WO2022082388A1 - 电池的箱体、电池、用电装置、制备电池的方法和装置 - Google Patents
电池的箱体、电池、用电装置、制备电池的方法和装置 Download PDFInfo
- Publication number
- WO2022082388A1 WO2022082388A1 PCT/CN2020/121991 CN2020121991W WO2022082388A1 WO 2022082388 A1 WO2022082388 A1 WO 2022082388A1 CN 2020121991 W CN2020121991 W CN 2020121991W WO 2022082388 A1 WO2022082388 A1 WO 2022082388A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hole
- wall
- battery
- box
- thermal management
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4207—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62C—FIRE-FIGHTING
- A62C3/00—Fire prevention, containment or extinguishing specially adapted for particular objects or places
- A62C3/07—Fire prevention, containment or extinguishing specially adapted for particular objects or places in vehicles, e.g. in road vehicles
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62C—FIRE-FIGHTING
- A62C3/00—Fire prevention, containment or extinguishing specially adapted for particular objects or places
- A62C3/16—Fire prevention, containment or extinguishing specially adapted for particular objects or places in electrical installations, e.g. cableways
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D5/00—Condensation of vapours; Recovering volatile solvents by condensation
- B01D5/0078—Condensation of vapours; Recovering volatile solvents by condensation characterised by auxiliary systems or arrangements
- B01D5/009—Collecting, removing and/or treatment of the condensate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6551—Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6569—Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/233—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
- H01M50/24—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
- H01M50/317—Re-sealable arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
- H01M50/383—Flame arresting or ignition-preventing means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
- H01M50/394—Gas-pervious parts or elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/60—Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
- H01M50/691—Arrangements or processes for draining liquids from casings; Cleaning battery or cell casings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/625—Vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6561—Gases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2200/00—Safety devices for primary or secondary batteries
- H01M2200/20—Pressure-sensitive devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/249—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the embodiments of the present application relate to the field of batteries, and more particularly, to a case for batteries, a battery, an electrical device, and a method and device for preparing a battery.
- the safety issue is also a problem that cannot be ignored. If the safety of the battery cannot be guaranteed, the battery cannot be used.
- the embodiments of the present application provide a case for a battery, a battery, an electrical device, and a method and device for preparing the battery, which can enhance the safety of the battery.
- a case for a battery comprising: a thermal management component for adjusting the temperature of a battery cell accommodated in the case; a first wall provided with a through hole, the through hole
- the condensing part is used for communicating the gas inside and outside the box; the condensing part is attached to the thermal management part, and the condensing part is used for shielding the through hole to condense the gas flowing into the inside of the box through the through hole.
- the condensing component is attached to the thermal management component, and the through hole connecting the gas inside and outside the box is blocked, so as to condense the gas flowing into the box through the through hole, so that the condensate can be kept away from the box.
- the electrical connection area thus enhancing the safety of the battery.
- the condensation component is disposed on the inner surface of the tank.
- the thermal management component intersects the first wall, a first portion of the condensing component extends along the thermal management component for attachment to the thermal management component, and a first portion of the condensing component extends along the thermal management component.
- the two parts extend along the first wall to cover the through hole.
- the condensing part includes a hood-like structure, and the hood-like structure shields the through hole.
- the hood-like structure is attached to an area of the first wall around the through hole and has a first opening for gas to flow into the tank.
- the first opening is disposed in a first direction of the cover-like structure, and the first direction is the opposite direction to the direction of gravity.
- the gas reaching the through-hole can be condensed by the cover-shaped structure 161, thereby improving the condensation effect.
- the condensed gas can enter the inside of the box through the first opening of the cover-like structure, so as to maintain the balance of the pressure inside and outside the box.
- the first opening corresponds to a connection of pipes of the fire protection system in the box, and the first opening is further used to collect the fluid leaked from the connection when the fluid leaks from the connection. .
- the cap-like structures are hemispherical and square.
- the condensing component further includes a flow channel for directing the condensate of the hood-like structure to the thermal management component.
- portions of the condensing member on both sides of the flow channel are attached to the thermal management member or the first wall.
- the cover-like structure has a second opening corresponding to the flow channel, and the second opening is used for guiding the condensate of the cover-like structure to the flow channel.
- the second opening is disposed in a second direction of the cover-like structure, and the second direction is the direction of gravity.
- a one-way gravity valve is provided on the thermal management component, and the one-way gravity valve is used to discharge the condensate in the flow channel to all the condensate when the gravity of the condensate in the flow channel reaches a threshold value. the box.
- the condensate or fluid leaking from the connection of the fire duct can be directed to the thermal management components by the hood-like structure and the flow channel. Through the one-way gravity valve, the condensate or leaked fluid can be discharged out of the box to ensure the safety of the battery.
- the box body further includes: a pressure balance mechanism for balancing the pressure inside and outside the box body.
- the first wall includes a first sub-wall and a second sub-wall, wherein a cavity is formed between the first sub-wall and the second sub-wall, and the first sub-wall is The inner wall of the box body, the second sub-wall is the outer wall of the box body, and the first sub-wall is provided with the through hole.
- the second sub-wall is provided with the pressure balance mechanism, and the gas flowing into the cavity from the outside of the box through the pressure balance mechanism flows into the box through the through hole internal.
- the first wall is used to condense gas flowing into the cavity through the pressure equalization mechanism in the cavity.
- the first subwall and the second subwall may form a cavity. In this way, after the gas outside the box enters the cavity, it will condense in the cavity, and the condensed liquid will be formed in the cavity; moreover, due to the existence of the cavity, the condensation space of the gas is increased, and the condensation effect is further improved.
- the axis of the through hole does not overlap the axis of the pressure equalization mechanism.
- the orthographic projection of the through hole on the second sub-wall does not overlap with the pressure equalization mechanism.
- the passage of the gas passing through the cavity can be extended, and the condensation effect of the gas can be improved.
- the cavity is provided with fins, and the fins are used to condense the gas flowing into the cavity through the pressure balance mechanism.
- the condensation area of the gas can be enlarged, thereby improving the condensation effect of the gas.
- the fins are disposed in gas passages from the pressure equalization mechanism to the through holes.
- the rib is fixed to the first sub-wall.
- the fins are parallel to a line from the center of the pressure equalization mechanism to the center of the through hole.
- the condensation effect of the fins can be achieved, and the air flow can be guided by the fins without hindering the circulation of the gas, so as to ensure the balance of the pressure inside and outside the box.
- a battery comprising: a plurality of battery cells; and the case of the first aspect, wherein the plurality of battery cells are accommodated in the case.
- an electrical device including: the battery of the second aspect.
- the powered device is a vehicle, a ship or a spacecraft.
- a method for preparing a battery comprising: providing a plurality of battery cells; providing a case, the case including: a thermal management component for adjusting the battery cells accommodated in the case temperature; a first wall provided with a through hole for communicating the gas inside and outside the box; a condensing part attached to the thermal management part, the condensing part being used to block the through hole to prevent Condensing the gas flowing into the inside of the box through the through holes; and accommodating the plurality of battery cells in the box.
- the thermal management component intersects the first wall, a first portion of the condensing component extends along the thermal management component for attachment to the thermal management component, and a first portion of the condensing component extends along the thermal management component.
- the two parts extend along the first wall to cover the through hole.
- the condensation part includes a cover-like structure, and the cover-like structure shields the through hole.
- the hood-like structure is attached to an area of the first wall around the through hole and has a first opening for gas to flow into the tank.
- the condensing component further includes a flow channel for directing the condensate of the hood-like structure to the thermal management component.
- an apparatus for preparing a battery including a module for performing the method of the above-mentioned fourth aspect.
- FIG. 1 is a schematic diagram of a vehicle according to an embodiment of the application.
- FIG. 2 is a schematic structural diagram of a battery according to an embodiment of the application.
- FIG. 3 is a schematic structural diagram of a battery module according to an embodiment of the present application.
- FIG. 4 is an exploded view of a battery cell according to an embodiment of the application.
- FIG. 12 is a schematic diagram of a partial structure of a battery according to an embodiment of the application.
- FIG. 13 is a schematic flowchart of a method for preparing a battery according to an embodiment of the present application.
- FIG. 14 is a schematic block diagram of an apparatus for preparing a battery according to an embodiment of the present application.
- the terms “installed”, “connected”, “connected” and “attached” should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two components.
- installed should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two components.
- multiple refers to two or more (including two), and similarly, “multiple groups” refers to two or more groups (including two groups), and “multiple sheets” refers to two or more sheets (includes two pieces).
- the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, etc., which are not limited in the embodiments of the present application.
- the battery cell may be in the form of a cylinder, a flat body, a rectangular parallelepiped, or other shapes, which are not limited in this embodiment of the present application.
- the battery cells are generally divided into three types according to the packaging method: cylindrical battery cells, square-shaped battery cells, and soft-pack battery cells, which are not limited in the embodiments of the present application.
- the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
- the batteries mentioned in this application may include battery modules or battery packs, and the like.
- Batteries typically include a case for enclosing one or more battery cells. The box can prevent liquids or other foreign objects from affecting the charging or discharging of the battery cells.
- the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet and a separator.
- the battery cell mainly relies on the movement of metal ions between the positive and negative plates to work.
- the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, the current collector without the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer, and the positive electrode active material layer is not coated.
- the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
- the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium, or lithium manganate.
- the negative electrode sheet comprises a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, the current collector without the negative electrode active material layer protrudes from the current collector coated with the negative electrode active material layer, The current collector coated with the negative electrode active material layer was used as the negative electrode tab.
- the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
- the number of positive tabs is multiple and stacked together, and the number of negative tabs is multiple and stacked together.
- the material of the diaphragm can be PP or PE, etc.
- the electrode assembly may be a wound structure or a laminated structure, and the embodiment of the present application is not limited thereto.
- the main safety hazard comes from the charging and discharging process, as well as appropriate ambient temperature design.
- the protection measures include at least switch elements, selection of appropriate isolation diaphragm materials and pressure relief mechanisms.
- the switching element refers to an element that can stop the charging or discharging of the battery when the temperature or resistance in the battery cell reaches a certain threshold.
- the separator is used to separate the positive electrode sheet and the negative electrode sheet. When the temperature rises to a certain value, the micro-scale (or even nano-scale) micropores attached to it can be automatically dissolved, so that the metal ions cannot pass through the separator and terminate the battery. Internal reactions of monomers.
- the pressure relief mechanism refers to an element or component that is actuated to relieve the internal pressure or temperature when the internal pressure or temperature of the battery cell reaches a predetermined threshold.
- the threshold design varies according to different design requirements.
- the threshold value may depend on the materials of one or more of the positive electrode sheet, the negative electrode sheet, the electrolyte and the separator in the battery cell.
- the pressure relief mechanism can take the form of an explosion-proof valve, a gas valve, a pressure relief valve or a safety valve, etc., and can specifically adopt a pressure-sensitive or temperature-sensitive element or structure, that is, when the internal pressure or temperature of the battery cell reaches a predetermined threshold When the pressure relief mechanism performs an action or the weak structure provided in the pressure relief mechanism is damaged, an opening or channel for releasing the internal pressure or temperature is formed.
