WO2022016420A1 - 一种喹唑啉酮类化合物的晶型、其制备方法及应用 - Google Patents
一种喹唑啉酮类化合物的晶型、其制备方法及应用 Download PDFInfo
- Publication number
- WO2022016420A1 WO2022016420A1 PCT/CN2020/103532 CN2020103532W WO2022016420A1 WO 2022016420 A1 WO2022016420 A1 WO 2022016420A1 CN 2020103532 W CN2020103532 W CN 2020103532W WO 2022016420 A1 WO2022016420 A1 WO 2022016420A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- formula
- compound
- crystal form
- solvent
- preparation
- Prior art date
Links
- CRCVKQSAPINWCE-CQSZACIVSA-N C[C@H](CN(C=Nc(c1c2)ccc2-c(cc2NS(c(c(F)c3)ccc3F)(=O)=O)cnc2OC)C1=O)C(NC)=O Chemical compound C[C@H](CN(C=Nc(c1c2)ccc2-c(cc2NS(c(c(F)c3)ccc3F)(=O)=O)cnc2OC)C1=O)C(NC)=O CRCVKQSAPINWCE-CQSZACIVSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/517—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
Definitions
- the invention relates to a crystal form of a quinazolinone compound, a preparation method and application thereof.
- Phosphatidylinositol 3-kinase (phosphatidylinositol-3-kinase, PI3K) is a kind of regulatory subunit p85 or p101, and catalytic subunit p110 (also divided into p110 ⁇ , p110 ⁇ , p110 ⁇ , p110 ⁇ four subtypes).
- Lipid kinase that catalyzes the phosphorylation of the 3'-OH of the inositol ring of phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate 3,4,5-trisphosphate, PIP3) and activate the downstream Akt, which plays a key role in cell proliferation, survival and metabolism.
- PIP2 phosphatidylinositol 4,5-bisphosphate
- PIP3 phosphatidylinositol 3,4,5-triphosphate 3,4,5-trisphosphate
- the tumor suppressor gene PTEN (Phosphatase and TENsin homolog deleted on chromosome 10) dephosphorylates PIP3 to generate PIP2, which leads to negative feedback regulation of PI3K signaling pathway, inhibits cell proliferation and promotes cell apoptosis.
- PTEN Phosphatase and TENsin homolog deleted on chromosome 10.
- the present application relates to a compound represented by formula I, and the report on the compound in the patent is very limited, and its crystal form is not involved.
- polymorphism is common in compounds, and general drugs may exist in two or more different crystalline states.
- the existing form and quantity of polymorphic compounds are unpredictable, and different crystal forms of the same drug have significant differences in solubility, melting point, density, stability, etc., which affect the temperature, homogeneity, and biological properties of the drug to varying degrees.
- Availability, efficacy and safety Therefore, in the process of new drug research and development, it is necessary to conduct a comprehensive polymorph screening of compounds, and it is of great clinical significance to select a crystal form suitable for the development of pharmaceutical preparations.
- the present invention provides a crystal form 1 of the compound represented by formula I, whose X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 4.8 ⁇ 0.2°, 6.3 ⁇ 0.2°, 8.8 ⁇ 0.2°, 9.8 ⁇ 0.2 °, 10.9 ⁇ 0.2°, 12.7 ⁇ 0.2°, 17.2 ⁇ 0.2°, 20.5 ⁇ 0.2°, 21.4 ⁇ 0.2°, 26.6 ⁇ 0.2°;
- the X-ray powder diffraction pattern of the crystal form 1 has characteristic diffraction peaks at the following 2 ⁇ angles: 4.8 ⁇ 0.2°, 6.3 ⁇ 0.2°, 8.8 ⁇ 0.2°, 9.8 ⁇ 0.2°, 10.9 ⁇ 0.2°, 12.7 ⁇ 0.2°, 15.7 ⁇ 0.2°, 17.2 ⁇ 0.2°, 18.5 ⁇ 0.2°, 19.2 ⁇ 0.2°, 20.5 ⁇ 0.2°, 21.4 ⁇ 0.2°, 24.2 ⁇ 0.2°, 25.4 ⁇ 0.2°, 26.6 ⁇ 0.2°, 29.2 ⁇ 0.2°.
- the XRPD pattern of the crystal form 1 is shown in FIG. 1 .
- the crystalline form 1 has an onset of an endothermic peak at 180.3 ⁇ 5.0°C in its differential scanning calorimetry curve.
- the DSC spectrum of the crystal form 1 is shown in FIG. 2 .
- thermogravimetric analysis curve of the crystal form 1 has a weight loss of 0.4% at 150.0 ⁇ 3.0°C.
- the TGA spectrum of the crystal form 1 is shown in FIG. 3 .
- the invention provides a preparation method of the crystal form 1 of the compound shown in formula I, which comprises the following steps:
- the solvent of the solution is an ester solvent.
- the ester solvent may be ethyl acetate.
- the described preparation method wherein, the weight-volume ratio of the compound shown in the formula I and the solvent of the solution can be 1:5-1:10g/ml, for example 1: 5g/ml, 1:7g/ml or 1:10g/ml.
- the solution in the preparation method, is realized by heating, and the heating temperature can be heated from room temperature to 60°C-65°C.
- the temperature of the slow cooling can be reduced from 60°C to 65°C to 0°C to 45°C.
- the cooling rate of the slow cooling may be 10°C-30°C/h, or 10°C-20°C/h.
- an anti-solvent in the preparation method, after the slow cooling, an anti-solvent may also be added.
- the anti-solvent can be an alkane solvent, or a mixed solvent of an alkane solvent and an ester solvent, such as n-heptane, or a mixed solvent of n-heptane and ethyl acetate.
- the anti-solvent is a mixed solvent of an alkane-based solvent and an ester-based solvent
- the volume ratio of the alkane-based solvent to the ester-based solvent is, for example, 10:3.
- the present invention also provides a pharmaceutical composition comprising crystal form 1 of the compound represented by formula I and pharmaceutical excipients.
- the present invention also provides the use of the above-mentioned crystalline form 1 of the compound represented by formula I in the preparation of a PI3K ⁇ inhibitor.
- the PI3K ⁇ inhibitor can be used in mammalian organisms; it can also be used in vitro, mainly for experimental purposes, such as: providing comparison as a standard sample or a control sample, or preparing according to conventional methods in the art
- a kit is provided to provide rapid detection of the inhibitory effect of PI3K ⁇ .
- the present invention also provides an application of the above-mentioned crystalline form 1 of the compound represented by formula I in preparing a medicine.
- the medicament may be a medicament for preventing and/or treating a disorder related to a PI3K ⁇ inhibitor or a tumor medicament.
- the present invention also provides a method for preventing and/or treating a disorder or tumor associated with a PI3K ⁇ inhibitor, comprising administering to a patient a therapeutically effective amount of the above-mentioned crystalline form 1 of the compound represented by formula I.
- the above-mentioned PI3K ⁇ inhibitor-related disorder may be a tumor.
- the aforementioned tumor may be breast cancer, ovarian cancer, head and neck squamous cell carcinoma, gastric cancer, colon cancer or lung cancer.
- the intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by their combination with other chemical synthesis methods, and those skilled in the art.
- Well-known equivalents, preferred embodiments include, but are not limited to, the examples of the present invention.
- the solvent used in the present invention is commercially available.
- DMF stands for N,N-dimethylformamide
- DMSO dimethyl sulfoxide
- EtOH stands for ethanol
- TFA trifluoroacetic acid
- ATP stands for adenosine triphosphate
- HEPES 4-hydroxyethylpiperidine oxazineethanesulfonic acid
- MgCl 2 represents magnesium dichloride.
- pharmaceutical excipients refers to the excipients and additives used in the production of pharmaceuticals and the formulation of prescriptions, and are all substances contained in pharmaceutical preparations other than active ingredients. See the Pharmacopoeia of the People's Republic of China (2015 edition) four, or, Handbook of Pharmaceutical Excipients (Raymond C Rowe, 2009 Sixth Edition).
- treatment refers to therapeutic therapy.
- treatment refers to: (1) ameliorating one or more biological manifestations of the disease or disorder, (2) interfering with (a) one or more points in the biological cascade leading to or causing the disorder or (b) ) one or more biological manifestations of the disorder, (3) amelioration of one or more symptoms, effects or side effects associated with the disorder, or one or more symptoms, effects or side effects associated with the disorder or its treatment, or (4) slowing the progression of the disorder or one or more biological manifestations of the disorder.
- prevention refers to a reduced risk of acquiring or developing a disease or disorder.
- terapéuticaally effective amount refers to an amount of a compound that, when administered to a patient, is sufficient to effectively treat the disease or disorder described herein.
- a “therapeutically effective amount” will vary depending on the compound, the condition and its severity, and the age of the patient to be treated, but can be adjusted as needed by those skilled in the art.
- patient refers to any animal, preferably a mammal, and most preferably a human, to whom the compound or composition is to be or has been administered according to embodiments of the present invention.
- mammal includes any mammal. Examples of mammals include, but are not limited to, cows, horses, sheep, pigs, cats, dogs, mice, rats, rabbits, guinea pigs, monkeys, humans, etc., with humans being the most preferred.
- the crystal form 1 of the compound of formula I of the present invention has good stability and is easy to prepare medicine; the crystal form 1 of the present invention can well inhibit the activity of PI3K kinase, and at the same time has high subtype selectivity to PI3K ⁇ / ⁇ / ⁇ ; The phosphorylation level of Akt downstream of PI3K can also be well inhibited in cells, and it also shows high isoform selectivity at the cellular level.
- the crystal form 1 of the present invention can significantly inhibit tumor growth in vivo, and also shows obvious time-dependent and dose-dependent inhibitory effects on the phosphorylation level of Akt downstream of PI3K in animals.
