[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022001597A1 - 流质体铺设装置、地砖铺贴机器人及铺浆方法 - Google Patents

流质体铺设装置、地砖铺贴机器人及铺浆方法 Download PDF

Info

Publication number
WO2022001597A1
WO2022001597A1 PCT/CN2021/098880 CN2021098880W WO2022001597A1 WO 2022001597 A1 WO2022001597 A1 WO 2022001597A1 CN 2021098880 W CN2021098880 W CN 2021098880W WO 2022001597 A1 WO2022001597 A1 WO 2022001597A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
laying
chassis
fluid
fluid body
Prior art date
Application number
PCT/CN2021/098880
Other languages
English (en)
French (fr)
Inventor
刘建平
胡俊
张格森
Original Assignee
广东博智林机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东博智林机器人有限公司 filed Critical 广东博智林机器人有限公司
Priority to US18/004,061 priority Critical patent/US20230265666A1/en
Publication of WO2022001597A1 publication Critical patent/WO2022001597A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F21/00Implements for finishing work on buildings
    • E04F21/20Implements for finishing work on buildings for laying flooring
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F21/00Implements for finishing work on buildings
    • E04F21/20Implements for finishing work on buildings for laying flooring
    • E04F21/22Implements for finishing work on buildings for laying flooring of single elements, e.g. flooring cramps ; flexible webs
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/0215Flooring or floor layers composed of a number of similar elements specially adapted for being adhesively fixed to an underlayer; Fastening means therefor; Fixing by means of plastics materials hardening after application

