WO2018045993A1 - 一种取代的2-氢-吡唑衍生物的晶型、盐型及其制备方法 - Google Patents
一种取代的2-氢-吡唑衍生物的晶型、盐型及其制备方法 Download PDFInfo
- Publication number
- WO2018045993A1 WO2018045993A1 PCT/CN2017/101067 CN2017101067W WO2018045993A1 WO 2018045993 A1 WO2018045993 A1 WO 2018045993A1 CN 2017101067 W CN2017101067 W CN 2017101067W WO 2018045993 A1 WO2018045993 A1 WO 2018045993A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- form according
- crystal form
- crystalline form
- formula
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/506—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/13—Crystalline forms, e.g. polymorphs
Definitions
- the present invention relates to a crystalline form, a salt form of a substituted 2-hydro-pyrazole derivative and a process for the preparation thereof, and to the use of the crystal form and the salt form for the preparation of a medicament for the treatment of breast cancer and other cancers.
- CDKs cyclin-dependent kinases
- the combination of (cyclins) promotes cell cycle progression, transcription of genetic information, and normal cell division and proliferation.
- CDK4/6 is a key regulator of the cell cycle that triggers the transition of the cell cycle from the growth phase (G1 phase) to the DNA replication phase (S1 phase).
- G1 phase growth phase
- S1 phase DNA replication phase
- a complex of cyclin D (Cyclin D) and CDK4/6 is capable of phosphorylating retinoblastoma protein (Rb).
- the tumor suppressor protein Rb Once the tumor suppressor protein Rb is phosphorylated, it releases its transcription factor E2F, which binds tightly in the unphosphorylated state. E2F activation further promotes the cell cycle through the restriction point (R point) and progresses from the G1 phase to the S phase. Entered the cycle of cell proliferation. Therefore, inhibition of CDK4/6 prevents the formation of the Cyclin D-CDK4/6 complex, which can block the progression of the cell cycle from the G1 phase to the S phase, thereby achieving the purpose of inhibiting tumor proliferation.
- ER+ estrogen receptor-positive breast cancer
- CDK4/6 is hyperactive
- CDK4/6 is a key downstream target of ER signaling.
- Preclinical data indicate that dual inhibition of CDK4/6 and estrogen receptor (ER) signaling has a synergistic effect and inhibits the growth of G1 estrogen receptor positive (ER+) breast cancer (BC) cells.
- the CDK4/6 target is a highly competitive field of research and development. Pietzsch summarized progress in this area in 2010 (Mini-Rev. Med. Chem. 2010, 10, 527-539). Malorni also summarized the results of the latest CDK4/6 inhibitors in preclinical and clinical studies of breast cancer in 2014 (Curr. Opin. Oncol. 2014, 26, 568–575). Extensive research efforts on CDK4/6 targets have led to the development of a range of different selective CDK inhibitors, as well as the discovery of a few effective and highly selective CDK4/6 inhibitors.
- Palbociclib (PD0332991) is one of several potent and highly selective CDK4/6 inhibitors that have entered human clinical trials for women with advanced or metastatic estrogen receptor (ER+), human epidermal growth factor receptor Treatment of 2 negative (HER2-) breast cancer.
- ER+ advanced or metastatic estrogen receptor
- HER2- human epidermal growth factor receptor Treatment of 2 negative (HER2-) breast cancer.
- NDA new drug application
- Two other CDK4/6 inhibitors, Abemaciclib (LY2835219) and LEE-011 have also begun to recruit patients with cancer for Phase 3 clinical trials.
- these small molecule heterocyclic compounds are clinically useful in the treatment of a variety of other cancers.
- These patents include WO2012018540, WO2012129344, WO2011101409, WO2011130232, WO2010075074, WO2009126584, WO2008032157, WO2003062236.
- the present invention provides a maleate salt of a compound of formula (I).
- the maleate salt of the compound of formula (I) above is represented by formula (II) wherein x is selected from 0.5 to 2.
- x is 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 or 2.0.
- the compound of formula (II) above is compound WX_1 wherein x is 0.8, 0.9, 1 or 1.1.
- x is 1.
- the present invention also provides Form A of Compound WX_1 having an X-ray powder diffraction pattern having characteristic diffraction peaks at the following 2 theta angles: 4.69 ⁇ 0.2 °, 14.04 ⁇ 0.2 °.
- the X-ray powder diffraction pattern of the above Form A has characteristic diffraction peaks at the following 2 theta angles: 4.69 ⁇ 0.2 °, 9.35 ⁇ 0.2 °, 13.28 ⁇ 0.2 °, 14.04 ⁇ 0.2 °, 16.03 ⁇ 0.2 °, 18.74 ⁇ 0.2 °, 20.08 ⁇ 0.2 °, 28.25 ⁇ 0.2 °.
- the X-ray powder diffraction pattern of the above Form A has characteristic diffraction peaks at the following 2 theta angles: 4.69 ⁇ 0.2 °, 9.35 ⁇ 0.2 °, 10.01 ⁇ 0.2 °, 13.28 ⁇ 0.2 °, 14.04 ⁇ 0.2 °, 16.03 ⁇ 0.2 °, 18.74 ⁇ 0.2 °, 20.08 ⁇ 0.2 °, 23.53 ⁇ 0.2 °, 25.11 ⁇ 0.2 °, 27.80 ⁇ 0.2 °, 28.25 ⁇ 0.2 °.
- the X-ray powder diffraction pattern of the above Form A has characteristic diffraction peaks at the following 2 theta angles: 4.69 ⁇ 0.2 °, 9.35 ⁇ 0.2 °, 10.01 ⁇ 0.2 °, 13.28 ⁇ 0.2 °, 14.04 ⁇ 0.2 °,16.03 ⁇ 0.2°, 16.83 ⁇ 0.2°, 17.73 ⁇ 0.2°, 18.58 ⁇ 0.2°, 18.74 ⁇ 0.2°, 20.08 ⁇ 0.2°, 21.58 ⁇ 0.2°, 23.53 ⁇ 0.2°, 25.11 ⁇ 0.2°, 25.27 ⁇ 0.2 °, 27.80 ⁇ 0.2 °, 28.25 ⁇ 0.2 °, 33.00 ⁇ 0.2 °.
- the peak position and intensity of the characteristic peak are as shown in Table 1:
- Table 1 Peak position and intensity of characteristic peaks of X-ray powder diffraction pattern of Form A
- the XRPD pattern of the above Form A is shown in Figure 1, i.e., has the characteristics represented by the XRPD pattern as shown in Figure 1.
- the XRPD pattern analysis data of the above A crystal form is as shown in Table 2:
- the A crystal form has a DSC pattern as shown in Fig. 2, i.e., has the characteristics represented by the DSC pattern as shown in Fig. 2.
- the differential scanning calorimetry curve of the above Form A has an endothermic peak at 208.18 °C ⁇ 3 °C.
- the A crystal form has a TGA pattern as shown in FIG. 3, that is, a characteristic represented by the TGA pattern as shown in FIG.
- thermogravimetric analysis curve of the above A crystal form has a weight loss of 0.3110 ⁇ 0.2% at 188.49 ⁇ 3°C.
- x is 1.
- the invention also provides a process for the preparation of a maleate salt of a compound of formula (I) comprising contacting a compound of formula (I) with maleic acid.
- the method for preparing the A crystal form of the above compound WX_1 comprises the following steps:
- the solvent is selected from one or more of methanol, ethanol, isopropanol, acetone, ethyl acetate, and a mixed solvent of methanol/water or a mixed solvent of isopropanol/water, preferably methanol/water.
- Mixed solvent preferably methanol/water.
- the molar ratio of maleic acid to the compound of formula (I) is from about 1 to about 1:1.
- the methanol/water volume ratio is from about 1 to about 50:1, preferably from 1 to 20:1; in some embodiments of the invention, the methanol to water volume ratio is about 3:1. In some embodiments of the invention, the methanol to water volume ratio is from about 17 to about 18:1.
- the isopropanol/water volume ratio is from about 0.5 to about 5:1, preferably 1:1.
- step (1) is carried out under heating.
- the heating temperature of step (1) is from about 60 to 70 ° C, preferably about 65 ° C.
- the compound of formula (I) is added to step (2) followed by stirring.
- the compound of formula (I) is added to step (2) and stirred at a temperature of from about 60 to 70 ° C, preferably about 65 ° C.
- step (3) is cooled prior to filtration, which may be cooled to 20 °C.
- step (3) may be stirred after cooling as needed, and the agitation may be from 15 to 22 hours, preferably 18 hours.
- step (3) is optionally washed with a solvent selected from the group consisting of methanol, ethanol, isopropanol, acetone or ethyl acetate, and a mixed solvent of methanol/water or isopropyl.
- a solvent selected from the group consisting of methanol, ethanol, isopropanol, acetone or ethyl acetate, and a mixed solvent of methanol/water or isopropyl.
- a mixed solvent of alcohol/water preferably methanol.
- the present invention also provides a method for refining the A crystal form of the above compound WX_1, comprising:
- the solvents described in the step (a) and the step (c) are each independently selected from one or more of methanol, ethanol and isopropanol, preferably one of methanol, ethanol or isopropanol, further preferably the step
- the solvents in (a) and step (c) are both methanol.
- step (a) is to raise the temperature of the solvent to 50 ° C and then add the crystalline form of compound WX_1A to the solvent.
- step (b) is agitation at 50 ° C for 1 to 3 hours.
- step (b) is agitation at 50 ° C for 2 hours.
- the cooling temperature of step (c) is cooled to 30 °C.
- step (c) is dried for 64 hours.
- the present invention also provides a crystalline form B of the compound of formula (I), the X-ray powder diffraction pattern having characteristic diffraction peaks at the following 2 theta angles: 12.88 ⁇ 0.2 °, 14.18 ⁇ 0.2 °, 16.72 ⁇ 0.2 °, 17.49 ⁇ 0.2 °, 19.21 ⁇ 0.2 °, 21.06 ⁇ 0.2 °, 21.65 ⁇ 0.2 °, 24.14 ⁇ 0.2 °.
- the X-ray powder diffraction pattern of the above B crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 9.86 ⁇ 0.2°, 12.88 ⁇ 0.2°, 14.18 ⁇ 0.2°, 16.72 ⁇ 0.2°, 17.49 ⁇ 0.2 °, 19.21 ⁇ 0.2 °, 21.06 ⁇ 0.2 °, 21.65 ⁇ 0.2 °, 24.14 ⁇ 0.2 °, 26.29 ⁇ 0.2 °, 27.69 ⁇ 0.2 °.
- the X-ray powder diffraction pattern of the above B crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 9.56 ⁇ 0.2°, 9.86 ⁇ 0.2°, 11.53 ⁇ 0.2°, 12.01 ⁇ 0.2°, 12.88 ⁇ 0.2 °, 14.18 ⁇ 0.2°, 15.21 ⁇ 0.2°, 15.66 ⁇ 0.2°, 16.72 ⁇ 0.2°, 17.49 ⁇ 0.2°, 18.79 ⁇ 0.2°, 19.21 ⁇ 0.2°, 19.76 ⁇ 0.2°, 21.06 ⁇ 0.2°, 21.65 ⁇ 0.2 °, 22.52 ⁇ 0.2°, 22.93 ⁇ 0.2°, 24.14 ⁇ 0.2°, 24.47 ⁇ 0.2°, 26.29 ⁇ 0.2°, 27.69 ⁇ 0.2°, 28.48 ⁇ 0.2°, 28.79 ⁇ 0.2°, 30.25 ⁇ 0.2°, 30.74 ⁇ 0.2 °, 31.67 ⁇ 0.2 °, 34.79 ⁇ 0.2 °, 35.18 ⁇ 0.2 °.
- the peak position and intensity of the characteristic peak are as shown in Table 3:
- the XRPD pattern of the above B crystal form is as shown in Figure 4, i.e., has the characteristics represented by the XRPD pattern as shown in FIG.
- the XRPD pattern analysis data of the above B crystal form is as shown in Table 4:
- the DSC pattern of the above B crystal form is as shown in Figure 5, i.e., has the characteristics represented by the DSC pattern as shown in FIG.
- the differential scanning calorimetry curve of the above B crystal form has an endothermic peak near 225.76 °C.
- the differential scanning calorimetry curve of Form B above has an endothermic peak at 225.76 °C ⁇ 3 °C.
- the TGA pattern of the above B crystal form is as shown in Figure 6, i.e., has the characteristics represented by the TGA pattern as shown in FIG.
- thermogravimetric analysis curve of the above B crystal form loses weight at 52.81 ° C ⁇ 3 ° C, 184.82 ° C ⁇ 3 ° C and 230.03 ° C ⁇ 3 ° C.
- thermogravimetric analysis curve of the above B crystal form has a weight reduction of 0.1384% at 52.81 ° C ⁇ 3 ° C; a weight reduction of 0.3565% at 184.82 ° C ⁇ 3 ° C; and 230.03 ° C ⁇ 3 ° C At the time, the weight was reduced by 0.4086%.
- thermogravimetric analysis curve of the above B crystal form has a weight reduction of 0.1384% at 52.81 ° C; a weight reduction of 0.3565% at 184.82 ° C; and a weight reduction of 0.4086% at 230.03 ° C. .
- the invention also provides a preparation method of the above B crystal form, comprising the following steps:
- the solvent of step (i) is one or both of ethanol, water, preferably a mixed solvent of ethanol and water.
- step (i) is heated at a temperature of from 70 to 100 ° C, preferably 80 ° C.
- the method for preparing the above B crystal form comprises the following steps:
- the solvent is a mixed solvent of ethanol and water, and the volume ratio of ethanol to water is 3:1.
- step (i) is carried out by adding a compound of formula (I) to a solvent and stirring at 80 ° C for 0.5 to 2 hours.
- step (i) is the addition of a compound of formula (I) to a solvent and stirring at 80 ° C for 1 hour.