- the "actuation" mentioned in this application means that the pressure relief mechanism is actuated or activated to a certain state, so that the internal pressure and temperature of the battery cell can be released.
- Actions produced by the pressure relief mechanism may include, but are not limited to, at least a portion of the pressure relief mechanism being ruptured, shattered, torn or opened, and the like.
- the emissions from the battery cells mentioned in this application include but are not limited to: electrolyte, dissolved or split positive and negative electrode sheets, fragments of separators, high temperature and high pressure gas generated by the reaction, flames, and the like.
- the pressure relief mechanism on the battery cell has an important impact on the safety of the battery. For example, when a short circuit, overcharge, etc. occurs, it may cause thermal runaway inside the battery cell, resulting in a sudden rise in pressure or temperature. In this case, the internal pressure and temperature can be released through the actuation of the pressure relief mechanism to prevent the battery cells from exploding and catching fire.
- the main focus is to release the high pressure and high heat inside the battery cell, that is, to discharge the exhaust to the outside of the battery cell.
- High-temperature and high-pressure discharges are discharged toward the direction in which the pressure relief mechanism is provided for the battery cells, and may be discharged more specifically in the direction of the area where the pressure relief mechanism is actuated. Enough to break through one or more structures in that direction, creating a safety problem.
- high voltage and high heat inside the battery cell may continue to be generated, resulting in continued safety hazards.
- a fire protection system can be installed in the battery box, and the fire protection pipeline of the fire protection system is arranged above the wall of the battery cell where the pressure relief mechanism is arranged.
- the pressure relief mechanism When the pressure relief mechanism is activated, the fire-fighting pipeline discharges the fire-fighting medium, so that the discharge from the pressure-relief mechanism can be cooled to reduce the risk of the discharge; the fire-fighting medium can further flow into the battery through the actuated pressure relief mechanism Inside the cell, thereby further cooling the battery cell and enhancing the safety of the battery.
- the pressure relief mechanism when the pressure relief mechanism is actuated, the discharge from the battery cell can damage the fire fighting duct, so that the fire fighting medium in the fire fighting duct is discharged.
- the fire-fighting pipeline in the embodiment of the present application is used for containing fire-fighting medium, and the fire-fighting medium here may be a fluid, and the fluid may be a liquid or a gas.
- the fire fighting pipeline may not contain any substance, but when the pressure relief mechanism is actuated, the fire fighting medium can be contained in the fire fighting pipeline, for example, the fire fighting can be controlled by switching the valve The medium enters the fire pipeline.
- the fire-fighting pipeline may always contain a fire-fighting medium, and the fire-fighting medium may also be used to adjust the temperature of the battery cells. Adjusting the temperature refers to heating or cooling a plurality of battery cells.
- the fire fighting pipeline is used to contain the cooling fluid to reduce the temperature of the plurality of battery cells.
- the contained fire fighting medium may also be referred to as cooling medium or cooling fluid, and more specifically, may be referred to as cooling liquid or cooling gas.
- the fire fighting medium can be circulated to achieve better temperature regulation.
- the fire-fighting medium can be water, a mixture of water and glycol, or air, or the like.
- the present application provides a technical solution, using a condensing component to attach to a thermal management component, and to block a through hole that communicates with the gas inside and outside the box of the battery, so as to condense the gas flowing into the inside of the box through the through hole, so that, The condensate can be kept away from the electrical connection area in the case, thus enhancing the safety of the battery.
- Thermal management components are used to contain fluids to regulate the temperature of the plurality of battery cells.
- the fluid here can be liquid or gas, and adjusting the temperature refers to heating or cooling a plurality of battery cells.
- the thermal management component is used to contain a cooling fluid to reduce the temperature of the plurality of battery cells.
- the thermal management component may also be called a cooling component, a cooling system or a cooling plate, etc.
- the fluid it contains can also be called cooling medium or cooling fluid, more specifically, it can be called cooling liquid or cooling gas.
- the thermal management component may also be used for heating to heat up a plurality of battery cells, which is not limited in the embodiment of the present application.
- the fluid can be circulated to achieve better temperature regulation.
- the fluid may be water, a mixture of water and ethylene glycol, or air, or the like.
- the condensing part is attached to the thermal management part, and shields the through hole that communicates the gas inside and outside the casing of the battery, and is used for condensing the gas flowing into the inside of the casing through the through hole.
- the condensing part can be made of a material with good thermal conductivity, such as metal.
- the condensing component may adopt various possible shapes and arrangements, as long as the through hole can be blocked to condense the gas flowing into the box through the through hole.
- the battery case is used to accommodate a plurality of battery cells, bus components and other components of the battery.
- a structure for fixing the battery cells may also be provided in the box.
- the shape of the case may be determined according to the plurality of battery cells accommodated.
- the box may be square with six walls.
- the bus component is used to realize electrical connection between multiple battery cells, such as parallel or series or mixed connection, so as to form a higher voltage output.
- the bus part can realize electrical connection between the battery cells by connecting the electrode terminals of the battery cells.
- the bus members may be fixed to the electrode terminals of the battery cells by welding.
- the electrical connections formed by the bus components may also be referred to as "high voltage connections”.
- a sensing device for sensing the state of the battery cells may also be provided in the battery.
- the electrical connections within the battery may include electrical connections formed by bus components and/or electrical connections in sensing devices.
- a pressure balancing mechanism may also be provided on the casing of the battery for balancing the pressure inside and outside the casing. For example, when the pressure inside the box is higher than outside the box, the gas inside the box can flow to the outside of the box through the pressure balance mechanism; when the pressure inside the box is lower than outside the box, the gas outside the box can pass the pressure The balance mechanism flows into the inside of the box.
- each component in the battery case described above should not be construed as a limitation on the embodiments of the present application, that is, the battery case in the embodiments of the present application may include the above-mentioned components or may not include the above components.
- the technical solutions described in the embodiments of this application are applicable to various devices using batteries, such as mobile phones, portable devices, notebook computers, battery cars, electric toys, electric tools, electric vehicles, ships, and spacecraft.
- the spacecraft includes Planes, rockets, space shuttles and spaceships, etc.
- the vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or Extended range cars, etc.
- the interior of the vehicle 1 may be provided with a motor 40 , a controller 30 and a battery 10 , and the controller 30 is used to control the battery 10 to supply power to the motor 40 .
- the battery 10 may be provided at the bottom of the vehicle 1 or at the front or rear of the vehicle.
- the battery 10 can be used for power supply of the vehicle 1, for example, the battery 10 can be used as the operating power source of the vehicle 1, for the circuit system of the vehicle 1, for example, for the working power requirements of the vehicle 1 starting, navigating and running.
- the battery 10 can not only be used as the operating power source of the vehicle 1 , but also can be used as the driving power source of the vehicle 1 to provide driving power for the vehicle 1 in place of or partially in place of fuel or natural gas.
- the battery 10 may include a plurality of battery cells 20, wherein the plurality of battery cells 20 may be connected in series or in parallel or in a mixed connection, and a mixed connection refers to a mixture of series and parallel connections.
- a battery can also be called a battery pack.
- a plurality of battery cells 20 may be connected in series or in parallel or mixed to form a battery module, and then a plurality of battery modules may be connected in series or in parallel or mixed to form a battery 10 . That is to say, the plurality of battery cells 20 may directly form the battery 10 , or may form a battery module first, and then the battery module may form the battery 10 .
- the battery 10 may include a plurality of battery cells 20 .
- the battery 10 may further include a case body 11 , the interior of the case body 11 is a hollow structure, and a plurality of battery cells 20 are accommodated in the case body 11 .
- the box body 11 may include two parts, here referred to as a first part 111 (upper box body) and a second part 112 (lower box body) respectively, the first part 111 and the second part 112 are fastened together.
- the shapes of the first part 111 and the second part 112 may be determined according to the combined shape of the plurality of battery cells 20 , and each of the first part 111 and the second part 112 may have an opening.
- both the first part 111 and the second part 112 can be a hollow cuboid and each has only one surface that is an open surface, the opening of the first part 111 and the opening of the second part 112 are arranged opposite to each other, and the first part 111 and the second part 112 are interlocked with each other
- a box body 11 with a closed cavity is formed.
- a plurality of battery cells 20 are placed in the box 11 formed after the first part 111 and the second part 112 are buckled together after being combined in parallel or in series or in a mixed connection.
- the battery 10 may also include other structures, which will not be repeated here.
- the battery 10 may further include a bussing component for realizing electrical connection between the plurality of battery cells 20, such as parallel or series or hybrid.
- the bus member may realize electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
- the bus members may be fixed to the electrode terminals of the battery cells 20 by welding. The electrical energy of the plurality of battery cells 20 can be further drawn out through the box body 11 through the conductive mechanism.
- the conducting means may also belong to the bussing member.
- the number of battery cells 20 can be set to any value.
- a plurality of battery cells 20 can be connected in series, in parallel or in a mixed manner to achieve larger capacity or power. Since the number of battery cells 20 included in each battery 10 may be large, in order to facilitate installation, the battery cells 20 may be arranged in groups, and each group of battery cells 20 constitutes a battery module.
- the number of battery cells 20 included in the battery module is not limited, and can be set according to requirements.
- FIG. 3 is an example of a battery module.
- the battery can include a plurality of battery modules, and these battery modules can be connected in series, parallel or mixed. As shown in FIG.
- the battery cell 20 includes one or more electrode assemblies 22 , a casing 211 and a cover plate 212 .
- the coordinate system shown in FIG. 4 is the same as that in FIG. 3 .
- the casing 211 and the cover plate 212 form an outer casing or battery case 21 . Both the wall of the case 211 and the cover plate 212 are referred to as the wall of the battery cell 20 .
- the casing 211 is determined according to the combined shape of one or more electrode assemblies 22.
- the casing 211 can be a hollow cuboid, a cube or a cylinder, and one surface of the casing 211 has an opening for one or more electrodes.
- Assembly 22 may be placed within housing 211 .
- the casing 211 is a hollow cuboid or cube
- one of the planes of the casing 211 is an opening surface, that is, the plane does not have a wall, so that the casing 211 communicates with the inside and the outside.
- the casing 211 can be a hollow cylinder
- the end face of the casing 211 is an open face, that is, the end face does not have a wall so that the casing 211 communicates with the inside and the outside.
- the cover plate 212 covers the opening and is connected with the case 211 to form a closed cavity in which the electrode assembly 22 is placed.
- the casing 211 is filled with an electrolyte, such as an electrolytic solution.
- the battery cell 20 may further include two electrode terminals 214 , and the two electrode terminals 214 may be disposed on the cover plate 212 .
- the cover plate 212 is generally in the shape of a flat plate, and two electrode terminals 214 are fixed on the flat surface of the cover plate 212 , and the two electrode terminals 214 are a positive electrode terminal 214a and a negative electrode terminal 214b respectively.
