WO2022004637A1 - 樹脂フィルム - Google Patents
樹脂フィルム Download PDFInfo
- Publication number
- WO2022004637A1 WO2022004637A1 PCT/JP2021/024311 JP2021024311W WO2022004637A1 WO 2022004637 A1 WO2022004637 A1 WO 2022004637A1 JP 2021024311 W JP2021024311 W JP 2021024311W WO 2022004637 A1 WO2022004637 A1 WO 2022004637A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- poly
- resin
- resin film
- hydroxyalkanoate
- hydroxy alkanoate
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2467/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2467/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
Definitions
- the present invention relates to a resin film containing a poly (3-hydroxyalkanoate) resin component.
- Poly (3-hydroxy alkanoate) resin has excellent seawater decomposability and is a material that can solve the environmental problems caused by discarded plastics.
- poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) which is one of poly (3-hydroxyalkanoate) -based resins, can be obtained by changing the composition ratio of 3-hydroxyhexanoate.
- the mechanical characteristics can be controlled flexibly.
- Patent Document 1 describes a polyester resin composition containing two types of polyhydroxyalkanoates in order to improve the solidification property in the melt molding process and improve the processing speed, and a film is described as an example of the molded product. And sheets are listed.
- the present invention provides a resin film containing a poly (3-hydroxyalkanoate) resin component, which has high tear strength and can be produced with good productivity.
- the purpose is.
- the present inventors have configured the product to contain a poly (3-hydroxybutyrate) resin component so that the tensile elastic modulus and the degree of swelling each satisfy a specific numerical range.
- the resulting resin film has high tear strength and can be produced with good productivity, and have completed the present invention.
- the present invention is a resin film containing a poly (3-hydroxyalkanoate) resin component, wherein the resin film has a tensile elastic modulus of 500 MPa or more and 2000 MPa or less, and the resin film is immersed in a methyl ethyl ketone for 2 hours.
- the present invention relates to a resin film having a swelling degree of 1 or more and 5 or less as measured.
- the poly (3-hydroxy alkanoate) resin component is a mixture of at least two types of poly (3-hydroxy alkanoate) resins having different types of constituent monomers and / or contents of the constituent monomers. ..
- the poly (3-hydroxy alkanoate) resin component comprises a copolymer of a 3-hydroxybutyrate unit and another hydroxy alkanoate unit. More preferably, the poly (3-hydroxy alkanoate) resin component is A copolymer (A) of a 3-hydroxybutyrate unit and another hydroxyalkanoate unit having a content ratio of another hydroxyalkanoate unit of 1 to 6 mol%, and A copolymer (B) of a 3-hydroxybutyrate unit and another hydroxyalkanoate unit having a content ratio of another hydroxyalkanoate unit of 24 mol% or more is included.
- a copolymer (A) of a 3-hydroxybutyrate unit and another hydroxyalkanoate unit having a content ratio of another hydroxyalkanoate unit of 1 to 6 mol% and A copolymer (B) of a 3-hydroxybutyrate unit and another hydroxyalkanoate unit having a content ratio of another hydroxyalkanoate unit of 24 mol% or more is included.
- the proportion of the copolymer (A) is 35% by weight or more and the proportion of the copolymer (B) is 65% by weight or less in the poly (3-hydroxyalkanoate) resin component.
- the average content of the other hydroxy alkanoate units in the total monomer units constituting the poly (3-hydroxy alkanoate) resin component is 8 to 18 mol%.
- the other hydroxy alkanoate unit is a 3-hydroxyhexanoate unit.
- the tear strength of the resin film is 2 N / mm or more and 200 N / mm or less.
- the thickness of the resin film is 10 ⁇ m or more and 1 mm or less.
- One embodiment of the present invention relates to a resin film containing a poly (3-hydroxyalkanoate) resin component.
- the poly (3-hydroxyalkanoate) resin component may be a single poly (3-hydroxyalkanoate) -based resin or a mixture of two or more kinds of poly (3-hydroxyalkanoate) -based resins. However, since it is easy to control the tensile elastic modulus and the degree of swelling, which will be described later, at least two types of poly (3-hydroxyalkanoate) resins having different types and / or content ratios of the constituent monomers are different from each other. Is preferably a mixture of.
- the poly (3-hydroxy alkanoate) resin is preferably a polymer having a 3-hydroxy alkanoate unit, specifically, a polymer containing a unit represented by the following general formula (1). [-CHR-CH 2- CO-O-] (1)
- R represents an alkyl group represented by C p H 2p + 1
- p represents an integer of 1 to 15.
- R include a linear or branched alkyl group such as a methyl group, an ethyl group, a propyl group, a methylpropyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group and a hexyl group.
- p 1 to 10 is preferable, and 1 to 8 is more preferable.
- poly (3-hydroxy alkanoate) -based resin a poly (3-hydroxy alkanoate) -based resin produced from a microorganism is particularly preferable.
- the poly (3-hydroxy alkanoate) -based resin produced from microorganisms all 3-hydroxy alkanoate units are contained as (R) -3-hydroxy alkanoate units.
- the poly (3-hydroxy alkanoate) resin preferably contains a 3-hydroxy alkanoate unit (particularly, a unit represented by the general formula (1)) in an amount of 50 mol% or more, preferably 60 mol% or more of all the constituent units. It is more preferable to contain the above, and it is further preferable to contain 70 mol% or more.
- the poly (3-hydroxyalkanoate) -based resin may contain only one or more 3-hydroxyalkanoate units as a constituent unit of the polymer, or one or more of them. In addition to the 3-hydroxy alkanoate unit, it may contain other units (for example, 4-hydroxy alkanoate unit, etc.).
- the poly (3-hydroxy alkanoate) resin is preferably a homopolymer or a copolymer containing a 3-hydroxybutyrate (hereinafter, may be referred to as 3HB) unit. In particular, it is preferable that all 3-hydroxybutyrate units are (R) -3-hydroxybutyrate units. Further, the poly (3-hydroxy alkanoate) resin is preferably a copolymer of a 3-hydroxybutyrate unit and another hydroxy alkanoate unit.
- poly (3-hydroxy alkanoate) -based resin examples include, for example, poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxypropionate), and poly (3-hydroxy).
- Butyrate-co-3-hydroxyvalerate) abbreviation: P3HB3HV
- poly (3-hydroxybutyrate-co) -3-Hydroxyhexanoate) abbreviation: P3HB3HH
- poly (3-hydroxybutyrate-co-3-hydroxyheptanoate poly (3-hydroxybutyrate-co-3-hydroxyoctanoate
- Poly (3-hydroxybutyrate-co-3-hydroxynonanoate poly (3-hydroxybutyrate-co-3-hydroxydecanoate), poly (3-hydroxybutyrate-co-3-hydroxyundecanoate) Ate), poly (3-hydroxybutyrate-co-4-hydroxybutyrate) (abbreviation: P3HB
- the poly (3-hydroxy alkanoate) -based resin component contains a copolymer of a 3-hydroxybutyrate unit and another hydroxy alkanoate unit, all of the poly (3-hydroxy alkanoate) -based resin components constituting the poly (3-hydroxy alkanoate) -based resin component.
- the average content ratio of each monomer unit to all the monomer units constituting the poly (3-hydroxy alkanoate) resin component is described in a method known to those skilled in the art, for example, paragraph [0047] of International Publication No. 2013/147139. It can be obtained by the method.
- the average content ratio means the molar ratio of each monomer unit to all the monomer units constituting the poly (3-hydroxy alkanoate) resin component, and there are two or more kinds of poly (3-hydroxy alkanoate) resin components. When it is a mixture of poly (3-hydroxy alkanoate) -based resins, it means the molar ratio of each monomer unit contained in the whole mixture.
- the weight average molecular weight of the poly (3-hydroxy alkanoate) resin component is not particularly limited, but is preferably 200,000 to 2 million, more preferably 250,000 to 1,500,000 from the viewpoint of achieving both tear strength and productivity of the film. It is preferable, and more preferably 300,000 to 1,000,000.
- the weight average molecular weight of each poly (3-hydroxy alkanoate) -based resin is , Not particularly limited. However, for example, when a highly crystalline poly (3-hydroxyalkanoate) -based resin and a low-crystalline poly (3-hydroxyalkanoate) -based resin as described later are blended, the highly crystalline poly (3) is used.
- the weight average molecular weight of the -hydroxy alkanoate) resin is preferably 200,000 to 1,000,000, more preferably 220,000 to 800,000, and further 250,000 to 600,000 from the viewpoint of achieving both tear strength and productivity of the film. preferable.
- the weight average molecular weight of the low crystalline poly (3-hydroxyalkanoate) resin is preferably 200,000 to 2.5 million, more preferably 250,000 to 2.3 million, from the viewpoint of achieving both tear strength and productivity of the film. It is preferable, and more preferably 300,000 to 2 million.
- the weight average molecular weight of the poly (3-hydroxy alkanoate) -based resin or the poly (3-hydroxy alkanoate) -based resin component gel permeation chromatography using a chloroform solution (HPLC GPC system manufactured by Shimadzu Corporation) was used. It can be measured by using it in terms of polystyrene.
- a column suitable for measuring the weight average molecular weight may be used.
- the method for producing the poly (3-hydroxyalkanoate) resin is not particularly limited, and it may be a method for producing by chemical synthesis or a method for producing by microorganisms. Above all, the production method using microorganisms is preferable. As for the production method using microorganisms, a known method can be applied.
- examples of the copolymer-producing bacteria of 3-hydroxybutyrate and other hydroxyalkanoates include Aeromonas caviae, which is a P3HB3HV and P3HB3HH-producing bacterium, and Alcaligenes, which is a P3HB4HB-producing bacterium. It has been known.
- P3HB3HH in order to increase the productivity of P3HB3HH, Alcaligenes utrophas AC32 strain (Alcaligenes europhorus AC32, FERM BP-6038) (T. Fukui, Y. Doi, J. Batriol) into which a gene of the P3HA synthase group was introduced was introduced. ., 179, p4821-4830 (1997)) and the like are more preferable, and microbial cells in which P3HB3HH is accumulated in the cells by culturing these microorganisms under appropriate conditions are used.
- a genetically modified microorganism into which various poly (3-hydroxyalkanoate) resin synthesis-related genes have been introduced may be used according to the poly (3-hydroxyalkanoate) -based resin to be produced, or a substrate.
- the culture conditions including the types of the above may be optimized.
- the resin film according to the embodiment of the present invention may contain a resin other than the poly (3-hydroxyalkanoate) resin as long as the effect of the present invention is not impaired.
- aliphatic polyester resins such as polybutylene succinate adipate, polybutylene succinate, polycaprolactone, and polylactic acid, polybutylene adipate terephthalate, polybutylene succinate terephthalate, and polybutylene aze.
- aliphatic aromatic polyester-based resins such as rate terephthalate.
- the other resin only one kind may be contained, or two or more kinds may be contained.
- the content of the other resin is not particularly limited, but is preferably 30 parts by weight or less, more preferably 20 parts by weight or less, based on 100 parts by weight of the total poly (3-hydroxyalkanoate) resin components. It is more preferably parts by weight or less.
- the lower limit of the content of the other resin is not particularly limited and may be 0 parts by weight.
- the resin film according to the embodiment of the present invention may further contain silica for the purpose of obtaining an improving effect on mechanical properties such as tear strength.
- the type of silica is not particularly limited, but synthetic amorphous silica produced by a dry method or a wet method is preferable from the viewpoint of versatility. Further, any of those subjected to hydrophobic treatment or non-hydrophobic treatment can be used, one type may be used alone, or two or more types may be used in combination.
- silica having an adsorbed water content of 0.5% by weight or more and 7% by weight or less is preferable.
- the adsorbed water content can be measured as the adsorbed water content by using, for example, an electromagnetic scale MX-50 manufactured by Kensei Kogyo Co., Ltd. and the volatile content at 160 ° C. If the amount of adsorbed water is larger than 7% by weight, it may be difficult to disperse due to the cohesive force of the water adsorbed on the silica surface or between the particles, resulting in fish eyes during film molding, resulting in poor appearance. On the contrary, when it is less than 0.5% by weight, the slightly remaining water between the particles forms a cross-linking liquid film and a large bonding force is generated by surface tension, which tends to make separation / dispersion extremely difficult. be.