Definitions

  • the present application relates to the technical field of construction equipment, and in particular, to a fluid body laying device, a floor tile laying robot and a slurry laying method.
  • a fluid body laying device a floor tile laying robot and a slurry laying method are provided.
  • the translation rectification mechanism comprises a movable seat that moves perpendicular to the laying direction of the fluid body and a rectification detection piece arranged on the movable seat;
  • a pulp feeding mechanism is provided on the chassis to supply fluid body to the pulping mechanism; wherein,
  • the deviation correction detector controls the moving seat according to the received laser line, so that the slurry spreading mechanism spreads slurry straightly along the laying direction.
  • the translation correction mechanism further includes:
  • a driving member arranged on the moving base
  • the moving assembly includes a moving part and a guide support connected with the moving part, the moving part is connected with the driving part, and the guide support is connected with the chassis.
  • the driving member is a first driving motor
  • the moving member is a lead screw, and the lead screw is connected to the output end of the first driving motor
  • the guide support member is a nut, The nut is fitted on the lead screw, and the nut is connected to the chassis.
  • the fluid laying device further comprises:
  • An up-down leveling mechanism is arranged between the moving base and the pulping mechanism.
  • the up-down leveling mechanism includes a lifting piece and a leveling detection piece.
  • the lifting piece is arranged on the moving base.
  • the output end of the component is drivingly connected with the pulping mechanism, and the leveling detection component is arranged on the moving seat; wherein,
  • the leveling detection member controls the lifting and lowering of the lifting member according to the received laser line, so that the bottom of the slurry laying mechanism is kept parallel to the construction surface.
  • the lifting member includes a third motor and a linear electric cylinder, the third motor is drivingly connected with the linear electric cylinder to drive the linear electric cylinder to expand and contract, and the telescopic rod of the linear electric cylinder It is drivingly connected with the slurry spreading mechanism.
  • the up-down leveling mechanism further includes a rotating member, the rotating member is arranged on the moving base and can rotate around a vertical axis, and the output end of the rotating member is connected to the leveling detection The element is driven and connected, and the rotating element can adjust the detection direction of the leveling detection element.
  • the two up and down leveling mechanisms are correspondingly arranged at both ends of the lengthwise direction of the pulping mechanism, so as to adjust the two upper and lower leveling mechanisms respectively. end height.
  • the up-down leveling mechanism further comprises a linear guide rail, the linear guide rail is drivingly connected with the output end of the lifting member, the slider of the linear guide rail is connected with the moving base, and the linear guide rail is connected to the moving seat.
  • the guide rail is connected with the slurry spreading mechanism.
  • the pulping mechanism includes:
  • a slurry outlet is arranged below the slurry box
  • a toothed scraper is arranged on the slurry outlet and extends along the length direction of the slurry box.
  • the pulp feeding mechanism includes:
  • a slurry hopper located on the chassis
  • a conveying pipe arranged on the slurry hopper, one end of the conveying pipe is connected to the conveying end of the screw conveying rod and the other end is connected to the slurry tank;
  • a second driving motor the output end of the second driving motor is drivingly connected with the screw conveying rod.
  • a chain transmission mechanism is provided between the second driving motor and the screw conveying rod, and the chain transmission mechanism includes a transmission chain and two sprockets, and the two sprockets are respectively connected to the The output end of the second driving motor is drivingly connected with the screw conveying rod, and the transmission chain is sleeved on the two sprockets.
  • the chassis includes:
  • a walking wheel arranged below the main body of the chassis;
  • the control cabinet is arranged below the chassis main body.
  • the chassis further includes a power supply system, the power supply system is arranged above the chassis main body, and the power supply system is used for providing power to the traveling wheels to drive the chassis main body walk.
  • the fluid body laying device further includes a guide mechanism, the guide mechanism is arranged between the moving base and the chassis, the guide mechanism includes a sliding rail and a moving slider, the sliding A rail is arranged on the chassis, and the moving slider is matched with the sliding rail and connected with the moving base.
  • a floor tile laying robot includes the above-mentioned liquid body laying device.
  • a slurry laying method comprises: the above-mentioned fluid body laying device;
  • the slurrying method includes:
  • the chassis moves along the slurry spreading direction, the slurry feeding mechanism transports the fluid body to the slurry spreading mechanism, and the slurry spreading mechanism spreads slurry on the construction surface;
  • the deviation rectification detection piece controls the translation rectification mechanism according to the received laser line, so as to adjust the horizontal position of the slurry spreading mechanism, so that the fluid body keeps the slurry spreading in a straight line along the laying direction.
  • the slurry spreading method further comprises:
  • FIG. 1 is a schematic three-dimensional structure diagram of a fluid body laying device in an embodiment of the application
  • FIG. 2 is a schematic diagram of a partial three-dimensional structure of the fluid body laying device in the embodiment of the application;
  • FIG. 3 is a schematic three-dimensional structure diagram of a pulp feeding mechanism in an embodiment of the application.
  • FIG. 4 is a schematic three-dimensional structural diagram of the assembly of the chassis and the pulp feeding mechanism in the embodiment of the application;
  • FIG. 5 is a schematic structural diagram of the fluid body laying device working with the laser generator in the embodiment of the application;
  • FIG. 6 is a schematic diagram of maintaining the level of the slurry-laying mechanism and the construction surface of the fluid-body laying device in the embodiment of the application;
  • FIG. 7 is a schematic diagram 1 of the leftward deflection of the slurry-laying mechanism of the fluid body laying device in the embodiment of the application;
  • FIG. 8 is a schematic diagram 2 of the leftward deflection of the slurry-laying mechanism of the fluid body laying device in the embodiment of the application;
  • FIG. 9 is a schematic diagram 1 of the rightward deflection of the slurry-laying mechanism of the fluid-body-laying device in the embodiment of the application;
  • Fig. 10 is a schematic diagram 2 of the leftward deflection of the slurry-laying mechanism of the fluid-body laying device in the embodiment of the application;
  • FIG. 11 is a schematic diagram of the slurry laying mechanism of the fluid body laying device not deviating in the embodiment of the application;
  • Fig. 12 is a schematic diagram of the slurry laying mechanism of the fluid body laying device deviating to the left in the embodiment of the application;
  • FIG. 13 is a schematic diagram of the slurry laying mechanism of the fluid body laying device in the embodiment of the present application deviating to the right.
  • first and second may explicitly or implicitly include one or more of the features, which are used to distinguish and describe the features, regardless of order or importance.
  • plural means two or more.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • a fluid body laying device 100 used in conjunction with a laser generator 200 , includes a chassis 10 , a translation correction mechanism 20 , a slurry laying mechanism 30 and a slurry supply mechanism 40 .
  • the translation rectification mechanism 20 is arranged on the chassis 10 , and the translation rectification mechanism 20 includes a moving base 23 that moves perpendicular to the laying direction of the fluid body and a rectification detecting member 24 arranged on the moving base 23 .
  • the pulping mechanism 30 is connected to the moving base 23 .
  • the pulping mechanism 40 is provided on the chassis 10 to supply the fluid body to the pulping mechanism 30 .
  • the slurry laying mechanism 30 is provided at the front end of the chassis 10.
  • the slurry feeding mechanism 40 provides fluid to the slurry laying mechanism 30.
  • the chassis 10 drives the fluid laying device 100 to move in a straight line as a whole.
  • the slurry mechanism 30 performs slurry spreading operation on the construction surface 300 .
  • the deviation correction detector 24 controls the moving base 23 according to the received laser line, so that the slurry spreading mechanism 30 spreads slurry straightly along the laying direction. That is to say, when the pulping mechanism 30 is working normally, the position of the vertical laser line O1 emitted by the laser generator 200 received by the deviation-correcting detector 24 is the vertical zero position; The position of the vertical laser line O1 received by the element 24 can be returned to the vertical zero position.
  • the grouting mechanism 30 lays grouting along a straight line under normal operation. Due to the influence of the operator's proficiency, the chassis 10 is easy to deviate from the grouting direction.
  • the grouting mechanism 30 is laid relative to the fluid body.
  • the direction deviates to the left or to the right (as shown in Figure 12 and Figure 13), and it is impossible to maintain the grouting operation in a straight line.
  • the translation correction mechanism 20 is activated, and the moving base 23 drives the pulping mechanism 30 to move along the movement direction perpendicular to the chassis 10, thereby Adjust the position of the slurry laying mechanism 30 so that the position of the vertical laser line O1 received by the deviation correction detector 24 returns to the vertical zero position, thereby ensuring that the slurry surface laid by the slurry laying mechanism 30 is in a straight line.
  • the deviation correction detector 24 can directly control the moving base 23 according to the received laser line, or a controller (not shown in the figure) is provided in the fluid body laying device 100, and the deviation correction detector 24 will receive the received laser line.
  • the laser line is converted into an electrical signal and transmitted to the controller, and then the controller controls the moving base 23 according to the electrical signal.
  • the vertical laser line O1 is used as the reference of the parallel floor tile edge line
  • the deviation correction detector 24 receives the signal of the parallel floor tile edge line laser line to control the translation and deviation correction mechanism 20, and the slurry laying mechanism 30 is performed.
  • the deviation correction detector 24 is a photoelectric position sensitive sensor.
  • the translation correction mechanism 20 includes a driving member and a moving component.
  • the driving member is arranged on the moving base 23 .
  • the moving assembly includes a moving part and a guide support connected with the moving part, the moving part is drivingly connected with the driving part, and the guide support is connected with the chassis 10 .
  • the driving member is the first driving motor 21 .
  • the moving part is a lead screw 22 , and the lead screw 22 is drivingly connected with the output end of the first drive motor 21 .
  • the guide support is a nut 25 , the nut 25 is fitted on the lead screw 22 , and the nut 25 is connected to the chassis 10 .
  • the first drive motor 21 starts to drive the lead screw 22 to rotate, the lead screw 22 generates a thrust to the nut 25, and the reaction force of the nut 25 to the lead screw 22 drives the movable seat 23 to perform translational movement, thereby driving the slurry spreading mechanism. 30 horizontal movement to achieve translation correction.
  • the deviation-correcting detection member 24 can intuitively reflect the position of the pulping mechanism 30 by receiving the vertical laser line O1 emitted by the laser generator 200, and the deviation-correcting detection member 24 can directly reflect the position of the pulping mechanism 30. With the slurry spreading mechanism 30 moving on the moving base 23, it can be detected in real time whether the slurry spreading mechanism 30 is corrected in place.
  • the other end of the lead screw 22 is pivotally provided with a lead screw support base 26 , and the lead screw support base 26 is connected to the moving base 23 , so that the lead screw 22 and the moving base 23 are connected.
  • the reliability is enhanced, and the process in which the lead screw 22 drives the moving seat 23 to move is more stable.
  • One end of the lead screw 22 is drivably connected to the output shaft of the first drive motor 21 through a coupling 27 , which facilitates the installation of the lead screw 22 and the first drive motor 21 .