- Each electrode terminal 214 is provided with a connecting member 23 , or a current collecting member, which is located between the cover plate 212 and the electrode assembly 22 for electrically connecting the electrode assembly 22 and the electrode terminal 214 .
- each electrode assembly 22 has a first tab 221a and a second tab 222a.
- the polarities of the first tab 221a and the second tab 222a are opposite.
- the first tab 221a is a positive tab
- the second tab 222a is a negative tab.
- the first tabs 221a of one or more electrode assemblies 22 are connected to one electrode terminal through one connecting member 23
- the second tabs 222a of one or more electrode assemblies 22 are connected to another electrode terminal through another connecting member 23 .
- the positive electrode terminal 214 a is connected to the positive electrode tab through one connection member 23
- the negative electrode terminal 214 b is connected to the negative electrode tab through the other connection member 23 .
- the electrode assembly 22 may be set in a single or multiple number. As shown in FIG. 4 , four independent electrode assemblies 22 are provided in the battery cell 20 .
- a pressure relief mechanism 213 may also be provided on the battery cell 20 .
- the pressure relief mechanism 213 is used to actuate when the internal pressure or temperature of the battery cell 20 reaches a threshold value to relieve the internal pressure or temperature.
- the pressure relief mechanism 213 may be various possible pressure relief structures, which are not limited in this embodiment of the present application.
- the pressure relief mechanism 213 may be a temperature-sensitive pressure relief mechanism configured to be able to melt when the internal temperature of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold; and/or the pressure relief mechanism 213 may be a pressure-sensitive pressure relief mechanism, and the pressure-sensitive pressure relief mechanism is configured to be able to rupture when the internal air pressure of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold value.
- FIG. 5 is a schematic diagram of a case 11 for a battery according to an embodiment of the present application.
- the case 11 may include a thermal management part 13 , a first wall 110 and a condensation part 16 .
- the thermal management member 13 is used to adjust the temperature of the battery cells 20 accommodated in the case 11 .
- the thermal management part 13 can accommodate a cooling medium to adjust the temperature of the plurality of battery cells 20.
- the thermal management part 13 can also be referred to as a cooling part, a cooling system or a cooling plate Wait.
- the fluid contained in the thermal management component 13 may be circulated to achieve better temperature regulation.
- the thermal management component 13 may be disposed at the bottom of the box body 11 .
- the first wall 110 is provided with a through hole 110 c , and the through hole 110 c is used to communicate the gas inside and outside the box body 11 .
- the first wall 110 may be any wall of the box body 11 .
- the first wall 110 may be a side wall of the box body 11 .
- the side wall may be the side wall of the second portion 112 (lower case) in FIG. 2 .
- the through hole 110c can be used to balance the pressure inside and outside the box body 11 .
- the gas inside the box 11 can flow out of the box 11 through the through hole 110c; when the pressure inside the box 11 is lower than outside the box 11, The gas outside the box body 11 can flow into the inside of the box body 11 through the through hole 110c.
- the condensing part 16 is attached to the thermal management part 13, and the condensing part 16 serves to shield the through hole 110c to condense the gas flowing into the inside of the case 11 through the through hole 110c.
- the condensing component 16 may be made of a material with good thermal conductivity, such as metal, which is not limited in this embodiment of the present application.
- the shape and arrangement of the condensing member 16 are not limited, as long as the through hole 110c can be blocked to condense the gas flowing into the box 11 through the through hole 110c.
- the condensation member 16 may completely block the through hole 110c, or may partially block the through hole 110c.
- the heat management part 13 can maintain a lower temperature, the temperature of the condensing part 16 attached to the heat management part 13 will be lower, so that the gas flowing into the inside of the case 11 from the outside of the case 11 through the through hole 110c will be The condensate is condensed by the condensing component 16 , so that the condensate is kept away from the electrical connection area in the box 11 , and the gas flowing into the box 11 is relatively dry and it is not easy to form condensate inside the box 11 , so the safety of the battery 10 can be enhanced. .
- the condensate in the electrical connection between the battery cells 20, that is, the electrical connection formed by the confluence component it may cause a short circuit between the high voltages and cause safety problems; or, if there is condensation in the electrical connection in the sensing device, then It may cause the sensing failure of the sensing device, affect the battery management system and further may cause safety problems.
- the condensing component 16 is attached to the thermal management component 13 and shields the through hole 110c communicating the gas inside and outside the box body 11, so as to condense the gas flowing into the box body 11 through the through hole 110c, so that The condensate can be kept away from the electrical connection area in the case 11 , so the safety of the battery 10 can be enhanced.
- the battery 10 may include a fire protection system, and the fire protection pipeline of the fire protection system may be disposed above the wall (eg, the cover plate 212 ) of the battery cell 20 provided with the pressure relief mechanism 213 .
- the fire-fighting pipeline discharges the fire-fighting medium, so that the discharge from the pressure relief mechanism 213 can be cooled to reduce the risk of the discharge; the fire-fighting medium can further pass through the activated pressure relief mechanism 213 It flows into the battery cells 20 , thereby further cooling the battery cells 20 and enhancing the safety of the battery 10 .
- the high-temperature and high-humidity gas in the battery 10 may condense at the fire-fighting pipes to generate condensate, which may drip into the electrical connection area in the battery 10 below, thereby affecting the battery 10 security.
- the condensation component 16 may be disposed on the inner surface of the box body 11 .
- thermal management member 13 intersects first wall 110
- a first portion of condensing member 16 extends along thermal management member 13 for attachment to thermal management member 13 and a second portion of condensing member 16 extends along the first wall 110 extends to cover the through hole 110c.
- the condensing component 16 may include a cover-like structure 161 , and the cover-like structure 161 shields the through hole 110c.
- the hood-like structure 161 may be attached to the first wall 110 in an area around the through hole 110 c and have a first opening 161 a for the gas to flow into the case 11 .
- the first opening 161a may be disposed in a first direction of the cover-shaped structure 161, and the first direction is the opposite direction of the gravity direction, that is, the upward direction in the figure.
- the gas reaching the through-hole 110c can be condensed by the cover-shaped structure 161, thereby enhancing the condensation effect.
- the condensed gas can enter the inside of the box body 11 through the first opening 161a of the cover-like structure, so as to maintain the balance of the pressure inside and outside the box body 11 .
- the cover-like structure 161 may completely block the through hole 110c, or may partially block the through hole 110c.
- the upper edge of the cover-like structure 161 may be higher than the highest point of the through hole 110c to completely block the through hole 110c, and the upper edge of the cover-like structure 161 may not be higher than the highest point of the through hole 110c to partially block the through hole. 110c.
- the first opening 161a corresponds to the connection of the pipes of the fire protection system in the box body 11, and the first opening 161a is also used to collect the leaked fluid at the connection when the fluid leaks at the connection. .
- the installation position of the condensing part 16 may be below the connection of the fire-fighting pipes, so that the first opening 161a corresponds to the connection of the fire-fighting pipes. In this way, if fluid leaks from the connection, the leaked fluid can also be collected by dripping into the cover-like structure 161 through the first opening 161a.
- the cover-shaped structure 161 may be hemispherical or square, which is not limited in the embodiment of the present application, as long as the functions in the embodiments of the present application can be realized.
- the condensing component 16 further includes a flow channel 162 , and the flow channel 162 is used to guide the condensed liquid of the cover-like structure 161 to the thermal management component 13 .
- Parts of the condensing part 16 on both sides of the flow channel 162 are attached to the thermal management part 13 or the first wall 110 to ensure the sealing between the condensing part 16 and the thermal management part 13 or the first wall 110 .
- the cover-like structure 161 has a second opening 161 b corresponding to the flow channel 162 , and the second opening 161 b is used to guide the condensate of the cover-like structure 161 to the flow channel 162 .
- the second opening 161b is disposed in the second direction of the cover-shaped structure 161 , and the second direction is the direction of gravity, that is, the downward direction in FIG. 7 .
- the thermal management component 13 may be provided with a one-way gravity valve 130, and the one-way gravity valve 130 is used for the gravity of the condensate in the flow channel 162 to reach When the threshold value is reached, the condensate in the flow channel 162 is discharged out of the tank 11 .
- the one-way gravity valve 130 is opened when the gravity of the liquid in the flow channel 162 reaches a threshold value, and the liquid is discharged downward, and the external gas cannot enter in the reverse direction.
- the flow channel 162 can be set to have a longer length in the direction of gravity to match the gravity with which the one-way gravity valve 130 is opened.
- the condensate or the fluid leaking from the connection of the fire fighting pipes can be guided to the thermal management component 13 through the cover-like structure 161 and the flow channel 162 . Further, through the one-way gravity valve 130 , the condensate or leaked fluid can be discharged out of the box 11 , thereby ensuring the safety of the battery 10 .
- condensation member 16 may be attached to the thermal management member 13 or the first wall 110 by sealing material or welding.
- the sealing material may be a thermally conductive sealing material.
- the condensing component 16 may also be attached to the thermal management component 13 or the first wall 110 in other ways and/or at other positions, which is not limited in the embodiments of the present application, as long as the functions in the embodiments of the present application can be realized That's it.
- the box body 11 may further include: a pressure balance mechanism 17 for balancing the pressure inside and outside the box body 11 .
- a pressure balance mechanism 17 for balancing the pressure inside and outside the box body 11 .
- the pressure inside the box 11 when the pressure inside the box 11 is higher than outside the box 11, the gas inside the box 11 can flow out of the box 11 through the pressure balance mechanism 17; when the pressure inside the box 11 is lower than the outside of the box 11 , the gas outside the box 11 can flow into the box 11 through the pressure balance mechanism 17 .
- the first wall 110 is a single-layer wall
- the pressure balancing mechanism 17 can be disposed in the through hole 110c; when the first wall 110 is a multi-layer wall, the pressure balancing mechanism 17 and the through hole 110c can be disposed in the through hole 110c, respectively. on sub-walls of different layers within.
- the first wall 110 may include a first sub-wall 110a and a second sub-wall 110b, wherein one of the first sub-wall 110a and the second sub-wall 110b
- the first sub-wall 110a is the inner wall of the box body 11
- the second sub-wall 110b is the outer wall of the box body 11
- the first sub-wall 110a is provided with a through hole 110c.
- the second sub-wall 110b may be provided with a pressure balance mechanism 17, and the gas flowing into the cavity from the outside of the box body 11 through the pressure balance mechanism 17 flows into the box body 11 through the through hole 110c.
- the first wall 110 may be used to condense the gas flowing into the cavity through the pressure equalization mechanism 17 in the cavity.
- the multi-layered wall can form a cavity.
- the first sub-wall 110a and the second sub-wall 110b in FIG. 9 may form a cavity.
- the gas outside the box body 11 enters the cavity, it can be condensed in the cavity to form the condensed liquid in the cavity; moreover, due to the existence of the cavity, the condensation space of the gas is enlarged, and the condensation effect is further improved .
- the condensed liquid or leaked fluid may also be directed to the cavity in the first wall 110 to prevent it from accumulating inside the box body 11 .