- the average primary particle size of the silica is not particularly limited as long as it can improve the tear strength of the film, is less likely to cause appearance defects such as fish eyes, and does not significantly impair transparency, but the tear strength and the like are not limited. It is preferably 0.001 to 0.1 ⁇ m, and particularly preferably 0.005 to 0.05 ⁇ m in that the effect of improving mechanical properties can be easily obtained and the transparency is excellent.
- the average primary particle diameter is obtained by arithmetically averaging the diameters of any 50 or more primary particles observed using a transmission electron microscope (TEM).
- the blending amount (total blending amount) of the silica is preferably 1 to 12 parts by weight with respect to 100 parts by weight of the total of the poly (3-hydroxyalkanoate) resin components. If it is less than 1 part by weight, it may not be possible to sufficiently improve the mechanical properties such as tear strength when compounded with a poly (3-hydroxyalkanoate) resin component by blending the silica. Further, when the amount is more than 12 parts by weight, it may be difficult to disperse silica well.
- the blending amount of the silica is more preferably 2 parts by weight or more, further preferably 4 parts by weight or more. Further, 11 parts by weight or less is more preferable, and 10 parts by weight or less is further preferable.
- the resin film according to the embodiment of the present invention can have high tear strength even if it does not substantially contain silica.
- the blending amount (total blending amount) of the silica is 0.1 part by weight with respect to 100 parts by weight of the total of the poly (3-hydroxyalkanoate) resin components. It may be less than, and may be less than 0.01 parts by weight.
- the silica for the purpose of improving the dispersibility of the silica, it is preferable to use the silica in combination with a dispersion aid.
- dispersion aid examples include glycerin ester compounds, adipate ester compounds, polyether ester compounds, phthalate ester compounds, isosorbide ester compounds, and polycaprolactone compounds.
- modified glycerin compounds such as glycerin diacet monolaurate, glycerin diacet monocaprylate, and glycerin diacet monodecanoate; diethylhexyl adipate, dioctyl adipate, because they have excellent affinity for resin components and are difficult to bleed.
- Adipinic acid ester compounds such as diisononyl adipate; polyether ester compounds such as polyethylene glycol dibenzoate, polyethylene glycol dicaprylate, and polyethylene glycol diisostearate are preferable, and those containing a large amount of biomass-derived components are preferable. It is particularly preferable because it can increase the degree of biomass of the entire product.
- a dispersion aid include the "Rikemar” (registered trademark) PL series of RIKEN Vitamin Co., Ltd. and the Polysorb series of ROQUETTE. The dispersion aid may be used alone or in combination of two or more.
- the blending amount (total blending amount) of the dispersion aid is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the total of the poly (3-hydroxyalkanoate) resin components. If it is less than 0.1 parts by weight, it may not be possible to fully exert the function of silica as a dispersion aid, or when it is combined with a poly (3-hydroxyalkanoate) resin component, it may have tear strength and the like. Regarding mechanical properties, it may not be possible to achieve a sufficient improvement effect by blending the silica. On the other hand, if it exceeds 20 parts by weight, it may cause bleed-out.
- the blending amount of the dispersion aid is more preferably 0.3 parts by weight or more, further preferably 0.5 part by weight or more. Further, 10 parts by weight or less is more preferable, and 5 parts by weight or less is further preferable.
- the resin film according to one embodiment of the present invention may contain additives as long as the effects of the present invention are not impaired.
- Additives include, for example, crystallization nucleating agents, lubricants, plasticizers, antistatic agents, flame retardants, conductive agents, heat insulating agents, cross-linking agents, antioxidants, UV absorbers, colorants, inorganic fillers, organic fillings. Agents, hydrolysis inhibitors, etc. can be used depending on the purpose. In particular, an additive having biodegradability is preferable.
- crystallization nucleating agent examples include pentaerythritol, orotic acid, aspartame, cyanuric acid, glycine, zinc phenylphosphonate, boron nitride and the like. Among them, pentaerythritol is preferable because it has a particularly excellent effect of promoting crystallization of the poly (3-hydroxyalkanoate) resin component.
- the amount of the crystallization nucleating agent used is not particularly limited, but is preferably 0.1 to 5 parts by weight, preferably 0.5 to 3 parts by weight, based on 100 parts by weight of the total poly (3-hydroxyalkanoate) resin component. Parts are more preferable, and 0.7 to 1.5 parts by weight are even more preferable. Further, one kind of crystallization nucleating agent may be used, or two or more kinds of crystallization nucleating agents may be used, and the usage ratio can be appropriately adjusted according to the purpose.
- the lubricant examples include behenic acid amide, oleic acid amide, erucic acid amide, stearic acid amide, palmitic acid amide, N-stearyl behenic acid amide, N-stearyl erucic acid amide, ethylene bisstearic acid amide, and ethylene bisoleic acid.
- examples thereof include amides, ethylene bis-erucic acid amides, ethylene bislauric acid amides, ethylene biscapric acid amides, p-phenylene bisstearic acid amides, and polycondensates of ethylenediamine, stearic acid and sebacic acid.
- behenic acid amide and erucic acid amide are preferable because the lubricant effect on the poly (3-hydroxy alkanoate) resin component is particularly excellent.
- the amount of the lubricant used is not particularly limited, but is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 3 parts by weight, based on 100 parts by weight of the total poly (3-hydroxyalkanoate) resin component. It is preferably 0.1 to 1.5 parts by weight, more preferably 0.1 to 1.5 parts by weight. Further, one kind of lubricant may be used, or two or more kinds of lubricants may be used, and the usage ratio can be appropriately adjusted according to the purpose.
- plasticizer examples include glycerin ester compounds, citric acid ester compounds, sebacic acid ester compounds, adipic acid ester compounds, polyether ester compounds, benzoic acid ester compounds, phthalic acid ester compounds, and isosols.
- examples thereof include a bid ester compound, a polycaprolactone compound, and a dibasic acid ester compound.
- glycerin ester compounds, citric acid ester compounds, sebacic acid ester compounds, and dibasic acid ester compounds are particularly excellent in that they have a particularly excellent plasticizing effect on poly (3-hydroxyalkanoate) resin components.
- the glycerin ester compound include glycerin diacet monolaurate and the like.
- Examples of the citric acid ester compound include tributyl acetyl citrate and the like.
- Examples of the sebacic acid ester compound include dibutyl sebacate and the like.
- Examples of the dibasic acid ester compound include benzylmethyldiethylene glycol adipate and the like.
- the amount of the plasticizer used is not particularly limited, but is preferably 1 to 20 parts by weight, more preferably 2 to 15 parts by weight, based on 100 parts by weight of the total poly (3-hydroxyalkanoate) resin component. Up to 10 parts by weight is more preferable.
- one type of plasticizer may be used, or two or more types of plasticizer may be used, and the usage ratio can be appropriately adjusted according to the purpose.
- the resin film according to the embodiment of the present invention satisfies a tensile elastic modulus of 500 MPa or more and 2000 MPa or less. If the tensile modulus exceeds 2000 MPa, it becomes difficult for the resin film to have a sufficient level of tear strength. Further, when the tensile elastic modulus is less than 500 MPa, it is difficult to restore the shape after the resin film is deformed by applying a force, and the usability of the resin film tends to deteriorate.
- the tensile elastic modulus is preferably 1800 MPa or less, more preferably 1700 MPa or less, further preferably 1600 MPa or less, and particularly preferably 1500 MPa or less.
- the tensile elastic modulus is preferably 600 MPa or more, more preferably 700 MPa or more, and even more preferably 800 MPa or more.
- the tensile elastic modulus is determined by using a tensile tester (manufactured by Shimadzu Corporation: EZ-LX 1 kN) to perform a tensile test of a resin film under the condition of a tensile speed of 100 mm / min in accordance with JIS K7127. A curve is obtained and calculated based on the SS curve.
- a tensile tester manufactured by Shimadzu Corporation: EZ-LX 1 kN
- the tensile elastic modulus can be controlled, for example, by adjusting the average content ratio of other hydroxyalkanoate units in all the monomer units constituting the poly (3-hydroxyalkanoate) resin component.
- the resin film satisfies the swelling degree of 1 or more and 5 or less measured by immersing the resin film in methyl ethyl ketone for 2 hours.
- the degree of swelling is calculated by the following formula by immersing the resin film in methyl ethyl ketone at room temperature (23 ° C.) for 2 hours to swell it and then weighing it.
- Swelling degree (weight of resin film after swelling / weight of resin film before swelling)
- the degree of swelling means that the closer the value is to 1, the more difficult it is for the resin film to absorb methyl ethyl ketone, and the larger the value is, the easier it is for the resin film to absorb methyl ethyl ketone.
- the degree of swelling is an index showing the density of Thai molecules contained in the poly (3-hydroxyalkanoate) resin component.
- Tie molecules are molecules that crosslink fine resin crystal particles in the resin component, and by forming a network with them, the tear strength of the film composed of the poly (3-hydroxyalkanoate) -based resin component can be increased. It can be significantly enhanced.
- the density of Thai molecules is high, it becomes difficult for the resin film to absorb methyl ethyl ketone, so that the value of the degree of swelling remains relatively low.
- the degree of swelling is preferably 4 or less, more preferably 3.5 or less, further preferably 3 or less, and particularly preferably 2.5 or less.
- the degree of swelling is, for example, at least two types of poly (3-hydroxy alkanoate) resins in which the poly (3-hydroxy alkanoate) resin component is different from each other in the types of constituent monomers and / or the content ratios of the constituent monomers.
- the two types of poly (3-hydroxy alkanoate) -based resins can be controlled by being composed of a copolymer of a 3-hydroxybutyrate unit and another hydroxy alkanoate unit, respectively. can.
- the poly (3-hydroxyalkanoate) -based resin component is a copolymer of a 3-hydroxybutyrate unit and another hydroxyalkanoate unit in which the content ratio of the other hydroxyalkanoate unit is 1 to 6 mol%.
- the resin film can exhibit high tear strength and is not easily torn or torn.
- the tear strength of the resin film is preferably 2 N / mm or more, more preferably 4 N / mm or more, further preferably 6 N / mm or more, and particularly preferably 8 N / mm or more, as the Elmendorf tear strength.
- the upper limit of the tear strength is not particularly limited, but is preferably 200 N / mm or less, more preferably 100 N / mm or less, further preferably 80 N / mm or less, and particularly preferably 60 N / mm or less in consideration of slit workability. ..
- the Elmendorf tear strength is determined by a light load tear tester (manufactured by Kumagai Riki Kogyo Co., Ltd .: NO.2037 special specification machine) having a function and structure conforming to the standard Elmendorf tear tester specified in JIS P-8116. It is a value obtained by dividing the measured value by the thickness (mm) of the film.
- the thickness of the resin film is not particularly limited, but is preferably 10 ⁇ m or more and 1 mm or less, more preferably 15 ⁇ m or more and 500 ⁇ m or less, and further preferably 20 ⁇ m or more and 300 ⁇ m or less.
- the resin film in the present application may include a film having a thickness generally called a sheet.
- each monomer constituting the copolymer is used.
- examples thereof include a method of adjusting the content ratio, a method of mixing at least two types of poly (3-hydroxyalkanoate) resins having different types and / or content ratios of the constituent monomers from each other.
- a method of mixing at least two types of poly (3-hydroxyalkanoate) resins having different types of constituent monomers and / or content ratios of the constituent monomers is preferable.
- At least two kinds of poly (3-hydroxy alkanoate) -based resins are mixed, at least one kind of highly crystalline poly (3-hydroxy alkanoate) -based resin and at least one kind of low-crystalline poly (3-hydroxy alkanoate) -based resin ( 3-Hydroxy alkanoate) -based resins are preferably combined and mixed.
