[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022080339A1 - Terminal device and method - Google Patents

Terminal device and method Download PDF

Info

Publication number
WO2022080339A1
WO2022080339A1 PCT/JP2021/037645 JP2021037645W WO2022080339A1 WO 2022080339 A1 WO2022080339 A1 WO 2022080339A1 JP 2021037645 W JP2021037645 W JP 2021037645W WO 2022080339 A1 WO2022080339 A1 WO 2022080339A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcp
rrc
mbs
rlc
information
Prior art date
Application number
PCT/JP2021/037645
Other languages
French (fr)
Japanese (ja)
Inventor
貴子 堀
昇平 山田
秀和 坪井
恭輔 井上
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2022556981A priority Critical patent/JPWO2022080339A1/ja
Publication of WO2022080339A1 publication Critical patent/WO2022080339A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/04Network layer protocols, e.g. mobile IP [Internet Protocol]

Definitions

  • the present invention relates to terminal devices and methods.
  • the present application claims priority with respect to Japanese Patent Application No. 2020-172376 filed in Japan on October 13, 2020, the contents of which are incorporated herein by reference.
  • 3GPP 3rd Generation Partnership Project
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • RAT Radio Access Technology
  • 3GPP technical studies and standardization of E-UTRA extended technology are still underway.
  • E-UTRA is also referred to as LongTermEvolution (LTE: registered trademark), and the extended technology may be referred to as LTE-Advanced (LTE-A) or LTE-Advanced Pro (LTE-A Pro).
  • LTE-A LongTermEvolution
  • LTE-A Pro LTE-Advanced Pro
  • NR New Radio or NR Radio access
  • RAT Radio Access Technology
  • MBMS Multimedia Broadcast Multicast Service
  • MBSFN Multicast Broadcast Single Frequency Network
  • SC-PTM Single Cell Point-To-Multipoint
  • multicast / broadcast data is transmitted using PMCH (Physical Multicast Channel) in MBSFN (Multicast-Broadcast Single-Frequency Network) area units consisting of multiple cells.
  • PMCH Physical Multicast Channel
  • MBSFN Multicast-Broadcast Single-Frequency Network
  • SC-PTM Multicast data is transmitted using PDSCH (Physical Downlink Shared Channel) on a cell-by-cell basis.
  • MBS Multicast Broadcast Service
  • One aspect of the present invention has been made in view of the above circumstances, and one of the objects is to provide a terminal device, a base station device, and a method capable of efficiently controlling MBS using NR. do.
  • one aspect of the present invention has taken the following measures. That is, one aspect of the present invention is a terminal device that communicates with the base station device, and the terminal device receives the MBS one-to-one with the first RLC bearer for receiving one-to-many MBS.
  • the first RLC bearer and the second RLC bearer are associated with the same PDCP entity, and the PDCP entity creates the PDCP status report, the PDCP status report. Is submitted only to the second RLC bearer.
  • one aspect of the present invention is a method of a terminal device that communicates with a base station device, wherein the terminal device receives a one-to-one MBS with a first RLC bearer for receiving one-to-many MBS.
  • the first RLC bearer and the second RLC bearer are associated with the same PDCP entity, and the PDCP entity creates the PDCP status report, the PDCP. Submit the status report only to the second RLC bearer mentioned above.
  • the terminal device, the base station device, and the method can realize efficient MBS control using NR.
  • the schematic diagram of the communication system which concerns on embodiment of this invention.
  • the figure of an example of the E-UTRA protocol composition which concerns on embodiment of this invention.
  • the figure of an example of the NR protocol composition which concerns on embodiment of this invention.
  • the figure which shows an example of the flow of the procedure for various setting in RRC which concerns on embodiment of this invention.
  • the block diagram which shows the structure of the terminal apparatus in embodiment of this invention.
  • the block diagram which shows the structure of the base station apparatus in embodiment of this invention.
  • An example of the ASN.1 description contained in the message regarding the resetting of the RRC connection in E-UTRA in the embodiment of the present invention.
  • the figure which shows the flow of the procedure for setting MBMS reception using SC-PTM The figure which shows an example of the ASN.1 description which represents a field and / or an information element included in SIB20 (System Information Block Type 20).
  • SIB20 System Information Block Type 20
  • SCPTM Configuration SC-PTM Configuration
  • LTE (and LTE-A, LTE-A Pro) and NR may be defined as different radio access technologies (Radio Access Technology: RAT).
  • RAT Radio Access Technology: RAT
  • NR may also be defined as a technique included in LTE.
  • LTE may also be defined as a technique included in NR.
  • LTE that can be connected to NR by MultiRadio Dual connectivity (MR-DC) may be distinguished from conventional LTE.
  • MR-DC MultiRadio Dual connectivity
  • LTE using 5GC for the core network may be distinguished from conventional LTE using EPC for the core network.
  • EPC EPC for the core network.
  • conventional LTE may be LTE that does not implement the technology standardized after Release 15 in 3GPP.
  • Embodiments of the present invention may be applied to NR, LTE and other RATs.
  • LTE Long Term Evolution
  • NR Long Term Evolution
  • E-UTRA in the embodiment of the present invention may be replaced with the term LTE
  • LTE may be replaced with the term E-UTRA
  • the names of the nodes and entities when the wireless access technique is E-UTRA or NR, the processing in each node and the entity, and the like will be described. It may be used for other wireless access techniques.
  • the name of each node or entity in the embodiment of the present invention may be another name.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • the functions of each node, wireless access technique, core network, interface, etc. described with reference to FIG. 1 are some functions closely related to the embodiment of the present invention, and may have other functions.
  • the E-UTRA100 may be a wireless access technology.
  • the E-UTRA100 may be an air interface between the UE 122 and the eNB 102.
  • the air interface between UE122 and eNB102 may be called the Uu interface.
  • the eNB (E-UTRAN Node B) 102 may be a base station device of the E-UTRA100.
  • the eNB 102 may have the E-UTRA protocol described below.
  • the E-UTRA protocol may be composed of the E-UTRA user plane (User Plane: UP) protocol described later and the E-UTRA control plane (Control Plane: CP) protocol described later.
  • the eNB 102 may terminate the E-UTRA user plane (User Plane: UP) protocol and the E-UTRA control plane (Control Plane: CP) protocol for the UE 122.
  • E-UTRA user plane User Plane: UP
  • E-UTRA control plane Control Plane: CP
  • a radio access network composed of eNB may be called E-UTRAN.
  • EPC (Evolved Packet Core) 104 may be a core network.
  • the interface 112 is an interface between the eNB 102 and the EPC 104 and may be referred to as the S1 interface.
  • the interface 112 may include a control plane interface through which control signals pass and / or a user plane interface through which (and / or) user data passes.
  • the control plane interface of the interface 112 may be terminated by the Mobility Management Entity (MME: not shown) in the EPC 104.
  • MME Mobility Management Entity
  • S-GW serving gateway
  • the control plane interface of interface 112 may be referred to as the S1-MME interface.
  • the user plane interface of interface 112 may be referred to as the S1-U interface.
  • one or more eNB 102s may be connected to the EPC 104 via the interface 112.
  • An interface may exist between multiple eNB 102s connected to the EPC 104 (not shown).
  • the interface between a plurality of eNB 102s connected to the EPC 104 may be called an X2 interface.
  • the NR106 may be a wireless access technology. Further, the NR106 may be an air interface between the UE 122 and the gNB 108. The air interface between UE122 and gNB108 may be called the Uu interface.
  • the gNB (gNodeB) 108 may be a base station device of the NR106.
  • the gNB108 may have the NR protocol described below.
  • the NR protocol may be composed of the NR user plane (User Plane: UP) protocol described later and the NR control plane (Control Plane: CP) protocol described later.
  • the gNB 108 may terminate the NR user plane (User Plane: UP) protocol and the NR control plane (Control Plane: CP) protocol for the UE 122.
  • 5GC110 may be a core network.
  • Interface 116 is an interface between gNB 108 and 5GC 110 and may be referred to as an NG interface.
  • the interface 116 may include a control plane interface through which control signals pass and / or a user plane interface through which user data passes.
  • the control plane interface of the interface 116 may be terminated by the Access and mobility Management Function (AMF: not shown) in the 5GC110.
  • the user plane interface of the interface 116 may be terminated by the User Plane Function (UPF: not shown) in the 5GC110.
  • the control plane interface of interface 116 may be called an NG-C interface.
  • the user plane interface of interface 116 may be called an NG-U interface.
  • one or more gNB108s may be connected to the 5GC110 via the interface 116.
  • An interface may exist between multiple gNB108s connected to the 5GC110 (not shown).
  • the interface between multiple gNB108s connected to the 5GC110 may be called the Xn interface.
  • the eNB 102 may have a function to connect to the 5GC110.
  • the eNB 102 that has the function of connecting to the 5GC110 may be called ng-eNB.
  • Interface 114 is the interface between eNB 102 and 5GC110 and may be referred to as the NG interface.
  • the interface 114 may include a control plane interface through which control signals pass and / or a user plane interface through which user data passes.
  • the control plane interface of the interface 114 may be terminated by the Access and mobility Management Function (AMF: not shown) in the 5GC110.
  • the user plane interface of the interface 114 may be terminated by the User Plane Function (UPF: not shown) in the 5GC110.
  • the control plane interface of interface 114 may be called an NG-C interface.
  • the user plane interface of interface 114 may be called an NG-U interface.
  • a radio access network composed of ng-eNB or gNB may be referred to as NG-RAN.
  • NG-RAN, E-UTRAN, eNB, ng-eNB, gNB, etc. may be simply referred to as a network.
  • one or more eNB 102s may be connected to the 5GC110 via the interface 114.
  • An interface may exist between multiple eNB 102s connected to the 5GC110 (not shown).
  • the interface between multiple eNB 102s connected to the 5GC110 may be referred to as the Xn interface.
  • the eNB 102 connected to the 5GC110 and the gNB108 connected to the 5GC110 may be connected by the interface 120.
  • the interface 120 between the eNB 102 connected to the 5GC110 and the gNB108 connected to the 5GC110 may be referred to as an Xn interface.
  • GNB108 may have a function to connect to EPC104.
  • the gNB 108 that has the function of connecting to the EPC104 may be called en-gNB.
  • Interface 118 is the interface between gNB 108 and EPC 104 and may be referred to as the S1 interface.
  • the interface 118 may have a user plane interface through which user data passes.
  • the user plane interface of interface 118 may be terminated by S-GW (not shown) in EPC104.
  • the user plane interface of interface 118 may be called the S1-U interface.
  • the eNB 102 connected to the EPC 104 and the gNB 108 connected to the EPC 104 may be connected by the interface 120.
  • the interface 120 between the eNB 102 connected to the EPC 104 and the gNB 108 connected to the EPC 104 may be referred to as the X2 interface.
  • Interface 124 is an interface between EPC104 and 5GC110, and may be an interface through CP only, UP only, or both CP and UP. Further, some or all of the interfaces 114, interface 116, interface 118, interface 120, interface 124, etc. may not exist depending on the communication system provided by the telecommunications carrier or the like.
  • UE122 may be a terminal device capable of receiving notification information and paging messages transmitted from eNB102 and / or gNB108.
  • the UE 122 may be a terminal device capable of wireless connection with the eNB 102 and / or the gNB 108.
  • the UE 122 may be a terminal device capable of wirelessly connecting to the eNB 102 and wirelessly to the gNB 108 at the same time.
  • UE122 may have an E-UTRA protocol and / or an NR protocol.
  • the wireless connection may be a Radio Resource Control (RRC) connection.
  • RRC Radio Resource Control
  • a wireless connection may be made by establishing a wireless bearer (RB: Radio Bearer) between the UE 122 and the eNB 102 and / or the gNB 108.
  • the radio bearer used for CP may be called a signaling radio bearer (SRB: Signaling Radio Bearer).
  • the wireless bearer used for UP may be called a data wireless bearer (DRB Data Radio Bearer).
  • a wireless bearer identifier (Identity: ID) may be assigned to each wireless bearer.
  • the radio bearer identifier for SRB may be referred to as an SRB identifier (SRB Identity or SRB ID).
  • the radio bearer identifier for DRB may be referred to as a DRB identifier (DRB Identity or DRB ID).
  • the UE 122 may be a terminal device that can be connected to the EPC 104 and / or the 5GC110 via the eNB 102 and / or the gNB 108. If the eNB 102 with which the UE 122 communicates and / or the core network to which the gNB 108 is connected is the EPC 104, each DRB established between the UE 122 and the eNB 102 and / or the gNB 108 further goes through each EPS within the EPC 104. (Evolved Packet System) It may be uniquely associated with the bearer. Each EPS bearer may be identified by an EPS bearer identifier (Identity, or ID). Further, the same QoS may be guaranteed for data such as IP packets passing through the same EPS bearer and Ethernet (registered trademark) frames.
  • EPS bearer may be identified by an EPS bearer identifier (Identity, or ID). Further, the same QoS may be guaranteed for data such as IP packets passing through the same EPS
  • each DRB established between the UE 122 and the eNB 102 and / or the gNB 108 is further established in the 5GC110. It may be associated with one of the PDU (Packet Data Unit) sessions. Each PDU session may have one or more QoS flows. Each DRB may be mapped to one or more QoS flows and may not be associated with any QoS flow. Each PDU session may be identified by a PDU session identifier (Identity, Identifier, or ID). Further, each QoS flow may be identified by the QoS flow identifier Identity, Identifier, or ID). Further, the same QoS may be guaranteed for data such as IP packets and Ethernet frames that pass through the same QoS flow.
  • PDU session identifier Identity, Identifier, or ID
  • the EPC104 does not have to have a PDU session and / or a QoS flow.
  • the 5GC110 does not have to have an EPS bearer.
  • the UE122 When the UE122 is connected to the EPC104, the UE122 has information on the EPS bearer, but not in the PDU session and / or QoS flow.
  • the UE122 when the UE122 is connected to the 5GC110, the UE122 has information in the PDU session and / or QoS flow, but does not have to have the EPS bearer information.
  • eNB 102 and / or gNB 108 are also simply referred to as a base station device, and UE 122 is also simply referred to as a terminal device or UE.
  • FIG. 2 is a diagram of an example of the E-UTRA protocol configuration according to the embodiment of the present invention.
  • FIG. 3 is a diagram of an example of the NR protocol configuration according to the embodiment of the present invention.
  • the functions of the respective protocols described with reference to FIGS. 2 and / or 3 are some functions closely related to the embodiment of the present invention, and may have other functions.
  • the uplink (UL) may be a link from the terminal device to the base station device.
  • the downlink (downlink: DL) may be a link from the base station device to the terminal device.
  • FIG. 2 (A) is a diagram of the E-UTRA user plane (UP) protocol stack.
  • the E-UTRANUP protocol may be a protocol between UE122 and eNB102. That is, the E-UTRANUP protocol may be a protocol terminated by eNB 102 on the network side.
  • the E-UTRA user plane protocol stack consists of PHY (Physical layer) 200, which is a wireless physical layer (radio physical layer), and MAC (Medium), which is a medium access control layer (medium access control layer).
  • PHY Physical layer
  • MAC Medium
  • medium access control layer medium access control layer
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • packet data convergence protocol layer Packet data convergence protocol layer
  • Figure 3 (A) is a diagram of the NR user plane (UP) protocol stack.
  • the NRUP protocol may be a protocol between UE122 and gNB108. That is, the NRUP protocol may be a protocol terminated by gNB108 on the network side.
  • the E-UTRA user plane protocol stack consists of PHY300, which is a wireless physical layer, MAC302, which is a medium access control layer, RLC304, which is a wireless link control layer, and PDCP306, which is a packet data convergence protocol layer.
  • the service data adaptation protocol layer (service data adaptation protocol layer) SDAP (Service Data Adaptation Protocol) 310 may be configured.
  • FIG. 2B is a diagram of the E-UTRA control plane (CP) protocol configuration.
  • the RRC (Radio Resource Control) 208 which is a radio resource control layer (radio resource control layer)
  • RRC208 may be a protocol terminated by eNB 102 on the network side.
  • the NAS (Non Access Stratum) 210 which is a non-AS (Access Stratum) layer (non-AS layer)
  • NAS210 may be a protocol terminated by MME on the network side.
  • FIG. 3 is a diagram of the NR control plane (CP) protocol configuration.
  • the radio resource control layer RRC308 may be a protocol between UE122 and gNB108. That is, RRC308 may be a protocol terminated by gNB108 on the network side.
  • NAS312 which is a non-AS layer, may be a protocol between UE122 and AMF. That is, NAS312 may be a protocol terminated by AMF on the network side.
  • the AS (Access Stratum) layer may be a layer terminated between UE122 and eNB102 and / or gNB108. That is, the AS layer is a layer containing a part or all of PHY200, MAC202, RLC204, PDCP206, and RRC208, and / or a layer containing a part or all of PHY300, MAC302, RLC304, PDCP306, SDAP310, and RRC308. Good.
  • the E-UTRA protocol and the NR protocol are not distinguished below, and PHY (PHY layer), MAC (MAC layer), RLC (RLC layer), PDCP (PDCP layer), RRC ( The terms RRC layer) and NAS (NAS layer) may be used.
  • PHY PHY
  • MAC MAC layer
  • RLC RLC
  • PDCP PDCP layer
  • RRC RRC
  • NAS NAS layer
  • the SDAP may be an SDAP (SDAP layer) of the NR protocol.
  • the PHY200, MAC202, RLC204, PDCP206, and RRC208 are referred to as the PHY for E-UTRA or the PHY for LTE, E-UTRA, respectively.
  • PHY200, MAC202, RLC204, PDCP206, and RRC208 can be used as E-UTRA PHY or LTE PHY, E-UTRA MAC or LTE MAC, E-UTRA RLC or LTE RLC, E-UTRA PDCP or LTE PDCP, and E-UTRA, respectively. It may be described as RRC or LTE RRC.
  • the PHY300, MAC302, RLC304, PDCP306, and RRC308 are called NR PHY, NR MAC, NR RLC, NR RLC, and NR RRC, respectively.
  • PHY200, MAC302, RLC304, PDCP306, and RRC308 may be described as NRPHY, NRMAC, NRRLC, NRPDCP, NRRRC, etc., respectively.
  • An entity that has some or all of the functions of the MAC layer may be called a MAC entity.
  • An entity that has some or all of the functions of the RLC layer may be called an RLC entity.
  • An entity that has some or all of the functions of the PDCP layer may be called a PDCP entity.
  • An entity that has some or all of the functions of the SDAP layer may be called an SDAP entity.
  • An entity that has some or all of the functions of the RRC layer may be called an RRC entity.
  • the MAC entity, RLC entity, PDCP entity, SDAP entity, and RRC entity may be paraphrased as MAC, RLC, PDCP, SDAP, and RRC, respectively.
  • the data provided from the lower layer to MAC, RLC, PDCP, SDAP and / or the data provided to MAC, RLC, PDCP, SDAP from the lower layer are referred to as MAC PDU (Protocol Data Unit) and RLC, respectively. It may be called PDU, PDCP PDU, SDAP PDU.
  • the data provided from the upper layer to MAC, RLC, PDCP, SDAP and / or the data provided to the upper layer from MAC, RLC, PDCP, SDAP are referred to as MAC SDU (Service Data Unit) and RLC SDU, respectively.
  • MAC SDU Service Data Unit
  • RLC SDU Service Data Unit
  • the segmented RLC SDU may be called the RLC SDU segment.
  • the PHY of the terminal device may have a function of receiving data transmitted from the PHY of the base station device via the downlink (DL) physical channel (Physical Channel).
  • the PHY of the terminal device may have a function of transmitting data to the PHY of the base station device via an uplink (UL) physical channel.
  • the PHY may be connected to the upper MAC by a transport channel.
  • the PHY may pass data to the MAC over the transport channel.
  • the PHY may also be provided with data from the MAC via the transport channel.
  • RNTI Radio Network Temporary Identifier
  • the physical channels used for wireless communication between the terminal device and the base station device may include the following physical channels.
  • PBCH Physical Broadcast CHannel
  • PDCCH Physical Downlink Control CHannel
  • PDSCH Physical Downlink Shared CHannel
  • PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink Shared CHannel
  • PRACH Physical Random Access CHannel
  • PBCH may be used to notify the system information required by the terminal device.
  • PBCH may be used to notify the time index (SSB-Index) within the period of the block of the synchronization signal (also referred to as SS / PBCH block).
  • SSB-Index time index within the period of the block of the synchronization signal
  • PDCCH may be used to transmit (or carry) downlink control information (Downlink Control Information: DCI) in downlink wireless communication (wireless communication from a base station device to a terminal device).
  • DCI Downlink Control Information
  • one or more DCIs (which may be referred to as DCI format) may be defined for the transmission of downlink control information. That is, the field for the downlink control information may be defined as DCI and mapped to the information bit.
  • the PDCCH may be transmitted in the PDCCH candidate (candidate).
  • the terminal device may monitor the set of PDCCH candidates in the serving cell. Monitoring a set of PDCCH candidates may mean attempting to decode the PDCCH according to a DCI format.
  • the DCI format may be used for scheduling PUSCH in the serving cell.
  • PUSCH may be used for sending user data, sending RRC messages described later, and the like.
  • the PUCCH may be used to transmit uplink control information (UCI) in uplink wireless communication (wireless communication from a terminal device to a base station device).
  • the uplink control information may include channel state information (CSI: Channel State Information) used to indicate the state of the downlink channel.
  • the uplink control information may include a scheduling request (SR: Scheduling Request) used for requesting a UL-SCH (UL-SCH: Uplink Shared CHannel) resource.
  • SR Scheduling Request
  • UL-SCH Uplink Shared CHannel
  • the uplink control information may include HARQ-ACK (Hybrid Automatic Repeat request ACK knowledgement).