- a through hole on the first sub-wall 110a can be used, the through hole is located lower than the cover-like structure 161, and the condensate or leaked fluid is guided to the through hole through the flow channel to be discharged to the cavity Inside.
- a one-way gravity valve can also be provided at the bottom of the cavity, so as to discharge the condensate or the leaked fluid to the outside of the box 11 when there is a lot.
- the first wall 110 may further include a third sub-wall 110e connecting the first sub-wall 110a and the second sub-wall 110b, This embodiment of the present application does not limit this.
- the axis of the through hole 110c does not overlap with the axis of the pressure balance mechanism 17 .
- the orthographic projection of the through hole 110c on the second sub-wall 110b does not overlap with the pressure balance mechanism 17 .
- the through hole 110c and the pressure balancing mechanism 17 are respectively located on the first sub-wall 110a and the second sub-wall 110b, and are not directly opposite.
- the through hole 110c is directly opposite the pressure balance mechanism 17, after the external gas enters the cavity through the pressure balance mechanism 17, it will enter the inside of the box body 11 through the through hole 110c relatively quickly, which may affect the condensation of the gas. Effect.
- the arrangement in which the through hole 110c and the pressure balance mechanism 17 are staggered can be used to extend the passage of the gas passing through the cavity and improve the condensation effect of the gas.
- fins 110d may also be provided in the cavity, and the fins 110d are used to condense the gas flowing into the cavity through the pressure balance mechanism 17 .
- the condensation area of the gas can be enlarged, thereby enhancing the condensation effect on the gas.
- the rib 110d may be provided in the gas passage from the pressure balance mechanism 17 to the through hole 110c. In this way, when the gas flows from the pressure balance mechanism 17 to the through hole 110c, it will contact the fins 110d, and will be condensed by the fins 110d, thereby enhancing the condensation effect.
- the rib 110d may be fixed on the first sub-wall 110a.
- the fixing method may be bonding, welding, bolt connection, etc., which is not limited in the embodiment of the present application.
- the fixing method is bolt connection
- the rib 110d is used for bolt avoidance and opening.
- the rib 110d may be parallel to a line connecting from the center of the pressure balance mechanism 17 to the center of the through hole 110c. In this way, the condensation effect of the fins 110d can be achieved, and the air flow can be guided by the fins 110d without hindering the flow of the gas, so as to ensure the balance of the pressure inside and outside the box body 11 .
- Embodiments of the present application further provide a battery 10 , which may include a plurality of battery cells 20 , and the case 11 described in the foregoing embodiments, wherein the plurality of battery cells 20 are accommodated in the case 11 .
- the battery 10 may further include other battery components, for example, a confluence component, a sensor device, a fire protection system, etc., which are not limited in this embodiment of the present application.
- FIG. 12 is a schematic diagram of a partial structure of a battery 10 according to an embodiment of the present application.
- the battery 10 may include a case 11 and a plurality of battery cells 20 .
- the box body 11 may be the box body 11 described in the foregoing embodiments.
- the case 11 includes a condensing part 16 attached to the thermal management part 13 , and the condensing part 16 is used to block the through hole 110 c to condense the gas flowing into the inside of the case 11 through the through hole 110 c .
- the battery cells 20 may be the battery cells 20 described in the foregoing embodiments.
- the battery cells 20 may be the battery cells 20 in FIG. 4 .
- the battery 10 may also include bus components for enabling electrical connection of the plurality of battery cells 20 .
- the battery 10 may also include sensing devices for sensing the state of the battery cells 20 .
- the bus parts and the sensing devices may be disposed above the battery cells 20 .
- a pressure relief mechanism 213 may be provided on the cover plate of the battery cell 20 for actuating to relieve the internal pressure when the internal pressure or temperature of the battery cell 20 reaches a threshold value.
- a fire fighting pipeline may also be provided above the pressure relief mechanism 213 for discharging fire fighting medium when the pressure relief mechanism 213 is actuated, so as to cool the exhaust discharged from the pressure relief mechanism and cool down the battery cells 20 .
- a pressure balance mechanism 17 may also be provided on the first wall 110 for balancing the pressure inside and outside the box body 11 .
- the gas flows into the box body 11 through the through hole 110c.
- the gas will be condensed during the process of flowing into the box body 11, so the gas flowing into the box body 11 is relatively dry and it is not easy to form condensate inside the box body 11, so that the box body 11 can be avoided.
- the electrical connection area in 11, for example, the electrical connection area of the bus part or the sensor device is affected by the condensate and causes safety problems.
- An embodiment of the present application further provides an electrical device, and the electrical device may include the battery 10 in the foregoing embodiments.
- the electrical device may be a vehicle 1, a ship or a spacecraft.
- FIG. 13 shows a schematic flowchart of a method 300 for preparing a battery according to an embodiment of the present application. As shown in Figure 13, the method 300 may include:
- box body 11 comprising:
- the thermal management component 13 is used to adjust the temperature of the battery cells 20 accommodated in the box 11;
- the first wall 110 is provided with a through hole 110c, and the through hole 110c is used to communicate the gas inside and outside the box body 11;