- a highly crystalline poly (3-hydroxyalkanoate) -based resin has a property of being excellent in productivity but having a poor mechanical strength, and a low-crystalline poly (3-hydroxyalkanoate) -based resin is inferior in productivity. Has excellent mechanical properties.
- Highly crystalline poly (3-hydroxyalkanoate) -based resin forms fine resin crystal particles, and low-crystalline poly (3-hydroxyalkanoate) -based resin crosslinks the resin crystal particles with Thai molecules. Is presumed to form.
- the tear strength of the resin film can be significantly improved.
- the highly crystalline poly (3-hydroxyalkanoate) -based resin contains 3-hydroxybutyrate units
- the content ratio of 3-hydroxybutyrate unit in the total monomer unit constituting the poly (3-hydroxyalkanoate) resin component is preferably higher than the average content ratio of 3-hydroxybutyrate unit.
- the content ratio of the other hydroxy alkanoate units in the highly crystalline resin is determined. 1 to 10 mol% is preferable, 1 to 8 mol% is more preferable, and 1 to 6 mol% is further preferable.
- the highly crystalline poly (3-hydroxyalkanoate) resin component includes poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) or poly (3-hydroxybutyrate-co-4). -Hydroxybutyrate) is preferable, and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) is more preferable.
- the low-crystalline poly (3-hydroxyalkanoate) -based resin contains 3-hydroxybutyrate units
- the 3-hydroxybutyrate contained in the low-crystalline poly (3-hydroxyalkanoate) -based resin is contained.
- the content ratio of the rate unit is preferably lower than the average content ratio of the 3-hydroxybutyrate unit in all the monomer units constituting the poly (3-hydroxyalkanoate) resin component.
- the low crystalline poly (3-hydroxy alkanoate) resin contains 3-hydroxybutyrate units and other hydroxy alkanoate units
- the content ratio of the other hydroxy alkanoate units in the low crystalline resin is determined. It is preferably 24 to 99 mol%, more preferably 24 to 50 mol%, even more preferably 24 to 35 mol%, and particularly preferably 24 to 30 mol%.
- Examples of the low crystalline poly (3-hydroxyalkanoate) -based resin include poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) and poly (3-hydroxybutyrate-co-4-). (Hydroxybutyrate) is preferable, and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) is more preferable.
- the ratio of each resin to the total amount of both resins is not particularly limited.
- the former is preferably 35% by weight or more and 90% by weight or less, the latter is preferably 10% by weight or more and 65% by weight or less, the former is 45% by weight or more and 80% by weight or less, and the latter is 20% by weight or more and 55% by weight or less. The following is more preferable.
- the method for obtaining a blend of two or more kinds of poly (3-hydroxyalkanoate) resins is not particularly limited, and may be a method for obtaining a blend by microbial production or a method for obtaining a blend by chemical synthesis. You may. Further, two or more kinds of resins may be melt-kneaded using an extruder, a kneader, a Banbury mixer, a roll or the like to obtain a blended product, or two or more kinds of resins may be dissolved in a solvent and mixed / dried. You may obtain a blended product.
- the resin film according to the embodiment of the present invention can be manufactured by various molding methods such as T-die extrusion molding, inflation molding, and calender molding. Specific conditions may be set as appropriate.
- the pellets are dried in a dehumidifying dryer or the like before inflation molding until the moisture content of the pellets becomes 500 ppm or less, and the cylinder set temperature is set to 100 ° C to 160 ° C.
- the temperature of the adapter and the die is set to 130 ° C to 160 ° C.
- the resin film according to the embodiment of the present invention has excellent biodegradability, agriculture, fishery, forestry, gardening, medicine, sanitary goods, food industry, clothing, non-clothing, packaging, automobiles, building materials, etc. It can be suitably used in other fields.
- garbage bags cash register bags, vegetable / fruit wrapping bags, pillow wrapping, agricultural multi-film, forestry smoked sheets, binding tapes including flat yarn, wrapping film for plants, diaper back sheets, wrapping sheets, etc. It is used for shopping bags, drain bags, and other compost bags.
- P3HB3HH-4: P3HB3HH (average content ratio 3HB / 3HH 83/17 (mol% / mol%), weight average molecular weight is 700,000 g / mol) Manufactured according to the method described in Example 7 of International Publication No. 2019/142845.
- the average HH ratio shown in Table 1 is each poly (3-hydroxy alkanoate). It is an average value calculated from the ratio of 3HH in the ate) -based resin and the weight ratio of each poly (3-hydroxy alkanoate) -based resin.
- Additive-1 Pentaerythritol (manufactured by Mitsubishi Chemical Corporation: Neuriser P)
- Additive-2 Bechenic acid amide (manufactured by Nippon Fine Chemical Co., Ltd .: BNT-22H)
- Additive-3 Erucic acid amide (Nippon Fine Chemical Co., Ltd .: Neutron-S)
- the evaluation methods carried out in Examples and Comparative Examples will be described below.
- the pressure was gradually increased to 5 MPa over a period of 2 minutes, and then the pressure was maintained for 2 minutes.
- the film was cooled to room temperature on a cooling plate cooled to about 20 ° C. to obtain a film having a thickness of about 200 ⁇ m.
- This film was cured in an environment of room temperature of 23 ° C. and humidity of 50% for 1 week to prepare a film sample for measuring the degree of swelling.
- the pressure was gradually increased to 5 MPa over a period of 2 minutes, and then the pressure was maintained for 2 minutes.
- the film was cooled to room temperature on a cooling plate cooled to about 20 ° C. to obtain a film having a thickness of about 100 ⁇ m.
- This film was cured in an environment of room temperature of 23 ° C. and humidity of 50% for 1 week to prepare a film sample for measuring tensile elastic modulus.
- the above film sample was subjected to a tensile test using a tensile tester (manufactured by Shimadzu Corporation: EZ-LX 1 kN) under the condition of a tensile speed of 100 mm / min in accordance with JIS K 7127.
- the tensile elastic modulus was calculated based on the SS curve obtained by the tensile test.
- the pressure was gradually increased to 5 MPa over a period of 2 minutes, and then the pressure was maintained for 2 minutes.