  • PDSCH may be used for transmission of downlink data (DL-SCH: Downlink Shared CHannel) from the MAC layer. Further, in the case of a downlink, it may be used for transmission of system information (SI: System Information) and random access response (RAR: Random Access Response).
  • SI System Information
  • RAR Random Access Response
  • PUSCH may be used to transmit HARQ-ACK and / or CSI together with uplink data (UL-SCH: Uplink Shared CHannel) or uplink data from the MAC layer.
  • PUSCH may also be used to transmit CSI only, or HARQ-ACK and CSI only. That is, PUSCH may be used to transmit only UCI.
  • PDSCH or PUSCH may also be used to transmit RRC signaling (also referred to as RRC message) and MAC control elements.
  • RRC signaling also referred to as RRC message
  • the RRC signaling transmitted from the base station device may be a signal common to a plurality of terminal devices in the cell.
  • the RRC signaling transmitted from the base station device may be dedicated signaling (also referred to as dedicated signaling) to a certain terminal device. That is, the information unique to the terminal device (UE specific) may be transmitted to a certain terminal device using a dedicated signaling.
  • PUSCH may also be used to transmit UE Capability on the uplink.
  • PRACH may be used to send a random access preamble.
  • PRACH is used to indicate initial connection establishment procedures, handover procedures, connection re-establishment procedures, synchronization (timing adjustment) for uplink transmissions, and requests for PUSCH (UL-SCH) resources. May be used for.
  • the MAC may be referred to as a MAC sublayer.
  • the MAC may have a function of mapping various logical channels (logical channels: Logical Channels) to the corresponding transport channels.
  • the logical channel may be identified by a logical channel identifier (LogicalChannelIdentity or LogicalChannelID).
  • the MAC may be connected to the upper RLC by a logical channel (logical channel).
  • the logical channel may be divided into a control channel for transmitting control information and a traffic channel for transmitting user information, depending on the type of information to be transmitted. Further, the logical channel may be divided into an uplink logical channel and a downlink logical channel.
  • the MAC may have the function of multiplexing MAC SDUs belonging to one or more different logical channels and providing them to the PHY.
  • the MAC may also have the function of demultiplexing the MAC PDU provided by the PHY and providing it to the upper layer via the logical channel to which each MAC SDU belongs.
  • the MAC may have a function of performing error correction through HARQ (Hybrid Automatic Repeat reQuest).
  • the MAC may have a scheduling report (Scheduling Report: SR) function that reports scheduling information.
  • the MAC may have a function of performing priority processing between terminal devices by using dynamic scheduling. Further, the MAC may have a function of performing priority processing between logical channels in one terminal device.
  • the MAC may have a function of prioritizing overlapping resources in one terminal device.
  • E-UTRA MAC may have a function to identify Multimedia Broadcast Multicast Services (MBMS).
  • MBMS Multimedia Broadcast Multicast Services
  • the NR MAC may have a function of identifying a multicast / broadcast service (Multicast Broadcast Service: MBS).
  • MBS Multicast Broadcast Service
  • the MAC may have the ability to select a transport format.
  • MAC has a function to perform intermittent reception (DRX: Discontinuous Reception) and / or intermittent transmission (DTX: Discontinuous Transmission), a function to execute a random access (Random Access: RA) procedure, and a power to notify information on transmittable power.
  • DRX Discontinuous Reception
  • DTX Discontinuous Transmission
  • RA random access
  • the NR MAC may have a headroom report (Power Headroom Report: PHR) function, a buffer status report (Buffer Status Report: BSR) function, etc. to notify the data amount information of the transmission buffer.
  • the NR MAC may have a Bandwidth Adaptation (BA) function.
  • BA Bandwidth Adaptation
  • the MAC PDU format used in E-UTRA MAC and the MAC PDU format used in NR MAC may be different.
  • the MAC PDU may include a MAC control element (MAC control element: MAC CE), which is an element for performing control in the MAC.
  • UL Uplink
  • DL Downlink
  • BCCH Broadcast Control Channel
  • SI System Information
  • PCCH Packet Control Channel
  • PCCH Packet Control Channel
  • CCCH Common Control Channel
  • CCCH may be a logical channel for transmitting control information between the terminal device and the base station device.
  • CCCH may be used when the terminal device does not have an RRC connection.
  • CCCH may also be used between a base station appliance and a plurality of terminal appliances.
  • DCCH Dedicated Control Channel
  • the dedicated control information may be control information dedicated to each terminal device.
  • DCCH may be used when the terminal device has an RRC connection.
  • DTCH (Dedicated Traffic Channel) may be a logical channel for transmitting user data on a one-to-one basis (point-to-point) between a terminal device and a base station device.
  • DTCH may be a logical channel for transmitting dedicated user data.
  • the dedicated user data may be user data dedicated to each terminal device.
  • DTCH may exist on both the uplink and the downlink.
  • MTCH Multicast Traffic Channel
  • MTCH may be a one-to-multipoint downlink channel for transmitting data from a base station device to a terminal device.
  • MTCH may be a logical channel for multicast.
  • MTCH may be used by the terminal device only if the terminal device receives MBMS.
  • MCCH Multicast Control Channel
  • MCCH may be a one-to-multipoint downlink channel for sending MBMS control information for one or more MTCHs from a base station device to a terminal device.
  • MCCH may be a logical channel for multicast.
  • MCCH may be used by a terminal device only when the terminal device receives MBMS or is interested in receiving MBMS.
  • SC-MTCH Single Cell Multicast Traffic Channel
  • SC-PTM Single Cell Point-To-Multipoint
  • SC-MCCH Single Cell Multicast Control Channel
  • SC-MCCH Single Cell Multicast Control Channel
  • SC-MCCH Single Cell Multicast Control Channel
  • SC-MCCH may be a logical channel for multicast.
  • SC-MCCH may be used by the terminal device only when the terminal device receives MBMS using SC-PTM or the terminal device is interested in receiving MBMS using SC-PTM.
  • CCCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
  • UL-SCH Uplink Shared Channel
  • DCCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
  • UL-SCH Uplink Shared Channel
  • DTCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
  • UL-SCH Uplink Shared Channel
  • BCCH may be mapped to BCH (Broadcast Channel) and / or DL-SCH (Downlink Shared Channel), which are downlink transport channels.
  • BCH Broadcast Channel
  • DL-SCH Downlink Shared Channel
  • PCCH may be mapped to PCH (Paging Channel), which is a downlink transport channel.
  • PCH Packet Control Channel
  • CCCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
  • DL-SCH Downlink Shared Channel
  • DCCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
  • DL-SCH Downlink Shared Channel
  • DTCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
  • DL-SCH Downlink Shared Channel
  • MTCH may be mapped to MCH (Multicast Channel), which is a downlink transport channel.
  • MCH Multicast Channel
  • MCCH may be mapped to MCH (Multicast Channel), which is a downlink transport channel.
  • MCH Multicast Channel
  • SC-MTCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
  • DL-SCH Downlink Shared Channel
  • SC-MTCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
  • DL-SCH Downlink Shared Channel
  • RLC may be referred to as an RLC sublayer.
  • the E-UTRA RLC may have a function of segmenting and / or concatenation the data provided from the PDCP of the upper layer and providing it to the lower layer (lower layer).
  • E-UTRA RLC may have a function of reassembling and re-ordering the data provided from the lower layer and providing it to the upper layer.
  • the NR RLC may have a function of adding a sequence number independent of the sequence number added by the PDCP to the data provided by the PDCP of the upper layer.
  • NR RLC may have the function of segmenting the data provided by PDCP and providing it to the lower layer.
  • NR RLC may have a function of reassembling the data provided from the lower layer and providing it to the upper layer.
  • RLC may have a data retransmission function and / or a retransmission request function (Automatic Repeat reQuest: ARQ).
  • ARQ Automatic Repeat reQuest
  • RLC may have a function to correct errors by ARQ.
  • Control information indicating data that needs to be retransmitted, which is sent from the receiving side of RLC to the transmitting side in order to perform ARQ, may be called a status report.
  • the status report transmission instruction sent from the sender side of RLC to the receiver side may be called a pole.
  • RLC may also have a function to detect data duplication.
  • RLC may also have a data discard function.
  • the RLC may have three modes: transparent mode (TM: Transparent Mode), non-response mode (UM: Unacknowledged Mode), and response mode (AM: Acknowledged Mode).
  • TM transparent mode
  • UM Unacknowledged Mode
  • AM Acknowledged Mode
  • TM the data received from the upper layer is not divided and the RLC header need not be added.
  • the TM RLC entity is a uni-directional entity and may be configured as a transmitting TM RLC entity or as a receiving TM RLC entity.
  • UM data received from the upper layer is divided and / or combined, RLC header is added, etc., but data retransmission control does not have to be performed.
  • the UMRLC entity may be a unidirectional entity or a bi-directional entity.
  • the UMRLC entity may be configured as a sending UMRLC entity or as a receiving UMRLC entity.
  • the UM RLC entity is a bidirectional entity, the UM RRC entity may be configured as a UM RLC entity consisting of a transmitting side and a receiving side.
  • data received from the upper layer may be divided and / or combined, an RLC header may be added, and data retransmission control may be performed.
  • the AMRLC entity is a bidirectional entity and may be configured as an AMRLC consisting of a transmitting side and a receiving side.
  • the data provided to the lower layer by TM and / or the data provided from the lower layer may be referred to as TMDPDU.
  • the data provided to the lower layer by UM and / or the data provided from the lower layer may be referred to as UMD PDU. Further, the data provided to the lower layer by AMD or the data provided from the lower layer may be called AMD PDU.
  • the RLC PDU format used in E-UTRA RLC and the RLC PDU format used in NR RLC may be different.
  • the RLC PDU may include an RLC PDU for data and an RLC PDU for control.
  • the RLC PDU for data may be referred to as an RLC DATA PDU (RLC Data PDU, RLC data PDU).
  • the control RLC PDU may be called an RLC CONTROL PDU (RLC Control PDU, RLC control PDU, RLC control PDU).
  • PDCP may be referred to as a PDCP sublayer.
  • PDCP may have a function to maintain the sequence number.
  • the PDCP may also have a header compression / decompression function for efficiently transmitting user data such as IP packets and Ethernet frames in the wireless section.
  • the protocol used for IP packet header compression / decompression may be called the ROHC (Robust Header Compression) protocol.
  • the protocol used for Ethernet frame header compression / decompression may be called the EHC (Ethernet (registered trademark) Header Compression) protocol.
  • the PDCP may also have a data encryption / decryption function.
  • the PDCP may also have the function of data integrity protection / integrity verification.
  • the PDCP may also have a re-ordering function.
  • the PDCP may also have a PDCP SDU retransmission function.
  • PDCP may have a function of discarding data using a discard timer (discard timer).
  • the PDCP may also have a Duplication function.
  • the PDCP may also have a function of discarding duplicate received data.
  • the PDCP entity is a bidirectional entity and may consist of a transmitting PDCP entity and a receiving PDCP entity.
  • the PDCP PDU format used in E-UTRA PDCP and the PDCP PDU format used in NR PDCP may be different.
  • the PDCP PDU may include a PDCP PDU for data and a PDCP PDU for control.
  • the PDCP PDU for data may be referred to as a PDCP DATA PDU (PDCP Data PDU, PDCP data PDU).
  • the control PDCP PDU may be called a PDCP CONTROL PDU (PDCP Control PDU, PDCP control PDU, PDCP control PDU).
  • the COUNT value may be used when performing encryption or integrity protection processing.
  • the COUNT value may be composed of HFN (Hyper Frame Number), which is a PDCP state variable, and a sequence number (SN: Sequence Number) added to the header of the PDCP PDU.
  • the sequence number may be incremented by 1 each time the sending PDCP entity generates a PDCP DATA PDU.
  • the HFN may be incremented by 1 each time the sequence number reaches the maximum value in the transmit PDCP entity and the receive PDCP entity.
  • some or all of the following state variables (state variables) (A) to (F) may be used.
  • B In this PDCP entity, a state variable indicating the sequence number of the PDCP SDU to be transmitted next. It can be a state variable named Next_PDCP_TX_SN.
  • C A state variable that represents the HFN value used to generate the COUNT value for the PDCP PDU in this PDCP entity. It can be a state variable named TX_HFN.
  • D A state variable that indicates the COUNT value of the PDCP SDU that is expected to be received next in the receiving PDCP entity. It may be a state variable named RX_NEXT.
  • F A state variable that represents the HFN value used to generate the COUNT value for the received PDCP PDU in this PDCP entity. It may be a state variable named RX_HFN.
  • re-ordering means that the PDCP SDU is stored in the receive buffer (reordering buffer), and the PDCP SDU is placed in the upper layer in the order of the COUNT values obtained from the header information of the PDCP DATA PDU. It may be a process for delivery.
  • reordering if the COUNT value of the received PDCP data PDU is the COUNT value of the first PDCP SDU that has not yet been passed to the upper layer, the stored PDCP SDU is received by the upper layer in the order of the COUNT value. You may perform the process of passing.
  • a PDCP data PDU with a COUNT value smaller than the COUNT value of the received PDCP data PDU cannot be received (PDCP data PDU is lost)
  • the received PDCP data PDU is used as PDCP SDU. It may be converted to and stored in the reordering buffer, all the lost PDCP data PDUs may be received, converted to PDCP SDU, and then passed to the upper layer.
  • a reordering timer (a timer named t-Reordering) may be used to detect the loss of PDCP data PDUs. Further, for reordering, some or all of the following state variables (state variables) (A) to (F) may be used.
  • B A state variable indicating the sequence number of the PDCP SDU that is expected to be received next in the received PDCP entity. It can be a state variable named Next_PDCP_RX_SN.
  • C A state variable that represents the HFN value used to generate the COUNT value for the received PDCP PDU in this PDCP entity. It may be a state variable named RX_HFN.
  • E In the received PDCP entity, a state variable indicating the sequence number of the PDCP PDU of the PDCP SDU that was last delivered to the upper layer. It may be a state variable named Last_Submitted_PDCP_RX_SN.
  • DRB Acknowledged Mode Data Radio Bearer
  • DRB UM DRB: Unacknowledged Mode Data Radio Bearer
  • C Unacknowledged Mode in which transmission of PDCP status report is set from the upper layer
  • PDCP You may also trigger a status report.
  • the upper layer requests the re-establishment of the PDCP entity.
  • the upper layer requests PDCP data recovery.
  • the upper layer requests an uplink data switch.
  • the upper layer has reconfigured this PDCP entity to release the DAPS (Dual Active Protocol Stack), and a parameter named daps source release has been set.
  • the receiving PDCP entity may create the PDCP status report.
  • the PDCP control PDU for the PDCP status report contains information on the PDCP SDU waiting to be received, including the COUNT value of the first PDCP PDU waiting to be received that has not been delivered to the upper layer. It may be done by doing.
  • the receiving PDCP entity that created the PDCP status report may submit the created PDCP status report to a lower layer via the sending PDCP entity.
  • the PDCP entity of UMDRB which is set to send the PDCP status report from the upper layer, has requested PDCP data recovery from the upper layer.
  • the PDCP entity of UMDRB that determines that PDCP data recovery is requested from the upper layer creates a PDCP status report in the receiving PDCP entity based on the PDCP data recovery request from the upper layer, and the sending PDCP entity.
  • the created PDCP status report may be submitted to the lower layer via.
  • the lower layer may be the UM RLC entity of the RLC bearer associated with the PDCP entity.
  • the PDCP entity of the UMDRB to which the PDCP status report transmission is set from the upper layer is requested to recover the PDCP data from the upper layer.
  • the DAPS bearer may be a bearer in which one or more RLC entities for the source cell and one or more RLC entities for the target cell are associated with the PDCP entity.
  • the PDCP data recovery described above may be another name meaning that the PDCP is requested to send a status report from the upper layer.
  • ROHC may be paraphrased as the ROHC protocol.
  • ROHC may have a function of compressing and decompressing header information such as IP, UDP, TCP, and RTP.
  • the compressor may have a header compression function that compresses the header information.
  • the decompressor may have a header decompression function to decompress the header information.
  • the compressor may perform header compression using the context possessed by the compressor.
  • the decompression machine may decompress the header using the context possessed by the decompression machine.
  • the context may be paraphrased as a ROHC context.
  • the context in the decompressor may be generated by receiving all the header information from the compressor.
  • the context in the compressor and decompressor may be retained for each IP flow.
  • a context identifier (Context Identifier: CID) may be used to identify the context.
  • Information on the maximum value of the context identifier, profile information indicating the method of header compression / decompression, etc. may be negotiated between the compressor and the decompression machine before header compression / decompression.
  • header information may be classified into static parts and dynamic parts.
  • the static part of the header information in ROHC may be information that hardly changes among the header information of each packet belonging to the IP flow.
  • the static part of the header information in ROHC is, for example, information including a source address, a destination address, a version in an IPv4 header or an IPv6 header, a source port in a UDP header or a TCP header, a destination port, and the like. It's okay.
  • the dynamic part of the header information in ROHC may be information that can change for each packet among the header information of each packet belonging to the IP flow.
  • the dynamic part of the header information in ROHC includes, for example, trahook class in IPv6 header, hop limit, Type of service in IPv4 header, Time to Live, check sum in UDP header, RTP sequence number in RTP header, RTP time stamp, etc. It may be information.
  • the ROHC compressor may have three states: IR (Initialization and Refresh) state, FO (First Order) state, and SO (Second Order) state.
  • IR Initialization and Refresh
  • FO First Order
  • SO Serviced Order
  • the compressor may not compress the header information to be compressed and may send all the header information to the decompressor.
  • FO First Order
  • SO Serviced Order
  • the compressor may compress most of the static part of the header information to be compressed, and send some static part and dynamic part to the decompressor without compression.
  • SO the compression rate of the header is the highest, and only limited information such as the RTP sequence number may be transmitted from the compressor.
  • the ROHC decompressor may have three states: NC (NoContext) state, SC (StaticContext) state, and FC (FullContext) state.
  • NC NoContext
  • SC StaticContext
  • FC FullContext
  • the initial state of the defroster may be NC state.
  • the context is acquired in the NC state and the header is decompressed correctly, the transition to the FC state may be performed. If header decompression fails continuously in the FC state, it may transition to the SC state or NC state.
  • U-mode Unidirectional mode
  • O-mode Bodirectional Optimistic mode
  • R-mode Bidirectional Reliable mode
  • U-mode it is not necessary to use ROHC feedback packets.
  • U-mode the transition from low compression mode to high compression mode in the compressor, that is, the transition from IR state to FO state, and / or the transition from FO state to SO state, and / or from IR state to SO state.
  • the transition may be performed by transmitting a fixed number of packets.
  • the transition from high compression mode to low compression mode in the compressor that is, the transition from SO state to FO state, and / or the transition from FO state to IR state, and / or from SO state to IR.
  • the transition to the state may be performed at regular intervals, so that the information necessary for header decompression may be periodically transmitted to the decompression machine.
  • the decompressor may send a ROHC feedback packet to the compressor to request the compressor to update the context.
  • the compressor may transition from the low compression mode to the high compression mode by receiving the header decompression success notification by the ROHC feedback packet from the decompression machine. Further, in the R-mode, the compressor may transition from the high compression mode to the low compression mode by receiving the context update request by the ROHC feedback packet from the decompression machine.
  • the ROHC processing mode may be started from U-mode. The transition of the processing mode of ROHC may be determined by the defroster.
  • the decompressor may use the ROHC feedback packet to urge the compressor to transition to the processing mode.
  • SDAP is a service data adaptation protocol layer (service data adaptation protocol layer).
  • SDAP maps the downlink QoS flow sent from the 5GC110 to the terminal device via the base station device and the data radio bearer (DRB) (mapping), and / or from the terminal device via the base station device. It may have a function to map the uplink QoS flow sent to the 5GC110 with the DRB. SDAP may also have a function to store mapping rule information. In addition, SDAP may have a function of marking a QoS flow identifier (QoS Flow ID: QFI).
  • QFI QoS flow ID
  • the SDAP PDU may include a data SDAP PDU and a control SDAP PDU.
  • SDAP PDU for data may be called SDAP DATA PDU (SDAP Data PDU, SDAP data PDU).
  • control SDAP PDU may be called an SDAP CONTROL PDU (SDAP Control PDU, SDAP control PDU, SDAP control PDU). Note that there may be one SDAP entity for the terminal device for the PDU session.
  • the RRC may have a broadcast function.
  • the RRC may have a calling (paging) function from EPC104 and / or 5GC110.
  • the RRC may have a call (paging) function from the eNB 102 that connects to the gNB 108 or 5GC100.
  • the RRC may also have an RRC connection management function.
  • the RRC may also have a wireless bearer control function.
  • the RRC may also have a cell group control function.
  • the RRC may also have a mobility control function.
  • the RRC may have a terminal device measurement reporting and a terminal device measurement reporting control function.
  • the RRC may also have a QoS management function.
  • the RRC may also have a function of detecting and recovering a wireless link failure.
  • RRC uses RRC messages for notification, paging, RRC connection management, wireless bearer control, cell group control, mobility control, terminal device measurement reporting and terminal device measurement reporting control, QoS management, detection and recovery of wireless link failures, etc. You may go.
  • the RRC message or parameter used in E-UTRA RRC may be different from the RRC message or parameter used in NR RRC.
  • the RRC message may be sent using the BCCH of the logical channel, the PCCH of the logical channel, the CCCH of the logical channel, or the DCCH of the logical channel. It may be sent or it may be sent using the MCCH of the logical channel.
  • the RRC message sent using BCCH may include, for example, a master information block (MIB), each type of system information block (System Information Block: SIB), and others. RRC message may be included.
  • the RRC message sent using the PCCH may include, for example, a paging message, or may include other RRC messages.
  • RRC messages sent in the uplink (UL) direction using CCCH include, for example, RRC Setup Request message (RRC Setup Request), RRC Resume Request Message (RRC Resume Request), RRC Reestablishment Request Message (RRC Reestablishment Request), and RRC.