- the present invention provides a crystalline composition comprising the crystalline form A of the compound WX_1, wherein the crystalline form of the compound WX_1 accounts for 50% by weight or more, preferably 80% or more, more preferably the weight of the crystalline composition. It is more than 90%, preferably more than 95%.
- the present invention provides a crystalline composition comprising a crystalline form B of the compound of formula (I), wherein the crystalline form of the compound of formula (I) is more than 50% by weight of the crystalline composition, preferably 80% or more, more preferably 90% or more, and most preferably 95% or more.
- the present invention provides a crystalline composition comprising a maleate salt of the compound of the formula (I), a compound of the formula (II), a compound WX_1, a crystal form of the compound WX_1, and a crystal form A comprising the compound WX_1,
- the pharmaceutical compositions of the present invention may or may not contain pharmaceutically acceptable excipients.
- the present invention also provides the use of the above compounds, Form A and Form B for the preparation of a medicament for the treatment of breast cancer and other cancers.
- the present invention provides a crystalline composition of the maleate salt of the compound of the formula (I), the compound of the formula (II), the compound WX_1, the crystal form A of the compound WX_1, the crystal form A of the compound WX_1, and the formula ( I) use of a crystalline form of a crystalline form B of a compound, or a crystalline form of a crystalline form B comprising a compound of formula (I), or a pharmaceutical composition thereof, for the manufacture of a medicament for the treatment of a CDK4/6 mediated disease, wherein said The disease includes cancer, preferably breast cancer or lung cancer.
- the invention provides a method of treating a disease in a mammal (e.g., a human), wherein the disease is a CDK4/6 mediated disease, the method comprising administering to the mammal (e.g., a human) a therapeutically effective amount of (I) a maleate salt of a compound, a compound of the formula (II), a compound WX_1, a crystal form of the compound WX_1, a crystal composition of the crystal form A of the compound WX_1, a crystal form B of the compound of the formula (I), or a A crystalline composition of Form B of a compound of formula (I), or a pharmaceutical composition thereof, wherein the disease comprises cancer, preferably breast cancer or lung cancer.
- a mammal e.g., a human
- the disease comprises cancer, preferably breast cancer or lung cancer.
- the present invention provides a maleate salt, a compound of formula (II), a compound WX_1, a compound WX_1 of a compound of formula (I) for use in the treatment of a CDK4/6 mediated mammalian (eg, human) disease.
- the disease includes cancer, preferably breast cancer or lung cancer.
- the maleate salt of the compound of the formula (I) has an excellent effect on at least one of biological activity, safety, bioavailability and the like, and the crystal form of the compound WX_1 and the crystal form of the compound of the formula (I) are very stable and hygroscopic. Small, good water solubility, good prospects for medicine.
- treating means administering a compound or formulation described herein to prevent, ameliorate or eliminate a disease or one or more symptoms associated with the disease, and includes:
- terapéuticaally effective amount means (i) treating or preventing a particular disease, condition or disorder, (ii) alleviating, ameliorating or eliminating one or more symptoms of a particular disease, condition or disorder, or (iii) preventing or delaying The amount of a compound of the present application in which one or more symptoms of a particular disease, condition, or disorder are described herein.
- the amount of a compound of the present application which constitutes a “therapeutically effective amount” will vary depending on the compound, the condition and severity thereof, the mode of administration, and the age of the mammal to be treated, but can be routinely determined by those skilled in the art It is determined by its own knowledge and the present disclosure.
- pharmaceutically acceptable is for those compounds, materials, compositions and/or dosage forms that are within the scope of sound medical judgment and are suitable for use in contact with human and animal tissues without Many toxic, irritating, allergic reactions or other problems or complications are commensurate with a reasonable benefit/risk ratio.
- a metal salt, an ammonium salt, a salt with an organic base, a salt with an inorganic acid, a salt with an organic acid, a salt with a basic or acidic amino acid, or the like can be mentioned.
- pharmaceutical composition refers to a mixture of one or more compounds of the present application or a salt thereof and a pharmaceutically acceptable adjuvant.
- the purpose of the pharmaceutical composition is to facilitate administration of the compounds of the present application to an organism.
- pharmaceutically acceptable excipient means that the organism is not significantly irritating and does not impair the biological activity of the active compound. And those accessories for performance. Suitable excipients are well known to those skilled in the art, such as carbohydrates, waxes, water soluble and/or water swellable polymers, hydrophilic or hydrophobic materials, gelatin, oils, solvents, water, and the like.
- PO oral administration
- QD x 3W means once a day for 3 weeks.
- compositions of the present application can be prepared by combining the compounds of the present application with suitable pharmaceutically acceptable excipients, for example, as solid, semi-solid, liquid or gaseous preparations, such as tablets, pills, capsules, powders. , granules, ointments, emulsions, suspensions, suppositories, injections, inhalants, gels, microspheres and aerosols.
- suitable pharmaceutically acceptable excipients for example, as solid, semi-solid, liquid or gaseous preparations, such as tablets, pills, capsules, powders. , granules, ointments, emulsions, suspensions, suppositories, injections, inhalants, gels, microspheres and aerosols.
- Typical routes of administration of a compound of the present application, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition thereof include, but are not limited to, oral, rectal, topical, inhalation, parenteral, sublingual, intravaginal, intranasal, intraocular, intraperitoneal, Intramuscular, subcutaneous, intravenous administration.
- the pharmaceutical composition of the present application can be produced by a method well known in the art, such as a conventional mixing method, a dissolution method, a granulation method, a sugar-coating method, a grinding method, an emulsification method, a freeze-drying method, and the like.
- the pharmaceutical composition is in oral form.
- the pharmaceutical composition can be formulated by admixing the active compound with pharmaceutically acceptable excipients which are well known in the art. These excipients enable the compounds of the present application to be formulated into tablets, pills, troches, dragees, capsules, liquids, gels, slurries, suspensions and the like for oral administration to a patient.
- Solid oral compositions can be prepared by conventional methods of mixing, filling or tabletting. For example, it can be obtained by mixing the active compound with a solid adjuvant, optionally milling the resulting mixture, adding other suitable excipients if necessary, and then processing the mixture into granules to give tablets. Or the core of the sugar coating. Suitable excipients include, but are not limited to, binders, diluents, disintegrants, lubricants, glidants, sweeteners or flavoring agents, and the like.
- compositions may also be suitable for parenteral administration, such as sterile solutions, suspensions or lyophilized products in a suitable unit dosage form.
- intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, combinations thereof with other chemical synthesis methods, and those skilled in the art.
- Well-known equivalents, preferred embodiments include, but are not limited to, embodiments of the invention.
- the present invention employs the following abbreviations: MW for microwave; rt for room temperature; aq for aqueous solution; DCM for methylene chloride; THF for tetrahydrofuran; DMSO for dimethyl sulfoxide; NMP for N-methylpyrrolidone; Ethyl ester; EtOH stands for ethanol; MeOH stands for methanol; dioxane stands for dioxane; HOAc stands for acetic acid; Boc stands for t-butoxycarbonyl, Cbz stands for benzyloxycarbonyl, both are amine protecting groups; Boc 2 O stands for di- Tert-butyl dicarbonate; DIPEA stands for diisopropylethylamine; TEA or Et 3 N stands for triethylamine; BnNH 2 stands for benzylamine; PMBNH 2 stands for p-methoxybenzylamine; KOAc stands for potassium acetate; NaOAc stands for acetic acid
- Pd(OAc) 2 represents palladium acetate
- Pd(PPh 3 ) 2 Cl 2 represents bis(triphenylphosphine)palladium dichloride
- Rh(PPh 3 ) 3 Cl represents tris(triphenylphosphine)phosphonium chloride
- Pd(OH) 2 represents palladium hydroxide
- Xantphos stands for 4,5-bis(diphenylphosphino)-9,9-dimethyloxaxan
- Xphos stands for 2-dicyclohexylphosphine-2',4',6'-triisopropylbiphenyl
- BINAP stands for ( ⁇ )-2,2'-bis-(diphenylphosphino)-1,1'-binaphthyl
- Xantphos stands for 4,5-bis-(diphenylphosphino)-9,9-di Methylxanthene
- Xphos-Pd-G1 represents
- Powder X-ray diffraction also referred to as "X-ray powder diffractometer", XRPD
- XRPD Powder X-ray diffraction
- Test method Approximately 10-20 mg samples were used for XRPD detection.
- the diffraction spectrum obtained from the crystalline compound is often characteristic for a specific crystallization, and the relative intensity of the band (especially at low angles) may be Because of differences in crystallization conditions, particle size, and other measurement conditions The effect of the dominant orientation produced by the difference varies. Therefore, the relative intensities of the diffraction peaks are not characteristic for the crystals to be targeted. When judging whether they are the same as the known crystals, more attention should be paid to the relative positions of the peaks rather than their relative intensities. Furthermore, there may be slight errors in the position of the peak for any given crystallization, which is also well known in the field of crystallography.
- the position of the peak can be shifted due to changes in temperature during sample analysis, sample movement, or calibration of the instrument, etc., and the measurement error of the 2 ⁇ value is sometimes about ⁇ 0.2°. Therefore, this error should be taken into account when determining each crystal structure.
- the peak positions of the XRPD spectrum have similarities as a whole, and the relative intensity error may be large.
- Differential thermal analysis also referred to as “Differential Scanning Calorimetry”, Differential Scanning Calorimeter, DSC) method of the present invention
- Test method The sample ( ⁇ 1 mg) was placed in a DSC aluminum pan for testing, and the sample was heated from 25 ° C to 300 ° C at a heating rate of 10 ° C / min under 50 mL / min N 2 .
- DSC measures the transition temperature when crystallization absorbs or releases heat due to changes in its crystal structure or crystal melting.
- the thermal transition temperature and melting point error is typically within about 5 ° C, usually within about 3 ° C, when we say a compound has a given DSC peak. Or at the melting point, this means the DSC peak or melting point ⁇ 5 ° C.
- DSC provides an auxiliary method for identifying different crystals. Different crystalline forms can be identified based on their different transition temperature characteristics. It should be noted that for the mixture, the DSC peak or melting point may vary over a larger range.
- the melting temperature is related to the rate of temperature increase due to decomposition during the melting of the substance.
- TGA Thermal Gravimetric Analyzer
- Test method A sample (2 to 5 mg) was placed in a TGA platinum pot for testing, and the sample was heated from room temperature to 350 ° C at a heating rate of 10 ° C/min under a condition of 25 mL/min N 2 .
- Figure 1 is an XRPD spectrum of Cu-K ⁇ radiation of the compound WX_1A crystal form.
- Figure 2 is a DSC chart of the crystalline form of compound WX_1A.
- Figure 3 is a TGA spectrum of the compound WX_1A crystal form.
- Figure 4 is an XRPD spectrum of Cu-K alpha radiation of Form B of Compound (I).
- Figure 5 is a DSC chart of the crystalline form of Compound B of formula (I).
- Figure 6 is a TGA spectrum of the crystalline form of Compound B of formula (I).
- step 1
- step 1
- Test conditions Samples (10-15 mg) were placed in a DVS sample pan for testing.
- the crystal form of the compound WX_1A was dissolved in a corresponding solvent, and stirred at 40 ° C for 2 days in the dark. The solution was centrifuged to obtain a precipitate and dried, and then subjected to XRPD detection. The results were as follows:
- Volatilization means that the crystal form of the compound WX_1A is dissolved in a corresponding solvent, centrifuged, and the supernatant is evaporated, and the precipitated crystal is subjected to XRPD detection.
- FaSSIF Simulates intestinal fluid in the small intestine under pre-meal starvation
- FeSSIF Simulates intestinal fluid in the small intestine in a state of fullness after a meal
- SGF Simulating gastric juice in the empty stomach of human hunger
- the solubility of the compound WX_1A crystal form in water is about 110 times higher than that of the compound of the formula (I), and the solubility performance is remarkably improved.
- CDK2/cyclin A CDK4/cyclin D1, CDK6/cyclin D1 (Life technology).
- ULight labeled polypeptide substrates ULight-4E-BP1 and ULight-MBP (PerkinElmer).
- a sputum-labeled anti-myelin base protein antibody and a sputum-labeled rabbit-derived antibody (PerkinElmer) were subjected to signal detection by a Envision multi-label analyzer (PerkinElmer).
- the compound to be tested was diluted three-fold, including 10 concentration gradients, and the final concentration ranged from 5 uM to 0.25 nM.
- the standard Lance Ultra method was performed by a 10 ⁇ L enzyme reaction system containing 0.5 nM CDK2/cyclin A protein, 100 nM ULight-MBP polypeptide, and 25 ⁇ M ATP. Dissolve them in the enzyme buffer respectively.
- the composition of the buffer includes: hydroxyethylpiperazine ethanesulfuric acid solution 50 mM at pH 7.5, ethylenediaminetetraacetic acid 1 mM, magnesium chloride 10 mM, 0.01% Brij-35, dithizone. Sugar alcohol 2 mM.
- the OptiPlate 384 well plate was sealed with a top heat seal film TopSeal-A and incubated for 60 minutes at room temperature.
- the standard Lance Ultra method was performed by a 10 ⁇ L enzyme reaction system containing 0.3 nM CDK4/cyclin D1 protein, 50 nM ULight-4E-BP1 polypeptide, and 350 ⁇ M ATP. They were dissolved in the enzyme buffer.
- the buffer components included: hydroxyethylpiperazine ethanesulfuric acid solution 50 mM in PH7.5, ethylenediaminetetraacetic acid 1 mM, magnesium chloride 10 mM, 0.01% Brij-35, dithiosulphate. Sugar alcohol 2 mM.
- the OptiPlate 384 well plate was sealed with a top heat seal film TopSeal-A and incubated at room temperature for 180 minutes.
- the standard Lance Ultra method was performed by a 10 ⁇ L enzyme reaction system containing 0.8 nM CDK6/cyclin D1 protein, 50 nM ULight-4E-BP1 polypeptide, and 250 ⁇ M ATP. They were dissolved in an enzyme buffer, which consisted of 50 mM hydroxyethylpiperazine ethanesulfuric acid solution at pH 7.5, 1 mM ethylenediaminetetraacetic acid, 10 mM magnesium chloride, 0.01% Brij-35, dithiothreose. Alcohol 2 mM. After the reaction was started, the OptiPlate 384 well plate was sealed with a top heat seal film TopSeal-A and incubated at room temperature for 180 minutes.
- an enzyme buffer which consisted of 50 mM hydroxyethylpiperazine ethanesulfuric acid solution at pH 7.5, 1 mM ethylenediaminetetraacetic acid, 10 mM magnesium chloride, 0.01% Brij-
- the enzyme reaction termination buffer was prepared, and EDTA was dissolved in a 1-fold diluted assay buffer, and the reaction was terminated at room temperature for 5 minutes. 5 ⁇ L of the test mixture (configured with tritiated anti-myelin antibody and tritiated rabbit-derived antibody, respectively) was added to the CDK2/cyclin A, CDK4/cyclin D1, and CDK6/cyclin D1 reactions, respectively. Incubation was carried out for 60 minutes at room temperature, and the reaction signal was detected using an Envision apparatus according to the principle of time-resolved fluorescence resonance energy transfer.
- IC 50 refers to the concentration of the corresponding reagent when a certain reagent is used to produce 50% maximal inhibition.
- RPMI 1640 medium, fetal bovine serum, penicillin/streptomycin antibiotics were purchased from Promega (Madison, WI).
- the MCF-7 cell line was purchased from the European Cell Culture Collection (ECACC). Envision Multi-Label Analyzer (PerkinElmer).
- MCF-7 cells were seeded in black 384-well plates with 45 ⁇ L of cell suspension per well containing 200 MCF-7 cells. The cell plates were placed in a carbon dioxide incubator for overnight culture.
- test compound was diluted 3-fold to the 10th concentration with Bravo, i.e., diluted from 10 ⁇ M to 0.508 nM, and a double-replica experiment was set. 49 ⁇ L of the medium was added to the intermediate plate, and 1 ⁇ L of the gradient dilution compound per well was transferred to the intermediate plate according to the corresponding position, and after mixing, 5 ⁇ L of each well was transferred to the cell plate. The cell plates were incubated in a carbon dioxide incubator for 6 days.
- the crystalline form of the compound WX_1A of the present invention has significant proliferation inhibitory activity against estrogen receptor-positive MCF-7 breast cancer cells.
- the compound WX_1A crystal form has higher inhibitory activity against MCF-7 cell proliferation than the reference compounds Palbociclib and LY2835219.
- RPMI 1640 medium, fetal bovine serum, penicillin/streptomycin antibiotics were purchased from Promega (Madison, WI).
- the MCF-7 cell line and the MDA-MB-436 cell line were purchased from the European Cell Culture Collection (ECACC). Envision Multi-Label Analyzer (PerkinElmer).
- MCF-7 cells were seeded in black 384-well plates with 45 ⁇ L of cell suspension per well containing 200 MCF-7 cells. The cell plates were placed in a carbon dioxide incubator for overnight culture.
- MDA-MB-436 cells were seeded in black 384-well plates with 45 ⁇ L of cell suspension per well containing 585 MCF-7 cells. The cell plates were placed in a carbon dioxide incubator for overnight culture.
- the test compound was diluted 3 times to the 10th concentration with Bravo, that is, diluted from 10 ⁇ M to 0.508 nM, and a double-replica experiment was set. 49 ⁇ L of the medium was added to the intermediate plate, and 1 ⁇ L of the gradient dilution compound per well was transferred to the intermediate plate according to the corresponding position, and after mixing, 5 ⁇ L of each well was transferred to the cell plate. The cell plates were incubated in a carbon dioxide incubator for 6 days.
- CDX Human xenograft
- test tablets Palbociclib, LY2835219 and compound WX_1A in the subcutaneous xenograft tumor model of human breast cancer MCF-7 cells was evaluated.
- mice Female, 6-8 weeks, weighing approximately 20 grams, maintained the mice in a special pathogen free environment and in a single ventilated cage (10 mice per cage). All cages, bedding and water are disinfected prior to use. All animals are free to access a standard certified commercial laboratory diet. A total of 150 mice were purchased from Beijing Weitong Lihua Experimental Animal Technology Co., Ltd. for research. Each mouse was implanted subcutaneously in the left back sheet estrogen (0.18mg / plate, 60 days release), three days later, each mouse was implanted tumor cells (10x 10 6 in 0.2 ml subcutaneously in the right back In phosphate buffer) for tumor growth. Dosing begins when the average tumor volume reaches about 150-200 cubic millimeters.
- the test compound is orally administered daily, and the dose is as shown in the above table.
- the anti-tumor efficacy was determined by dividing the average tumor-increased volume of the animals treated with the compound by the average tumor-increased volume of the animals treated with the compound.
- the antitumor efficacy of the test compound is as follows:
- the crystalline form of the compound WX_1A of the present invention exhibited significant antitumor activity in a xenograft (CDX) model of MCF-7 breast cancer based on a human tumor cell line.
- CDX xenograft
- the cubic millimeter was reduced to 98 cubic millimeters, which was significantly smaller than the tumor volume of the group of reference compounds Palbociclib and LY2835219, considering that the dose of the compound WX_1A crystal form (18.75 mg/kg) was less than the reference compound LY2835219 (25 mg/kg) or reference.
- the compound Palbociclib 25 mg/kg, 50 mg/kg (experimentally proved that the high dose of Palbociclib could not be tolerated), the anti-tumor activity of the compound WX_1A crystal form was significantly better than the reference compound.
- LU-01-0393 lung cancer patient-derived human tumor cell line-based xenograft (CDX) BALB/c nude mice, female, 6-8 weeks, weighing 17-20 g, a total of 72, purchased from Shanghai Xipuer-Beikai Experimental Animal Co., Ltd.
- Human lung cancer LU-01-0393 tumor (ie, non-small cell lung cancer) was originally derived from a clinical sample of surgical resection. After inoculation into nude mice, it was defined as P0 generation, and P0 generation tumor was re-inoculated into nude mice. Defined as P1 generation, and so on, passaged on nude mice.
- LU-01-0393-FP5 was obtained after transplantation from P4. This study will use FP6 tumor tissue.
- test tablets Palbociclib, LY2835219 and compound WX_1A crystal form on the human lung cancer LU-01-0393 cell subcutaneous xenograft tumor model was evaluated.
- mice Female, 6-8 weeks, weighing approximately 17-20 grams, maintained the mice in a special pathogen free environment and in a single ventilated cage. All cages, bedding and water are disinfected prior to use. All animals are free to access a standard certified commercial laboratory diet. A total of 72 mice purchased from Shanghai Xipuer-Beikai Experimental Animal Co., Ltd. were used for the study. The tumor tissue of LU-01-0393FP6 was cut into 20-30 mm 3 and inoculated into the right back of each mouse to wait for tumor growth. When the average tumor volume reached about 171 mm 3 , randomized administration was performed. The test compound is orally administered daily, and the dose is as shown in the above table.
- the anti-tumor efficacy was determined by dividing the average tumor-increased volume of the animals treated with the compound by the average tumor-increased volume of the animals treated with the compound.
- the antitumor efficacy of the test compound is as follows:
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
一种取代的2-氢-吡唑衍生物晶型、盐型及其制备方法,以及所述晶型和盐型在制备治疗乳腺癌、肺癌等癌症的药物中的应用。
Description
本发明涉及一种取代的2-氢-吡唑衍生物的晶型、盐型及其制备方法,还包括所述晶型和盐型在制备治疗乳腺癌与其他癌症药物中的应用。
细胞周期的调控主要受一系列丝氨酸/苏氨酸激酶的影响,这类丝氨酸/苏氨酸激酶又被称作细胞周期蛋白依赖性激酶(CDK),他们通过与其相对应的调节亚基周期素(cyclins)相结合,推动细胞周期的进行、遗传信息的转录和细胞的正常分裂增殖。CDK4/6是细胞周期的关键调节因子,能够触发细胞周期从生长期(G1期)向DNA复制期(S1期)转变。在细胞增殖过程中,细胞周期素D(Cyclin D)与CDK4/6形成的复合物能够磷酸化视网膜母细胞瘤蛋白(Rb)。肿瘤抑制蛋白Rb一旦发生磷酸化,可释放其在未被磷酸化的状态下紧密结合的转录因子E2F,E2F激活进一步转录推动细胞周期通过限制点(R点)并从G1期进展到S期,进入了细胞增殖的周期。因此,抑制CDK4/6使之无法形成Cyclin D-CDK4/6复合物,就能够阻滞细胞周期自G1期向S期的进程,从而达到抑制肿瘤增殖的目的。在雌激素受体阳性(ER+)乳腺癌(BC)中,CDK4/6的过度活跃非常频繁,而CDK4/6是ER信号的关键下游靶标。临床前数据表明,CDK4/6和雌激素受体(ER)信号双重抑制具有协同作用,并能够抑制G1期雌激素受体阳性(ER+)乳腺癌(BC)细胞的生长。
CDK4/6靶点是一个竞争很激烈的研发领域。Pietzsch在2010年总结了这一领域的进展情况(Mini-Rev.Med.Chem.2010,10,527-539)。Malorni还在2014年总结了最新的CDK4/6抑制剂在乳腺癌临床前和临床上的研究成果(Curr.Opin.Oncol.2014,26,568–575)。针对CDK4/6靶点的大量研究工作促进了一系列不同选择性的CDK抑制剂的开发,同时也导致少数几个有效和高选择性的CDK4/6抑制剂的发现。Palbociclib(PD0332991)是这几个有效和高选择性的CDK4/6抑制剂之一,它已经进入人体临床试验,用于妇女晚期或转移性雌激素受体(ER+),人表皮生长因子受体2阴性(HER2-)乳腺癌的治疗。基于PALOMA-1实验的中期数据,2014年8月辉瑞公司已经向FDA提交了palbociclib的新药申请(NDA),FDA于2015年2月批准了palbociclib的上市请求。其他两个CDK4/6抑制剂Abemaciclib(LY2835219)和LEE-011也已经开始为3期临床试验招募患者癌症。除了可用于乳腺癌的治疗,这些小分子的杂环化合物在临床上还可以用于其它多种癌症的治疗。这些专利包括WO2012018540,WO2012129344,WO2011101409,WO2011130232,WO2010075074,WO2009126584,WO2008032157,WO2003062236。
发明内容
本发明提供式(I)化合物的马来酸盐。
本发明的一些方案中,上述式(I)化合物的马来酸盐,如式(II)所示,其中,x选自0.5~2。
本发明的一些方案中,上述x为0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9或2.0。
本发明的一些方案中,上述式(II)化合物为化合物WX_1,其中x为0.8、0.9、1或1.1。
本发明的一些方案中,所述化合物WX_1中,x为1。
本发明还提供了化合物WX_1的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.69±0.2°,14.04±0.2°。
本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.69±0.2°,9.35±0.2°,13.28±0.2°,14.04±0.2°,16.03±0.2°,18.74±0.2°,20.08±0.2°,28.25±0.2°。
本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.69±0.2°,9.35±0.2°,10.01±0.2°,13.28±0.2°,14.04±0.2°,16.03±0.2°,18.74±0.2°,20.08±0.2°,23.53±0.2°,25.11±0.2°,27.80±0.2°,28.25±0.2°。
本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.69±0.2°,9.35±0.2°,10.01±0.2°,13.28±0.2°,14.04±0.2°,16.03±0.2°,16.83±0.2°,17.73±0.2°,18.58±0.2°,18.74±0.2°,20.08±0.2°,21.58±0.2°,23.53±0.2°,25.11±0.2°,25.27±0.2°,27.80±0.2°,28.25±0.2°,33.00±0.2°。
本发明一些方案中,上述A晶型的X射线粉末衍射图谱中,特征峰的峰位置及强度如表1所示:
表1:A晶型的X射线粉末衍射图谱的特征峰的峰位置及强度
编号 | 2θ角(°) | 相对强度(%) | 编号 | 2θ角(°) | 相对强度(%) |
1 | 4.690 | 100 | 10 | 18.737 | 5.3 |
2 | 9.353 | 6.4 | 11 | 20.078 | 6.8 |
3 | 10.008 | 3.6 | 12 | 21.580 | 3.7 |
4 | 13.276 | 6.9 | 13 | 23.532 | 5.3 |
5 | 14.035 | 77.7 | 14 | 25.114 | 3.9 |
6 | 16.025 | 7.8 | 15 | 25.269 | 6.3 |
7 | 16.831 | 2.4 | 16 | 27.801 | 3.6 |
8 | 17.726 | 2.3 | 17 | 28.251 | 7.5 |
9 | 18.581 | 1.9 | 18 | 32.999 | 2.1 |
本发明的一些方案中,上述A晶型的XRPD图谱如图1所示,即具有如图1所示的XRPD图谱所代表的特征。
本发明的一些方案中,上述A晶型的XRPD图谱解析数据如表2所示:
表2:A晶型的XRPD解析数据
本发明的一些方案中,上述A晶型,其DSC图谱如图2所示,即具有如图2所示的DSC图谱所代表的特征。
本发明的一些方案中,上述A晶型的差示扫描量热曲线在208.18℃±3℃处具有吸热峰。
本发明的一些方案中,上述A晶型,其TGA图谱如图3所示,即具有如图3所示的TGA图谱所代表的特征。
本发明的一些方案中,上述A晶型的热重分析曲线在188.49±3℃处失重达0.3110±0.2%。
本发明的一些方案中,上述化合物WX_1的A晶型中,x为1。
本发明还提供式(I)化合物的马来酸盐的制备方法,包括式(I)化合物与马来酸接触。
本发明的一些方案中,上述化合物WX_1的A晶型的制备方法包括如下步骤:
(1)将马来酸和溶剂混合;
(2)向步骤(1)的混合物中加入式(I)化合物;
(3)过滤,干燥;
其中,所述溶剂选自甲醇、乙醇、异丙醇、丙酮、乙酸乙酯的一种或一种以上,以及甲醇/水的混合溶剂或者异丙醇/水的混合溶剂,优选为甲醇/水的混合溶剂。
本发明的一些方案中,马来酸与式(I)化合物的摩尔比约为1-1.1:1。
本发明的一些方案中,甲醇/水的体积比约为1-50:1,优选为1-20:1;在本发明的一些具体实施方案中,甲醇/水的体积比约为3:1;在本发明的一些具体实施方案中,甲醇/水的体积比约为17-18:1。
本发明的一些方案中,异丙醇/水的体积比约为0.5-5:1,优选为1:1。
本发明的一些方案中,步骤(1)在加热的条件下进行。
本发明的一些方案中,步骤(1)的加热温度约为60~70℃,优选为约65℃。
本发明的一些方案中,步骤(2)中加入式(I)化合物后进行搅拌。
本发明的一些方案中,步骤(2)中加入式(I)化合物后,在温度约为60~70℃下搅拌,优选约为65℃。
本发明的一些方案中,步骤(3)在过滤前进行冷却,所述冷却可以是冷却至20℃。
本发明的一些方案中,步骤(3)可以根据需要在冷却后进行搅拌,所述搅拌的时间可以是15~22小时,优选18小时。
本发明的一些方案中,步骤(3)干燥之前任选地用溶剂洗涤,所述洗涤溶剂选自甲醇、乙醇、异丙醇、丙酮或者乙酸乙酯,以及甲醇/水的混合溶剂或者异丙醇/水的混合溶剂,优选为甲醇。
本发明还提供上述化合物WX_1的A晶型的精制方法,包括:
(a)先将溶剂升温至45~55℃,然后将化合物WX_1A晶型加入溶剂中;
(b)在45~55℃下搅拌1~3小时;
(c)冷却,过滤,滤饼用溶剂洗涤;
(d)干燥48~72小时;
其中,步骤(a)和步骤(c)所述的溶剂分别独立地选自甲醇、乙醇和异丙醇一种或一种以上,优选为甲醇、乙醇或异丙醇的一种,进一步优选步骤(a)和步骤(c)中的溶剂均为甲醇。
本发明的一些方案中,步骤(a)为将溶剂升温至50℃,然后将化合物WX_1A晶型加入溶剂中。
本发明的一些方案中,步骤(b)为在50℃下搅拌1~3小时。
本发明的一些具体方案中,步骤(b)为在50℃下搅拌2小时。
本发明的一些方案中,步骤(c)的冷却温度为冷却至30℃。
本发明的一些具体方案中,步骤(c)干燥64小时。
本发明还提供式(I)化合物的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:12.88±0.2°,14.18±0.2°,16.72±0.2°,17.49±0.2°,19.21±0.2°,21.06±0.2°,21.65±0.2°,24.14±0.2°。
本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.86±0.2°,12.88±0.2°,14.18±0.2°,16.72±0.2°,17.49±0.2°,19.21±0.2°,21.06±0.2°,21.65±0.2°,24.14±0.2°,26.29±0.2°,27.69±0.2°。
本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.56±0.2°,9.86±0.2°,11.53±0.2°,12.01±0.2°,12.88±0.2°,14.18±0.2°,15.21±0.2°,15.66±0.2°,16.72±0.2°,17.49±0.2°,18.79±0.2°,19.21±0.2°,19.76±0.2°,21.06±0.2°,21.65±0.2°,22.52±0.2°,22.93±0.2°,24.14±0.2°,24.47±0.2°,26.29±0.2°,27.69±0.2°,28.48±0.2°,28.79±0.2°,30.25±0.2°,30.74±0.2°,31.67±0.2°,34.79±0.2°,35.18±0.2°。
本发明一些方案中,上述B晶型的X射线粉末衍射图谱中,特征峰的峰位置及强度如表3所示:
表3:B晶型的X射线粉末衍射图谱的特征峰的峰位置及强度
编号 | 2θ角(°) | 相对强度(%) | 编号 | 2θ角(°) | 相对强度(%) |
1 | 9.560 | 13.3 | 16 | 22.516 | 5.2 |
2 | 9.857 | 18.8 | 17 | 22.933 | 33.1 |
3 | 11.533 | 2.1 | 18 | 24.135 | 100.0 |
4 | 12.007 | 10.7 | 19 | 24.471 | 9.6 |
5 | 12.876 | 47.8 | 20 | 25.912 | 6.7 |
6 | 14.177 | 30.6 | 21 | 26.286 | 41.6 |
7 | 15.207 | 3.3 | 22 | 27.685 | 37.6 |
8 | 15.659 | 6.2 | 23 | 28.475 | 4.1 |
9 | 16.719 | 18.0 | 24 | 28.791 | 2.6 |
10 | 17.488 | 34.3 | 25 | 30.250 | 15.9 |
11 | 18.792 | 12.9 | 26 | 30.738 | 2.9 |
12 | 19.206 | 55.0 | 27 | 31.669 | 15.3 |
13 | 19.757 | 2.3 | 28 | 34.786 | 4.1 |
14 | 21.060 | 79.9 | 29 | 35.176 | 5.1 |
15 | 21.651 | 67.8 | - | - | - |
本发明的一些方案中,上述B晶型的XRPD图谱如图4所示,即具有如图4所示的XRPD图谱所代表的特征。
本发明的一些方案中,上述B晶型的XRPD图谱解析数据如表4所示:
表4:B晶型的XRPD解析数据
编号 | 2θ角(°) | 面间距(A) | 相对强度(%) | 编号 | 2θ角(°) | 面间距(A) | 相对强度(%) |
1 | 9.560 | 9.2436 | 13.3 | 16 | 22.516 | 3.9455 | 5.2 |
2 | 9.857 | 8.9655 | 18.8 | 17 | 22.933 | 3.8747 | 33.1 |
3 | 11.533 | 7.6665 | 2.1 | 18 | 24.135 | 3.6845 | 100.0 |
4 | 12.007 | 7.3651 | 10.7 | 19 | 24.471 | 3.6346 | 9.6 |
5 | 12.876 | 6.8696 | 47.8 | 20 | 25.912 | 3.4356 | 6.7 |
6 | 14.177 | 6.2420 | 30.6 | 21 | 26.286 | 3.3876 | 41.6 |
7 | 15.207 | 5.8216 | 3.3 | 22 | 27.685 | 3.2195 | 37.6 |
8 | 15.659 | 5.6546 | 6.2 | 23 | 28.475 | 3.1319 | 4.1 |
9 | 16.719 | 5.2982 | 18.0 | 24 | 28.791 | 3.0983 | 2.6 |
10 | 17.488 | 5.0668 | 34.3 | 25 | 30.250 | 2.9522 | 15.9 |
11 | 18.792 | 4.7181 | 12.9 | 26 | 30.738 | 2.9063 | 2.9 |
12 | 19.206 | 4.6175 | 55.0 | 27 | 31.669 | 2.8230 | 15.3 |
13 | 19.757 | 4.4898 | 2.3 | 28 | 34.786 | 2.5769 | 4.1 |
14 | 21.060 | 4.2149 | 79.9 | 29 | 35.176 | 2.5492 | 5.1 |
15 | 21.651 | 4.1012 | 67.8 | - | - | - |
本发明的一些方案中,上述B晶型的DSC图谱如图5所示,即具有如图5所示的DSC图谱所代表的特征。
本发明的一些方案中,上述B晶型的差示扫描量热曲线在225.76℃附近有一个吸热峰。
在本发明的一些方案中,上述B晶型的差示扫描量热曲线在225.76℃±3℃处具有吸热峰。
本发明的一些方案中,上述B晶型的TGA图谱如图6所示,即具有如图6所示的TGA图谱所代表的特征。
本发明的一些方案中,上述B晶型的热重分析曲线在52.81℃±3℃、184.82℃±3℃和230.03℃±3℃处失重。
本发明的一些方案中,上述B晶型的热重分析曲线在52.81℃±3℃时,重量减少了0.1384%;在184.82℃±3℃,重量又减少了0.3565%;和230.03℃±3℃时,重量又减少了0.4086%。
本发明的一些方案中,上述B晶型的热重分析曲线在52.81℃时,重量减少了0.1384%;在184.82℃时,重量又减少了0.3565%;在230.03℃时,重量又减少了0.4086%。
本发明还提供了上述B晶型的制备方法,包括以下步骤:
(i)将式(I)化合物加入溶剂中,加热;
(ii)缓慢降温,静置;
(iii)离心,干燥。
在一些实施方案中,步骤(i)所述溶剂为乙醇、水的一种或两种,优选为乙醇和水的混合溶剂。
在一些实施方案中,步骤(i)加热温度为70~100℃,优选为80℃。
在一些实施方案中,上述B晶型的制备方法,包括以下步骤:
(i)将式(I)化合物加入溶剂中,在70~100℃下搅拌0.5~2小时;
(ii)缓慢降温,静置8~16小时;
(iii)离心,干燥8~16小时;