- the film was cooled to room temperature on a cooling plate cooled to about 20 ° C. to obtain a film having a thickness of about 50 ⁇ m. This film was cured in an environment of room temperature of 23 ° C. and humidity of 50% for 1 week to prepare a film sample for measuring tear strength.
- Example 1 Addition of 1.045 g of Additive-1 and 0.0225 g of Additive-2 to a blend of 1.76 g of P3HB3HH-1 and 2.74 g of P3HB3HH-2 so as to have the resin composition shown in Table 1.
- 0.0225 g of Agent-3 was added and charged into a small kneader (DSM Co., Ltd .: DSM Xplore 5 model 2005), and kneaded for 5 minutes under the conditions of a barrel temperature of 170 ° C. and a screw rotation speed of 100 rpm.
- the molten strand resin composition was discharged from the die and put into a water bath heated to 60 ° C. to evaluate the productivity. As a result, the productivity was good.
- the strands crystallized in a water bath were cut with nippers to obtain resin composition pellets.
- a film was prepared from the resin composition pellets using a press machine, and the swelling degree, tensile elastic modulus, and tear strength were measured after curing for 1 week.
- the swelling degree was 2.73
- the tensile elastic modulus was 508 MPa
- the tear strength was 69.7 N / mm.
- Examples 2 to 9, Comparative Examples 1 to 2 Resin composition pellets were prepared in the same manner as in Example 1 except that the resin composition was changed as shown in Table 1, and the same evaluation as in Example 1 was carried out. The results are summarized in Table 1.
- Each of the films of Examples 1 to 9 has a tensile elastic modulus of 500 MPa or more and 2000 MPa or less and a swelling degree of 1 or more and 5 or less, and the time required for crystal solidification of each resin composition is short, and the productivity is high. It was good. Moreover, the resulting film had high tear strength.
- the film of Comparative Example 1 had a swelling degree in the range of 1 or more and 5 or less, but had an excessively high tensile elastic modulus, and although the productivity was good, the tear strength was low. .. Further, the film of Comparative Example 2 had a tensile elastic modulus in the range of 500 MPa or more and 2000 MPa or less, but the swelling degree was too large at 5.12, and the productivity was poor. Further, when Comparative Example 2 having the same average HH ratio and Example 1 or 2 are compared, the tear strength is remarkably 10 times or more by setting the swelling degree to 5 or less as in Example 1 or 2. It can be seen that is also improving.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
ポリ(3-ヒドロキシアルカノエート)系樹脂成分を含有する樹脂フィルム。前記樹脂フィルムの引張弾性率は500MPa以上2000MPa以下である。前記樹脂フィルムをメチルエチルケトンに2時間浸漬して測定した膨潤度は1以上5以下である。前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分は、構成モノマーの種類及び/又は構成モノマーの含有割合が互いに異なる少なくとも2種類のポリ(3-ヒドロキシアルカノエート)系樹脂の混合物であることが好ましい。
Description
本発明は、ポリ(3-ヒドロキシアルカノエート)系樹脂成分を含有する樹脂フィルムに関する。
石油由来プラスチックは毎年大量に廃棄されており、これらの大量廃棄物による埋立て処分場の不足や環境汚染が深刻な問題として取り上げられている。また近年、マイクロプラスチックが、海洋環境において大きな問題になっている。
ポリ(3-ヒドロキシアルカノエート)系樹脂は優れた海水分解性を有しており、廃棄されたプラスチックが引き起こす環境問題を解決しうる材料である。例えば、ポリ(3-ヒドロキシアルカノエート)系樹脂の1種であるポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)は3-ヒドロキシヘキサノエートの組成比率を変化させることにより、機械特性を柔軟にコントロールできる。
しかし、3-ヒドロキシヘキサノエートの組成比率を上昇させると、結晶性が低下することにより機械特性は向上するものの、生産性が低下する傾向がある。フィルム等の成形体に要求される機械特性を実現するためには、工業的な生産が極めて困難なレベルになるまで3-ヒドロキシヘキサノエートの組成比率を上昇させる必要があった。そのため、ポリ(3-ヒドロキシアルカノエート)系樹脂を用いて良好な生産性および機械特性の双方を満足する成形体を得ることは難しかった。
特許文献1では、溶融成形加工における固化性を改善して加工速度を向上させるために、2種類のポリヒドロキシアルカノエートを含有するポリエステル樹脂組成物が記載されており、その成形品の一例としてフィルムやシートが記載されている。
特許文献1に記載されているポリエステル樹脂組成物では、良好な生産性でフィルムを製造できても、得られたフィルムの引裂強度が十分に高いものではなく、フィルムの引裂強度と生産性を両立することが困難であった。
本発明は、上記現状に鑑み、ポリ(3-ヒドロキシアルカノエート)系樹脂成分を含有する樹脂フィルムであって、高い引裂強度を有し、且つ良好な生産性で製造可能な樹脂フィルムを提供することを目的とする。
本発明者らは、上記課題を解決すべく鋭意検討した結果、ポリ(3-ヒドロキシブチレート)系樹脂成分を含有し、引張弾性率と膨潤度がそれぞれ特定の数値範囲を満足するように構成した樹脂フィルムは、高い引裂強度を有し、且つ良好な生産性で製造できることを見出し、本発明を完成するに至った。
即ち、本発明は、ポリ(3-ヒドロキシアルカノエート)系樹脂成分を含有する樹脂フィルムであって、前記樹脂フィルムの引張弾性率が500MPa以上2000MPa以下であり、前記樹脂フィルムをメチルエチルケトンに2時間浸漬して測定した膨潤度が1以上5以下である、樹脂フィルムに関する。
好ましくは、前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分が、構成モノマーの種類及び/又は構成モノマーの含有割合が互いに異なる少なくとも2種類のポリ(3-ヒドロキシアルカノエート)系樹脂の混合物である。
好ましくは、前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分が、3-ヒドロキシブチレート単位と他のヒドロキシアルカノエート単位との共重合体を含む。
より好ましくは、前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分が、
他のヒドロキシアルカノエート単位の含有割合が1~6モル%である、3-ヒドロキシブチレート単位と他のヒドロキシアルカノエート単位との共重合体(A)、及び、
他のヒドロキシアルカノエート単位の含有割合が24モル%以上である、3-ヒドロキシブチレート単位と他のヒドロキシアルカノエート単位との共重合体(B)を含む。
好ましくは、前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分中、前記共重合体(A)の割合が35重量%以上で、前記共重合体(B)の割合が65重量%以下である。
好ましくは、前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分を構成する全モノマー単位に占める前記他のヒドロキシアルカノエート単位の平均含有割合が、8~18モル%である。
好ましくは、前記他のヒドロキシアルカノエート単位が、3-ヒドロキシヘキサノエート単位である。
好ましくは、前記樹脂フィルムの引裂強度が2N/mm以上200N/mm以下である。
好ましくは、前記樹脂フィルムの厚みが10μm以上1mm以下である。
好ましくは、前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分が、構成モノマーの種類及び/又は構成モノマーの含有割合が互いに異なる少なくとも2種類のポリ(3-ヒドロキシアルカノエート)系樹脂の混合物である。
好ましくは、前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分が、3-ヒドロキシブチレート単位と他のヒドロキシアルカノエート単位との共重合体を含む。
より好ましくは、前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分が、
他のヒドロキシアルカノエート単位の含有割合が1~6モル%である、3-ヒドロキシブチレート単位と他のヒドロキシアルカノエート単位との共重合体(A)、及び、
他のヒドロキシアルカノエート単位の含有割合が24モル%以上である、3-ヒドロキシブチレート単位と他のヒドロキシアルカノエート単位との共重合体(B)を含む。
好ましくは、前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分中、前記共重合体(A)の割合が35重量%以上で、前記共重合体(B)の割合が65重量%以下である。
好ましくは、前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分を構成する全モノマー単位に占める前記他のヒドロキシアルカノエート単位の平均含有割合が、8~18モル%である。
好ましくは、前記他のヒドロキシアルカノエート単位が、3-ヒドロキシヘキサノエート単位である。
好ましくは、前記樹脂フィルムの引裂強度が2N/mm以上200N/mm以下である。
好ましくは、前記樹脂フィルムの厚みが10μm以上1mm以下である。
本発明によれば、ポリ(3-ヒドロキシアルカノエート)系樹脂成分を含有する樹脂フィルムであって、高い引裂強度を有し、且つ良好な生産性で製造可能な樹脂フィルムを提供することができる。
以下に、本発明の実施形態について説明するが、本発明は以下の実施形態に限定されるものではない。
本発明の一実施形態は、ポリ(3-ヒドロキシアルカノエート)系樹脂成分を含有する樹脂フィルムに関する。
(ポリ(3-ヒドロキシアルカノエート)系樹脂成分)
ポリ(3-ヒドロキシアルカノエート)樹脂成分は、単独のポリ(3-ヒドロキシアルカノエート)系樹脂であってもよいし、2種以上のポリ(3-ヒドロキシアルカノエート)系樹脂の混合物であっても良いが、後述する引張弾性率と膨潤度の制御が容易であることから、構成モノマーの種類及び/又は構成モノマーの含有割合が互いに異なる少なくとも2種類のポリ(3-ヒドロキシアルカノエート)系樹脂の混合物であることが好ましい。
ポリ(3-ヒドロキシアルカノエート)樹脂成分は、単独のポリ(3-ヒドロキシアルカノエート)系樹脂であってもよいし、2種以上のポリ(3-ヒドロキシアルカノエート)系樹脂の混合物であっても良いが、後述する引張弾性率と膨潤度の制御が容易であることから、構成モノマーの種類及び/又は構成モノマーの含有割合が互いに異なる少なくとも2種類のポリ(3-ヒドロキシアルカノエート)系樹脂の混合物であることが好ましい。
前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシアルカノエート単位を有する重合体、具体的には、下記一般式(1)で示される単位を含む重合体であることが好ましい。
[-CHR-CH2-CO-O-] (1)
[-CHR-CH2-CO-O-] (1)
一般式(1)中、RはCpH2p+1で表されるアルキル基を示し、pは1~15の整数を示す。Rとしては、例えば、メチル基、エチル基、プロピル基、メチルプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基等の直鎖または分岐鎖状のアルキル基が挙げられる。pとしては、1~10が好ましく、1~8がより好ましい。