  • the lead screw 22 is a ball screw.
  • the lead screw 22 in the present application is not limited to this, and other types of lead screws such as triangular thread, trapezoidal thread, rectangular thread or serrated thread can also be used.
  • the first drive motor 21 is a servo motor
  • the first drive motor 21 is connected with a first mounting seat 28
  • the first mounting seat 28 is fixed on the moving seat 23 to facilitate the installation of the first drive Motor 21.
  • the nut 25 is connected with a nut fixing base 29 , and the nut fixing base 29 is connected to the chassis 10 to facilitate the installation of the nut 25 and improve the connection reliability between the nut 25 and the chassis 10 .
  • the moving base 23 is provided with a connecting plate 231 , and the deviation correction detecting member 24 is disposed on the connecting plate 231 .
  • the translation correction mechanism 20 includes a translation mechanism for driving a rack (not shown) to perform linear motion by a gear (not shown in the figure).
  • the first driving motor 21 drives the gear to rotate, and the gear meshes with the rack to drive the tooth
  • the pulping mechanism 30 is connected to the rack, which can also play the role of horizontal movement correction.
  • a guide mechanism 60 is provided between the movable base 23 and the chassis 10 .
  • the guide mechanism 60 includes a sliding rail 61 and a moving slider 62 .
  • the sliding rail 61 is provided on the chassis 10 and extends along the chassis 10 .
  • the sliding block 62 is fitted on the sliding rail 61 and connected with the movable seat 23 .
  • the sliding rail 61 and the movable slider 62 can ensure the stable translation of the movable seat 23 on the chassis 10 and improve the movement reliability.
  • a plurality of moving sliders 62 are provided on the slide rail 61 at intervals, for example, there are two moving sliders 62 .
  • the fluid body laying and pulping device 100 further includes an up-down leveling mechanism 50 , and the up-down leveling mechanism 50 is arranged between the moving base 23 and the pulping mechanism 30 to adjust the paving.
  • the height of the two ends in the longitudinal direction of the pulping mechanism 30, the up-and-down leveling mechanism 50 includes a lifting member 51 and a leveling detection member 53, the lifting member 51 is arranged on the moving base 23, and the output end of the lifting member 51 is drivingly connected with the pulping mechanism 30,
  • the leveling detector 53 is provided on the moving base 23 .
  • the lifting member 51 When performing up and down adjustment, the lifting member 51 rises to increase the height of the end of the slurry spreading mechanism 30 relative to the construction surface 300 , and the lifting member 51 descends to decrease the height of the end of the slurry spreading mechanism 30 relative to the construction surface 300 .
  • the leveling detecting member 53 controls the lifting member 51 to ascend and descend according to the received laser line, so as to keep the bottom of the slurry laying mechanism 30 parallel to the construction surface.
  • the bottom of the slurry spreading mechanism 30 refers to the bottom edge of the toothed scraper 32 . That is to say, when the fluid laying device 100 is working normally, the position of the horizontal laser line O2 emitted by the laser generator 200 received by the leveling detector 53 is the horizontal zero position; So that the position of the horizontal laser line O2 received by the leveling detector 53 can be returned to the horizontal zero position.
  • the bottom of the grout-laying mechanism 30 is kept horizontal with the construction surface 300 under normal operation.
  • the height of the laying grout surface is uneven.
  • the up-and-down leveling mechanism 50 is activated to adjust the heights at both ends of the pulping mechanism 30 so that the bottom of the pulping mechanism 30 is close to the horizontal zero point.
  • the construction surface 300 is kept parallel, thereby ensuring that the height of the grouting surface is flush.
  • the horizontal laser line O2 emitted by the laser generator 200 is used as the horizontal plane elevation reference, and the leveling detector 53 receives the signal of the horizontal plane elevation reference to control the up-and-down leveling mechanism 50, so as to solve the unevenness of the plastering surface caused by the unevenness of the construction surface 300 quality issues.
  • the deviation correction detection member 24 can directly control the lifting member 51 according to the received laser line, or a controller (not shown in the figure) is provided in the fluid body laying device 100, and the deviation correction detection member 24 will receive the received laser line.
  • the laser line is converted into an electrical signal and transmitted to the controller, and then the controller controls the lifting member 51 according to the electrical signal.
  • the leveling detector 53 is a photoelectric position sensitive sensor.
  • the two up-and-down leveling mechanisms 50 there are two up-and-down leveling mechanisms 50 , and the two up-down leveling mechanisms 50 are correspondingly arranged at both ends of the lengthwise direction of the pulping mechanism 30 to adjust the two ends of the pulping mechanism 30 respectively. high. That is to say, the two up and down leveling mechanisms 50 can independently adjust the heights of both ends of the pulping mechanism 30.
  • the two up-and-down leveling mechanisms 50 are correspondingly disposed at both ends of the lengthwise direction of the pulping mechanism 30, and the “two ends” here may refer to the most end of the lengthwise edge of the pulping mechanism 30, or It can refer to an area within a certain reasonable range near the extreme end of the lengthwise direction of the slurry spreading mechanism 30 .
  • the “both ends” in the height of the two ends of the pulping mechanism 30 refers to the edge most ends of the pulping mechanism 30 in the longitudinal direction.
  • the lifting member 51 includes a third motor 511 and a linear electric cylinder 512 .
  • the third motor 511 is connected with the linear electric cylinder 512 to drive the linear electric cylinder 512 to expand and contract. Connected to the pulping mechanism 30 .
  • the up-down leveling mechanism 50 further includes a rotating member 52 .
  • the rotating member 52 is arranged on the moving base 23 and can rotate around the vertical axis.
  • the output end of the rotating member 52 is connected to the leveling detecting member 53 .
  • the rotating member 52 can adjust the detection direction of the leveling detection member 53 .
  • the rotating member 52 drives the leveling detection member 53 to rotate, so that the leveling detection member 53 rotates to an optimal angle to align the horizontal laser line O2 emitted by the laser generator 200 .
  • the rotating member 52 is a steering gear, and the output end of the steering gear is drivingly connected to the leveling detection member 53 , and the steering gear is used to conveniently and accurately control the rotation angle of the leveling detection member 53 .
  • the rotating member 52 may also be a stepper motor or a rotating cylinder, which will not be repeated here.
  • the up-down leveling mechanism 50 further includes a linear guide 54 , the linear guide 54 is connected to the output end of the lifting member 51 , the slider of the linear guide 54 is connected to the moving base 23 , and the linear guide 54 passes through a pin.
  • the shaft 55 is connected to the laying mechanism 30 . That is to say, the linear guide rail 54 can play a guiding role, and the elevating member 51 has better stability when driving the pulping mechanism 30 to elevate.
  • the upper end of the linear guide rail 54 is drivingly connected with the output end of the lifting member 51 through the connecting rod 56 .
  • the slurry spreading mechanism 30 includes a slurry box 31 and a toothed scraper 32 .
  • a pulp outlet (not shown) is provided below the pulp box 31 .
  • the toothed scraper 32 is provided on the slurry outlet and extends along the length direction of the slurry box 31 . That is, the slurry in the slurry box 31 reaches the toothed scraper 32 through the slurry outlet, and the slurry is scraped into a straight toothed surface by the toothed scraper 32 .
  • the slurry supply mechanism 40 includes: a slurry bucket 41 , a screw conveying rod 42 , a conveying pipe 43 and a second driving motor 44 .
  • the slurry hopper 41 is provided on the chassis 10 .
  • the screw conveying rod 42 is pivotably provided in the slurry hopper 41 .
  • the conveying pipe 43 is arranged on the slurry hopper 41 , and one end of the conveying pipe 43 is connected to the conveying end of the screw conveying rod 42 and the other end is connected to the slurry tank 31 .
  • the output end of the second driving motor 44 is drivingly connected with the screw conveying rod 42 .
  • the screw conveying rod 42 is arranged at the bottom of the slurry hopper 41, the second driving motor 44 drives the screw conveying rod 42 to rotate, and the slurry in the slurry hopper 41 is discharged to the conveying end along with the screw conveying rod 42, and then the slurry is discharged. It reaches the slurry box 31 through the conveying pipeline 43 to realize the feeding of the slurry spreading mechanism 30 .
  • a chain transmission mechanism is provided between the second drive motor 44 and the screw conveying rod 42 , and the chain transmission mechanism includes a transmission chain 45 and two sprockets 46 .
  • the output shafts of the two driving motors 44 are drivingly connected to the screw conveying rod 42 , and the transmission chain 45 is sleeved on the two sprockets 46 .
  • the second driving motor 44 is activated to drive the sprocket 46 on it to rotate, and the transmission chain 45 drives the other sprocket 46 to rotate, thereby driving the screw conveying rod 42 to rotate.
  • the second drive motor 44 is a servo motor, and a reducer 47 is provided between the second drive motor 44 and the sprocket 46 .
  • the chassis 10 includes a chassis main body 11 , a power supply system 13 , running wheels 12 and a control cabinet 14 .
  • the pulp supply mechanism 40 is provided above the chassis main body 11 on one side in the width direction of the chassis main body 11 .
  • the power supply system 13 is provided above the chassis main body 11 and on the other side in the width direction of the chassis main body 11 , and the power supply system 13 is provided along the longitudinal direction of the chassis main body 11 . In this way, the layout of the pulp supply mechanism 40 and the power supply system 13 in the chassis main body 11 is compact, which is beneficial to reduce the volume of the upper space of the entire chassis main body 11 .
  • the traveling wheel 12 is arranged below the chassis main body 11 , and the power supply system 13 provides the electric power of the traveling wheel 12 to drive the chassis main body 11 to walk.
  • the control cabinet 14 is arranged below the chassis main body 11 , which can save the upper space of the chassis 11 .
  • the traveling wheel 12 is a steering wheel
  • the chassis 10 further includes a universal wheel 15 disposed under the chassis main body 11 .
  • a fluid body laying device 100 used in conjunction with a laser generator 200 , includes: a chassis 10 , a translation correction mechanism 20 , a slurry laying mechanism 30 , a slurry supply mechanism 40 , and an up-down leveling mechanism 50 .
  • the translation rectification mechanism 20 is arranged on the chassis 10 , and the translation rectification mechanism 20 includes a moving base 23 that moves perpendicular to the laying direction of the fluid body and a rectification detecting member 24 arranged on the moving base 23 .
  • the translation correction mechanism 20 includes a first drive motor 21 , a lead screw 22 , a moving base 23 , a correction detection member 24 and a nut 25 .
  • the first drive motor 21 is provided on the moving base 23 .
  • One end of the lead screw 22 is drivingly connected to the output end of the first driving motor 21 .
  • the nut 25 is fitted on the lead screw 22, and the nut 25 is connected to the chassis 10, and the deviation correction detection member 24 is a photoelectric position sensitive sensor.
  • the other end of the lead screw 22 is pivotally provided with a lead screw support base 26, one end of the lead screw 22 is drivingly connected with the output shaft of the first drive motor 21 through a coupling 27, the lead screw 22 is a ball screw, the first The drive motor 21 is a servo motor, the first drive motor 21 is connected with a first mounting seat 28 , the first mounting seat 28 is arranged on the moving seat 23 , the nut 25 is connected with a nut fixing seat 29 , and the nut fixing seat 29 is connected on the chassis 10 , the moving base 23 is provided with a connecting plate 231 , and the deviation correction detecting member 24 is arranged on the connecting plate 231 .
  • the pulping mechanism 30 is connected to the moving base 23 .
  • the slurry spreading mechanism 30 includes a slurry box 31 and a toothed scraper 32 .
  • a pulp outlet (not shown) is provided below the pulp box 31 .
  • the toothed scraper 32 is arranged along the length direction of the slurry box 31, and the toothed scraper 32 is arranged on the slurry outlet.