- the condensing part 16 is attached to the thermal management part 13, and the condensing part 16 is used to block the through hole 110c to condense the gas flowing into the inside of the box body 11 through the through hole 110c;
- FIG. 14 shows a schematic block diagram of an apparatus 400 for preparing a battery according to an embodiment of the present application.
- the apparatus 400 for preparing a battery may include: a provision module 410 and an installation module 420 .
- the providing module 410 is used for: providing a plurality of battery cells 20; providing a box body, the box body 11 includes: a thermal management component 13 for adjusting the temperature of the battery cells 20 accommodated in the box body 11; the first wall 110, A through hole 110c is provided, and the through hole 110c is used to communicate the gas inside and outside the box body 11; the condensing part 16 is attached to the thermal management part 13, and the condensation part 16 is used to block the through hole 110c so that condensation flows into the box body 11 through the through hole 110c internal gas;
- the mounting module 420 is used to accommodate the plurality of battery cells 20 in the case 11 .
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Aviation & Aerospace Engineering (AREA)
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Materials Engineering (AREA)
- Battery Mounting, Suspending (AREA)
- Secondary Cells (AREA)
- Gas Exhaust Devices For Batteries (AREA)
Abstract
本申请实施例提供了一种用于电池的箱体(11)、电池(10)、用电装置、制备电池的方法(300)和装置(400)。所述箱体(11)包括:热管理部件(13),用于给容纳于所述箱体(11)内的电池单体(20)调节温度;第一壁(110),设置有通孔(110c),所述通孔(110c)用于连通所述箱体(11)内外的气体;冷凝部件(16),附接于所述热管理部件(13),所述冷凝部件(16)用于遮挡所述通孔(110c)以冷凝通过所述通孔(110c)流入所述箱体(11)内部的气体。本申请实施例的技术方案,能够增强电池(10)的安全性。
Description
本申请实施例涉及电池领域,并且更具体地,涉及一种用于电池的箱体、电池、用电装置、制备电池的方法和装置。
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的性能外,安全问题也是一个不可忽视的问题。如果电池的安全问题不能保证,那该电池就无法使用。
电池在高温高湿环境中,容易在电池的箱体内产生冷凝液,造成安全隐患,影响电池的安全性。因此,如何增强电池的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请实施例提供一种用于电池的箱体、电池、用电装置、制备电池的方法和装置,能够增强电池的安全性。
第一方面,提供了一种用于电池的箱体,包括:热管理部件,用于给容纳于所述箱体内的电池单体调节温度;第一壁,设置有通孔,所述通孔用于连通所述箱体内外的气体;冷凝部件,附接于所述热管理部件,所述冷凝部件用于遮挡所述通孔以冷凝通过所述通孔流入所述箱体内部的气体。
本申请实施例的技术方案,利用冷凝部件附接于热管理部件,并遮挡连通箱体内外的气体的通孔,以冷凝通过通孔流入箱体内部的气体,这样可以使冷凝液远离箱体内的电连接区域,因此能够增强电池的安全性。
在一些实施例中,所述冷凝部件设置于所述箱体的内表面。
在一些实施例中,所述热管理部件与所述第一壁相交,所述冷凝部件的第一部分沿所述热管理部件延伸,以附接于所述热管理部件,所述冷凝部件的第二部分沿所述第一壁延伸,以遮挡所述通孔。
在一些实施例中,所述冷凝部件包括罩状结构,所述罩状结构遮挡所述 通孔。
在一些实施例中,所述罩状结构附接于所述第一壁在所述通孔的周围的区域,并具有用于气体流入所述箱体的第一开口。
在一些实施例中,所述第一开口设置于所述罩状结构的第一方向上,所述第一方向为重力方向的相反方向。
通过罩状结构遮挡通孔,到达通孔的气体可以被罩状结构161冷凝,从而提升冷凝效果。冷凝后的气体可通过罩状结构的第一开口进入箱体内部,以保持箱体内外的压力的平衡。
在一些实施例中,所述第一开口对应所述箱体内的消防系统的管道的连接处,所述第一开口还用于在所述连接处泄露流体时,收集所述连接处泄露的流体。
这样,可以避免连接处泄露的流体在箱体内扩散而造成的安全隐患。
在一些实施例中,所述罩状结构为半球型和方型。
在一些实施例中,所述冷凝部件还包括流道,所述流道用于将所述罩状结构的冷凝液导向所述热管理部件。
在一些实施例中,所述冷凝部件在所述流道两侧的部分附接于所述热管理部件或所述第一壁。
在一些实施例中,所述罩状结构具有与所述流道对应的第二开口,所述第二开口用于将所述罩状结构的冷凝液导向所述流道。
在一些实施例中,所述第二开口设置于所述罩状结构的第二方向上,所述第二方向为重力方向。
在一些实施例中,所述热管理部件上设置有单向重力阀,所述单向重力阀用于在所述流道内的冷凝液的重力达到阈值时将所述流道内的冷凝液排出所述箱体。
通过罩状结构和流道可以将冷凝液或消防管道的连接处泄露的流体导向热管理部件。通过单向重力阀可以在冷凝液或泄露的流体较多时将其排出箱体,从而保证电池的安全性。
在一些实施例中,所述箱体还包括:压力平衡机构,用于平衡所述箱体内外的压力。
在一些实施例中,所述第一壁包括第一子壁和第二子壁,其中,所述第一子壁和所述第二子壁之间形成空腔,所述第一子壁为所述箱体的内壁,所 述第二子壁为所述箱体的外壁,所述第一子壁上设置有所述通孔。
在一些实施例中,所述第二子壁上设置有所述压力平衡机构,由所述箱体外部通过所述压力平衡机构流入所述空腔的气体通过所述通孔流入所述箱体内部。
在一些实施例中,所述第一壁用于将通过所述压力平衡机构流入所述空腔的气体冷凝于所述空腔。
第一子壁和第二子壁可以形成空腔。这样,箱体外部的气体进入空腔后,会在空腔中冷凝,将冷凝液形成于空腔内;而且,由于空腔的存在,增大了气体的冷凝空间,进一步提升了冷凝效果。
在一些实施例中,所述通孔的轴线与所述压力平衡机构的轴线不重叠。
在一些实施例中,所述通孔在所述第二子壁上的正投影与所述压力平衡机构不重叠。
采用通孔与压力平衡机构错开的设置,可以延长气体在空腔内通过的通道,提升对气体的冷凝效果。
在一些实施例中,所述空腔内设置有肋片,所述肋片用于冷凝通过所述压力平衡机构流入所述空腔的气体。
通过设置肋片,可以扩大气体的冷凝面积,从而提升对气体的冷凝效果。
在一些实施例中,所述肋片设置于从所述压力平衡机构到所述通孔的气体通道中。
这样,气体从压力平衡机构流向通孔时,会接触肋片,从而会被肋片冷凝,提升冷凝效果。
在一些实施例中,所述肋片固定于所述第一子壁上。
在一些实施例中,所述肋片平行于从所述压力平衡机构的中心到所述通孔的中心的连线。
这样,既能实现肋片的冷凝效果,又能利用肋片引导气流而不会阻碍气体的流通,保证箱体内外的压力的平衡。
第二方面,提供了一种电池,包括:多个电池单体;以及第一方面的箱体,其中,所述多个电池单体容纳于所述箱体内。
第三方面,提供了一种用电装置,包括:第二方面的电池。
在一些实施例中,所述用电装置为车辆、船舶或航天器。
第四方面,提供了一种制备电池的方法,包括:提供多个电池单体;提 供箱体,所述箱体包括:热管理部件,用于给容纳于所述箱体内的电池单体调节温度;第一壁,设置有通孔,所述通孔用于连通所述箱体内外的气体;冷凝部件,附接于所述热管理部件,所述冷凝部件用于遮挡所述通孔以冷凝通过所述通孔流入所述箱体内部的气体;将所述多个电池单体容纳于所述箱体内。
在一些实施例中,所述热管理部件与所述第一壁相交,所述冷凝部件的第一部分沿所述热管理部件延伸,以附接于所述热管理部件,所述冷凝部件的第二部分沿所述第一壁延伸,以遮挡所述通孔。
在一些实施例中,所述冷凝部件包括罩状结构,所述罩状结构遮挡所述通孔。
在一些实施例中,所述罩状结构附接于所述第一壁在所述通孔的周围的区域,并具有用于气体流入所述箱体的第一开口。
在一些实施例中,所述冷凝部件还包括流道,所述流道用于将所述罩状结构的冷凝液导向所述热管理部件。
第五方面,提供了一种制备电池的装置,包括执行上述第四方面的方法的模块。
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请一个实施例的车辆的示意图;
图2为本申请一个实施例的电池的结构示意图;
图3为本申请一个实施例的电池模块的结构示意图;
图4为本申请一个实施例的电池单体的分解图;
图5-图11为本申请一些实施例的箱体的结构示意图;
图12为本申请一个实施例的电池的局部结构示意图;
图13为本申请一个实施例的制备电池的方法的示意性流程图;
图14为本申请一个实施例的制备电池的装置的示意性框图。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例 对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为PP或PE等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
对于电池单体来说,主要的安全危险来自于充电和放电过程,同时还有适宜的环境温度设计,为了有效地避免不必要的损失,对电池单体一般会有至少三重保护措施。具体而言,保护措施至少包括开关元件、选择适当的隔离膜材料以及泄压机构。开关元件是指电池单体内的温度或者电阻达到一定阈值时而能够使电池停止充电或者放电的元件。隔离膜用于隔离正极片和负极片,可以在温度上升到一定数值时自动溶解掉附着在其上的微米级(甚至纳米级)微孔,从而使金属离子不能在隔离膜上通过,终止电池单体的内部反应。
泄压机构是指电池单体的内部压力或温度达到预定阈值时致动以泄放内部压力或温度的元件或部件。该阈值设计根据设计需求不同而不同。所述 阈值可能取决于电池单体中的正极极片、负极极片、电解液和隔离膜中一种或几种的材料。泄压机构可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏或温敏的元件或构造,即,当电池单体的内部压力或温度达到预定阈值时,泄压机构执行动作或者泄压机构中设有的薄弱结构被破坏,从而形成可供内部压力或温度泄放的开口或通道。
本申请中所提到的“致动”是指泄压机构产生动作或被激活至一定的状态,从而使得电池单体的内部压力及温度得以被泄放。泄压机构产生的动作可以包括但不限于:泄压机构中的至少一部分破裂、破碎、被撕裂或者打开,等等。泄压机构在致动时,电池单体的内部的高温高压物质作为排放物会从致动的部位向外排出。以此方式能够在可控压力或温度的情况下使电池单体发生泄压及泄温,从而避免潜在的更严重的事故发生。
本申请中所提到的来自电池单体的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离膜的碎片、反应产生的高温高压气体、火焰,等等。
电池单体上的泄压机构对电池的安全性有着重要影响。例如,当发生短路、过充等现象时,可能会导致电池单体内部发生热失控从而压力或温度骤升。这种情况下通过泄压机构致动可以将内部压力及温度向外释放,以防止电池单体爆炸、起火。
目前的泄压机构设计方案中,主要关注将电池单体内部的高压和高热释放,即将所述排放物排出到电池单体外部。高温高压的排放物朝向电池单体设置泄压机构的方向排放,并且可更具体地沿朝向泄压机构致动的区域的方向排放,这种排放物的威力和破坏力可能很大,甚至可能足以冲破在该方向上的一个或多个结构,造成安全问题。另外,电池单体内部发生热失控后电池单体内部的高压和高热可能会持续产生,导致持续的安全隐患。
针对上述问题,可以在电池的箱体内设置消防系统,消防系统的消防管道设置在电池单体的设置有泄压机构的壁的上方。泄压机构致动时,消防管道排出消防介质,从而可以对从泄压机构排出的排放物进行降温,降低排放物的危险性;消防介质还可以进一步通过致动后的泄压机构流入到电池单体内部,从而进一步对电池单体降温,增强电池的安全性。例如,可以利用泄压机构致动时,从电池单体内排出的排放物破坏该消防管道,以使得消防管道内的消防介质排出。