  • RRC System Info Request may be included.
  • RRC Connection Request an RRC connection request message
  • RRC Connection Resume Request an RRC connection restart request message
  • RRC Connection reestablishment request message RRC Connection Reestablishment Request
  • RRC messages sent in the downlink (DL) direction using CCCH include, for example, RRC Connection Reject message, RRC Connection Setup message, RRC Connection Reestablishment message, and RRC.
  • a connection reestablishment refusal message (RRC Connection Reestablishment Reject) or the like may be included.
  • RRC reject message (RRC Reject)
  • RRC setup message (RRC Setup)
  • RRC Resume RRC restart message
  • RRC messages sent in the uplink (UL) direction using DCCH include, for example, measurement report message (Measurement Report), RRC connection reconfiguration completion message (RRC Connection Reconfiguration Complete), RRC connection setup completion message (RRC Connection Setup Complete), An RRC connection reestablishment completion message (RRC Connection Reestablishment Complete), a security mode completion message (Security Mode Complete), a UE capability information message (UE Capability Information), and the like may be included.
  • Measurement Report Measurement Report
  • RRC Connection Reconfiguration Complete RRC connection reconfiguration Complete
  • RRC connection setup completion message RRC Connection Setup Complete
  • An RRC connection reestablishment completion message RRC Connection Reestablishment Complete
  • a security mode completion message Security Mode Complete
  • UE Capability Information UE Capability Information
  • measurement report message (Measurement Report), RRC reconfiguration completion message (RRC Reconfiguration Complete), RRC setup completion message (RRC Setup Complete), RRC reestablishment completion message (RRC Reestablishment Complete), RRC resumption completion message (RRC Resume Complete).
  • Security mode completion message (Security Mode Complete), UE capability information message (UE Capability Information), counter check response message (Counter Check Response), and the like may be included. It may also contain other RRC messages.
  • RRC messages sent in the downlink (DL) direction using DCCH include, for example, RRC connection reconfiguration message (RRC Connection Reconfiguration), RRC connection release message (RRC Connection Release), security mode command message (Security Mode Command), and UE capability.
  • Inquiry messages UE Capability Inquiry etc. may be included.
  • RRC reconfiguration message RRC Reconfiguration
  • RRC restart message RRC Resume
  • RRC release message RRC Release
  • RRC reestablishment message RRC Reestablishment
  • security mode command message Security Mode Command
  • UE capability inquiry message UE Capability Inquiry
  • counter check message Counter Check
  • NAS may have an authentication function.
  • NAS may also have the ability to manage mobility.
  • the NAS may also have a security control function.
  • each layer may be included in another layer (layer).
  • the upper layer (not shown) of the AS layer of the terminal device may include an IP layer, a TCP (Transmission Control Protocol) layer above the IP layer, a UDP (User Datagram Protocol) layer, and the like.
  • an Ethernet layer may exist in the upper layer of the AS layer of the terminal device. It may be called an upper layer PDU layer (PDU layer) of the AS layer of the terminal device.
  • the PDU layer may include an IP layer, a TCP layer, a UDP layer, an Ethernet layer, and the like.
  • An application layer may exist in an upper layer such as an IP layer, a TCP layer, a UDP layer, an Ethernet layer, and a PDU layer.
  • the application layer may include SIP (Session Initiation Protocol) and SDP (Session Description Protocol) used in IMS (IP Multimedia Subsystem), which is one of the service networks standardized in 3GPP.
  • the application layer may include RTP (Real-time Transport Protocol) used for media communication, and / or protocols such as RTCP (Real-time Transport Control Protocol) and HTTP (HyperText Transfer Protocol) for media communication control. ..
  • the application layer may include codecs of various media and the like.
  • the RRC layer may be an upper layer of the SDAP layer.
  • the UE 122 connected to the EPC or 5GC may be in the RRC_CONNECTED state when the RRC connection is established (RRC connection has been established).
  • the state in which the RRC connection is established may include the state in which the UE 122 holds a part or all of the UE context described later. Further, the state in which the RRC connection is established may include a state in which the UE 122 can transmit and / or receive unicast data.
  • UE122 may also be in the RRC_INACTIVE state when the RRC connection is suspended. Further, the UE 122 may be in the RRC_INACTIVE state when the UE 122 is connected to the 5GC and the RRC connection is suspended.
  • UE122 may be in the RRC_IDLE state when it is neither in the RRC_CONNECTED state nor in the RRC_INACTIVE state.
  • UE122 If UE122 is connected to EPC, it does not have RRC_INACTIVE status, but E-UTRAN may start hibernation of RRC connection.
  • the UE122 When the UE122 is connected to the EPC, when the RRC connection is suspended, the UE122 may hold the AS context of the UE and the identifier (resume Identity) used for the resume (resume) and transition to the RRC_IDLE state.
  • the RRC layer of UE122 for example, NAS layer
  • UE122 holds the AS context of UE
  • E-UTRAN allows the return of RRC connection (Permit), and UE122 is from the RRC_IDLE state.
  • the reinstatement of the suspended RRC connection may be started.
  • the definition of hibernation may be different between UE122 connected to EPC104 and UE122 connected to 5GC110. Also, when UE122 is connected to the EPC (when it is hibernating in the RRC_IDLE state) and when UE122 is connected to 5GC (when it is hibernating in the RRC_INACTIVE state), the UE122 returns from hibernation. All or part of the procedure may be different.
  • the RRC_CONNECTED state, RRC_INACTIVE state, and RRC_IDLE state may be called the connected state (connected mode), the inactive state (inactive mode), and the idle state (idle mode), respectively, and the RRC connected state (RRC connected mode).
  • RRC inactive state RRC inactive mode
  • RRC idle state RRC idle mode
  • the UE AS context held by UE122 is the current RRC setting, the current security context, the PDCP state including the ROHC (RObust Header Compression) state, and the C-RNTI (Cell Radio) used in the PCell of the connection source (Source). Information may include all or part of a Network Temporary Identifier), a cell identifier, and a physical cell identifier of the PCell of the connection source.
  • the AS context of the UE held by any or all of the eNB 102 and gNB 108 may include the same information as the AS context of the UE held by the UE 122, or the information contained in the AS context of the UE held by the UE 122. May contain different information.
  • the security context is the encryption key at the AS level, NH (Next Hop parameter), NCC (Next Hop Chaining Counter parameter) used to derive the access key for the next hop, the identifier of the selected AS level encryption algorithm, and replay protection. It may be information containing all or part of the counters used for.
  • a cell group may be composed of one special cell (Special Cell: SpCell). Further, the cell group may be composed of one SpCell and one or a plurality of secondary cells (Secondary Cell: S Cell). That is, a cell group may consist of one SpCell and optionally one or more SCells.
  • SpCell When the MAC entity is associated with the master cell group (Master Cell Group: MCG), SpCell may mean the primary cell (Primary Cell: PCell).
  • SpCell may mean a primary SCG cell (Primary SCG Cell: PS Cell).
  • SpCell may mean PCell if the MAC entity is not associated with a cell group.
  • PCell, PSCell and SCell are serving cells.
  • SpCell may support PUCCH transmission and contention-based Random Access, and SpCell may always be activated.
  • the PCell may be a cell used for the RRC connection establishment procedure when the terminal device in the RRC idle state transitions to the RRC connection state.
  • the PCell may also be a cell used in the RRC connection reestablishment procedure in which the terminal device reestablishes the RRC connection. Further, the PCell may be a cell used for a random access procedure at the time of handover.
  • the PSCell may be a cell used for a random access procedure when a secondary node (Secondary Node: SN), which will be described later, is added. Further, the SpCell may be a cell used for a purpose other than the above-mentioned uses.
  • SN secondary Node
  • CA carrier aggregation
  • a cell that provides additional radio resources to SpCell for a terminal device in which CA is set may mean SCell.
  • TAG Timing Advance Group
  • PTAG Primary Timing Advance Group
  • STAG secondary timing advance group
  • a cell group may be added from the base station device to the terminal device.
  • DC is a technology for performing data communication using the radio resources of the cell group configured by the first base station device (first node) and the second base station device (second node). good.
  • MR-DC may be a technique included in DC.
  • the first base station appliance may add a second base station appliance to perform DC.
  • the first base station device may be called a master node (MasterNode: MN).
  • the cell group composed of the master node may be called a master cell group (Master Cell Group: MCG).
  • the second base station device may be called a secondary node (SN).
  • a cell group composed of a secondary node may be called a secondary cell group (SCG).
  • the master node and the secondary node may be configured in the same base station device.
  • the cell group set in the terminal device may be called MCG.
  • the SpCell set in the terminal device may be PCell.
  • MR-DC may be a technique for performing DC using E-UTRA for MCG and NR for SCG. Further, MR-DC may be a technique for performing DC using NR for MCG and E-UTRA for SCG. Further, MR-DC may be a technique for performing DC using NR for both MCG and SCG.
  • E-UTRA-NR Dual Connectivity E-UTRA-NR Dual Connectivity
  • NGEN- NGEN- that uses 5GC for the core network.
  • DC NG-RAN E-UTRA-NR Dual Connectivity
  • NE-DC NR-E-UTRA Dual Connectivity
  • 5GC 5GC for the core network
  • NR-DC NR-NR Dual Connectivity
  • one MAC entity may exist for each cell group.
  • one MAC entity for MCG and one MAC entity for SCG may exist.
  • the MAC entity for MCG in the terminal device may always be established in the terminal device in all states (RRC idle state, RRC connected state, RRC inactive state, etc.).
  • the MAC entity for SCG in the terminal device may be created by the terminal device when the SCG is set in the terminal device.
  • the MAC entity for each cell group of the terminal device may be set by the terminal device receiving an RRC message from the base station device.
  • the MAC entity for MCG may be an E-UTRA MAC entity
  • the MAC entity for SCG may be an NR MAC entity.
  • the MAC entity for MCG may be an NR MAC entity
  • the MAC entity for SCG may be an E-UTRA MAC entity.
  • the MAC entity for MCG and SCG may be both NR MAC entity.
  • the fact that there is one MAC entity for each cell group can be rephrased as having one MAC entity for each SpCell.
  • one MAC entity for each cell group may be paraphrased as one MAC entity for each SpCell.
  • SRB0 to SRB2 may be defined in the SRB of E-UTRA, and other SRBs may be defined.
  • SRB0 to SRB3 may be defined for SRB of NR, and other SRBs may be defined.
  • SRB0 may be an SRB for RRC messages transmitted and / or received using the CCCH of the logical channel.
  • SRB1 may be an SRB for RRC messages and for NAS messages before SRB2 is established.
  • RRC messages transmitted and / or received using SRB1 may include NAS messages that have been piggybacked.
  • DCCH of the logical channel may be used for all RRC messages and NAS messages transmitted and / or received using SRB1.
  • SRB2 may be an SRB for NAS messages and for RRC messages containing logged measurement information.
  • DCCH of the logical channel may be used for all RRC messages and NAS messages transmitted and / or received using SRB2.
  • SRB2 may have a lower priority than SRB1.
  • the SRB3 may be an SRB for transmitting and / or receiving a specific RRC message when EN-DC, NGEN-DC, NR-DC, etc. are set in the terminal device.
  • DCCH of the logical channel may be used for all RRC messages and NAS messages transmitted and / or received using SRB3.
  • other SRBs may be prepared for other uses.
  • the DRB may be a wireless bearer for user data.
  • the logical channel DTCH may be used for RRC messages transmitted and / or received using the DRB.
  • the radio bearer may include an RLC bearer.
  • the RLC bearer may consist of one or two RLC entities and a logical channel.
  • the RLC entity may be a TM RLC entity and / or a transmit RLC entity and a receive RLC entity in the RLC entity in unidirectional UM mode.
  • SRB0 may consist of one RLC bearer.
  • the RLC bearer of SRB0 may consist of RLC entity of TM and logical channel. SRB0 may always be established in the terminal device in all states (RRC idle state, RRC connected state, RRC inactive state, etc.).
  • One SRB1 may be established and / or set in the terminal device by the RRC message received from the base station device when the terminal device transitions from the RRC idle state to the RRC connection state.
  • SRB1 may consist of one PDCP entity and one or more RLC bearers.
  • the RLC bearer of SRB1 may consist of the RLC entity of AM and the logical channel.
  • One SRB2 may be established and / or set in the terminal device by the RRC message received from the base station device by the terminal device in the RRC connected state in which AS security is activated.
  • SRB2 may consist of one PDCP entity and one or more RLC bearers.
  • the SRB2 RLC bearer may consist of an AM RLC entity and a logical channel.
  • the PDCP on the base station device side of SRB1 and SRB2 may be placed on the master node.
  • SRB3 when a secondary node in EN-DC, NGEN-DC, or NR-DC is added, or when the secondary node is changed, the terminal device in the RRC connection state with AS security activated is the base station. One may be established and / or set in the terminal device by the RRC message received from the device.
  • SRB3 may be a direct SRB between the terminal device and the secondary node.
  • SRB3 may consist of one PDCP entity and one or more RLC bearers.
  • the SRB3 RLC bearer may consist of an AM RLC entity and a logical channel.
  • the PDCP on the base station device side of SRB3 may be placed on the secondary node.
  • the DRB may be established and / or set in the terminal device by the RRC message received from the base station device by the terminal device in the RRC connected state in which AS security is activated.
  • the DRB may consist of one PDCP entity and one or more RLC bearers.
  • the RLC bearer of the DRB may consist of an AM or UM RLC entity and a logical channel.
  • the wireless bearer in which the PDCP is placed on the master node may be called the MN terminal (terminated) bearer.
  • the radio bearer in which the PDCP is placed on the secondary node may be called the SN terminated bearer.
  • a wireless bearer in which RLC bearer exists only in MCG may be called MCG bearer.
  • a wireless bearer in which RLC bearer exists only in SCG may be called SCG bearer.
  • a radio bearer in which RLC bearers exist in both MCG and SCG may be called a split bearer.
  • the bearer types of SRB1 and SRB2 established / and / or set in the terminal device may be MN-terminated MCG bearer and / or MN-terminated split bearer.
  • the bearer type of SRB3 established / and / or set in the terminal device may be an SN-terminated SCG bearer.
  • the bearer type of the DRB established / and / or set in the terminal device may be any of all bearer types.
  • the RLC entity established and / or set for the RLC bearer established and / or set in the cell group composed of E-UTRA may be E-UTRA RLC.
  • the RLC entity established and / or set for the RLC bearer established and / or set in the cell group composed of NR may be NR RLC.
  • EN-DC is set for the terminal device
  • the PDCP entity established and / or set for the MN-terminated MCG bearer may be either E-UTRA PDCP or NR PDCP.
  • the PDCP established and / or set may be NR PDCP.
  • the PDCP entity established and / or set for the wireless bearer in all bearer types may be NR PDCP. ..
  • the DRB established and / or set in the terminal device may be associated with one PDU session.
  • One SDAP entity may be established and / or configured for one PDU session in the terminal device.
  • Established and / or set in the terminal device SDAP entity, PDCP entity, RLC entity, and logical channel may be established and / or set by the RRC message received by the terminal device from the base station device.
  • the network configuration in which the master node is eNB102 and EPC104 is the core network may be called E-UTRA / EPC.
  • a network configuration in which the master node is eNB102 and 5GC110 is the core network may be called E-UTRA / 5GC.
  • a network configuration in which the master node is gNB108 and the 5GC110 is the core network may be called NR or NR / 5GC.
  • the above-mentioned master node may refer to a base station device that communicates with a terminal device.
  • the handover may be a process in which the UE 122 in the RRC connected state changes the serving cell.
  • the handover may be performed when the UE 122 receives an RRC message instructing the handover from the eNB 102 and / or gNB 108.
  • the RRC message instructing the handover may be a message regarding the resetting of the RRC connection including the parameter instructing the handover (for example, the information element named MobilityControlInfo or the information element named ReconfigurationWithSync).
  • the above-mentioned information element named MobilityControlInfo may be rephrased as a mobility control setting information element, a mobility control setting, or a mobility control information.
  • the above-mentioned information element named Reconfiguration WithSync may be rephrased as a reconfiguration information element with synchronization or a reconfiguration with synchronization.
  • the RRC message instructing the handover may be a message indicating the movement of another RAT to a cell (for example, MobilityFromEUTRACommand or MobilityFromNRCommand).
  • handover may be paraphrased as reconfiguration with sync.
  • the conditions under which the UE 122 can perform handover include a part or all of the fact that AS security is activated, SRB2 is established, and at least one DRB is established. good.
  • FIG. 4 is a diagram showing an example of a flow of procedures for various settings in the RRC according to the embodiment of the present invention.
  • FIG. 4 is an example of a flow when an RRC message is sent from the base station device (eNB 102 and / or gNB 108) to the terminal device (UE122).
  • the base station device creates an RRC message (step S400).
  • the RRC message may be created in the base station device so that the base station device distributes broadcast information (SI: System Information) and paging information. Further, the RRC message may be created in the base station device so that the base station device can perform processing on a specific terminal device.
  • the process to be performed on a specific terminal device may include, for example, security-related settings, RRC connection resetting, handover to a different RAT, suspension of RRC connection, release of RRC connection, and the like.
  • RRC connection resetting processes include, for example, wireless bearer control (establishment, modification, release, etc.), cell group control (establishment, addition, modification, release, etc.), measurement setting, handover, security key update, etc. May be included.
  • the RRC message may be created in the base station device in order to respond to the RRC message transmitted from the terminal device.
  • the response to the RRC message transmitted from the terminal device may include, for example, a response to an RRC setup request, a response to an RRC reconnection request, a response to an RRC restart request, and the like.
  • RRC messages include parameters for various information notifications and settings. These parameters may be called fields and / or information elements, and may be described using a description method called ASN.1 (Abstract Syntax Notation One). In the embodiment of the present invention, the parameter may be paraphrased as information.
  • the base station device then sends the created RRC message to the terminal device (step S402).
  • the terminal device performs processing when processing such as setting is required according to the received RRC message (step S404).
  • the processed terminal device may send an RRC message for response to the base station device (not shown).
  • the RRC message is not limited to the above example, and may be used for other purposes.
  • the RRC on the master node side is used to transfer RRC messages for SCG side settings (cell group settings, wireless bearer settings, measurement settings, etc.) to and from the terminal device. good.
  • SCG side settings cell group settings, wireless bearer settings, measurement settings, etc.
  • the RRC message of E-UTRA sent and received between eNB102 and UE122 may include the RRC message of NR in the form of a container.
  • the RRC message of NR transmitted and received between gNB108 and UE122 may include the RRC message of E-UTRA in the form of a container.
  • RRC messages for settings on the SCG side may be sent and received between the master node and the secondary node.
  • the RRC message for E-UTRA transmitted from eNB 102 to UE122 may include the RRC message for NR, and the RRC for NR transmitted from gNB 108 to UE 122 may be included.
  • the message may include an RRC message for E-UTRA.
  • FIG. 7 is an example of an ASN.1 description representing a field and / or information element relating to the radio bearer configuration included in the message relating to the reconfiguration of the RRC connection in NR in FIG.
  • FIG. 8 is an example of an ASN.1 description representing a field and / or an information element related to the radio bearer setting included in the message regarding the resetting of the RRC connection in E-UTRA in FIG.
  • ⁇ omitted> and ⁇ omitted> are not a part of the notation of ASN.1 and other information is omitted.
  • ASN.1 does not correctly follow the ASN.1 notation method.
  • the example of ASN.1 describes an example of the parameters of the RRC message in the embodiment of the present invention, and other names and other notations may be used.
  • the example of ASN.1 shows only an example relating to the main information closely related to one embodiment of the present invention in order to avoid complicated explanation.
  • the parameters described in ASN.1 may be referred to as information elements without distinguishing them into fields, information elements, and the like. Further, in the embodiment of the present invention, the fields, information elements, etc.
  • the message regarding the resetting of the RRC connection may be an RRC resetting message in NR or an RRC connection resetting message in E-UTRA.
  • the information element represented by RadioBearerConfig in FIG. 7 may be an information element used for setting, changing, releasing, etc. of wireless bearers such as SRB and DRB.
  • the information element represented by RadioBearerConfig may include a PDCP setting information element described later and an SDAP setting information element.
  • the information element represented by RadioBearerConfig may be paraphrased as a radio bearer setting information element or a radio bearer setting.
  • the information element represented by SRB-ToAddMod included in the information element represented by RadioBearerConfig may be an information element indicating the SRB (signaling radio bearer) setting.
  • the information element represented by SRB-ToAddMod may be paraphrased as an SRB setting information element or an SRB setting.
  • the information element represented by SRB-ToAddModList may be a list of SRB settings.
  • the information element represented by DRB-ToAddMod included in the information element represented by RadioBearerConfig may be an information element indicating a DRB (data radio bearer) setting.
  • the information element represented by DRB-ToAddMod may be paraphrased as a DRB setting information element or a DRB setting.
  • the information element represented by DRB-ToAddModList may be a list of DRB settings.
  • the SRB setting and the DRB setting may be paraphrased as a wireless bearer setting.
  • the field represented by srb-Identity in the SRB setting information element is the SRB identifier (SRB Identity) information of the SRB to be added or changed, and may be an identifier that uniquely identifies the SRB in each terminal device. ..
  • SRB Identity SRB identifier
  • the field represented by srb-Identity in the SRB setting information element may be paraphrased as an SRB identifier field or an SRB identifier. Further, the SRB identifier may be paraphrased as a wireless bearer identifier.
  • the field represented by drb-Identity in the DRB setting information element is the information of the DRB identifier (DRB Identity) of the DRB to be added or changed, and may be an identifier that uniquely identifies the DRB in each terminal device. ..
  • the field represented by drb-Identity in the DRB setting information element may be paraphrased as a DRB identifier field or a DRB identifier.