  • the slurry supply mechanism 40 is provided on the chassis 10 to supply slurry to the slurry spreading mechanism 30 .
  • the pulp feeding mechanism 40 includes a pulp hopper 41 , a screw conveying rod 42 , a conveying pipe 43 and a second driving motor 44 .
  • the slurry hopper 41 is provided on the chassis 10 .
  • the screw conveying rod 42 is pivotably provided in the slurry hopper 41 .
  • the conveying pipe 43 is arranged on the slurry hopper 41 , and one end of the conveying pipe 43 is connected to the conveying end of the screw conveying rod 42 and the other end is connected to the slurry tank 31 .
  • the output end of the second driving motor 44 is drivingly connected with the screw conveying rod 42 .
  • a chain transmission mechanism is provided between the second driving motor 44 and the screw conveying rod 42.
  • the chain transmission mechanism includes a transmission chain 45 and two sprockets 46.
  • the two sprockets 46 are respectively connected with the output shaft of the second driving motor 44 and the screw conveying mechanism.
  • the rod 42 is drivingly connected, and the transmission chain 45 is sleeved on the two sprockets 46 .
  • the second drive motor 44 is a servo motor, and a reducer 47 is provided between the second drive motor 44 and the sprocket 46 .
  • the up-down leveling mechanism 50 is arranged between the moving base 23 and the pulping mechanism 30.
  • the up-down leveling mechanism 50 includes a leveling detection piece 53, the leveling detection piece 53 is a photoelectric position sensitive sensor, and there are two up-down leveling mechanisms 50.
  • the two up-and-down leveling mechanisms 50 are correspondingly disposed at both ends of the pulping mechanism 30 in the longitudinal direction.
  • the up-down leveling mechanism 50 includes a lifting member 51 , a rotating member 52 , a leveling detection member 53 and a linear guide rail 54 .
  • the lifting member 51 is arranged on the moving base 23.
  • the lifting member 51 includes a third motor 511 and a linear electric cylinder 512.
  • the third motor 511 is connected with the linear electric cylinder 512 to drive the linear electric cylinder 512 to expand and contract, and the telescopic rod of the linear electric cylinder 512 is connected on the pulping mechanism 30 .
  • the rotating member 52 is a steering gear, and the output end of the steering gear is drivingly connected to the leveling detection member 53 .
  • the linear guide 54 is connected to the output end of the lifting member 51 , the slider of the linear guide 54 is connected to the moving base 23 , and the linear guide 54 is connected to the pulping mechanism 30 through the pin shaft 55 .
  • the upper end of the linear guide rail 54 is drivingly connected with the output end of the lifting member 51 through the connecting rod 56 .
  • the chassis 10 includes a chassis main body 11 , running wheels 12 , a power supply system 13 and a control cabinet 14 .
  • the pulp supply mechanism 40 is provided above the chassis main body 11 on one side in the width direction of the chassis main body 11 .
  • the power supply system 13 is provided above the chassis main body 11 and on the other side in the width direction of the chassis main body 11 , and the power supply system 13 is provided along the longitudinal direction of the chassis main body 11 .
  • the running wheels 12 are provided below the chassis main body 11 .
  • the control cabinet 14 is arranged below the chassis main body 11 , the traveling wheel 12 is a steering wheel, and the chassis 10 further includes a universal wheel 15 arranged below the chassis main body 11 .
  • the power supply system 13 of the chassis 10 provides power, and the control cabinet 14 provides control programs to drive the running wheels 12 to drive the chassis main body 11 to walk.
  • electric power may also be provided to the fluid body laying device 100 directly through the commercial power system.
  • the pulp outlet of the chassis 10 and the pulp laying mechanism 30 are in a horizontal state, and the leveling detector 53 on the pulp laying mechanism 30 receives the horizontal laser line O2 from the laser generator 200 at a position of Horizontal zero point.
  • the chassis 10 is inclined.
  • the slurry spreading mechanism 30 follows the chassis 10 and tilts.
  • the chassis 10 in FIG. 7 is inclined to the left, and the chassis 10 in FIG. Inclined, the leveling detector 53 on the pulping mechanism 30 senses that the position of the horizontal laser line O2 emitted by the laser generator 200 is away from the horizontal zero position, the leveling detector 53 generates a signal, and the third motor 511 is controlled by the program to drive the linear electric cylinder
  • the piston rod of 512 moves up and down, thereby driving the connecting rod 56, the linear guide 54, the rotating part 52, the leveling detection part 53, the pin shaft 55 and the slurry box 31 to move up and down together until the horizontal laser emitted by the laser generator 200 is made.
  • the line O2 returns to the horizontal zero position of the leveling detection member 53, and the pulp outlet is in a horizontal state at this time, as shown in FIG. 8 and FIG. 10 .
  • the nut 25 produces a reactionary thrust to the lead screw 22, and the lead screw 22 makes the moving base 23, the connecting plate 231 and the deviation correction detection part 24 perform a translational motion together through the lead screw support base 26, until the vertical laser line O1 emitted by the laser generator 200 is made.
  • the position returns to the vertical zero position of the deviation correction detection member 24 .
  • the chassis 10 deviates to the right, and the moving seat 23 of the translation correction mechanism 20 drives the pulping mechanism 30 to move to the left for correction, so that the position of the received vertical laser line O1 returns to the vertical zero position; as shown in FIG.
  • the chassis 10 deviates to the left, and the moving seat 23 of the translation correction mechanism 20 drives the pulping mechanism 30 to move to the right for correction, so that the received vertical laser line O1 position returns to the vertical zero position.
  • the position of the pulp outlet remains unchanged relative to the position of the vertical laser line O1 emitted by the laser generator 200, and a toothed pulp surface on the same horizontal plane and in a straight line required for laying tiles can be completed.
  • the present application combines the chassis 10 , the pulp feeding mechanism 40 , the translation correction mechanism 20 , the up-down leveling mechanism 50 and the pulp laying mechanism 30 into a whole, and the laser line emitted by the laser generator 200 is used as the reference line, so that the same laying can be realized.
  • a horizontal and straight toothed mortar surface in addition, the fluid body in the present application is not limited to mortar, but can also be tile glue or the like.
  • the floor tile laying robot (not shown in the figure) according to the embodiment of the present application includes the above-mentioned liquid body laying device 100 .
  • the liquid body laying and slurrying device 100 is used, the vertical laser line O1 is used as the reference of the parallel floor tile edge line, and the deviation correction detector 24 receives the signal of the parallel floor tile edge line laser line to control the translation deviation correction mechanism 20,
  • the horizontal deviation correction of the slurry laying mechanism 30 can ensure that the laid slurry surface is laid in a straight line, which can replace the manual laying of the bonding fluid, avoid the quality problems caused by the irregular manual operation, reduce the labor intensity of workers, and improve the Plastering efficiency.
  • a slurry laying method includes the above-mentioned fluid body laying device 100 .
  • the slurry laying method includes:
  • Step S1 the chassis 10 moves along the slurry spreading direction, the slurry feeding mechanism 40 transports the fluid body into the slurry spreading mechanism 30 , and the slurry spreading mechanism 30 spreads slurry on the construction surface 300 . That is to say, when the fluid laying device 100 is in normal operation, the construction surface 300 is horizontal, the chassis 10 and the slurry laying mechanism 30 are in a horizontal state, the chassis 10 is not offset, the slurry laying mechanism 30 and the chassis 10 are in an aligned state, and the deviation correction detector 24.
  • the position of the vertical laser line O1 emitted by the receiving laser generator 200 is the vertical zero position, and the fluid body laying device 100 lays slurry along the straight line.
  • Step S2 The deviation correction detector 23 controls the translational deviation correction mechanism 20 according to the received laser line, so as to adjust the horizontal position of the slurry spreading mechanism 30, so that the fluid body keeps the slurry spreading in a straight line along the laying direction.
  • the moving base 23 drives the pulping mechanism 30 to move until the position of the vertical laser line O1 received by the deviation correction detection part 24 returns to the vertical zero position.
  • the pulping mechanism 30 and the chassis 10 are not in alignment, and the position of the vertical laser line O1 received by the deviation correction detector 24 is not at the vertical zero position.
  • 23 drives the pulping mechanism 30 to move for deviation correction until the position of the vertical laser line O1 received by the deviation correction detection part 24 returns to the vertical zero position.
  • the deviation correction detector 24 can directly control the translation and deviation correction mechanism 20 according to the received laser line, or a controller (not shown in the figure) is set in the fluid body laying device 100, and the deviation correction detector 24 will receive the The laser line is converted into an electrical signal and transmitted to the controller, and then the controller controls the translation correction mechanism 20 according to the electrical signal.
  • the vertical laser line O1 is used as the reference of the parallel floor tile edge line
  • the deviation correction detector 24 receives the signal of the parallel floor tile edge line laser line to control the translation deviation correction mechanism 20, and the slurry laying mechanism 30 is corrected in the horizontal direction. Due to the ground flatness, gravel and other sundries, the existing slurry-laying robot cannot walk in a straight line during the walking process, and the slurry cannot be laid in a straight line. However, the present application can ensure that the slurry surface to be laid is laid in a straight line, which can replace manual completion. The laying of the bonding fluid can avoid quality problems caused by irregular manual operations, reduce the labor intensity of workers, and improve the efficiency of slurry laying.
  • the fluid body laying device 100 further includes an up-down leveling mechanism 50 .
  • the up-down leveling mechanism 50 is disposed between the moving base 23 and the slurry laying mechanism 30 , and the up-down leveling mechanism 50 includes a leveling detection member 53 .
  • the slurrying method also includes:
  • Step S3 The leveling detector 53 controls the up and down leveling mechanism 50 according to the laser line, so as to adjust the height of the pulping mechanism 30, so that the bottom of the pulping mechanism 30 is kept parallel to the construction surface.
  • the bottom of the slurry spreading mechanism 30 refers to the bottom edge of the toothed scraper 32 .
  • the position of the leveling detector 53 receiving the horizontal laser line O2 emitted by the laser generator 200 is the horizontal zero position.
  • the up-and-down leveling mechanism 50 drives at least one end of the slurry-laying mechanism 30 to rise and fall until the level received by the leveling detector 53 is horizontal.
  • the laser line O2 position returns to the horizontal zero position.
  • the chassis 10 and the slurry laying mechanism 30 are not in a horizontal state, at this time, the position of the horizontal laser line O2 received by the leveling detector 53 is not at the horizontal zero position, and the up and down leveling mechanism 50 is activated. Drive the left or right end of the pulping mechanism 30 to go up and down until the position of the horizontal laser line O2 received by the leveling detection member 53 returns to the horizontal zero position.
  • the deviation correction detector 24 can directly control the up-and-down leveling mechanism 50 according to the received laser line, or a controller (not shown in the figure) is set in the fluid body laying device 100, and the deviation correction detector 24 will receive the laser line.
  • the received laser line is converted into an electrical signal and transmitted to the controller, and then the controller controls the up-down leveling mechanism 50 according to the electrical signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Machines (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本申请公开了一种流质体铺设装置、地砖铺贴机器人及铺浆方法,流质体铺设装置包括底盘、平移纠偏机构、铺浆机构及供浆机构。平移纠偏机构设在底盘上,平移纠偏机构包括沿垂直于流质体铺设方向移动的移动座和设在移动座上的纠偏检测件。铺浆机构连接在移动座上。供浆机构设在底盘上,以向铺浆机构供给流质体。其中,流质体铺设装置工作时,纠偏检测件根据接收到的激光线控制移动座,以使铺浆机构沿铺设方向直线铺浆。本申请可保证铺设的浆面沿直线铺设,能替代人工完成粘结流质体的铺设工作,避免因人工作业不规范造成的质量问题,降低工人劳动强度,提高铺浆效率。