本申请实施例中的消防管道用于容纳消防介质,这里的消防介质可以为流体,该流体可以是液体或气体。在泄压机构未破坏该消防管道的情况下,该消防管道中可以不容纳任何物质,而在泄压机构致动的情况下,使得消防管道中容纳消防介质,例如,可以通过开关阀门控制消防介质进入至消防管道中。或者,在泄压机构未被破坏的情况下,该消防管道中也可以始终容纳有消防介质,该消防介质还可以用于调节电池单体的温度。调节温度是指给多个电池单体加热或者冷却。在给电池单体冷却或降温的情况下,该消防管道用于容纳冷却流体以给多个电池单体降低温度,此时,消防管道也可以称为冷却部件、冷却系统或冷却管道等,其容纳的消防介质也可以称为冷却介质或冷却流体,更具体的,可以称为冷却液或冷却气体。可选的,所述消防介质可以是循环流动的,以达到更好的温度调节的效果。可选的,消防介质可以为水、水和乙二醇的混合液或者空气等。
电池在高温高湿环境中,容易在电池的箱体内产生冷凝液,造成安全隐患,影响电池的安全性。具体而言,电池内高温高湿的气体在遇到温度较低的部件,例如电池的箱体内的消防管道时,会产生冷凝液,该冷凝液若滴到电池内的电连接区域,则可能会影响电池的安全性。
鉴于此,本申请提供了一种技术方案,利用冷凝部件附接于热管理部件,并遮挡连通电池的箱体内外的气体的通孔,以冷凝通过通孔流入箱体内部的气体,这样,可以使冷凝液远离箱体内的电连接区域,因此能够增强电池的安全性。
热管理部件是用于容纳流体以给多个电池单体调节温度。这里的流体可以是液体或气体,调节温度是指给多个电池单体加热或者冷却。在给电池单体冷却或降温的情况下,该热管理部件用于容纳冷却流体以给多个电池单体降低温度,此时,热管理部件也可以称为冷却部件、冷却系统或冷却板等,其容纳的流体也可以称为冷却介质或冷却流体,更具体的,可以称为冷却液或冷却气体。另外,热管理部件也可以用于加热以给多个电池单体升温,本申请实施例对此并不限定。可选的,所述流体可以是循环流动的,以达到更好的温度调节的效果。可选的,流体可以为水、水和乙二醇的混合液或者空气等。
冷凝部件附接于热管理部件,遮挡连通电池的箱体内外的气体的通孔,用于冷凝通过通孔流入箱体内部的气体。冷凝部件可以采用导热好的材料, 例如金属。冷凝部件可以采用各种可能的形状以及设置方式,只要能够遮挡通孔以冷凝通过通孔流入箱体内部的气体即可。
电池的箱体用于容纳多个电池单体,汇流部件以及电池的其他部件。在一些实施例中,箱体中还可以设置用于固定电池单体的结构。箱体的形状可以根据所容纳的多个电池单体而定。在一些实施例中,箱体可以为方形,具有六个壁。
汇流部件用于实现多个电池单体之间的电连接,例如并联或串联或混联,以形成较高的电压输出。汇流部件可通过连接电池单体的电极端子实现电池单体之间的电连接。在一些实施例中,汇流部件可通过焊接固定于电池单体的电极端子。汇流部件形成的电连接也可称为“高压连接”。
除了汇流部件外,电池内还可以设置用于感测电池单体的状态的传感器件。在本申请实施例中,电池内的电连接可以包括汇流部件形成的电连接和/或传感器件中的电连接。
电池的箱体上还可以设置压力平衡机构,用于平衡箱体内外的压力。例如,当箱体内的压力高于箱体外时,箱体内部的气体可以通过压力平衡机构流到箱体外;当箱体内的压力低于箱体外时,箱体外部的气体可以通过压力平衡机构流入箱体内部。
应理解,以上描述的电池的箱体中的各个部件不应理解为对本申请实施例的限定,也就是说,本申请实施例的用于电池的箱体可以包括上述的部件,也可以不包括上述的部件。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供 电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池10可以包括多个电池单体20,其中,多个电池单体20之间可以串联或并联或混联,混联是指串联和并联的混合。电池也可以称为电池包。可选地,多个电池单体20可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池10。也就是说,多个电池单体20可以直接组成电池10,也可以先组成电池模块,电池模块再组成电池10。
例如,如图2所示,为本申请一个实施例的一种电池10的结构示意图,电池10可以包括多个电池单体20。电池10还可以包括箱体11,箱体11内部为中空结构,多个电池单体20容纳于箱体11内。如图2所示,箱体11可以包括两部分,这里分别称为第一部分111(上箱体)和第二部分112(下箱体),第一部分111和第二部分112扣合在一起。第一部分111和第二部分112的形状可以根据多个电池单体20组合的形状而定,第一部分111和第二部分112可以均具有一个开口。例如,第一部分111和第二部分112均可以为中空长方体且各自只有一个面为开口面,第一部分111的开口和第二部分112的开口相对设置,并且第一部分111和第二部分112相互扣合形成具有封闭腔室的箱体11。多个电池单体20相互并联或串联或混联组合后置于第一部分111和第二部分112扣合后形成的箱体11内。
可选地,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体11而引出。可选地,导电机构也可属于汇流部件。
根据不同的电力需求,电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体20的数量可能较多,为了便于安装,可以将电池单体20分组设置,每组电池单体20组成电池模块。电池模块中包 括的电池单体20的数量不限,可以根据需求设置。例如,图3为电池模块的一个示例。电池可以包括多个电池模块,这些电池模块可通过串联、并联或混联的方式进行连接。如图4所示,为本申请一个实施例的一种电池单体20的结构示意图,电池单体20包括一个或多个电极组件22、壳体211和盖板212。图4中所示的坐标系与图3中的相同。壳体211和盖板212形成外壳或电池盒21。壳体211的壁以及盖板212均称为电池单体20的壁。壳体211根据一个或多个电极组件22组合后的形状而定,例如,壳体211可以为中空的长方体或正方体或圆柱体,且壳体211的其中一个面具有开口以便一个或多个电极组件22可以放置于壳体211内。例如,当壳体211为中空的长方体或正方体时,壳体211的其中一个平面为开口面,即该平面不具有壁体而使得壳体211内外相通。当壳体211可以为中空的圆柱体时,壳体211的端面为开口面,即该端面不具有壁体而使得壳体211内外相通。盖板212覆盖开口并且与壳体211连接,以形成放置电极组件22的封闭的腔体。壳体211内填充有电解质,例如电解液。
该电池单体20还可以包括两个电极端子214,两个电极端子214可以设置在盖板212上。盖板212通常是平板形状,两个电极端子214固定在盖板212的平板面上,两个电极端子214分别为正电极端子214a和负电极端子214b。每个电极端子214各对应设置一个连接构件23,或者也可以称为集流构件,其位于盖板212与电极组件22之间,用于将电极组件22和电极端子214实现电连接。
如图4所示,每个电极组件22具有第一极耳221a和第二极耳222a。第一极耳221a和第二极耳222a的极性相反。例如,当第一极耳221a为正极极耳时,第二极耳222a为负极极耳。一个或多个电极组件22的第一极耳221a通过一个连接构件23与一个电极端子连接,一个或多个电极组件22的第二极耳222a通过另一个连接构件23与另一个电极端子连接。例如,正电极端子214a通过一个连接构件23与正极极耳连接,负电极端子214b通过另一个连接构件23与负极极耳连接。
在该电池单体20中,根据实际使用需求,电极组件22可设置为单个,或多个,如图4所示,电池单体20内设置有4个独立的电极组件22。
电池单体20上还可设置泄压机构213。泄压机构213用于电池单体20的内部压力或温度达到阈值时致动以泄放内部压力或温度。
泄压机构213可以为各种可能的泄压结构,本申请实施例对此并不限定。例如,泄压机构213可以为温敏泄压机构,温敏泄压机构被配置为在设有泄压机构213的电池单体20的内部温度达到阈值时能够熔化;和/或,泄压机构213可以为压敏泄压机构,压敏泄压机构被配置为在设有泄压机构213的电池单体20的内部气压达到阈值时能够破裂。
图5是本申请一个实施例的用于电池的箱体11的示意图。如图5所示,箱体11可以包括热管理部件13,第一壁110以及冷凝部件16。
热管理部件13用于给容纳于箱体11内的电池单体20调节温度。在给电池单体20降温的情况下,该热管理部件13可以容纳冷却介质以给多个电池单体20调节温度,此时,热管理部件13也可以称为冷却部件、冷却系统或冷却板等。可选地,热管理部件13容纳的流体可以是循环流动的,以达到更好的温度调节的效果。可选地,热管理部件13可以设置于箱体11的底部。
第一壁110设置有通孔110c,通孔110c用于连通箱体11内外的气体。第一壁110可以是箱体11的任一壁。可选地,如图5所示,第一壁110可以是箱体11的侧壁。例如,该侧壁可以是图2中的第二部分112(下箱体)的侧壁。通孔110c可用于平衡箱体11内外的压力。例如,当箱体11内的压力高于箱体11外时,箱体11内部的气体可以通过通孔110c流到箱体11外;当箱体11内的压力低于箱体11外时,箱体11外部的气体可以通过通孔110c流入箱体11内部。
冷凝部件16附接于热管理部件13,冷凝部件16用于遮挡通孔110c以冷凝通过通孔110c流入箱体11内部的气体。
冷凝部件16可以采用导热好的材料,例如金属,本申请实施例对此不做限定。冷凝部件16的形状以及设置方式不做限定,只要能够遮挡通孔110c以冷凝通过通孔110c流入箱体11内部的气体即可。冷凝部件16可以完全遮挡通孔110c,也可以部分遮挡通孔110c。
由于热管理部件13可以维持较低的温度,附接于热管理部件13的冷凝部件16的温度就会较低,这样,由箱体11外部通过通孔110c流入箱体11内部的气体就会被冷凝部件16冷凝,从而使冷凝液远离箱体11内的电连接区域,流入箱体11内部的气体则比较干燥而不易在箱体11内部再形成冷凝液,因此能够增强电池10的安全性。
例如,若电池单体20之间的电连接,即汇流部件形成的电连接处有冷凝液,则可能导致高压间短路,引发安全问题;或者,传感器件中的电连接处有冷凝液,则可能导致传感器件的感测失效,影响电池管理系统并进一步可能引发安全问题。
因此,在本申请实施例中,利用冷凝部件16附接于热管理部件13,并遮挡连通箱体11内外的气体的通孔110c,以冷凝通过通孔110c流入箱体11内部的气体,这样可以使冷凝液远离箱体11内的电连接区域,因此能够增强电池10的安全性。
本申请实施例的技术方案可以应用于具有消防系统的电池10中。为了提升电池10的安全性,电池10内可以包括消防系统,消防系统的消防管道可以设置在电池单体20的设置有泄压机构213的壁(例如盖板212)的上方。泄压机构213致动时,消防管道排出消防介质,从而可以对从泄压机构213排出的排放物进行降温,降低排放物的危险性;消防介质还可以进一步通过致动后的泄压机构213流入到电池单体20内部,从而进一步对电池单体20降温,增强电池10的安全性。由于消防管道的温度较低,电池10内高温高湿的气体可能会在消防管道处冷凝,而产生冷凝液,该冷凝液可能会滴到下方电池10内的电连接区域,从而会影响电池10的安全性。
应理解,上述具有消防系统的场景仅仅是本申请实施例的一种可能的应用场景,本申请实施例并不局限于此。
可选地,在本申请一个实施例中,冷凝部件16可以设置于箱体11的内表面。
例如,在热管理部件13与第一壁110相交的情况下,冷凝部件16的第一部分沿热管理部件13延伸,以附接于热管理部件13,冷凝部件16的第二部分沿第一壁110延伸,以遮挡通孔110c。
可选地,在本申请一个实施例中,如图5或6所示,冷凝部件16可以包括罩状结构161,罩状结构161遮挡通孔110c。
可选地,罩状结构161可以附接于第一壁110在通孔110c的周围的区域,并具有用于气体流入箱体11的第一开口161a。第一开口161a可以设置于罩状结构161的第一方向上,第一方向为重力方向的相反方向,即图中向上的方向。
通过罩状结构161遮挡通孔110c,到达通孔110c的气体可以被罩状结 构161冷凝,从而提升冷凝效果。冷凝后的气体可通过罩状结构的第一开口161a进入箱体11内部,以保持箱体11内外的压力的平衡。
可选地,罩状结构161可以完全遮挡通孔110c,也可以部分遮挡通孔110c。例如,罩状结构161的上沿可以高于通孔110c的最高点,以完全遮挡通孔110c,罩状结构161的上沿也可以不高于通孔110c的最高点,以部分遮挡通孔110c。
可选地,在本申请一个实施例中,第一开口161a对应箱体11内的消防系统的管道的连接处,第一开口161a还用于在连接处泄露流体时,收集连接处泄露的流体。
在箱体11内设置消防系统时,消防系统的管道(消防管道)的连接处有可能会泄露流体。在这情况下,冷凝部件16的设置位置可以在消防管道的连接处的下方,以使第一开口161a对应消防管道的连接处。这样,若该连接处泄露流体,泄露的流体也可以通过第一开口161a滴到罩状结构161内而被收集。
若消防管道的连接处泄露流体,泄露的流体不被收集,会在箱体11内扩散,并会持续蒸发-冷凝,造成安全隐患。采用本申请实施例的方案,可以减少该安全隐患的产生。
可选地,罩状结构161可以为半球型或方型,本申请实施例对此并不限定,只要能实现本申请实施例中的功能即可。
可选地,在本申请一个实施例中,如图7所示,冷凝部件16还包括流道162,流道162用于将罩状结构161的冷凝液导向热管理部件13。冷凝部件16在流道162两侧的部分附接于热管理部件13或第一壁110,以保证冷凝部件16与热管理部件13或第一壁110间的密封。
罩状结构161具有与流道162对应的第二开口161b,第二开口161b用于将罩状结构161的冷凝液导向流道162。第二开口161b设置于罩状结构161的第二方向上,第二方向为重力方向,即图7中向下的方向。
可选地,在本申请一个实施例中,如图8所示,热管理部件13上可以设置有单向重力阀130,单向重力阀130用于在流道162内的冷凝液的重力达到阈值时将流道162内的冷凝液排出箱体11。