  • the value of the DRB identifier is an integer value from 1 to 32 in the example of FIG. 7, but another value may be taken.
  • the DRB identifier may be unique within the scope of UE122. Further, the DRB identifier may be paraphrased as a wireless bearer identifier.
  • the field represented by cnAssociation determines whether the wireless bearer is associated with the field represented by eps-bearerIdentity described later or the information element represented by SDAP-Config described later. It may be the field shown.
  • the field represented by cnAssociation may be paraphrased as a core network association field or a core network association.
  • the field represented by the cnAssociation may include an EPS bearer identifier field (eps-bearerIdentity) described later when the terminal device connects to the EPC104.
  • the field represented by the cnAssociation may include an information element (SDAP-Config) indicating the SDAP setting described later when the terminal device is connected to the core network 5GC110.
  • the field indicated by eps-bearerIdentity may be a field indicating an EPS bearer identifier that identifies the EPS bearer.
  • the field indicated by eps-bearerIdentity may be paraphrased as an EPS bearer identifier field or an EPS bearer identifier field.
  • the information element represented by SDAP-Config may be information related to the setting or resetting of the SDAP entity.
  • the information element represented by SDAP-Config may be rephrased as the SDAP setting information element or the SDAP setting.
  • the field indicated by pdu-session included in the SDAP setting information element may be the PDU session identifier of the PDU session to which the QoS flow mapped to the corresponding radio bearer belongs.
  • the field indicated by pdu-session may be paraphrased as a PDU session identifier field or a PDU session identifier.
  • the PDU session identifier may be the PDU session identifier of the PDU session.
  • the corresponding wireless bearer may be a DRB associated with a DRB identifier in the DRB setting including this SDAP setting field.
  • the field indicated by mappedQoS-FlowsToAdd included in the SDAP setting information element is information indicating a list of QoS flow identifier (QFI: QoSFlowIdentity) fields of the uplink QoS flow to be additionally mapped to the corresponding radio bearer. good.
  • QFI QoSFlowIdentity
  • the field indicated by mappedQoS-FlowsToAdd may be paraphrased as an additional QoS flow field or an additional QoS flow.
  • the above-mentioned QoS flow may be the QoS flow of the PDU session indicated by the PDU session included in the SDAP setting information element.
  • the corresponding wireless bearer may be a DRB associated with a DRB identifier in the DRB setting including this SDAP setting field.
  • the field indicated by mappedQoS-FlowsToRelease included in the SDAP setting information element indicates a list of QoS flow identifier information elements of the QoS flows that release the correspondence among the QoS flows mapped to the corresponding radio bearer. It may be information.
  • the field indicated by mappedQoS-FlowsToRelease may be rephrased as a QoS flow field to be released or a QoS flow to be released.
  • the above-mentioned QoS flow may be the QoS flow of the PDU session indicated by the PDU session included in the SDAP setting information element.
  • the corresponding wireless bearer may be a DRB associated with a DRB identifier in the DRB setting including this SDAP setting field.
  • the SDAP setting information element includes a field indicating whether or not the uplink SDAP header exists in the uplink data transmitted via the corresponding wireless bearer, and the downlink data received via the corresponding wireless bearer. May include a field indicating whether or not the downlink SDAP header exists, a field indicating whether or not the corresponding radio bearer is the default radio bearer (default DRB), and the like.
  • the corresponding wireless bearer may be a DRB associated with a DRB identifier in the DRB setting including this SDAP setting field.
  • the information element represented by PDCP-Config in the SRB setting information element and the DRB setting information element may be an information element related to the setting of the NR PDCP entity.
  • the information element represented by PDCP-Config may be paraphrased as a PDCP setting information element or a PDCP setting.
  • Information elements related to the setting of the NR PDCP entity include a field indicating the size of the uplink sequence number, a field indicating the size of the downlink sequence number, a field indicating the profile of header compression (ROHC: RObustHeaderCompression), and reordering. (Re-ordering)
  • a field indicating the value of the timer may be included.
  • the information element represented by DRB-ToReleaseList included in the information element represented by RadioBearerConfig may include information indicating one or more DRB identifiers to be released.
  • the information element represented by RadioResourceConfigDedicated in FIG. 8 may be an information element used for setting, changing, releasing, etc. of the wireless bearer.
  • the information element represented by SRB-ToAddMod included in the information element represented by RadioResourceConfigDedicated may be information indicating the SRB (signaling radio bearer) setting.
  • the information element represented by SRB-ToAddMod may be paraphrased as an SRB setting information element or an SRB setting.
  • the information element represented by SRB-ToAddModList may be a list of information indicating the SRB setting.
  • the information element represented by DRB-ToAddMod included in the information element represented by RadioResourceConfigDedicated may be information indicating the DRB (data radio bearer) setting.
  • the information element represented by DRB-ToAddMod may be paraphrased as a DRB setting information element or a DRB setting.
  • the information element represented by DRB-ToAddModList may be a list of information indicating the DRB setting.
  • any one or all of SRB setting and DRB setting may be paraphrased as wireless bearer setting.
  • the field represented by srb-Identity in the SRB setting information element is the SRB identifier (SRB Identity) information of the SRB to be added or changed, and may be an identifier that uniquely identifies the SRB in each terminal device. ..
  • SRB Identity SRB Identity
  • the field represented by srb-Identity in the SRB setting information element may be paraphrased as an SRB identifier field or an SRB identifier. Further, the SRB identifier may be paraphrased as a wireless bearer identifier.
  • the SRB identifier in FIG. 8 may have the same role as the SRB identifier in FIG. 7.
  • the field represented by drb-Identity in the DRB setting is the information of the DRB identifier (DRB Identity) of the DRB to be added or changed, and may be an identifier that uniquely identifies the DRB in each terminal device.
  • the field represented by drb-Identity in the DRB setting information element may be paraphrased as a DRB identifier field or a DRB identifier.
  • the value of the DRB identifier is an integer value from 1 to 32 in the example of FIG. 8, but another value may be taken. Further, the DRB identifier may be paraphrased as a wireless bearer identifier.
  • the DRB identifier in FIG. 8 may have the same role as the DRB identifier in FIG. 7.
  • the field represented by eps-BearerIdentity in the DRB setting information element may be an EPS bearer identifier that uniquely identifies the EPS bearer in each terminal device.
  • the field represented by eps-BearerIdentity may be paraphrased as an EPS bearer identifier field or an EPS bearer identifier field.
  • the value of the EPS bearer identifier is an integer value from 1 to 15 in the example of FIG. 8, but another value may be used.
  • the EPS bearer identifier in FIG. 8 may have the same role as the EPS bearer identifier in FIG. 7. Further, the EPS bearer identifier and the DRB identifier may have a one-to-one correspondence in each terminal device.
  • the information element represented by PDCP-Config may be an information element related to the setting of the E-UTRA PDCP entity.
  • the information element represented by PDCP-Config may be paraphrased as a PDCP setting information element or a PDCP setting.
  • Information elements related to the setting of the E-UTRA PDCP entity include a field indicating the size of the sequence number, a field indicating the profile of header compression (ROHC: RObust Header Compression), and a field indicating the value of the re-ordering timer. May be included.
  • the SRB setting information element shown in FIG. 8 may further include a field related to the E-UTRA RLC entity setting (not shown).
  • the field related to E-UTRA RLC entity setting may be rephrased as RLC setting field or RLC setting.
  • the SRB setting information element shown in FIG. 8 may include an information element related to the logical channel setting (not shown).
  • the information element related to the logical channel setting may be paraphrased as the logical channel setting information element or the logical channel setting.
  • the DRB setting information element shown in FIG. 8 may further include an information element related to the E-UTRA RLC entity setting (not shown).
  • the information element related to the E-UTRA RLC entity setting may be rephrased as the RLC setting information element or the RLC setting.
  • the DRB setting information element shown in FIG. 8 may include a field indicating logical channel identifier (identity: ID) information.
  • a field indicating logical channel identifier (identity: ID) information may be paraphrased as a logical channel identifier field or a logical channel identifier.
  • the DRB setting information element shown in FIG. 8 may include an information element related to the logical channel setting (not shown).
  • the information element related to the logical channel setting may be paraphrased as the logical channel setting information element or the logical channel setting.
  • the logical channel identifier may be associated with the wireless bearer identifier.
  • the information element represented by DRB-ToReleaseList included in the information element represented by RadioResourceConfigDedicated may include information indicating one or more DRB identifiers to be released.
  • the information element related to RLC bearer setting such as the information element related to NR RLC entity setting for each radio bearer, the information element indicating logical channel identifier (identity: ID) information, and the information element related to logical channel setting is RadioBearerConfig in FIG. It may be included in the information element related to the cell group setting instead of the information element represented by (not shown). Information elements related to cell group settings may be included in the message regarding resetting the RRC connection.
  • the information element related to the cell group setting may be paraphrased as a cell group setting information element or a cell group setting.
  • the information element related to the NR RLC entity setting may be paraphrased as the RLC setting information element or the RLC setting.
  • the information element indicating the logical channel identifier information may be paraphrased as a logical channel identifier information element or a logical channel identifier.
  • the information element related to the logical channel setting may be paraphrased as the logical channel setting information element or the logical channel identifier.
  • the logical channel identifier may be associated with the wireless bearer identifier.
  • the fields and information elements described with reference to FIG. 7 or FIG. 8 may be optional. That is, the fields and information elements described with reference to FIG. 7 or FIG. 8 may be included in the message regarding the resetting of the RRC connection as necessary or conditional.
  • the message regarding the resetting of the RRC connection may include a field indicating that the full setting is applied.
  • the field meaning that the full setting is applied may be represented by an information element name such as fullConfig, and may be indicated by using true, enable, etc. to indicate that the full setting is applied.
  • FIG. 5 is a block diagram showing the configuration of the terminal device (UE122) according to the embodiment of the present invention.
  • FIG. 5 shows only the main components closely related to one embodiment of the present invention.
  • the UE 122 shown in FIG. 5 includes a receiving unit 500 that receives an RRC message or the like from a base station device, a processing unit 502 that performs processing according to parameters included in the received message, and a transmitting unit that transmits an RRC message or the like to the base station device. It consists of 504.
  • the above-mentioned base station apparatus may be eNB 102 or gNB 108.
  • the processing unit 502 may include some or all of the functions of various layers (for example, physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer, RRC layer, and NAS layer).
  • the processing unit 502 includes a physical layer processing unit, a MAC layer processing unit, an RLC layer processing unit, a PDCP layer processing unit, an SDAP processing unit, an RRC layer processing unit, and a part or all of the NAS layer processing unit. It's okay.
  • FIG. 6 is a block diagram showing the configuration of the base station apparatus according to the embodiment of the present invention.
  • FIG. 6 shows only the main components closely related to one embodiment of the present invention.
  • the above-mentioned base station apparatus may be eNB 102 or gNB 108.
  • the base station apparatus shown in FIG. 6 has a transmission unit 600 that transmits an RRC message or the like to the UE 122, and a processing unit that creates an RRC message including parameters and transmits the RRC message to the UE 122 to cause the processing unit 502 of the UE 122 to perform processing. It consists of a receiving unit 604 that receives RRC messages and the like from 602 and UE 122.
  • the processing unit 602 may include some or all of the functions of various layers (for example, physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer, RRC layer, and NAS layer).
  • the processing unit 602 includes a physical layer processing unit, a MAC layer processing unit, an RLC layer processing unit, a PDCP layer processing unit, an SDAP processing unit, an RRC layer processing unit, and a part or all of the NAS layer processing unit. It's okay.
  • Fig. 9 to Fig. 11 will be used to explain the outline of MBMS transmission / reception operation using SC-PTM.
  • the terms MBMS, MBMS service, and MBMS session, which are used in the following description, may have the same meaning or may be paraphrased with each other.
  • FIG. 9 is a diagram showing the flow of the procedure for setting MBMS reception using SC-PTM.
  • FIG. 10 is a diagram showing an example of an ASN.1 description representing a field and / or an information element included in SIB20 (System Information Block Type 20) in FIG.
  • FIG. 11 is a diagram showing an example of an ASN.1 description representing a field and / or an information element included in the SC-PTM configuration message (SCPTM Configuration) in FIG.
  • SIB20 System Information Block Type 20
  • the processing unit 602 of the eNB 102 creates an RRC message SIB20 (System Information Block type 20) and transmits it from the transmitting unit 600 to the UE 122 via BCCH.
  • the receiver 500 of UE122 receives SIB20. (Step S900).
  • SIB20 includes information necessary for acquiring control information (specifically, SC-MCCH) related to MBMS transmission using SC-PTM.
  • SIB20 is a field represented by sc-mcch-ModificationPeriod that indicates the period in which the contents of SC-MCCH can be changed, and sc-mcch-RepetitionPeriod that indicates the transmission (retransmission) time interval of SC-MCCH by the number of wireless frames.
  • Fields such as sc-mcch-duration indicating the duration of the subframe in which the SC-MCCH is scheduled, and / or include some or all of the information elements.
  • the processing unit of eNB102 creates an SC-PTM configuration message (SCPTM Configuration), which is an RRC message, and sends it from the transmission unit 600 via SC-MCCH.
  • SCPTM Configuration is an RRC message
  • the receiver 500 of UE122 receives SC-PTM setting information based on the setting of SIB20.
  • SC-RNTI Single Cell RNTI
  • SC-PTM setting information includes control information applicable to MBMS reception.
  • the SC-PTM setting information is represented by a field represented by sc-mtch-InfoList containing the setting of each SC-MTCH in the cell transmitting the information, and by scptm-NeighbourCellList which is a list of adjacent cells providing MBMS. Fields, etc., and / or include some or all of the information elements.
  • the sc-mtch-InfoList contains information elements represented by one or more SC-MTCH-Info.
  • Each SC-MTCH-Info is a field represented by mbmsSessionInfo, which is MBMS session information, and is an RNTI (Radio Network Temporary Identifier) that identifies a multicast group (specifically, SC-MTCH addressed to a specific group).
  • RNTI Radio Network Temporary Identifier
  • -Fields represented by RNTI fields represented by sc-mtch-schedulingInfo, which is DRX information for SC-MTCH, and sc-mtch, which is information on neighboring cells that the MBMS session can receive using SC-MTCH.
  • mbmsSessionInfo is a part of the fields such as the identifier that identifies the MBMS bearer service, the field represented by tmgi that is TMGI (Temporary Mobile Group Identity), and the field represented by sessionId that is the identifier of the MBMS session. Including all.
  • the processing unit 502 of UE122 establishes SC-MRB (Single Cell MBMS Point to Multipoint Radio Bearer), which is a wireless bearer for receiving MBMS sessions using SC-PTM, in order to start receiving MBMS sessions of interest. Processing may be performed (step S904).
  • SC-MRB Single Cell MBMS Point to Multipoint Radio Bearer
  • the SC-MRB establishment process is performed, for example, at the start of the MBMS session, when the MBMS service of interest to UE122 enters a cell provided via SC-MRB, or when the MBMS service becomes interested. It may be activated when the limit of the UE ability for which reception of is suppressed is removed.
  • the SC-MRB establishment process may be performed when the UE 122 is in the RRC_IDLE state, or may be performed when the UE 122 is in the RRC_CONNECTED state.
  • the processing unit 502 of the UE 122 may perform a part or all of the following processes (A) to (D).
  • the processing unit 502 of UE122 receives the MBMS session via the established SC-MRB according to the above SC-PTM setting message (step S906). Prior to receiving the MBMS session, the processing unit 502 of the UE 122 notifies the eNB 102 that the MBMS service is received or is interested in receiving the MBMS service via the SC-MRB. (MBMSInterestIndication) may be created and transmitted from the transmitter 504 to the eNB 102 (not shown).
  • the MBMS interest notification message may include information on whether or not MBMS service reception is prioritized over unicast reception.
  • the MBMS interest notification message may be sent at the time of transitioning to the RRC_CONNECTED state after receiving SIB20, or after transitioning to the RRC_CONNECTED state. Further, the MBMS interest notification message may be sent when SIB20 is received at the time of handover, or may be sent when SIB20 is received at the time of reestablishing the RRC connection.
  • the processing unit 502 of UE122 may perform SC-MRB release processing in order to stop the reception of the MBMS session (step S908).
  • the SC-MRB release process is, for example, when the receiving MBMS session is stopped, when the SC-MRB leaves the established cell, when the interest in the MBMS service is lost, and the MBMS service is limited to the UE capability. It may be activated when reception is suppressed.
  • the SC-MRB release process may be performed when the UE 122 is in the RRC_IDLE state, or may be performed when the UE 122 is in the RRC_CONNECTED state.
  • the processing unit 502 of the UE 122 may perform a part or all of the following processes (A) to (B).
  • MBMS transmission / reception In addition to MBMS transmission / reception in terminal equipment from base station equipment using SC-PTM (hereinafter referred to as MBMS transmission / reception), MBMS transmission / reception using MBSFN is also standardized. However, MBMS transmission / reception using SC-PTM and MBMS transmission / reception using MBSFN use E-UTRA as the RAT. Multicast broadcast service (MBS: Multicast Broadcast Service) transmission / reception using NR as RAT has not been standardized yet.
  • MBS Multicast Broadcast Service
  • MBS, MBS service, MBS session, and MBS bearer used in the embodiments of the present invention may have the same meaning or may be paraphrased with each other.
  • MBS, MBS service, and MBS session used in the embodiment of the present invention may be terms having the same meanings as MBMS, MBMS service, and MBMS session.
  • an MBS radio bearer may be established and / or set in the UE 122 for MBS reception.
  • a wireless bearer for MBS may be established and / or set for MBS transmission in gNB108.
  • the wireless bearer for MBS will be described by using the name MRB (Multicast Radio Bearer), but another name may be used.
  • MRB Multicast Radio Bearer
  • the MRB established and / or set in the UE 122 may be an MRB for receiving MBS in a point-to-multipoint manner, and may be an MRB for receiving MBS in a one-to-one manner. It may be an MRB for receiving (point-to-point).
  • the MRB for receiving MBS on a one-to-many basis (Point-to-Multipoint) and the MBS on a one-to-one basis (Point-to-Point) are received.
  • the MRB for this may be the same MRB.
  • one MRB may have the ability to receive MBS one-to-many and the ability to receive MBS one-to-one. If one MRB has the ability to receive MBS one-to-many and one-to-many MBS, then the MRB has one or more RLCs to receive and / or transmit MBS one-to-many. It may include bearers and one or more RLC bearers for one-to-one reception and / or transmission of MBS. One or more RLC bearers for receiving and / or transmitting MBS one-to-many, where one MRB has the ability to receive MBS one-to-many and one-to-one MBS.
  • one or more RLC bearers for one-to-one reception and / or transmission of MBS may be associated with one PDCP entity. Further, one or more QoS flows may be associated with the MRB.
  • the MRB for receiving MBS on a one-to-one basis (point-to-point) may be DRB.
  • Receiving and / or transmitting MBS on a one-to-many basis may mean receiving and / or transmitting MBS via a logical channel for multicast such as MTCH or SC-MTCH. Further, receiving and / or transmitting MBS on a one-to-one basis may mean receiving and / or transmitting MBS via a dedicated user data logic channel such as DTCH. In the embodiment of the present invention, receiving and / or transmitting MBS on a one-to-many basis may be paraphrased as receiving and / or transmitting MBS by multicast.
  • receiving and / or transmitting MBS on a one-to-one basis may be paraphrased as receiving and / or transmitting MBS on a unicast basis.
  • security may be applied.
  • receiving and / or transmitting MBS one-to-many security does not have to be applied.
  • Security may be ciphering and deciphering, and / or integrity protection and verification.
  • FIG. 12 is a diagram showing an example of the flow of the MBS reception procedure in NR in the embodiment of the present invention.
  • the parameter and / or information may be a field and / or an information element in ASN.1.
  • the processing unit 602 of gNB108 creates a first SIB (System Information Block), which is one of the RRC messages, in order to broadcast the information necessary for acquiring the control information related to MBS transmission.
  • a first SIB System Information Block
  • the receiver 500 of the UE 122 receives the first SIB described above.
  • the above-mentioned first SIB may be transmitted via the BCCH logical channel, or may be transmitted via another logical channel.
  • the information necessary for acquiring the control information related to the above-mentioned MBS transmission may be information related to the MCCH (Multicast Control Channel) logical channel (sometimes referred to as MCCH in the following description).
  • MCCH Multicast Control Channel
  • the above-mentioned MCCH is MBS control information and / or MBS setting information for one or more MTCH (Multicast Traffic Channel) logical channels (sometimes referred to as MTCH in the following description) from gNB108 to UE122, and / Alternatively, it may be a point-to-multipoint downlink channel for sending MBS information. Further, the above-mentioned MTCH may be a one-to-multipoint downlink channel for transmitting MBS data from gNB108 to UE122. Further, the above-mentioned MCCH may be a multicast control channel. Further, the above-mentioned MTCH may be a multicast traffic channel.
  • MTCH Multicast Traffic Channel
  • the MTCH mentioned above may be used by a UE 122 only if it receives an MBS.
  • the above-mentioned MCCH may be referred to by another name such as MBS-MCCH or NR-MCCH.
  • the above-mentioned MTCH may be referred to by another name such as MBS-MTCH, NR-MTCH and the like.
  • the above-mentioned MCCH may be mapped to an MCH (Multicast Channel) which is a downlink transport channel, or may be mapped to a DL-SCH (Downlink Shared Channel) which is a downlink transport channel.
  • MCH Multicast Channel
  • DL-SCH Downlink Shared Channel
  • the above-mentioned MTCH may be mapped to an MCH (Multicast Channel) which is a downlink transport channel, or may be mapped to a DL-SCH (Downlink Shared Channel) which is a downlink transport channel.
  • MCH Multicast Channel
  • DL-SCH Downlink Shared Channel
  • the above-mentioned MBS control information and / or MBS setting information and / or MBS information for one or more MTCH logical channels may be included in the above-mentioned first SIB, or may be included in the above-mentioned first SIB. It may be included in a second SIB separate from the SIB.
  • the first SIB described above includes, for example, a parameter indicating a period in which the contents of the MCCH can be changed, a parameter indicating the transmission (retransmission) time interval of the MCCH, a parameter indicating the offset of the radio frame to which the MCCH is scheduled, and the MCCH being scheduled. It may include some or all of parameters such as a parameter indicating the slot to be played, a parameter indicating the duration of the slot to which the MCCH is scheduled, and the like.
  • the above-mentioned parameter related to the transmission (retransmission) time interval of MCCH may be indicated by the number of radio frames.
  • the processing unit of gNB108 may create an RRC message transmitted by the above-mentioned MCCH and transmit it from the transmission unit 600.
  • the receiver 500 of the UE 122 may receive the RRC message transmitted by the MCCH described above based on the setting of the first SIB described above.
  • a dedicated RNTI Radio Network Temporary Identifier
  • the dedicated RNTI for identifying the above-mentioned MCCH transmission
  • a specific value may be used, or a value may be set by the above-mentioned first SIB.
  • the RRC message transmitted by the MCCH described above will be described using the message name MBS setting information message, but may be another message name.
  • the above-mentioned MBS setting information message may include one or more MBS MTCH parameters, which are parameters for receiving MBS.
  • the MBS MTCH parameter is one or more such that the information element represented by SC-MTCH-InfoList in FIG. 11 contains one or more information elements represented by SC-MTCH-Info in the form of a list.
  • the MBS MTCH parameters may be included in the above MBS configuration information message in the form of a list.
  • the MBS MTCH parameter may be present for each MBS session.
  • the first MBS MTCH parameter may be present for the first MBS session
  • the second MBS MTCH parameter may be present for the second MBS session.
  • the above-mentioned parameters for MBS reception will be described using the name MBS MTCH parameter, but may be another name.
  • MBS MTCH parameters provide parameters for MBS session information, parameters for RNTI to identify multicast groups (MTCH addressed to a specific group), parameters for logical channel identifiers, parameters for DRX information for MTCH, and the same MBS.
  • Parameters indicating the list of adjacent cells to be used parameters indicating whether ROHC is applied to the MBS session, parameters related to ROHC used for the MBS session, parameters related to HFN (HyperFrameNumber), parameters related to COUNT, and status report timer. It may include some or all of the parameters such as the parameters related to.
  • the above-mentioned parameters related to MBS session information include, for example, a parameter indicating TMGI (Temporary Mobile Group Identity) which is an identifier for identifying MBS, a parameter indicating Session ID which is an identifier of MBS (or MBMS) session, and an MBS session. It may include some or all of the parameters such as the parameter indicating the PDU session and the parameter indicating the QoS flow used for the MBS session. Further, some or all of the above-mentioned MBS MTCH parameters may be contained in the above-mentioned first SIB, the above-mentioned second SIB, the above-mentioned first SIB and the above-mentioned first SIB. It may be included in a third SIB, which is separate from the second SIB.
  • TMGI Temporal Mobile Group Identity
  • the above-mentioned parameter indicating the list of adjacent cells providing the same MBS may include a parameter indicating the list of adjacent cells providing the same MBS via MTCH and / or MRB. Parameters indicating a list of adjacent cells that provide the same MBS via unicast and / or DTCH and / or DRB may be included.
  • the MBS setting information message and / or the MBS MTCH parameter may include a parameter related to the MRB setting.
  • the parameters related to the MRB setting may include a part or all of the parameters including the identifier identifying the MRB, the SDAP setting information element, and the PDCP setting information element.
  • the parameters related to the MRB setting described above may include one or more RLC bearer setting information elements.
  • the above-mentioned RLC bearer setting information element may include a part or all of an RLC setting information element for establishing and / or setting an RLC entity, and a logical channel information element for logical channel setting.
  • the above-mentioned RLC bearer setting information element may be included in an information element different from the MRB setting, and may be associated with a parameter related to the MRB setting by the above-mentioned identifier for identifying the MRB or the like.
  • the MRB settings described above may also include parameters that identify RLC bearers that receive MBS one-to-many.
  • the MRB settings described above may also include parameters that identify RLC bearers that receive MBS on a one-to-one basis.
  • the parameter for identifying the RLC bearer that receives the MBS one-to-many and / or the parameter for identifying the RLC bearer that receives the MBS one-to-one may be a logical channel identifier.
  • the parameter indicating whether ROHC is applied to the above-mentioned MBS session, and / or the parameter related to ROHC used for the MBS session, and / or the parameter related to HFN (HyperFrameNumber), and / or the parameter related to COUNT, And / or parameters related to the timer of the status report may be included in the parameters related to the MRB setting, or may be included in the PDCP setting information element.
  • the above-mentioned parameters indicating the PDU session and / or the parameters indicating the QoS flow may be included in the parameters related to the MRB setting, or may be included in the SDAP setting information element.
  • the parameter indicating the above-mentioned PDU session may be a PDU session ID.
  • the UE 122 may receive the MBS setting information message from the receiving unit 500, and the processing unit 502 may perform a process of starting the reception of the MBS session of interest. (Step S1204)
  • the processing unit 502 of UE122 may determine whether or not ROHC is applied to the MBS session of interest from the MBS setting information message received in step S1202.
  • the determination of whether ROHC is applied to the MBS session of interest is determined by whether the above-mentioned MBS setting information message and / or MBS MTCH parameter includes a parameter indicating whether or not the above-mentioned ROHC is applied. It may be done depending on whether or not.
  • the above-mentioned MBS setting information message and / or the MBS MTCH parameter for the MBS session of interest contains a parameter indicating whether or not ROHC is applied, it is determined that ROHC is applied, and the above-mentioned If the MBS setting information message and / or the MBS MTCH parameter for the MBS session of interest does not include a parameter indicating whether or not ROHC is applied, it may be determined that ROHC is not applied. In addition, whether or not ROHC is applied is determined by the above-mentioned MBS setting information message and / or the value of the parameter indicating whether or not the above-mentioned ROHC included in the MBS MTCH parameter for the MBS session of interest is applied. You can go.
  • the parameter indicating whether ROHC is applied or not included in the above-mentioned MBS setting information message and / or the MBS MTCH parameter for the MBS session of interest is a value indicating that ROHC is applied
  • ROHC The parameter indicating whether ROHC is applied or not, which is included in the above-mentioned MBS setting information message and / or MBS MTCH parameter for the MBS session of interest, indicates that ROHC is not applied. In that case, it may be judged that ROHC does not apply.
  • ROHC is applied by whether or not the above-mentioned MBS setting information message and / or the MBS MTCH parameter for the MBS session of interest includes the parameter related to ROHC used for the above-mentioned MBS session. You may judge by. That is, if the MBS setting information message and / or the MBS MTCH parameter for the MBS session of interest includes the parameter related to ROHC used for the MBS session, it may be determined that ROHC is applied. If the MBS setting information message and / or the MBS MTCH parameter for the MBS session of interest does not include the parameter related to ROHC used for the MBS session, it may be determined that ROHC is not applied.
  • the MBS session you are interested in can be rephrased as a session that UE122 wants to receive, a session that UE122 is about to receive, and so on.
  • the parameters related to ROHC used in the above-mentioned MBS session are the parameter related to the maximum value of the Context identifier (CID) used for ROHC, the parameter related to the profile used for ROHC, and PDCP reestablishment (PDCP re).
  • -Establishment may include some or all of the parameters indicating whether to continue or reset the ROHC header compression protocol.
  • the parameters related to ROHC used in the above-mentioned MBS session may include parameters related to the timing at which all header information is obtained. The timing at which all the above-mentioned header information is obtained may be a cycle in which all the header information is obtained.
  • the above-mentioned parameters related to the timing at which all header information is obtained are parameters indicating a cycle in which some or all of all header information can be changed, and the time interval in which all header information is transmitted is indicated by the number of wireless frames.
  • All the above-mentioned header information may be all header information among the header information (IP header, UDP header, TCP header, RTP header, etc.) to be compressed in ROHC.
  • the timing at which all the above header information is obtained may be rephrased as the timing at which ROHC context information is obtained. Further, the timing at which all the above header information is obtained may be rephrased as the timing at which the IR state and / or the FO state and / or the SO state are transmitted. The timing at which all the header information is obtained may be the timing at which the UE 122 starts receiving MBS or MTCH. Further, the timing at which all the above header information is obtained may be the timing at which the UE 122 should start receiving MBS or MTCH.
  • step S1204 the processing unit 502 of UE122, which determines that ROHC is applied to the MBS session of interest, needs to acquire ROHC context information based on the fact that ROHC is applied to the MBS session of interest. You can judge that. Also, in step S1204, the processing unit 502 of UE122, which determines that ROHC is not applied to the MBS session of interest, does not need to acquire ROHC context information based on the fact that ROHC is not applied to the MBS session of interest. You can judge.
  • the processing unit 502 of UE122 may perform the ROHC context acquisition process.
  • the ROHC context acquisition process described above may be that the UE 122 transitions from the RRC_IDLE state or the RRC_INACTIVE state to the RRC_CONNECTED state.
  • the transition from the RRC_IDLE state to the RRC_CONNECTED state of UE122 may be performed by the UE122 sending an RRC setup request message to gNB108 and receiving an RRC setup message from gNB108 as a response message to the above-mentioned RRC setup request message.
  • UE122 sends an RRC restart request message to gNB108, and gNB108 receives an RRC restart message or RRC setup message as a response message to the above-mentioned RRC restart request message. May be done by. Also, when UE122 transitions from the RRC_IDLE state or RRC_INACTIVE state to the RRC_CONNECTED state, or after UE122 transitions from the RRC_IDLE state or RRC_INACTIVE state to the RRC_CONNECTED state, UE122 informs gNB108 about the MBS session of interest. You may send an RRC message containing it.
  • an MRB for receiving an MBS session on a one-to-one basis or a DRB for receiving an MBS session may be established and / or set.
  • MRB for receiving MBS sessions on a one-to-one basis is one or more RLC bearers for receiving MBS sessions on a one-to-many basis and one or more for receiving MBS sessions on a one-to-one basis. It may be a wireless bearer including the RLC bearer of.
  • establishing and / or setting an MRB to receive an MBS session on a one-to-one basis means receiving an MRB session on a one-to-one basis to an MRB that has only an RLC bearer to receive an MRB session on a one-to-many basis.
  • the RLC bearer for this may be additionally established and / or set.
  • An additional RLC bearer for receiving MRB sessions on a one-to-one basis is established and / or configured as described above for an established and / or established RLC bearer for receiving an MBS session on a one-to-one basis.
  • the above-mentioned ROHC context acquisition process may be performed by the UE 122 receiving the above-mentioned interested MBS session on a one-to-one basis.
  • the above-mentioned ROHC context acquisition process in step S1204 may be performed according to the parameters related to ROHC included in the above-mentioned MBS setting information message and / or MBS MTCH parameter for the MBS session of interest.
  • the UE 122 may acquire the timing information at which all the header information is obtained according to the above-mentioned parameters related to the timing at which all the header information is obtained, and may acquire the ROHC context information at the timing when all the header information is obtained.
  • the UE 122 acquires the timing information from which all the header information is obtained according to the parameters related to the timing at which all the header information is obtained in the RRC of the UE 122, and the information including a part or all of the acquired timing information is the UE 122.
  • ROHC context information may be acquired at the timing when all header information is obtained by notifying the MAC entity of.
  • the information of RNTI used for one-to-many reception of the MBS session may be sent together.
  • UE122 performs the ROHC context acquisition process according to the parameters related to ROHC included in the above-mentioned MBS setting information message and / or MBS MTCH parameter for the MBS session of interest. You can go.
  • the timing at which all the above header information is obtained may be rephrased as the timing at which the IR state and / or the FO state and / or the SO state are used. Further, the timing at which all the above header information is obtained may be rephrased as the timing at which ROHC context information is obtained. Further, the timing at which all the above header information is obtained may be rephrased as the timing at which reception of MBS or MTCH is started. Further, the timing at which all the above-mentioned header information is obtained means the timing at which all the information contained in the header (IP header, UDP header, TCP header, RTP header, etc.) subject to header compression in ROHC is obtained. Can be paraphrased into the term. (Step S1206)
  • step S1204 the processing unit 502 of the UE 122 determines that ROHC is not applied to the MBS session of interest, or that it is not necessary to acquire the ROHC context information, the processing unit 502 of the UE 122 determines that the ROHC context information is not applied. It may be judged that the transition to the RRC_CONNECTED state for the purpose of acquisition is not necessary. If, in step S1204, the processing unit 502 of the UE 122 determines that ROHC is not applied to the MBS session of interest, or that it is not necessary to acquire the ROHC context information, the processing unit 502 of the UE 122 is in the RRC_IDLE state or RRC_INNACTIVE.
  • MBS service may be received without acquiring ROHC context information. If, in step S1204, the processing unit 502 of the UE 122 determines that ROHC is not applied to the MBS session of interest, or that it is not necessary to acquire the ROHC context information, the processing unit 502 of the UE 122 determines that the RRC_CONNECTED state is used. MBS service may be received without acquiring ROHC session information. (Step S1206)
  • the processing unit 502 of UE122 may determine whether the MBS setting information message received in step S1202 contains a parameter related to HFN (HyperFrameNumber) for the MBS session of interest.
  • HFN-related parameters may be HFN-related parameters used or used by gNB108 for MBS session transmission.
  • the above-mentioned HFN-related parameter may be a parameter indicating that the UE 122 needs to acquire the value of the HFN used or used by the gNB 108 for MBS session transmission.
  • the HFN used or used by gNB108 for MBS session transmission may be an HFN which is a state variable of the transmitting PDCP entity used or used by gNB108 for MBS session transmission.
  • the gNB 108 may set the latest value of the HFN of the transmitting PDCP entity that the gNB 108 uses or uses for MBS session transmission as a parameter for HFN when transmitting the MBS configuration information message.
  • the above-mentioned parameter related to HFN may be a parameter related to the timing at which the value of HFN is sent from gNB108 using MCCH or MTCH.
  • the timing at which the HFN value is sent from gNB108 using MCCH or MTCH is, for example, a parameter indicating the period during which the HFN value can be changed, a parameter indicating the time interval at which the HFN value is transmitted by the number of radio frames, and HFN.
  • gNB108 is the latest HFN value of the transmitting PDCP entity that gNB108 uses or uses for MBS session transmission, or the last HFN value used for MBS session transmission, when the HFN value is sent. , Or the value of HFN used for the next MBS session transmission may be set in the RRC message and / or PDCP control PDU and transmitted.
  • step S1204 the processing unit 502 of UE122 determines that the received MBS configuration information message contains parameters related to HFN for the MBS session of interest
  • the RRC of UE122 determines the parameters related to HFN described above. You may get the value of HFN according to and notify the PDCP entity of MRB of UE122. Further, the RRC of UE122 may be processed so that the PDCP entity of MRB of UE122 can acquire the value of HFN according to the above-mentioned parameters related to HFN.
  • the RRC of UE122 acquires the timing information regarding the timing at which the HFN value is sent, and notifies the MAC entity of UE122 of the information including a part or all of the acquired timing information.
  • the RRC of UE122 and / or the PDCP entity of MRB may be processed so that the value of HFN can be acquired at the timing when the value of HFN is sent.
  • the information of RNTI used for one-to-many reception of the MBS session may be sent together.
  • the PDCP entity of MRB of UE122 may set the value of HFN notified from the upper layer or the value of HFN acquired by receiving the PDCP control PDU as the HFN of the receiving PDCP entity.
  • step S1204 the processing unit 502 of the UE 122 determines that the received MBS setting information message contains parameters related to HFN for the MBS session of interest, the UE 122 is moved from the RRC_IDLE state or the RRC_INACTIVE state. , RRC_CONNECTED state may be transitioned.
  • the RRC of UE122 in the RRC_CONNECTED state may acquire the HFN value by receiving the RRC message including the HFN value from gNB108 via DCCH.
  • the RRC of UE122 may notify the PDCP entity of MRB of UE122 of the above-mentioned acquired HFN value.
  • the PDCP entity of MRB of UE122 may set the value of HFN notified from the upper layer as the HFN of the receiving PDCP entity.
  • the processing unit 502 of UE122 may determine whether the MBS setting information message received in step S1202 contains a parameter related to COUNT for the MBS session of interest.
  • the parameter related to COUNT described above may be a parameter related to the COUNT value used or used by gNB108 for MBS session transmission.
  • the above-mentioned COUNT parameter may be a parameter indicating that the UE 122 needs to acquire the COUNT value used or used by gNB108 for MBS session transmission.
  • the COUNT value used or used by gNB108 for MBS session transmission may be the COUNT value which is the state variable of the transmitting PDCP entity used or used by gNB108 for MBS session transmission.
  • gNB108 may set the latest value of the COUNT value of the transmitting PDCP entity used by gNB 108 for MBS session transmission in the parameter related to COUNT.
  • the above-mentioned parameter related to COUNT may be a parameter related to the timing at which the COUNT value is sent from gNB108 using MCCH or MTCH.
  • the timing at which the COUNT value is sent from gNB108 using MCCH or MTCH is, for example, a parameter indicating the cycle in which the COUNT value can be changed, a parameter indicating the time interval in which the COUNT value is transmitted in terms of the number of radio frames, and the COUNT value being scheduled.
  • gNB108 is the latest COUNT value of the transmitting PDCP entity used or used by gNB108 for MBS session transmission at the time the COUNT value is sent, or the last COUNT value used for MBS session transmission.
  • the COUNT value used for the next MBS session transmission may be set in the RRC message and / or the PDCP control PDU and transmitted.
  • step S1204 the processing unit 502 of UE122 determines that the received MBS configuration information message contains a parameter related to COUNT for the MBS session of interest
  • the RRC of UE122 determines the parameter related to COUNT described above. You may get the COUNT value according to and notify the PDCP entity of MRB of UE122. Further, the RRC of UE122 may perform processing so that the PDCP entity of MRB of UE122 can acquire the COUNT value according to the above-mentioned parameters related to COUNT.
  • the RRC of UE122 is a parameter related to the timing when the COUNT value is sent as described above.
  • the timing information when the COUNT value is sent may be acquired and notifying the MAC entity of UE122 of the information including a part or all of the acquired timing information.
  • It may be processed so that the RRC of UE122 and / or the PDCP entity of MRB can acquire the COUNT value at the timing when the COUNT value is sent.
  • the information of RNTI used for one-to-many reception of the MBS session may be sent together.
  • the PDCP entity of the MRB of UE122 may set the COUNT value notified from the upper layer or obtained by receiving the PDCP control PDU as the COUNT value of the receiving PDCP entity.
  • step S1204 the processing unit 502 of the UE 122 determines that the received MBS setting information message contains a parameter related to COUNT for the MBS session of interest, the UE 122 is moved from the RRC_IDLE state or the RRC_INACTIVE state. , RRC_CONNECTED state may be transitioned.
  • the RRC of UE122 in the RRC_CONNECTED state may acquire the COUNT value by receiving the RRC message including the COUNT value from gNB108 via DCCH.
  • the RRC of UE122 may notify the PDCP entity of MRB of UE122 of the obtained COUNT value described above.
  • the PDCP entity of MRB of UE122 may set the COUNT value notified from the upper layer as the COUNT value of the receiving PDCP entity.
  • step S1204 when the PDCP entity of MRB of UE122 sets the COUNT value notified from the upper layer or the COUNT value acquired by receiving the PDCP control PDU as the COUNT value of the receiving PDCP entity. , On the receiving side of the PDCP entity, it may be set in a state variable indicating the COUNT value of PDCP SDU that is expected to be received next.
  • the PDCP entity of MRB of UE122 sets the COUNT value notified from the upper layer or the COUNT value acquired by receiving the PDCP control PDU as the COUNT value of the receiving PDCP entity
  • the PDCP entity On the receiving side it may be set in a state variable indicating the COUNT value of the first PDCP PDU among the PDCP SDUs waiting to be received that have not been delivered to the upper layer.
  • the PDCP entity of MRB of UE122 sets the COUNT value notified from the upper layer or the COUNT value acquired by receiving the PDCP control PDU as the COUNT value of the receiving PDCP entity, the above-mentioned COUNT The value may be set separately for the HFN part and the SN (Sequence Number) part.
  • step S1204 if the processing unit 502 of UE122 determines that the parameter related to HFN is not included for the MBS session of interest, and / or the parameter related to COUNT is not included for the MBS session of interest. If it is determined that, the processing unit 502 of UE122 may determine that the transition to the RRC_CONNECTED state for the purpose of acquiring the HFN value and / or the COUNT value is not necessary. Also, in step S1204, if the processing unit 502 of UE122 determines that the parameter related to HFN is not included for the MBS session of interest, and / or the parameter related to COUNT is not included for the MBS session of interest.
  • the processing unit 502 of the UE 122 may receive the MBS service in the RRC_IDLE state or the RRC_INNACTIVE state without acquiring the HFN value and / or the COUNT value. Also, in step S1204, if the processing unit 502 of UE122 determines that the parameter related to HFN is not included for the MBS session of interest, and / or the parameter related to COUNT is not included for the MBS session of interest. If it is determined that, the processing unit 502 of UE122 may receive the MBS service in the RRC_CONNECTED state without acquiring the HFN value and / or the COUNT value. (Step S1206)
  • the processing unit 502 of UE122 may determine whether the MBS setting information message received in step S1202 contains a parameter related to the timer of the status report for the MBS session of interest.
  • the parameter related to the timer of the above-mentioned status report may be the value of the timer used for transmitting the PDCP status report. If it is determined that the received MBS configuration information message contains parameters related to the timer of the status report for the MBS session of interest, the processing unit 502 of UE122 will use the timer used to send the received PDCP status report. You may set the value.
  • the timer used to send the PDCP status report may be used by the PDCP entity of UE122 to detect the loss of PDCP PDU or PDCP PDU.
  • the timer used to send the PDCP status report may be a timer that runs only once per PDCP entity. Further, the timer used for transmitting the PDCP status report may be started or restarted when the UE 122 detects the loss of the PDCP PDU or the PDCP PDU. For example, the timer used to send the PDCP status report is that when the PDCP of UE122 receives the PDCP data PDU from the lower layer, the timer used to send the PDCP status report is not running and / or is received next.
  • the state variable indicating the COUNT value of the PDCP SDU that is expected to be indicates the COUNT value of the first PDCP PDU among the PDCP SDUs waiting to be received that have not been delivered to the upper layer. It may be started or restarted based on a condition that includes being larger than a variable (eg, a state variable named RX_DELIV). Further, the timer used for transmitting the PDCP status report may be stopped and / or reset when the UE 122 has no loss of PDCP PDU or PDCP PDU.
  • the timer used to send a PDCP status report is a state variable that indicates that the timer used to send a PDCP status report is running and / or the COUNT value of the PDCP SDU that is expected to be received next. For example, based on the fact that the state variable named RX_NEXT) is equal to the state variable indicating the COUNT value of the first PDCP PDU among the PDCP SDUs waiting to be received that have not been delivered to the upper layer (for example, the state variable named RX_DELIV). , Stop and / or may be reset. The above equality may be paraphrased as greater than or equal to. Further, the above equality may be paraphrased as less than or equal.
  • the status report of the PDCP entity of MRB may be triggered based on the expiration of the timer used to send the PDCP status report.
  • the timer used to send the PDCP status report may be stopped and / or reset based on the PDCP entity being requested to suspend by the higher layer.
  • the timer used to send the PDCP status report may be stopped and / or reset based on the PDCP entity being requested to be reestablished by the higher layer.
  • the timer used to send the PDCP status report may be stopped and / or reset based on the PDCP entity being requested to be reset by the upper layer.
  • MRB may be established and / or set for each MBS session in which UE122 is interested.
  • the processing in step S1204 may be performed on the corresponding MRB.
  • the processing unit 502 of the UE 122 may perform one or more MRB establishment processes in order to start the reception of the MBS session of interest. ..
  • MRB establishment process for example, at the start of the MBS session, the MBS service that UE122 is interested in enters the cell provided via MRB, the MBS service is interested, and the reception of the MBS service is suppressed. It may be activated based on the fact that the limit of the UE ability that has been used has been removed.
  • the MRB establishment process may be performed when the UE 122 is in the RRC_IDLE state, may be performed when the UE 122 is in the RRC_INACTIVE state, or may be performed when the UE 122 is in the RRC_CONNECTED state. Further, the MRB establishment process may be started based on the fact that the RRC message suggesting that the MRB is established from gNB108 is received via DCCH when the UE 112 is in the RRC_CONNECTED state.
  • the RRC message suggesting establishing the MRB described above may include some or all of the parameters contained in the MBS configuration information message in step S1202 described above.
  • the processing unit 502 of UE122 establishes the default setting information for each entity owned by UE122, the parameters related to the MBS setting included in the MBS setting information message received via MCCH in step S1202, and the MRB received via DCCH described above.
  • the MRB establishment process may be performed using the setting information including some or all of the parameters related to the MBS setting included in the RRC message suggesting the operation.
  • the processing unit 502 of the UE 122 may perform a process including a part or all of the following processes (A) to (M).
  • C Establish and / or set the RLC entity according to the default settings for MRB establishment or the settings received from the base station.
  • (D) Establish and / or set the RLC entity of the RLC bearer that receives MBS one-to-many according to the default setting for MRB establishment or the setting received from the base station.
  • (E) Set the logical channel of the RLC bearer that receives MBS one-to-many to the MAC entity according to the default setting for establishing MRB or the setting received from the base station.
  • (F) Associate the RLC bearer or RLC bearer logical channel established and / or set in process (D) and / or process (E) with the PDCP entity established and / or set in process (B).
  • (G) Establish and / or set the RLC entity of the RLC bearer that receives MBS on a one-to-one basis according to the default settings for establishing MRB or the settings received from the base station.
  • (H) Set the logical channel of the RLC bearer that receives MBS on a one-to-one basis to the MAC entity according to the default settings for establishing MRB or the settings received from the base station.
  • (I) Associate the RLC bearer or RLC bearer logical channel established and / or set in process (G) and / or process (H) with the PDCP entity established and / or set in process (B).
  • (J) Associate the SDAP entity with the established MRB.
  • (K) Notify the establishment of MRB by notifying the upper layer of information including a part or all of TMGI, Session ID, PDU session ID, and QoS flow corresponding to the established MRB.
  • L If the encryption function is not disabled (ciphering disabled) for the PDCP entity of this MRB, the encryption algorithm is set for the PDCP entity established in process (B) and the master key is set. Apply the master or secondary key according to the parameters that indicate whether to use or use the secondary key.
  • (M) If integrity protection is set for the PDCP entity of this MRB, set the integrity protection algorithm for the PDCP entity established in process (B) and use the master key or the secondary key. The master key or secondary key is applied according to the parameter indicating.
  • the processing unit 502 of UE122 When the PDCP status report is started in the PDCP entity of one or more MRBs, the processing unit 502 of UE122 that has established one or more MRBs may create a PDCP status report and send it to gNB108.
  • the processing unit 502 of UE122 creates a PDCP status report in the PDCP entity of MRB
  • the created PDCP status report is linked to the PDCP entity of MRB to the RLC entity of RLC bearer that receives MBS on a one-to-one basis. It is not necessary to submit to the RLC bearer RLC entity that receives MBS one-to-many, which is associated with the PDCP entity of MRB.
  • Step S1208 Submit the above-mentioned "Created PDCP status report to RLC bearer RLC entity that receives MBS one-to-one, which is associated with MRB PDCP entity, and MBS one-to-many associated with MRB PDCP entity. "You do not have to submit it to the RLC entity of the RLC bearer received by.”, "The created PDCP status report is linked to the PDCP entity of MRB, and the RLC entity of the RLC bearer that receives MBS on a one-to-one basis. You may submit it only to. " Note that PDCP reporting in the PDCP entity of MRB may be activated only for MRB for which PDCP status report transmission is set from the upper layer. (Step S1208)
  • step S1208 when the PDCP status report is activated in one or more MRB PDCP entities, the processing unit 502 of UE122 associates the MRB PDCP entity with an RLC bearer that receives MBS on a one-to-one basis. Create a PDCP status report based on the fact that the RLC bearer that receives MBS on a one-to-one basis is linked, and the created status report is received on an RLC on a one-to-one basis as described above. You may only submit to Beara's RLC entity.
  • the processing unit 502 of the UE 122 determines whether the RLC bearer that receives the MBS on a one-to-one basis is associated with the PDCP entity of the MRB, and sets the MBS to 1. It is not necessary to create a PDCP status report based on the fact that the RLC bearer received on a one-to-one basis is not linked.
  • step S1208 when the PDCP status report is started in one or more MRB PDCP entities, the processing unit 502 of UE122 creates a PDCP status report and assigns MBS to the MRB PDCP entity on a one-to-one basis. Determine if the RLC bearer to be received is linked, and receive the MBS on a one-to-one basis. It may only be submitted to the RLC entity of the RLC bearer.
  • the processing unit 502 of UE122 creates a PDCP status report when the PDCP status report is started in the PDCP entity of MRB, and is the RLC bearer that receives MBS on a one-to-one basis linked to the PDCP entity of MRB?
  • the processing unit 502 of UE122 creates a PDCP status report when the PDCP status report is started in the PDCP entity of MRB, and is the RLC bearer that receives MBS on a one-to-one basis linked to the PDCP entity of MRB? You may discard the created PDCP status report based on the fact that the RLC bearer that receives MBS on a one-to-one basis is not linked.
  • the RLC entity of the RLC bearer that receives the above-mentioned MBS on a one-to-one basis may be an AM RLC entity.
  • the RLC entity associated with the RLC bearer that receives the above-mentioned MBS on a one-to-one basis may be a bidirectional UM RLC entity.
  • the RLC entity associated with the RLC bearer that receives the above-mentioned MBS on a one-to-one basis may be a transmission UMRLC entity and / or a reception UMRLC entity of a unidirectional UMRLC entity.
  • the PDCP status report may be started based on the request for transmission of the PDCP status report from the RRC layer or the upper layer.
  • the request for transmission of the PDCP status report from the above-mentioned RRC layer or higher layer may mean that the PDCP data recovery is requested from the RRC layer or higher layer.
  • the activation of the PDCP status report may be performed based on the release, suspension, or deactivation of one or more RLC bearers associated with the PDCP entity of MRB.
  • the PDCP status report may be activated when the timer of the above-mentioned status report set in step S1204 has expired in the PDCP entity.
  • the activation of the PDCP status report may be performed based on the fact that the RLC bearer that receives the MRB is switched.
  • the above-mentioned switching of the RLC bearer that receives the MRB means that the RLC bearer that receives the MRB has switched from the RLC bearer that receives the MBS one-to-many to the RLC bearer that receives the MBS one-to-one. good.
  • the above-mentioned RLC bearer that receives MRB is switched because the RLC bearer that receives MRB is switched from the RLC bearer that receives MBS one-to-one to the RLC bearer that receives MBS one-to-many. May be.
  • step S1208 if the RRC message received by the UE 122 from the gNB 108 contains a parameter indicating a request for PDCP status report transmission to one or more MRBs of the UE 122, the processing unit 502 of the UE 122 determines the UE 122.
  • the RRC may request the PDCP layer of the MRB of UE122 to send a PDCP status report.
  • the above-mentioned RRC message may be an RRC message sent via DCCH or an RRC message sent via MCCH.
  • the parameters that mean the request for PDCP status report transmission to one or more MRBs described above may include an identifier that identifies the MRB and some or all of the parameters related to the information of the MBS session.
  • step S1208 when UE122 receives an RRC message indicating a request for PDCP status report transmission from gNB108, the processing unit 502 of UE122 transmits a PDCP status report from RRC of UE122 to the PDCP layer of MRB of UE122. May be requested.
  • the RRC message meaning the request for transmission of the PDCP status report described above may be an RRC message sent via DCCH or an RRC message sent via MCCH.
  • the RRC message which means the request to send the PDCP status report described above, may include an identifier that identifies the MRB and some or all of the parameters related to the MBS session information.
  • step S1208 the processing unit 502 of the UE 122 performs a counter check process based on the fact that the RRC message (counter check message) for the counter check is received from the gNB 108 to one or more MRBs of the UE 122. Then, the result may be set in an RRC message (counter check response message) for a counter check response and reported to gNB108.
  • the above-mentioned RRC message for counterchecking is an identifier that identifies the MRB, parameters related to MBS session information, and the most significant bit of the uplink and / or downlink COUNT value associated with the MRB. : MSB) May include some or all of the values.
  • the above RRC message for countercheck informs gNB108 to UE122 of the MSB value of the current COUNT value associated with the MSB of gNB108 and the MSB of the current COUNT value associated with the MSB of UE122. It may be a message requesting that the comparison result with the value be reported from UE122 to gNB108.
  • the processing unit 502 of the UE 122 may perform a process including a part or all of the following processes (A) to (D) on the MRB established in the UE 122.
  • the RRC message for countercheck contains the MSB value of the COUNT value in the uplink direction and / or the downlink direction for the MRB received above in the uplink direction and / or the downlink direction.
  • the COUNT value for the uplink direction and / or the downlink direction held by UE122 is counter-checked.
  • RRC message for. For MRBs whose RRC message for countercheck contains an identifier that identifies the MRB and / or a parameter related to MBS session information, COUNT for the uplink direction and / or downlink direction held by UE122. Set the value in the RRC message for the countercheck response.
  • the MBS session you are interested in may be paraphrased as an MBS session.
  • the RLC bearer that receives MBS on a one-to-one basis may be an RLC bearer that sends feedback to MBS to gNB108.
  • RLC bearer may be paraphrased as RLC entity. Further, in the above description, the RLC bearer may be paraphrased as a logical channel.
  • the PDCP entity may be a receiving PDCP entity and / or a transmitting PDCP entity.
  • ROHC may be paraphrased as Ethernet Header Compression (EHC).
  • the terminal device efficiently controls the MBS using NR by transmitting the PDCP status report only to the RLC bearer that receives the MBS on a one-to-one basis.
  • the radio bearer in the above description may be a part or all of DRB, SRB, and MRB.
  • SCG SpCell may be paraphrased as "PS Cell”.
  • A may be paraphrased as B
  • B may include the meaning of paraphrasing B as A in addition to paraphrasing A as B.
  • C may be D
  • C C may be E
  • D may be E
  • F may be G
  • G G may be H
  • F H
  • condition "A” and the condition "B” are contradictory, the condition “B” may be expressed as the “other” condition of the condition "A”. good.
  • a terminal device that communicates with a base station device, wherein the terminal device is a first RLC bearer for receiving one-to-many MBS and a second RLC for receiving one-to-one MBS. Having a bearer, the first RLC bearer and the second RLC bearer are associated with the same PDCP entity, and when the PDCP entity creates a PDCP status report, the PDCP status report is referred to as the second. Submit only to RLC bearers.
  • a method of a terminal device that communicates with a base station device wherein the terminal device is a first RLC bearer for receiving one-to-many MBS, and a second for receiving MBS one-to-one.
  • the first RLC bearer and the second RLC bearer are associated with the same PDCP entity, and when the PDCP entity creates a PDCP status report, the PDCP status report is linked to the PDCP status report. Submit only to the second RLC bearer.
  • the program that operates on the device according to one aspect of the present invention is a program that controls a Central Processing Unit (CPU) or the like to operate a computer so as to realize the functions of the above-described embodiment related to one aspect of the present invention. There may be.
  • the program or the information handled by the program is temporarily read into volatile memory such as Random Access Memory (RAM) at the time of processing, or stored in non-volatile memory such as flash memory or Hard Disk Drive (HDD), and is required.
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • a part of the apparatus in the above-described embodiment may be realized by a computer.
  • a program for realizing this control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by a computer system and executed.
  • the term "computer system” as used herein is a computer system built into a device and includes hardware such as an operating system and peripheral devices.
  • the "computer-readable recording medium” may be any of a semiconductor recording medium, an optical recording medium, a magnetic recording medium, and the like.
  • a "computer-readable recording medium” is a medium that dynamically holds a program for a short period of time, such as a communication line when a program is transmitted via a network such as the Internet or a communication line such as a telephone line.
  • a program may be held for a certain period of time, such as a volatile memory inside a computer system serving as a server or a client.
  • the above-mentioned program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system.
  • each functional block or feature of the device used in the above-described embodiment can be implemented or executed in an electric circuit, that is, typically an integrated circuit or a plurality of integrated circuits.
  • Electrical circuits designed to perform the functions described herein can be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or others.
  • Programmable Logic Devices Discrete Gate or Transistor Logic, Discrete Hardware Components, or Combinations thereof.
  • the general purpose processor may be a microprocessor or instead the processor may be a conventional processor, controller, microcontroller, or state machine.
  • the general-purpose processor or each of the above-mentioned circuits may be composed of a digital circuit or an analog circuit.
  • an integrated circuit technology that replaces the current integrated circuit appears due to advances in semiconductor technology, it is also possible to use an integrated circuit based on this technology.
  • the invention of the present application is not limited to the above-described embodiment.
  • an example of the device has been described, but the present invention is not limited to this, and the present invention is not limited to this, and the stationary or non-movable electronic device installed indoors and outdoors, for example, an AV device, a kitchen device, and the like. It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other living equipment.
  • One aspect of the present invention is used in, for example, a communication system, a communication device (for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (for example, a communication chip), a program, or the like. be able to.
  • a communication device for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device
  • an integrated circuit for example, a communication chip
  • a program or the like.
  • E-UTRA 102 eNB 104 EPC 106 NR 108 gNB 110 5GC 112, 114, 116, 118, 120, 124 interfaces 122 UE 200, 300 PHY 202, 302 MAC 204, 304 RLC 206, 306 PDCP 208, 308 RRC 310 SDAP 210, 312 NAS 500, 604 receiver 502, 602 Processing unit 504, 600 transmitter

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This terminal device has a first RLC bearer for receiving one-to-many MBS and a second RLC bearer for receiving one-to-one MBS, the first RLC bearer and the second RLC bearer are linked to the same PDCP entity, and when a PDCP status report is created, the PDCP entity submits the PDCP status report only to the second RLC bearer.

Description

端末装置および方法Terminal devices and methods
 本発明は、端末装置および方法に関する。
 本願は、2020年10月13日に日本に出願された特願2020-172376号について優先権を主張し、その内容をここに援用する。
The present invention relates to terminal devices and methods.
The present application claims priority with respect to Japanese Patent Application No. 2020-172376 filed in Japan on October 13, 2020, the contents of which are incorporated herein by reference.
 セルラ移動通信システムの標準化プロジェクトである、第3世代パートナーシッププロジェクト(3rd Generation Partnership Project: 3GPP)において、無線アクセス、コアネットワーク、サービス等を含む、セルラ移動通信システムの技術検討及び規格策定が行われている。 In the 3rd Generation Partnership Project (3GPP), which is a standardization project for cellular mobile communication systems, technical studies and standard development of cellular mobile communication systems including wireless access, core networks, services, etc. have been carried out. There is.
 例えば、E-UTRA(Evolved Universal Terrestrial Radio Access)は、3GPPにおいて、第3.9世代および第4世代向けセルラ移動通信システム向け無線アクセス技術(Radio Access Technology: RAT)として、技術検討及び規格策定が開始された。現在も3GPPにおいて、E-UTRAの拡張技術の技術検討及び規格策定が行われている。なお、E-UTRAは、Long Term Evolution(LTE: 登録商標)とも称し、拡張技術をLTE-Advanced(LTE-A)、LTE-Advanced Pro(LTE-A Pro)と称する事もある。(非特許文献2等) For example, E-UTRA (Evolved Universal Terrestrial Radio Access) has started technical studies and standardization as a radio access technology (Radio Access Technology: RAT) for cellular mobile communication systems for the 3.9th and 4th generations in 3GPP. rice field. At 3GPP, technical studies and standardization of E-UTRA extended technology are still underway. In addition, E-UTRA is also referred to as LongTermEvolution (LTE: registered trademark), and the extended technology may be referred to as LTE-Advanced (LTE-A) or LTE-Advanced Pro (LTE-A Pro). (Non-Patent Document 2 etc.)
 また、NR(New Radio、またはNR Radio access)は、3GPPにおいて、第5世代(5th Generation: 5G)向けセルラ移動通信システム向け無線アクセス技術(Radio Access Technology: RAT)として、技術検討及び規格策定が開始された。現在も3GPPにおいて、NRの拡張技術の技術検討及び規格策定が行われている。(非特許文献1等) In addition, NR (New Radio or NR Radio access) is a radio access technology (Radio Access Technology: RAT) for cellular mobile communication systems for the 5th generation (5th Generation: 5G) in 3GPP, and technical studies and standard formulation are underway. It was started. At 3GPP, technical studies and standardization of NR extended technology are still underway. (Non-Patent Document 1 etc.)
 E-UTRAの拡張技術検討の一つとして、マルチキャスト/ブロードキャストサービスを提供するために、MBMS(Multimedia Broadcast Multicast Service)伝送技術が規格化されている。MBMS伝送には、MBSFN(Multicast Broadcast Single Frequency Network)又はSC-PTM(Single Cell Point-To-Multipoint)を用いた伝送が用いられる。 MBMS (Multimedia Broadcast Multicast Service) transmission technology has been standardized in order to provide multicast / broadcast services as one of the studies on E-UTRA extended technology. For MBMS transmission, transmission using MBSFN (Multicast Broadcast Single Frequency Network) or SC-PTM (Single Cell Point-To-Multipoint) is used.
 MBSFNを用いた伝送は、複数のセルからなるMBSFN(Multicast-Broadcast Single-Frequency Network)エリア単位で、PMCH(Physical Multicast Channel)を用いて、マルチキャスト/ブロードキャストデータの送信を行う。これに対し、SC-PTMを用いた伝送は、セル単位で、PDSCH(Physical Downlink Shared Channel)を用いて、マルチキャストデータの送信を行う。 For transmission using MBSFN, multicast / broadcast data is transmitted using PMCH (Physical Multicast Channel) in MBSFN (Multicast-Broadcast Single-Frequency Network) area units consisting of multiple cells. On the other hand, in the transmission using SC-PTM, multicast data is transmitted using PDSCH (Physical Downlink Shared Channel) on a cell-by-cell basis.
 一方、NRの拡張技術としての、マルチキャスト/ブロードキャストサービス(Multicast Broadcast Service: MBS)が検討されている。NRを介してMBSを行う場合、E-UTRAとは異なるNR特有技術や、5G向けに規格策定されたコアネットワーク等を考慮する必要がある。しかしNRを用いて効率的にMBSを制御するための詳細な動作については、まだ検討がなされていない。 On the other hand, a multicast / broadcast service (Multicast Broadcast Service: MBS) is being considered as an extension technology for NR. When performing MBS via NR, it is necessary to consider NR-specific technologies that are different from E-UTRA and core networks that have been standardized for 5G. However, the detailed operation for efficiently controlling MBS using NR has not yet been investigated.
 本発明の一態様は、上記した事情に鑑みてなされたもので、NRを用いて効率的にMBSを制御することができる端末装置、基地局装置、及び方法を提供することを目的の一つとする。 One aspect of the present invention has been made in view of the above circumstances, and one of the objects is to provide a terminal device, a base station device, and a method capable of efficiently controlling MBS using NR. do.
 上記の目的を達成するために、本発明の一態様は、以下のような手段を講じた。すなわち本発明の一態様は、基地局装置と通信する端末装置であって、前記端末装置は、MBSを1対多受信するための第1のRLCベアラ、及びでMBSを1対1受信するための第2のRLCベアラを有し、前記第1のRLCベアラ及び前記第2のRLCベアラは、同一のPDCPエンティティに紐づき、前記PDCPエンティティは、PDCPステータスレポートを作成した場合、前記PDCPステータスレポートを、前記第2のRLCベアラのみに提出する。 In order to achieve the above object, one aspect of the present invention has taken the following measures. That is, one aspect of the present invention is a terminal device that communicates with the base station device, and the terminal device receives the MBS one-to-one with the first RLC bearer for receiving one-to-many MBS. The first RLC bearer and the second RLC bearer are associated with the same PDCP entity, and the PDCP entity creates the PDCP status report, the PDCP status report. Is submitted only to the second RLC bearer.
 また本発明の一態様は、基地局装置と通信する端末装置の方法であって、前記端末装置は、MBSを1対多受信するための第1のRLCベアラ、及びでMBSを1対1受信するための第2のRLCベアラを有し、前記第1のRLCベアラ及び前記第2のRLCベアラは、同一のPDCPエンティティに紐づき、前記PDCPエンティティは、PDCPステータスレポートを作成した場合、前記PDCPステータスレポートを、前記第2のRLCベアラのみに提出する。 Further, one aspect of the present invention is a method of a terminal device that communicates with a base station device, wherein the terminal device receives a one-to-one MBS with a first RLC bearer for receiving one-to-many MBS. The first RLC bearer and the second RLC bearer are associated with the same PDCP entity, and the PDCP entity creates the PDCP status report, the PDCP. Submit the status report only to the second RLC bearer mentioned above.
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。 It should be noted that these comprehensive or specific embodiments may be realized in a system, an apparatus, a method, an integrated circuit, a computer program, or a recording medium, and the system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium may be realized. It may be realized by any combination of.
 本発明の一態様によれば、端末装置、基地局装置、および方法は、NRを用いた効率的なMBS制御を実現することができる。 According to one aspect of the present invention, the terminal device, the base station device, and the method can realize efficient MBS control using NR.
本発明の実施の形態に係る通信システムの概略図。The schematic diagram of the communication system which concerns on embodiment of this invention. 本発明の実施の形態に係るE-UTRAプロトコル構成の一例の図。The figure of an example of the E-UTRA protocol composition which concerns on embodiment of this invention. 本発明の実施形態に係るNRプロトコル構成の一例の図。The figure of an example of the NR protocol composition which concerns on embodiment of this invention. 本発明の実施の形態に係るRRCにおける、各種設定のための手順のフローの一例を示す図。The figure which shows an example of the flow of the procedure for various setting in RRC which concerns on embodiment of this invention. 本発明の実施の形態における端末装置の構成を示すブロック図。The block diagram which shows the structure of the terminal apparatus in embodiment of this invention. 本発明の実施の形態における基地局装置の構成を示すブロック図。The block diagram which shows the structure of the base station apparatus in embodiment of this invention. 本発明の実施の形態におけるNRでのRRCコネクションの再設定に関するメッセージに含まれるASN.1記述の一例。An example of the ASN.1 description contained in the message relating to the reconfiguration of the RRC connection in NR according to the embodiment of the present invention. 本発明の実施の形態におけるE-UTRAでのRRCコネクションの再設定に関するメッセージに含まれるASN.1記述の一例。An example of the ASN.1 description contained in the message regarding the resetting of the RRC connection in E-UTRA in the embodiment of the present invention. SC-PTMを用いたMBMS受信の設定のための手順のフローを示す図。The figure which shows the flow of the procedure for setting MBMS reception using SC-PTM. SIB20(System Information Block Type 20)に含まれる、フィールド、及び/又は情報要素を表すASN.1記述の一例を示す図。The figure which shows an example of the ASN.1 description which represents a field and / or an information element included in SIB20 (System Information Block Type 20). SC-PTM設定メッセージ(SCPTMConfiguration)に含まれる、フィールド、及び/又は情報要素を表すASN.1記述の一例を示す図。A diagram showing an example of an ASN.1 description representing a field and / or an information element contained in an SC-PTM configuration message (SCPTM Configuration). 本発明の実施の形態における、NRにおけるMBS受信手順のフローの一例を示す図。The figure which shows an example of the flow of the MBS reception procedure in NR in embodiment of this invention.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 LTE(およびLTE-A、LTE-A Pro)とNRは、異なる無線アクセス技術(Radio Access Technology: RAT)として定義されてよい。またNRは、LTEに含まれる技術として定義されてもよい。またLTEは、NRに含まれる技術として定義されてもよい。また、NRとMulti Radio Dual connectivity(MR-DC)で接続可能なLTEは、従来のLTEと区別されてよい。また、コアネットワークに5GCを用いるLTEは、コアネットワークにEPCを用いる従来のLTEと区別されてよい。なお従来のLTEとは、3GPPにおけるリリース15以降に規格化された技術を実装していないLTEの事であって良い。本発明の実施形態はNR、LTEおよび他のRATに適用されてよい。以下の説明では、LTEおよびNRに関連する用語を用いて説明するが、本発明の実施形態は他の用語を用いる他の技術において適用されてもよい。また本発明の実施形態でのE-UTRAという用語は、LTEという用語に置き換えられて良いし、LTEという用語はE-UTRAという用語に置き換えられて良い。 LTE (and LTE-A, LTE-A Pro) and NR may be defined as different radio access technologies (Radio Access Technology: RAT). NR may also be defined as a technique included in LTE. LTE may also be defined as a technique included in NR. In addition, LTE that can be connected to NR by MultiRadio Dual connectivity (MR-DC) may be distinguished from conventional LTE. In addition, LTE using 5GC for the core network may be distinguished from conventional LTE using EPC for the core network. Note that conventional LTE may be LTE that does not implement the technology standardized after Release 15 in 3GPP. Embodiments of the present invention may be applied to NR, LTE and other RATs. In the following description, terms related to LTE and NR will be used, but embodiments of the present invention may be applied in other techniques using other terms. Further, the term E-UTRA in the embodiment of the present invention may be replaced with the term LTE, and the term LTE may be replaced with the term E-UTRA.
 なお、本発明の実施の形態において、無線アクセス技術がE-UTRA又はNRである場合の各ノードやエンティティの名称、及び各ノードやエンティティにおける処理等について説明するが、本発明の実施の形態は他の無線アクセス技術に用いられて良い。本発明の実施の形態における各ノードやエンティティの名称は、別の名称であって良い。 In the embodiment of the present invention, the names of the nodes and entities when the wireless access technique is E-UTRA or NR, the processing in each node and the entity, and the like will be described. It may be used for other wireless access techniques. The name of each node or entity in the embodiment of the present invention may be another name.
 図1は本発明の実施の形態に係る通信システムの概略図である。なお図1を用いて説明する各ノード、無線アクセス技術、コアネットワーク、インタフェース等の機能は、本発明の実施形態に密接に関わる一部の機能であり、他の機能を持って良い。 FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention. The functions of each node, wireless access technique, core network, interface, etc. described with reference to FIG. 1 are some functions closely related to the embodiment of the present invention, and may have other functions.
 E-UTRA100は無線アクセス技術であって良い。またE-UTRA100は、UE122とeNB102との間のエアインタフェース(air interface)であって良い。UE122とeNB102との間のエアインタフェースをUuインタフェースと呼んで良い。eNB(E-UTRAN Node B)102は、E-UTRA100の基地局装置であって良い。eNB102は、後述のE-UTRAプロトコルを持って良い。E-UTRAプロトコルは、後述のE-UTRAユーザプレーン(User Plane: UP)プロトコル、及び後述のE-UTRA制御プレーン(Control Plane: CP)プロトコルから構成されても良い。eNB102は、UE122に対し、E-UTRAユーザプレーン(User Plane: UP)プロトコル、及びE-UTRA制御プレーン(Control Plane: CP)プロトコルを終端して良い。eNBで構成される無線アクセスネットワークをE-UTRANと呼んでもよい。 E-UTRA100 may be a wireless access technology. The E-UTRA100 may be an air interface between the UE 122 and the eNB 102. The air interface between UE122 and eNB102 may be called the Uu interface. The eNB (E-UTRAN Node B) 102 may be a base station device of the E-UTRA100. The eNB 102 may have the E-UTRA protocol described below. The E-UTRA protocol may be composed of the E-UTRA user plane (User Plane: UP) protocol described later and the E-UTRA control plane (Control Plane: CP) protocol described later. The eNB 102 may terminate the E-UTRA user plane (User Plane: UP) protocol and the E-UTRA control plane (Control Plane: CP) protocol for the UE 122. A radio access network composed of eNB may be called E-UTRAN.
 EPC(Evolved Packet Core)104は、コア網であって良い。インタフェース112はeNB102とEPC104の間のインタフェース(interface)であり、S1インタフェースと呼ばれて良い。インタフェース112には、制御信号が通る制御プレーンインタフェース、及び/又は(and/or)ユーザデータが通るユーザプレーンインタフェースが存在して良い。インタフェース112の制御プレーンインタフェースはEPC104内のMobility Management Entity(MME: 不図示)で終端して良い。インタフェース112のユーザプレーンインタフェースはEPC104内のサービングゲートウェイ(S-GW:不図示)で終端して良い。インタフェース112の制御プレーンインタフェースをS1-MMEインタフェースと呼んで良い。インタフェース112のユーザプレーンインタフェースをS1-Uインタフェースと呼んで良い。 EPC (Evolved Packet Core) 104 may be a core network. The interface 112 is an interface between the eNB 102 and the EPC 104 and may be referred to as the S1 interface. The interface 112 may include a control plane interface through which control signals pass and / or a user plane interface through which (and / or) user data passes. The control plane interface of the interface 112 may be terminated by the Mobility Management Entity (MME: not shown) in the EPC 104. The user plane interface of interface 112 may be terminated by a serving gateway (S-GW: not shown) in EPC104. The control plane interface of interface 112 may be referred to as the S1-MME interface. The user plane interface of interface 112 may be referred to as the S1-U interface.
 なお、1つ又は複数のeNB102がEPC104にインタフェース112を介して接続されて良い。EPC104に接続する複数のeNB102の間に、インタフェースが存在して良い(不図示)。EPC104に接続する複数のeNB102間のインタフェースを、X2インタフェースと呼んで良い。 Note that one or more eNB 102s may be connected to the EPC 104 via the interface 112. An interface may exist between multiple eNB 102s connected to the EPC 104 (not shown). The interface between a plurality of eNB 102s connected to the EPC 104 may be called an X2 interface.
 NR106は無線アクセス技術であって良い。またNR106は、UE122とgNB108との間のエアインタフェース(air interface)であって良い。UE122とgNB108との間のエアインタフェースをUuインタフェースと呼んで良い。gNB(g Node B)108は、NR106の基地局装置であって良い。gNB108は、後述のNRプロトコルを持って良い。NRプロトコルは、後述のNRユーザプレーン(User Plane: UP)プロトコル、及び後述のNR制御プレーン(Control Plane: CP)プロトコルから構成されて良い。gNB108は、UE122に対し、NRユーザプレーン(User Plane: UP)プロトコル、及びNR制御プレーン(Control Plane: CP)プロトコルを終端して良い。 NR106 may be a wireless access technology. Further, the NR106 may be an air interface between the UE 122 and the gNB 108. The air interface between UE122 and gNB108 may be called the Uu interface. The gNB (gNodeB) 108 may be a base station device of the NR106. The gNB108 may have the NR protocol described below. The NR protocol may be composed of the NR user plane (User Plane: UP) protocol described later and the NR control plane (Control Plane: CP) protocol described later. The gNB 108 may terminate the NR user plane (User Plane: UP) protocol and the NR control plane (Control Plane: CP) protocol for the UE 122.
 5GC110は、コア網であって良い。インタフェース116はgNB108と5GC110の間のインタフェース(interface)であり、NGインタフェースと呼ばれて良い。インタフェース116には、制御信号が通る制御プレーンインタフェース、及び/又はユーザデータが通るユーザプレーンインタフェースが存在して良い。インタフェース116の制御プレーンインタフェースは5GC110内のAccess and mobility Management Function(AMF:不図示)で終端して良い。インタフェース116のユーザプレーンインタフェースは5GC110内のUser Plane Function(UPF:不図示)で終端して良い。インタフェース116の制御プレーンインタフェースをNG-Cインタフェースと呼んで良い。インタフェース116のユーザプレーンインタフェースをNG-Uインタフェースと呼んで良い。 5GC110 may be a core network. Interface 116 is an interface between gNB 108 and 5GC 110 and may be referred to as an NG interface. The interface 116 may include a control plane interface through which control signals pass and / or a user plane interface through which user data passes. The control plane interface of the interface 116 may be terminated by the Access and mobility Management Function (AMF: not shown) in the 5GC110. The user plane interface of the interface 116 may be terminated by the User Plane Function (UPF: not shown) in the 5GC110. The control plane interface of interface 116 may be called an NG-C interface. The user plane interface of interface 116 may be called an NG-U interface.
 なお、1つ又は複数のgNB108が5GC110にインタフェース116を介して接続されて良い。5GC110に接続する複数のgNB108の間に、インタフェースが存在して良い(不図示)。5GC110に接続する複数のgNB108間のインタフェースをXnインタフェースと呼んで良い。 Note that one or more gNB108s may be connected to the 5GC110 via the interface 116. An interface may exist between multiple gNB108s connected to the 5GC110 (not shown). The interface between multiple gNB108s connected to the 5GC110 may be called the Xn interface.
 eNB102は5GC110に接続する機能を持って良い。5GC110に接続する機能をもつeNB102を、ng-eNBと呼んで良い。インタフェース114はeNB102と5GC110の間のインタフェースで、NGインタフェースと呼ばれて良い。インタフェース114には、制御信号が通る制御プレーンインタフェース、及び/又はユーザデータが通るユーザプレーンインタフェースが存在して良い。インタフェース114の制御プレーンインタフェースは5GC110内のAccess and mobility Management Function(AMF:不図示)で終端して良い。インタフェース114のユーザプレーンインタフェースは5GC110内のUser Plane Function(UPF:不図示)で終端して良い。インタフェース114の制御プレーンインタフェースをNG-Cインタフェースと呼んで良い。インタフェース114のユーザプレーンインタフェースをNG-Uインタフェースと呼んで良い。ng-eNBまたはgNBで構成される無線アクセスネットワークをNG-RANと称してもよい。NG-RAN、E-UTRAN, eNB, ng-eNBおよびgNBなどを単にネットワークと称してもよい。 The eNB 102 may have a function to connect to the 5GC110. The eNB 102 that has the function of connecting to the 5GC110 may be called ng-eNB. Interface 114 is the interface between eNB 102 and 5GC110 and may be referred to as the NG interface. The interface 114 may include a control plane interface through which control signals pass and / or a user plane interface through which user data passes. The control plane interface of the interface 114 may be terminated by the Access and mobility Management Function (AMF: not shown) in the 5GC110. The user plane interface of the interface 114 may be terminated by the User Plane Function (UPF: not shown) in the 5GC110. The control plane interface of interface 114 may be called an NG-C interface. The user plane interface of interface 114 may be called an NG-U interface. A radio access network composed of ng-eNB or gNB may be referred to as NG-RAN. NG-RAN, E-UTRAN, eNB, ng-eNB, gNB, etc. may be simply referred to as a network.
 なお、1つ又は複数のeNB102が5GC110にインタフェース114を介して接続されて良い。5GC110に接続する複数のeNB102の間に、インタフェースが存在して良い(不図示)。5GC110に接続する複数のeNB102の間のインタフェースを、Xnインタフェースと呼んで良い。また5GC110に接続するeNB102と、5GC110に接続するgNB108は、インタフェース120で接続されて良い。5GC110に接続するeNB102と、5GC110に接続するgNB108の間のインタフェース120は、Xnインタフェースと呼ばれて良い。 Note that one or more eNB 102s may be connected to the 5GC110 via the interface 114. An interface may exist between multiple eNB 102s connected to the 5GC110 (not shown). The interface between multiple eNB 102s connected to the 5GC110 may be referred to as the Xn interface. Further, the eNB 102 connected to the 5GC110 and the gNB108 connected to the 5GC110 may be connected by the interface 120. The interface 120 between the eNB 102 connected to the 5GC110 and the gNB108 connected to the 5GC110 may be referred to as an Xn interface.
 gNB108はEPC104に接続する機能を持って良い。EPC104に接続する機能をもつgNB108を、en-gNBと呼んで良い。インタフェース118はgNB108とEPC104の間のインタフェースで、S1インタフェースと呼ばれて良い。インタフェース118には、ユーザデータが通るユーザプレーンインタフェースが存在して良い。インタフェース118のユーザプレーンインタフェースはEPC104内のS-GW(不図示)で終端して良い。インタフェース118のユーザプレーンインタフェースをS1-Uインタフェースと呼んで良い。またEPC104に接続するeNB102と、EPC104に接続するgNB108は、インタフェース120で接続されて良い。EPC104に接続するeNB102と、EPC104に接続するgNB108の間のインタフェース120はX2インタフェースと呼ばれて良い。 GNB108 may have a function to connect to EPC104. The gNB 108 that has the function of connecting to the EPC104 may be called en-gNB. Interface 118 is the interface between gNB 108 and EPC 104 and may be referred to as the S1 interface. The interface 118 may have a user plane interface through which user data passes. The user plane interface of interface 118 may be terminated by S-GW (not shown) in EPC104. The user plane interface of interface 118 may be called the S1-U interface. Further, the eNB 102 connected to the EPC 104 and the gNB 108 connected to the EPC 104 may be connected by the interface 120. The interface 120 between the eNB 102 connected to the EPC 104 and the gNB 108 connected to the EPC 104 may be referred to as the X2 interface.
 インタフェース124はEPC104と5GC110間のインタフェースであり、CPのみ、又はUPのみ、又はCP及びUP両方を通すインタフェースであって良い。また、インタフェース114、インタフェース116、インタフェース118、インタフェース120、及びインタフェース124等のうちの一部又は全てのインタフェースは、通信事業者等が提供する通信システムに応じて存在しない場合があって良い。 Interface 124 is an interface between EPC104 and 5GC110, and may be an interface through CP only, UP only, or both CP and UP. Further, some or all of the interfaces 114, interface 116, interface 118, interface 120, interface 124, etc. may not exist depending on the communication system provided by the telecommunications carrier or the like.
 UE122はeNB102、及び/又はgNB108から送信される報知情報や、ページングメッセージを受信する事が可能な端末装置であって良い。またUE122は、eNB102、及び/又はgNB108との無線接続が可能な端末装置であって良い。またUE122は、eNB102との無線接続、及びgNB108と無線接続を同時に行う事が可能な端末装置であって良い。UE122はE-UTRAプロトコル、及び/又はNRプロトコルを持って良い。なお、無線接続とは、Radio Resource Control(RRC)接続であって良い。 UE122 may be a terminal device capable of receiving notification information and paging messages transmitted from eNB102 and / or gNB108. The UE 122 may be a terminal device capable of wireless connection with the eNB 102 and / or the gNB 108. The UE 122 may be a terminal device capable of wirelessly connecting to the eNB 102 and wirelessly to the gNB 108 at the same time. UE122 may have an E-UTRA protocol and / or an NR protocol. The wireless connection may be a Radio Resource Control (RRC) connection.
 UE122が、eNB102、及び/又はgNB108と通信する場合、UE122と、eNB102、及び/又はgNB108との間に無線ベアラ(RB: Radio Bearer)を確立する事により、無線接続を行って良い。CPに用いられる無線ベアラは、シグナリング無線ベアラ(SRB: Signaling Radio Bearer)と呼ばて良い。またUPに用いられる無線ベアラは、データ無線ベアラ(DRB Data Radio Bearer)と呼ばれて良い。各無線ベアラには、無線ベアラ識別子(Identity: ID)が割り当てられて良い。SRB用無線ベアラ識別子は、SRB識別子(SRB Identity、またはSRB ID)と呼ばれて良い。DRB用無線ベアラ識別子は、DRB識別子(DRB Identity、またはDRB ID)と呼ばれて良い。 When the UE 122 communicates with the eNB 102 and / or the gNB 108, a wireless connection may be made by establishing a wireless bearer (RB: Radio Bearer) between the UE 122 and the eNB 102 and / or the gNB 108. The radio bearer used for CP may be called a signaling radio bearer (SRB: Signaling Radio Bearer). The wireless bearer used for UP may be called a data wireless bearer (DRB Data Radio Bearer). A wireless bearer identifier (Identity: ID) may be assigned to each wireless bearer. The radio bearer identifier for SRB may be referred to as an SRB identifier (SRB Identity or SRB ID). The radio bearer identifier for DRB may be referred to as a DRB identifier (DRB Identity or DRB ID).
 またUE122は、eNB102及び/又はgNB108を介して、EPC104、及び/又は5GC110との接続が可能な端末装置であって良い。UE122が通信を行うeNB102、及び/又はgNB108の接続先コア網がEPC104である場合、UE122と、eNB102、及び/又はgNB108との間に確立された各DRBは、更にEPC104内を経由する各EPS(Evolved Packet System)ベアラと一意に紐づけられて良い。各EPSベアラは、EPSベアラ識別子(Identity、またはID)で識別されて良い。また同一のEPSベアラを通るIPパケットや、イーサネット(登録商標)フレーム等のデータには同一のQoSが保証されて良い。 The UE 122 may be a terminal device that can be connected to the EPC 104 and / or the 5GC110 via the eNB 102 and / or the gNB 108. If the eNB 102 with which the UE 122 communicates and / or the core network to which the gNB 108 is connected is the EPC 104, each DRB established between the UE 122 and the eNB 102 and / or the gNB 108 further goes through each EPS within the EPC 104. (Evolved Packet System) It may be uniquely associated with the bearer. Each EPS bearer may be identified by an EPS bearer identifier (Identity, or ID). Further, the same QoS may be guaranteed for data such as IP packets passing through the same EPS bearer and Ethernet (registered trademark) frames.