Description

流质体铺设装置、地砖铺贴机器人及铺浆方法 技术领域
本申请涉及建筑施工设备技术领域,尤其涉及一种流质体铺设装置、地砖铺贴机器人及铺浆方法。
背景技术
目前,地面瓷砖铺贴时,需要在铺贴面铺设一层粘合流质体让瓷砖和铺贴面有效地粘接在一起。一般采用人工把粘合流质体摊铺在铺贴面上,然后利用刮板把流质体刮成平直的面,由于受工人的熟练程度因数的影响,容易导致铺设的浆面不成直线,在瓷砖铺贴后易造成瓷砖下面缺浆,从而导致瓷砖空鼓的质量问题。此外,人工刮平直的方法对工人技术要求高,劳动强度大,不利于提高铺浆作业的效率。
发明内容
根据本申请的各种实施例,提供一种流质体铺设装置、地砖铺贴机器人及、铺浆方法。
根据本申请实施例的一种流质体铺设装置,包括:
底盘;
平移纠偏机构,设在底盘上,所述平移纠偏机构包括沿垂直于流质体铺设方向移动的移动座和设在所述移动座上的纠偏检测件;
铺浆机构,连接在所述移动座上;
供浆机构,设在所述底盘上,以向所述铺浆机构供给流质体;其中,
所述流质体铺设装置工作时,所述纠偏检测件根据接收到的激光线控制所述移动座,以使所述铺浆机构沿铺设方向直线铺浆。
在其中一个实施例中,所述平移纠偏机构还包括:
驱动件,设在所述移动座上;
运动组件,包括运动件和连接所述运动件的导向支撑件,所述运动件连接所述驱动件,所述导向支撑件连接所述底盘。
在其中一个实施例中,所述驱动件为第一驱动电机;所述运动件为丝杠,所述丝杠连接在所述第一驱动电机的输出端上;所述导向支撑件为螺母,所述螺母配合在所述丝杠上,且所述螺母连接所述底盘。
在其中一个实施例中,所述流质体铺设装置还包括:
上下调平机构,设在所述移动座和所述铺浆机构之间,所述上下调平机构包括升降件和调平检测件,所述升降件设在所述移动座上,所述升降件的输出端与所述铺浆机构驱动连接,所述调平检测件设在所述移动座上;其中,
所述流质体铺设装置工作时,所述调平检测件根据接收到的激光线控制所述升降件升降,以使所述铺浆机构的底部与施工面保持平行。
在其中一个实施例中,所述升降件包括第三电机和直线电缸,所述第三电机与所述直线电缸驱动连接以驱动所述直线电缸伸缩,所述直线电缸的伸缩杆与所述铺浆机构驱动连接。
在其中一个实施例中,所述上下调平机构还包括旋转件,所述旋转件设在所述移动座上且可绕竖直轴线转动,所述旋转件的输出端与所述调平检测件驱动连接,所述旋转件可调整所述调平检测件的检测方向。
在其中一个实施例中,所述上下调平机构为两个,两个所述上下调平机构对应设在所述铺浆机构的长度方向的两端,以分别调整所述铺浆机构的两端的高度。
在其中一个实施例中,所述上下调平机构还包括直线导轨,所述直线导轨与所述升降件的输出端驱动连接,所述直线导轨的滑块与所述移动座连接,所述直线导轨与所述铺浆机构连接。
在其中一个实施例中,所述铺浆机构包括:
浆料箱,所述浆料箱的下方设有出浆口;
齿形刮板,设在所述出浆口上,且沿所述浆料箱的长度方向延伸。
在其中一个实施例中,所述供浆机构包括:
浆料斗,设在所述底盘上;
螺旋输送杆,可枢转地设在所述浆料斗内;
输送管道,设在所述浆料斗上,所述输送管道的一端连通所述螺旋输送杆的输送端且另一端连通所述浆料箱;
第二驱动电机,所述第二驱动电机的输出端与所述螺旋输送杆驱动连接。
在其中一个实施例中,所述第二驱动电机与所述螺旋输送杆之间设有链传动机构,所述链传动机构包括传动链和两个链轮,两个所述链轮分别与所述第二驱动电机的输出端和所述螺旋输送杆驱动连接,所述传动链套设在两个所述链轮上。
在其中一个实施例中,所述底盘包括:
底盘主体;
行走轮,设在所述底盘主体的下方;
控制柜,设在所述底盘主体的下方。
在其中一个实施例中,所述底盘还包括电力供给系统,所述电力供给系统设在所述底盘主体的上方,所述电力供给系统用于向所述行走轮提供电力以带动所述底盘主体行走。
在其中一个实施例中,所述流质体铺设装置还包括导向机构,所述导向机构设于所述移动座和所述底盘之间,所述导向机构包括滑轨和移动滑块,所述滑轨设在所述底盘上,所述移动滑块配合在所述滑轨上且与所述移动座连接。
一种地砖铺贴机器人,包括上述的流质体铺设装置。
一种铺浆方法包括:上述的流质体铺设装置;
所述铺浆方法包括:
所述底盘沿铺浆方向移动,所述供浆机构向所述铺浆机构中输送流质体,所述铺浆机构对施工面铺浆;
所述纠偏检测件根据接收到的激光线控制所述平移纠偏机构,以调整所述铺浆机构的水平位置,使流质体保持沿铺设方向直线铺浆。
在其中一个实施例中,所述铺浆方法还包括:
调平所述检测件,根据激光线控制所述上下调平机构,以调整所述铺浆机构的高度,使所述铺浆机构的底部与施工面保持平行。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些申请的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的申请、目前描述的实施例和/或示例以及目前理解的那些申请的最佳模式中的任何一者的范围的限制。
图1为本申请实施例中流质体铺设装置的立体结构示意图;
图2为本申请实施例中流质体铺设装置的局部立体结构示意图;
图3为本申请实施例中供浆机构的立体结构示意图;
图4为本申请实施例中底盘与供浆机构装配的立体结构示意图;
图5为本申请实施例中流质体铺设装置配合激光发生器工作的结构示意图;
图6为本申请实施例中流质体铺设装置的铺浆机构与施工面保持水平的示意图;
图7为本申请实施例中流质体铺设装置的铺浆机构向左偏斜的示意图一;
图8为本申请实施例中流质体铺设装置的铺浆机构向左偏斜的示意图二;
图9为本申请实施例中流质体铺设装置的铺浆机构向右偏斜的示意图一;
图10为本申请实施例中流质体铺设装置的铺浆机构向左偏斜的示意图二;
图11为本申请实施例中流质体铺设装置的铺浆机构不跑偏的示意图;
图12为本申请实施例中流质体铺设装置的铺浆机构向左跑偏的示意图;
图13为本申请实施例中流质体铺设装置的铺浆机构向右跑偏的示意图。
附图标记:
100、流质体铺设装置;10、底盘;11、底盘主体;12、行走轮;13、电力供给系统;14、控制柜;15、万向轮;20、平移纠偏机构;21、第一驱动电机;22、丝杠;23、移动座;231、连接板;24、纠偏检测件;25、螺母;26、丝杠支撑座;27、联轴器;28、第一安装座;29、螺母固定座;30、铺浆机构;31、浆料箱;32、齿形刮板;40、供浆机构;41、浆料斗;42、螺旋输送杆;43、输送管道;44、第二驱动电机;45、传动链;46、链轮;47、减速机;50、上下调平机构;51、升降件;511、第三电机;512、直线电缸;52、旋转件;53、调平 检测件;54、直线导轨;55、销轴;56、连接杆;60、导向机构;61、滑轨;62、移动滑块;200、激光发生器;300、施工面;O2、水平激光线;O1、垂直激光线。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,用于区别描述特征,无顺序之分,无轻重之分。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
下面结合附图,描述本申请实施例的流质体铺设装置100。
如图1所示,根据本申请实施例的一种流质体铺设装置100,配合激光发生器200使用,包括底盘10、平移纠偏机构20、铺浆机构30和供浆机构40。
平移纠偏机构20设在底盘10上,平移纠偏机构20包括沿垂直于流质体铺设方向移动的移动座23和设在移动座23上的纠偏检测件24。铺浆机构30连接在移动座23上。供浆机构40设在底盘10上,以向铺浆机构30供给流质体。可以理解为,铺浆机构30设在底盘10的前端,流质体铺设装置100工作时供浆机构40向铺浆机构30中提供流质体,底盘10带动流质体铺设装置100整体沿直线运动,铺浆机构30对施工面300进行铺浆作业。
其中,如图5所示,流质体铺设装置100工作时,纠偏检测件24根据接收到的激光线控制所述移动座23,以使铺浆机构30沿铺设方向直线铺浆。也就是说,铺浆机构30正常工作时,纠偏检测件24接收的激光发生器200发出的垂直激光线O1位置为垂直零点位;移动座23用于带动铺浆机构30移动,以使纠偏检测件24接收的垂直激光线O1位置可回到垂直零点位上。例如,用于瓷砖铺设过程中,铺浆机构30在正常工作下沿直线铺浆,由于操作工人的熟练程度因素的影响,底盘10容易偏离铺浆方向,例如,铺浆机构30相对流质体铺设方向向左跑偏或向右跑偏(如图12和图13所示),无法保持沿直线铺浆作业。当纠偏检测件24接收的激光发生器200发出的垂直激光线O1位置不在垂直零点位上时,平移纠偏机构20启动,移动座23带动铺浆机构30沿垂直于底盘10的运动方向移动,从而调整铺浆机构30的位置,使纠偏检测件24接收的垂直激光线O1位置回到垂直零点位上,进而保证铺浆机构30铺设的浆面成直线。可选地,纠偏检测件24可以根据接收到的激光线直接控制移动座23,也可以是,流质体铺设装置100中设置一个控制器(图未示出),纠偏检测件24将接收到的激光线转化成电信号,传输给控制器,继而控制器根据该电信号来控制移动座23。
根据本申请实施例的流质体铺设铺浆装置100,利用垂直激光线O1作为平行地砖边线基准,纠偏检测件24接受平行地砖边线激光线的信号来控制平移纠偏机构20,对铺浆机构30进行水平方向纠偏,由于现有铺浆机器人因地面平整度、砂砾等杂物的原因,导致机器人行 走过程中无法走直线,铺浆无法铺直线,而本申请可保证铺设的浆面沿直线铺设,能替代人工完成粘结流质体的铺设工作,避免因人工作业不规范造成的质量问题,降低工人劳动强度,提高铺浆效率。
一些实施例中,纠偏检测件24为光电位置敏感传感器。
一些实施例中,如图2所示,平移纠偏机构20包括驱动件和运动组件。驱动件设在移动座23上。运动组件包括运动件和连接运动件的导向支撑件,运动件与驱动件驱动连接,导向支撑件连接底盘10。
具体地,驱动件为第一驱动电机21。运动件为丝杠22,丝杠22与第一驱动电机21的输出端驱动连接。导向支撑件为螺母25,螺母25配合在丝杠22上,且螺母25连接底盘10。平移纠偏机构20工作时,第一驱动电机21启动带动丝杠22转动,丝杠22对螺母25产生推力,螺母25对丝杠22的反作用力带动移动座23做平移运动,从而带动铺浆机构30水平移动实现平移纠偏。由于纠偏检测件24和铺浆机构30都设在移动座23上,纠偏检测件24通过接受激光发生器200发出的垂直激光线O1可直观反映出铺浆机构30的位置,且纠偏检测件24随铺浆机构30在移动座23上移动,可实时检测出铺浆机构30是否纠偏到位。
可选的,如图2所示,丝杠22的另一端可枢转地设有丝杠支撑座26,丝杠支撑座26连接在移动座23上,这样丝杠22和移动座23的连接可靠性增强,丝杠22带动移动座23运动的过程更稳定。丝杠22的一端通过联轴器27与第一驱动电机21的输出轴驱动连接,方便丝杠22和第一驱动电机21的安装。
可选的,丝杠22为滚珠丝杠,当然,本申请中的丝杠22不限于此,也可以采用三角牙螺纹、梯形牙螺纹、矩形牙螺纹或锯齿牙螺纹等其他类型的丝杠。
可选的,如图2所示,第一驱动电机21为伺服电机,第一驱动电机21连接有第一安装座28,第一安装座28固定于移动座23上,以方便安装第一驱动电机21。
可选的,如图2所示,螺母25连接有螺母固定座29,螺母固定座29连接在底盘10上,用于方便安装螺母25,提高螺母25与底盘10的连接可靠性。
可选的,如图2所示,移动座23上设有连接板231,纠偏检测件24设在连接板231上。
一些实施例中,平移纠偏机构20包括齿轮(图未示出)驱动齿条(图未示出)作直线运动的平移机构,例如,第一驱动电机21带动齿轮转动,齿轮啮合齿条带动齿条运动,铺浆机构30连接在齿条上,同样可起到水平移动纠偏的作用。
一些实施例中,如图4所示,移动座23与底盘10之间设有导向机构60,导向机构60包括滑轨61和移动滑块62,滑轨61设在底盘10上且沿底盘10的宽度方向设置,移动滑块62配合在滑轨61上且与移动座23相连。移动座23水平移动时,通过滑轨61和移动滑块62的作用,可保证移动座23在底盘10上稳定平移,提高运动可靠性。
一些实施例中,如图4所示,移动滑块62在滑轨61间隔开地设有多个,例如,移动滑块62为两个。
一些实施例中,如图1和图2所示,流质体铺设铺浆装置100还包括上下调平机构50,上下调平机构50设在移动座23和铺浆机构30之间,以调整铺浆机构30的长度方向两端的高度,上下调平机构50包括升降件51和调平检测件53,升降件51设在移动座23上,升降件51的输出端与铺浆机构30驱动连接,调平检测件53设在移动座23上。进行上下调平时,升降件51上升使铺浆机构30的端部位置相对施工面300的高度增加,升降件51下降使铺浆机构30的端部位置相对施工面300的高度减小。
其中,流质体铺设装置100工作时,调平检测件53根据接收到的激光线控制升降件51升降,以使铺浆机构30的底部与施工面保持平行。具体地,铺浆机构30的底部是指齿形刮板32的底边缘。也就是说,流质体铺设装置100正常工作时,调平检测件53接收的激光发生器200发出的水平激光线O2位置为水平零点位;上下调平机构50用于带动铺浆机构30升降,以使调平检测件53接收的水平激光线O2位置可回到水平零点位上。瓷砖铺设过程中,铺浆机构30在正常工作下铺浆机构30的底部与施工面300保持水平,由于受到铺设面高低 不平的影响,导致铺设的浆面高度不平。当调平检测件53接收的激光发生器200发出的水平激光线O2位置不在水平零点位时,上下调平机构50启动,调整铺浆机构30两端的高度,以使铺浆机构30的底部与施工面300保持平行,进而保证铺浆面高度齐平。利用激光发生器200发出的水平激光线O2作为水平面标高基准,调平检测件53接受水平面标高基准的信号来控制上下调平机构50,以解决因施工面300高低不平而导致铺浆面高低不平的质量问题。可选地,纠偏检测件24可以根据接收到的激光线直接控制升降件51,也可以是,流质体铺设装置100中设置一个控制器(图未示出),纠偏检测件24将接收到的激光线转化成电信号,传输给控制器,继而控制器根据该电信号来控制升降件51。
可选的,调平检测件53为光电位置敏感传感器。