单向重力阀130在流道162内的液体的重力达到阈值时打开,向下排出液体,而外部气体无法反向进入。可选地,流道162在重力方向上可以设置 较长的长度,以匹配单向重力阀130打开的重力。
通过罩状结构161和流道162可以将冷凝液或消防管道的连接处泄露的流体导向热管理部件13。进一步地,通过单向重力阀130可以在冷凝液或泄露的流体较多时将其排出箱体11,从而保证电池10的安全性。
可选地,冷凝部件16可以通过密封材料或焊接方式附接于热管理部件13或第一壁110。该密封材料可以为导热的密封材料。
应理解,冷凝部件16也可以通过其他方式和/或在其他位置附接于热管理部件13或第一壁110,本申请实施例对此并不限定,只要能够实现本申请实施例中的功能即可。
可选地,在本申请一个实施例中,箱体11还可以包括:压力平衡机构17,用于平衡箱体11内外的压力。例如,当箱体11内的压力高于箱体11外时,箱体11内部的气体可以通过压力平衡机构17流到箱体11外;当箱体11内的压力低于箱体11外时,箱体11外部的气体可以通过压力平衡机构17流入箱体11内部。可选地,在第一壁110为单层壁时,压力平衡机构17可以设置于通孔110c内;在第一壁110为多层壁时,压力平衡机构17和通孔110c可以分别设置于内不同层的子壁上。
可选地,在本申请一个实施例中,如图9所示,第一壁110可以包括第一子壁110a和第二子壁110b,其中,第一子壁110a和第二子壁110b之间形成空腔,第一子壁110a为箱体11的内壁,第二子壁110b为箱体11的外壁,第一子壁110a上设置有通孔110c。
在这种情况下,第二子壁110b上可以设置有压力平衡机构17,由箱体11外部通过压力平衡机构17流入空腔的气体通过通孔110c流入箱体11内部。第一壁110可以用于将通过压力平衡机构17流入空腔的气体冷凝于空腔。
在第一壁110采用多层壁的设置时,多层壁可以形成空腔。例如,图9中的第一子壁110a和第二子壁110b可以形成空腔。这样,箱体11外部的气体进入空腔后,可以在空腔中冷凝,将冷凝液形成于空腔内;而且,由于空腔的存在,增大了气体的冷凝空间,进一步提升了冷凝效果。
可选地,作为本申请的另一个实施例,还可以将冷凝液或泄露的流体导向第一壁110内的空腔,以避免其蓄积在箱体11内部。例如,可以利用第一子壁110a上的通孔,该通孔的设置位置低于罩状结构161,并通过流道将 冷凝液或泄露的流体引导至该通孔从而将其排到空腔内。进一步地,空腔底部也可以设置单向重力阀,以在冷凝液或泄露的流体较多时将其排到箱体11外部。
可选地,如图9所示,除了第一子壁110a和第二子壁110b外,第一壁110还可以包括连接第一子壁110a和第二子壁110b的第三子壁110e,本申请实施例对此并不限定。
可选地,在本申请一个实施例中,通孔110c的轴线与压力平衡机构17的轴线不重叠。可选地,通孔110c在第二子壁110b上的正投影与压力平衡机构17不重叠。
如图9和10所示,通孔110c与压力平衡机构17分别位于第一子壁110a和第二子壁110b上,且不正对。在通孔110c与压力平衡机构17正对的情况下,外部气体通过压力平衡机构17进入空腔后,会较快地通过通孔110c进入到箱体11内部,这样可能会影响对气体的冷凝效果。在本申请实施例中,采用通孔110c与压力平衡机构17错开的设置,可以延长气体在空腔内通过的通道,提升对气体的冷凝效果。
可选地,在本申请一个实施例中,如图11所示,空腔内还可以设置有肋片110d,肋片110d用于冷凝通过压力平衡机构17流入空腔的气体。
通过设置肋片110d,可以扩大气体的冷凝面积,从而提升对气体的冷凝效果。
肋片110d可以设置于从压力平衡机构17到通孔110c的气体通道中。这样,气体从压力平衡机构17流向通孔110c时,会接触肋片110d,从而会被肋片110d冷凝,提升冷凝效果。
肋片110d可以固定于第一子壁110a上。固定方式可以为粘接,焊接,螺栓连接等,本申请实施例对此并不限定。当固定方式为螺栓连接时,肋片110d做螺栓避让和开孔。
可选地,肋片110d可以平行于从压力平衡机构17的中心到通孔110c的中心的连线。这样,既能实现肋片110d的冷凝效果,又能利用肋片110d引导气流而不会阻碍气体的流通,保证箱体11内外的压力的平衡。
本申请实施例还提供了一种电池10,该电池10可以包括多个电池单体20,以及前述各实施例描述的箱体11,其中,多个电池单体20容纳于箱体11内。
可选地,该电池10还可以包括其他电池部件,例如,汇流部件、传感器件、消防系统等,本申请实施例对此不做限定。
图12是本申请一个实施例的电池10的局部结构示意图。如图12所示,该电池10可以包括箱体11和多个电池单体20。
箱体11可以为前述各实施例描述的箱体11。例如,箱体11中包括冷凝部件16,冷凝部件16附接于热管理部件13,冷凝部件16用于遮挡通孔110c以冷凝通过通孔110c流入箱体11内部的气体。
电池单体20可以为前述各实施例描述的电池单体20,例如,电池单体20可以为图4中的电池单体20。
电池10还可以包括汇流部件,用于实现多个电池单体20的电连接。电池10还可以包括传感器件,用于感测电池单体20的状态。汇流部件和传感器件可以设置于电池单体20上方。
电池单体20的盖板上可以设置泄压机构213,用于在电池单体20的内部压力或温度达到阈值时致动以泄放内部压力。在泄压机构213的上方还可以设置消防管道,用于在泄压机构213致动时,排出消防介质,以对从泄压机构排出的排放物进行降温,以及对电池单体20降温。
第一壁110上还可以设置压力平衡机构17,用于平衡箱体11内外的压力。压力平衡机构17平衡箱体11内外的压力时,气体通过通孔110c流入箱体11内部。如前述各实施例描述的,气体会在流入箱体11内部的过程中被冷凝,这样流入箱体11内部的气体则比较干燥而不易在箱体11内部再形成冷凝液,从而可以避免箱体11内的电连接区域,例如,汇流部件或传感器件的电连接区域被冷凝液影响到而引发的安全问题。
关于电池10中各部件的具体描述可以参见前述各实施例,为了简洁,在此不再赘述。
本申请一个实施例还提供了一种用电装置,该用电装置可以包括前述各实施例中的电池10。可选地,用电装置可以为车辆1、船舶或航天器。
上文描述了本申请实施例的用于电池的箱体、电池和用电装置,下面将描述本申请实施例的制备电池的方法和装置,其中未详细描述的部分可参见前述各实施例。
图13示出了本申请一个实施例的制备电池的方法300的示意性流程图。如图13所示,该方法300可以包括:
310,提供多个电池单体20;
320,提供箱体11,箱体11包括:
热管理部件13,用于给容纳于箱体11内的电池单体20调节温度;
第一壁110,设置有通孔110c,通孔110c用于连通箱体11内外的气体;
冷凝部件16,附接于热管理部件13,冷凝部件16用于遮挡通孔110c以冷凝通过通孔110c流入箱体11内部的气体;
330,将多个电池单体20容纳于箱体11内。
图14示出了本申请一个实施例的制备电池的装置400的示意性框图。如图14所示,制备电池的装置400可以包括:提供模块410和安装模块420。
提供模块410用于:提供多个电池单体20;提供箱体,箱体11包括:热管理部件13,用于给容纳于箱体11内的电池单体20调节温度;第一壁110,设置有通孔110c,通孔110c用于连通箱体11内外的气体;冷凝部件16,附接于热管理部件13,冷凝部件16用于遮挡通孔110c以冷凝通过通孔110c流入箱体11内部的气体;
安装模块420用于将多个电池单体20容纳于箱体11内。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (32)
- 一种用于电池的箱体,其特征在于,包括:热管理部件(13),用于给容纳于所述箱体(11)内的电池单体(20)调节温度;第一壁(110),设置有通孔(110c),所述通孔(110c)用于连通所述箱体(11)内外的气体;冷凝部件(16),附接于所述热管理部件(13),所述冷凝部件(16)用于遮挡所述通孔(110c)以冷凝通过所述通孔(110c)流入所述箱体(11)内部的气体。
- 根据权利要求1所述的箱体,其特征在于,所述冷凝部件(16)设置于所述箱体(11)的内表面。
- 根据权利要求2所述的箱体,其特征在于,所述热管理部件(13)与所述第一壁(110)相交,所述冷凝部件(16)的第一部分沿所述热管理部件(13)延伸,以附接于所述热管理部件(13),所述冷凝部件(16)的第二部分沿所述第一壁(110)延伸,以遮挡所述通孔(110c)。
- 根据权利要求2或3所述的箱体,其特征在于,所述冷凝部件(16)包括罩状结构(161),所述罩状结构(161)遮挡所述通孔(110c)。
- 根据权利要求4所述的箱体,其特征在于,所述罩状结构(161)附接于所述第一壁(110)在所述通孔(110c)的周围的区域,并具有用于气体流入所述箱体(11)的第一开口(161a)。
- 根据权利要求5所述的箱体,其特征在于,所述第一开口(161a)设置于所述罩状结构(161)的第一方向上,所述第一方向为重力方向的相反方向。
- 根据权利要求5或6所述的箱体,其特征在于,所述第一开口(161a)对应所述箱体(11)内的消防系统的管道的连接处,所述第一开口(161a)还用于在所述连接处泄露流体时,收集所述连接处泄露的流体。
- 根据权利要求4至7中任一项所述的箱体,其特征在于,所述罩状结构(161)为半球型和方型。
- 根据权利要求4至8中任一项所述的箱体,其特征在于,所述冷凝部件(16)还包括流道(162),所述流道(162)用于将所述罩状结构(161)的冷凝液导向所述热管理部件(13)。
- 根据权利要求9所述的箱体,其特征在于,所述冷凝部件(16)在所述流道(162)两侧的部分附接于所述热管理部件(13)或所述第一壁(110)。
- 根据权利要求9或10所述的箱体,其特征在于,所述罩状结构(161)具有与所述流道(162)对应的第二开口(161b),所述第二开口(161b)用于将所述罩状结构(161)的冷凝液导向所述流道(162)。
- 根据权利要求11所述的箱体,其特征在于,所述第二开口(161b)设置于所述罩状结构(161)的第二方向上,所述第二方向为重力方向。
- 根据权利要求9至12中任一项所述的箱体,其特征在于,所述热管理部件(13)上设置有单向重力阀(130),所述单向重力阀(130)用于在所述流道(162)内的冷凝液的重力达到阈值时将所述流道(162)内的冷凝液排出所述箱体(11)。
- 根据权利要求1至13中任一项所述的箱体,其特征在于,所述箱体(11)还包括:压力平衡机构(17),用于平衡所述箱体(11)内外的压力。
- 根据权利要求14所述的箱体,其特征在于,所述第一壁(110)包括第一子壁(110a)和第二子壁(110b),其中,所述第一子壁(110a)和所述第二子壁(110b)之间形成空腔,所述第一子壁(110a)为所述箱体(11)的内壁,所述第二子壁(110b)为所述箱体(11)的外壁,所述第一子壁(110a)上设置有所述通孔(110c)。
- 根据权利要求15所述的箱体,其特征在于,所述第二子壁(110b)上设置有所述压力平衡机构(17),由所述箱体(11)外部通过所述压力平衡机构(17)流入所述空腔的气体通过所述通孔(110c)流入所述箱体(11)内部。
- 根据权利要求16所述的箱体,其特征在于,所述第一壁(110)用于将通过所述压力平衡机构(17)流入所述空腔的气体冷凝于所述空腔。
- 根据权利要求16或17所述的箱体,其特征在于,所述通孔(110c)的轴线与所述压力平衡机构(17)的轴线不重叠。
- 根据权利要求18所述的箱体,其特征在于,所述通孔(110c)在所述第二子壁(110b)上的正投影与所述压力平衡机构(17)不重叠。
- 根据权利要求16至19中任一项所述的箱体,其特征在于,所述空 腔内设置有肋片(110d),所述肋片(110d)用于冷凝通过所述压力平衡机构(17)流入所述空腔的气体。
- 根据权利要求20所述的箱体,其特征在于,所述肋片(110d)设置于从所述压力平衡机构(17)到所述通孔(110c)的气体通道中。
- 根据权利要求20或21所述的箱体,其特征在于,所述肋片(110d)固定于所述第一子壁(110a)上。
- 根据权利要求20至22中任一项所述的箱体,其特征在于,所述肋片(110d)平行于从所述压力平衡机构(17)的中心到所述通孔(110c)的中心的连线。
- 一种电池,其特征在于,包括:多个电池单体(20);以及根据权利要求1至23中任一项所述的箱体(11),其中,所述多个电池单体(20)容纳于所述箱体(11)内。
- 一种用电装置,其特征在于,包括:根据权利要求24所述的电池(10)。
- 根据权利要求25所述的用电装置,其特征在于,所述用电装置为车辆(1)、船舶或航天器。
- 一种制备电池的方法,其特征在于,包括:提供(310)多个电池单体(20);提供(320)箱体(11),所述箱体(11)包括:热管理部件(13),用于给容纳于所述箱体(11)内的电池单体(20)调节温度;第一壁(110),设置有通孔(110c),所述通孔(110c)用于连通所述箱体(11)内外的气体;冷凝部件(16),附接于所述热管理部件(13),所述冷凝部件(16)用于遮挡所述通孔(110c)以冷凝通过所述通孔(110c)流入所述箱体(11)内部的气体;将所述多个电池单体(20)容纳(330)于所述箱体(11)内。
- 根据权利要求27所述的方法,其特征在于,所述热管理部件(13)与所述第一壁(110)相交,所述冷凝部件(16)的第一部分沿所述热管理部件(13)延伸,以附接于所述热管理部件(13),所述冷凝部件(16)的第二 部分沿所述第一壁(110)延伸,以遮挡所述通孔(110c)。
- 根据权利要求27或28所述的方法,其特征在于,所述冷凝部件(16)包括罩状结构(161),所述罩状结构(161)遮挡所述通孔(110c)。
- 根据权利要求29所述的方法,其特征在于,所述罩状结构(161)附接于所述第一壁(110)在所述通孔(110c)的周围的区域,并具有用于气体流入所述箱体(11)的第一开口(161a)。
- 根据权利要求29或30所述的方法,其特征在于,所述冷凝部件(16)还包括流道(162),所述流道(162)用于将所述罩状结构(161)的冷凝液导向所述热管理部件(13)。