前記ポリ(3-ヒドロキシアルカノエート)系樹脂としては、特に微生物から産生されるポリ(3-ヒドロキシアルカノエート)系樹脂が好ましい。微生物から産生されるポリ(3-ヒドロキシアルカノエート)系樹脂においては、3-ヒドロキシアルカノエート単位が、全て(R)-3-ヒドロキシアルカノエート単位として含有される。
ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシアルカノエート単位(特に、一般式(1)で表される単位)を、全構成単位の50モル%以上含むことが好ましく、60モル%以上含むことがより好ましく、70モル%以上含むことが更に好ましい。ポリ(3-ヒドロキシアルカノエート)系樹脂は、重合体の構成単位として、1種又は2種以上の3-ヒドロキシアルカノエート単位のみを含むものであってもよいし、1種又は2種以上の3-ヒドロキシアルカノエート単位に加えて、その他の単位(例えば、4-ヒドロキシアルカノエート単位等)を含むものであってもよい。
ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシブチレート(以下、3HBと称する場合がある)単位を含む単独重合体又は共重合体であることが好ましい。特に、3-ヒドロキシブチレート単位は、全て(R)-3-ヒドロキシブチレート単位であることが好ましい。また、ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシブチレート単位と他のヒドロキシアルカノエート単位との共重合体であることが好ましい。
ポリ(3-ヒドロキシアルカノエート)系樹脂の具体例としては、例えば、ポリ(3-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシプロピオネート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート)(略称:P3HB3HV)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート-3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)(略称:P3HB3HH)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘプタノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシノナノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシデカノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシウンデカノエート)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)(略称:P3HB4HB)等が挙げられる。特に、フィルムの生産性および機械特性等の観点から、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)とポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)が好ましい。
ポリ(3-ヒドロキシアルカノエート)系樹脂成分が、3-ヒドロキシブチレート単位と他のヒドロキシアルカノエート単位との共重合体を含む場合、ポリ(3-ヒドロキシアルカノエート)系樹脂成分を構成する全モノマー単位に占める3-ヒドロキシブチレート単位および他のヒドロキシアルカノエート単位の平均含有比率は、フィルムの引裂強度と生産性を両立する観点から、3-ヒドロキシブチレート単位/他のヒドロキシアルカノエート=93/7~80/20(モル%/モル%)が好ましく、92/8~82/18(モル%/モル%)がより好ましく、90/10~84/16(モル%/モル%)がさらに好ましい。
ポリ(3-ヒドロキシアルカノエート)系樹脂成分を構成する全モノマー単位に占める各モノマー単位の平均含有比率は、当業者に公知の方法、例えば国際公開2013/147139号の段落[0047]に記載の方法により求めることができる。平均含有比率とは、ポリ(3-ヒドロキシアルカノエート)系樹脂成分を構成する全モノマー単位に占める各モノマー単位のモル比を意味し、ポリ(3-ヒドロキシアルカノエート)系樹脂成分が2種以上のポリ(3-ヒドロキシアルカノエート)系樹脂の混合物である場合、混合物全体に含まれる各モノマー単位のモル比を意味する。
ポリ(3-ヒドロキシアルカノエート)系樹脂成分の重量平均分子量は、特に限定されないが、フィルムの引裂強度と生産性を両立する観点から、20万~200万が好ましく、25万~150万がより好ましく、30万~100万が更に好ましい。
また、ポリ(3-ヒドロキシアルカノエート)系樹脂成分が2種以上のポリ(3-ヒドロキシアルカノエート)系樹脂の混合物である場合、各ポリ(3-ヒドロキシアルカノエート)系樹脂の重量平均分子量は、特に限定されない。しかし、例えば、後述するような高結晶性のポリ(3-ヒドロキシアルカノエート)系樹脂と低結晶性のポリ(3-ヒドロキシアルカノエート)系樹脂とをブレンドする場合、高結晶性のポリ(3-ヒドロキシアルカノエート)系樹脂の重量平均分子量は、フィルムの引裂強度と生産性を両立する観点から、20万~100万が好ましく、22万~80万がより好ましく、25万~60万が更に好ましい。一方、低結晶性のポリ(3-ヒドロキシアルカノエート)系樹脂の重量平均分子量は、フィルムの引裂強度と生産性を両立する観点から、20万~250万が好ましく、25万~230万がより好ましく、30万~200万が更に好ましい。
なお、ポリ(3-ヒドロキシアルカノエート)系樹脂又はポリ(3-ヒドロキシアルカノエート)系樹脂成分の重量平均分子量は、クロロホルム溶液を用いたゲルパーミエーションクロマトグラフィー(島津製作所社製HPLC GPC system)を用い、ポリスチレン換算により測定することができる。該ゲルパーミエーションクロマトグラフィーにおけるカラムとしては、重量平均分子量を測定するのに適切なカラムを使用すればよい。
ポリ(3-ヒドロキシアルカノエート)系樹脂の製造方法は特に限定されず、化学合成による製造方法であってもよいし、微生物による製造方法であってもよい。中でも、微生物による製造方法が好ましい。微生物による製造方法については、公知の方法を適用できる。例えば、3-ヒドロキシブチレートと、その他のヒドロキシアルカノエートとのコポリマー生産菌としては、P3HB3HVおよびP3HB3HH生産菌であるアエロモナス・キヤビエ(Aeromonas caviae)、P3HB4HB生産菌であるアルカリゲネス・ユートロファス(Alcaligenes eutrophus)等が知られている。特に、P3HB3HHに関し、P3HB3HHの生産性を上げるために、P3HA合成酵素群の遺伝子を導入したアルカリゲネス・ユートロファス AC32株(Alcaligenes eutrophus AC32,FERM BP-6038)(T.Fukui,Y.Doi,J.Bateriol.,179,p4821-4830(1997))等がより好ましく、これらの微生物を適切な条件で培養して菌体内にP3HB3HHを蓄積させた微生物菌体が用いられる。また前記以外にも、生産したいポリ(3-ヒドロキシアルカノエート)系樹脂に合わせて、各種ポリ(3-ヒドロキシアルカノエート)系樹脂合成関連遺伝子を導入した遺伝子組み換え微生物を用いても良いし、基質の種類を含む培養条件の最適化をすればよい。
(他の樹脂)
本発明の一実施形態に係る樹脂フィルムは、発明の効果を損なわない範囲で、ポリ(3-ヒドロキシアルカノエート)系樹脂以外の他の樹脂を含んでもよい。そのような他の樹脂としては、例えば、ポリブチレンサクシネートアジペート、ポリブチレンサクシネート、ポリカプロラクトン、ポリ乳酸などの脂肪族ポリエステル系樹脂や、ポリブチレンアジペートテレフタレート、ポリブチレンセバケートテレフタレート、ポリブチレンアゼレートテレフタレートなどの脂肪族芳香族ポリエステル系樹脂等が挙げられる。他の樹脂としては1種のみが含まれていてもよいし、2種以上が含まれていてもよい。
本発明の一実施形態に係る樹脂フィルムは、発明の効果を損なわない範囲で、ポリ(3-ヒドロキシアルカノエート)系樹脂以外の他の樹脂を含んでもよい。そのような他の樹脂としては、例えば、ポリブチレンサクシネートアジペート、ポリブチレンサクシネート、ポリカプロラクトン、ポリ乳酸などの脂肪族ポリエステル系樹脂や、ポリブチレンアジペートテレフタレート、ポリブチレンセバケートテレフタレート、ポリブチレンアゼレートテレフタレートなどの脂肪族芳香族ポリエステル系樹脂等が挙げられる。他の樹脂としては1種のみが含まれていてもよいし、2種以上が含まれていてもよい。
前記他の樹脂の含有量は、特に限定されないが、ポリ(3-ヒドロキシアルカノエート)系樹脂成分の合計100重量部に対して、30重量部以下が好ましく、20重量部以下がより好ましく、10重量部以下がさらに好ましい。他の樹脂の含有量の下限は特に限定されず、0重量部であってもよい。
(シリカ)
本発明の一実施形態に係る樹脂フィルムは、引裂強度などの機械特性について改良効果を得ることを目的に、更にシリカを含有しても良い。
本発明の一実施形態に係る樹脂フィルムは、引裂強度などの機械特性について改良効果を得ることを目的に、更にシリカを含有しても良い。
前記シリカとしては、特にその種類は限定されないが、汎用性の観点から、乾式法または湿式法で製造される合成非晶質シリカが好ましい。また、疎水処理または非疎水処理を施したいずれのものも使用可能であり、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。
前記シリカとしては、吸着水分量が0.5重量%以上7重量%以下のシリカが好ましい。吸着水分量は、例えば研精工業株式会社製電磁式はかりMX-50を用いて160℃における揮発分を吸着水分量として測定することができる。吸着水分量が7重量%より大きい場合、シリカ表面や粒子間に吸着した水分の凝集力で分散しにくくなってフィルム成形時にフィッシュアイとなって外観不良を起こす場合がある。また逆に0.5重量%未満の場合には、この僅かに粒子間の残った水分が架橋液膜を形成して表面張力で大きな結合力を生み、分離・分散が極端に難しくなる傾向がある。
前記シリカの平均一次粒子径は、フィルムの引裂強度を向上させることができ、フィッシュアイ等の外観上の欠陥を生じにくく、透明性を大きく損なうことがなければ特に限定されないが、引裂強度等の機械的特性の向上効果が得られやすく、透明性に優れている点で0.001~0.1μmであることが好ましく、0.005~0.05μmであることが特に好ましい。なお、平均一次粒子径は、透過型電子顕微鏡(TEM)を用いて観察した任意の50個以上の一次粒子の径を算術平均することにより求められる。
前記シリカの配合量(総配合量)は、前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分の合計100重量部に対して、1~12重量部であることが好ましい。1重量部より少ないと、ポリ(3-ヒドロキシアルカノエート)系樹脂成分と複合化した際に引裂強度などの機械特性について前記シリカの配合による十分な改良効果を発現できない場合がある。また、12重量部より多い場合は、シリカを良好に分散させることが難しくなる場合がある。前記シリカの配合量は、2重量部以上がより好ましく、4重量部以上がさらに好ましい。また、11重量部以下がより好ましく、10重量部以下がさらに好ましい。
しかし、本発明の一実施形態に係る樹脂フィルムは、シリカを実質的に含有しなくても、高い引裂強度を有し得る。樹脂フィルムがシリカを実質的に含有しない場合、前記シリカの配合量(総配合量)は、前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分の合計100重量部に対して、0.1重量部未満であってもよく、また、0.01重量部未満であってもよい。
前記シリカの分散性を向上させることを目的に、前記シリカと、分散助剤を併用することが好ましい。
前記分散助剤としては、例えば、グリセリンエステル系化合物、アジピン酸エステル系化合物、ポリエーテルエステル系化合物、フタル酸エステル系化合物、イソソルバイドエステル系化合物、ポリカプロラクトン系化合物などが例示される。これらのうち、樹脂成分への親和性に優れブリードしにくいことから、グリセリンジアセトモノラウレート、グリセリンジアセトモノカプリレート、グリセリンジアセトモノデカノエートなどの変性グリセリン系化合物;ジエチルヘキシルアジペート、ジオクチルアジペート、ジイソノニルアジペートなどのアジピン酸エステル系化合物;ポリエチレングリコールジベンゾエート、ポリエチレングリコールジカプリレート、ポリエチレングリコールジイソステアレートなどのポリエーテルエステル系化合物が好ましく、更には、バイオマス由来成分を多く含むものが、組成物全体のバイオマス度を高めることができることから特に好ましい。このような分散助剤としては、理研ビタミン株式会社の「リケマール」(登録商標)PLシリーズやROQUETTE社のPolysorbシリーズなどが例示される。分散助剤は一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。
前記分散助剤の配合量(総配合量)は、前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分の合計100重量部に対して0.1~20重量部であることが好ましい。0.1重量部未満では、シリカの分散助剤としての機能を十分に発揮させることができない場合があったり、ポリ(3-ヒドロキシアルカノエート)系樹脂成分と複合化した際に引裂強度などの機械特性について前記シリカの配合による十分な改良効果を発現できない場合がある。一方、20重量部を超えると、ブリードアウトの原因になる場合がある。前記分散助剤の配合量は、0.3重量部以上がより好ましく、0.5重量部以上がさらに好ましい。また、10重量部以下がより好ましく、5重量部以下がさらに好ましい。
(添加剤)
本発明の一実施形態に係る樹脂フィルムは、本発明の効果を阻害しない範囲において、添加剤を含有してもよい。添加剤としては、例えば、結晶化核剤、滑剤、可塑剤、帯電防止剤、難燃剤、導電剤、断熱剤、架橋剤、酸化防止剤、紫外線吸収剤、着色剤、無機充填剤、有機充填剤、加水分解抑制剤等を目的に応じて使用できる。特に生分解性を有する添加剤が好ましい。
本発明の一実施形態に係る樹脂フィルムは、本発明の効果を阻害しない範囲において、添加剤を含有してもよい。添加剤としては、例えば、結晶化核剤、滑剤、可塑剤、帯電防止剤、難燃剤、導電剤、断熱剤、架橋剤、酸化防止剤、紫外線吸収剤、着色剤、無機充填剤、有機充填剤、加水分解抑制剤等を目的に応じて使用できる。特に生分解性を有する添加剤が好ましい。