可选的,如图2所示,上下调平机构50为两个,两个上下调平机构50对应设在铺浆机构30的长度方向的两端,以分别调整铺浆机构30的两端的高度。也就是说,两个上下调平机构50可单独调节铺浆机构30两端的高度,例如,如图7和图8所示,当铺浆机构30左端的施工面300较高时,左端的上下调平机构50向上抬升铺浆机构30;当铺浆机构30左端的施工面300较低时,左端的上下调平机构50向下降低调整铺浆机构30。如图9和图10所示,当铺浆机构30右端的施工面300较高时,右端的上下调平机构50向上抬升铺浆机构30;当铺浆机构30右端的施工面300较低时,右端的上下调平机构50向下降低铺浆机构30。可以理解的是,两个上下调平机构50对应设在铺浆机构30的长度方向的两端,此处的“两端“既可以指铺浆机构30的长度方向的边缘最端部,也可以指铺浆机构30的长度方向的最端部附近一定合理范围的区域。而铺浆机构30的两端的高度中的“两端”则是指铺浆机构30的长度方向的边缘最端部。
一些实施例中,如图2所示,升降件51包括第三电机511和直线电缸512,第三电机511与直线电缸512相连以驱动直线电缸512伸缩,直线电缸512的伸缩杆连接在铺浆机构30上。
可选的,如图2所示,上下调平机构50还包括旋转件52,旋转件52设在移动座23上且可绕竖直轴线转动,旋转件52的输出端与调平检测件53驱动连接,旋转件52可调整调平检测件53的检测方向。旋转件52通过带动调平检测件53转动,使得调平检测件53转动到最佳角度来对准激光发生器200发出的水平激光线O2。
可选的,旋转件52为舵机,舵机的输出端与调平检测件53驱动连接,采用舵机方便精准控制调平检测件53的转动角度。当然,旋转件52还可以是步进电机或旋转气缸,这里不再赘述。
一些实施例中,如图2所示,上下调平机构50还包括直线导轨54,直线导轨54与升降件51的输出端相连,直线导轨54的滑块连接移动座23,直线导轨54通过销轴55连接铺浆机构30。也就是说,通过直线导轨54可起到导向作用,升降件51带动铺浆机构30升降时稳定性更好。
一些实施例中,如图2所示,直线导轨54的上端通过连接杆56与升降件51的输出端驱动连接。
一些实施例中,如图2所示,铺浆机构30包括浆料箱31和齿形刮板32。浆料箱31的下方设有出浆口(图未示出)。齿形刮板32设在出浆口上,且沿浆料箱31的长度方向延伸。也就是说,浆料箱31内的浆料经出浆口到达齿形刮板32上,并通过齿形刮板32把浆料刮成平直的带齿形的面。
可选的,如图3所示,供浆机构40包括:浆料斗41、螺旋输送杆42、输送管道43和第二驱动电机44。浆料斗41设在底盘10上。螺旋输送杆42可枢转地设在浆料斗41内。输送管道43设在浆料斗41上,输送管道43的一端连通螺旋输送杆42的输送端且另一端连通浆料箱31。第二驱动电机44的输出端与螺旋输送杆42驱动连接。可以理解为,螺旋输送杆42设置在浆料斗41的底部,第二驱动电机44带动螺旋输送杆42旋转,浆料斗41内的浆料随螺旋输送杆42向输送端排出,接着浆料经输送管道43到达浆料箱31,实现对铺浆机构30的供料。
可选的,如图3所示,第二驱动电机44与螺旋输送杆42之间设有链传动机构,链传动机构包括传动链45和两个链轮46,两个链轮46分别与第二驱动电机44的输出轴和螺旋输送杆42驱动连接,传动链45套设在两个链轮46上。第二驱动电机44启动,带动其上的链轮46转动,经传动链45带动另一链轮46转动,从而驱动螺旋输送杆42旋转。
可选的,如图3所示,第二驱动电机44为伺服电机,第二驱动电机44和链轮46之间设有减速机47。
一些实施例中,如图4所示,底盘10包括底盘主体11、电力供给系统13、行走轮12和控制柜14。供浆机构40设在底盘主体11的上方且位于底盘主体11的宽度方向的一侧。电力供给系统13设在底盘主体11的上方且位于底盘主体11的宽度方向的另一侧,电力供给系统13沿底盘主体11的长度方向设置。采用该方式,供浆机构40与电力供给系统13在底盘主体11布局紧凑,有利于缩小整个底盘主体11上部空间的体积。行走轮12设在底盘主体11的下方,电力供给系统13提供行走轮12的电力以带动底盘主体11行走。控制柜14设在底盘主体11的下方,可节省底盘11的上部空间。
可选的,如图4所示,行走轮12为舵轮,底盘10还包括设在底盘主体11下方的万向轮15。
下面结合附图,描述本申请流质体铺设装置100的一个具体实施例。
如图1至图4所示,一种流质体铺设装置100,配合激光发生器200使用,包括:底盘10、平移纠偏机构20、铺浆机构30、供浆机构40、上下调平机构50。
平移纠偏机构20设在底盘10上,平移纠偏机构20包括沿垂直于流质体铺设方向移动的移动座23和设在移动座23上的纠偏检测件24。
平移纠偏机构20包括第一驱动电机21、丝杠22、移动座23、纠偏检测件24和螺母25。第一驱动电机21设在移动座23上。丝杠22的一端与第一驱动电机21的输出端驱动连接。螺母25配合在丝杠22上,且螺母25连接底盘10,纠偏检测件24为光电位置敏感传感器。
丝杠22的另一端可枢转地设有丝杠支撑座26,丝杠22的一端通过联轴器27与第一驱动电机21的输出轴驱动连接,丝杠22为滚珠丝杠,第一驱动电机21为伺服电机,第一驱动电机21连接有第一安装座28,第一安装座28设在移动座23上,螺母25连接有螺母固定座29,螺母固定座29连接在底盘10上,移动座23上设有连接板231,纠偏检测件24设在连接板231上。
铺浆机构30连接在移动座23上。铺浆机构30包括浆料箱31和齿形刮板32。浆料箱31的下方设有出浆口(图未示出)。齿形刮板32沿浆料箱31的长度方向设置,且齿形刮板32设在出浆口上。
供浆机构40设在底盘10上,以向铺浆机构30供给浆料。
供浆机构40包括浆料斗41、螺旋输送杆42、输送管道43和第二驱动电机44。浆料斗41设在底盘10上。螺旋输送杆42可枢转地设在浆料斗41内。输送管道43设在浆料斗41上,输送管道43的一端连通螺旋输送杆42的输送端且另一端连通浆料箱31。第二驱动电机44的输出端与螺旋输送杆42驱动连接。
第二驱动电机44与螺旋输送杆42之间设有链传动机构,链传动机构包括传动链45和两个链轮46,两个链轮46分别与第二驱动电机44的输出轴和螺旋输送杆42驱动连接,传动链45套设在两个链轮46上。
第二驱动电机44为伺服电机,第二驱动电机44和链轮46之间设有减速机47。
上下调平机构50设在移动座23和铺浆机构30之间,上下调平机构50包括调平检测件53,调平检测件53为光电位置敏感传感器,上下调平机构50为两个,两个上下调平机构50对应设在铺浆机构30的长度方向的两端。
上下调平机构50均包括升降件51、旋转件52、调平检测件53和直线导轨54。升降件51设在移动座23上,升降件51包括第三电机511和直线电缸512,第三电机511与直线电 缸512相连以驱动直线电缸512伸缩,直线电缸512的伸缩杆连接在铺浆机构30上。旋转件52为舵机,舵机的输出端与调平检测件53驱动连接。直线导轨54与升降件51的输出端相连,直线导轨54的滑块连接移动座23,直线导轨54通过销轴55连接铺浆机构30。直线导轨54的上端通过连接杆56与升降件51的输出端驱动连接。
底盘10包括底盘主体11、行走轮12、电力供给系统13和控制柜14。供浆机构40设在底盘主体11的上方且位于底盘主体11的宽度方向的一侧。电力供给系统13设在底盘主体11的上方且位于底盘主体11的宽度方向的另一侧,电力供给系统13沿底盘主体11的长度方向设置。行走轮12设在底盘主体11的下方。控制柜14设在底盘主体11的下方,行走轮12为舵轮,底盘10还包括设在底盘主体11下方的万向轮15。
下面描述本申请的工作方法:
如图5所示,把激光发生器200和底盘10放置在图示位置,开启水平激光线O2和垂直激光线O1,供浆机构40的浆料斗41内装满浆料,开启第二驱动电机44驱动减速机47旋转,通过链轮46和传动链45传动,从而带动螺旋输送杆42旋转,螺旋输送杆42输送浆料通过输送管道43输送到浆料箱31,安装在出浆口的齿形刮板32把浆料划出齿型面。
底盘10的电力供给系统13提供电力、控制柜14提供控制程序驱动行走轮12带动底盘主体11行走,安装在直线导轨54上的铺浆机构30也随底盘10运动。当然,在其他实施例中,也可以直接通过市电系统向流质体铺设装置100提供电力。
如图6所示,当地面水平时,底盘10和铺浆机构30的出浆口处于水平状态,铺浆机构30上的调平检测件53接受激光发生器200发出的水平激光线O2位置为水平零点位。
如图7和图9所示,当地面出现高低不平时,底盘10发生倾斜状态,此时铺浆机构30跟随底盘10发生倾斜,图7底盘10向左偏斜,图9底盘10向右偏斜,铺浆机构30上的调平检测件53感知到激光发生器200发出的水平激光线O2位置离开水平零点位,调平检测件53产生信号,通过程序控制第三电机511驱动直线电缸512的活塞杆做上下运动,从而带动连接杆56、直线导轨54、旋转件52、调平检测件53、销轴55和浆料箱31一起上下运动,直到让激光发生器200发出的水平激光线O2回到调平检测件53的水平零点位,此时出浆口处于水平状态,如图8和图10所示。
如图11所示,当底盘10没有发生偏移时,铺浆机构30的出浆口和底盘10处于对齐状态,此时铺浆机构30上的纠偏检测件24接受激光发生器200发出的垂直激光线O1位置为垂直零点位。如图12和图13所示,当底盘10发生偏移时,此时铺浆机构30随底盘10发生偏移,铺浆机构30上的纠偏检测件24感知到激光发生器200发出的垂直激光线O1位置离开垂直零点位,纠偏检测件24产生信号,通过程序控制第一驱动电机21通过联轴器27驱动丝杠22转动,丝杠22对固定在螺母固定座29上的螺母25产生推力,螺母25对丝杠22产生反作用推力,丝杠22通过丝杠支撑座26让移动座23、连接板231和纠偏检测件24一起做平移运动,直到让激光发生器200发出的垂直激光线O1位置回到纠偏检测件24的垂直零点位。如图12所示,底盘10向右跑偏,平移纠偏机构20的移动座23带动铺浆机构30向左移动纠偏,使接收的垂直激光线O1位置回到垂直零点位;如图13所示,底盘10向左跑偏,平移纠偏机构20的移动座23带动铺浆机构30向右移动纠偏,使接收的垂直激光线O1位置回到垂直零点位。通过该方式,出浆口的位置相对于激光发生器200发出的垂直激光线O1位置保持不变,可以完成铺贴瓷砖时所需要的在同一水平面的且成直线的带齿型浆面。
综上所述,本申请组合底盘10、供浆机构40、平移纠偏机构20、上下调平机构50和铺浆机构30为一体,利用激光发生器200发出激光线作为基准线,能够实现铺设同一水平面的且成直线的带齿型浆面,此外,本申请中的流质体不限于砂浆,还可以是瓷砖胶等。
根据本申请实施例的地砖铺贴机器人(图未示出),包括上述的流质体铺设装置100。
根据本申请实施例的地砖铺贴机器人,通过流质体铺设铺浆装置100,利用垂直激光线O1作为平行地砖边线基准,纠偏检测件24接受平行地砖边线激光线的信号来控制平移纠偏 机构20,对铺浆机构30进行水平方向纠偏,可保证铺设的浆面沿直线铺设,能替代人工完成粘结流质体的铺设工作,避免因人工作业不规范造成的质量问题,降低工人劳动强度,提高铺浆效率。
根据本申请实施例的一种铺浆方法,包括上述的流质体铺设装置100。
如图6至图13所示,铺浆方法包括:
步骤S1:底盘10沿铺浆方向移动,供浆机构40向铺浆机构30中输送流质体,铺浆机构30对施工面300铺浆。也就是说,流质体铺设装置100正常工作时,施工面300水平,底盘10和铺浆机构30处于水平状态,底盘10没有发生偏移,铺浆机构30和底盘10处于对齐状态,纠偏检测件24接收激光发生器200发出的垂直激光线O1位置为垂直零点位,流质体铺设装置100沿直线铺浆。
步骤S2:纠偏检测件23根据接收到的激光线控制所述平移纠偏机构20,以调整铺浆机构30的水平位置,使流质体保持沿铺设方向直线铺浆。
具体而言,纠偏检测件24接收的垂直激光线O1位置不在垂直零点位时,移动座23带动铺浆机构30移动,直至纠偏检测件24接收的垂直激光线O1位置回到垂直零点位。
也就是说,当底盘10发生偏移时,铺浆机构30和底盘10不处于对齐状态,此时纠偏检测件24接收的垂直激光线O1位置不在垂直零点位,平移纠偏机构20启动,移动座23带动铺浆机构30移动纠偏,直至纠偏检测件24接收的垂直激光线O1位置回到垂直零点位为止。
可选地,纠偏检测件24可以根据接收到的激光线直接控制平移纠偏机构20,也可以是,流质体铺设装置100中设置一个控制器(图未示出),纠偏检测件24将接收到的激光线转化成电信号,传输给控制器,继而控制器根据该电信号来控制平移纠偏机构20。
根据本申请实施例的铺浆方法,利用垂直激光线O1作为平行地砖边线基准,纠偏检测件24接受平行地砖边线激光线的信号来控制平移纠偏机构20,对铺浆机构30进行水平方向纠偏。由于现有铺浆机器人因地面平整度、砂砾等杂物的原因,导致机器人行走过程中无法走直线,铺浆无法铺直线,而本申请可保证铺设的浆面沿直线铺设,能替代人工完成粘结流质体的铺设工作,避免因人工作业不规范造成的质量问题,降低工人劳动强度,提高铺浆效率。
一些实施例中,流质体铺设装置100还包括上下调平机构50,上下调平机构50设在移动座23和铺浆机构30之间,上下调平机构50包括调平检测件53。
所述铺浆方法还包括:
步骤S3:调平检测件53根据激光线控制上下调平机构50,以调整铺浆机构30的高度,使铺浆机构30的底部与施工面保持平行。具体地,铺浆机构30的底部是指齿形刮板32的底边缘。
具体而言,流质体铺设装置100正常工作时,调平检测件53接收激光发生器200发出的水平激光线O2位置为水平零点位。流质体铺设装置100作业时,调平检测件53接收的水平激光线O2位置不在水平零点位时,上下调平机构50带动铺浆机构30的至少一端升降,直至调平检测件53接收的水平激光线O2位置回到水平零点位。
也就是说,当施工面300不水平时,底盘10和铺浆机构30不处于水平状态,此时调平检测件53接收的水平激光线O2位置不在水平零点位,上下调平机构50启动,带动铺浆机构30的左端或右端升降,直至调平检测件53接收的水平激光线O2位置回到水平零点位为止。
可选地,纠偏检测件24可以根据接收到的激光线直接控制上下调平机构50,也可以是,流质体铺设装置100中设置一个控制器(图未示出),纠偏检测件24将接收到的激光线转化成电信号,传输给控制器,继而控制器根据该电信号来控制上下调平机构50。
根据本申请实施例的流质体铺设装置100的其他构成等以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“实施例”、“示例”等的描述意指结合该实施例或示 例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (17)

  1. 一种流质体铺设装置,其特征在于,包括:
    底盘;
    平移纠偏机构,设在所述底盘上,所述平移纠偏机构包括沿垂直于流质体铺设方向移动的移动座和设在所述移动座上的纠偏检测件;
    铺浆机构,连接在所述移动座上;
    供浆机构,设在所述底盘上,以向所述铺浆机构供给流质体;其中,
    所述流质体铺设装置工作时,所述纠偏检测件根据接收到的激光线控制所述移动座,以使所述铺浆机构沿铺设方向直线铺浆。
  2. 根据权利要求1所述的流质体铺设装置,其特征在于,所述平移纠偏机构还包括:
    驱动件,设在所述移动座上;
    运动组件,包括运动件和连接所述运动件的导向支撑件,所述运动件连接所述驱动件,所述导向支撑件连接所述底盘。
  3. 根据权利要求2所述的流质体铺设装置,其特征在于,
    所述驱动件为第一驱动电机;
    所述运动件为丝杠,所述丝杠连接在所述第一驱动电机的输出端上;
    所述导向支撑件为螺母,所述螺母配合在所述丝杠上,且所述螺母连接所述底盘。
  4. 根据权利要求1所述的流质体铺设装置,其特征在于,还包括:
    上下调平机构,设在所述移动座和所述铺浆机构之间,所述上下调平机构包括升降件和调平检测件,所述升降件设在所述移动座上,所述升降件的输出端连接所述铺浆机构,所述调平检测件设在所述移动座上;其中,
    所述流质体铺设装置工作时,所述调平检测件根据接收到的激光线控制所述升降件升降,以使所述铺浆机构的底部与施工面保持平行。
  5. 根据权利要求4所述的流质体铺设装置,其特征在于,所述升降件包括第三电机和直线电缸,所述第三电机与所述直线电缸驱动连接以驱动所述直线电缸伸缩,所述直线电缸的伸缩杆与所述铺浆机构驱动连接。
  6. 根据权利要求4所述的流质体铺设装置,其特征在于,所述上下调平机构还包括旋转件,所述旋转件设在所述移动座上且可绕竖直轴线转动,所述旋转件的输出端与所述调平检测件驱动连接,所述旋转件可调整所述调平检测件的检测方向。
  7. 根据权利要求4所述的流质体铺设装置,其特征在于,
    所述上下调平机构为两个,两个所述上下调平机构对应设在所述铺浆机构的长度方向的两端,以分别调整所述铺浆机构的两端的高度。
  8. 根据权利要求4所述的流质体铺设装置,其特征在于,所述上下调平机构还包括直线导轨,所述直线导轨与所述升降件的输出端驱动连接,所述直线导轨的滑块与所述移动座连接,所述直线导轨与所述铺浆机构连接。
  9. 根据权利要求1所述的流质体铺设装置,其特征在于,所述铺浆机构包括:
    浆料箱,所述浆料箱的下方设有出浆口;
    齿形刮板,设在所述出浆口上,且沿所述浆料箱的长度方向延伸。
  10. 根据权利要求9所述的流质体铺设装置,其特征在于,所述供浆机构包括:
    浆料斗,设在所述底盘上;
    螺旋输送杆,可枢转地设在所述浆料斗内;
    输送管道,设在所述浆料斗上,所述输送管道的一端连通所述螺旋输送杆的输送端且另一端连通所述浆料箱;
    第二驱动电机,所述第二驱动电机的输出端与所述螺旋输送杆驱动连接。
  11. 根据权利要求10所述的流质体铺设装置,其特征在于,所述第二驱动电机与所述螺旋输送杆之间设有链传动机构,所述链传动机构包括传动链和两个链轮,两个所述链轮分别与所述第二驱动电机的输出端和所述螺旋输送杆驱动连接,所述传动链套设在两个所述链轮上。
  12. 根据权利要求1所述的流质体铺设装置,其特征在于,所述底盘包括:
    底盘主体;
    行走轮,设在所述底盘主体的下方;
    控制柜,设在所述底盘主体的下方。
  13. 根据权利要求12所述的流质体铺设装置,其特征在于,所述底盘还包括电力供给系统,所述电力供给系统设在所述底盘主体的上方,所述电力供给系统用于向所述行走轮提供电力以带动所述底盘主体行走。
  14. 根据权利要求1所述的流质体铺设装置,其特征在于,还包括导向机构,所述导向机构设于所述移动座和所述底盘之间,所述导向机构包括滑轨和移动滑块,所述滑轨设在所述底盘上,所述移动滑块配合在所述滑轨上且与所述移动座连接。
  15. 一种地砖铺贴机器人,其特征在于,包括:根据权利要求1至14中任一项所述的流质体铺设装置。
  16. 一种铺浆方法,其特征在于,包括:根据权利要求1至14中任一项所述的流质体铺设装置;
    所述铺浆方法包括:
    所述底盘沿铺浆方向移动,所述供浆机构向所述铺浆机构中输送流质体,所述铺浆机构对施工面铺浆;
    所述纠偏检测件根据接收到的激光线控制所述平移纠偏机构,以调整所述铺浆机构的水平位置,使流质体保持沿铺设方向直线铺浆。
  17. 根据权利要求16所述的铺浆方法,其特征在于,还包括:
    调平所述检测件,根据激光线控制所述上下调平机构,以调整所述铺浆机构的高度,使所述铺浆机构的底部与施工面保持平行。
PCT/CN2021/098880 2020-07-01 2021-06-08 流质体铺设装置、地砖铺贴机器人及铺浆方法 WO2022001597A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/004,061 US20230265666A1 (en) 2020-07-01 2021-06-08 Fluid Laying Device, Floor Tile Laying Robot and Slurry Laying Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010619799.8A CN113882635B (zh) 2020-07-01 2020-07-01 流质体铺设装置、地砖铺贴机器人、铺浆方法
CN202010619799.8 2020-07-01