- 一种制备电池的装置(400),其特征在于,包括:提供模块(410),用于:提供多个电池单体(20);提供箱体(11),所述箱体(11)包括:热管理部件(13),用于给容纳于所述箱体(11)内的电池单体(20)调节温度;第一壁(110),设置有通孔(110c),所述通孔(110c)用于连通所述箱体(11)内外的气体;冷凝部件(16),附接于所述热管理部件(13),所述冷凝部件(16)用于遮挡所述通孔(110c)以冷凝通过所述通孔(110c)流入所述箱体(11)内部的气体;安装模块(420),用于将所述多个电池单体(20)容纳于所述箱体(11)内。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/121991 WO2022082388A1 (zh) | 2020-10-19 | 2020-10-19 | 电池的箱体、电池、用电装置、制备电池的方法和装置 |
KR1020237001872A KR102642182B1 (ko) | 2020-10-19 | 2020-10-19 | 전지 박스 본체, 전지, 전기 장치, 전지 제조 방법 및 장치 |
JP2023504838A JP7473737B2 (ja) | 2020-10-19 | 2020-10-19 | 電池の筐体、電池、電力利用装置、電池を製造する方法及び装置 |
HUE20824408A HUE063710T2 (hu) | 2020-10-19 | 2020-10-19 | Telepház, telep, energiafelhasználó készülék, továbbá eljárás és készülék telep gyártásához |
EP20824408.7A EP4016714B1 (en) | 2020-10-19 | 2020-10-19 | Case body for battery, battery and electric device |
US17/134,490 US11936027B2 (en) | 2020-10-19 | 2020-12-27 | Case of battery, battery, power consumption device, and method and device for producing battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/121991 WO2022082388A1 (zh) | 2020-10-19 | 2020-10-19 | 电池的箱体、电池、用电装置、制备电池的方法和装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/134,490 Continuation US11936027B2 (en) | 2020-10-19 | 2020-12-27 | Case of battery, battery, power consumption device, and method and device for producing battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022082388A1 true WO2022082388A1 (zh) | 2022-04-28 |
Family
ID=81185717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/121991 WO2022082388A1 (zh) | 2020-10-19 | 2020-10-19 | 电池的箱体、电池、用电装置、制备电池的方法和装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11936027B2 (zh) |
EP (1) | EP4016714B1 (zh) |
JP (1) | JP7473737B2 (zh) |
KR (1) | KR102642182B1 (zh) |
HU (1) | HUE063710T2 (zh) |
WO (1) | WO2022082388A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023004726A1 (zh) | 2021-07-30 | 2023-02-02 | 宁德时代新能源科技股份有限公司 | 电池的箱体、电池、用电设备、制备电池的方法和设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006351245A (ja) * | 2005-06-13 | 2006-12-28 | Nissan Motor Co Ltd | 組電池 |
CN207441811U (zh) * | 2017-11-20 | 2018-06-01 | 宁德时代新能源科技股份有限公司 | 箱体及电池包 |
CN207967074U (zh) * | 2017-11-20 | 2018-10-12 | 宁德时代新能源科技股份有限公司 | 箱体 |
CN109244592A (zh) * | 2018-09-20 | 2019-01-18 | 浙江中车电车有限公司 | 一种风冷结构及电池箱 |
CN110868645A (zh) * | 2019-11-22 | 2020-03-06 | 安徽飞凯电子技术有限公司 | 一种防潮通信机柜 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006098130A1 (ja) * | 2005-03-14 | 2006-09-21 | Nec Lamilion Energy, Ltd. | フィルム外装電気デバイス用筐体 |
DE102009054922A1 (de) * | 2009-12-18 | 2011-06-22 | SB LiMotive Company Ltd., Kyonggi | Verfahren und Vorrichtung zur Minderung der Feuchtigkeit eines Gases in einem Gehäuseinnenraum |
DE102009054921B4 (de) | 2009-12-18 | 2020-09-03 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Minderung der Feuchtigkeit eines Gases in einem Batteriegehäuseinnenraum |
DE102015111747A1 (de) | 2015-07-20 | 2017-01-26 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Batteriekühlungssystem |
KR102030726B1 (ko) * | 2015-10-15 | 2019-10-10 | 주식회사 엘지화학 | 배터리 팩 |
KR102220902B1 (ko) * | 2017-01-26 | 2021-02-26 | 삼성에스디아이 주식회사 | 소화시스템을 포함하는 배터리 팩 |
KR102065099B1 (ko) | 2017-04-04 | 2020-01-10 | 주식회사 엘지화학 | 크래쉬 빔과 배수 구조를 갖는 배터리 팩 |
CN114256550B (zh) | 2019-01-09 | 2023-10-17 | 比亚迪股份有限公司 | 单体电池、动力电池包及电动车 |
-
2020
- 2020-10-19 JP JP2023504838A patent/JP7473737B2/ja active Active
- 2020-10-19 WO PCT/CN2020/121991 patent/WO2022082388A1/zh unknown
- 2020-10-19 KR KR1020237001872A patent/KR102642182B1/ko active IP Right Grant
- 2020-10-19 EP EP20824408.7A patent/EP4016714B1/en active Active
- 2020-10-19 HU HUE20824408A patent/HUE063710T2/hu unknown
- 2020-12-27 US US17/134,490 patent/US11936027B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006351245A (ja) * | 2005-06-13 | 2006-12-28 | Nissan Motor Co Ltd | 組電池 |
CN207441811U (zh) * | 2017-11-20 | 2018-06-01 | 宁德时代新能源科技股份有限公司 | 箱体及电池包 |
CN207967074U (zh) * | 2017-11-20 | 2018-10-12 | 宁德时代新能源科技股份有限公司 | 箱体 |
CN109244592A (zh) * | 2018-09-20 | 2019-01-18 | 浙江中车电车有限公司 | 一种风冷结构及电池箱 |
CN110868645A (zh) * | 2019-11-22 | 2020-03-06 | 安徽飞凯电子技术有限公司 | 一种防潮通信机柜 |
Also Published As
Publication number | Publication date |
---|---|
EP4016714A1 (en) | 2022-06-22 |
JP2023535097A (ja) | 2023-08-15 |
EP4016714A4 (en) | 2022-06-22 |
KR20230026437A (ko) | 2023-02-24 |
HUE063710T2 (hu) | 2024-01-28 |
JP7473737B2 (ja) | 2024-04-23 |
KR102642182B1 (ko) | 2024-03-05 |
US11936027B2 (en) | 2024-03-19 |
EP4016714B1 (en) | 2023-07-26 |
US20220123390A1 (en) | 2022-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112018301B (zh) | 电池、用电设备、制备电池的方法和设备 | |
JP7429719B2 (ja) | 電池、電力消費機器、電池の製造方法及び装置 | |
WO2022006892A1 (zh) | 电池、用电装置、制备电池的方法和装置 | |
CN112018300B (zh) | 电池的箱体、电池、用电装置、制备电池的方法和装置 | |
CN112018303B (zh) | 电池、用电装置、制备电池的方法和装置 | |
CN112018302A (zh) | 电池、用电装置、制备电池的方法和设备 | |
WO2022082387A1 (zh) | 电池、用电装置、制备电池的方法和装置 | |
WO2023179192A1 (zh) | 电池和用电设备 | |
CN112018322B (zh) | 电池的箱体、电池、用电装置、制备电池的方法和装置 | |
US20220320673A1 (en) | Battery, power consumption device, method and device for producing battery | |
JP7350213B2 (ja) | 電池、電力消費装置、電池の製造方法及びその装置 | |
CA3227076A1 (en) | Box of battery, battery, power consumption apparatus, and method and apparatus for producing battery | |
WO2023044764A1 (zh) | 压力平衡机构、电池、用电装置、制备电池的方法和装置 | |
WO2022205080A1 (zh) | 电池、用电装置、制备电池的方法和装置 | |
EP4009435B1 (en) | Battery, power consuming apparatus and method and apparatus for producing battery | |
WO2022082388A1 (zh) | 电池的箱体、电池、用电装置、制备电池的方法和装置 | |
WO2022082390A1 (zh) | 电池的箱体、电池、用电装置、制备电池的方法和装置 | |
US20230420798A1 (en) | Battery, electric apparatus, and method and apparatus for manufacturing battery | |
WO2023004726A1 (zh) | 电池的箱体、电池、用电设备、制备电池的方法和设备 | |
WO2022082391A1 (zh) | 电池、用电装置、制备电池的方法和设备 | |
WO2023028748A1 (zh) | 电池、用电装置以及制备电池的方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020824408 Country of ref document: EP Effective date: 20201223 |
|
ENP | Entry into the national phase |
Ref document number: 20237001872 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2023504838 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |