推薦情報を出力しうる。
以上の処理フローのとおり、本技術において、情報処理装置100は、前記試薬データベースから前記対応関係情報を受信し、そして、当該受信した対応関係情報を利用して、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得しうる。
(3-2-2)蛍光信号データの取得のための情報処理の他の例
本技術の情報処理システムによる情報処理の例を、図12を参照しながら説明する。図12は、当該情報処理のフロー図である。
このフロー例では、試薬DB131及び蛍光色素DB132は、2つのサーバにそれぞれ格納されうる。2つのサーバを有する本技術の情報処理システムの構成例を図13に示す。図13に示されるとおり、本技術の情報処理システム2は、情報処理装置100、分析装置110、及びサーバ120-1及び120-2を含む。サーバ120-1が試薬DB131を有し、且つ、サーバ120-2が蛍光色素DB132を有する。これら構成要素については、上記(3-1)における説明が当てはまるので、これらの説明は省略する。
このフロー例では、試薬DB131及び蛍光色素DB132は、2つのサーバにそれぞれ格納されうる。2つのサーバを有する本技術の情報処理システムの構成例を図13に示す。図13に示されるとおり、本技術の情報処理システム2は、情報処理装置100、分析装置110、及びサーバ120-1及び120-2を含む。サーバ120-1が試薬DB131を有し、且つ、サーバ120-2が蛍光色素DB132を有する。これら構成要素については、上記(3-1)における説明が当てはまるので、これらの説明は省略する。
図12のステップS201~S204は、サーバ120の代わりにサーバ120-1が用いられること以外は、上記(3-2-1)において図6を参照して説明したステップS101~S104と同様であり、これらについての説明があてはまる。
ステップS205において、サーバ120-1は、ステップS204において特定された対応関係情報をサーバ120-2に送信する。ステップS205において、サーバ120-1が送信する対応関係情報は、例えば試薬の名称又は略称と試薬に含まれる蛍光色素の名称又は略称を含みうる。サーバ120-1が送信する対応関係情報はさらに、例えば試薬に含まれる抗体が捕捉する生体分子名など、上記で説明した対応関係情報データテーブルに含まれる情報の1つ以上を含んでもよい。サーバ120-1が送信する対応関係情報は、対応関係情報データテーブルを構成する1つの対応関係情報そのものであってもよい。
ステップS206において、サーバ120-2は、情報処理装置100は、対応関係情報をサーバ120-1から受信する。
ステップS207~S210は、サーバ120の代わりにサーバ120-1が用いられること以外は、上記(3-2-1)において図6を参照して説明したステップS109~S112と同様であり、これらについての説明がステップS207~S210にあてはまる。
以上の処理フローのとおり、本技術において、情報処理装置100は、前記試薬データベースから前記対応関係情報を受信することなく、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得してもよい。
(3-2-3)蛍光信号データ取得処理を含むパネルデザイン情報処理の例
上記(3-2-1)及び(3-2-2)において説明した蛍光信号データ取得のための情報処理は、パネルデザインを実行する情報処理の一部として行われてよい。以下で、当該慶応信号データ取得処理を含むパネルデザイン処理の例を、図14を参照しながら説明する。図14は、当該パネルデザイン情報処理のフロー図である。以下の説明は、フローサイトメトリーにおいて用いられる、抗体と蛍光色素との組合せを最適化する場合における本技術の適用例に関するものである。
なお、以下で説明するステップのうち、ステップS301が、上記(3-2-1)及び(3-2-2)において説明したステップS101及び201に対応する。
また、ステップS303が、上記(3-2-1)及び(3-2-2)において説明したステップS102~S111及びS202~S209に対応する。
また、ステップS304以降が、上記(3-2-1)及び(3-2-2)において説明したステップS112及びS210に対応する。
また、ステップS303が、上記(3-2-1)及び(3-2-2)において説明したステップS102~S111及びS202~S209に対応する。
また、ステップS304以降が、上記(3-2-1)及び(3-2-2)において説明したステップS112及びS210に対応する。
図14のステップS301において、情報処理装置100(特には入力部103)は、複数の生体分子及び当該複数の生体分子それぞれの発現量の入力を受け付ける。
当該生体分子は、フローサイトメトリーにおける測定対象とする抗原(例えば表面抗原やサイトカインなど)であってよく、又は、測定対象とする抗原を捕捉する抗体であってもよい。前記複数の生体分子が抗原である場合、前記発現量は当該抗原の発現量であってよい。前記複数の生体分子が抗体である場合、前記発現量は、当該抗体によって捕捉される抗原の発現量であってよい。
処理部101は、前記入力を受け付けるための入力受付ウィンドウを出力部104(特には表示装置)に表示させて、ユーザに前記入力を行うことを促しうる。当該入力受付ウィンドウは、例えば図15Aのaに示されている「Antibody」欄及び「Expression level」欄などの、生体分子入力受付欄及び発現量受付欄を含みうる。このように、本技術の情報処理システムは、測定対象情報の入力を促す画面を表示する出力部を備えていてよい。
前記生体分子入力受付欄は、図15Aのaの「Antibody」欄に示されるように、例えば生体分子の選択を促す複数のリストボックスLB1であってよい。図15Aのaでは説明の便宜上9つのリストボックスが記載されているが、リストボックスの数はこれに限定されない。リストボックスの数は例えば5~300、10~200であってよい。
ユーザが、それぞれのリストボックスを、例えばクリック又はタッチなどの操作で有効にすることに応じて、処理部101は、当該リストボックスの上又は下に、生体分子の選択肢の一覧を表示させる。当該一覧の中からユーザが一つの生体分子を選択することに応じて、当該一覧が閉じて、選択された生体分子が表示される。
図15Aでは、ユーザによる生体分子の選択後の画面が表示されている。抗体により捕捉される抗原が選択されたことに応じて、同図に示されるように、例えば「CD1a」、「CD2」などと表示される。
ユーザが、それぞれのリストボックスを、例えばクリック又はタッチなどの操作で有効にすることに応じて、処理部101は、当該リストボックスの上又は下に、生体分子の選択肢の一覧を表示させる。当該一覧の中からユーザが一つの生体分子を選択することに応じて、当該一覧が閉じて、選択された生体分子が表示される。
図15Aでは、ユーザによる生体分子の選択後の画面が表示されている。抗体により捕捉される抗原が選択されたことに応じて、同図に示されるように、例えば「CD1a」、「CD2」などと表示される。
また、前記発現量受付欄は、図15Aのaの「Expression level」欄に示されるように、例えば発現量の選択を促す複数のリストボックスLB2であってよい。発現量の選択を促すリストボックスLB2の数は、生体分子の選択を促すリストボックスLB1の数と同じであってよい。図15Aのaでは説明の便宜上9つのリストボックスが記載されているが、リストボックスの数はこれに限定されない。リストボックスの数は例えば5~300、10~200であってよい。
ユーザが、それぞれのリストボックスを、例えばクリック又はタッチなどの操作で有効にすることに応じて、処理部101は、当該リストボックスの上又は下に、発現量の選択肢の一覧を表示させる。当該一覧の中からユーザが一つの生体分子を選択することに応じて、当該一覧が閉じて、選択された発現量が表示される。
図15Aのaでは、ユーザによる発現量の選択後の画面が表示されている。発現量のレベルが選択されたことに応じて、同図に示されるように、例えば「+」、「++」、及び「+++」と表示される。図15Aのaでは、例えば生体分子「CD1a」の発現量として「+」が選択されている。また、生体分子「CD4」の発現量として「++」が選択されている。記号「+」、「++」、及び「+++」は、この順に発現量がより多くなることを意味する。
本明細書内において、「発現量」は、例えば、発現量のレベルを意味してよく、又は、発現量の具体的な数値であってもよい。好ましくは、図15Aのaに示されるように、発現量は、発現量のレベルを意味する。発現量のレベルは、好ましくは2段階~20段階、より好ましくは2段階~15段階、さらにより好ましくは2段階~10段階であってよく、例えば3段階~10段階に分けられていてよい。
ユーザが、それぞれのリストボックスを、例えばクリック又はタッチなどの操作で有効にすることに応じて、処理部101は、当該リストボックスの上又は下に、発現量の選択肢の一覧を表示させる。当該一覧の中からユーザが一つの生体分子を選択することに応じて、当該一覧が閉じて、選択された発現量が表示される。
図15Aのaでは、ユーザによる発現量の選択後の画面が表示されている。発現量のレベルが選択されたことに応じて、同図に示されるように、例えば「+」、「++」、及び「+++」と表示される。図15Aのaでは、例えば生体分子「CD1a」の発現量として「+」が選択されている。また、生体分子「CD4」の発現量として「++」が選択されている。記号「+」、「++」、及び「+++」は、この順に発現量がより多くなることを意味する。
本明細書内において、「発現量」は、例えば、発現量のレベルを意味してよく、又は、発現量の具体的な数値であってもよい。好ましくは、図15Aのaに示されるように、発現量は、発現量のレベルを意味する。発現量のレベルは、好ましくは2段階~20段階、より好ましくは2段階~15段階、さらにより好ましくは2段階~10段階であってよく、例えば3段階~10段階に分けられていてよい。
以上のとおりに生体分子及び発現量の選択が完了した後に、例えば、当該入力受付ウィンドウ内にある選択完了ボタン(図示されていない)がユーザによりクリックされることに応じて、処理部101は、選択された生体分子及び発現量の入力を受け付ける。
ステップS302において、処理部101は、ステップS301において選択された複数の生体分子を、各生体分子について選択された発現量に基づき分類し、1又は複数の発現量カテゴリー、特には複数の発現量カテゴリーを生成する。発現量カテゴリーの数は、例えば発現量レベルの数に対応する値であってよく、好ましくは2以上、より好ましくは3以上でありうる。当該数は、好ましくは2~20、好ましくは3~15、さらにより好ましくは3~10でありうる。
図15Aのaでは、複数の生体分子それぞれに、発現量レベル「+」、「++」、又は「+++」が選択されている。処理部101は、選択された発現量レベルが「+」である生体分子を、発現量カテゴリー「+」に分類する。同様に、処理部101は、選択された発現量レベルが「++」又は「+++」である生体分子をそれぞれ、発現量カテゴリー「++」又は発現量カテゴリー「+++」に分類する。このようにして、処理部101は、3つの発現量カテゴリーを生成する。各発現量カテゴリーには、対応する発現量レベルが選択された生体分子が含まれる。図15Aのaでは、発現量レベル「+」の生体分子が3つ、発現量レベル「++」の生体分子が4つ、発現量レベル「+++」の生体分子が2つ入力されている。
ステップS303において、処理部101は、ステップS301において入力された生体分子を標識することができる蛍光体に関するリストを取得する。当該蛍光体のリストは、例えば通信部105を介して、情報処理装置100の外部に存在するデータベースから取得されてよく、又は、情報処理装置100の内部(例えば記憶部102)に格納されているデータベースから取得されてもよい。
前記蛍光体に関するリストは、例えば各蛍光体についての名称及び明るさを含みうる。また、前記蛍光体に関するリストは好ましくは、各蛍光体の蛍光スペクトルも含む。各蛍光体の蛍光スペクトルは、当該リストとは別のデータとしてデータベースから取得されてもよい。
好ましくは、当該リストには、生体分子と蛍光体との組合せを使用して試料が分析される装置(例えば微小粒子分析装置)において使用可能な蛍光体を選択的に含むものであってよい。装置において使用不可能な蛍光体がリストから削除されていることによって、後述の処理(特には相関情報の算出処理)における装置への負担を軽減することができる。
ステップS304において、処理部101は、ステップS303において取得した蛍光体に関するリストに含まれる蛍光体を、各蛍光体の明るさに基づき分類し、1又は複数の明るさカテゴリー、特には複数の明るさカテゴリーを生成する。
ステップS304において、好ましくは、処理部101は、ステップS302において生成された発現量カテゴリーを参照して、明るさカテゴリーを生成する。これにより、生成される明るさカテゴリーと発現量カテゴリーとの対応付け、及び、生体分子と蛍光体との組合せの生成をより効率的に行うことができる。当該参照の具体的な内容を以下に説明する。
前記明るさに基づく分類は、蛍光量又は蛍光強度に基づく分類であってよい。当該分類を行うために、例えば蛍光量又は蛍光強度の数値範囲が各明るさカテゴリーに関連付けられていてよい。そして、処理部101は、前記リストに含まれる蛍光体のそれぞれを、各蛍光体の蛍光量又は蛍光強度を参照して、当該蛍光量又は蛍光強度が含まれる数値範囲が関連付けられた明るさカテゴリーへと分類しうる。
好ましくは、ステップS304において、処理部101は、ステップS302において生成された発現量カテゴリーの数を参照して、明るさカテゴリーを生成する。特に好ましくは、ステップS304において、処理部101は、ステップS302において生成された発現量カテゴリーの数と同じ数だけ、明るさカテゴリーを生成する。これにより、発現量カテゴリーと明るさカテゴリーとを1対1で対応付けることができる。加えて、後述の組合せリスト生成において考慮されない蛍光体の発生を防ぐことができ、より良い組合せを生成することができる。明るさカテゴリーの数は、例えば発現量カテゴリーの数に対応する値であってよく、好ましくは2以上、より好ましくは3以上でありうる。当該数は、好ましくは2~20、好ましくは3~15、さらにより好ましくは3~10でありうる。
例えば、図15Aのbに示されるとおり、3つの明るさカテゴリー(Bright、Normal、及びDim)が生成されてよい。これら3つの明るさカテゴリーは、この順番に、明るさが小さくなっており、すなわちBrightに含まれる蛍光体はいずれも、Normalに含まれるいずれの蛍光体よりも明るく、且つ、Normalに含まれる蛍光体はいずれも、Dimに含まれるいずれの蛍光体よりも明るい。
例えば、図15Aのbに示されるとおり、3つの明るさカテゴリー(Bright、Normal、及びDim)が生成されてよい。これら3つの明るさカテゴリーは、この順番に、明るさが小さくなっており、すなわちBrightに含まれる蛍光体はいずれも、Normalに含まれるいずれの蛍光体よりも明るく、且つ、Normalに含まれる蛍光体はいずれも、Dimに含まれるいずれの蛍光体よりも明るい。
好ましくは、ステップS304において、処理部101は、ステップS302において生成された発現量カテゴリーのそれぞれに含まれる生体分子の数を参照して、明るさカテゴリーを生成する。特に好ましくは、ステップS304において、処理部101は、ステップS302において生成された発現量カテゴリーに含まれる生体分子の数以上の蛍光体が、対応付けられる明るさカテゴリーに含まれるように、蛍光体を各明るさカテゴリーに分類する。これにより、後述の組合せリスト生成において、蛍光体が割り当てられない生体分子が生じることを防ぐことができる。
ステップS305において、処理部101は、ステップS302において生成された発現量カテゴリーとステップS304において生成された明るさカテゴリーとを対応付ける。好ましくは、処理部101は、1つの発現量カテゴリーに対して1つの明るさカテゴリーを対応付ける。また、発現量カテゴリーと明るさカテゴリーとが1対1で対応するように、処理部101は対応付けを行いうる。すなわち、2つ以上の発現量カテゴリーが1つの明るさカテゴリーに対応付けられないように、前記対応付けを行いうる。
本技術の特に好ましい実施態様において、処理部101は、より発現量が少ない発現量カテゴリーが、より明るい明るさカテゴリーに対応付けられるように、前記対応付けを実行しうる。例えば、処理部101は、発現量が最も少ない発現量カテゴリーを、明るさが最も明るい明るさカテゴリーに対応付け、そして、発現量が次に少ない発現量カテゴリーを、明るさが次に明るい明るさカテゴリーに対応付け、同様に、この対応付けを、発現量カテゴリーがなくなるまで繰り返しうる。反対に、処理部101は、発現量が最も多い発現量カテゴリーを、明るさが最も暗い明るさカテゴリーに対応付け、そして、発現量が次に多い発現量カテゴリーを、明るさが次に暗い明るさカテゴリーに対応付け、同様に、この対応付けを、発現量カテゴリーがなくなるまで繰り返しうる。
この実施態様において、例えば図15Aのa及びbの間の矢印に示されるように、処理部101は、発現量カテゴリー「+」、「++」、及び「+++」を、明るさカテゴリー「Bright」、「Normal」、及び「Dim」にそれぞれ対応付ける。
以上のとおり、本技術において生成される発現量カテゴリーに関して、好ましくは、より少ない発現量を示す生体分子を分類した発現量カテゴリーが、より明るい蛍光体を分類した明るさカテゴリーに対応するように、前記明るさカテゴリーに対応付けられていてよい。
この実施態様において、例えば図15Aのa及びbの間の矢印に示されるように、処理部101は、発現量カテゴリー「+」、「++」、及び「+++」を、明るさカテゴリー「Bright」、「Normal」、及び「Dim」にそれぞれ対応付ける。
以上のとおり、本技術において生成される発現量カテゴリーに関して、好ましくは、より少ない発現量を示す生体分子を分類した発現量カテゴリーが、より明るい蛍光体を分類した明るさカテゴリーに対応するように、前記明るさカテゴリーに対応付けられていてよい。
ステップS306において、処理部101は、蛍光体間の相関情報を用いて、最適な蛍光体組合せを特定する。当該最適な蛍光体組合せは、例えば蛍光スペクトル間の相関の観点から最適である蛍光体組合せであり、より特には蛍光スペクトル間の相関係数の観点から最適である蛍光体組合せであってよく、さらにより特には蛍光スペクトル間の相関係数の二乗の観点から最適である蛍光体組合せであってよい。当該相関係数は、例えばピアソン相関係数、スピアマン相関係数、又はケンドール相関係数のいずれかであってよく、好ましくはピアソン相関係数である。
前記蛍光体間の相関情報は、好ましくは蛍光スペクトル間の相関情報であってよい。すなわち、本技術の一つの好ましい実施態様において、処理部101は、蛍光スペクトル間の相関情報を用いて、最適な蛍光体組合せを特定する。
前記蛍光体間の相関情報は、好ましくは蛍光スペクトル間の相関情報であってよい。すなわち、本技術の一つの好ましい実施態様において、処理部101は、蛍光スペクトル間の相関情報を用いて、最適な蛍光体組合せを特定する。
例えば、ピアソン相関係数は、2つの蛍光スペクトルX及びYとの間で、以下のとおりにして算出することができる。
まず、蛍光スペクトルX及びYは、例えば以下のとおりに表すことができる。
蛍光スペクトルX=(X1、X2、・・・、X320)、平均値=μx、標準偏差=σx(ここで、X1~X320は、320の異なる波長における蛍光強度である。平均値μxは、これら蛍光強度の平均値である。標準偏差σxは、これら蛍光強度の標準偏差である。)
蛍光スペクトルY=(Y1、Y2、・・・、Y320)、平均値=μy、標準偏差=σy(ここで、Y1~Y320は、320の異なる波長における蛍光強度である。平均値μyは、これら蛍光強度の平均値である。標準偏差σxは、これら蛍光強度の標準偏差である。)
なお、「320」という数値は、説明の便宜上設定された値であって、前記相関係数の算出において用いられる数値はこれに限定されない。当該数値は、例えば蛍光検出に用いられるPMT(光電子倍増管)の数など、蛍光検出器の構成に応じて適宜変更されてよい。
蛍光スペクトルX=(X1、X2、・・・、X320)、平均値=μx、標準偏差=σx(ここで、X1~X320は、320の異なる波長における蛍光強度である。平均値μxは、これら蛍光強度の平均値である。標準偏差σxは、これら蛍光強度の標準偏差である。)
蛍光スペクトルY=(Y1、Y2、・・・、Y320)、平均値=μy、標準偏差=σy(ここで、Y1~Y320は、320の異なる波長における蛍光強度である。平均値μyは、これら蛍光強度の平均値である。標準偏差σxは、これら蛍光強度の標準偏差である。)
なお、「320」という数値は、説明の便宜上設定された値であって、前記相関係数の算出において用いられる数値はこれに限定されない。当該数値は、例えば蛍光検出に用いられるPMT(光電子倍増管)の数など、蛍光検出器の構成に応じて適宜変更されてよい。
これら蛍光スペクトルX及びYの間のピアソン相関係数Rは、以下数1の式により得られる。
数1の式において、ZXn(nは1~320)は、標準化された蛍光強度であり、以下のとおりに表される。
Zx1=(X1-μx)÷σx、Zx2=(X2-μx)÷σx、・・・Zx320=(X320-μx)÷σx
同様に、ZYn(nは1~320)も、以下のとおりに表される。
Zy1=(Y1-μy)÷σy、Zy2=(Y2-μy)÷σy、・・・Zy320=(Y320-μy)÷σy
また、数1の式において、Nはデータ数である。
Zx1=(X1-μx)÷σx、Zx2=(X2-μx)÷σx、・・・Zx320=(X320-μx)÷σx
同様に、ZYn(nは1~320)も、以下のとおりに表される。
Zy1=(Y1-μy)÷σy、Zy2=(Y2-μy)÷σy、・・・Zy320=(Y320-μy)÷σy
また、数1の式において、Nはデータ数である。
当該最適な蛍光体組合せの特定の仕方の一例について、以下に説明する。
処理部101は、或る明るさカテゴリーから、「当該或る明るさカテゴリーに対応付けられた発現量カテゴリーに属する生体分子の数」と同じ数だけ、蛍光体を選択する。当該蛍光体の選択を、全ての明るさカテゴリーについて実行する。これにより、「サンプルの解析に用いる複数の生体分子の数」と同じ数の蛍光体が選択され、このようにして、1つの蛍光体組合せ候補が得られる。
次に、処理部101は、当該蛍光体組合せ候補に含まれるいずれか2つの蛍光体の組合せについて、蛍光スペクトル間の相関係数(例えばピアソン相関係数)の二乗を算出する。処理部101は、当該相関係数の二乗の算出を、全ての組合せに対して行う。当該算出処理によって、処理部101は、例えば図16に示されるような、相関係数二乗値のマトリックスを得る。そして、処理部101は、この相関係数二乗値のマトリックスのうちから、最大の相関係数二乗値を特定する。例えば図16において、Alexa Fluor 647の蛍光スペクトルとAPCの蛍光スペクトルとの間の相関係数が0.934であり、処理部101
は、この値を最大の相関係数二乗値であると特定する(同図左上において四角形で囲まれた部分)。
なお、相関係数二乗値が小さいほど、2つの蛍光体スペクトルが似ていないことを意味する。すなわち、相関係数二乗値が最大である2つの蛍光体は、当該蛍光体組合せ候補に含まれる蛍光体のうち、蛍光スペクトルが最も類似する2つの蛍光体であることを意味しうる。
以上のとおりの処理によって、処理部101は、1つの蛍光体組合せ候補に対して、最大の相関係数二乗値を特定する。
次に、処理部101は、当該蛍光体組合せ候補に含まれるいずれか2つの蛍光体の組合せについて、蛍光スペクトル間の相関係数(例えばピアソン相関係数)の二乗を算出する。処理部101は、当該相関係数の二乗の算出を、全ての組合せに対して行う。当該算出処理によって、処理部101は、例えば図16に示されるような、相関係数二乗値のマトリックスを得る。そして、処理部101は、この相関係数二乗値のマトリックスのうちから、最大の相関係数二乗値を特定する。例えば図16において、Alexa Fluor 647の蛍光スペクトルとAPCの蛍光スペクトルとの間の相関係数が0.934であり、処理部101
は、この値を最大の相関係数二乗値であると特定する(同図左上において四角形で囲まれた部分)。
なお、相関係数二乗値が小さいほど、2つの蛍光体スペクトルが似ていないことを意味する。すなわち、相関係数二乗値が最大である2つの蛍光体は、当該蛍光体組合せ候補に含まれる蛍光体のうち、蛍光スペクトルが最も類似する2つの蛍光体であることを意味しうる。
以上のとおりの処理によって、処理部101は、1つの蛍光体組合せ候補に対して、最大の相関係数二乗値を特定する。
ここで、「或る明るさカテゴリーに属する蛍光体の数」が「当該或る明るさカテゴリーに対応付けられた発現量カテゴリーに属する生体分子の数」よりも多い場合、或る明るさカテゴリーから選択される蛍光体の組合せは、複数存在する。例えば4つの蛍光体から2つの蛍光体を選択する場合の蛍光体組合せは6通り(=4C2)存在する。そのため、例えば、3つの明るさカテゴリーが存在し、当該3つの明るさカテゴリーのいずれにも4つの蛍光体が属し、且つ、各明るさカテゴリーから2つの蛍光体を選択する場合、6×6×6=216通りの蛍光体組合せ候補が存在する。
本技術において、処理部101は、あり得る蛍光体組合せ候補全てについて、上記で述べたとおりに、最大の相関係数二乗値を特定する。例えば、処理部101は、216の蛍光体組合せ候補が存在する場合は、216の蛍光体組合せ候補それぞれの最大の相関係数二乗値を特定する。そして、処理部101は、特定された最大の相関係数二乗値が最も小さい蛍光体組合せ候補を特定する。処理部101は、このようにして特定された蛍光体組合せ候補を、最適な蛍光体組合せとして特定する。
図15Aのcは、最適な蛍光体組合せの特定結果を示す。図15Aのcにおいて、特定された最適な蛍光体組合せを構成する蛍光体に星印が付されている。
なお、最大の相関係数二乗値が最も小さい蛍光体組合せ候補が2つ以上存在する場合は、処理部101は、当該2つ以上の蛍光体組合せ候補について、次に大きい相関係数二乗値を比較し、当該次に大きい相関係数二乗値がより小さい蛍光体組合せ候補を、最適な蛍光体組合せとして特定しうる。当該次に大きい相関係数二乗値が同じである場合は、その次に大きい相関係数二乗値が比較されうる。
本技術において、処理部101は、あり得る蛍光体組合せ候補全てについて、上記で述べたとおりに、最大の相関係数二乗値を特定する。例えば、処理部101は、216の蛍光体組合せ候補が存在する場合は、216の蛍光体組合せ候補それぞれの最大の相関係数二乗値を特定する。そして、処理部101は、特定された最大の相関係数二乗値が最も小さい蛍光体組合せ候補を特定する。処理部101は、このようにして特定された蛍光体組合せ候補を、最適な蛍光体組合せとして特定する。
図15Aのcは、最適な蛍光体組合せの特定結果を示す。図15Aのcにおいて、特定された最適な蛍光体組合せを構成する蛍光体に星印が付されている。