結晶化核剤としては、例えば、ペンタエリスリトール、オロチン酸、アスパルテーム、シアヌル酸、グリシン、フェニルホスホン酸亜鉛、窒化ホウ素等が挙げられる。中でも、ポリ(3-ヒドロキシアルカノエート)系樹脂成分の結晶化を促進する効果が特に優れている点で、ペンタエリスリトールが好ましい。
結晶化核剤の使用量は、特に限定されないが、ポリ(3-ヒドロキシアルカノエート)系樹脂成分の合計100重量部に対して、0.1~5重量部が好ましく、0.5~3重量部がより好ましく、0.7~1.5重量部がさらに好ましい。また、結晶化核剤は、1種を使用してよいし、2種以上使用してもよく、目的に応じて、使用比率を適宜調整することができる。
結晶化核剤の使用量は、特に限定されないが、ポリ(3-ヒドロキシアルカノエート)系樹脂成分の合計100重量部に対して、0.1~5重量部が好ましく、0.5~3重量部がより好ましく、0.7~1.5重量部がさらに好ましい。また、結晶化核剤は、1種を使用してよいし、2種以上使用してもよく、目的に応じて、使用比率を適宜調整することができる。
滑剤としては、例えば、ベヘン酸アミド、オレイン酸アミド、エルカ酸アミド、ステアリン酸アミド、パルミチン酸アミド、N-ステアリルベヘン酸アミド、N-ステアリルエルカ酸アミド、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、エチレンビスラウリル酸アミド、エチレンビスカプリン酸アミド、p-フェニレンビスステアリン酸アミド、エチレンジアミンとステアリン酸とセバシン酸の重縮合物等が挙げられる。中でも、ポリ(3-ヒドロキシアルカノエート)系樹脂成分への滑剤効果が特に優れている点で、ベヘン酸アミドとエルカ酸アミドが好ましい。
滑剤の使用量は、特に限定されないが、ポリ(3-ヒドロキシアルカノエート)系樹脂成分の合計100重量部に対して、0.01~5重量部が好ましく、0.05~3重量部がより好ましく、0.1~1.5重量部がさらに好ましい。また、滑剤は、1種を使用してもよいし、2種以上使用してもよく、目的に応じて、使用比率を適宜調整することができる。
滑剤の使用量は、特に限定されないが、ポリ(3-ヒドロキシアルカノエート)系樹脂成分の合計100重量部に対して、0.01~5重量部が好ましく、0.05~3重量部がより好ましく、0.1~1.5重量部がさらに好ましい。また、滑剤は、1種を使用してもよいし、2種以上使用してもよく、目的に応じて、使用比率を適宜調整することができる。
可塑剤としては、例えば、グリセリンエステル系化合物、クエン酸エステル系化合物、セバシン酸エステル系化合物、アジピン酸エステル系化合物、ポリエーテルエステル系化合物、安息香酸エステル系化合物、フタル酸エステル系化合物、イソソルバイドエステル系化合物、ポリカプロラクトン系化合物、二塩基酸エステル系化合物等が挙げられる。中でも、ポリ(3-ヒドロキシアルカノエート)系樹脂成分への可塑化効果が特に優れている点で、グリセリンエステル系化合物、クエン酸エステル系化合物、セバシン酸エステル系化合物、二塩基酸エステル系化合物が好ましい。グリセリンエステル系化合物としては、例えば、グリセリンジアセトモノラウレート等が挙げられる。クエン酸エステル系化合物としては、例えば、アセチルクエン酸トリブチル等が挙げられる。セバシン酸エステル系化合物としては、例えば、セバシン酸ジブチル等が挙げられる。二塩基酸エステル系化合物としては、例えば、ベンジルメチルジエチレングリコールアジペート等が挙げられる。
可塑剤の使用量は、特に限定されないが、ポリ(3-ヒドロキシアルカノエート)系樹脂成分の合計100重量部に対して、1~20重量部が好ましく、2~15重量部がより好ましく、3~10重量部がさらに好ましい。また、可塑剤は、1種を使用してもよいし、2種以上使用してもよく、目的に応じて、使用比率を適宜調整することができる。
可塑剤の使用量は、特に限定されないが、ポリ(3-ヒドロキシアルカノエート)系樹脂成分の合計100重量部に対して、1~20重量部が好ましく、2~15重量部がより好ましく、3~10重量部がさらに好ましい。また、可塑剤は、1種を使用してもよいし、2種以上使用してもよく、目的に応じて、使用比率を適宜調整することができる。
(樹脂フィルムの引張弾性率)
本発明の一実施形態に係る樹脂フィルムは、引張弾性率が500MPa以上2000MPa以下を満足するものである。該引張弾性率が2000MPaを超えると、樹脂フィルムが十分なレベルの引裂強度を有することが困難となる。また、前記引張弾性率が500MPa未満であると、樹脂フィルムに力を加えて変形させた後に形状が復元しにくく、樹脂フィルムの使用性が悪化する傾向がある。
本発明の一実施形態に係る樹脂フィルムは、引張弾性率が500MPa以上2000MPa以下を満足するものである。該引張弾性率が2000MPaを超えると、樹脂フィルムが十分なレベルの引裂強度を有することが困難となる。また、前記引張弾性率が500MPa未満であると、樹脂フィルムに力を加えて変形させた後に形状が復元しにくく、樹脂フィルムの使用性が悪化する傾向がある。
前記引張弾性率は、1800MPa以下が好ましく、1700MPa以下がより好ましく、1600MPa以下がさらに好ましく、1500MPa以下が特に好ましい。また、前記引張弾性率は、600MPa以上が好ましく、700MPa以上がより好ましく、800MPa以上がさらに好ましい。
前記引張弾性率は、引張試験機(島津製作所製:EZ-LX 1kN)を用いて、JIS K 7127に準拠して、引張速度100mm/minの条件で樹脂フィルムの引張試験を行ってS-Sカーブを得、該S-Sカーブに基づいて算出される。
前記引張弾性率は、例えば、ポリ(3-ヒドロキシアルカノエート)系樹脂成分を構成する全モノマー単位に占める他のヒドロキシアルカノエート単位の平均含有割合を調節することによって制御することができる。
(樹脂フィルムの膨潤度)
前記樹脂フィルムは、メチルエチルケトンに2時間浸漬して測定した膨潤度が1以上5以下を満足するものである。前記膨潤度は、前記樹脂フィルムを室温(23℃)でメチルエチルケトン中に2時間浸漬して膨潤させた後、計量をすることで、次の式により算出される。
膨潤度=(膨潤後の樹脂フィルム重量/膨潤前の樹脂フィルム重量)
前記膨潤度は、数値が1に近いほど樹脂フィルムがメチルエチルケトンを吸収しにくいことを意味し、数値が大きいほど樹脂フィルムがメチルエチルケトンを吸収しやすいことを意味する。
前記樹脂フィルムは、メチルエチルケトンに2時間浸漬して測定した膨潤度が1以上5以下を満足するものである。前記膨潤度は、前記樹脂フィルムを室温(23℃)でメチルエチルケトン中に2時間浸漬して膨潤させた後、計量をすることで、次の式により算出される。
膨潤度=(膨潤後の樹脂フィルム重量/膨潤前の樹脂フィルム重量)
前記膨潤度は、数値が1に近いほど樹脂フィルムがメチルエチルケトンを吸収しにくいことを意味し、数値が大きいほど樹脂フィルムがメチルエチルケトンを吸収しやすいことを意味する。
前記膨潤度は、ポリ(3-ヒドロキシアルカノエート)系樹脂成分に含まれるタイ分子の密度を示す指標である。タイ分子は、樹脂成分中の微細な樹脂結晶粒子同士を架橋する分子であり、それらによりネットワークを形成することで、ポリ(3-ヒドロキシアルカノエート)系樹脂成分から構成されるフィルムの引裂強度を格段に高めることができる。タイ分子の密度が高いと、樹脂フィルムがメチルエチルケトンを吸収しにくくなるので、膨潤度の数値は比較的低い数値に留まる。
前記膨潤度が5を超え、タイ分子の密度が低いものであると、ポリ(3-ヒドロキシアルカノエート)系樹脂フィルムの引裂強度が十分に高いものとならない。前記膨潤度は4以下が好ましく、3.5以下がより好ましく、3以下がさらに好ましく、2.5以下が特に好ましい。
但し、膨潤度が引裂強度に与える影響を評価する際には、ポリ(3-ヒドロキシアルカノエート)系樹脂成分に含まれる樹脂結晶量が同等レベルにある樹脂成分同士で比較することが望ましい。具体的には、ポリ(3-ヒドロキシアルカノエート)系樹脂成分に含まれる樹脂結晶量はコモノマーの含有割合に依存することから、互いにコモノマーの含有割合が同等である樹脂成分同士で比較することが望ましい。
前記膨潤度は、例えば、前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分を、構成モノマーの種類及び/又は構成モノマーの含有割合が互いに異なる少なくとも2種類のポリ(3-ヒドロキシアルカノエート)系樹脂の混合物で構成し、前記2種類のポリ(3-ヒドロキシアルカノエート)系樹脂をそれぞれ、3-ヒドロキシブチレート単位と他のヒドロキシアルカノエート単位との共重合体から構成することによって制御することができる。特に、前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分が、他のヒドロキシアルカノエート単位の含有割合が1~6モル%である、3-ヒドロキシブチレート単位と他のヒドロキシアルカノエート単位との共重合体(A)、及び、他のヒドロキシアルカノエート単位の含有割合が24モル%以上である、3-ヒドロキシブチレート単位と他のヒドロキシアルカノエート単位との共重合体(B)を含む時に、前記膨潤度を5以下に制御し、更に前記引張弾性率を500MPa以上2000MPa以下に制御することが容易である。各共重合体の詳細は後述する。
(樹脂フィルムの引裂強度)
前記樹脂フィルムは、高い引裂強度を発現することができ、裂けにくく破れにくいものである。樹脂フィルムが示す引裂強度は、エルメンドルフ引裂強度として、2N/mm以上が好ましく、4N/mm以上がより好ましく、6N/mm以上がさらに好ましく、8N/mm以上が特に好ましくい。
前記樹脂フィルムは、高い引裂強度を発現することができ、裂けにくく破れにくいものである。樹脂フィルムが示す引裂強度は、エルメンドルフ引裂強度として、2N/mm以上が好ましく、4N/mm以上がより好ましく、6N/mm以上がさらに好ましく、8N/mm以上が特に好ましくい。
前記引裂強度の上限値は特に限定されないが、スリット加工性を考慮して、200N/mm以下が好ましく、100N/mm以下がより好ましく、80N/mm以下がさらに好ましく、60N/mm以下が特に好ましい。
前記エルメンドルフ引裂強度は、JIS P-8116に規定された標準エルメンドルフ引裂試験機に準拠する機能と構造を有する軽荷重引裂度試験機(熊谷理機工業株式会社製:NO.2037特殊仕様機)によって測定される値を、フィルムの厚さ(mm)で除して得られた値である。
(樹脂フィルムの厚み)
樹脂フィルムの厚みは特に限定されないが、10μm以上1mm以下であることが好ましく、15μm以上500μm以下がより好ましく、20μm以上300μm以下がさらに好ましい。本願における樹脂フィルムには、一般的にシートと呼ばれる厚みのものも含まれ得る。
樹脂フィルムの厚みは特に限定されないが、10μm以上1mm以下であることが好ましく、15μm以上500μm以下がより好ましく、20μm以上300μm以下がさらに好ましい。本願における樹脂フィルムには、一般的にシートと呼ばれる厚みのものも含まれ得る。
(樹脂フィルムの製造方法)
本発明の一実施形態に係る樹脂フィルムを製造するための方法としては、例えば、ポリ(3-ヒドロキシアルカノエート)系樹脂成分が共重合体を含む場合において該共重合体を構成する各モノマーの含有割合を調整する方法、構成モノマーの種類及び/又は構成モノマーの含有割合が互いに異なる少なくとも2種のポリ(3-ヒドロキシアルカノエート)系樹脂を混合する方法等が挙げられる。特に、構成モノマーの種類及び/又は構成モノマーの含有割合が互いに異なる少なくとも2種のポリ(3-ヒドロキシアルカノエート)系樹脂を混合する方法が好ましい。
本発明の一実施形態に係る樹脂フィルムを製造するための方法としては、例えば、ポリ(3-ヒドロキシアルカノエート)系樹脂成分が共重合体を含む場合において該共重合体を構成する各モノマーの含有割合を調整する方法、構成モノマーの種類及び/又は構成モノマーの含有割合が互いに異なる少なくとも2種のポリ(3-ヒドロキシアルカノエート)系樹脂を混合する方法等が挙げられる。特に、構成モノマーの種類及び/又は構成モノマーの含有割合が互いに異なる少なくとも2種のポリ(3-ヒドロキシアルカノエート)系樹脂を混合する方法が好ましい。
少なくとも2種のポリ(3-ヒドロキシアルカノエート)系樹脂を混合する場合は、少なくとも1種の高結晶性のポリ(3-ヒドロキシアルカノエート)系樹脂と、少なくとも1種の低結晶性のポリ(3-ヒドロキシアルカノエート)系樹脂を組み合わせて混合することが好ましい。一般に、高結晶性のポリ(3-ヒドロキシアルカノエート)系樹脂は生産性に優れるが機械強度が乏しい性質を有し、低結晶性のポリ(3-ヒドロキシアルカノエート)系樹脂は生産性に劣るが優れた機械特性を有する。高結晶性のポリ(3-ヒドロキシアルカノエート)系樹脂が微細な樹脂結晶粒子を形成し、低結晶性のポリ(3-ヒドロキシアルカノエート)系樹脂が、該樹脂結晶粒子同士を架橋するタイ分子を形成すると推測される。これらの樹脂を組み合わせて使用することで、樹脂フィルムの引裂強度が格段に向上し得る。
前記高結晶性のポリ(3-ヒドロキシアルカノエート)系樹脂が3-ヒドロキシブチレート単位を含む場合、該高結晶性のポリ(3-ヒドロキシアルカノエート)系樹脂に含まれる3-ヒドロキシブチレート単位の含有割合は、ポリ(3-ヒドロキシアルカノエート)系樹脂成分を構成する全モノマー単位に占める3-ヒドロキシブチレート単位の平均含有割合よりも高いことが好ましい。
高結晶性のポリ(3-ヒドロキシアルカノエート)系樹脂が3-ヒドロキシブチレート単位と他のヒドロキシアルカノエート単位を含む場合、該高結晶性の樹脂における他のヒドロキシアルカノエート単位の含有割合は、1~10モル%が好ましく、1~8モル%がより好ましく、1~6モル%が更に好ましい。
高結晶性のポリ(3-ヒドロキシアルカノエート)系樹脂が3-ヒドロキシブチレート単位と他のヒドロキシアルカノエート単位を含む場合、該高結晶性の樹脂における他のヒドロキシアルカノエート単位の含有割合は、1~10モル%が好ましく、1~8モル%がより好ましく、1~6モル%が更に好ましい。
前記高結晶性のポリ(3-ヒドロキシアルカノエート)系樹脂成分としては、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)、又は、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)が好ましく、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)がより好ましい。
また、前記低結晶性のポリ(3-ヒドロキシアルカノエート)系樹脂が3-ヒドロキシブチレート単位を含む場合、該低結晶性のポリ(3-ヒドロキシアルカノエート)系樹脂に含まれる3-ヒドロキシブチレート単位の含有割合は、ポリ(3-ヒドロキシアルカノエート)系樹脂成分を構成する全モノマー単位に占める3-ヒドロキシブチレート単位の平均含有割合よりも低いことが好ましい。
低結晶性のポリ(3-ヒドロキシアルカノエート)系樹脂が3-ヒドロキシブチレート単位と他のヒドロキシアルカノエート単位を含む場合、該低結晶性の樹脂における他のヒドロキシアルカノエート単位の含有割合は、24~99モル%が好ましく、24~50モル%がより好ましく、24~35モル%がさらに好ましく、24~30モル%が特に好ましい。
低結晶性のポリ(3-ヒドロキシアルカノエート)系樹脂が3-ヒドロキシブチレート単位と他のヒドロキシアルカノエート単位を含む場合、該低結晶性の樹脂における他のヒドロキシアルカノエート単位の含有割合は、24~99モル%が好ましく、24~50モル%がより好ましく、24~35モル%がさらに好ましく、24~30モル%が特に好ましい。
前記低結晶性のポリ(3-ヒドロキシアルカノエート)系樹脂としては、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)、又は、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)が好ましく、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)がより好ましい。
高結晶性のポリ(3-ヒドロキシアルカノエート)系樹脂と低結晶性のポリ(3-ヒドロキシアルカノエート)系樹脂を併用する場合、両樹脂の合計量に対する各樹脂の使用割合は特に限定されないが、前者が35重量%以上90重量%以下で、後者が10重量%以上65重量%以下であることが好ましく、前者が45重量%以上80重量%以下で、後者が20重量%以上55重量%以下であることがより好ましい。
2種以上のポリ(3-ヒドロキシアルカノエート)系樹脂のブレンド物を得る方法は特に限定されず、微生物産生によりブレンド物を得る方法であってよいし、化学合成によりブレンド物を得る方法であってもよい。また、押出機、ニーダー、バンバリーミキサー、ロール等を用いて2種以上の樹脂を溶融混練してブレンド物を得てもよいし、2種以上の樹脂を溶媒に溶解して混合・乾燥してブレンド物を得ても良い。
本発明の一実施形態に係る樹脂フィルムは、Tダイ押出成形、インフレーション成形、カレンダー成形など種々の成形方法によって製造することができる。具体的な条件については適宜設定すればよいが、例えば、インフレーション法では、インフレーション成形前に除湿乾燥機などでペレットの水分率が500ppm以下になるまで乾燥し、シリンダー設定温度を100℃~160℃、アダプターおよびダイスの設定温度を130℃~160℃にすることが好ましい。
本発明の一実施形態に係る樹脂フィルムは優れた生分解性を有しているため、農業、漁業、林業、園芸、医学、衛生品、食品産業、衣料、非衣料、包装、自動車、建材、その他の分野に好適に用いることができる。例えば、ゴミ袋、レジ袋、野菜・果物の包装袋、ピロー包装、農業用マルチフィルム、林業用燻蒸シート、フラットヤーン等を含む結束テープ、植木の根巻フィルム、おむつのバックシート、包装用シート、ショッピングバック、水切り袋、その他コンポストバック等の用途に用いられる。
以下、実施例により本発明を具体的に説明するが、本発明は、これらの実施例によりその技術的範囲を限定されるものではない。
実施例および比較例で使用した物質を以下に示す。
[ポリ(3-ヒドロキシアルカノエート)系樹脂]
P3HB3HH-1:P3HB3HH(平均含有比率3HB/3HH=97.2/2.8(モル%/モル%)、重量平均分子量は66万g/mol)
国際公開第2019/142845号の実施例2に記載の方法に準じて製造した。
P3HB3HH-2:P3HB3HH(平均含有比率3HB/3HH=71.8/28.2(モル%/モル%)、重量平均分子量は66万g/mol)
国際公開第2019/142845号の実施例9に記載の方法に準じて製造した。
P3HB3HH-3:X131A(カネカ生分解性ポリマーPHBH(登録商標))(平均含有比率3HB/3HH=94/6(モル%/モル%)、重量平均分子量は60万g/mol)
P3HB3HH-4:P3HB3HH(平均含有比率3HB/3HH=83/17(モル%/モル%)、重量平均分子量は70万g/mol)
国際公開第2019/142845号の実施例7に記載の方法に準じて製造した。
ポリ(3-ヒドロキシアルカノエート)系樹脂成分として2種以上のポリ(3-ヒドロキシアルカノエート)系樹脂の混合物を使用する場合、表1に示した平均HH割合は、各ポリ(3-ヒドロキシアルカノエート)系樹脂における3HH割合と、各ポリ(3-ヒドロキシアルカノエート)系樹脂の重量割合とから算出した平均値である。
[ポリ(3-ヒドロキシアルカノエート)系樹脂]
P3HB3HH-1:P3HB3HH(平均含有比率3HB/3HH=97.2/2.8(モル%/モル%)、重量平均分子量は66万g/mol)
国際公開第2019/142845号の実施例2に記載の方法に準じて製造した。
P3HB3HH-2:P3HB3HH(平均含有比率3HB/3HH=71.8/28.2(モル%/モル%)、重量平均分子量は66万g/mol)
国際公開第2019/142845号の実施例9に記載の方法に準じて製造した。
P3HB3HH-3:X131A(カネカ生分解性ポリマーPHBH(登録商標))(平均含有比率3HB/3HH=94/6(モル%/モル%)、重量平均分子量は60万g/mol)
P3HB3HH-4:P3HB3HH(平均含有比率3HB/3HH=83/17(モル%/モル%)、重量平均分子量は70万g/mol)
国際公開第2019/142845号の実施例7に記載の方法に準じて製造した。
ポリ(3-ヒドロキシアルカノエート)系樹脂成分として2種以上のポリ(3-ヒドロキシアルカノエート)系樹脂の混合物を使用する場合、表1に示した平均HH割合は、各ポリ(3-ヒドロキシアルカノエート)系樹脂における3HH割合と、各ポリ(3-ヒドロキシアルカノエート)系樹脂の重量割合とから算出した平均値である。
[添加剤]
添加剤-1:ペンタエリスリトール(三菱化学社製:ノイライザーP)
添加剤-2:ベヘン酸アミド(日本精化社製:BNT-22H)
添加剤-3:エルカ酸アミド(日本精化社製:ニュートロン-S)
実施例および比較例において実施した評価方法に関して、以下に説明する。
添加剤-1:ペンタエリスリトール(三菱化学社製:ノイライザーP)
添加剤-2:ベヘン酸アミド(日本精化社製:BNT-22H)
添加剤-3:エルカ酸アミド(日本精化社製:ニュートロン-S)
実施例および比較例において実施した評価方法に関して、以下に説明する。
[膨潤度の評価]
・フィルムの作製
2mm厚のSUS板(30cm×35cm)の上にポリイミドフィルムを設置し、前記ポリイミドフィルム上に2.0gの樹脂組成物ペレットを置いた。さらに、前記樹脂組成物ペレットを囲うようにスペーサーとして200μm厚のシムプレートを設置した。その後、前記樹脂組成物ペレットを挟むように前記SUS板と同じ板を被せ、170℃に加熱したプレス機(株式会社神藤金属工業所製:圧縮成形機NSF-50)の加熱プレス板上に設置し、5分間予熱した。予熱後、2分間の時間をかけながら徐々に5MPaまで加圧した後、2分間圧力を保持した。プレス完了後、およそ20℃に冷却された冷却板上で室温まで冷却し、約200μm厚のフィルムを得た。このフィルムを室温23℃、湿度50%の環境中で1週間養生し、膨潤度測定用のフィルムサンプルとした。
・フィルムの作製
2mm厚のSUS板(30cm×35cm)の上にポリイミドフィルムを設置し、前記ポリイミドフィルム上に2.0gの樹脂組成物ペレットを置いた。さらに、前記樹脂組成物ペレットを囲うようにスペーサーとして200μm厚のシムプレートを設置した。その後、前記樹脂組成物ペレットを挟むように前記SUS板と同じ板を被せ、170℃に加熱したプレス機(株式会社神藤金属工業所製:圧縮成形機NSF-50)の加熱プレス板上に設置し、5分間予熱した。予熱後、2分間の時間をかけながら徐々に5MPaまで加圧した後、2分間圧力を保持した。プレス完了後、およそ20℃に冷却された冷却板上で室温まで冷却し、約200μm厚のフィルムを得た。このフィルムを室温23℃、湿度50%の環境中で1週間養生し、膨潤度測定用のフィルムサンプルとした。
・膨潤度の測定
上記フィルムサンプルを約0.5gの重量になるようにカットして膨潤前のサンプルとし、電子天秤を用いて正確な重量を量った。その後、室温(23℃)でメチルエチルケトン(MEK)中に2時間浸漬した。浸漬後、サンプルを取り出し、表面に付着したMEKを素早くキムワイプで拭き取り、膨潤後のサンプル重量を量った。次の式により、膨潤度を算出し、サンプルの膨潤度とした。
膨潤度=(膨潤後のサンプル重量/膨潤前のサンプル重量)
上記フィルムサンプルを約0.5gの重量になるようにカットして膨潤前のサンプルとし、電子天秤を用いて正確な重量を量った。その後、室温(23℃)でメチルエチルケトン(MEK)中に2時間浸漬した。浸漬後、サンプルを取り出し、表面に付着したMEKを素早くキムワイプで拭き取り、膨潤後のサンプル重量を量った。次の式により、膨潤度を算出し、サンプルの膨潤度とした。
膨潤度=(膨潤後のサンプル重量/膨潤前のサンプル重量)
[引張試験:引張弾性率の評価]
・フィルムの作製
2mm厚のSUS板(30cm×35cm)の上にポリイミドフィルムを設置し、前記ポリイミドフィルム上に2.0gの樹脂組成物ペレットを置いた。さらに、前記樹脂組成物ペレットを囲うようにスペーサーとして100μm厚のシムプレートを設置した。その後、前記樹脂組成物ペレットを挟むように前記SUS板と同じ板を被せ、170℃に加熱したプレス機(株式会社神藤金属工業所製:圧縮成形機NSF-50)の加熱プレス板上に設置し、5分間予熱した。予熱後、2分間の時間をかけながら徐々に5MPaまで加圧した後、2分間圧力を保持した。プレス完了後、およそ20℃に冷却された冷却板上で室温まで冷却し、約100μm厚のフィルムを得た。このフィルムを室温23℃、湿度50%の環境中で1週間養生し、引張弾性率測定用のフィルムサンプルとした。
・フィルムの作製
2mm厚のSUS板(30cm×35cm)の上にポリイミドフィルムを設置し、前記ポリイミドフィルム上に2.0gの樹脂組成物ペレットを置いた。さらに、前記樹脂組成物ペレットを囲うようにスペーサーとして100μm厚のシムプレートを設置した。その後、前記樹脂組成物ペレットを挟むように前記SUS板と同じ板を被せ、170℃に加熱したプレス機(株式会社神藤金属工業所製:圧縮成形機NSF-50)の加熱プレス板上に設置し、5分間予熱した。予熱後、2分間の時間をかけながら徐々に5MPaまで加圧した後、2分間圧力を保持した。プレス完了後、およそ20℃に冷却された冷却板上で室温まで冷却し、約100μm厚のフィルムを得た。このフィルムを室温23℃、湿度50%の環境中で1週間養生し、引張弾性率測定用のフィルムサンプルとした。
・引張弾性率の測定
上記フィルムサンプルについて、引張試験機(島津製作所製:EZ-LX 1kN)を用いて、JIS K 7127に準拠して、引張速度100mm/minの条件で引張試験を行った。引張試験により得られたS-Sカーブに基づき、引張弾性率の算出を行った。
上記フィルムサンプルについて、引張試験機(島津製作所製:EZ-LX 1kN)を用いて、JIS K 7127に準拠して、引張速度100mm/minの条件で引張試験を行った。引張試験により得られたS-Sカーブに基づき、引張弾性率の算出を行った。
[引裂強度の評価]
・フィルムの作製
2mm厚のSUS板(30cm×35cm)の上にポリイミドフィルムを設置し、前記ポリイミドフィルム上に2.0gの樹脂組成物ペレットを置いた。さらに、前記樹脂組成物ペレットを囲うようにスペーサーとして50μm厚のシムプレートを設置した。その後、前記樹脂組成物ペレットを挟むように前記SUS板と同じ板を被せ、170℃に加熱したプレス機(株式会社神藤金属工業所製:圧縮成形機NSF-50)の加熱プレス板上に設置し、5分間予熱した。予熱後、2分間の時間をかけながら徐々に5MPaまで加圧した後、2分間圧力を保持した。プレス完了後、およそ20℃に冷却された冷却板上で室温まで冷却し、約50μm厚のフィルムを得た。このフィルムを室温23℃、湿度50%の環境中で1週間養生し、引裂強度測定用のフィルムサンプルとした。
・フィルムの作製
2mm厚のSUS板(30cm×35cm)の上にポリイミドフィルムを設置し、前記ポリイミドフィルム上に2.0gの樹脂組成物ペレットを置いた。さらに、前記樹脂組成物ペレットを囲うようにスペーサーとして50μm厚のシムプレートを設置した。その後、前記樹脂組成物ペレットを挟むように前記SUS板と同じ板を被せ、170℃に加熱したプレス機(株式会社神藤金属工業所製:圧縮成形機NSF-50)の加熱プレス板上に設置し、5分間予熱した。予熱後、2分間の時間をかけながら徐々に5MPaまで加圧した後、2分間圧力を保持した。プレス完了後、およそ20℃に冷却された冷却板上で室温まで冷却し、約50μm厚のフィルムを得た。このフィルムを室温23℃、湿度50%の環境中で1週間養生し、引裂強度測定用のフィルムサンプルとした。
・引裂強度の測定
JIS P-8116に規定された標準エルメンドルフ引裂試験機に準拠する機能と構造を有する軽荷重引裂度試験機(熊谷理機工業株式会社製:NO.2037特殊仕様機)によって測定される値をフィルムサンプルの厚さ(mm)で除し、フィルムサンプルのエルメンドルフ引裂強度とした。
JIS P-8116に規定された標準エルメンドルフ引裂試験機に準拠する機能と構造を有する軽荷重引裂度試験機(熊谷理機工業株式会社製:NO.2037特殊仕様機)によって測定される値をフィルムサンプルの厚さ(mm)で除し、フィルムサンプルのエルメンドルフ引裂強度とした。
[生産性の評価]
小型混練機(DSM社製:DSM Xplore 5 モデル2005)を用いて、約4.5gのフィルム原料をバレル温度170℃、スクリュー回転数100rpmの条件で5分間混練した。その後、ダイより溶融状態のストランド状樹脂組成物を吐出して、直ちに、60℃に加温したウォーターバス中に投入し、結晶固化する時間を測定した。100秒以内に固化した場合、生産性が良好と評価した。
小型混練機(DSM社製:DSM Xplore 5 モデル2005)を用いて、約4.5gのフィルム原料をバレル温度170℃、スクリュー回転数100rpmの条件で5分間混練した。その後、ダイより溶融状態のストランド状樹脂組成物を吐出して、直ちに、60℃に加温したウォーターバス中に投入し、結晶固化する時間を測定した。100秒以内に固化した場合、生産性が良好と評価した。
(実施例1)
表1に記載の樹脂組成となるようにP3HB3HH-1を1.76g、P3HB3HH-2を2.74gブレンドしたものに、添加剤-1を0.045g、添加剤-2を0.0225g、添加剤-3を0.0225g加えて小型混練機(DSM社製:DSM Xplore 5 モデル2005)へ投入し、バレル温度170℃、スクリュー回転数100rpmの条件で5分間混練した。混練終了直後にダイより溶融状態のストランド状樹脂組成物を排出し、60℃に加熱したウォーターバス中に投入して生産性を評価した結果、生産性が良好であった。その後、ウォーターバス中で結晶固化したストランドをニッパーで裁断し、樹脂組成物ペレットとした。