其中,所述溶剂为乙醇和水的混合溶剂,乙醇和水的体积比为3:1。
本发明的一些方案中,步骤(i)为将式(I)化合物加入溶剂中,在80℃下搅拌0.5~2小时。
本发明的一些具体方案中,步骤(i)为将式(I)化合物加入溶剂中,在80℃下搅拌1小时。
另一方面,本发明提供包含所述化合物WX_1的A晶型的结晶组合物,其中,所述化合物WX_1的A晶型占结晶组合物重量的50%以上,较好为80%以上,更好是90%以上,最好是95%以上。
另一方面,本发明提供包含所述式(I)化合物的B晶型的结晶组合物,其中,所述式(I)化合物的B晶型占结晶组合物重量的50%以上,较好为80%以上,更好是90%以上,最好是95%以上。
另一方面,本发明提供了包含所述式(I)化合物的马来酸盐、式(II)化合物、化合物WX_1、化合物WX_1的A晶型、包含化合物WX_1的A晶型的结晶组合物、式(I)化合物的B晶型、或包含式(I)化合物的B晶型的结晶组合物的药物组合物,该药物组合物中包含治疗有效量的本发明所述式(I)化合物的马来酸盐、式(II)化合物、化合物WX_1、化合物WX_1的A晶型、包含化合物WX_1的A晶型的结晶组合物、式(I)化合物的B晶型、或包含式(I)化合物的B晶型的结晶组合物。本发明的药物组合物中可含有或不含有药学上可接受的辅料。
另一方面,本发明还提供上述化合物、A晶型和B晶型在制备治疗乳腺癌与其他癌症药物中的应用。
另一方面,本发明还提供了式(I)化合物的马来酸盐、式(II)化合物、化合物WX_1、化合物WX_1的A晶型、包含化合物WX_1的A晶型的结晶组合物、式(I)化合物的B晶型、或包含式(I)化合物的B晶型的结晶组合物,或其药物组合物在制备用于治疗CDK4/6介导的疾病的药物中的用途,其中所述疾病包括癌症,优选为乳腺癌或肺癌。
另一方面,本发明还提供一种治疗哺乳动物(例如人)疾病的方法,其中所述疾病是CDK4/6介导的疾病,该方法包括向哺乳动物(例如人)给予治疗有效量的式(I)化合物的马来酸盐、式(II)化合物、化合物WX_1、化合物WX_1的A晶型、包含化合物WX_1的A晶型的结晶组合物、式(I)化合物的B晶型、或包含式(I)化合物的B晶型的结晶组合物,或其药物组合物,其中所述疾病包括癌症,优选为乳腺癌或肺癌。
还一方面,本发明还提供了用于治疗CDK4/6介导的哺乳动物(例如人)的疾病的式(I)化合物的马来酸盐、式(II)化合物、化合物WX_1、化合物WX_1的A晶型、包含化合物WX_1的A晶型的结晶组合物、式(I)化合物的B晶型、或包含式(I)化合物的B晶型的结晶组合物,或其药物组合物,其中所述疾病包括癌症,优选为乳腺癌或肺癌。
技术效果
式(I)化合物的马来酸盐在生物活性、安全性、生物利用度等至少一方面具有优异的效果,化合物WX_1的A晶型和式(I)化合物的B晶型非常稳定,吸湿性小,水溶性好,成药前景良好。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
术语“治疗”意为将本申请所述化合物或制剂进行给药以预防、改善或消除疾病或与所述疾病相关的一个或多个症状,且包括:
(i)预防疾病或疾病状态在哺乳动物中出现,特别是当这类哺乳动物易患有该疾病状态,但尚未被诊断为已患有该疾病状态时;
(ii)抑制疾病或疾病状态,即遏制其发展;
(iii)缓解疾病或疾病状态,即使该疾病或疾病状态消退。
术语“治疗有效量”意指(i)治疗或预防特定疾病、病况或障碍,(ii)减轻、改善或消除特定疾病、病况或障碍的一种或多种症状,或(iii)预防或延迟本文中所述的特定疾病、病况或障碍的一种或多种症状发作的本申请化合物的用量。构成“治疗有效量”的本申请化合物的量取决于该化合物、疾病状态及其严重性、给药方式以及待被治疗的哺乳动物的年龄而改变,但可例行性地由本领域技术人员根据其自身的知识及本公开内容而确定。
术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
作为药学上可接受的盐,例如,可以提及金属盐、铵盐、与有机碱形成的盐、与无机酸形成的盐、与有机酸形成的盐、与碱性或者酸性氨基酸形成的盐等。
术语“药物组合物”是指一种或多种本申请的化合物或其盐与药学上可接受的辅料组成的混合物。药物组合物的目的是有利于对有机体给予本申请的化合物。
术语“药学上可接受的辅料”是指对有机体无明显刺激作用,而且不会损害该活性化合物的生物活性
及性能的那些辅料。合适的辅料是本领域技术人员熟知的,例如碳水化合物、蜡、水溶性和/或水可膨胀的聚合物、亲水性或疏水性材料、明胶、油、溶剂、水等。
词语“包括(comprise)”或“包含(comprise)”及其英文变体例如comprises或comprising应理解为开放的、非排他性的意义,即“包括但不限于”。
术语“PO”是指口服给药。
述语“QD×3W”是指一天一次,持续给药3周。
本申请的药物组合物可通过将本申请的化合物与适宜的药学上可接受的辅料组合而制备,例如可配制成固态、半固态、液态或气态制剂,如片剂、丸剂、胶囊剂、粉剂、颗粒剂、膏剂、乳剂、悬浮剂、栓剂、注射剂、吸入剂、凝胶剂、微球及气溶胶等。
给予本申请化合物或其药学上可接受的盐或其药物组合物的典型途径包括但不限于口服、直肠、局部、吸入、肠胃外、舌下、阴道内、鼻内、眼内、腹膜内、肌内、皮下、静脉内给药。
本申请的药物组合物可以采用本领域众所周知的方法制造,如常规的混合法、溶解法、制粒法、制糖衣药丸法、磨细法、乳化法、冷冻干燥法等。
在一些实施方案中,药物组合物是口服形式。对于口服给药,可以通过将活性化合物与本领域熟知的药学上可接受的辅料混合,来配制该药物组合物。这些辅料能使本申请的化合物被配制成片剂、丸剂、锭剂、糖衣剂、胶囊剂、液体、凝胶剂、浆剂、悬浮剂等,用于对患者的口服给药。
可以通过常规的混合、填充或压片方法来制备固体口服组合物。例如,可通过下述方法获得:将所述的活性化合物与固体辅料混合,任选地碾磨所得的混合物,如果需要则加入其它合适的辅料,然后将该混合物加工成颗粒,得到了片剂或糖衣剂的核心。适合的辅料包括但不限于:粘合剂、稀释剂、崩解剂、润滑剂、助流剂、甜味剂或矫味剂等。
药物组合物还可适用于肠胃外给药,如合适的单位剂型的无菌溶液剂、混悬剂或冻干产品。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
本发明采用下述缩略词:MW代表微波;r.t.代表室温;aq代表水溶液;DCM代表二氯甲烷;THF代表四氢呋喃;DMSO代表二甲基亚砜;NMP代表N-甲基吡咯烷酮;EtOAc代表乙酸乙酯;EtOH代表乙
醇;MeOH代表甲醇;dioxane代表二氧六环;HOAc代表乙酸;Boc代表叔丁氧羰基,Cbz代表苄氧羰基,两者都是胺保护基团;Boc2O代表二-叔丁基二碳酸酯;DIPEA代表二异丙基乙胺;TEA或Et3N代表三乙胺;BnNH2代表苄胺;PMBNH2代表对甲氧基苄胺;KOAc代表醋酸钾;NaOAc代表醋酸钠;Cs2CO3代表碳酸铯;K2CO3代表碳酸钾;NaHCO3代表碳酸氢钠;Na2SO4代表硫酸钠;pyridine代表吡啶;NaOH代表氢氧化钠;TEA或Et3N代表三乙胺;NaH代表钠氢;LiHMDS代表双(三甲基硅基)胺基锂;i-PrMgBr代表异丙基溴化镁;t-BuOK代表叔丁醇钾;t-BuONa代表叔丁醇钠;Pd2(dba)3代表三(二亚苄基丙酮)二钯;Pd(PPh3)4代表三苯基膦钯;Pd(dppf)Cl2CH2Cl2代表[1,1'-双(二苯基磷)二茂铁]二氯化钯.二氯甲烷;Pd(OAc)2代表醋酸钯;Pd(PPh3)2Cl2代表二(三苯基膦)二氯化钯;Rh(PPh3)3Cl代表三(三苯基膦)氯化铑;Pd(OH)2代表氢氧化钯;Xantphos代表4,5-双(二苯基膦)-9,9-二甲基氧杂蒽;Xphos代表2-二环己基膦-2',4',6'-三异丙基联苯;BINAP代表(±)-2,2'-双-(二苯膦基)-1,1'-联萘;Xantphos代表4,5-双-(二苯基膦基)-9,9-二甲基氧杂蒽;Xphos-Pd-G1代表氯(2-二环己基膦基-2',4',6'-三异丙基-1,1'-联苯基)[2-(2'-氨基乙基苯基)]钯(II);Xphos-PD-G2代表氯(2-二环己基膦基-2',4',6'-三异丙基-1,1'-联苯基)[2-(2'-氨基-1,1'-联苯)]钯(II);Xphos-Pd-G3代表甲磺酸(2-二环己基膦基-2',4',6'-三异丙基-1,1'-联苯基)[2-(2'-氨基-1,1'-联苯)]钯(II);I2代表碘单质;LiCl代表氯化锂;HCl代表盐酸;maleic acid代表马来酸。
本发明粉末X-射线衍射(又称“X-射线粉末衍射”,X-ray powder diffractometer,XRPD)方法
仪器型号:布鲁克D8advance X-射线衍射仪
测试方法:大约10~20mg样品用于XRPD检测。
详细的XRPD参数如下:
光管电压:40kV,光管电流:40mA
发散狭缝:0.60mm
探测器狭缝:10.50mm
防散射狭缝:7.10mm
扫描范围:4-40deg
步径:0.02deg
步长:0.12秒
样品盘转速:15rpm
需要说明的是,在X‐射线粉末衍射光谱(XRPD)中,由结晶化合物得到的衍射谱图对于特定的结晶往往是特征性的,其中谱带(尤其是在低角度)的相对强度可能会因为结晶条件、粒径和其它测定条件的差
异而产生的优势取向效果而变化。因此,衍射峰的相对强度对所针对的结晶并非是特征性的,判断是否与已知的结晶相同时,更应该注意的是峰的相对位置而不是它们的相对强度。此外,对任何给定的结晶而言,峰的位置可能存在轻微误差,这在结晶学领域中也是公知的。例如,由于分析样品时温度的变化、样品移动、或仪器的标定等,峰的位置可以移动,2θ值的测定误差有时约为±0.2°。因此,在确定每种结晶结构时,应该将此误差考虑在内。在XRPD图谱中通常用2θ角或晶面距d表示峰位置,两者之间具有简单的换算关系:d=λ/2sinθ,其中d代表晶面距(又称“面间距”),λ代表入射X射线的波长,θ为衍射角。对于同种化合物的同种结晶,其XRPD谱的峰位置在整体上具有相似性,相对强度误差可能较大。还应指出的是,在混合物的鉴定中,由于含量下降等因素会造成部分衍射线的缺失,此时,无需依赖高纯试样中观察到的全部谱带,甚至一条谱带也可能对给定的结晶是特征性的。
本发明差热分析(又称“差示扫描量热法”,Differential Scanning Calorimeter,DSC)方法
仪器型号:TA Q2000差示扫描量热仪
测试方法:取样品(~1mg)置于DSC铝锅内进行测试,在50mL/min N2条件下,以10℃/min的升温速率,加热样品从25℃到300℃。
DSC测定当结晶由于其结晶结构发生变化或结晶熔融而吸收或释放热时的转变温度。对于同种化合物的同种结晶,在连续的分析中,热转变温度和熔点误差典型的在约5℃之内,通常在约3℃之内,当我们说一个化合物具有一给定的DSC峰或熔点时,这是指该DSC峰或熔点±5℃。DSC提供了一种辨别不同结晶的辅助方法。不同的结晶形态可根据其不同的转变温度特征而加以识别。需要指出的是对于混合物而言,其DSC峰或熔点可能会在更大的范围内变动。此外,由于在物质熔化的过程中伴有分解,因此熔化温度与升温速率相关。
本发明热重分析(Thermal Gravimetric Analyzer,TGA)方法
仪器型号:TA Q5000IR热重分析仪
测试方法:取样品(2~5mg)置于TGA铂金锅内进行测试,在25mL/min N2条件下,以10℃/min的升温速率,加热样品从室温到到350℃。
图1为化合物WX_1A晶型的Cu-Kα辐射的XRPD谱图。
图2为化合物WX_1A晶型的DSC谱图。
图3为化合物WX_1A晶型的TGA谱图。
图4为式(I)化合物B晶型的Cu-Kα辐射的XRPD谱图。
图5为式(I)化合物B晶型的DSC谱图。
图6为式(I)化合物B晶型的TGA谱图。
为了更好的理解本发明的内容,下面结合具体实施例来做进一步的说明,但具体的实施方式并不是对本发明的内容所做的限制。
WX_1A晶型的制备
在20℃下,将马来酸(439.30克,99.6%纯度),甲醇(11.90升)和水(666.00毫升)加入到50升反应釜中,得到的混合物加热至65℃,然后向反应釜中加入式(I)化合物(1.66千克)。将反应混合物在65℃下搅拌1小时后,冷却至20℃,搅拌18小时。得到的混合物过滤,滤饼用甲醇(2升×2)洗涤后,在45℃条件下真空干燥70小时,得到化合物WX_1A晶型的粗品(1.55千克,98.88%纯度)。1H NMR(400MHz,DMSO-d6)δ9.88(s,1H),8.67(s,1H),8.61(d,J=3.9Hz,1H),8.17(d,J=9.2Hz,1H),8.11(d,J=2.9Hz,1H),7.93(d,J=9.3Hz,1H),7.67(d,J=9.0Hz,1H),7.49(dd,J=9.1,3.1Hz,1H),6.05(s,2H),4.15(s,3H),3.60(td,J=14.0,7.0Hz,1H),3.33(br d,J=6.0Hz,4H),3.29(br d,J=5.9Hz,4H),1.51(d,J=6.9Hz,6H).
在30℃下,向10升三口瓶中加入甲醇(8.65升),将此溶液加热至50℃,然后将WX_1A晶型的粗品(865.00克,1.52摩尔,1.00当量)加入到反应瓶中。将反应混合物在50℃下搅拌2小时。然后将反应混合物冷却至30℃,过滤,滤饼用甲醇(1升×2)洗涤后,在45℃条件下真空干燥64小时,得到WX_1A晶型(780.00克,98.98%纯度)。1H NMR(400MHz,DMSO-d6)δ9.83(s,1H),8.67(s,1H),8.60(d,J=4.0Hz,1H),8.16(d,J=9.0Hz,1H),8.10(d,J=2.9Hz,1H),7.93(d,J=9.2Hz,1H),7.67(d,J=9.0Hz,1H),7.49(dd,J=9.2,3.0Hz,1H),6.04(s,2H),4.15(s,3H),3.60(td,J=14.0,7.0Hz,1H),3.34(br d,J=3.5Hz,4H),3.29(br d,J=5.8Hz,4H),1.51(d,J=7.0Hz,6H)
式(I)化合物的制备
制备流程1:
第1步:
向化合物(1)(20.00克,98.53毫摩尔,1.00当量)的二甲亚砜(52毫升)溶液中,加入化合物(2)
(24.00克,128.86毫摩尔,1.31当量)和三乙胺(20.00克,197.65毫摩尔,2.01当量)。将溶液加热到60℃并搅拌18小时。TLC(石油醚:乙酸乙酯=3:1)显示反应完全。溶液用水(200毫升)稀释并搅拌30分钟,然后过滤。滤饼用水洗,用真空干燥得到粗产物。粗产物用硅胶柱(石油醚:乙酸乙酯=50:1至20:1)纯化,得到化合物(3)(27.00克,87.57毫摩尔,产率:88.87%),。1H NMR(400MHz,CDCl3)δ8.18(d,J=9.03Hz,1H),8.13(d,J=2.89Hz,1H),7.21(dd,J=9.10,2.95Hz,1H),3.69-3.59(m,4H),3.51-3.40(m,4H),1.49(s,9H).
第2步:
在氮气保护下,向化合物(3)(28.00克,90.81毫摩尔,1.00当量)的甲醇(600毫升)溶液中,加入钯碳(6%,1.7克)。悬浊液抽气并充入氢气几次。溶液在50℃,氢气(50psi)氛围下搅拌18小时。TLC(二氯甲烷:甲醇=10:1)显示原料反应完全。将悬浊液过滤,滤液旋干,得到化合物(4)(24.13克,86.69毫摩尔,产率:95.46%)。1H NMR(400MHz,CDCl3)δ7.78(d,J=2.64Hz,1H)7.18(dd,J=8.78,2.89Hz,1H)6.50(d,J=8.78Hz,1H)4.21(br s,2H)3.60-3.54(m,4H)3.00-2.92(m,4H)1.48(s,9H).
制备流程2:
第1步:
向85%的水合肼(103.00克,2.06摩尔,23.20当量)水溶液中,缓慢加入化合物(5)(18.00克,
88.67毫摩尔,1.00当量),在滴加过程中有白色固体慢慢析出。将混合物在110℃下搅拌16小时。LCMS显示大部分为目标化合物,将混合物冷却到16℃并过滤,滤饼用水(100毫升)洗涤得到粗产品,粗产品通过柱层析纯化(石油醚:乙酸乙酯=3:2),得到化合物(6)(6.50克,32.99毫摩尔,产率37.21%)。LCMS(ESI)m/z:197.1(M+1).
第2步:
在30℃,氮气保护下,向化合物(6)(20.00克,101.51毫摩尔,1.00当量)和甲醇钠(5.48克,5.48毫摩尔,5.48当量)的甲醇(150.00毫升)溶液中,滴加碘甲烷(57.00克,401.58毫摩尔,3.96当量),控制滴加时间为1小时。然后将混合物加热到85℃并搅拌5小时,LCMS显示原料几乎消耗完全并且检测到所需化合物的MS,将混合物冷却至16℃并浓缩得到粗产品,用3%的NaHCO3水溶液(30毫升)稀释,用乙酸乙酯(80毫升×2)萃取,有机相减压浓缩。残余物通过柱层析纯化(石油醚:乙酸乙酯=30:1至1:1),得到化合物(7)(8.40克,39.80毫摩尔,收率39.21%),。1H NMR(400MHz,DMSO-d6)δ8.33(s,1H),7.95(s,1H),7.58(d,J=8.0Hz,1H),7.30(dd,J=1.8Hz,8Hz,1H),4.18(s,1H).LCMS(ESI)m/z:210.8(M+1).