なお、最大の相関係数二乗値が最も小さい蛍光体組合せ候補が2つ以上存在する場合は、処理部101は、当該2つ以上の蛍光体組合せ候補について、次に大きい相関係数二乗値を比較し、当該次に大きい相関係数二乗値がより小さい蛍光体組合せ候補を、最適な蛍光体組合せとして特定しうる。当該次に大きい相関係数二乗値が同じである場合は、その次に大きい相関係数二乗値が比較されうる。
以上では、最適な蛍光体組合せを特定するために、最大の相関係数二乗値が参照されているが、最適な蛍光体組合せを特定するために参照されるものは、これに限定されない。例えば、相関係数二乗値のうちの最も大きい値からn番目(ここでnは、任意の正数であってよく、例えば2~10、特には2~8、より特には2~5でありうる。)に大きい値までの平均値又は合計値であってよい。処理部101は、当該平均値又は当該合計値が最も小さい蛍光体組合せ候補を、最適な蛍光体組合せとして特定してもよい。
ステップS307において、処理部101は、ステップS306において特定された最適な蛍光体組合せを構成する蛍光体を、前記複数の生体分子に割り当てる。より具体的には、処理部101は、最適な蛍光体組合せを構成する蛍光体それぞれを、当該蛍光体が属する明るさカテゴリーに対応付けられた発現量カテゴリーに属する生体分子へ、割り当てる。
1つの明るさカテゴリーに2以上の蛍光体が含まれる場合は、対応付けられた発現量カテゴリーにも2以上の生体分子が含まれうる。この場合において、より明るい明るさを有する蛍光体が、より発現量の低い(又はより発現量が低いと予想される)生体分子に割り当てられうる。図17に、このような割当に関する概念図を示す。
処理部101は、以上の割り当て処理によって、各生体分子について、蛍光体と生体分子との組合せが生成される。処理部101は、このようにして生体分子に対する蛍光体の組合せリストを生成する。
図15Aのdに、組合せリストの生成結果の例が示されている。処理部101は、当該組合せリストの生成結果を出力させてよく、この場合、例えば図15Aのdのように、例えば生体分子と蛍光体の組合せに加えて、処理部101は、各蛍光色素の蛍光スペクトルを表示させてもよい。蛍光スペクトルを表示することによって、スペクトルの重なりが無いかを、ユーザが目視により確認することができる。
1つの明るさカテゴリーに2以上の蛍光体が含まれる場合は、対応付けられた発現量カテゴリーにも2以上の生体分子が含まれうる。この場合において、より明るい明るさを有する蛍光体が、より発現量の低い(又はより発現量が低いと予想される)生体分子に割り当てられうる。図17に、このような割当に関する概念図を示す。
処理部101は、以上の割り当て処理によって、各生体分子について、蛍光体と生体分子との組合せが生成される。処理部101は、このようにして生体分子に対する蛍光体の組合せリストを生成する。
図15Aのdに、組合せリストの生成結果の例が示されている。処理部101は、当該組合せリストの生成結果を出力させてよく、この場合、例えば図15Aのdのように、例えば生体分子と蛍光体の組合せに加えて、処理部101は、各蛍光色素の蛍光スペクトルを表示させてもよい。蛍光スペクトルを表示することによって、スペクトルの重なりが無いかを、ユーザが目視により確認することができる。
ステップS308において、処理部101は、ステップS307において生成された蛍光体組合せの分離能評価を実施する。当該分離能評価は、以下で図18を参照しながら別途説明する。
なお、処理部101は、ステップS308を実行することなく、処理をステップS309に進めてもよい。ステップS308が実行されない場合、ステップS307において生成された組合せリストが、ステップS309において用いられる。
なお、処理部101は、ステップS308を実行することなく、処理をステップS309に進めてもよい。ステップS308が実行されない場合、ステップS307において生成された組合せリストが、ステップS309において用いられる。
ステップS309において、処理部101は、例えば出力部104に、ステップS308において生成された組合せリストを出力させうる。例えば、当該組み合わせリストが表示装置に表示されうる。
なお、ステップS308が実行されない場合は、処理部101は、出力部104に、ステップS307において生成された組合せリストを出力させうる。
なお、ステップS308が実行されない場合は、処理部101は、出力部104に、ステップS307において生成された組合せリストを出力させうる。
ステップS309において、処理部101はさらに、抗体(又は抗原)と蛍光色素との組合せに対応する試薬情報を出力部104に表示させうる。当該試薬情報は、上記で述べた試薬データベースから取得されてよい。試薬情報は、例えば試薬の名称、品番、販売会社名、及び価格などを含みうる。試薬情報を表示するために、処理部101は、例えば、試薬情報を、情報処理装置100の外部に存在するデータベースから取得してよく、又は、情報処理装置100の内部(例えば記憶部102)に格納されているデータベースから取得してもよい。
また、情報処理装置100は、前記試薬データベース中の前記価格および/又は前記販売会社の情報に基づいて、前記推薦情報を出力してもよい。これにより価格のより低い試薬情報を推薦することができる。また、例えばより少ない数の会社から試薬を推薦することで、ユーザがアクセスすべき会社数を減らすことができる。
また、情報処理装置100は、前記試薬データベース中の前記価格および/又は前記販売会社の情報に基づいて、前記推薦情報を出力してもよい。これにより価格のより低い試薬情報を推薦することができる。また、例えばより少ない数の会社から試薬を推薦することで、ユーザがアクセスすべき会社数を減らすことができる。
例えば、ステップS309において、情報処理装置100は、例えば、前記組合せリストを例えばサーバ120(又はサーバ120-1)に送信してよい。サーバ120(又はサーバ120-1)は、当該組合せリストを受信したことに応じて、当該組合せリストに含まれる抗体と蛍光色素との組合せに対応する対応関係情報を特定し、そして、対応関係情報に含まれている試薬を特定する。なお、対応関係情報には、上記のとおり、例えば試薬の名称などが含まれているので、対応関係情報を特定することによって、試薬を特定することができる。そして、サーバ120(又はサーバ120-1)は、特定された試薬に関する試薬情報を、情報処理装置100に送信する。当該試薬情報が、試薬の推薦情報として、情報処理装置100により取り扱われうる。情報処理装置100は、受信した試薬情報を、上記のとおりに出力部104に表示させうる。これにより、出力部104は、試薬の推薦情報を表示しうる。
図15Bに、出力結果の例が示されている。当該例では、抗体(又は抗原)名、蛍光色素名、試薬の名称、品番、製造会社名、及び価格などに加えて、シミュレーション結果も示されている。
以上のとおりの処理によって、生体分子と蛍光体との組合せを最適化することができ、最適化された当該組合せリストをユーザに提示することができる。
以上で説明したとおり、本技術に従う情報処理システムに含まれる情報処理装置は、サンプルの解析に用いる複数の生体分子を前記サンプルにおける発現量に基づき分類した発現量カテゴリーと、前記サンプルの解析に用いることが可能な複数の蛍光体を明るさに基づき分類した明るさカテゴリーと、前記複数の蛍光体間の相関情報とに基づき、生体分子に対する蛍光体の組合せリストを生成する処理部を備えていてよい。
前記処理部は、前記組合せリストにて前記生体分子に割り当てる前記蛍光体を、前記生体分子が属する発現量カテゴリーに対応付けられた明るさカテゴリーに属する蛍光体から選択するものであってよい。
前記発現量カテゴリーは、より少ない発現量を示す生体分子を分類した発現量カテゴリーが、より明るい蛍光体を分類した明るさカテゴリーに対応するように、前記明るさカテゴリーに対応付けられていてよい。
前記処理部は、前記組合せリストにて前記生体分子に割り当てる前記蛍光体を、前記生体分子が属する発現量カテゴリーに対応付けられた明るさカテゴリーに属する蛍光体から選択するものであってよい。
前記発現量カテゴリーは、より少ない発現量を示す生体分子を分類した発現量カテゴリーが、より明るい蛍光体を分類した明るさカテゴリーに対応するように、前記明るさカテゴリーに対応付けられていてよい。
(3-2-4)分離能評価処理の例
以下で、図18を参照しながら、上記(3-2-3)において述べた分離能評価処理について説明する。
図18のステップS401において、処理部101は、分離能評価処理を開始する。
ステップS402において、処理部101は、蛍光体間のステインインデックス(本明細書内においてステインインデックスを「SI」ともいう)を計算する。当該SIは、例えば、ステップS307において生成された組合せリストを用いてシミュレーションデータを生成し、当該シミュレーションデータに対してスペクトラルリファレンスを用いてアンミキシング処理を行って得られたデータを用いて得ることができる。
ここで、前記シミュレーションデータは、例えば組合せリストに従う試薬を用いた分析が行われる装置(例えばフローサイトメータ)によって測定したかのようなデータ群であってよい。当該装置がフローサイトメータなどの微小粒子分析装置である場合は、例えば100個~1000個の微小粒子を実際に測定した場合に得られるようなデータ群でありうる。当該データ群の生成のために、例えば、当該装置のノイズ、染色バラつき、及び生成データ数などの条件が考慮されてもよい。
ここで、前記シミュレーションデータは、例えば組合せリストに従う試薬を用いた分析が行われる装置(例えばフローサイトメータ)によって測定したかのようなデータ群であってよい。当該装置がフローサイトメータなどの微小粒子分析装置である場合は、例えば100個~1000個の微小粒子を実際に測定した場合に得られるようなデータ群でありうる。当該データ群の生成のために、例えば、当該装置のノイズ、染色バラつき、及び生成データ数などの条件が考慮されてもよい。
ステップS402において、処理部101は、例えば図19に示されるような、蛍光体間SIのデータを取得しうる。当該データには、前記組合せリストを構成する蛍光体群のうちの異なる2つの蛍光体間のSI全てが含まれている。
ステップS403において、処理部101は、計算された蛍光体間SIに基づき、分離性能が悪い1つ又は複数の蛍光体、特には分離性能が悪い1つの蛍光体を特定する。例えば、処理部101は、最も小さい蛍光体間SIが計算された2つの蛍光体のうち陽性として取り扱われた蛍光体を、前記分離性能が悪い1つの蛍光体として特定しうる。
例えば図19に示される蛍光体間SIデータに関して、ステップS403において、処理部101は、最も小さい蛍光体間SI「2.8」が計算された2つの蛍光体のうち、陽性(posi)として取り扱われた蛍光体「PerCP-Cy5.5」を、前記分離性能が悪い1つの蛍光体として特定する。
ステップS404において、処理部101は、ステップS403において特定された分離性能が悪い蛍光体を代替する候補蛍光体を特定する。候補蛍光体は例えば以下のとおりに特定されうる。まず、処理部101は、前記分離性能が悪い蛍光体が属する明るさカテゴリーを参照し、当該明るさカテゴリーに属する蛍光体のうち、前記組合せリスト中に採用されていない蛍光体を、候補蛍光体として特定しうる。加えて、処理部101は、候補蛍光体を、前記分離性能が悪い蛍光体が属する明るさカテゴリーと明るさが最も近い明るさカテゴリーから選択してもよい。処理部101は、当該最も近い明るさカテゴリーに属する蛍光体のうち、前記組合せリスト中に採用されていない蛍光体を、候補蛍光体として特定しうる。
例えば図20では、処理部101は、前記分離性能が悪い蛍光体「PerCP-Cy5.5」を代替する候補蛍光体として「Alexa Fluor 647」など6つの蛍光体を特定している。このように、候補蛍光体は複数特定されてよく、又は1つだけ特定されてもよい。
ステップS405において、処理部101は、ステップS404において特定された前記分離性能が悪い蛍光体を候補蛍光体へ変更した場合の蛍光体間SIを計算する。この計算は、候補蛍光体の全てについてそれぞれ行われてよい。
当該計算結果の例が、図21A及びBに示されている。図21A及びBにおいて、図20に関して言及した6つの蛍光体それぞれについて、前記分離性能が悪い蛍光体を候補蛍光体へ変更した場合の蛍光体間SIが示されている。
ステップS406において、処理部101は、ステップS405における計算結果のうち、蛍光体間SIの最小値が最も大きい計算結果が得られた候補蛍光体を、前記分離性能が悪い蛍光体を代替する蛍光体として選択する。
例えば図21A及びBにおける計算結果に関しては、6つの候補蛍光体の計算結果中の蛍光体間SIの最小値のうち、「BV650」に関する蛍光体間SIの最小値が、最も大きい。そこで、処理部101は、「BV650」を「PerCP-Cy5.5」を代替する蛍光体として選択する。
ステップS407において、処理部101は、ステップS406において選択された蛍光体によって前記分離性能が悪い蛍光体を代替した前記組合せリストよりも良い蛍光体組合せが存在するかを判定する。当該判定のために、例えば、ステップS403~406が繰り返されてよい。
処理部101は、ステップS403~406を繰り返した結果、蛍光体間SIの最小値が、より大きくなる組合せが存在する場合は、より良い蛍光体組合せが存在すると判定する。このように判定した場合は、処理部101は、処理をステップS403に戻す。
処理部101は、ステップS403~406を繰り返した結果、蛍光体間SIの最小値が、より大きくなる組合せが存在しない場合は、より良い蛍光体組合せが存在しないと判定する。処理部101は、より良い蛍光体組合せが存在しないと判定した場合は、ステップS403~306を繰り返す直前の段階における蛍光体組合せを、最適化された組合せリストとして特定し、処理をステップS408に進める。
処理部101は、ステップS403~406を繰り返した結果、蛍光体間SIの最小値が、より大きくなる組合せが存在する場合は、より良い蛍光体組合せが存在すると判定する。このように判定した場合は、処理部101は、処理をステップS403に戻す。
処理部101は、ステップS403~406を繰り返した結果、蛍光体間SIの最小値が、より大きくなる組合せが存在しない場合は、より良い蛍光体組合せが存在しないと判定する。処理部101は、より良い蛍光体組合せが存在しないと判定した場合は、ステップS403~306を繰り返す直前の段階における蛍光体組合せを、最適化された組合せリストとして特定し、処理をステップS408に進める。
ステップS408において、処理部101は、分離能評価処理を終了し、処理をステップS309に進める。
以上の通りの処理によって、分離能を考慮した最適化が行われた生体分子と蛍光体との組合せリストを提示することができる。
以上のとおり、本技術の好ましい実施態様において、処理部101は、生成された組合せリストに関する分離能の評価を行いうる。例えば、処理部101は、生成した組合せリストに関するシミュレーションデータを生成し、当該シミュレーションデータを用いて、前記組合せリストに関する分離能の評価を行いうる。当該分離能の評価を実行することで、最適化の精度を高めることができる。例えば、当該分離能の評価を実行することによって、ステップS307において生成された組合せリストが、所望の分離性能を発揮するかを確認することができ、又は、確認結果に応じて、より良い分離性能を発揮する組合せリストを生成することもできる。
この分離能評価処理において、例えば、処理部101は、前記分離能の評価結果に応じて、前記組合せリストに含まれる蛍光体一式のうちの少なくとも一つの蛍光体が他の蛍光体に変更された変更版組合せリストをさらに生成し、当該変更版組合せリストに関する分離能評価をさらに行いうる。当該変更版組合せリストを生成し、そして、分離能評価を行うことで、より良い分離性能を発揮する組合せリストを生成することができる。
前記分離能の評価は、例えばステインインデックス(Stain-Index)を用いた評価であってよく、より好ましくは蛍光体間のステインインデックスを用いた評価であってよい。ステインインデックスは、当技術分野において、蛍光体(蛍光色素)自体の性能を示す指標であり、例えば図22の左に示されるように、染色された粒子及び無染色粒子の蛍光量並びに無染色粒子データの標準偏差により定義される。この無染色粒子データを、他の蛍光体によって染色された粒子に置き換えたものが蛍光体間のステインインデックスであり、例えば図19の右に示されるとおりである。蛍光体間のステインインデックスにより、蛍光スペクトルの重なりによる漏れ込み量、蛍光量、及びノイズを考慮した蛍光体間の分離性能を評価することができる。蛍光体間のステインインデックスを、生成された組合せリストを構成する蛍光体群のうちの2つの蛍光体の組合せ全てについて計算した結果の例が図23に示されている。
なお、本技術の処理部101は、処理部によって生成された組合せリストを構成する蛍光体群のうちの2つの蛍光体の組合せ全てについて計算した結果を出力部104に出力させうる。これにより、分離性能の評価をユーザが行いやすくなる。
なお、本技術の処理部101は、処理部によって生成された組合せリストを構成する蛍光体群のうちの2つの蛍光体の組合せ全てについて計算した結果を出力部104に出力させうる。これにより、分離性能の評価をユーザが行いやすくなる。
例えば図23に示されるような蛍光色素間ステインインデックスの表において、蛍光色素間ステインインデックスの数値が小さい領域が少なくなるほど、分離性能が良い。本技術において、まず、発現量カテゴリー、明るさカテゴリー、及び相関情報に基づき組合せリストを生成し、そして次に、例えばステインインデックスなどの指標を用いた分離能評価が行われてよい。例えば、生成された組合せリストについて、前記分離能評価によって分離性能が悪い蛍光体組合せを知ることができ、当該蛍光体組合せを変更することによって、より良い分離性能を有するパネルを設計することができる。
また、上記カテゴリーなどに基づく組合せリスト生成及び分離能評価(及び必要に応じてパネル修正)を行ってパネルデザインを行うことは、あらゆる組合せについて分離能評価を行ってパネルデザインを行うよりも、計算時間をはるかに削減することができる。
また、上記カテゴリーなどに基づく組合せリスト生成及び分離能評価(及び必要に応じてパネル修正)を行ってパネルデザインを行うことは、あらゆる組合せについて分離能評価を行ってパネルデザインを行うよりも、計算時間をはるかに削減することができる。
(3-2-5)データベースの生成
以下で、本技術において用いられるデータベースの生成に関して説明する。
(3-2-5-1)蛍光色素データベースの生成
蛍光色素DB132は、上記(3-2-1)において説明したとおり、蛍光色素の蛍光信号データを含み、各蛍光信号データは、当該蛍光色素の蛍光スペクトルデータ及び明るさデータを含みうる。
前記蛍光スペクトルデータ及び前記明るさデータは、蛍光色素DB132を構成する複数の蛍光色素それぞれの蛍光を例えばフローサイトメータによって計測することにより得られる。
前記明るさデータは、正規化された値であることが好ましいが、実測値であってもよい。前記正規化された値に関して、例えば、或る蛍光色素の明るさデータは、基準とする蛍光色素の蛍光スペクトルのピークにおける蛍光強度に対する、当該或る蛍光色素の蛍光スペクトルのピークにおける蛍光強度としてあらわされてよい。例えば、フローサイトメータを用いて所定の測定条件下で基準とするFITCの蛍光スペクトルのピーク蛍光強度を取得する。次に、例えばPEについて、同じ測定条件下で測定した蛍光スペクトルのピーク蛍光強度を取得する。そして、FITCについてのピーク蛍光強度を100とし、PEについてのピーク蛍光強度を、FITCについてのピーク蛍光強度に対する相対値として表し、例えば80などと表される。このようにして、例えば図24に示されるように、相対値として表された明るさデータが得られる。
なお、前記フローサイトメータによる測定は、例えば蛍光色素により標識されたビーズを用いて行われてよい。
なお、前記フローサイトメータによる測定は、例えば蛍光色素により標識されたビーズを用いて行われてよい。
蛍光スペクトルデータは、蛍光色素から生じた蛍光をフローサイトメータにより測定したときに光検出器(例えばPMT(光電子倍増菅)など)によって計測された値から生成される。なお、蛍光色素DB132は、計測された値そのものを有していてもよい。蛍光スペクトルデータを得るために、各PMTの計測値が、ピークが記録されたPMTの計測値に対する相対値として表されうる。これら相対値から、蛍光スペクトルの形状が得られる。これにより、例えば図25に示されるように、蛍光スペクトルデータが得られる。
また、以上の蛍光色素の明るさデータ及び蛍光スペクトルデータを取得するための測定条件も、蛍光信号データに関連付けられていてよい。当該測定条件は、上記で述べた測定機器情報であってよい。また、測定条件は、測定における測定機器の設定値を含みうる。当該設定値は、例えば、光検出器(例えば各PMT)のゲイン値、及び、フローレートなどを含みうる。
(3-2-5-2)試薬データベースの生成
試薬DB131は、上記(3-2-1)において説明したとおり、対応関係情報を含み、当該対応関係情報は、試薬名、試薬を構成する生体分子名、及び試薬を構成する蛍光色素名を含みうる。当該対応関係情報に含まれるデータは、例えば試薬メーカーが提供している試薬リストから収集されうる。当該収集は、例えば人に行われてよく又はキュレーションプログラムを用いて実行されてもよい。これにより、試薬DBが構築される。また、構築された試薬DBは、必要に応じて又は定期的に、更新されてよい。例えば、サーバ120がキュレーションプログラムを定期的に実行して、データを収集し、差分情報のみについて自動的に更新してよい。
(3-2-5-3)統合処理用テーブルを用いた試薬登録処理
サーバ120は、試薬の登録処理を実行する登録処理部を含みうる。当該前記登録処理部は、測定対象情報、試薬、又は蛍光色素の表記ゆれの統合処理を実行するように構成されていてよい。前記試薬DB及び/又は前記蛍光色素DBは、表記ゆれの統合処理を実行するために参照される統合処理用データテーブルを有しうる。
前記登録処理部は、表記ゆれはあるが同等であると判定された測定対象情報、試薬、又は蛍光色素を、前記試薬データベース又は前記蛍光色素データベース内の既存のレコードに登録しうる。また、前記登録処理部は、同等であると判定されなかった測定対象情報、試薬、又は蛍光色素について、新規のレコードを立ち上げて前記試薬データベース又は前記蛍光色素データベースに登録しうる。
前記登録処理部は、表記ゆれはあるが同等であると判定された測定対象情報、試薬、又は蛍光色素を、前記試薬データベース又は前記蛍光色素データベース内の既存のレコードに登録しうる。また、前記登録処理部は、同等であると判定されなかった測定対象情報、試薬、又は蛍光色素について、新規のレコードを立ち上げて前記試薬データベース又は前記蛍光色素データベースに登録しうる。
当該統合処理は、例えば測定対象情報である生体分子に関して実行されてよい。例えば、試薬DBを構成する対応関係情報は生体分子名を含む。1つの生体分子が複数の異なる名称を有する場合があり、試薬メーカー毎に異なる名称を採用している場合がある。また、生体分子名の表記ゆれも存在しうる。そこで、試薬DBを生成又は更新するために、上記(3-2-1)で述べた生体分子名統合処理用テーブルが利用されてよい。すなわち、本技術の一つの実施態様において、サーバ120は、生体分子名統合処理用テーブルを用いて、前記試薬データベースへ試薬登録処理を実行する登録処理部を有しうる。
当該統合処理は、例えば蛍光色素に関して実行されてよい。また、試薬DBを構成する対応関係情報は蛍光色素名を含む。また、蛍光色素DBには蛍光色素名が含まれる。蛍光色素についても、1つの蛍光色素が複数の異なる名称を有する場合があり、試薬メーカー毎に異なる名称を採用している場合がある。また、蛍光色素名の表記ゆれも存在しうる。そこで、試薬DBを生成又は更新するために、上記(3-2-1)で述べた蛍光色素名統合処理用テーブルが利用されてよい。すなわち、本技術の一つの実施態様において、サーバ120は、蛍光色素名統合処理用テーブルを用いて、前記試薬データベース又は前記蛍光色素データベースへ試薬登録処理を実行する登録処理部を有しうる。
また、当該統合処理は、例えば試薬に関して実行されてよい。試薬が蛍光色素により標識された生体分子(例えば抗体)である場合、前記登録処理部は、上記2つの統合処理用テーブルを用いて、試薬登録処理を実行しうる。
このように、本技術において、前記登録処理部は、前記生体分子名統合処理用テーブル及び前記蛍光色素名統合処理用テーブルの両方を用いて試薬登録処理を実行してよく、又は、これらテーブルのうちのいずれか一つを用いて試薬登録処理を実行してもよい。
このように、本技術において、前記登録処理部は、前記生体分子名統合処理用テーブル及び前記蛍光色素名統合処理用テーブルの両方を用いて試薬登録処理を実行してよく、又は、これらテーブルのうちのいずれか一つを用いて試薬登録処理を実行してもよい。
以下で、これら統合処理用テーブルを用いた試薬登録処理の例について、図26を参照しながら説明する。図26は当該処理のフロー図の一例である。
また、図27に、登録される試薬情報の4つの例xxx、yyy、ccc、及びzzzを示す。以下では、これら4つの試薬情報を、図8及び図11の統合処理用テーブルを参照して登録する処理の例も説明する。
また、図27に、登録される試薬情報の4つの例xxx、yyy、ccc、及びzzzを示す。以下では、これら4つの試薬情報を、図8及び図11の統合処理用テーブルを参照して登録する処理の例も説明する。
ステップS501において、サーバ120は、試薬登録処理を開始する。
ステップS502において、サーバ120は、1つ試薬又は複数の試薬それぞれの試薬情報を取得する。例えば、サーバ120は、情報処理装置100から送信された試薬情報を受信することにより試薬情報を取得してよく、又は、前記キュレーションプログラムを実行することによって試薬情報を取得してもよい。登録処理部133は、取得された試薬情報を、新たな対応関係情報として試薬データベースに暫定的に追加する。
ステップS503において、登録処理部133は、取得した試薬情報に含まれる蛍光色素名が、蛍光色素名統合処理用テーブル中に存在するかを判定する。当該判定は、例えば蛍光色素名をキーワードとした検索処理を当該データベースに対して実行することにより行われてよい。
登録処理部133は、前記蛍光色素名が蛍光色素名統合処理用テーブル中に存在する場合は、処理をステップS504に進める。
登録処理部133は、前記蛍光色素名が蛍光色素名統合処理用テーブル中に存在しない場合は、処理をステップS505に進める。
前記4つの例のうち、xxxについて、登録処理部133は、蛍光色素名統合処理用テーブル中に「Alexa Fluor 488」があるので、処理をステップS504に進める。yyy、ccc、及びzzzについても、蛍光色素名統合処理用テーブル中にそれぞれ「FITC」、「PE」、及び「PE」があるので、処理をステップS504に進める。
登録処理部133は、前記蛍光色素名が蛍光色素名統合処理用テーブル中に存在する場合は、処理をステップS504に進める。
登録処理部133は、前記蛍光色素名が蛍光色素名統合処理用テーブル中に存在しない場合は、処理をステップS505に進める。
前記4つの例のうち、xxxについて、登録処理部133は、蛍光色素名統合処理用テーブル中に「Alexa Fluor 488」があるので、処理をステップS504に進める。yyy、ccc、及びzzzについても、蛍光色素名統合処理用テーブル中にそれぞれ「FITC」、「PE」、及び「PE」があるので、処理をステップS504に進める。
ステップS504において、登録処理部133は、蛍光色素名統合処理用テーブルのうちの前記蛍光色素名を含むデータ中の統一名称を、試薬情報に含まれる蛍光色素の名称として、試薬データベースに登録する。このように、登録処理部133は、表記ゆれはあるが同等であると判定された蛍光色素を、試薬データベース内の既存のレコードに登録しうる。
図28に示されるとおり、前記4つの例のうち、xxxについて、登録処理部133は、蛍光色素名統合処理用テーブル中に「Alexa Fluor 488」の統一名称として「FITC」があるので、「FITC」を蛍光色素の名称として登録する。yyy、ccc、及びzzzについては、試薬情報中の蛍光色素名が蛍光色素名統合処理用テーブル中に統一名称として登録されているので、その名称を蛍光色素の名称として登録する。
図28に示されるとおり、前記4つの例のうち、xxxについて、登録処理部133は、蛍光色素名統合処理用テーブル中に「Alexa Fluor 488」の統一名称として「FITC」があるので、「FITC」を蛍光色素の名称として登録する。yyy、ccc、及びzzzについては、試薬情報中の蛍光色素名が蛍光色素名統合処理用テーブル中に統一名称として登録されているので、その名称を蛍光色素の名称として登録する。
ステップS505において、登録処理部133は、取得した試薬情報に含まれる蛍光色素名を、試薬情報に含まれる蛍光色素の名称として、試薬データベースに登録する。kのように、登録処理部133は、新規のレコードを立ち上げて、当該レコードに前記蛍光色素名を登録しうる。
また、登録処理部133は、取得した試薬情報に含まれる蛍光色素名を、蛍光色素名統合処理用テーブルに、新たな蛍光色素のデータとして、特には蛍光色素の統一名称として、追加登録しうる。このように追加登録することで、当該テーブルに含まれるデータを拡張することができる。
また、登録処理部133は、取得した試薬情報に含まれる蛍光色素名を、蛍光色素名統合処理用テーブルに、新たな蛍光色素のデータとして、特には蛍光色素の統一名称として、追加登録しうる。このように追加登録することで、当該テーブルに含まれるデータを拡張することができる。
ステップS506において、登録処理部133は、取得した試薬情報に含まれる生体分子名が、生体分子名統合処理用テーブル中に存在するかを判定する。当該判定は、例えば生体分子名をキーワードとした検索処理を当該データベースに対して実行することにより行われてよい。
登録処理部133は、前記生体分子名が生体分子名統合処理用テーブル中に存在する場合は、処理をステップS507に進める。
登録処理部133は、前記生体分子名が生体分子名統合処理用テーブル中に存在しない場合は、処理をステップS508に進める。
前記4つの例のうち、xxx、yyy、及びcccについて、登録処理部133は、生体分子名統合処理用テーブル中に「CCR6」、「CD196」、及び「BN-1」があるので、処理をステップS507に進める。zzzについては、蛍光色素名統合処理用テーブル中に「AAA」がないので、処理をステップS508に進める。
登録処理部133は、前記生体分子名が生体分子名統合処理用テーブル中に存在する場合は、処理をステップS507に進める。
登録処理部133は、前記生体分子名が生体分子名統合処理用テーブル中に存在しない場合は、処理をステップS508に進める。
前記4つの例のうち、xxx、yyy、及びcccについて、登録処理部133は、生体分子名統合処理用テーブル中に「CCR6」、「CD196」、及び「BN-1」があるので、処理をステップS507に進める。zzzについては、蛍光色素名統合処理用テーブル中に「AAA」がないので、処理をステップS508に進める。
ステップS507において、登録処理部133は、生体分子名統合処理用テーブルのうちの前記生体分子名を含むデータ中の統一名称を、試薬情報に含まれる生体分子の名称として、試薬データベースに登録する。このように、登録処理部133は、表記ゆれはあるが同等であると判定された生体分子を、試薬データベース内の既存のレコードに登録しうる。
図29に示されるとおり、前記4つの例のうち、xxxについて、登録処理部133は、生体分子名統合処理用テーブル中に「CCR6」の統一名称である「CD196」を、xxxに含まれる生体分子名として登録する。yyyついては、登録処理部133は、「CD196」が統一名称であるので、これをyyyに含まれる生体分子名として登録する。cccについて、登録処理部133は、「BN-1」の統一名称である「CD196」を、cccに含まれる生体分子名として登録する。
図29に示されるとおり、前記4つの例のうち、xxxについて、登録処理部133は、生体分子名統合処理用テーブル中に「CCR6」の統一名称である「CD196」を、xxxに含まれる生体分子名として登録する。yyyついては、登録処理部133は、「CD196」が統一名称であるので、これをyyyに含まれる生体分子名として登録する。cccについて、登録処理部133は、「BN-1」の統一名称である「CD196」を、cccに含まれる生体分子名として登録する。
ステップS508において、登録処理部133は、取得した試薬情報に含まれる生体分子名を、試薬情報に含まれる生体分子の名称として、試薬データベースに登録する。このように、登録処理部133は、同等であると判定されなかった測定対象情報(例えば生体分子)について、新規のレコードを立ち上げて、前記試薬データベースに登録しうる。
また、登録処理部133は、取得した試薬情報に含まれる生体分子名を、生体分子名統合処理用テーブルに、新たな生体分子のデータとして追加登録しうる。
図29に示されるとおり、前記4つの例のうち、登録処理部133は、zzzについて、「AAA」を、試薬zzzに含まれる生体分子の名称として登録する。
また、図30に示されるとおり、登録処理部133は、「AAA」を生体分子名統合処理用テーブルにも登録する。
また、登録処理部133は、取得した試薬情報に含まれる生体分子名を、生体分子名統合処理用テーブルに、新たな生体分子のデータとして追加登録しうる。
図29に示されるとおり、前記4つの例のうち、登録処理部133は、zzzについて、「AAA」を、試薬zzzに含まれる生体分子の名称として登録する。
また、図30に示されるとおり、登録処理部133は、「AAA」を生体分子名統合処理用テーブルにも登録する。
ステップS509において、サーバ120は、試薬登録処理を終了する。
以上の通りの処理によって、図31に示されるとおりに前記4つの試薬が試薬DBに登録される。すなわち、これら4つの試薬に関する試薬情報が、新たな4つの対応関係情報として試薬DBに登録される。
また、元の名称の代わりに統一名称が採用された蛍光色素及び生体分子に関して、図31に示されるとおり、元の名称が括弧書きによって表示されてもよい。これにより、元の名称との関係が理解しやすくなる。なお、当該括弧書きは表示されなくてもよい。
以上の通りの処理によって、図31に示されるとおりに前記4つの試薬が試薬DBに登録される。すなわち、これら4つの試薬に関する試薬情報が、新たな4つの対応関係情報として試薬DBに登録される。
また、元の名称の代わりに統一名称が採用された蛍光色素及び生体分子に関して、図31に示されるとおり、元の名称が括弧書きによって表示されてもよい。これにより、元の名称との関係が理解しやすくなる。なお、当該括弧書きは表示されなくてもよい。
なお、本技術において、試薬DBに含まれる生体分子名及び蛍光色素名は、名称そのものでなく、略称又は番号などであってもよい。生体分子名統合処理用テーブル及び蛍光色素名統合処理用テーブルにおいて各統一生体分子名及び各統一蛍光色素名にID番号が付されている場合、例えば図32に示されるとおり、試薬データベースには、統一名称の代わりに、ID番号が登録されてもよい。図32における「mID:10」及び「mID:12」が、図31における「CD196」及び「AAA」にそれぞれ対応する。また、図32における「sID:1」及び「sID:10」が、図31における「FITC」及び「PE」にそれぞれ対応する。
なお、以上の処理フローでは、ステップS502において、試薬情報が試薬データベースに新たな対応関係情報として登録され、そして、ステップS504及びS507において、当該対応関係情報中の生体分子名及び蛍光色素名が、統一名称に変更される。
本技術において、ステップS504及びS507を実行し、試薬情報中の生体分子名及び蛍光色素名を統一名称に変更し、そしてその後、統一名称へ変更後の試薬情報が対応関係情報として試薬データベースに登録されてもよい。
本技術において、ステップS504及びS507を実行し、試薬情報中の生体分子名及び蛍光色素名を統一名称に変更し、そしてその後、統一名称へ変更後の試薬情報が対応関係情報として試薬データベースに登録されてもよい。
(3-3)情報処理システムによる処理の例(アンミキシング処理)
(3-3-1)蛍光信号データの取得のための情報処理の例
本技術に従う蛍光信号データの取得処理は、アンミキシング処理を実行するため実行されてよく、より具体的にはアンミキシング処理において用いられるスペクトラルリファレンスデータ(以下、SRデータともいう)を取得するために実行されてもよい。以下で、このような蛍光信号データ取得の処理例を、図33を参照しながら説明する。図33は、当該処理のフロー図である。
図33のステップS601において、情報処理装置100は、測定対象情報を取得又は生成する。前記測定対象情報は、試薬に関する情報を含む。前記試薬に関する情報は、試薬の名称、略称、又は番号を含みうる。本技術の一つの実施態様に従い、前記測定対象情報は少なくとも1つの試薬の名称、略称、又は番号を含み、例えば2つ以上、5つ以上、又は10以上の試薬の名称、略称、又は番号を含みうる。試薬の数の下限値は例えば1、2、5、又は10であってよい。試薬の上限値は例えば300、200、150、100、又は50であってよい。試薬の数の数値範囲は、前記下限値の例及び前記上限値の例からそれぞれ選択された値の組合せであってよく、例えば2~300、5~200、5~150、又は5~100であってよい。前記試薬は、例えば蛍光色素標識抗体であってよい。
前記測定対象情報はさらに測定機器情報を含みうる。当該測定機器情報は、測定対象を用いた測定を実行する機器に関する情報である。例えば、当該測定機器情報は、測定対象を用いてフローサイトメトリーを実行するフローサイトメータに関する情報を含みうる。前記測定機器情報は例えば、測定機器の機種名、レーザ波長、及び検出器の検出波長域のうちの少なくとも1つを含む。前記測定機器情報はさらに、品番、メーカー名、製造番号、測定機器に付属する部品の名称、又は測定機器が利用するソフトウェア名などを含んでもよい。
ステップS602において、情報処理装置100は、測定対象情報をサーバ120に送信する。
ステップS603において、サーバ120は測定対象情報を受信する。
ステップS604において、サーバ120は、前記測定対象情報を受信したことに応じて、試薬DB121に対する検索処理を実行する。例えば、サーバ120は、例えば、前蛍光標識抗体の名称、略称、又は製品番号などをキーワードとして用いて試薬DB121を検索し、当該名称等を含む対応関係情報を特定する。
本明細書内において、対応関係情報は、試薬と蛍光色素との対応関係に関する情報を意味してよい。例えば、1つの対応関係情報は、1つの試薬が捕捉する生体分子の名称又は略称、及び、試薬に含まれる蛍光色素の名称又は略称を含みうる。これにより、入力された蛍光標識抗体の名称等に基づき、当該蛍光標識抗体を構成する蛍光色素を特定することができ、特定された蛍光色素に基づく蛍光色素DBの検索が可能となる。
1つの対応関係情報が1つの試薬に対応していてよく、すなわち、1つの対応関係情報が、1つの蛍光色素標識抗体を構成する抗体に関する情報及び蛍光色素に関する情報を含みうる。これにより、例えば蛍光色素標識抗体の名称等によって、当該蛍光標識抗体を構成する蛍光色素を特定することができる。
試薬DB131については、上記(3-2)において述べたとおりの説明が、本実施態様においても当てはまる。
ステップS604において、サーバ120(特には処理部121)は、ステップS503において受信した蛍光色素標識抗体の名称等を用いて、試薬DB131を検索する。そして、処理部121は、当該蛍光色素標識抗体の名称等を含む対応関係情報を特定する。ここで、処理部121は、1つの対応関係情報を特定してよく、又は、2以上の対応関係情報を特定してもよい。
ステップS605において、サーバ120は、ステップS604において特定された対応関係情報を情報処理装置100に送信する。ステップS605において、サーバ120が送信する対応関係情報は、例えば蛍光色素標識抗体に含まれる蛍光色素の名称又は略称を含みうる。サーバ120が送信する対応関係情報は、対応関係情報データテーブルを構成する1つの対応関係情報そのものであってもよい。
ステップS606において、情報処理装置100は、対応関係情報をサーバ120から受信する。
ステップS607において、情報処理装置100は、ステップS606において受信した対応関係情報をサーバ120に送信する。送信される対応関係情報は、蛍光色素標識抗体に含まれる蛍光色素に関する情報(例えば蛍光色素の名称又は略称)を含みうる。また、当該対応関係情報はさらに、蛍光色素標識抗体の名称又は略称を含んでもよい。