- the compounds of the present invention have no obvious inhibitory effect on hERG and CYP enzymes, and are metabolically stable in hepatocytes of human, rat, mouse, dog and monkey.
- Figure 1 is the XRPD spectrum of the compound of formula I crystalline form 1 irradiated by Cu-K ⁇ .
- Figure 2 is the DSC spectrum of the compound of formula I, Form 1.
- Fig. 3 is the TGA spectrum of the compound of formula I in crystal form 1.
- Figure 4 shows the protein expression of p-AKT in BT474 tumor tissue at 0.5h, 4h, and 24h after administration of the compound of formula I crystal form 1.
- P-AKT represents phosphorylated Akt protein
- ⁇ -actin represents ⁇ -actin.
- FIG. 5 is an XRPD spectrum of Cu-K ⁇ radiation of the compound of formula I in crystal form 2.
- Figure 6 is the DSC spectrum of the compound of formula I crystal form 2.
- Fig. 7 is the TGA spectrum of the compound of formula I in crystal form 2.
- Figure 8 is a DVS isotherm of the compound of formula I, Form 2.
- Figure 9 is the XRPD spectrum of the compound of formula I crystalline form 3 irradiated by Cu-K ⁇ .
- Test method About 10 ⁇ 20mg samples are used for XRPD detection.
- Tube voltage 40kV.
- Tube current 40mA.
- Anti-scatter slit 7.10mm.
- Step size 0.02deg.
- Test Method A sample (0.5 ⁇ 2mg) placed in a DSC aluminum pan for testing, at 50mL / min N 2 conditions, at a heating rate of 10 °C / min, the sample was heated from room temperature to 250 °C.
- Instrument model TA Q5000 IR thermogravimetric analyzer.
- Test Method A sample (1 ⁇ 5mg) was placed platinum TGA pan tested at 25mL / min N 2 conditions, at a heating rate of 10 °C / min, the sample was heated from room temperature to 300 °C.
- the hygroscopicity evaluation is classified as follows:
- Hygroscopic classification ⁇ W% deliquescence Absorbs enough water to form a liquid Very hygroscopic ⁇ W% ⁇ 15% hygroscopic 15%> ⁇ W% ⁇ 2% slightly hygroscopic 2%> ⁇ W% ⁇ 0.2% No or almost no hygroscopicity ⁇ W% ⁇ 0.2%
- ⁇ W% represents the hygroscopic weight gain of the test product at 25 ⁇ 1°C and 80 ⁇ 2%RH.
- FaSSIF simulated fasting state intestinal fluid
- FaSSIF blank buffer Weigh 0.4185g NaOH, 3.4393g sodium dihydrogen phosphate and 6.1858g sodium chloride, dissolve in 900ml purified water, adjust the pH to 6.50 with 0.2N sodium hydroxide, and then dilute with purified water to 1000ml, mix well.
- FaSSIF solution Weigh 2.2394g of FaSSIF ⁇ FeSSIF ⁇ FaSSGF powder, add 500ml of buffer, stir until the powder is completely dissolved, then add 500ml of buffer and mix at room temperature. The final pH of its solution was 6.50.
- FeSSIF simulated fed state intestinal fluid
- FeSSIF blank buffer Weigh 1.0184g of sodium hydroxide, 2.1691g of glacial acetic acid and 2.9449g of sodium chloride, add 230ml of purified water, stir to dissolve, adjust the pH to 5.00 with 5N sodium hydroxide, and transfer the solution to In a 250ml volumetric flask, dilute to 250ml and mix well.
- Step 1 Synthesis of compound 1-2.
- Step 2 Synthesis of compounds 1-3.
- the XPRD diagram, DSC and TGA diagram of the crystal form 1 of the compound of formula I prepared in the above Examples 3-6 are basically the same as those in Example 2.
- the test method of the Pharmacopoeia Take a dry stoppered glass weighing bottle and place it in a suitable environment of 25 ⁇ 1°C and 80% ⁇ 2% relative humidity on the previous day, and accurately weigh (m1). Take an appropriate amount of the test product, spread it flat in the weighing bottle, the thickness of the test product is about 1mm, accurately weigh (m2), put the weighing bottle over the mouth, and place it under the above constant temperature and humidity conditions with the bottle cap for 24 hours. Hours, cover the weighing bottle and change it, and accurately weigh (m3).
- the compound crystal form 1 of the formula I prepared by the present invention has a moisture-inducing weight gain of about 0.22%, and the compound crystal form 1 of the formula I has a slight moisture-inducing property, which is beneficial to the preservation and transportation of medicines.
- Both the crystal form 3 and the amorphous form of the compound of formula I have hygroscopicity,
- Example 14 Study on the hygroscopicity of the crystalline form 2 of the compound of formula I
- Experimental method take about 20 mg of the compound of formula I crystal form 2 and place it in a DVS sample tray for testing.
- the crystal form 1 of the compound of formula I has better stability than the amorphous form.
- the crystal form 1 of the compound of formula I has a strong inhibitory effect on both wild-type and mutant PI3K ⁇ kinases.
- Form 1 of formula I compounds PI3Ka wild type and mutant PI3K ⁇ (E545K), PI3K ⁇ (H1047R ) inhibition IC 50, respectively 1.80,1.13 and 0.69nM.
- the crystal form 1 of the compound of formula I has excellent selectivity to the other three subtypes of PI3K, and its inhibitory activity on PI3K ⁇ is 149/7.44/6.61 times that of PI3K ⁇ / ⁇ / ⁇ , respectively.
- the crystalline form 1 of the compound of formula I showed excellent inhibition of Akt phosphorylation in the specific cell line MDA-MB-468/Jeko-1/RAW264.7 with high expression of PI3K ⁇ / ⁇ / ⁇ , respectively.
- the selectivity of PI3K ⁇ was 195/23.0/>694 times higher than that of PI3K ⁇ / ⁇ / ⁇ , respectively, as shown in Table 7 and Table 8.
- Human BT-474 breast cancer cells are HR+/HER2+ and have PIK3CA amplification.
- the efficacy of the compound of formula I Form 1 in the human breast cancer xenograft tumor model was evaluated, with BYL-719 as the reference.
- the crystal form 1 of the compound of formula I (10 mg/kg) and the crystal form 1 of the compound of formula I (20 mg/kg) had statistically significant differences (p values were 0.034 and 0.007, respectively), and the T/ C and 50.18%, 37.92%, TGI 65.34%, 80.21%, respectively.
- the tumor-bearing mice in each administration group had good tolerance to the test compounds.
- BYL-719 (40mg/kg) and formula I compound crystal form 1 (40mg/kg) group had significant antitumor effect, formula I compound crystal form 1 (10mg/kg), formula I compound crystal form 1 (20mg/kg) ) has a strong anti-tumor effect.
- the antitumor effect of the crystal form 1 of the compound of formula I showed a certain dose dependence in the dose set in this experiment, and the effective dose was 10 mg/kg.
- the specific results are shown in Table 9.
- the plasma and tumor tissue of the animals were collected on the last day of administration for PK test, and the PK results showed that, with the increase of the administration dose, the plasma exposure of the compound of formula I crystal form 1 increased linearly.
- the peak plasma concentration is reached 0.5-1 hour after administration.
- the plasma exposure at the onset dose was 69300 nM*h.
- the phenotype of human T47D breast cancer cells is HR+/HER2- and carries the PIK3CA H1047R mutation.
- the pharmacodynamics of the crystalline form 1 of the compound of formula I in a human breast cancer xenograft tumor model was evaluated. After oral administration once a day for 42 days, there is a statistically significant difference (p value ⁇ 0.001) between the compound of formula I crystal form 1 (40 mg/kg) group and the vehicle control group (p value ⁇ 0.001), and its T/C is 37.91%, TGI was 84.71%.
- the formula I compound crystal form 1 (10mg/kg) and formula I compound crystal form 1 (20mg/kg) groups had statistically significant differences (p values were 0.005 and 0.002, respectively), and the T/ C was 50.40% and 44.70%, and TGI was 67.58% and 72.56%, respectively.
- the tumor-bearing mice in each administration group had good tolerance to the test compounds.
- the compound of formula I crystal form 1 (40 mg/kg) group has a significant antitumor effect, and the crystal form 1 of the compound of formula I (10 mg/kg) and the compound of formula I crystal form 1 (20 mg/kg) have strong antitumor effects.
- the antitumor effect of the crystal form 1 of the compound of formula I showed a certain dose dependence in the dose set in this experiment, and the effective dose was 10 mg/kg.
- the specific results are shown in Table 10.
- Human SKOV-3 ovarian cancer cells carry the PIK3CA H1047R mutation.
- the pharmacodynamics of the crystalline form 1 of the compound of formula I in a human ovarian cancer xenograft tumor model was evaluated. After oral administration once a day for 28 days, there is a statistically significant difference between the compound of formula I crystal form 1 (40 mg/kg) group and the vehicle control group (p value ⁇ 0.001), its T/C is 37.79%, TGI was 69.16%.
- the crystal form 1 of the compound of formula I (10 mg/kg) and the crystal form 1 of the compound of formula I (20 mg/kg) had statistically significant differences (p values were 0.041 and 0.005, respectively), and the T/ C and 69.17%, 60.61%, respectively, TGI 30.45%, 41.42%.
- the tumor-bearing mice in each administration group had good tolerance to the test compounds.
- the compound of formula I crystal form 1 (40 mg/kg) group has significant anti-tumor effect, and the crystal form 1 of the compound of formula I (10 mg/kg) and the compound of formula I crystal form 1 (20 mg/kg) have certain anti-tumor effects.
- the anti-tumor effect of the crystal form 1 of the compound of formula I showed a certain dose dependence in the dose set in this experiment. The specific results are shown in Table 11.
- SD rats were given the compound of formula I crystal form 1 by single or multiple oral gavage and single intravenous injection respectively, 6 rats in each group, half male and half male.
- the single oral gavage dose was set at 3, 10 and 30 mg/kg, respectively; the multiple administration dose was 10 mg/kg, once a day for 7 consecutive days; the single intravenous injection dose was 1 mg/kg.
- Pharmacokinetic parameters were calculated from the drug plasma concentration-time curves, and the results for male rats are shown in Table 12, and the results for female rats are shown in Table 13.
- the plasma clearance (CL) of compound crystalline form 1 of formula I in male and female SD rats were 1.79 ⁇ 0.457 and 3.12 ⁇ 0.431 mL/min/kg, respectively, and the steady-state apparent distribution
- the volume (Vdss) was 0.265 ⁇ 0.0500 and 0.257 ⁇ 0.0227L/kg
- the elimination half-life (t 1/2 ) was 3.26 ⁇ 1.13h and 1.63 ⁇ 0.809h
- the systemic exposure (AUC 0-last ) value was 17400 ⁇ 4790nM*h and 9890 ⁇ 1410nM*h.
- the AUC 0-last were 10300 ⁇ 4600, 23700 ⁇ 721 and 45300 ⁇ 10900 nM*h, respectively, and the peak concentration ( Cmax ) were 4770 ⁇ 1010, 6800 ⁇ 583 and 14500 ⁇ 4730nM, respectively, and the peak time appeared at 0.417 ⁇ 0.144h, 0.500 ⁇ 0.000h and 0.667 ⁇ 0.289h after administration, respectively.
- the AUC 0-last was 27700 ⁇ 8720, 60900 ⁇ 10900 and 177000 ⁇ 48000 nM*h, respectively, and the peak concentration (C max ) were 6390 ⁇ 1710, 12100 ⁇ 3690 and 39100 ⁇ 7310 nM, respectively, and the time to peak was 0.500 ⁇ 0.000h, 0.667 ⁇ 0.289h and 0.500 ⁇ 0.000h.
- the Cmax of male rats was 6800 ⁇ 583 and 13900 ⁇ 1610 nM on day 1 and 7, respectively, and the AUC 0-last was 23700 ⁇ 721 and 48500 ⁇ 4640 nM*h.
- the Cmax of female rats was 12100 ⁇ 3690 and 20500 ⁇ 4600 nM on day 1 and 7 , respectively, and the AUC 0- last was 60900 ⁇ 10900 and 86000 ⁇ 19900 nM*h, respectively.
- T max the time when the drug reaches the highest concentration in the body after oral administration
- C 0 intravenous administration
- T max the time when the drug reaches the highest concentration in the body after oral administration
- C 0 intravenous administration
- Beagle dogs were given the compound of formula I crystal form 1 by single and multiple oral administration and single intravenous injection, respectively, each group of 6 dogs, half male and half male.
- the single oral dose is 0.3, 1 and 3 mg/kg; the multiple dose is 1 mg/kg, once a day for 7 consecutive days; the single intravenous dose is 0.3 mg/kg.
- Pharmacokinetic parameters were calculated according to the drug plasma concentration-time curve, and the results are shown in Table 14.
- T max the time when the drug reaches the highest concentration in the body after oral administration
- C 0 intravenous administration
- the plasma clearance (CL) of the crystalline form 1 of the compound of formula I was 6.18 ⁇ 1.49 mL/min/kg, and the steady state apparent
- the volume of distribution (Vdss) was 2.47 ⁇ 0.391L/kg, the elimination half-life (t 1/2 ) and the area under the time-plasma concentration curve (AUC 0-last ) from 0 to the last quantifiable time point were 6.32 ⁇ 1.62h and 1470 ⁇ 353nM*h.
- AUC 0-last Male and female beagle dogs were orally administered 1 mg/kg of the compound of formula I Form 1 for 7 consecutive days. After 1 day of administration, the AUC 0-last was 4980 ⁇ 946 nM*h, the Cmax was 656 ⁇ 30.7 nM, and the T 1/2 was 5.00 ⁇ 5.00 ⁇ 1.44h. After 7 days of dosing, AUC 0-last was 5880 ⁇ 697 nM*h, Cmax was 850 ⁇ 106 nM, and T 1/2 was 5.18 ⁇ 0.487h.
- Form 1 of the compound of formula I showed good oral bioavailability, low clearance, high systemic exposure and excellent pharmacokinetic properties in both animal species.
- the Tissuelyser LT disrupts the tissue for 5 minutes using the highest frequency.
- Electrophoresis 80 volts, 30 minutes, followed by 120 volts, 90 minutes.
- Transfer membrane use the iBlot2 membrane transfer kit and membrane transfer instrument to transfer membrane, and run the P3 program for 7 minutes.
- the lipid kinase reaction is carried out in the presence of appropriate substrates and ATP, followed by a two-step assay for kinase activity using the ADP-GloTM kit.
- Step 1 Terminate the kinase reaction, in which the residual ATP is completely removed, leaving only ADP;
- Step 2 Add kinase detection reagent to convert ADP to ATP, and accompany the luciferin/luciferase reaction. Finally, it is converted into kinase activity by the fluorescence numerical output value.
- the conditions for testing PI3K enzymatic activity are shown in Table 15.
- Kit ADP-Glo TM Lipid Kinase and PIP2:3PS Kit (Promega#V1792)
- the kit contains: 1mM PIP2:3PS, 10 ⁇ lipid dilution buffer, 1M magnesium chloride, 10mM ATP, 10mM ADP, ADP-Glo reagent, detection buffer and detection substrate.
- reaction buffer 500 mM HEPES, pH 7.5, 500 mM NaCl, 9 mM MgCl 2 ; BSA: 10% stock solution, self-made.
- Reaction system 3 ⁇ L enzyme and substrate mixture (1:1) + 2 ⁇ L ATP/MgCl2 mixture + 5 ⁇ L ADP-Glo reagent + 10 ⁇ L detection reagent.
- the inhibitory level of the test compound on the phosphorylation of Akt downstream protein of PI3K in the signaling pathway was determined in MCF7 cell line to reflect the cellular activity of the compound.
- Cell culture medium complete cell culture medium (RPMI 1640+10% serum+1% L-glutamine+1% double antibody)
- Serum-free medium serum-free, RPMI 1640+1% L-glutamine+1% double antibody
- MCF7 cells The cells were seeded into 96-well plates, 100 ⁇ L per well (2.5 10 4 cells per well) of complete cell culture medium, and incubated for 24 h at 37° C., 5% CO 2 .
- the cells in the well plate were stimulated with 10 ⁇ g/mL insulin (Sigma #I9278-5 mL), incubated for 30 min, and then centrifuged at 1000 rpm for 5 min at room temperature.
- lysis buffer tris hydrochloride, Invitrogen, #15567-1000 ml
- the compound of formula I can well inhibit the activity of PI3K kinase and has high isoform selectivity to PI3K ⁇ / ⁇ / ⁇ .
- the phosphorylation level of Akt downstream of PI3K can also be well inhibited in cells.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
一种喹唑啉酮类化合物的晶型、其制备方法及应用。该式(I)化合物的晶型1,其稳定性好,易于成药,能够很好的抑制PI3K激酶活性,同时对PI3Kβ/γ/δ有较高的亚型选择性。
Description
本发明涉及一种喹唑啉酮类化合物的晶型、其制备方法及应用。
磷脂酰肌醇3-激酶(phosphatidylinositol-3-kinase,PI3K)为一种由调节亚单位p85或p101,以及催化亚单位p110(又分为p110α,p110β,p110δ,p110γ四种亚型)组成的脂激酶,通过催化磷脂酰肌醇4,5-二磷酸(phosphatidylinositol 4,5-bisphosphate,PIP2)的肌醇环3’-OH磷酸化为磷脂酰肌醇3,4,5-三磷酸(phosphatidylinositol 3,4,5-trisphosphate,PIP3)而激活下游的Akt等从而对细胞的增殖、生存和代谢等起关键作用。在肿瘤细胞中,PI3K过度表达,从而导致肿瘤细胞的快速增殖和生长。
肿瘤抑制基因PTEN(Phosphatase and TENsin homolog deleted on chromosome 10)使PIP3去磷酸化生成PIP2,从而导致PI3K信号通路的负反馈调节,抑制细胞增殖和促进细胞凋亡。PI3K基因突变和扩增在癌症中屡有发生,以及PTEN基因在癌症中缺失等都提示PI3K的过度表达与肿瘤发生密切相关。
Zhang hao等(Bioorganic Medicinal Chemistry,2015(23):7765-7776.)发现化合物A2和A10(对照例R011和R012)等对PI3K有良好的抑制作用。诺华公司研发的PI3Kα选择性抑制剂BYL-719(WO2010/029082)目前处于预注册阶段,是全球同类靶点抑制剂研究状态最高的化合物。
本申请涉及一种式I所示化合物,专利对该化合物的报道非常有限,并未涉及其晶型。
已知化合物普遍存在多晶现象,一般药物可能存在两种或是两种以上的不同晶型物质状态。多晶型化合物的存在形态和数量是不可预期的,同一药物的不同晶型在溶解度、熔点、密度、稳定性等方面有显著的差异,从而不同程度地影响药物的温度型、均一性、生物利用度、疗效和安全性。因此,在新药研发过程中需要对化合物进行全面的多晶型筛选,选择适合药物制剂开发的晶型具有重要的临床意义。
发明内容
本发明提供了一种式I所示化合物的晶型1,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.8±0.2°,6.3±0.2°,8.8±0.2°,9.8±0.2°,10.9±0.2°,12.7±0.2°,17.2±0.2°,20.5±0.2°,21.4±0.2°,26.6±0.2°;
本发明的一些方案中,所述的晶型1,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.8±0.2°,6.3±0.2°,8.8±0.2°,9.8±0.2°,10.9±0.2°,12.7±0.2°,15.7±0.2°,17.2±0.2°,18.5±0.2°,19.2±0.2°,20.5±0.2°,21.4±0.2°,24.2±0.2°,25.4±0.2°,26.6±0.2°,29.2±0.2°。
本发明的一些方案中,所述的晶型1的XRPD图谱解析数据如表1所示:
表1 式I化合物晶型1的XRPD解析数据
本发明的一些方案中,所述的晶型1,其XRPD图谱如图1所示。
本发明的一些方案中,所述的晶型1,其差示扫描量热曲线在180.3±5.0℃有一个吸热峰的起始点。
本发明的一些方案中,所述的晶型1,其DSC图谱如图2所示。
本发明的一些方案中,所述的晶型1,其热重分析曲线在150.0±3.0℃处失重达0.4%。
本发明的一些方案中,所述的晶型1,其TGA图谱如图3所示。
本发明提供了一种式I所示化合物的晶型1的制备方法,其包括以下步骤:
将含式I所示化合物的溶液缓慢降温、析晶,得到式I化合物的晶型1即可;
所述的溶液的溶剂为酯类溶剂。
本发明的一些方案中,所述的制备方法,其中,所述酯类溶剂可为乙酸乙酯。
本发明的一些方案中,所述的制备方法,其中,所述的式I所示化合物与所述的溶液的溶剂的重量-体积比可为1:5-1:10g/ml,例如1:5g/ml、1:7g/ml或1:10g/ml。
本发明的一些方案中,所述的制备方法,其中,所述的溶液通过加热的方式来实现,所述的加热的温度可为室温加热至60℃-65℃。
本发明的一些方案中,所述的制备方法,其中,所述的缓慢降温的温度可为60℃-65℃降至0℃-45℃。
本发明的一些方案中,所述的制备方法,其中,所述的缓慢降温的降温速率可为10℃-30℃/h,又可为10℃-20℃/h。
本发明的一些方案中,所述的制备方法,其中,在所述的缓慢降温之后,还可加入反溶剂。所述反溶剂可为烷烃类溶剂、或、烷烃类溶剂和酯类溶剂的混合溶剂,例如正庚烷、或、正庚烷和乙酸乙酯的混合溶剂。
当所述的反溶剂为烷烃类溶剂和酯类溶剂的混合溶剂时,所述的烷烃类溶剂和酯类溶剂的体积比为,例如10:3。
本发明还提供了一种药物组合物,其包括式I所示化合物的晶型1和药用辅料。
本发明还提供了一种上述的式I所示化合物的晶型1在制备PI3Kα抑制剂中的应用。在所述的应用中,所述的PI3Kα抑制剂可用于哺乳动物生物体内;也可用于生物体外,主要作为实验用途,例如:作为标准样或对照样提供比对,或按照本领域常规方法制成 试剂盒,为PI3Kα的抑制效果提供快速检测。
本发明还提供了一种上述的式I所示化合物的晶型1在制备药物中的应用。
所述的药物可为用于预防和/或治疗与PI3Kα抑制剂相关病症的药物或肿瘤的药物。
本发明还提供了一种用于预防和/或治疗与PI3Kα抑制剂相关病症或肿瘤的方法,其包括像患者施用治疗有效量的上述的式I所示化合物的晶型1。
上述的PI3Kα抑制剂相关病症可为肿瘤。
上述的肿瘤可为乳腺癌、卵巢癌、头颈鳞癌、胃癌、结肠癌或肺癌。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
本发明所使用的溶剂可经市售获得。本发明采用下述缩略词:DMF代表N,N-二甲基甲酰胺;DMSO代表二甲亚砜;EtOH代表乙醇;TFA代表三氟乙酸;ATP代表三磷酸腺苷;HEPES代表4-羟乙基哌嗪乙磺酸;MgCl
2代表二氯化镁。
术语“药用辅料”是指生产药品和调配处方时使用的赋形剂和附加剂,是除活性成分以外,包含在药物制剂中的所有物质。可参见中华人民共和国药典(2015年版)四部、或、Handbook of Pharmaceutical Excipients(Raymond C Rowe,2009 Sixth Edition)。
术语“治疗”指治疗性疗法。涉及具体病症时,治疗指:(1)缓解疾病或者病症的一种或多种生物学表现,(2)干扰(a)导致或引起病症的生物级联中的一个或多个点或(b)病症的一种或多种生物学表现,(3)改善与病症相关的一种或多种症状、影响或副作用,或者与病症或其治疗相关的一种或多种症状、影响或副作用,或(4)减缓病症或者病症的一种或多种生物学表现发展。
术语“预防”是指获得或发生疾病或障碍的风险降低。
术语“治疗有效量”是指在给予患者时,足以有效治疗本文所述的疾病或病症的化合物的量。“治疗有效量”将根据化合物、病症及其严重度、以及欲治疗患者的年龄而变化,但可由本领域技术人员根据需要进行调整。
术语“患者”是指根据本发明的实施例,即将或已经接受了该化合物或组合物给药的任何动物,哺乳动物为优,人类最优。术语“哺乳动物”包括任何哺乳动物。哺乳动物的实例包括但不限于牛、马、羊、猪、猫、狗、小鼠、大鼠、家兔、豚鼠、猴、人等,以人类为最优。
技术效果
本发明式I化合物的晶型1,其稳定性好,易于成药;本发明的晶型1能够很好的抑制PI3K激酶活性,同时对PI3Kβ/γ/δ有较高的亚型选择性;在细胞中也能够很好地抑制PI3K下游Akt的磷酸化水平,并且在细胞层面也展示了较高的亚型选择性。本发明的晶型1能够在体内对肿瘤生长有明显的抑制作用,并且也在动物体内表现出了明显的时间依赖及剂量依赖对PI3K下游Akt的磷酸化水平的抑制作用。本发明化合物对hERG,CYP酶均无明显抑制作用,并且在人、大鼠、小鼠、犬及猴的肝细胞中代谢稳定。
图1为式I化合物晶型1的Cu-Kα辐射的XRPD谱图。
图2为式I化合物晶型1的DSC谱图。
图3为式I化合物晶型1的TGA谱图。
图4为BT474肿瘤组织在给药式I化合物晶型1之后的0.5h、4h、24h后p-AKT的蛋白表达情况。其中,P-AKT表示磷酸化Akt蛋白,β-actin表示β-肌动蛋白。
图5为式I化合物晶型2的Cu-Kα辐射的XRPD谱图。
图6为式I化合物晶型2的DSC谱图。
图7为式I化合物晶型2的TGA谱图。
图8为式I化合物晶型2的DVS等温线。
图9为式I化合物晶型3的Cu-Kα辐射的XRPD谱图。
为了更好的理解本发明的内容,下面结合具体实施例来做进一步的说明,但具体的实施方式并不是对本发明的内容所做的限制。
1.1 X-射线粉末衍射(X-ray powder diffractometer,XRPD)
仪器型号:Bruker D8 advance X-射线衍射仪。
测试方法:大约10~20mg样品用于XRPD检测。
详细的XRPD参数如下:
管电压:40kV。
管电流:40mA。
发射狭缝:0.60mm。
探测器狭缝:10.50mm。
防散射狭缝:7.10mm。
扫描范围(2θ角):4-40deg.。
步长:0.02deg。
速率:0.1秒。
样品盘转速:15rpm。
1.2差热分析(Differential Scanning Calorimeter,DSC)
仪器型号:DSC Q2000差示扫描量热仪。
测试方法:取样品(0.5~2mg)置于DSC铝锅内进行测试,在50mL/min N
2条件下,以10℃/min的升温速率,加热样品从室温到250℃。
1.3热重分析(Thermal Gravimetric Analyzer,TGA)
仪器型号:TA Q5000 IR热重分析仪。
测试方法:取样品(1~5mg)置于TGA铂金锅内进行测试,在25mL/min N
2条件下,以10℃/min的升温速率,加热样品从室温到300℃。
1.4本发明引湿性评价分类
引湿性评价分类如下:
吸湿性分类 | ΔW% |
潮解 | 吸收足量水分形成液体 |
极具吸湿性 | ΔW%≥15% |
有吸湿性 | 15%>ΔW%≥2% |
略有吸湿性 | 2%>ΔW%≥0.2% |
无或几乎无吸湿性 | ΔW%<0.2% |
注:ΔW%表示受试品在25±1℃和80±2%RH下的吸湿增重。
1.5高效液相色谱分析方法
配样浓度:0.5mg/mL。
固体稳定性试验HPLC方法色谱条件参见下表2:
表2
1.6生物相关介质配制信息
FaSSIF(模拟禁食状态肠液):
(1)配制FaSSIF空白缓冲液:称取0.4185g NaOH、3.4393g磷酸二氢钠和6.1858g氯化钠溶于900ml纯化水中,用0.2N氢氧化钠调节pH至6.50,再用纯化水稀释至1000ml, 混匀。
(2)配制FaSSIF溶液:称取2.2394g FaSSIF\FeSSIF\FaSSGF粉末,加入500ml缓冲液,搅拌直至粉末完全溶解,再加入500ml缓冲液,于室温混匀。其溶液最终pH值为6.50。
FeSSIF(模拟进食状态肠液):
(1)配制FeSSIF空白缓冲液:称取1.0184g氢氧化钠、2.1691g冰醋酸和2.9449g氯化钠,加入230ml纯化水,搅拌溶清,用5N氢氧化钠调节pH至5.00,溶液转移至250ml容量瓶中,定容至250ml,混匀。
(2)配制FeSSIF溶液:称取2.8097g FaSSIF\FeSSIF\FaSSGF粉末,加入250mlFeSSIF空白缓冲液,常温搅拌溶清。其溶液最终pH值为5.00。
实施例1:式I化合物的制备
步骤1:化合物1-2的合成。
将化合物1-1(20.00g,176.82mmol,18.87mL),碘甲烷(37.65g,265.23mmol,16.51mL,),碳酸钾(48.88g,353.64mmol)加入到DMF(100mL)中,体系25度搅拌48小时。反应完成后,减压除去溶剂,加水(200mL)稀释,用二氯甲烷(200mL)萃取,有机相减压浓缩,残留物经层析柱分离(乙酸乙酯:石油醚=0%~15%)得到化合物1-2。
1H NMR(400MHz,CDCl
3)δ:4.23-4.34(m,2H),3.56(q,J=7.4Hz,1H),1.61(dd,J=7.5,1.5Hz,3H),1.31-1.37(m,3H)。
步骤2:化合物1-3的合成。
将化合物1-2(2.30g,18.09mmol)溶解到乙醇(20.00mL)中,然后在氮气气流下加入雷尼镍(1.55g,18.09mmol),体系在50帕氢气压力下,25度搅拌24小时。反应完成后,体系过滤,滤液减压浓缩,残留物经层析柱分离(甲醇:二氯甲烷=0%~6%)得到化合物1-3。
1H NMR(400MHz,DMSO-d
6)δ:4.01-4.09(m,2H),2.72(dd,J=12.5,7.0Hz,1H),2.55-2.62(m,1H),2.35-2.45(m,1H),1.18(t,J=7.3Hz,3H),1.04(d,J=7.0Hz,3H)。
步骤3:化合物1-5的合成。
将化合物1-4(1.20g,5.55mmol),化合物1-3(800mg,6.11mmol),EDCI(1.09g,5.66mmol),2-羟基吡啶-N-氧化物(722mg,6.49mmol),三乙胺(2.25g,22.20mmol,3.08mL)加入到二氯甲烷(120mL)中,体系50度搅拌16小时。反应完成后,反应液用水(200mL)稀释,用二氯甲烷(200mL)萃取,有机相减压浓缩,残留物经层析柱分离(甲醇:二氯甲烷=0%~2%),得到化合物1-5。
1H NMR(400MHz,DMSO-d
6)δ:8.46(t,J=5.6Hz,1H),7.61(d,J=2.3Hz,1H),7.26(dd,J=8.8,2.3Hz,1H),6.67(d,J=8.8Hz,1H),6.52(br s,2H),4.06(q,J=7.1Hz,2H),3.37-3.45(m,1H),3.21-3.29(m,1H),2.67-2.80(m,1H),1.17(t,J=7.2Hz,3H),1.08(d,J=7.0Hz,3H)。
步骤4:化合物1-6的合成
将化合物1-5(1.00g,2.86mmol,)加入到甲酸(24.40g,530.09mmol,20.00mL)中,体系100度搅拌16小时。反应完成后,反应液减压浓缩,残留物经层析柱分离(乙酸乙酯:石油醚=0%~40%)得到化合物1-6。MS-ESI m/z:340.8[M+H]
+。
步骤5:化合物1-8的合成
将化合物1-6(2g,5.90mmol)溶解于二氧六环(20mL)和水(4mL)向其中加入化合物1-7(1.77g,7.08mmol),Pd(dppf)Cl
2(963.06mg,1.18mmol)和醋酸钾(2.31g,23.59mmol),反应液在氮气保护条件下在100℃条件下搅拌3小时。反应完成后将反应液旋干。所得残留物经层析柱分离(洗脱剂:甲醇/二氯甲烷=5~10%)得到目标化合物1-8。MS-ESI m/z:383.1[M+H]
+。
步骤6:化合物1-9的合成
将化合物1-8(2.3g,6.01mmol)溶解于甲胺乙醇溶液(2M,50mL),反应液在80℃条件下搅拌10小时。反应完成后,将反应液旋干。得到目标化合物1-9。MS-ESI m/z:368.1[M+H]
+。
步骤7:化合物1-11的合成
将化合物1-9(0.3g,816.55μmol)溶解于吡啶(5mL)向其中加入化合物1-10(157.82mg,742.32μmol,99.88μL),反应液在25℃条件下搅拌10小时。反应完成后,将反应 液旋干。通过制备HPLC分离进行分离(TFA)。得到目标化合物1-11。MS-ESI m/z:544.1[M+H]
+。
步骤8:式I化合物的合成
化合物1-11经过超临界流体色谱(分离条件:色谱柱:AD(250mm*30mm,10μm);流动相:[0.1%NH
3H
2O EtOH];B%:55%-55%)分离,可以得到式I化合物(保留时间0.711min),
1H NMR(400MHz,DMSO-d
6)δ=8.22-8.36(m,2H),8.18(s,1H),8.06(dd,J=8.4,2.1Hz,1H),7.82-7.93(m,2H),7.72-7.81(m,2H),7.50(br t,J=9.2Hz,1H),7.16-7.22(m,1H),4.03-4.17(m,1H),3.87-4.02(m,1H),3.70(s,3H),2.87(dq,J=14.5,7.1Hz,1H),2.48(br s,3H),1.08(d,J=7.0Hz,3H)。MS-ESI m/z:544.1[M+H]
+。该样品经XRPD检测为无定型。
实施例2:式I化合物晶型1制备
取式I化合物3g,加入21ml乙酸乙酯,60~65℃下溶清后在2.5小时内缓慢降温至20~25℃,加入21ml正庚烷,再在2.5小时内降温至0~5℃搅拌后析出固体,保温搅拌4h后过滤干燥。XRPD如图1所示,XRPD显示样品为式I化合物的晶型1,DSC如图2所示,TGA如图3所示。
实施例3:式I化合物晶型1制备
取式I化合物3g,加入21ml乙酸乙酯,60~65℃下溶清后在3.5小时内缓慢降温至20~25℃,加入21ml正庚烷后,搅拌析出固体,保温搅拌4h后过滤干燥。XRPD显示样品为式I化合物的晶型1。
实施例4:式I化合物晶型1制备
取式I化合物20g,加入100ml乙酸乙酯。将体系升温至60~65℃溶清,在1.5小时内降温至40℃,保温0.5h后大量固体析出,搅拌3~5h,再在1小时内降温至20~25℃,加入60ml乙酸乙酯和200ml正庚烷,再在2.5小时内继续降温至0~5℃,保温搅拌1~2h后过滤干燥。XRPD显示样品为式I化合物的晶型1。
实施例5:式I化合物晶型1制备
取式I化合物5g,在60~65℃下溶解于35ml乙酸乙酯中,在3小时内缓慢降温至20~25℃,继续搅拌直至析出固体,过滤干燥。XRPD显示样品为式I化合物的晶型1。
实施例6:式I化合物晶型1制备
取式I化合物5g,50ml乙酸乙酯60~65℃溶清后,在1.5小时内缓慢降温至40~45℃,加入晶型1的晶种5mg后析出,再在1.5小时内缓慢降温至20~25℃,搅拌4h后过滤干燥。XRPD显示样品为式I化合物的晶型1。
上述实施例3-6制备得到的式I化合物的晶型1的XPRD图、DSC和TGA图基本和实施例2相同。
实施例7:式I化合物晶型2的制备
称量大约50mg化合物于样品瓶中,加入1.0mL的甲醇:水(2:1)混合溶剂,制备得到溶液。溶液放置室温下搅拌过夜,得到固体后过滤,在30℃条件下真空干燥1天去除残留溶剂。XRPD显示样品为式I化合物的晶型2。其XRPD解析数据如表3所示。其XRPD谱图、DSC谱图、TGA谱图和DVS等温线谱图分别如图5-图8所示。
表3
实施例8:式I化合物晶型2的制备
称量大约50mg化合物于样品瓶中,加入1.0mL的乙醇:水(2:1)混合溶剂,制备得到溶液。溶液放置室温下搅拌过夜,得到固体后过滤,在30℃条件下真空干燥1天去除残留溶剂。XRPD显示样品为式I化合物的晶型2。
实施例9:式I化合物晶型2的制备
称量大约50mg化合物于样品瓶中,加入0.9mL的丙酮:水(2:1)混合溶剂,制备得到溶液。溶液放置室温下搅拌过夜,得到固体后过滤,在30℃条件下真空干燥1天 去除残留溶剂。XRPD显示样品为式I化合物的晶型2。
实施例10:式I化合物晶型2的制备
称量大约50mg无定型于样品瓶中,加入1.0mL的乙醇:水(1:3)混合溶剂,制备得到混悬液。混悬液在40℃条件下持续振摇3天后,离心后将残留固体放入真空干燥箱,在40℃条件下真空干燥过夜去除残留溶剂。XRPD显示样品为式I化合物的晶型2。
实施例11:式I化合物晶型3的制备
取式I化合物0.5g,在60~65℃下溶解于3.5ml乙酸乙酯中,在20min内快速降温至20~25℃,继续搅拌直至析出固体后过滤干燥。XRPD显示样品为式I化合物的晶型3,其XRPD解析数据如表4所示,其XRPD谱图如图9所示。
表4
实施例12:式I化合物晶型3的制备
取式I化合物0.5g,在40℃下溶解于3.0ml二氯甲烷中,降温至30℃后再将溶液浓缩至1ml。加入2.5mL的乙酸乙酯,升温至45℃后继续浓缩直至固体析出。XRPD显示样品为式I化合物的晶型3。
实施例13:引湿性比较
根据药典的测试方法:取干燥的具塞玻璃称量瓶于前一天置于适宜的25±1℃,相对湿度80%±2%环境中,精密称重(m1)。取供试品适量,平铺于称量瓶内,供试品厚度约为1mm,精密称重(m2),将称量瓶趟口,并与瓶盖同置于上述恒温恒湿条件下24小时,盖好称量瓶改,精密称量(m3)。
根据上表数据可以看出,本发明制备得到的式I化合物晶型1的引湿增重约0.22%,式I化合物晶型1略有引湿性,有利于药品的保存和运输。式I化合物晶型3以及无定型均有吸湿性,
实施例14:式I化合物晶型2的吸湿性研究
实验材料:SMS DVS Advantage动态蒸汽吸附仪
实验方法:取式I化合物晶型2约20mg置于DVS样品盘内进行测试。
实验结果:式I化合物晶型2的DVS谱图如图8所示,△W=2.332%。
实验结论:式I化合物晶型2在25℃和80%RH下的吸湿增重为2.332%,有吸湿性。
实施例15:式I化合物晶型1的固体稳定性试验
依据《原料药与制剂稳定性试验指导原则》(中国药典2015版四部通则9001),考察式I化合物晶型1的稳定性,同时和实施例1制备的无定型进行比对。
分别称取式I化合物晶型1和实施例1制备的无定型约5mg,置于干燥洁净的玻璃瓶中,一式两份,摊成薄薄一层,作为正式供试样品,放置于影响因素试验条件下(60℃,92.5%相对湿度)和加速条件下(30℃/65%相对湿度,40℃/75%相对湿度和60℃/75%相对湿度),其样品为完全暴露放样,用铝箔纸盖上,扎上小孔。在5天、10天、1月进行取样分析。光照(总照度1200000Lux·hr,近紫外200w·hr/m
2)条件下放置的样品为室温完全暴露放样。试验结果见下表5所示:
表5式I化合物晶型1和无定型的固体稳定性试验结果
根据结果可知式I化合物晶型1较之于无定型具有更好的稳定性。
实施例16:生物相关介质中的溶解度的测定
称取约40mg式I化合物晶型1,至10mL透明玻璃瓶中,分别加入模拟禁食肠液(FaSSIF)和模拟进食肠液(FeSSIF),超声30s得到样品的混悬液并将其快速放入摇床(37℃,150rpm)中震荡,于24h时间点取样,并用离心机12000rpm离心10分钟,取上清液,适当稀释之后进高效液相测试,根据外标法计算样品浓度。
表6生物介质中溶解度测定结果
样品 | 介质 | 溶解度(ug/ml) |
式I化合物晶型1 | FaSSIF | 16.92 |
式I化合物晶型1 | FeSSIF | 42.64 |
实验例1:式I化合物晶型1对PI3Kα/β/γ/δ激酶及细胞体外活性及选择性研究
式I化合物晶型1对野生型和突变型PI3Kα激酶均具有较强的抑制作用。式I化合物晶型1对野生型PI3Kα和突变型PI3Kα(E545K)、PI3Kα(H1047R)抑制作用的IC
50分别为1.80、1.13和0.69nM。式I化合物晶型1对PI3K其他三种亚型的选择性优,其对PI3Kα的抑制活性分别是PI3Kβ/δ/γ的149/7.44/6.61倍。在同等测试条件下,式I化合物晶型1分别对PI3Kβ/δ/γ高表达的特异性细胞株MDA-MB-468/Jeko-1/RAW264.7的Akt磷酸化抑制活性均表现出了优异的选择性,其对PI3Kα的抑制活性分别是PI3Kβ/δ/γ的195/23.0/>694倍,具体见表7,表8。
表7式I化合物晶型1对野生型和突变型PI3Kα激酶的体外活性,IC
50(nM)
表8式I化合物晶型1对PI3Kα/β/γ/δ激酶的选择性
化合物 | PI3Kα/β | PI3Kα/δ | PI3Kα/γ |
式I化合物晶型1 | 149 | 7.44 | 6.61 |
实验例2.式I化合物晶型1在HR+/HER2+的BT-474(PIK3CA扩增)裸鼠人源乳腺癌皮下异种移植瘤模型中的体内药效学研究
人源BT-474乳腺癌细胞表型为HR+/HER2+,并且自身带有PIK3CA扩增。本实验评价了式I化合物晶型1在人乳腺癌异种移植瘤模型中的药效,以BYL-719作为参照。口服一天一次给药20天后,BYL-719(40mg/kg)、式I化合物晶型1(40mg/kg)组与溶媒对照组相比,统计学上有显著性差异(p值分别为0.003、0.001),其T/C(相对肿瘤增殖率T/C(%)=TRTV/CRTV×100%(TRTV:治疗组相对肿瘤体积平均值;CRTV:阴性对照组相对肿瘤体积平均值))分别为29.39%、21.16%,TGI(肿瘤生长抑制率,TGI(%)=[1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积)/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)]×100%。)分别为95.31%、105.65%。式I化合物晶型1(10mg/kg)、式I化合物晶型1(20mg/kg)组与溶媒对照组相比统计学上有显著性差异(p值分别为0.034、0.007),其T/C和分别为 50.18%、37.92%,TGI分别为65.34%、80.21%。各给药组荷瘤鼠对受试化合物均有较好的耐受性。BYL-719(40mg/kg)、式I化合物晶型1(40mg/kg)组均有显著抗肿瘤效果,式I化合物晶型1(10mg/kg)、式I化合物晶型1(20mg/kg)有较强的抗肿瘤作用。式I化合物晶型1的抗肿瘤效果在本实验设定的剂量中表现出一定的剂量依赖性,起效剂量为10mg/kg。具体结果见表9。
给药最后一天采动物的血浆和肿瘤组织进行PK测试,PK结果显示,随给药剂量增加,式I化合物晶型1血浆暴露量呈线性增加。给药后0.5-1小时血药浓度达到峰值。在起效剂量下的血浆暴露量为69300nM*h。
表9式I化合物晶型1对BT-474裸鼠人源乳腺癌皮下异种移植瘤模型中的体内药效研究结果
化合物 | TGI% | T/C% |
BYL-719(40mpk) | 95.31% | 29.39% |
式I化合物晶型1(40mpk) | 105.65% | 21.16% |
式I化合物晶型1(20mpk) | 80.21% | 37.92% |
式I化合物晶型1(10mpk) | 65.34% | 50.18% |
实验例3.式I化合物晶型1在HR+/HER2-的T47D(PIK3CA H1047R突变)裸鼠人源乳腺癌皮下异种移植瘤模型中的体内药效学研究
人源T47D乳腺癌细胞表型为HR+/HER2-,并且自身带有PIK3CA H1047R突变。本实验评价了式I化合物晶型1在人乳腺癌异种移植瘤模型中的药效。口服一天一次给药42天后,式I化合物晶型1(40mg/kg)组与溶媒对照组相比,统计学上有显著性差异(p值为<0.001),其T/C为37.91%,TGI为84.71%。式I化合物晶型1(10mg/kg)、式I化合物晶型1(20mg/kg)组与溶媒对照组相比统计学上有显著性差异(p值分别为0.005和0.002),其T/C分别为50.40%和44.70%,TGI分别为67.58%和72.56%。各给药组荷瘤鼠对受试化合物均有较好的耐受性。式I化合物晶型1(40mg/kg)组有显著抗肿瘤效果,式I化合物晶型1(10mg/kg)、式I化合物晶型1(20mg/kg)有较强的抗肿瘤作用。式I化合物晶型1的抗肿瘤效果在本实验设定的剂量中表现出一定的剂量依赖性,起效剂量为10mg/kg。具体结果见表10。
表10式I化合物晶型1对T47D裸鼠人源乳腺癌皮下异种移植瘤模型中的体内药效研究结果
化合物 | TGI% | T/C% |
式I化合物晶型1(40mpk) | 84.71% | 37.91% |
式I化合物晶型1(20mpk) | 72.56% | 44.70% |
式I化合物晶型1(10mpk) | 67.58% | 50.40% |
实验例4.式I化合物晶型1在SKOV-3(PIK3CA H1047R突变)裸鼠人源卵巢癌皮下异种移植瘤模型中的体内药效学研究
人源SKOV-3卵巢癌细胞自身带有PIK3CA H1047R突变。本实验评价了式I化合物晶型1在人卵巢癌异种移植瘤模型中的药效。口服一天一次给药28天后,式I化合物晶型1(40mg/kg)组与溶媒对照组相比,统计学上有显著性差异(p值<0.001),其T/C为37.79%,TGI为69.16%。式I化合物晶型1(10mg/kg)、式I化合物晶型1(20mg/kg)组与溶媒对照组相比统计学上有显著性差异(p值分别为0.041、0.005),其T/C和分别为69.17%、60.61%,TGI分别为30.45%、41.42%。各给药组荷瘤鼠对受试化合物均有较好的耐受性。式I化合物晶型1(40mg/kg)组有显著抗肿瘤效果,式I化合物晶型1(10mg/kg)、式I化合物晶型1(20mg/kg)有一定的抗肿瘤作用。式I化合物晶型1的抗肿瘤效果在本实验设定的剂量中表现出一定的剂量依赖性。具体结果见表11。
表11式I化合物晶型1对SKOV-3裸鼠人源卵巢癌皮下异种移植瘤模型中的体内药效研究结果
化合物 | TGI% | T/C% |
式I化合物晶型1(40mpk) | 69.16% | 37.79% |
式I化合物晶型1(20mpk) | 41.42% | 60.61% |
式I化合物晶型1(10mpk) | 30.45% | 69.17% |
实验例5.式I化合物晶型1的Sprague Dawley(SD)大鼠吸收试验
SD大鼠分别单次和多次口服灌胃以及单次静脉注射给予式I化合物晶型1,每组6只,雌雄各半。根据药效以及毒理实验结果,单次口服灌胃剂量分别定为3、10和30mg/kg;多次给药剂量为10mg/kg,每天1次,连续7天;单次静脉注射剂量为1mg/kg。根据药物血浆浓度-时间曲线计算药代动力学参数,雄性大鼠的结果见表12,雌性大鼠的结果见表13。
单次静脉注射给药1mg/kg后,式I化合物晶型1在雌雄SD大鼠中的血浆清除率(CL)分别为1.79±0.457和3.12±0.431mL/min/kg,稳态表观分布容积(Vdss)分别为0.265±0.0500和0.257±0.0227L/kg,消除半衰期(t
1/2)为3.26±1.13h和1.63±0.809h,系统暴露量(AUC
0-last)的值为17400±4790nM*h和9890±1410nM*h。
雄性SD大鼠单次口服给药3mg/kg的式I化合物晶型1后,其生物利用度分别为34.7%。雄性SD大鼠单次口服给药3、10或30mg/kg的式I化合物晶型1后AUC
0-last分 别为10300±4600、23700±721和45300±10900nM*h,达峰浓度(C
max)分别为4770±1010、6800±583和14500±4730nM,达峰时间分别出现在给药后0.417±0.144h、0.500±0.000h和0.667±0.289h。雌性SD大鼠单次口服给药3mg/kg的式I化合物晶型1后,其生物利用度分别为53.1%。雌性SD大鼠单次口服给药3、10或30mg/kg的式I化合物晶型1后,AUC
0-last分别为27700±8720、60900±10900和177000±48000nM*h,达峰浓度(C
max)分别为6390±1710、12100±3690和39100±7310nM,达峰时间为0.500±0.000h、0.667±0.289h和0.500±0.000h。
SD大鼠每天一次、每次10mg/kg、连续7天灌胃给药后,雄性大鼠第1天和第7天C
max分别为6800±583和13900±1610nM,AUC
0-last分别为23700±721和48500±4640nM*h。雌性大鼠第1天和第7天C
max分别为12100±3690和20500±4600nM,AUC
0-
last分别为60900±10900和86000±19900nM*h。
表12 雄性SD大鼠单次或多次给予式I化合物晶型1后,式I化合物晶型1的平均药代动力学参数(n=3)
T
max:口服给药后药物在体内达到最高浓度的时间;C
0:静脉注射给药
后药物在体内的初始浓度;“--”:对应给药方式无此参数;“/”:未计算。
表13 雌性SD大鼠单次或多次给予式I化合物晶型1后,式I化合物晶型1的平均药代动力学参数(n=3)
T
max:口服给药后药物在体内达到最高浓度的时间;C
0:静脉注射给药
后药物在体内的初始浓度;“--”:对应给药方式无此参数;“/”:未计算。
实验例6.式I化合物晶型1的比格犬吸收试验
比格犬分别单次和多次口服给药以及单次静脉注射给予式I化合物晶型1,每组6只,雌雄各半。单次口服剂量分别为0.3、1和3mg/kg;多次给药剂量为1mg/kg,每天1次,连续7天;单次静脉注射剂量为0.3mg/kg。根据药物血浆浓度-时间曲线计算药代动力学参数,结果见表14。
表14雌雄比格犬单次或多次给予式I化合物晶型1后,式I化合物晶型1的平均药代动力学参数(n=6)
T
max:口服给药后药物在体内达到最高浓度的时间;C
0:静脉注射给药
后药物在体内的初始浓度;“--”:对应给药方式无此参数;“/”:未计算。
雌雄比格犬单次静脉注射给药0.3mg/kg的式I化合物晶型1后,式I化合物晶型1的血浆清除率(CL)为6.18±1.49mL/min/kg,稳态表观分布容积(Vdss)为2.47±0.391L/kg,消除半衰期(t
1/2)和0点到最后一个可定量时间点时间-血浆浓度曲线下面积(AUC
0-last)的值分别为6.32±1.62h和1470±353nM*h。
雌雄比格犬单次口服给药0.3mg/kg式I化合物晶型1后,其生物利用度为87.8%。雌雄比格犬单次口服给药0.3、1和3mg/kg式I化合物1晶型后,AUC
0-last分别为1290±715,4980±946和14800±2510nM*h,达峰浓度(C
max)分别为158±68.4,656±30.7和1880±274nM,达峰时间(T
max)分别出现在给药后2.00±1.10h,1.67±0.516h和 3.08±1.50h。t
1/2分别为6.92±3.16、5.00±1.44和6.55±1.76h。
雌雄比格犬连续7天口服给予1mg/kg的式I化合物晶型1,给药1天后AUC
0-last为4980±946nM*h,C
max为656±30.7nM,T
1/2为5.00±1.44h。给药7天后,AUC
0-last为5880±697nM*h,C
max为850±106nM,T
1/2为5.18±0.487h。
结论:式I化合物晶型1在两种动物种属中都表现出了良好的口服生物利用度,低清除率,较高的系统暴露量,具有优秀的药代动力学性质。
实验例7.免疫印迹法分析BT474肿瘤组织样品中p-AKT蛋白的表达水平
实验方法
1、蛋白抽提及定量
1)-80℃冰箱中取出速冻组织样品。
2)干冰上操作,剪取部分组织(约30mg),放入2mL加有钢珠的离心管中,加500μL细胞裂解液RIPA(已新鲜加入1%的蛋白酶抑制剂和磷酸酶抑制剂)。
3)Tissuelyser LT使用最高频率破碎组织5分钟。
4)组织裂解液置于冰上裂解30分钟。
5)12,000rpm at 4℃离心10分钟,取上清放入新的1.5mL离心管中。
6)用BCA定量试剂盒进行蛋白定量。
7)根据定量结果,配置上样用的蛋白样品,统一样品蛋白浓度至2μg/μL,并加入LDS加样缓冲液(4X)和样品还原剂(10X),100℃恒温加热样品,10分钟。
8)蛋白印迹,或将已变性的样品-80℃冰箱保存。
2、免疫印迹
1)上样样品解冻。
2)上样:SDS-PAGE胶中,每孔上样10μL(上样量取决于各自需要)。
3)电泳:80伏,30分钟,后120伏,90分钟。
4)转膜:利用iBlot2转膜套装及转膜仪转膜,P3程序运行7分钟。
5)转膜结束后,按所需检测蛋白的分子量大小裁剪膜,1xTBST洗膜,3次,5分钟每次,室温,摇动。
6)封闭:膜置于封闭液(用1xTBST配置的5%的脱脂牛奶)中封闭,室温,摇动,1小时。
7)1xTBST洗膜,3次,5分钟每次,室温,摇动。
8)孵育一抗:加入合适稀释度的一抗(用1xTBST配置的5%的脱脂牛奶或牛血清白蛋白稀释),4℃过夜,缓慢摇动。
9)1xTBST洗膜,3次,10分钟每次,室温,摇动。
10)孵育二抗:加入合适稀释度的二抗,室温,缓慢摇动,1小时。
11)1xTBST洗膜,3次,10分钟每次,室温,摇动。
12)化学发光:膜上加入West Femto超敏感化学发光试剂盒中的HRP底物。
13)Tanon 5200 multi机器上检测化学发光并拍照。
结果见图4。PD(体内药效生物标志物检测)结果显示,式I化合物晶型1在BT-474裸鼠移植瘤模型中可以显著抑制PI3K下游的Akt磷酸化水平,并且展现了一定的时间和剂量依赖性。
实验例8.式I化合物体外酶活性测试
脂激酶反应通过在合适的底物及ATP的条件下进行,随后通过两个步骤用ADP-Glo
TM试剂盒来检测激酶的活性。第一步:终止激酶反应,其中残留的ATP彻底清除,仅保留ADP;第二步:加入激酶检测试剂将ADP转化为ATP,并伴随荧光素/荧光素酶的反应。最终通过荧光数值输出值来转化为激酶活性。测试PI3K酶活性的条件如表15。
表15测试PI3K酶活性的条件
实验材料及设备:
1)酶:PI3Kα Millipore#14-602-K
PI3Kβ Promega#V1751
PI3Kδ Millipore#14-604-K
PI3Kγ Millipore#14-558-K
2)试剂盒:ADP-Glo
TM脂激酶及PIP2:3PS试剂盒(Promega#V1792)
试剂盒包含:1mM PIP2:3PS,10×脂质稀释缓冲液,1M氯化镁,10mM ATP,10mM ADP,ADP-Glo试剂,检测缓冲液及检测底物。
3)反应孔板:OptiPlate-384,白色透明(PerkinElmer#6007299)
试剂准备:
1)10×反应缓冲液:500mM HEPES,pH 7.5,500mM NaCl,9mM MgCl
2;BSA:10%储备液,自制。
2)最终测试体系条件:1×反应体系:50mM HEPES,50mM NaCl,3mM MgCl
2,0.01%BSA(实验当天新鲜配制),1%DMSO(v/v)+/-化合物。
3)反应体系:3μL酶和底物混合物(1:1)+2μL ATP/MgCl2混合物+5μL ADP-Glo试剂+10μL检测试剂。
具体实验操作如下:
1)化合物稀释:用Echo将50nL 100×化合物/DMSO转移至测试孔板中。
-对于PI3Kα,化合物从最高浓度0.111mM三倍稀释,共10个浓度。
-对于PI3Kβ/PI3Kδ/PI3Kγ,化合物从最高浓度1.11mM三倍稀释,共10个浓度。
2)激酶反应:
(1)准备待测化合物,并加入50nL 100加化合物溶液或者DMSO至相应孔板中。
(2)准备3.33×反应缓冲液。
(3)准备3.33×PIP2:3PS,在使用前涡旋解冻PIP2:3PS至少1分钟。
(4)准备含5.25mM MgCl
2的2.5mM。
(5)准备3.33×PI3Kα/PI3Kβ/PI3Kδ/PI3Kγ溶液。
(6)将脂激酶溶液和PIP2:3PS溶液按体积比1:1混合。
(7)将3.33×脂激酶缓冲液与PIP2:3PS溶液按体积比1:1混合。
(8)将3μL缓冲液和PIP2:3PS的混合溶液加入到孔板的第1列和第2列中。
(9)将3μL酶和PIP2:3PS的混合溶液加入到孔板中除第1列和第2列外的孔中,离心10s(1000rpm)。23℃孵育20min。
(10)加入2μL 2.5n1000rpm
2并摇匀。
(11)盖上孔板并摇匀约30s,随后孔板在23℃孵育2h。
(12)加入5μL含有10mM MgCl
2的ADP-Glo试剂。
(13)1000rpm离心10s,盖上孔板并摇晃约30s,在23℃孵育60min。
(14)加入10μL激酶检测试剂。
(15)1000rpm离心10s,随后在23℃孵育60min。
(16)在Envision仪器上测量荧光数值。
结果见表16。
实验例9.式I化合物体外细胞活性测试
通过ELISA的方法,在MCF7细胞株中测定待测化合物对信号通路中PI3K下游蛋白Akt的磷酸化的抑制水平,来反映化合物的细胞活性。
细胞培养基:细胞完全培养基(RPMI 1640+10%血清+1%左旋谷氨酰胺+1%双抗)
无血清培养基(不含血清,RPMI 1640+1%左旋谷氨酰胺+1%双抗)
具体操作步骤如下:
(2)将细胞完全培养基用100μL无血清培养基替换,过夜饥饿培养。
(3)准备化合物(化合物起始浓度为1mM,三倍稀释10个浓度。随后每个浓度的化合物再用无血清培养基进行100倍稀释),并加入25μL稀释好的化合物至含有细胞孔板中。
(4)在37℃,5%CO
2的条件下孵育2h。
(5)用10μg/mL的胰岛素(Sigma#I9278-5mL)刺激孔板中的细胞,孵育30min,随后室温下1000rpm离心5min。
(6)每孔中加入250μL 1×平衡盐溶液(Invitrogen,#14065-056,4℃,含有1mM/L Na
3VO
4)洗涤细胞一次。
(7)每孔中加入100μL的裂解缓冲液(三羟甲基氨基甲烷盐酸盐,Invitrogen,#15567-1000ml),4℃摇晃60min,随后4℃4000rpm离心10min。
(8)后续操作步骤根据ELISA试剂盒(TGR BioSciences#EKT002)说明书进行。结果见表16。
表16式I化合物体外筛选试验结果
“/”:表示未计算。
结论:式I化合物能够很好的抑制PI3K激酶活性,同时对PI3Kβ/γ/δ有较高的亚型选择性。此外,在细胞中也能够很好地抑制PI3K下游Akt的磷酸化水平。
Claims (11)
- 如权利要求1所述的式I所示化合物的晶型1,其特征在于,所述的晶型1,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.8±0.2°,6.3±0.2°,8.8±0.2°,9.8±0.2°,10.9±0.2°,12.7±0.2°,15.7±0.2°,17.2±0.2°,18.5±0.2°,19.2±0.2°,20.5±0.2°,21.4±0.2°,24.2±0.2°,25.4±0.2°,26.6±0.2°,29.2±0.2°。
- 如权利要求1-3中任一项所述的式I所示化合物的晶型1,其特征在于,所述的晶型1的XRPD图谱如图1所示。
- 本发明提供了一种如权利要求1-4中任一项所述的式I所示化合物的晶型1的制 备方法,其特征在于,其包括以下步骤:将含式I所示化合物的溶液缓慢降温、析晶,得到式I化合物的晶型1即可;所述的溶液的溶剂为酯类溶剂。
- 如权利要求5所述的式I所示化合物的晶型1的制备方法,其特征在于,所述的溶剂为乙酸乙酯;和/或,所述的式I所示化合物与所述的溶液的溶剂的重量-体积比为1:5-1:10g/ml;和/或,所述的溶液通过加热的方式来实现,所述的加热的温度为室温加热至60℃-65℃;和/或,所述的缓慢降温的温度为60℃-65℃降至0℃-45℃;和/或,所述的缓慢降温的降温速率为10℃-30℃/h;和/或,在所述的缓慢降温之后,加入反溶剂,所述的反溶剂为烷烃类溶剂、或、烷烃类溶剂和酯类溶剂的混合溶剂。
- 如权利要求6所述的式I所示化合物的晶型1的制备方法,其特征在于,所述的缓慢降温的降温速率为10℃-20℃/h;和/或,当采用在所述的缓慢降温之后,加入反溶剂时,所述的反溶剂为正庚烷、或、正庚烷和乙酸乙酯的混合溶剂;和/或,当采用在所述的缓慢降温之后,加入反溶剂,所述的反溶剂为烷烃类溶剂和酯类溶剂的混合溶剂时,所述的烷烃类溶剂和酯类溶剂的体积比为1:1-10:1。
- 一种药物组合物,其包括如权利要求1-4中任一项所述的式I所示化合物的晶型1和药用辅料。
- 一种如权利要求1-4中任一项所述的式I所示化合物的晶型1在制备PI3Kα抑制剂中的应用。
- 一种如权利要求1-4中任一项所述的式I所示化合物的晶型1在制备药物中的应用;所述的药物优选为用于预防和/或治疗与PI3Kα抑制剂相关病症的药物或肿瘤的药物;所述的PI3Kα抑制剂相关病症优选为肿瘤;所述的肿瘤优选为乳腺癌、卵巢癌、头颈鳞癌、胃癌、结肠癌或肺癌。
- 一种用于预防和/或治疗与PI3Kα抑制剂相关病症或肿瘤的方法,其特征在于,其包括像患者施用治疗有效量的如权利要求1-4中任一项所述的式I所示化合物的晶型1;所述的PI3Kα抑制剂相关病症优选为肿瘤;所述的肿瘤优选为乳腺癌、卵巢癌、头颈鳞癌、胃癌、结肠癌或肺癌。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/103532 WO2022016420A1 (zh) | 2020-07-22 | 2020-07-22 | 一种喹唑啉酮类化合物的晶型、其制备方法及应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/103532 WO2022016420A1 (zh) | 2020-07-22 | 2020-07-22 | 一种喹唑啉酮类化合物的晶型、其制备方法及应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022016420A1 true WO2022016420A1 (zh) | 2022-01-27 |
Family
ID=79728406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/103532 WO2022016420A1 (zh) | 2020-07-22 | 2020-07-22 | 一种喹唑啉酮类化合物的晶型、其制备方法及应用 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022016420A1 (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102149711A (zh) * | 2008-09-10 | 2011-08-10 | 诺瓦提斯公司 | 有机化合物 |
WO2019091476A1 (zh) * | 2017-11-13 | 2019-05-16 | 罗欣生物科技(上海)有限公司 | 喹唑啉酮类化合物及其应用 |
-
2020
- 2020-07-22 WO PCT/CN2020/103532 patent/WO2022016420A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102149711A (zh) * | 2008-09-10 | 2011-08-10 | 诺瓦提斯公司 | 有机化合物 |
WO2019091476A1 (zh) * | 2017-11-13 | 2019-05-16 | 罗欣生物科技(上海)有限公司 | 喹唑啉酮类化合物及其应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7042812B2 (ja) | トリアゾロピリミジン化合物の結晶形態 | |
US10851109B2 (en) | Compositions and methods of using the same for treatment of neurodegenerative and mitochondrial disease | |
JP6946194B2 (ja) | キナーゼを調節する化合物の固体形態 | |
RU2506264C2 (ru) | Пиримидин-замещенные пуриновые соединения в качестве ингибиторов киназы (или киназ) | |
WO2018045993A1 (zh) | 一种取代的2-氢-吡唑衍生物的晶型、盐型及其制备方法 | |
CA2996682A1 (en) | Fused pyrimidine compound or salt thereof | |
WO2010003313A1 (zh) | 埃克替尼盐酸盐及其制备方法、晶型、药物组合物和用途 | |
WO2019242439A1 (zh) | Arn-509的晶型及其制备方法和用途 | |
EP3858830B1 (en) | Crystal form of morpholino quinazoline compound, preparation method therefor and use thereof | |
WO2020147838A1 (zh) | 一种egfr抑制剂的盐、晶型及其制备方法 | |
WO2020259463A1 (zh) | 一种酪蛋白激酶1ε抑制剂、药物组合物及其应用 | |
CN107286180A (zh) | 杂代吡啶并嘧啶酮衍生物作为cdk抑制剂及其应用 | |
JP6821670B2 (ja) | 薬学的化合物 | |
CN115380031A (zh) | 作为atm抑制剂的喹啉并吡咯烷-2-酮类化合物的晶型及其应用 | |
WO2020228729A1 (zh) | 喹唑啉酮类化合物的晶型及其制备方法 | |
WO2023078451A1 (zh) | 用作cdk7激酶抑制剂的化合物及其应用 | |
WO2019223777A1 (zh) | 一种含有芳胺基取代的吡咯并嘧啶类化合物、制备方法及其应用 | |
WO2022016420A1 (zh) | 一种喹唑啉酮类化合物的晶型、其制备方法及应用 | |
WO2022257965A1 (zh) | 固体形式的周期蛋白依赖性激酶9抑制剂及其用途 | |
WO2020216188A1 (zh) | 化合物晶型、其制备方法、药物组合物以及应用 | |
WO2020233716A1 (zh) | 咪唑并哒嗪类mnk1/mnk2激酶抑制剂及其制备方法和应用 | |
WO2021164789A1 (zh) | 一种吡唑并嘧啶类化合物的晶型及其应用 | |
WO2020043078A1 (zh) | 新型氮杂三环类化合物的盐型、晶型及其用途 | |
CN111662271A (zh) | 具有idh突变体抑制活性的化合物及其制备方法与应用 | |
WO2022017208A1 (zh) | 作为TGF-βR1抑制剂的吡啶氧基连吡唑类化合物的盐型、晶型以及其药物组合物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20945964 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20945964 Country of ref document: EP Kind code of ref document: A1 |