表1に記載の樹脂組成となるようにP3HB3HH-1を1.76g、P3HB3HH-2を2.74gブレンドしたものに、添加剤-1を0.045g、添加剤-2を0.0225g、添加剤-3を0.0225g加えて小型混練機(DSM社製:DSM Xplore 5 モデル2005)へ投入し、バレル温度170℃、スクリュー回転数100rpmの条件で5分間混練した。混練終了直後にダイより溶融状態のストランド状樹脂組成物を排出し、60℃に加熱したウォーターバス中に投入して生産性を評価した結果、生産性が良好であった。その後、ウォーターバス中で結晶固化したストランドをニッパーで裁断し、樹脂組成物ペレットとした。
前記樹脂組成物ペレットから、プレス機を用いてフィルムを作製し、1週間養生後に膨潤度、引張弾性率、及び引裂強度を測定した。測定の結果、膨潤度は2.73、引張弾性率は508MPa、引裂強度は69.7N/mmであった。結果を表1にまとめた。
(実施例2~9、比較例1~2)
樹脂配合を表1に示すように変更したこと以外は実施例1と同様にして樹脂組成物ペレットを作製し、実施例1と同様の評価を実施した。結果を表1にまとめた。
樹脂配合を表1に示すように変更したこと以外は実施例1と同様にして樹脂組成物ペレットを作製し、実施例1と同様の評価を実施した。結果を表1にまとめた。
表1より以下のことが分かる。実施例1~9の各フィルムは、引張弾性率が500MPa以上2000MPa以下、膨潤度が1以上5以下の範囲内にあるもので、各樹脂組成物の結晶固化に要する時間が短く、生産性が良好であった。更に、得られたフィルムは高い引裂強度を有していた。
一方、比較例1のフィルムは、膨潤度が1以上5以下の範囲内にあったが、引張弾性率が高すぎるもので、生産性は良好であったものの、引裂強度が低いものであった。
また、比較例2のフィルムは、引張弾性率が500MPa以上2000MPa以下の範囲内にあったが、膨潤度が5.12と大きすぎるものであり、生産性が不良であった。更に、平均HH割合が同レベルにある比較例2と実施例1又は2を比較すると、実施例1又は2のように膨潤度を5以下とすることによって、引裂強度が格段に、10倍以上も向上していることが分かる。
また、比較例2のフィルムは、引張弾性率が500MPa以上2000MPa以下の範囲内にあったが、膨潤度が5.12と大きすぎるものであり、生産性が不良であった。更に、平均HH割合が同レベルにある比較例2と実施例1又は2を比較すると、実施例1又は2のように膨潤度を5以下とすることによって、引裂強度が格段に、10倍以上も向上していることが分かる。
Claims (9)
- ポリ(3-ヒドロキシアルカノエート)系樹脂成分を含有する樹脂フィルムであって、
前記樹脂フィルムの引張弾性率が500MPa以上2000MPa以下であり、
前記樹脂フィルムをメチルエチルケトンに2時間浸漬して測定した膨潤度が1以上5以下である、樹脂フィルム。 - 前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分が、構成モノマーの種類及び/又は構成モノマーの含有割合が互いに異なる少なくとも2種類のポリ(3-ヒドロキシアルカノエート)系樹脂の混合物である、請求項1に記載の樹脂フィルム。
- 前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分が、3-ヒドロキシブチレート単位と他のヒドロキシアルカノエート単位との共重合体を含む、請求項1又は2に記載の樹脂フィルム。
- 前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分が、
他のヒドロキシアルカノエート単位の含有割合が1~6モル%である、3-ヒドロキシブチレート単位と他のヒドロキシアルカノエート単位との共重合体(A)、及び、
他のヒドロキシアルカノエート単位の含有割合が24モル%以上である、3-ヒドロキシブチレート単位と他のヒドロキシアルカノエート単位との共重合体(B)を含む、請求項3に記載の樹脂フィルム。 - 前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分中、前記共重合体(A)の割合が35重量%以上で、前記共重合体(B)の割合が65重量%以下である、請求項4に記載の樹脂フィルム。
- 前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分を構成する全モノマー単位に占める前記他のヒドロキシアルカノエート単位の平均含有割合が、8~18モル%である、請求項3~5のいずれか1項に記載の樹脂フィルム。
- 前記他のヒドロキシアルカノエート単位が、3-ヒドロキシヘキサノエート単位である、請求項3~6のいずれか1項に記載の樹脂フィルム。
- 前記樹脂フィルムの引裂強度が2N/mm以上200N/mm以下である、請求項1~7のいずれか1項に記載の樹脂フィルム。
- 前記樹脂フィルムの厚みが10μm以上1mm以下である、請求項1~8のいずれか1項に記載の樹脂フィルム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022533980A JPWO2022004637A1 (ja) | 2020-06-29 | 2021-06-28 | |
US18/003,642 US20230235137A1 (en) | 2020-06-29 | 2021-06-28 | Resin film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020111919 | 2020-06-29 | ||
JP2020-111919 | 2020-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022004637A1 true WO2022004637A1 (ja) | 2022-01-06 |
Family
ID=79315382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/024311 WO2022004637A1 (ja) | 2020-06-29 | 2021-06-28 | 樹脂フィルム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230235137A1 (ja) |
JP (1) | JPWO2022004637A1 (ja) |
WO (1) | WO2022004637A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004161802A (ja) * | 2002-11-08 | 2004-06-10 | Kanegafuchi Chem Ind Co Ltd | 生分解性ポリエステル系樹脂組成物およびその製造方法 |
JP2004250629A (ja) * | 2003-02-21 | 2004-09-09 | Kanegafuchi Chem Ind Co Ltd | ポリヒドロキシアルカン酸の製造方法 |
JP2004331913A (ja) * | 2003-05-12 | 2004-11-25 | Kanegafuchi Chem Ind Co Ltd | 生分解性ポリエステル系樹脂組成物の製造方法 |
JP2005162884A (ja) * | 2003-12-03 | 2005-06-23 | Kaneka Corp | ポリ(3−ヒドロキシアルカノエート)組成物を用いたフィルム |
US20110189414A1 (en) * | 2008-05-06 | 2011-08-04 | Whitehouse Robert S | Biodegradable polyester blends |
WO2015146194A1 (ja) * | 2014-03-28 | 2015-10-01 | 株式会社カネカ | ポリエステル樹脂組成物、並びに該樹脂組成物から形成される成形体およびその製造方法 |
JP2017222791A (ja) * | 2016-06-15 | 2017-12-21 | 株式会社カネカ | ポリ−3−ヒドロキシアルカノエート系樹脂組成物および成形体 |
-
2021
- 2021-06-28 US US18/003,642 patent/US20230235137A1/en active Pending
- 2021-06-28 JP JP2022533980A patent/JPWO2022004637A1/ja active Pending
- 2021-06-28 WO PCT/JP2021/024311 patent/WO2022004637A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004161802A (ja) * | 2002-11-08 | 2004-06-10 | Kanegafuchi Chem Ind Co Ltd | 生分解性ポリエステル系樹脂組成物およびその製造方法 |
JP2004250629A (ja) * | 2003-02-21 | 2004-09-09 | Kanegafuchi Chem Ind Co Ltd | ポリヒドロキシアルカン酸の製造方法 |
JP2004331913A (ja) * | 2003-05-12 | 2004-11-25 | Kanegafuchi Chem Ind Co Ltd | 生分解性ポリエステル系樹脂組成物の製造方法 |
JP2005162884A (ja) * | 2003-12-03 | 2005-06-23 | Kaneka Corp | ポリ(3−ヒドロキシアルカノエート)組成物を用いたフィルム |
US20110189414A1 (en) * | 2008-05-06 | 2011-08-04 | Whitehouse Robert S | Biodegradable polyester blends |
WO2015146194A1 (ja) * | 2014-03-28 | 2015-10-01 | 株式会社カネカ | ポリエステル樹脂組成物、並びに該樹脂組成物から形成される成形体およびその製造方法 |
JP2017222791A (ja) * | 2016-06-15 | 2017-12-21 | 株式会社カネカ | ポリ−3−ヒドロキシアルカノエート系樹脂組成物および成形体 |
Also Published As
Publication number | Publication date |
---|---|
US20230235137A1 (en) | 2023-07-27 |
JPWO2022004637A1 (ja) | 2022-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020195550A1 (ja) | ポリヒドロキシアルカノエート系樹脂組成物、その成形体及びフィルム又はシート | |
KR20110037983A (ko) | 생분해성 포장 필름 | |
EP3666826B1 (en) | Polylactic acid composite material and application thereof | |
KR20130108277A (ko) | 다공성 필름 | |
CN113174069B (zh) | 一种生物质功能母粒及其制备方法和应用 | |
JP4605084B2 (ja) | ポリ乳酸系成形品 | |
US20230365806A1 (en) | Resin composition for injection molding and injection-molded article | |
JP2014156539A (ja) | ポリエステル樹脂組成物、該樹脂組成物を成形してなるフィルム、及び該フィルムを成形してなる袋 | |
JP2019077823A (ja) | ポリエステル系樹脂組成物およびその成形体 | |
JP6102315B2 (ja) | ポリエステル樹脂組成物及び該ポリエステル樹脂組成物を成形してなるフィルム | |
JP7549484B2 (ja) | インフレーション成形体 | |
Koca et al. | Blown film extrusion of poly (lactic) acid/poly (3‐hydroxybutyrate‐4‐hydroxybutyrate) blends for improved toughness and processability | |
WO2022004637A1 (ja) | 樹脂フィルム | |
WO2020202813A1 (ja) | ポリエステル系樹脂組成物、その製造方法及び成形体 | |
US20220388217A1 (en) | Manufacturing method for thermoplastic resin composition, manufacturing method for shaped body, and film | |
JP7552198B2 (ja) | フィルム | |
JP7525281B2 (ja) | 熱可塑性樹脂組成物及びその成形体 | |
JP7218650B2 (ja) | ポリエステル系樹脂組成物及び成形品 | |
JP6102314B2 (ja) | ポリエステル樹脂組成物及び該ポリエステル樹脂組成物を成形してなるフィルム | |
US10836900B2 (en) | Method for producing aliphatic polyester resin composition | |
JP2022185793A (ja) | 樹脂組成物及び樹脂フィルム | |
EP4032954B1 (en) | Biopolymer composition, preparation method for same and bioplastic using same | |
JP7151122B2 (ja) | ポリエステル系樹脂組成物の製造方法及びポリエステル系樹脂組成物並びに成形体 | |
JP6683007B2 (ja) | 樹脂組成物および生分解性フィルム | |
KR100551741B1 (ko) | 개구성과 신율이 우수한 투명성 생분해성 폴리에스테르 필름 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21833029 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022533980 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21833029 Country of ref document: EP Kind code of ref document: A1 |