好ましい実施態様において、ステップS607において、情報処理装置100は、対応関係情報に加え、測定機器情報もサーバ120に送信する。測定機器情報は、蛍光色素標識抗体を用いた測定を実行する測定機器に関する情報であり、例えば測定機器の機種名、レーザ波長、及び検出器の検出波長域のうちの少なくとも1つを含みうる。これにより、蛍光色素DB132に含まれる蛍光信号データのうち、測定機器に紐づけられた蛍光色素の蛍光信号データを特定することができる。
ステップS608において、サーバ120は、対応関係情報を受信する。
ステップS609において、サーバ120は、受信した対応関係情報に基づき、蛍光色素DB132に含まれる蛍光色素のうちから、当該対応関係情報に対応する蛍光色素を特定する。例えば、サーバ120は、対応関係情報に含まれる蛍光色素名に対応する蛍光信号データを特定する。
蛍光色素DB132については、上記(3-2)において述べた説明が当てはまる。蛍光信号データのそれぞれが、蛍光色素名および蛍光スペクトルデータが含むことが好ましい。これにより、蛍光スペクトルデータをスペクトラルリファレンスとしたアンミキシング処理が可能となる。
本技術の好ましい実施態様において、蛍光信号データは、測定機器情報に紐づけられていてよい。蛍光色素から生じた蛍光に関する測定データは測定機器に応じて変化しうるので、前記紐づけによって、測定機器を考慮したアンミキシング処理が可能となる。
前記測定機器情報は、試薬を用いた測定を実行する測定機器に関する情報であり、例えば測定機器の機種名、レーザ波長、及び検出器の検出波長域のうちの少なくとも1つを含みうる。好ましくは、蛍光信号データに紐づけられている測定機器情報の種類は、ステップS507において情報処理装置100が送信する測定機器情報の種類と同じである。これにより、後者の測定機器情報に対応する測定機器情報を、蛍光色素DB132中に特定することができる。
ステップS610において、サーバ120は、ステップS609において特定された蛍光色素の蛍光信号データを情報処理装置100に送信する。好ましくは、送信される蛍光信号データは、蛍光スペクトルデータを含む。これにより、蛍光スペクトルデータを利用したアンミキシング処理が可能となる。
ステップS611において、情報処理装置100は、サーバ120から送信された蛍光信号データを受信する。
ステップS612において、処理部101は、前記蛍光信号データを用いて情報処理を実行する。当該情報処理はアンミキシング処理を含みうる。処理部101は、ステップS610において取得した蛍光信号データをスペクトラルリファレンスデータとして、前記アンミキシング処理を実行しうる。
前記アンミキシング処理において用いられるスペクトラルリファレンスデータは、粒子を標識している蛍光体に所定の励起光が照射されたときに生じる蛍光のスペクトルデータを含む。
前記アンミキシング処理において用いられるスペクトラルリファレンスデータは、粒子を標識している蛍光体に所定の励起光が照射されたときに生じる蛍光のスペクトルデータを含む。
情報処理装置100は、アンミキシング処理される測定スペクトルデータを、例えばフローサイトメータとして構成された分析装置110から取得しうる。なお、当該測定スペクトルデータの取得様式は、分析装置に応じて変更されてよい。当該測定スペクトルデータは、例えば、前記試薬により標識された粒子に励起光を照射することで取得されうる。そして、情報処理装置100は、前記情報処理として、前記蛍光色素の蛍光スペクトルデータを用いて、前記測定スペクトルデータに対してアンミキシング処理(蛍光分離処理)を実施しうる。
処理部101は、当該アンミキシング処理を、例えば最小二乗法(Least Square Method, LSM)、より好ましくは重み付き最小二乗法(Weighted Least Square Method, WLSM)を用いて行いうる。最小二乗法を用いたアンミキシング処理は、例えば、特許第5985140号公報に記載された蛍光強度補正方法を用いて行われてよい。当該蛍光強度補正方法は、例えば以下のWLSMの数式(2)を用いて行われうる。
上記数式(2)において、xnはn番目の蛍光色素の蛍光強度を示し、[ST]はスペクトラルリファレンスの転置行列を示し、[L]は重み行列を示し、[S]はスペクトラルリファレンスの行列を示し、yiはi番目の光検出器での測定値を示し、λiはi番目の光検出器での重みを示し、max(yi,0)はi番目の検出器の検出値とゼロとを比較し大きい値を示し、offset’は各検出器の検出値に基づいて決定される値を示す。
蛍光体(例えば蛍光色素など)の蛍光波長分布は広い場合がある。そのため、例えば或る蛍光体から生じた蛍光を検出するために用いられるPMTが、他の蛍光体から生じた蛍光も検出しうる。すなわち、各PMTにより取得される光データは、複数の蛍光体からの蛍光データが重畳したデータでありうる。そこで、当該光データを、各蛍光体からの蛍光データへと分離するための補正が必要となる。前記アンミキシング処理は、当該補正のための手法であり、前記アンミキシング処理によって、複数の蛍光体からの蛍光データが重畳したデータが、各蛍光体からの蛍光データへと分離されて、各蛍光体からの蛍光データが得られる。
ステップS612において、処理部101は、アンミキシング処理後の蛍光データを用いて出力データを生成する。出力データは、例えばフローサイトメトリーの対象となった粒子集団の標識に用いた複数の蛍光体のうちの所望の2つの蛍光体に関する二次元プロットであってよいが、これに限定されない。前記二次元プロットの縦軸は、前記2つの蛍光体のうちの一方の蛍光体に対応する蛍光の蛍光データ(特には蛍光強度)であってよく、且つ、横軸は、他方の蛍光体に対応する蛍光の蛍光データ(特には蛍光強度)であってよい。前記二次元プロットは、例えば密度プロット(ドットプロット)、等高線プロット、又は、密度及び等高線の両方のプロットであってもよい。当該二次元プロットを生成するためのゲートの設定及び展開操作は、粒子分析の目的に応じて、ユーザにより適宜行われてよい。
(3-3-2)蛍光信号データの取得のための情報処理の他の例
本技術の情報処理システムによる情報処理の他の例を、図34を参照しながら説明する。図34は、当該情報処理のフロー図である。
このフロー例では、試薬DB131及び蛍光色素DB132は、2つのサーバにそれぞれ格納されうる。2つのサーバを有する本技術の情報処理システムの構成例は、上記で図11を参照して説明したとおりである。
このフロー例では、試薬DB131及び蛍光色素DB132は、2つのサーバにそれぞれ格納されうる。2つのサーバを有する本技術の情報処理システムの構成例は、上記で図11を参照して説明したとおりである。
図34のステップS701~S704は、サーバ120の代わりにサーバ120-1が用いられること以外は、上記(3-3-1)において図33を参照して説明したステップS601~S604と同様であり、これらについての説明があてはまる。
ステップS705において、サーバ120-1は、ステップS704において特定された対応関係情報をサーバ120-2に送信する。ステップS705において、サーバ120-1が送信する対応関係情報は、例えば蛍光色素標識抗体の名称又は略称を含みうる。サーバ120-1が送信する対応関係情報は、対応関係情報データテーブルを構成する1つの対応関係情報そのものであってもよい。
ステップS706において、サーバ120-2は、情報処理装置100は、対応関係情報をサーバ120-1から受信する。
ステップS707~S710は、サーバ120の代わりにサーバ120-1が用いられること以外は、上記(3-3-1)において説明したステップS609~S612と同様であり、これらについての説明がステップS707~S710にあてはまる。
2.第2の実施形態(情報処理方法)
本技術は、蛍光色素データベースと試薬データベースとを用いた情報処理方法も提供する。前記蛍光色素データベースは、測定機器情報に紐づけられている蛍光色素の蛍光信号データを保持するものであってよい。前記試薬データベースは、試薬と蛍光色素との対応関係に関する対応関係情報を保持するものであってよい。これらのデータベースは、上記「1.第1の実施形態(情報処理システム)」において説明したとおりである。
前記情報処理方法は、入力された測定対象情報に基づき特定された前記試薬データベース中の試薬に関する対応関係情報を利用して、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得する蛍光信号データ取得工程を含みうる。当該蛍光信号データ取得工程は、例えば、上記「1.第1の実施形態(情報処理システム)」において説明した通りに実行されてよく、例えば(3-2-1)、(3-2-2)、(3-3-1)、又は(3-3-2)において説明したとおりに実行されてよい。
前記情報処理方法は、前記蛍光色素の蛍光信号データを用いて情報処理を実施する情報処理工程を含みうる。前記情報処理工程は、例えばパネルデザイン情報処理又はアンミキシング処理であってよい。当該情報処理工程は、例えば、上記「1.第1の実施形態(情報処理システム)」において説明した通りに実行されてよく、例えば(3-2-3)、(3-2-4)、又は(3-3-1)において説明したとおりに実行されてよい。
3.その他の実施形態
本技術は、測定機器情報に紐づけられている蛍光色素の蛍光信号データを保持する蛍光色素データベースも提供する。また、本技術は、試薬と蛍光色素との対応関係に関する対応関係情報を保持する試薬データベースも提供する。また、本技術は、前記蛍光色素データベースと前記試薬データベースとの組合せも提供する。これらのデータベースは、上記「1.第1の実施形態(情報処理システム)」において説明した通りであってよい。これらのデータベースを本技術に従う情報処理方法において用いることによって又は本技術に従う情報処理装置と組み合わせて使用することによって、例えば効率的な蛍光信号データの取得が可能になる。
また、本技術は、入力された測定対象情報に基づき特定された前記試薬データベース中の試薬に関する対応関係情報を利用して、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得し、前記蛍光色素の蛍光信号データを用いて情報処理を実施する情報処理装置も提供する。当該情報処理装置は、上記「1.第1の実施形態(情報処理システム)」において説明した通りであってよい。
また、本技術は、前記情報処理方法を情報処理装置又は情報処理システムに実行させるためのプログラムも提供する。前記情報処理方法は、上記2.において述べたとおりであり、当該説明が本実施形態にも当てはまる。本技術に従うプログラムは、例えば上記(3-1)で述べた記録媒体に記録されていてよく、又は、上記で述べた情報処理装置又はサーバに含まれる記憶部に格納されていてもよい。
なお、本技術は、以下のような構成をとることもできる。
〔1〕
測定機器情報に紐づけられている蛍光色素の蛍光信号データを保持する蛍光色素データベースと、
試薬と蛍光色素との対応関係に関する対応関係情報を保持する試薬データベースと、
入力された測定対象情報に基づき特定された前記試薬データベース中の試薬に関する対応関係情報を利用して、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得し、前記蛍光色素の蛍光信号データを用いて情報処理を実施する情報処理装置と、
を具備する情報処理システム。
〔2〕
前記蛍光信号データは蛍光スペクトルデータを含む、〔1〕に記載の情報処理システム。
〔3〕
前記測定機器情報は、測定機器の機種名、レーザ光波長、及び検出器の検出波長域のうちの少なくとも1つを含む、〔1〕又は〔2〕に記載の情報処理システム。
〔4〕
前記情報処理装置は、
前記試薬データベースから前記対応関係情報を受信し、そして、
当該受信した対応関係情報を利用して、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得する、
〔1〕~〔3〕のいずれか一つに記載の情報処理システム。
〔5〕
前記情報処理装置は、
前記試薬データベースから前記対応関係情報を受信することなく、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得する、
〔1〕~〔3〕のいずれか一つに記載の情報処理システム。
〔6〕
前記測定対象情報は少なくとも1つの生体分子の名称、略称、又は番号を含み、
前記対応関係情報は、前記生体分子と試薬との対応関係を示す情報を含み、
前記情報処理装置は、前記情報処理により前記生体分子に対応する試薬の推薦情報を出力する、
〔1〕~〔5〕のいずれか一つに記載の情報処理システム。
〔7〕
前記情報処理装置は、
前記生体分子に基づき前記試薬データベースを検索して前記生体分子に対応する試薬を特定し、そして、
前記試薬に紐づく蛍光色素のうち、測定機器情報に紐づく前記蛍光色素の蛍光信号データを、前記蛍光色素データベースより取得する、
〔6〕に記載の情報処理システム。
〔8〕
前記試薬の推薦情報は、前記情報処理により取得された、前記生体分子と当該生体分子に対応する蛍光色素との組合せに紐づく試薬に関する情報を含む、〔6〕又は〔7〕に記載の情報処理システム。
〔9〕
前記情報処理システムは、前記測定対象情報の入力を促す画面を表示する出力部を更に備え、
前記出力部は、前記試薬の推薦情報も表示する、
〔6〕~〔8〕のいずれか一つに記載の情報処理システム。
〔10〕
前記測定対象情報は少なくとも1つの試薬の名称、略称、又は番号を含み、