Publications (1)

Publication Number Publication Date
WO2022001597A1 true WO2022001597A1 (zh) 2022-01-06

Family

ID=79012518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098880 WO2022001597A1 (zh) 2020-07-01 2021-06-08 流质体铺设装置、地砖铺贴机器人及铺浆方法

Country Status (3)

Country Link
US (1) US20230265666A1 (zh)
CN (1) CN113882635B (zh)
WO (1) WO2022001597A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114161432A (zh) * 2020-09-10 2022-03-11 广东博智林机器人有限公司 流质体运料机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2997328B1 (de) * 2013-05-14 2017-10-04 Döberl, Egon Vorrichtung zur nivellierung von schüttungen und baustoffen
CN108252500A (zh) * 2018-01-22 2018-07-06 王守鹏 一种新型的多功能全自动铺地砖机
CN109930801A (zh) * 2019-04-30 2019-06-25 广东博智林机器人有限公司 铺浆设备
CN110439238A (zh) * 2019-08-19 2019-11-12 广东博智林机器人有限公司 具有调平结构的物料铺设机器人
CN110453901A (zh) * 2019-08-19 2019-11-15 广东博智林机器人有限公司 物料铺设设备及其控制方法
CN210508451U (zh) * 2019-06-21 2020-05-12 中国建筑第二工程局有限公司 一种建筑使用的匀料铺浆器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2814345B2 (ja) * 1994-02-17 1998-10-22 五洋建設株式会社 コンクリート均し装置
US7293938B1 (en) * 2005-06-30 2007-11-13 Suckow Robert E Breakdown screed plate
CN103194954A (zh) * 2012-01-06 2013-07-10 蔡墩军 激光布料摊铺整平机
CN205025113U (zh) * 2015-07-29 2016-02-10 江苏科瑞欣机械有限公司 激光摊铺整平机器人
CN205840353U (zh) * 2016-07-11 2016-12-28 施世清 一种智能地面整平机
CN110593573B (zh) * 2019-08-26 2021-09-07 广东博智林机器人有限公司 抹平机器人的纠偏装置、纠偏方法、抹平机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2997328B1 (de) * 2013-05-14 2017-10-04 Döberl, Egon Vorrichtung zur nivellierung von schüttungen und baustoffen
CN108252500A (zh) * 2018-01-22 2018-07-06 王守鹏 一种新型的多功能全自动铺地砖机
CN109930801A (zh) * 2019-04-30 2019-06-25 广东博智林机器人有限公司 铺浆设备
CN210508451U (zh) * 2019-06-21 2020-05-12 中国建筑第二工程局有限公司 一种建筑使用的匀料铺浆器
CN110439238A (zh) * 2019-08-19 2019-11-12 广东博智林机器人有限公司 具有调平结构的物料铺设机器人
CN110453901A (zh) * 2019-08-19 2019-11-15 广东博智林机器人有限公司 物料铺设设备及其控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114161432A (zh) * 2020-09-10 2022-03-11 广东博智林机器人有限公司 流质体运料机器人

Also Published As

Publication number Publication date
CN113882635A (zh) 2022-01-04
US20230265666A1 (en) 2023-08-24
CN113882635B (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
CN106567529B (zh) 墙面刮浆抹灰机器人
CN101597953B (zh) 一种自动找平抹灰机
CN201620587U (zh) 一种自动找平抹灰机
CN109577614B (zh) 一种抹灰机器人自动调整抹灰厚度的方法
WO2022001597A1 (zh) 流质体铺设装置、地砖铺贴机器人及铺浆方法
RU2589776C2 (ru) Бетоноотделочная машина для выравнивания оснований пола
WO2022262505A1 (zh) 板料铺贴设备、铺贴方法、板材涂料装置及板料铺贴装置
CN103182733B (zh) 抹光机
CN111550023A (zh) 一种建筑预制构件安装固定施工方法
CN109339702B (zh) 一种数字化多功能车载钻修机
CN216516979U (zh) 一种安全性更高的建筑工程施工用的滑动托架
CN114508091B (zh) 一种具有双向旋搅机构的智能钻机装备及施工方法
CN114961195A (zh) 一种大负载高效高精度铺砖机器人
CN112343316B (zh) 一种整平设备
WO2021093450A1 (zh) 转向装置及具有其的抹平机器人
CN204703535U (zh) 砖墙砌筑设备
CN107893522B (zh) 一种自动抹灰机
CN215948892U (zh) 一种便捷式建筑施工用工程钢结构支架
CN112360125B (zh) 一种高效房屋建筑物全自动化铺砖设备
CN112663618B (zh) 移动式自动导向底架
CN110836020B (zh) 一种移动式砌墙铺砌砂浆方法
CN113323297A (zh) 一种用于混凝土屋面的高效平整设备
CN221545529U (zh) 一种挡水高度可调的泄水装置
CN218406319U (zh) 砖块铺贴机器人
CN2903250Y (zh) 墙面自动抹灰机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21833067

Country of ref document: EP

Kind code of ref document: A1