第3步:
在30℃下,向化合物(7)(8.40克,39.80毫摩尔,1.00当量)的二氯甲烷(90毫升)溶液中,加入吡啶(4.72克,59.70毫摩尔,1.5当量)和双(三氟乙酰氧)碘代苯(20.54克,47.76毫摩尔,1.20当量)将混合物搅拌0.5小时,然后加入碘(12.12克,47.76毫摩尔,1.20当量)继续搅拌23.5小时。LCMS显示反应完全,将混合物过滤,得到化合物(8)(8.20克,粗品)。LCMS(ESI)m/z:336.9(M+1).
第4步:
在氮气保护下,向化合物(8)(7.68克,22.79毫摩尔,1.00当量)和异丙烯基硼酸酯(4.21克25.07毫摩尔,1.11当量)的二氧六环(90.00毫升)溶液中,加入K2CO3(9.45克,68.38毫摩尔,3.00当量)的饱和水溶液(30毫升),Pd(dppf)Cl2·CH2Cl2(1.86克,2.28毫摩尔,0.10当量),将混合物在100℃下搅拌3小时。TLC显示原料几乎反应完全,将混合物冷却到30℃,过滤,滤液用乙酸乙酯(100毫升×3)萃取,用水(50毫升×3)洗涤,饱和食盐水(20毫升×3)洗涤,无水Na2SO4干燥,过滤、浓缩,残余物通过柱层析纯化(石油醚:乙酸乙酯=1:1),得到化合物(9)(5.36克,21.34毫摩尔,收率93.66%)。第5步:
在氮气保护下,向化合物(9)(2.80克,11.15毫摩尔,1.00当量)和双联频哪醇硼酸酯(3.40克,13.38毫摩尔,1.20当量)的二氧六环(56.00毫升)溶液中加入KOAc(3.28克,33.45毫摩尔,3.00当量)和Pd(dppf)Cl2·CH2Cl2(1.82克,2.23毫摩尔,0.20当量),将混合物在100℃下搅拌5小时。LCMS显示反应完全,并检测到目标化合物的MS,将混合物冷却到16℃,混合物用乙酸乙酯(20毫升)稀释,过滤
得到滤液。滤液通过柱层析(石油醚:乙酸乙酯=1:1)纯化,得到化合物(10)(3.30克,9.96毫摩尔,收率89.33%,纯度90%)。LCMS(ESI)m/z:299.1(M+1).
第6步:
在氮气保护下,向2,4-二氯-5-氟-嘧啶(147.83毫克,885.34微摩尔,1.20当量)和化合物(10)(220.00毫克,737.78微摩尔,1.00当量)的二氧六环(4毫升)溶液中加入K2CO3(305.91毫克,2.21毫摩尔,3.00当量)和Pd(dppf)Cl2·CH2Cl2(120.50毫克,147.56微摩尔,0.20当量),将混合物在100℃下搅拌3.5小时。TLC显示大多数原料反应完全,LCMS显示主要为目标产物的MS,将混合物冷却到30℃并过滤,滤饼用乙酸乙酯(5毫升)洗涤,滤液浓缩,残余物通过柱层析纯化(石油醚:乙酸乙酯=1:0至6:1),得到化合物(11)(210.0毫克,693.69微摩尔,收率94.02%)。LCMS(ESI)m/z:303.0(M+1).
第7步:
向化合物(11)(200.00毫克,660.65微摩尔,1.00当量)的二氧六环(10.00毫升)溶液中,加入化合物(4)(220.67毫克,792.79微摩尔,1.20当量),Pd2(dba)3(60.50毫克,66.07微摩尔,0.10当量)和Xantphos(76.45毫克,132.13微摩尔,0.20当量)和碳酸铯(430.51毫克,1.32毫摩尔,2.00当量)。溶液在氮气保护下升温到110℃搅拌16小时。LCMS显示反应完全。溶液冷却至25℃,过滤,浓缩得到粗产物。粗产物用制备TLC(乙酸乙酯:石油醚=1:2)纯化,得到化合物(12)(320.00毫克,587.57微摩尔,产率:88.94%)。LCMS(ESI)m/z:545.3(M+1).
第8步:
在氮气保护下,向化合物(12)(320.00毫克,587.57微摩尔,1.00当量)的甲醇(20.00毫升)溶液中加入钯碳(200.00毫克)和乙酸(2.10克,34.97毫摩尔,59.52当量)。悬浊液抽气并充入氢气几次。溶液在50℃,氢气(32psi)氛围下搅拌96小时。LCMS显示反应完全。悬浊液冷却到25℃,过滤,浓缩得到化合物(13)(500.00毫克,粗产品)。LCMS(ESI)m/z:547.1(M+1)。
第9步:
在20℃下,向化合物(13)(10.00克,18.29毫摩尔,1.00当量)的二氯甲烷(80.00毫升)溶液中,加入HCl/EtOAc(4摩尔/升,80.00毫升,17.50当量),搅拌2小时。LCMS显示反应完成。将反应混合物过滤,滤饼用乙酸乙酯(50毫升×3)洗涤。将滤饼溶解在去离子水(100毫升)中,用饱和碳酸氢钠水溶液调节pH至7-8,将该体系用二氯甲烷(200毫升×3)萃取。合并的有机相用饱和食盐水(100毫升)洗涤,经无水硫酸钠干燥后,浓缩。得到的粗产品用叔丁醇(50毫升)在80℃下搅拌1小时,将该体系冷却至20℃,过滤,滤饼用甲醇(30毫升×2)洗涤,干燥后,得到式(Ⅰ)化合物(7.50克,16.63毫摩尔,收率:90.92%,纯度:99%)。1H NMR(400MHz,Methanol-d4)δ8.72(s,1H),8.42(d,J=4.1Hz,1H),8.22(d,J=9.0Hz,1H),8.04(d,J=9.3Hz,1H),8.01(d,J=2.9Hz,1H),7.63(d,J=9.2Hz,1H),7.45(dd,J=9.2,3.0Hz,1H),4.18(s,3H),3.63(quin,J=7.0Hz,1H),3.12(dd,J=6.1,3.8Hz,4H),3.02-2.97(m,4H),1.59(d,J=7.0Hz,6H).
LCMS(ESI)m/z:447.1(M+1).
式(I)化合物B晶型的制备
将大约90mg式(Ⅰ)化合物置于1.5mL玻璃瓶中,加入大约1.2mL的混合溶剂(EtOH:H2O=3:1),形成的混悬液在80℃下搅拌1小时,关闭加热,缓慢降温,静置过夜,将该悬浮液快速离心(14000rpm,5min),得到的固体进一步在40℃真空干燥箱中干燥过夜,得式(I)化合物B晶型。
式(a)化合物的制备
第1步
在氮气保护下,向LiAlH4(1.5克)的四氢呋喃(100毫升)溶液中加入6-氨基吡啶-3-甲酸甲酯(5.00克)的四氢呋喃(50毫升)溶液,将混合物在70℃下搅拌16小时。TLC显示反应完全,将混合物冷却到20℃,依次加入水(1.5毫升),氢氧化钠(15%,1.5毫升)水溶液,水(4.5毫升)并搅拌0.5小时。将混合物过滤,滤液浓缩得到黄色固体,用(石油醚:乙酸乙醋=1:10)洗涤,残余的黄色固体为式(a-1)化合物(2.6克)。
第2步
向式(a-1)化合物的二氯甲烷(30毫升)溶液中加入二氧化锰(17.51克),将混合物在50℃下搅拌16小时。TLC(石油醚:乙酸乙醋=1:1)显示反应完全。将混合物冷却至20℃并过滤,滤液浓缩得到式(a-2)化合物(2.10克)为黄色固体,式(a-2)化合物不经过纯化直接用于下一步反应。
第3步
向式(a-2)化合物(2.00克)的甲醇(20毫升)溶液中加入1-乙基哌嗪(1.87克),将混合物在20℃下搅拌l小时,然后加入NaBH3CN(氰基硼氢化钠,2.57克),将混合物在20℃下搅拌15小时。LCMS显示反应完全,减压浓缩除去溶剂,残余物通过制备HPLC(碱性)纯化,得到式(a-3)化合物(800毫克)为黄色固体。lH NMR(400MHz,CDCl3)δ7.97(d,J=2.0Hz,1H),7.42(dd,J=8.3,2.3Hz,1H),6.48(d,J=8.4Hz,1H),4.38(br.s,2H),3.38(s,2H),2.61-2.31(m,10H),1.08(t,J=7.2Hz,3H).
第4步
在氮气保护下,向化合物(11)(250.00毫克)和式(a-3)化合物(200.13毫克)的二氧六环(8毫升)溶液中加入Pd2(dba)3(151.24毫克),Xantphos(191.13毫克)和Cs2CO3(538.14毫克),将混合物在100℃下搅拌16小时,混合物眼色变成棕色。TLC和LCMS显示原料反应完全,将混合物冷却到20℃并用乙酸乙酯(20毫升)稀释,过滤,滤饼用乙酸乙酯(4毫升)洗涤,滤液浓缩得到粗产物,向粗产物中加入甲醇(8毫升)在30℃下静置2小时,有黄色沉淀析出,过滤,滤饼用甲醇(2毫升)洗涤,干燥得到式(a-4)化合物(143.00毫克)。lH NMR(400MHz,Methanol-d4)δ9.99(s,1H),8.65(s,1H),8.64(s,1H),8.21(t,J=8.8Hz,2H),8.00(d,J=9.2Hz,1H),7.74(d,J=9.2Hz,1H),7.67(d,J=8.8Hz,1H),5.73(s,1H),5.44(s,1H),4.17(s,3H),3.43(s,2H),2.38-2.27(m,13H),0.97(t,J=6.8Hz,3H).LCMS(ESI)m/z:487.2(M+l).
第5步
向Pd/C(20毫克)的甲醇(5毫升)中加入式(a-4)化合物(120.00毫克),向体系中通入氢气并保持压力为15Psi,将混合物在50℃下搅拌16小时。LCMS显示反应完全,过滤,滤液浓缩,残余物通过制备HPLC(HCl)纯化(HCl)纯化,得到式(a)化合物(68.00毫克)。lH NMR(400MHz,Methanol-d4)δ9.99(s,lH),8.72(s,lH),8.65(s,lH),8.25(d,J=8.0Hz,lH),8.19(s,lH),7.94(d,J=4.8Hz,lH),7.67(d,J=8.8Hz,2H),4.16(s,3H),3.62(t,J=6.8Hz,lH),3.44(s,2H),2.55-2.31(m,10H),1.51(d,J=6.4Hz,6H),0.98(s,3H).LCMS(ESI)m/z:489.3(M+l).
化合物WX_1A晶型的吸湿性研究
实验条件:
仪器型号:SMSDVS Advantage动态蒸汽吸附仪
测试条件:取样品(10~15mg)置于DVS样品盘内进行测试。
DVS参数:
温度:25℃
平衡:dm/dt=0.01%/min(最短:10min,最长:180min)
干燥:0%RH下干燥120min
RH(%)测试梯级:10%
RH(%)测试梯级范围:0%-90%-0%
吸湿性评价标准:
吸湿性分类 | 吸湿增重*(ΔW%) |
潮解 | 吸收足量水分形成液体 |
极具吸湿性 | ΔW%≥15% |
有吸湿性 | 15%>ΔW%≥2% |
略有吸湿性 | 2%>ΔW%≥0.2% |
无或几乎无吸湿性 | ΔW%<0.2% |
*在25±1℃和80±2%RH下的吸湿增重
实验结果:化合物WX_1A晶型在25℃、80%RH下的吸湿增重为1.48%。
实验结论:化合物WX_1A晶型略有吸湿性。
化合物WX_1的多晶型研究
将化合物WX_1A晶型在相应溶剂中加热后溶解,在40℃下避光搅拌2天,将溶液离心取沉淀干燥后经XRPD检测,结果如下:
编号 | 溶剂 | 晶型 |
1 | 甲醇 | A晶型 |
2 | 乙醇 | A晶型 |
3 | 异丙醇 | A晶型 |
4 | 丙酮 | A晶型 |
5 | 乙酸乙酯 | A晶型 |
6 | 甲醇-水(3:1) | A晶型 |
7 | 乙醇-水(3:1) | 无定形(挥发) |
8 | 丙酮-水(1:2) | 无定形(挥发) |
9 | 异丙醇-水(1:1) | A晶型(挥发) |
备注:挥发是指将化合物WX_1A晶型在相应溶剂中加热后溶解,离心,取上清液挥发,析出的晶体做XRPD检测。
式(I)化合物与化合物WX_1A晶型的溶解度试验
分别称取大约2毫克的样品(若是盐,则按照式(I)化合物2毫克的标准,根据盐因子计算得到所需要的盐的量)加入到1.5毫升的玻璃瓶中,然后分别加入1毫升不同的溶媒。将上述混悬液中置于磁力搅拌器上进行搅拌(室温25-27℃)。待搅拌24小时后取样,先将所取样品离心,取上层清液,根据溶解情况适当稀释后,用HPLC测定其浓度,结果如下:
备注:
FaSSIF:模拟人类餐前饥饿状态下小肠内的肠液;
FeSSIF:模拟人类餐后饱食状态下小肠内的肠液;
SGF:模拟人类饥饿状态下空胃时的胃液
由上表可以看出,化合物WX_1A晶型在水中的溶解度比式(I)化合物提高了约110倍,溶解性能提升显著。
化合物WX_1A晶型在不同pH中的溶解度研究
实验方法:
大约10毫克的化合物WX_1A晶型加入到8毫升的玻璃瓶中,称取9份,然后分别加入4毫升不同的媒介(0.1N HCl,0.01N HCl,水,pH3.8、pH4.5、pH5.5、pH6.0、pH7.5、pH6.8缓冲液)。将磁子加入到上述混悬液中,置于磁力搅拌器上进行搅拌(温度为37℃,避光)。分别待搅拌4、24小时后取样离心,下层残留固体测定XRPD,上层样品用滤膜过滤,滤液用HPLC测定其浓度,并测定其pH值,HPLC系统用流动相平衡后在开始分析样品,结果如下表:
*:LOQ=0.0003mg/mL S/N=21.7
化合物WX_1A晶型的CDK2/4/6酶学活性测试
实验材料:
CDK2/cyclin A,CDK4/cyclin D1,CDK6/cyclin D1(Life technology)。ULight标记的多肽底物ULight-4E-BP1和ULight-MBP(PerkinElmer)。铕标记的抗髓磷脂碱蛋白抗体和铕标记的兔源抗体(PerkinElmer),Envision多标记分析仪进行信号的检测(PerkinElmer)。
实验方法:
将待检测的化合物进行三倍稀释,包括10个浓度梯度,最终的浓度范围是5uM到0.25nM。
●CDK2/cyclin A的酶反应体系
标准的Lance Ultra方法通过10μL的酶反应体系进行,包含0.5nM CDK2/cyclin A蛋白,100nM ULight-MBP多肽,和25μM ATP。分别将其溶解在酶缓冲液中,缓冲液的成分包括:pH7.5的羟乙基哌嗪乙硫磺酸溶液50mM,乙二胺四乙酸1mM,氯化镁10mM,0.01%Brij-35,二硫苏糖醇2mM。开始反应后,用顶部热封膜TopSeal-A将OptiPlate384孔板封好,室温孵育60分钟。
●CDK4/cyclin D1的酶反应体系
标准的Lance Ultra方法通过10μL的酶反应体系进行,包含0.3nM CDK4/cyclin D1蛋白,50nM ULight-4E-BP1多肽,和350μM ATP。分别将其溶解在酶缓冲液中,缓冲液的成分包括:PH7.5的羟乙基哌嗪乙硫磺酸溶液50mM,乙二胺四乙酸1mM,氯化镁10mM,0.01%Brij-35,二硫苏糖醇2mM。开始反应后,用顶部热封膜TopSeal-A将OptiPlate384孔板封好,室温孵育180分钟。
●CDK6/cyclin D1的酶反应体系
标准的Lance Ultra方法通过10μL的酶反应体系进行,包含0.8nM CDK6/cyclin D1蛋白,50nM ULight-4E-BP1多肽,和250μM ATP。分别将其溶解在酶缓冲液中,缓冲液的成分包括pH7.5的羟乙基哌嗪乙硫磺酸溶液50mM,乙二胺四乙酸1mM,氯化镁10mM,0.01%Brij-35,二硫苏糖醇2mM。开始反应后,用顶部热封膜TopSeal-A将OptiPlate384孔板封好,室温孵育180分钟。
准备酶反应终止缓冲液,用1倍稀释的检测缓冲液溶解EDTA,终止反应在室温进行5分钟。分别在CDK2/cyclin A、CDK4/cyclin D1和CDK6/cyclin D1反应中加入5μL检测混合液(分别用铕标记的抗髓磷脂碱蛋白抗体和铕标记的兔源抗体配置)。室温孵育60分钟,根据时间分辨荧光共振能量转移原理利用Envision仪器检测反应信号。
实验结果:
利用方程式(Max-Ratio)/(Max-Min)*100%将原始数据换算成抑制率,IC50的值即可通过四参数进行曲线拟合得出(XLFIT5中205模式得出,iDBS),结果如下:
注:IC50是指使用某种试剂产生50%最大抑制时对应该试剂的浓度。
化合物WX_1A晶型对MCF-7乳腺癌细胞增殖抑制实验
实验材料:
RPMI 1640培养基,胎牛血清,盘尼西林/链霉素抗生素购自Promega(Madison,WI)。MCF-7细胞系购自欧洲细胞培养物保藏所(ECACC)。Envision多标记分析仪(PerkinElmer)。
实验方法:
将MCF-7细胞种于黑色384孔板中,每孔45μL细胞悬液,其中包含200个MCF-7细胞。细胞板置于二氧化碳培养箱中过夜培养。
将待测化合物用Bravo进行3倍稀释至第10个浓度,即从10μM稀释至0.508nM,设置双复孔实验。向中间板中加入49μL培养基,再按照对应位置,转移1μL每孔的梯度稀释化合物至中间板,混匀后转移5μL每孔到细胞板中。细胞板置于二氧化碳培养箱中培养6天。
向细胞板中加入每孔25μL的Promega CellTiter-Glo试剂,室温孵育10分钟使发光信号稳定。采用PerkinElmer Envision多标记分析仪读数。
实验结果:
利用方程式(Max-Ratio)/(Max-Min)*100%将原始数据换算成抑制率,IC50的值即可通过四参数进行曲线拟合得出(XLFIT5中205模式得出,iDBS),实验结果如下:
受试化合物 | MCF-7 IC50(nM) |
Palbociclib | 88.23 |
LY2835219 | 184.83 |
WX_1A晶型 | 70.03 |
实验结论:
本发明的化合物WX_1A晶型对雌激素受体阳性的MCF-7乳腺癌细胞具有明显的增殖抑制活性。化合物WX_1A晶型较参照化合物Palbociclib和LY2835219具有更高的对MCF-7细胞增殖的抑制活性。
式(I)化合物对MCF-7细胞和MDA-MB-436细胞增殖抑制实验
实验材料:
RPMI 1640培养基,胎牛血清,盘尼西林/链霉素抗生素购自Promega(Madison,WI)。MCF-7细胞系和MDA-MB-436细胞系购自欧洲细胞培养物保藏所(ECACC)。Envision多标记分析仪(PerkinElmer)。
实验方法:
将MCF-7细胞种于黑色384孔板中,每孔45μL细胞悬液,其中包含200个MCF-7细胞。细胞板置于二氧化碳培养箱中过夜培养。
将MDA-MB-436细胞种于黑色384孔板中,每孔45μL细胞悬液,其中包含585个MCF-7细胞。细胞板置于二氧化碳培养箱中过夜培养。
分别将待测化合物用Bravo进行3倍稀释至第10个浓度,即从10μM稀释至0.508nM,设置双复孔实验。向中间板中加入49μL培养基,再按照对应位置,转移1μL每孔的梯度稀释化合物至中间板,混匀后转移5μL每孔到细胞板中。细胞板置于二氧化碳培养箱中培养6天。
向细胞板中加入每孔25μL的Promega CellTiter-Glo试剂,室温孵育10分钟使发光信号稳定。采用PerkinElmer Envision多标记分析仪读数。
实验结果:
利用方程式(Max-Ratio)/(Max-Min)*100%将原始数据换算成抑制率,IC50的值即可通过四参数进行曲线拟合得出(XLFIT5中205模式得出,iDBS),实验结果如下:
受试化合物 | MCF-7 IC50(nM) | MDA-MB-436 IC50(nM) |
式(a)化合物 | 240 | 2098 |
式(I)化合物 | 32.1 | 328 |
化合物WX_1A晶型的体内药效研究(一)
实验材料:
皮下植入MCF-7乳腺癌患者来源的基于人源肿瘤细胞系的异种移植(CDX)BALB/c裸鼠,雌性,6-8周,体重20克。共需150只,购自北京维通利华实验动物技术有限公司。
实验目的:
评价受试药Palbociclib、LY2835219和化合物WX_1A晶型在人乳腺癌MCF-7细胞皮下异种移植肿瘤模型上的体内药效。
实验方法:
(1)配制药物详细方案:
注:动物给药前需要轻轻将药物充分混匀。
(2)动物实验分组和给药方案:
(3)实验操作:
BALB/c裸鼠,雌性,6-8周,体重约20克,将小鼠保持在一个特殊的无病原体的环境中,且在单个通风笼中(10只小鼠每笼)。所有的笼子,铺垫和水在使用前进行消毒。所有的动物都可以自由获取标准认证的商业实验室饮食。共有150只,购自北京维通利华实验动物技术有限公司的小鼠用于研究。每只小鼠在左后背皮下植入雌激素片(0.18mg/片,60天缓释),3天之后,每只小鼠在右后背皮下植入肿瘤细胞(10x 106在0.2毫升磷酸盐缓冲液中),用于肿瘤的生长。当平均肿瘤体积达到约150-200立方毫米时开始给药。将试验化合物每日口服给药,给药剂量如上表所示。肿瘤体积每周两次用二维卡尺测量,体积以立方毫米计量,通过以下公式计算:V=0.5a x b2,其中a和b分别是肿瘤的长径和短径。抗肿瘤药效是通过用化合物处理过的动物的平均肿瘤增加体积除以未用化合物处理过动物的平均肿瘤增加体积来确定。
实验结果:
待测化合物的抗肿瘤疗效如下:
实验结论:
本发明化合物WX_1A晶型在MCF-7乳腺癌基于人源肿瘤细胞系的异种移植(CDX)模型上展示了显著的抗肿瘤活性。如上表所示,实验开始20天后,未给药动物组的肿瘤体积从最开始的153立方毫米快速增长至537立方毫米,而同期化合物WX_1A晶型所在动物组的肿瘤体积只是从最开始的153立方毫米减小至98立方毫米,明显小于参照化合物Palbociclib和LY2835219所在组的肿瘤体积,考虑到化合物WX_1A晶型的给药剂量(18.75mg/kg)少于参照化合物LY2835219(25mg/kg)或者参照化合物Palbociclib(25mg/kg,50mg/kg)(实验证明Palbociclib高剂量不能耐受),化合物WX_1A晶型的抗肿瘤活性明显优于参考化合物。
化合物WX_1A晶型的体内药效研究(二)
实验材料:
皮下植入LU-01-0393肺癌患者来源的基于人源肿瘤细胞系的异种移植(CDX)BALB/c裸鼠,雌性,6-8周,体重17-20克,共需72只,购自上海西普尔-必凯实验动物有限公司。人源性肺癌LU-01-0393肿瘤(即非小细胞肺癌)最初来源于外科切除手术的临床样品,接种到裸鼠上后被定义为P0代,P0代肿瘤再接种到裸鼠上后被定义为P1代,以此类推,在裸鼠上进行传代。LU-01-0393-FP5是从P4复苏后移植所得。本研究实验将会用到FP6代肿瘤组织。
实验目的:
评价受试药Palbociclib、LY2835219和化合物WX_1A晶型在人肺癌LU-01-0393细胞皮下异种移植肿瘤模型上的体内药效。
实验方法:
(1)配制药物详细方案:
注:动物给药前需要轻轻将药物充分混匀。
(2)动物实验分组和给药方案:
(3)实验操作:
BALB/c裸鼠,雌性,6-8周,体重约17-20克,将小鼠保持在一个特殊的无病原体的环境中,且在单个通风笼中。所有的笼子,铺垫和水在使用前进行消毒。所有的动物都可以自由获取标准认证的商业实验室饮食。共有72只,购自上海西普尔-必凯实验动物有限公司的小鼠用于研究。将LU-01-0393FP6肿瘤组织切成20~30mm3接种于每只小鼠的右背等待肿瘤生长,肿瘤平均体积达到约171mm3时进行随机分组给药。将试验化合物每日口服给药,给药剂量如上表所示。每周两次用二维卡尺测量肿瘤直径通过以下公式计算:V=0.5a×b2,其中a和b分别是肿瘤的长径和短径。抗肿瘤药效是通过用化合物处理过的动物的平均肿瘤增加体积除以未用化合物处理过动物的平均肿瘤增加体积来确定。
实验结果:
待测化合物的抗肿瘤疗效如下:
Claims (34)
- 根据权利要求2所述的马来酸盐,其中,x选自0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9或2.0。
- 根据权利要求3所述的马来酸盐,其中x为0.8、0.9、1或1.1。
- 根据权利要求4所述的马来酸盐,其中x为1。
- 根据权利要求4或者5的马来酸盐的晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.69±0.2°,14.04±0.2°。
- 根据权利要求6所述的晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.69±0.2°,9.35±0.2°,13.28±0.2°,14.04±0.2°,16.03±0.2°,18.74±0.2°,20.08±0.2°,28.25±0.2°。
- 根据权利要求7所述的晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.69±0.2°,9.35±0.2°,10.01±0.2°,13.28±0.2°,14.04±0.2°,16.03±0.2°,18.74±0.2°,20.08±0.2°,23.53±0.2°,25.11±0.2°,27.80±0.2°,28.25±0.2°。
- 根据权利要求8所述的晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.69±0.2°,9.35±0.2°,10.01±0.2°,13.28±0.2°,14.04±0.2°,16.03±0.2°,16.83±0.2°,17.73±0.2°,18.58±0.2°,18.74±0.2°,20.08±0.2°,21.58±0.2°,23.53±0.2°,25.11±0.2°,25.27±0.2°,27.80±0.2°,28.25±0.2°,33.00±0.2°。
- 根据权利要求10所述的晶型,其具有如图1所示的XRPD图谱所代表的特征。
- 根据权利要求6~11中任一项所述的晶型,其差示扫描量热曲线在208.18℃±3℃处具有吸热峰。
- 根据权利要求12所述的晶型,其具有如图2所示的DSC图谱所代表的特征。
- 根据权利要求6~11中任一项所述的晶型,其热重分析曲线在188.49±3℃处失重达0.3110±0.2%。
- 根据权利要求14所述的晶型,其具有如图3所示的TGA图谱如所代表的特征。
- 权利要求6~15中任一项所述的晶型的制备方法,包括如下步骤:(1)将马来酸和溶剂混合;(2)向步骤(1)的混合物中加入式(I)化合物;(3)过滤,干燥;其中,所述溶剂选自甲醇、乙醇、异丙醇、丙酮、乙酸乙酯的一种或一种以上,以及甲醇/水的混合溶剂或者异丙醇/水的混合溶剂。
- 权利要求16的制备方法,还包括:(a)先将溶剂升温至45~55℃,然后将权利要求16得到的晶型加入溶剂中;(b)在45~55℃下搅拌1~3小时;(c)冷却,过滤,滤饼用溶剂洗涤;(d)干燥48~72小时;其中,步骤(a)和步骤(c)所述的溶剂分别独立地选自甲醇、乙醇和异丙醇一种或一种以上。
- 式(I)化合物的晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:12.88±0.2°,14.18±0.2°,16.72±0.2°,17.49±0.2°,19.21±0.2°,21.06±0.2°,21.65±0.2°,24.14±0.2°。
- 根据权利要求18所述的晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.86±0.2°,12.88±0.2°,14.18±0.2°,16.72±0.2°,17.49±0.2°,19.21±0.2°,21.06±0.2°,21.65±0.2°,24.14±0.2°,26.29±0.2°,27.69±0.2°。
- 权利要求19所述的晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.56±0.2°,9.86±0.2°,11.53±0.2°,12.01±0.2°,12.88±0.2°,14.18±0.2°,15.21±0.2°,15.66±0.2°,16.72±0.2°,17.49±0.2°,18.79±0.2°,19.21±0.2°,19.76±0.2°,21.06±0.2°,21.65±0.2°,22.52±0.2°,22.93±0.2°,24.14±0.2°,24.47±0.2°,26.29±0.2°,27.69±0.2°,28.48±0.2°,28.79±0.2°,30.25±0.2°,30.74±0.2°,31.67±0.2°,34.79±0.2°,35.18±0.2°。
- 根据权利要求21所述的晶型,其具有如图4所示的XRPD图谱所代表的特征。
- 根据权利要求18~22中任一项所述的晶型,其差示扫描量热曲线在225.76℃处具有吸热峰。
- 根据权利要求23所述的晶型,其具有如图5所示的DSC图谱所代表的特征。
- 根据权利要求18~22中任一项所述的晶型,其热重分析曲线在52.81℃时,重量减少了0.1384%。
- 根据权利要求18~22中任一项所述的晶型,其热重分析曲线在184.82℃时,重量减少了0.3565%。
- 根据权利要求18~22中任一项所述的晶型,其热重分析曲线在230.03℃时,重量减少了0.4086%。
- 根据权利要求25-27中任一项所述的晶型,其具有如图6所示的TGA图谱所代表的特征。
- 式(I)化合物晶型的制备方法,包括以下步骤:(i)将式(I)化合物加入溶剂中,在70~100℃下搅拌0.5~2小时;(ii)缓慢降温,静置8~16小时;(iii)离心,干燥8~16小时;其中,所述溶剂为乙醇和水的混合溶剂,乙醇和水的体积比为3:1。
- 结晶组合物,其包含权利要求6~15中任一项所述的晶型或者权利要求18~22中任一项所述的晶型,其中所述权利要求6~15中任一项所述的晶型或者权利要求18~22中任一项所述的晶型占结晶组合物重量的50%以上,较好为80%以上,更好是90%以上,最好是95%以上。
- 药物组合物,其包含权利要求1~5中任一项所述的马来酸盐、权利要求6~15中任一项所述的晶型、权利要求18~28中任一项所述晶型或权利要求30所述的结晶组合物,该药物组合物中包含治疗有效量的权利要求1~5中任一项所述的马来酸盐、权利要求6~15中任一项所述的晶型、权利要求18~28中任一项所述的晶型或权利要求30所述的结晶组合物。
- 权利要求1~5中任一项所述的马来酸盐、权利要求6~15中任一项所述的晶型、权利要求18~28中任一项所述的晶型或权利要求30所述的结晶组合物在制备用于治疗CDK4/6介导的疾病的药物中的用途。
- 一种治疗哺乳动物CDK4/6介导的疾病的方法,其中所述疾病是CDK4/6介导的疾病,该方法包括向哺乳动物、给予治疗有效量的权利要求1~5中任一项所述的马来酸盐、权利要求6~15中任一项所述的晶型、权利要求18~28中任一项所述的晶型或权利要求30所述的结晶组合物。
- 权利要求32的用途或者权利要求33的方法,其中所述疾病为癌症,优选为乳腺癌或肺癌。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17848166.9A EP3502103B1 (en) | 2016-09-09 | 2017-09-08 | Crystal form, salt type of substituted 2-hydro-pyrazole derivative and preparation method therefor |
CN201780055081.7A CN109689641B (zh) | 2016-09-09 | 2017-09-08 | 一种取代的2-氢-吡唑衍生物的晶型、盐型及其制备方法 |
US16/331,915 US10626107B2 (en) | 2016-09-09 | 2017-09-08 | Crystal form, salt type of substituted 2-hydro-pyrazole derivative and preparation method therefor |
JP2019513389A JP7100625B2 (ja) | 2016-09-09 | 2017-09-08 | 置換2-h-ピラゾール誘導体の結晶形、塩型及びその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610814752.0 | 2016-09-09 | ||
CN201610814752 | 2016-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018045993A1 true WO2018045993A1 (zh) | 2018-03-15 |
Family
ID=61561674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/101067 WO2018045993A1 (zh) | 2016-09-09 | 2017-09-08 | 一种取代的2-氢-吡唑衍生物的晶型、盐型及其制备方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10626107B2 (zh) |
EP (1) | EP3502103B1 (zh) |
JP (1) | JP7100625B2 (zh) |
CN (1) | CN109689641B (zh) |
WO (1) | WO2018045993A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108440401A (zh) * | 2018-04-13 | 2018-08-24 | 华东理工大学 | 5-[(4-乙基哌嗪-1-基)甲基]吡啶-2-胺的制备方法 |
WO2020191283A1 (en) * | 2019-03-20 | 2020-09-24 | Beta Pharma, Inc. | Crystalline and amorphous forms of n-(5-((4-ethylpiperazin-1-yl)methyl)pyridine-2-yl)-5-fluoro-4-(3-isopropyl-2-methyl-2h-indazol-5-yl)pyrimidin-2-amine and its salts, and preparation methods and therapeutic uses thereof |
CN113121424A (zh) * | 2019-12-30 | 2021-07-16 | 浙江瑞博制药有限公司 | 连续化反应制备哌嗪吡啶化合物 |
WO2021259203A1 (zh) | 2020-06-22 | 2021-12-30 | 正大天晴药业集团股份有限公司 | 一种cdk4/6抑制剂的制备方法 |
WO2023237055A1 (zh) * | 2022-06-09 | 2023-12-14 | 正大天晴药业集团股份有限公司 | 一种cdk4/6抑制剂治疗去分化脂肪肉瘤的用途 |
WO2024032751A1 (zh) * | 2022-08-12 | 2024-02-15 | 正大天晴药业集团股份有限公司 | 一种取代的2-氢-吡唑衍生物的晶型及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102264725A (zh) * | 2008-12-22 | 2011-11-30 | 伊莱利利公司 | 蛋白激酶抑制剂 |
WO2016014904A1 (en) * | 2014-07-24 | 2016-01-28 | Beta Pharma, Inc. | 2-h-indazole derivatives as cyclin-dependent kinase (cdk) inhibitors and therapeutic uses thereof |
WO2016141881A1 (zh) * | 2015-03-11 | 2016-09-15 | 南京明德新药研发股份有限公司 | 作为抗癌药物的取代的2-氢-吡唑衍生物 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI558399B (zh) * | 2014-02-26 | 2016-11-21 | 美國禮來大藥廠 | 癌症之組合療法 |
CN105294655B (zh) * | 2014-07-26 | 2019-03-15 | 广东东阳光药业有限公司 | Cdk类小分子抑制剂的化合物及其用途 |
-
2017
- 2017-09-08 JP JP2019513389A patent/JP7100625B2/ja active Active
- 2017-09-08 US US16/331,915 patent/US10626107B2/en active Active
- 2017-09-08 CN CN201780055081.7A patent/CN109689641B/zh active Active
- 2017-09-08 WO PCT/CN2017/101067 patent/WO2018045993A1/zh unknown
- 2017-09-08 EP EP17848166.9A patent/EP3502103B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102264725A (zh) * | 2008-12-22 | 2011-11-30 | 伊莱利利公司 | 蛋白激酶抑制剂 |
WO2016014904A1 (en) * | 2014-07-24 | 2016-01-28 | Beta Pharma, Inc. | 2-h-indazole derivatives as cyclin-dependent kinase (cdk) inhibitors and therapeutic uses thereof |
WO2016141881A1 (zh) * | 2015-03-11 | 2016-09-15 | 南京明德新药研发股份有限公司 | 作为抗癌药物的取代的2-氢-吡唑衍生物 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3502103A4 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108440401A (zh) * | 2018-04-13 | 2018-08-24 | 华东理工大学 | 5-[(4-乙基哌嗪-1-基)甲基]吡啶-2-胺的制备方法 |
WO2020191283A1 (en) * | 2019-03-20 | 2020-09-24 | Beta Pharma, Inc. | Crystalline and amorphous forms of n-(5-((4-ethylpiperazin-1-yl)methyl)pyridine-2-yl)-5-fluoro-4-(3-isopropyl-2-methyl-2h-indazol-5-yl)pyrimidin-2-amine and its salts, and preparation methods and therapeutic uses thereof |
CN113840605A (zh) * | 2019-03-20 | 2021-12-24 | 贝达医药公司 | N-(5-((4-乙基哌嗪-1-基)甲基)吡啶-2-基)-5-氟-4-(3-异丙基-2-甲基-2h-吲唑-5-基)嘧啶-2-胺及其盐的结晶和无定形形式,及其制备方法和治疗用途 |
CN113840605B (zh) * | 2019-03-20 | 2024-05-28 | 贝达医药公司 | N-(5-((4-乙基哌嗪-1-基)甲基)吡啶-2-基)-5-氟-4-(3-异丙基-2-甲基-2h-吲唑-5-基)嘧啶-2-胺盐酸盐的结晶形式及其用途 |
CN113121424A (zh) * | 2019-12-30 | 2021-07-16 | 浙江瑞博制药有限公司 | 连续化反应制备哌嗪吡啶化合物 |
WO2021259203A1 (zh) | 2020-06-22 | 2021-12-30 | 正大天晴药业集团股份有限公司 | 一种cdk4/6抑制剂的制备方法 |
WO2023237055A1 (zh) * | 2022-06-09 | 2023-12-14 | 正大天晴药业集团股份有限公司 | 一种cdk4/6抑制剂治疗去分化脂肪肉瘤的用途 |
WO2024032751A1 (zh) * | 2022-08-12 | 2024-02-15 | 正大天晴药业集团股份有限公司 | 一种取代的2-氢-吡唑衍生物的晶型及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109689641B (zh) | 2020-11-03 |
EP3502103A1 (en) | 2019-06-26 |
JP2019526605A (ja) | 2019-09-19 |
US10626107B2 (en) | 2020-04-21 |
JP7100625B2 (ja) | 2022-07-13 |
EP3502103A4 (en) | 2020-02-19 |
CN109689641A (zh) | 2019-04-26 |
EP3502103B1 (en) | 2022-04-06 |
US20190194168A1 (en) | 2019-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018045993A1 (zh) | 一种取代的2-氢-吡唑衍生物的晶型、盐型及其制备方法 | |
EP2850082B1 (en) | 1-(3,3-dimethylbutyl)-3-(2-fluoro-4-methyl-5-(7-methyl-2-(methylamino)pyrido(2,3-d)pyrimidin-6-yl)phenyl)urea as Raf kinase inhibitor for the treatment of cancer | |
CN112521390A (zh) | 制备parp抑制剂、结晶形式的方法及其用途 | |
US10030018B2 (en) | Hydroxyethyl sulfonate of cyclin-dependent protein kinase inhibitor, crystalline form thereof and preparation method therefor | |
US20210101881A1 (en) | Pyrimidine compound, preparation method thereof and medical use thereof | |
CN115466266B (zh) | mTOR蛋白降解靶向嵌合体及其制备方法和应用 | |
US12043622B2 (en) | Crystal form of compound for inhibiting the activity of CDK4/6 and use thereof | |
CN115916791A (zh) | 结晶ret抑制剂 | |
WO2020147838A1 (zh) | 一种egfr抑制剂的盐、晶型及其制备方法 | |
CN117247382A (zh) | 吡啶并嘧啶酮化合物的晶型 | |
WO2023155760A1 (zh) | 一种药物组合物及所含活性成分化合物的制备方法 | |
CN115448874B (zh) | 固体形式的周期蛋白依赖性激酶9抑制剂及其用途 | |
WO2023125947A1 (zh) | 四氢异喹啉类化合物的可药用盐、晶型及其用途 | |
US20240350501A1 (en) | SALT OF N-(2,6-DIETHYLPHENYL)-8-({4-[4-(DIMETHYLAMINO) PIPERIDIN-1-YL]-2-METHOXYPHENYL}AMINO)-1-METHYL-4,5-DIHYDRO-1H-PYRAZOLO[4,3-h]QUINAZOLINE-3-CARBOXAMIDE, ITS PREPARATION, AND FORMULATIONS CONTAINING IT | |
CN112654623B (zh) | 新型氮杂三环类化合物的盐型、晶型及其用途 | |
CN108299419B (zh) | 一种新型egfr激酶抑制剂的几种新晶型及其制备方法 | |
CN116023394A (zh) | 三环类激酶抑制剂的晶型 | |
CN116023393A (zh) | 三环类激酶抑制剂的晶型 | |
CN116023395A (zh) | 三环类激酶抑制剂的晶型 | |
EA043251B1 (ru) | Кристаллическая форма соединения для ингибирования активности cdk4/6 и ее применение |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17848166 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019513389 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017848166 Country of ref document: EP Effective date: 20190322 |