前記蛍光信号データは蛍光スペクトルデータを含み、
前記情報処理装置は、前記試薬により標識された粒子に励起光を照射することで取得される測定スペクトルデータを取得し、そして、
前記情報処理装置は、前記情報処理として、前記蛍光色素の蛍光スペクトルデータを用いて、前記測定スペクトルデータに対して蛍光分離処理を実施する、
〔1〕~〔9〕のいずれか一つに記載の情報処理システム。
〔11〕
前記情報処理システムは、試薬の登録処理を実行する登録処理部を含み、
前記登録処理部は、測定対象情報、試薬、又は蛍光色素の表記ゆれの統合処理を実行するように構成されている、
〔1〕~〔10〕のいずれか一つに記載の情報処理システム。
〔12〕
前記試薬データベース又は前記蛍光色素データベースは、表記ゆれの統合処理を実行するために参照される統合処理用データテーブルを有し、
前記登録処理部は、表記ゆれはあるが同等であると判定された測定対象情報、試薬、又は蛍光色素を、前記試薬データベース又は前記蛍光色素データベース内の既存のレコードに登録する、〔11〕に記載の情報処理システム。
〔13〕
前記登録処理部は、同等であると判定されなかった測定対象情報、試薬、又は蛍光色素について、新規のレコードを立ち上げて前記試薬データベース又は前記蛍光色素データベースに登録する、〔11〕又は〔12〕に記載の情報処理システム。
〔14〕
前記試薬データベースは、試薬、生体分子、及び蛍光色素のうち少なくとも1つの名称、並びに/若しくは、反応生物、ホスト生物、抗体のアイソタイプ、サイズ、価格、及び販売会社のうち少なくとも1つが登録されている、〔12〕又は〔13〕に記載の情報処理システム。
〔15〕
前記情報処理装置は、前記試薬データベース中の前記価格および/又は前記販売会社の情報に基づいて、前記推薦情報を出力する、〔14〕に記載の情報処理システム。
〔16〕
前記蛍光色素データベースは、測定対象に関する情報及び測定機器情報のうち少なくとも1つを含む、〔12〕~〔15〕のいずれか一つに記載の情報処理システム。
〔17〕
前記測定対象に関する情報は、対象生物及び生体分子の発現の程度のうち少なくとも1つを含む、〔16〕に記載の情報処理システム。
〔18〕
前記測定機器情報は、測定機器の励起光源の本数又は波長、測定機器に含まれる検出器の数、種類又は露光ゲイン、および測定機器に含まれる試料通流流路内の流速のうち少なくとも1つを含む、〔16〕又は〔17〕に記載の情報処理システム。
〔19〕
前記蛍光色素データベースは、ネットワークを通じて取得された蛍光色素に関する情報が追加可能であるように構成されている、〔1〕~〔18〕のいずれか一つに記載の情報処理システム。
〔20〕
測定機器情報に紐づけられている蛍光色素の蛍光信号データを保持する蛍光色素データベースと、試薬と蛍光色素との対応関係に関する対応関係情報を保持する試薬データベースと、を用いて実行され、
入力された測定対象情報に基づき特定された前記試薬データベース中の試薬に関する対応関係情報を利用して、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得する蛍光信号データ取得工程と、
前記蛍光色素の蛍光信号データを用いて情報処理を実施する情報処理工程と
を含む情報処理方法。
〔1〕
測定機器情報に紐づけられている蛍光色素の蛍光信号データを保持する蛍光色素データベースと、
試薬と蛍光色素との対応関係に関する対応関係情報を保持する試薬データベースと、
入力された測定対象情報に基づき特定された前記試薬データベース中の試薬に関する対応関係情報を利用して、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得し、前記蛍光色素の蛍光信号データを用いて情報処理を実施する情報処理装置と、
を具備する情報処理システム。
〔2〕
前記蛍光信号データは蛍光スペクトルデータを含む、〔1〕に記載の情報処理システム。
〔3〕
前記測定機器情報は、測定機器の機種名、レーザ光波長、及び検出器の検出波長域のうちの少なくとも1つを含む、〔1〕又は〔2〕に記載の情報処理システム。
〔4〕
前記情報処理装置は、
前記試薬データベースから前記対応関係情報を受信し、そして、
当該受信した対応関係情報を利用して、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得する、
〔1〕~〔3〕のいずれか一つに記載の情報処理システム。
〔5〕
前記情報処理装置は、
前記試薬データベースから前記対応関係情報を受信することなく、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得する、
〔1〕~〔3〕のいずれか一つに記載の情報処理システム。
〔6〕
前記測定対象情報は少なくとも1つの生体分子の名称、略称、又は番号を含み、
前記対応関係情報は、前記生体分子と試薬との対応関係を示す情報を含み、
前記情報処理装置は、前記情報処理により前記生体分子に対応する試薬の推薦情報を出力する、
〔1〕~〔5〕のいずれか一つに記載の情報処理システム。
〔7〕
前記情報処理装置は、
前記生体分子に基づき前記試薬データベースを検索して前記生体分子に対応する試薬を特定し、そして、
前記試薬に紐づく蛍光色素のうち、測定機器情報に紐づく前記蛍光色素の蛍光信号データを、前記蛍光色素データベースより取得する、
〔6〕に記載の情報処理システム。
〔8〕
前記試薬の推薦情報は、前記情報処理により取得された、前記生体分子と当該生体分子に対応する蛍光色素との組合せに紐づく試薬に関する情報を含む、〔6〕又は〔7〕に記載の情報処理システム。
〔9〕
前記情報処理システムは、前記測定対象情報の入力を促す画面を表示する出力部を更に備え、
前記出力部は、前記試薬の推薦情報も表示する、
〔6〕~〔8〕のいずれか一つに記載の情報処理システム。
〔10〕
前記測定対象情報は少なくとも1つの試薬の名称、略称、又は番号を含み、
前記蛍光信号データは蛍光スペクトルデータを含み、
前記情報処理装置は、前記試薬により標識された粒子に励起光を照射することで取得される測定スペクトルデータを取得し、そして、
前記情報処理装置は、前記情報処理として、前記蛍光色素の蛍光スペクトルデータを用いて、前記測定スペクトルデータに対して蛍光分離処理を実施する、
〔1〕~〔9〕のいずれか一つに記載の情報処理システム。
〔11〕
前記情報処理システムは、試薬の登録処理を実行する登録処理部を含み、
前記登録処理部は、測定対象情報、試薬、又は蛍光色素の表記ゆれの統合処理を実行するように構成されている、
〔1〕~〔10〕のいずれか一つに記載の情報処理システム。
〔12〕
前記試薬データベース又は前記蛍光色素データベースは、表記ゆれの統合処理を実行するために参照される統合処理用データテーブルを有し、
前記登録処理部は、表記ゆれはあるが同等であると判定された測定対象情報、試薬、又は蛍光色素を、前記試薬データベース又は前記蛍光色素データベース内の既存のレコードに登録する、〔11〕に記載の情報処理システム。
〔13〕
前記登録処理部は、同等であると判定されなかった測定対象情報、試薬、又は蛍光色素について、新規のレコードを立ち上げて前記試薬データベース又は前記蛍光色素データベースに登録する、〔11〕又は〔12〕に記載の情報処理システム。
〔14〕
前記試薬データベースは、試薬、生体分子、及び蛍光色素のうち少なくとも1つの名称、並びに/若しくは、反応生物、ホスト生物、抗体のアイソタイプ、サイズ、価格、及び販売会社のうち少なくとも1つが登録されている、〔12〕又は〔13〕に記載の情報処理システム。
〔15〕
前記情報処理装置は、前記試薬データベース中の前記価格および/又は前記販売会社の情報に基づいて、前記推薦情報を出力する、〔14〕に記載の情報処理システム。
〔16〕
前記蛍光色素データベースは、測定対象に関する情報及び測定機器情報のうち少なくとも1つを含む、〔12〕~〔15〕のいずれか一つに記載の情報処理システム。
〔17〕
前記測定対象に関する情報は、対象生物及び生体分子の発現の程度のうち少なくとも1つを含む、〔16〕に記載の情報処理システム。
〔18〕
前記測定機器情報は、測定機器の励起光源の本数又は波長、測定機器に含まれる検出器の数、種類又は露光ゲイン、および測定機器に含まれる試料通流流路内の流速のうち少なくとも1つを含む、〔16〕又は〔17〕に記載の情報処理システム。
〔19〕
前記蛍光色素データベースは、ネットワークを通じて取得された蛍光色素に関する情報が追加可能であるように構成されている、〔1〕~〔18〕のいずれか一つに記載の情報処理システム。
〔20〕
測定機器情報に紐づけられている蛍光色素の蛍光信号データを保持する蛍光色素データベースと、試薬と蛍光色素との対応関係に関する対応関係情報を保持する試薬データベースと、を用いて実行され、
入力された測定対象情報に基づき特定された前記試薬データベース中の試薬に関する対応関係情報を利用して、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得する蛍光信号データ取得工程と、
前記蛍光色素の蛍光信号データを用いて情報処理を実施する情報処理工程と
を含む情報処理方法。
1 情報処理システム
100 情報処理装置
110 分析装置
120 サーバ
100 情報処理装置
110 分析装置
120 サーバ
Claims (20)
- 測定機器情報に紐づけられている蛍光色素の蛍光信号データを保持する蛍光色素データベースと、
試薬と蛍光色素との対応関係に関する対応関係情報を保持する試薬データベースと、
入力された測定対象情報に基づき特定された前記試薬データベース中の試薬に関する対応関係情報を利用して、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得し、前記蛍光色素の蛍光信号データを用いて情報処理を実施する情報処理装置と、
を具備する情報処理システム。 - 前記蛍光信号データは蛍光スペクトルデータを含む、請求項1に記載の情報処理システム。
- 前記測定機器情報は、測定機器の機種名、レーザ光波長、及び検出器の検出波長域のうちの少なくとも1つを含む、請求項1に記載の情報処理システム。
- 前記情報処理装置は、
前記試薬データベースから前記対応関係情報を受信し、そして、
当該受信した対応関係情報を利用して、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得する、
請求項1に記載の情報処理システム。 - 前記情報処理装置は、
前記試薬データベースから前記対応関係情報を受信することなく、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得する、
請求項1に記載の情報処理システム。 - 前記測定対象情報は少なくとも1つの生体分子の名称、略称、又は番号を含み、
前記対応関係情報は、前記生体分子と試薬との対応関係を示す情報を含み、
前記情報処理装置は、前記情報処理により前記生体分子に対応する試薬の推薦情報を出力する、
請求項1に記載の情報処理システム。 - 前記情報処理装置は、
前記生体分子に基づき前記試薬データベースを検索して前記生体分子に対応する試薬を特定し、そして、
前記試薬に紐づく蛍光色素のうち、測定機器情報に紐づく前記蛍光色素の蛍光信号データを、前記蛍光色素データベースより取得する、
請求項6に記載の情報処理システム。 - 前記試薬の推薦情報は、前記情報処理により取得された、前記生体分子と当該生体分子に対応する蛍光色素との組合せに紐づく試薬に関する情報を含む、請求項6に記載の情報処理システム。
- 前記情報処理システムは、前記測定対象情報の入力を促す画面を表示する出力部を更に備え、
前記出力部は、前記試薬の推薦情報も表示する、
請求項6に記載の情報処理システム。 - 前記測定対象情報は少なくとも1つの試薬の名称、略称、又は番号を含み、
前記蛍光信号データは蛍光スペクトルデータを含み、
前記情報処理装置は、前記試薬により標識された粒子に励起光を照射することで取得される測定スペクトルデータを取得し、そして、
前記情報処理装置は、前記情報処理として、前記蛍光色素の蛍光スペクトルデータを用いて、前記測定スペクトルデータに対して蛍光分離処理を実施する、
請求項1に記載の情報処理システム。 - 前記情報処理システムは、試薬の登録処理を実行する登録処理部を含み、
前記登録処理部は、測定対象情報、試薬、又は蛍光色素の表記ゆれの統合処理を実行するように構成されている、
請求項1に記載の情報処理システム。 - 前記試薬データベース又は前記蛍光色素データベースは、表記ゆれの統合処理を実行するために参照される統合処理用データテーブルを有し、
前記登録処理部は、表記ゆれはあるが同等であると判定された測定対象情報、試薬、又は蛍光色素を、前記試薬データベース又は前記蛍光色素データベース内の既存のレコードに登録する、請求項11に記載の情報処理システム。 - 前記登録処理部は、同等であると判定されなかった測定対象情報、試薬、又は蛍光色素について、新規のレコードを立ち上げて前記試薬データベース又は前記蛍光色素データベースに登録する、請求項11に記載の情報処理システム。
- 前記試薬データベースは、試薬、生体分子、及び蛍光色素のうち少なくとも1つの名称、並びに/若しくは、反応生物、ホスト生物、抗体のアイソタイプ、サイズ、価格、及び販売会社のうち少なくとも1つが登録されている、請求項12に記載の情報処理システム。
- 前記情報処理装置は、前記試薬データベース中の前記価格および/又は前記販売会社の情報に基づいて、試薬の推薦情報を出力する、請求項14に記載の情報処理システム。
- 前記蛍光色素データベースは、測定対象に関する情報及び測定機器情報のうち少なくとも1つを含む、請求項12に記載の情報処理システム。
- 前記測定対象に関する情報は、対象生物及び生体分子の発現の程度のうち少なくとも1つを含む、請求項16に記載の情報処理システム。
- 前記測定機器情報は、測定機器の励起光源の本数又は波長、測定機器に含まれる検出器の数、種類又は露光ゲイン、および測定機器に含まれる試料通流流路内の流速のうち少なくとも1つを含む、請求項16に記載の情報処理システム。
- 前記蛍光色素データベースは、ネットワークを通じて取得された蛍光色素に関する情報が追加可能であるように構成されている、請求項1に記載の情報処理システム。
- 測定機器情報に紐づけられている蛍光色素の蛍光信号データを保持する蛍光色素データベースと、試薬と蛍光色素との対応関係に関する対応関係情報を保持する試薬データベースと、を用いて実行され、
入力された測定対象情報に基づき特定された前記試薬データベース中の試薬に関する対応関係情報を利用して、前記試薬に対応する蛍光色素の蛍光信号データを前記蛍光色素データベースから取得する蛍光信号データ取得工程と、
前記蛍光色素の蛍光信号データを用いて情報処理を実施する情報処理工程と
を含む情報処理方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180060907.5A CN116194756A (zh) | 2020-07-21 | 2021-06-15 | 信息处理系统和信息处理方法 |
EP21846905.4A EP4187229A4 (en) | 2020-07-21 | 2021-06-15 | INFORMATION PROCESSING SYSTEM AND INFORMATION PROCESSING METHOD |
US18/016,286 US20230393066A1 (en) | 2020-07-21 | 2021-06-15 | Information processing system and information processing method |
JP2022538631A JPWO2022019006A1 (ja) | 2020-07-21 | 2021-06-15 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-124477 | 2020-07-21 | ||
JP2020124477 | 2020-07-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022019006A1 true WO2022019006A1 (ja) | 2022-01-27 |
Family
ID=79729338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/022635 WO2022019006A1 (ja) | 2020-07-21 | 2021-06-15 | 情報処理システム及び情報処理方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230393066A1 (ja) |
EP (1) | EP4187229A4 (ja) |
JP (1) | JPWO2022019006A1 (ja) |
CN (1) | CN116194756A (ja) |
WO (1) | WO2022019006A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023171463A1 (ja) * | 2022-03-10 | 2023-09-14 | ソニーグループ株式会社 | 情報処理装置及び情報処理システム |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117851979B (zh) * | 2024-03-07 | 2024-05-03 | 常熟市宏宇钙化物有限公司 | 基于近红外光谱技术的氢氧化钙浓度检测方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016517000A (ja) | 2013-03-15 | 2016-06-09 | ベックマン コールター, インコーポレイテッド | フローサイトメトリーにおけるパネル設計のためのシステム及び方法 |
JP5985140B2 (ja) | 2010-04-28 | 2016-09-06 | ソニー株式会社 | 蛍光強度補正方法、蛍光強度算出方法及び蛍光強度算出装置 |
WO2019106973A1 (ja) * | 2017-11-29 | 2019-06-06 | ソニー株式会社 | 標識選択支援システム、標識選択支援装置、標識選択支援方法、及び標識選択支援用プログラム |
JP2019203842A (ja) * | 2018-05-25 | 2019-11-28 | シスメックス株式会社 | 試薬選択支援装置、細胞分析システム、試薬の選択の支援方法、コンピュータプログラム及び記憶媒体 |
JP2020041881A (ja) | 2018-09-10 | 2020-03-19 | ソニー株式会社 | 制御装置、該制御装置を用いた微小粒子分取装置及び微小粒子分取システム、並びに制御方法、及び制御プログラム |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017011549A1 (en) * | 2015-07-15 | 2017-01-19 | Becton, Dickinson And Company | System and method for label selection |
JP7084695B2 (ja) * | 2017-03-28 | 2022-06-15 | シスメックス株式会社 | 試薬選択支援装置、方法、プログラムおよび記録媒体並びに試料測定装置 |
-
2021
- 2021-06-15 US US18/016,286 patent/US20230393066A1/en active Pending
- 2021-06-15 JP JP2022538631A patent/JPWO2022019006A1/ja active Pending
- 2021-06-15 WO PCT/JP2021/022635 patent/WO2022019006A1/ja unknown
- 2021-06-15 CN CN202180060907.5A patent/CN116194756A/zh active Pending
- 2021-06-15 EP EP21846905.4A patent/EP4187229A4/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5985140B2 (ja) | 2010-04-28 | 2016-09-06 | ソニー株式会社 | 蛍光強度補正方法、蛍光強度算出方法及び蛍光強度算出装置 |
JP2016517000A (ja) | 2013-03-15 | 2016-06-09 | ベックマン コールター, インコーポレイテッド | フローサイトメトリーにおけるパネル設計のためのシステム及び方法 |
WO2019106973A1 (ja) * | 2017-11-29 | 2019-06-06 | ソニー株式会社 | 標識選択支援システム、標識選択支援装置、標識選択支援方法、及び標識選択支援用プログラム |
JP2019203842A (ja) * | 2018-05-25 | 2019-11-28 | シスメックス株式会社 | 試薬選択支援装置、細胞分析システム、試薬の選択の支援方法、コンピュータプログラム及び記憶媒体 |
JP2020041881A (ja) | 2018-09-10 | 2020-03-19 | ソニー株式会社 | 制御装置、該制御装置を用いた微小粒子分取装置及び微小粒子分取システム、並びに制御方法、及び制御プログラム |
Non-Patent Citations (1)
Title |
---|
See also references of EP4187229A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023171463A1 (ja) * | 2022-03-10 | 2023-09-14 | ソニーグループ株式会社 | 情報処理装置及び情報処理システム |
Also Published As
Publication number | Publication date |
---|---|
US20230393066A1 (en) | 2023-12-07 |
EP4187229A1 (en) | 2023-05-31 |
EP4187229A4 (en) | 2024-01-10 |
CN116194756A (zh) | 2023-05-30 |
JPWO2022019006A1 (ja) | 2022-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12146827B2 (en) | Systems and methods for panel design in flow cytometry | |
US8731844B2 (en) | System and method for selecting a multiparameter reagent combination and for automated fluorescence compensation | |
US12209948B2 (en) | Methods of forming multi-color fluorescence-based flow cytometry panel | |
US20210072138A1 (en) | System and Method for Label Selection | |
Radcliff et al. | Basics of flow cytometry | |
US20030078703A1 (en) | Cytometry analysis system and method using database-driven network of cytometers | |
CN106796145A (zh) | 从生物学样本的纯光谱提取 | |
CN110178013B (zh) | 标记物选择支持系统、标记物选择支持装置、支持标记物选择的方法和支持标记物选择的程序 | |
WO2022019006A1 (ja) | 情報処理システム及び情報処理方法 | |
WO2021215234A1 (ja) | 情報処理システム、情報処理方法、プログラム、情報処理装置、及び演算装置 | |
Megyesi et al. | Multi-color FLUOROSPOT counting using ImmunoSpot® Fluoro-X™ suite | |
EP3882603A1 (en) | Information processing device, information processing method, and computer program | |
WO2022049913A1 (ja) | 情報処理装置、情報処理方法、及びプログラム | |
WO2022019016A1 (ja) | 情報処理装置、情報処理システム、情報処理方法、及びプログラム | |
US20250067653A1 (en) | Information processing device and information processing system | |
WO2023136201A1 (ja) | 情報処理装置及び情報処理システム | |
WO2023171463A1 (ja) | 情報処理装置及び情報処理システム | |
Ferrer-Font et al. | Panel Design and Optimization for Full Spectrum Flow Cytometry | |
US20240210397A1 (en) | High parameter flow cytometric assay to identify human myeloid derived suppressive cells | |
US20240337581A1 (en) | Methods and aparatus for a twenty-five-color fluorescence-based assay and flow cytometry panel | |
US20240027448A1 (en) | B cell monitoring reagent panel and reagent kit for analyzing b cell subsets in anti-cd20 treated autoimmune patients | |
CN114846316A (zh) | 信息处理装置、粒子测量装置、粒子测量系统、粒子分配装置、粒子分配系统、信息处理方法、以及信息处理程序 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21846905 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022538631 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021846905 Country of ref document: EP Effective date: 20230221 |