 また、UE122が通信を行うeNB102、及び/又はgNB108の接続先コア網が5GC110である場合、UE122と、eNB102、及び/又はgNB108との間に確立された各DRBは、更に5GC110内に確立されるPDU(Packet Data Unit)セッションの一つに紐づけられて良い。各PDUセッションには、一つ又は複数のQoSフローが存在して良い。各DRBは、一つ又は複数のQoSフローと対応付け(map)されて良いし、どのQoSフローと対応づけられなくて良い。各PDUセッションは、PDUセッション識別子(Identity、Identifier、またはID)で識別されて良い。また各QoSフローは、QoSフロー識別子Identity、Identifier、またはID)で識別されて良い。また同一のQoSフローを通るIPパケットや、イーサネットフレーム等のデータに同一のQoSが保証されて良い。 Further, when the connection destination core network of the eNB 102 and / or the gNB 108 with which the UE 122 communicates is 5GC110, each DRB established between the UE 122 and the eNB 102 and / or the gNB 108 is further established in the 5GC110. It may be associated with one of the PDU (Packet Data Unit) sessions. Each PDU session may have one or more QoS flows. Each DRB may be mapped to one or more QoS flows and may not be associated with any QoS flow. Each PDU session may be identified by a PDU session identifier (Identity, Identifier, or ID). Further, each QoS flow may be identified by the QoS flow identifier Identity, Identifier, or ID). Further, the same QoS may be guaranteed for data such as IP packets and Ethernet frames that pass through the same QoS flow.
 EPC104には、PDUセッション及び/又はQoSフローは存在しなくて良い。また5GC110にはEPSベアラは存在しなくて良い。UE122がEPC104と接続している際、UE122はEPSベアラの情報を持つが、PDUセッション及び/又はQoSフローの内の情報は持たなくて良い。またUE122が5GC110と接続している際、UE122はPDUセッション及び/又はQoSフローの内の情報を持つが、EPSベアラの情報は持たなくて良い。 The EPC104 does not have to have a PDU session and / or a QoS flow. Also, the 5GC110 does not have to have an EPS bearer. When the UE122 is connected to the EPC104, the UE122 has information on the EPS bearer, but not in the PDU session and / or QoS flow. Also, when the UE122 is connected to the 5GC110, the UE122 has information in the PDU session and / or QoS flow, but does not have to have the EPS bearer information.
 なお、以下の説明において、eNB102および/またはgNB108を単に基地局装置とも称し、UE122を単に端末装置又はUEとも称する。 In the following description, eNB 102 and / or gNB 108 are also simply referred to as a base station device, and UE 122 is also simply referred to as a terminal device or UE.
 図2は本発明の実施形態に係るE-UTRAプロトコル構成(protocol architecture)の一例の図である。また図3は本発明の実施形態に係るNRプロトコル構成の一例の図である。なお図2及び/又は図3を用いて説明する各プロトコルの機能は、本発明の実施形態に密接に関わる一部の機能であり、他の機能を持っていて良い。なお、本発明の実施の形態において、上りリンク(uplink: UL)とは端末装置から基地局装置へのリンクであって良い。また本発明の各実施の形態において、下りリンク(downlink: DL)とは基地局装置から端末装置へのリンクであって良い。 FIG. 2 is a diagram of an example of the E-UTRA protocol configuration according to the embodiment of the present invention. Further, FIG. 3 is a diagram of an example of the NR protocol configuration according to the embodiment of the present invention. It should be noted that the functions of the respective protocols described with reference to FIGS. 2 and / or 3 are some functions closely related to the embodiment of the present invention, and may have other functions. In the embodiment of the present invention, the uplink (UL) may be a link from the terminal device to the base station device. Further, in each embodiment of the present invention, the downlink (downlink: DL) may be a link from the base station device to the terminal device.
 図2(A)はE-UTRAユーザプレーン(UP)プロトコルスタックの図である。図2(A)に示す通り、E-UTRAN UPプロトコルは、UE122とeNB102の間のプロトコルであって良い。即ちE-UTRANUPプロトコルは、ネットワーク側ではeNB102で終端するプロトコルであって良い。図2(A)に示す通り、E-UTRAユーザプレーンプロトコルスタックは、無線物理層(無線物理レイヤ)であるPHY(Physical layer)200、媒体アクセス制御層(媒体アクセス制御レイヤ)であるMAC(Medium Access Control)202、無線リンク制御層(無線リンク制御レイヤ)であるRLC(Radio Link Control)204、及びパケットデータ収束プロトコル層(パケットデータ収束プロトコルレイヤ)である、PDCP(Packet Data Convergence Protocol)206から構成されて良い。 Figure 2 (A) is a diagram of the E-UTRA user plane (UP) protocol stack. As shown in FIG. 2 (A), the E-UTRANUP protocol may be a protocol between UE122 and eNB102. That is, the E-UTRANUP protocol may be a protocol terminated by eNB 102 on the network side. As shown in Fig. 2 (A), the E-UTRA user plane protocol stack consists of PHY (Physical layer) 200, which is a wireless physical layer (radio physical layer), and MAC (Medium), which is a medium access control layer (medium access control layer). From Access Control) 202, RLC (Radio Link Control) 204, which is a wireless link control layer (wireless link control layer), and PDCP (Packet Data Convergence Protocol) 206, which is a packet data convergence protocol layer (packet data convergence protocol layer). May be configured.
 図3(A)はNRユーザプレーン(UP)プロトコルスタックの図である。図3(A)に示す通り、NRUPプロトコルは、UE122とgNB108の間のプロトコルであって良い。即ちNR UPプロトコルは、ネットワーク側ではgNB108で終端するプロトコルであって良い。図3(A)に示す通り、E-UTRAユーザプレーンプロトコルスタックは、無線物理層であるPHY300、媒体アクセス制御層であるMAC302、無線リンク制御層であるRLC304、パケットデータ収束プロトコル層である、PDCP306、及びサービスデータ適応プロトコル層(サービスデータ適応プロトコルレイヤ)SDAP(Service Data Adaptation Protocol)310であるから構成されて良い。 Figure 3 (A) is a diagram of the NR user plane (UP) protocol stack. As shown in FIG. 3 (A), the NRUP protocol may be a protocol between UE122 and gNB108. That is, the NRUP protocol may be a protocol terminated by gNB108 on the network side. As shown in FIG. 3A, the E-UTRA user plane protocol stack consists of PHY300, which is a wireless physical layer, MAC302, which is a medium access control layer, RLC304, which is a wireless link control layer, and PDCP306, which is a packet data convergence protocol layer. , And the service data adaptation protocol layer (service data adaptation protocol layer) SDAP (Service Data Adaptation Protocol) 310 may be configured.
 図2(B)はE-UTRA制御プレーン(CP)プロトコル構成の図である。図2(B)に示す通り、E-UTRAN CPプロトコルにおいて、無線リソース制御層(無線リソース制御レイヤ)であるRRC(Radio Resource Control)208は、UE122とeNB102の間のプロトコルであって良い。即ちRRC208は、ネットワーク側ではeNB102で終端するプロトコルであって良い。またE-UTRAN CPプロトコルにおいて、非AS(Access Stratum)層(非ASレイヤ)であるNAS(Non Access Stratum)210は、UE122とMMEとの間のプロトコルであって良い。即ちNAS210は、ネットワーク側ではMMEで終端するプロトコルであって良い。 Figure 2 (B) is a diagram of the E-UTRA control plane (CP) protocol configuration. As shown in FIG. 2B, in the E-UTRAN CP protocol, the RRC (Radio Resource Control) 208, which is a radio resource control layer (radio resource control layer), may be a protocol between UE 122 and eNB 102. That is, RRC208 may be a protocol terminated by eNB 102 on the network side. Further, in the E-UTRAN CP protocol, the NAS (Non Access Stratum) 210, which is a non-AS (Access Stratum) layer (non-AS layer), may be a protocol between UE 122 and MME. That is, NAS210 may be a protocol terminated by MME on the network side.
 図3(B)はNR制御プレーン(CP)プロトコル構成の図である。図3(B)に示す通り、NR CPプロトコルにおいて、無線リソース制御層であるRRC308は、UE122とgNB108の間のプロトコルであって良い。即ちRRC308は、ネットワーク側ではgNB108で終端するプロトコルであって良い。またE-UTRAN CPプロトコルにおいて、非AS層であるNAS312は、UE122とAMFとの間のプロトコルであって良い。即ちNAS312は、ネットワーク側ではAMFで終端するプロトコルであって良い。 Figure 3 (B) is a diagram of the NR control plane (CP) protocol configuration. As shown in FIG. 3B, in the NRCP protocol, the radio resource control layer RRC308 may be a protocol between UE122 and gNB108. That is, RRC308 may be a protocol terminated by gNB108 on the network side. Further, in the E-UTRAN CP protocol, NAS312, which is a non-AS layer, may be a protocol between UE122 and AMF. That is, NAS312 may be a protocol terminated by AMF on the network side.
 なおAS(Access Stratum)層とは、UE122とeNB102及び/又はgNB108との間で終端する層であって良い。即ちAS層とは、PHY200、MAC202、RLC204、PDCP206、及びRRC208の一部又は全てを含む層、及び/又はPHY300、MAC302、RLC304、PDCP306、SDAP310、及びRRC308の一部又は全てを含む層であって良い。 The AS (Access Stratum) layer may be a layer terminated between UE122 and eNB102 and / or gNB108. That is, the AS layer is a layer containing a part or all of PHY200, MAC202, RLC204, PDCP206, and RRC208, and / or a layer containing a part or all of PHY300, MAC302, RLC304, PDCP306, SDAP310, and RRC308. Good.
 なお本発明の実施の形態において、以下E-UTRAのプロトコルとNRのプロトコルを区別せず、PHY(PHY層)、MAC(MAC層)、RLC(RLC層)、PDCP(PDCP層)、RRC(RRC層)、NAS(NAS層)と言う用語を用いる場合がある。この場合、PHY(PHY層)、MAC(MAC層)、RLC(RLC層)、PDCP(PDCP層)、RRC(RRC層)、NAS(NAS層)は其々E-UTRAプロトコルのPHY(PHY層)、MAC(MAC層)、RLC(RLC層)、PDCP(PDCP層)、RRC(RRC層)、NAS(NAS層)であって良いし、NRプロトコルの、PHY(PHY層)、MAC(MAC層)、RLC(RLC層)、PDCP(PDCP層)、RRC(RRC層)、NAS(NAS層)であって良い。またSDAP(SDAP層)は、NRプロトコルのSDAP(SDAP層)であって良い。 In the embodiment of the present invention, the E-UTRA protocol and the NR protocol are not distinguished below, and PHY (PHY layer), MAC (MAC layer), RLC (RLC layer), PDCP (PDCP layer), RRC ( The terms RRC layer) and NAS (NAS layer) may be used. In this case, the PHY (PHY layer), MAC (MAC layer), RLC (RLC layer), PDCP (PDCP layer), RRC (RRC layer), and NAS (NAS layer) are the PHY (PHY layer) of the E-UTRA protocol. ), MAC (MAC layer), RLC (RLC layer), PDCP (PDCP layer), RRC (RRC layer), NAS (NAS layer), and NR protocol, PHY (PHY layer), MAC (MAC) Layer), RLC (RLC layer), PDCP (PDCP layer), RRC (RRC layer), NAS (NAS layer) may be used. The SDAP (SDAP layer) may be an SDAP (SDAP layer) of the NR protocol.
 また本発明の実施の形態において、以下E-UTRAのプロトコルとNRのプロトコルを区別する場合、PHY200、MAC202、RLC204、PDCP206、及びRRC208を、それぞれE-UTRA用PHY又はLTE用PHY、E-UTRA用MAC又はLTE用MAC、E-UTRA用RLC又はLTE用RLC、E-UTRA用PDCP又はLTE用PDCP、及びE-UTRA用RRC又はLTE用RRCと呼ぶ事もある。またPHY200、MAC202、RLC204、PDCP206、及びRRC208を、それぞれE-UTRA PHY又はLTE PHY、E-UTRA MAC又はLTE MAC、E-UTRA RLC又はLTE RLC、E-UTRA PDCP又はLTE PDCP、及びE-UTRA RRC又はLTE RRCなどと記述する場合もある。また、E-UTRAのプロトコルとNRのプロトコルを区別する場合、PHY300、MAC302、RLC304、PDCP306、RRC308を、それぞれNR用PHY、NR用MAC、NR用RLC、NR用RLC、及びNR用RRCと呼ぶ事もある。またPHY200、MAC302、RLC304、PDCP306、及びRRC308を、それぞれNR PHY、NR MAC、NR RLC、NR PDCP、NR RRCなどと記述する場合もある。 Further, in the embodiment of the present invention, when the E-UTRA protocol and the NR protocol are distinguished below, the PHY200, MAC202, RLC204, PDCP206, and RRC208 are referred to as the PHY for E-UTRA or the PHY for LTE, E-UTRA, respectively. MAC or LTE MAC, E-UTRA RLC or LTE RLC, E-UTRA PDCP or LTE PDCP, and E-UTRA RRC or LTE RRC. In addition, PHY200, MAC202, RLC204, PDCP206, and RRC208 can be used as E-UTRA PHY or LTE PHY, E-UTRA MAC or LTE MAC, E-UTRA RLC or LTE RLC, E-UTRA PDCP or LTE PDCP, and E-UTRA, respectively. It may be described as RRC or LTE RRC. When distinguishing between the E-UTRA protocol and the NR protocol, the PHY300, MAC302, RLC304, PDCP306, and RRC308 are called NR PHY, NR MAC, NR RLC, NR RLC, and NR RRC, respectively. There are also things. In addition, PHY200, MAC302, RLC304, PDCP306, and RRC308 may be described as NRPHY, NRMAC, NRRLC, NRPDCP, NRRRC, etc., respectively.
 E-UTRA及び/又はNRのAS層におけるエンティティ(entity)について説明する。MAC層の機能の一部又は全てを持つエンティティの事をMACエンティティと呼んで良い。RLC層の機能の一部又は全てを持つエンティティの事をRLCエンティティと呼んで良い。PDCP層の機能の一部又は全てを持つエンティティの事をPDCPエンティティと呼んで良い。SDAP層の機能の一部又は全てを持つエンティティの事をSDAPエンティティと呼んで良い。RRC層の機能の一部又は全てを持つエンティティの事をRRCエンティティと呼んで良い。MACエンティティ、RLCエンティティ、PDCPエンティティ、SDAPエンティティ、RRCエンティティを、其々MAC、RLC、PDCP、SDAP、RRCと言い換えて良い。 Explain the entity in the AS layer of E-UTRA and / or NR. An entity that has some or all of the functions of the MAC layer may be called a MAC entity. An entity that has some or all of the functions of the RLC layer may be called an RLC entity. An entity that has some or all of the functions of the PDCP layer may be called a PDCP entity. An entity that has some or all of the functions of the SDAP layer may be called an SDAP entity. An entity that has some or all of the functions of the RRC layer may be called an RRC entity. The MAC entity, RLC entity, PDCP entity, SDAP entity, and RRC entity may be paraphrased as MAC, RLC, PDCP, SDAP, and RRC, respectively.
 なお、MAC、RLC、PDCP、SDAPから下位層に提供されるデータ、及び/又はMAC、RLC、PDCP、SDAPに下位層から提供されるデータの事を、それぞれMAC PDU(Protocol Data Unit)、RLC PDU、PDCP PDU、SDAP PDUと呼んで良い。また、MAC、RLC、PDCP、SDAPに上位層から提供されるデータ、及び/又はMAC、RLC、PDCP、SDAPから上位層に提供するデータの事を、それぞれMAC SDU(Service Data Unit)、RLC SDU、PDCP SDU、SDAP SDUと呼んで良い。また、セグメントされたRLC SDUの事をRLC SDUセグメントと呼んで良い。 The data provided from the lower layer to MAC, RLC, PDCP, SDAP and / or the data provided to MAC, RLC, PDCP, SDAP from the lower layer are referred to as MAC PDU (Protocol Data Unit) and RLC, respectively. It may be called PDU, PDCP PDU, SDAP PDU. In addition, the data provided from the upper layer to MAC, RLC, PDCP, SDAP and / or the data provided to the upper layer from MAC, RLC, PDCP, SDAP are referred to as MAC SDU (Service Data Unit) and RLC SDU, respectively. , PDCP SDU, SDAP SDU. Also, the segmented RLC SDU may be called the RLC SDU segment.
 PHYの機能の一例について説明する。端末装置のPHYは基地局装置のPHYから、下りリンク(Downlink: DL)物理チャネル(Physical Channel)を介して伝送されたデータを受信する機能を有して良い。端末装置のPHYは基地局装置のPHYに対し、上りリンク(Uplink: UL)物理チャネルを介してデータを送信する機能を有して良い。PHYは上位のMACと、トランスポートチャネル(Transport Channel)で接続されて良い。PHYはトランスポートチャネルを介してMACにデータを受け渡して良い。またPHYはトランスポートチャネルを介してMACからデータを提供されて良い。PHYにおいて、様々な制御情報を識別するために、RNTI(Radio Network Temporary Identifier)が用いられて良い。 An example of the PHY function will be explained. The PHY of the terminal device may have a function of receiving data transmitted from the PHY of the base station device via the downlink (DL) physical channel (Physical Channel). The PHY of the terminal device may have a function of transmitting data to the PHY of the base station device via an uplink (UL) physical channel. The PHY may be connected to the upper MAC by a transport channel. The PHY may pass data to the MAC over the transport channel. The PHY may also be provided with data from the MAC via the transport channel. In the PHY, RNTI (Radio Network Temporary Identifier) may be used to identify various control information.
 ここで、物理チャネルについて説明する。 Here, the physical channel will be described.
 端末装置と基地局装置との無線通信に用いられる物理チャネルには、以下の物理チャネルが含まれてよい。 The physical channels used for wireless communication between the terminal device and the base station device may include the following physical channels.
  PBCH(物理報知チャネル:Physical Broadcast CHannel)
  PDCCH(物理下りリンク制御チャネル:Physical Downlink Control CHannel)
  PDSCH(物理下りリンク共用チャネル:Physical Downlink Shared CHannel)
  PUCCH(物理上りリンク制御チャネル:Physical Uplink Control CHannel)
  PUSCH(物理上りリンク共用チャネル:Physical Uplink Shared CHannel)
  PRACH(物理ランダムアクセスチャネル:Physical Random Access CHannel)
PBCH (Physical Broadcast CHannel)
PDCCH (Physical Downlink Control CHannel)
PDSCH (Physical Downlink Shared CHannel)
PUCCH (Physical Uplink Control CHannel)
PUSCH (Physical Uplink Shared CHannel)
PRACH (Physical Random Access CHannel)
 PBCHは、端末装置が必要とするシステム情報を報知するために用いられて良い。 PBCH may be used to notify the system information required by the terminal device.
 また、NRにおいて、PBCHは、同期信号のブロック(SS/PBCHブロックとも称する)の周期内の時間インデックス(SSB-Index)を報知するために用いられてよい。 Further, in NR, PBCH may be used to notify the time index (SSB-Index) within the period of the block of the synchronization signal (also referred to as SS / PBCH block).
 PDCCHは、下りリンクの無線通信(基地局装置から端末装置への無線通信)において、下りリンク制御情報(Downlink Control Information: DCI)を送信する(または運ぶ)ために用いられて良い。ここで、下りリンク制御情報の送信に対して、一つまたは複数のDCI(DCIフォーマットと称してもよい)が定義されて良い。すなわち、下りリンク制御情報に対するフィールドがDCIとして定義され、情報ビットへマップされて良い。PDCCHは、PDCCH候補(candidate)において送信されて良い。端末装置は、サービングセルにおいてPDCCH候補のセットをモニタして良い。PDCCH候補のセットをモニタするとは、あるDCIフォーマットに応じてPDCCHのデコードを試みることを意味して良い。DCIフォーマットは、サービングセルにおけるPUSCHのスケジューリングのために用いられてもよい。PUSCHは、ユーザデータの送信や、後述するRRCメッセージの送信などのために使われてよい。 PDCCH may be used to transmit (or carry) downlink control information (Downlink Control Information: DCI) in downlink wireless communication (wireless communication from a base station device to a terminal device). Here, one or more DCIs (which may be referred to as DCI format) may be defined for the transmission of downlink control information. That is, the field for the downlink control information may be defined as DCI and mapped to the information bit. The PDCCH may be transmitted in the PDCCH candidate (candidate). The terminal device may monitor the set of PDCCH candidates in the serving cell. Monitoring a set of PDCCH candidates may mean attempting to decode the PDCCH according to a DCI format. The DCI format may be used for scheduling PUSCH in the serving cell. PUSCH may be used for sending user data, sending RRC messages described later, and the like.
 PUCCHは、上りリンクの無線通信(端末装置から基地局装置への無線通信)において、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられてよい。ここで、上りリンク制御情報には、下りリンクのチャネルの状態を示すために用いられるチャネル状態情報(CSI: Channel State Information)が含まれてもよい。また、上りリンク制御情報には、UL-SCH(UL-SCH: Uplink Shared CHannel)リソースを要求するために用いられるスケジューリング要求(SR: Scheduling Request)が含まれてもよい。また、上りリンク制御情報には、HARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)が含まれてもよい。 PUCCH may be used to transmit uplink control information (UCI) in uplink wireless communication (wireless communication from a terminal device to a base station device). Here, the uplink control information may include channel state information (CSI: Channel State Information) used to indicate the state of the downlink channel. Further, the uplink control information may include a scheduling request (SR: Scheduling Request) used for requesting a UL-SCH (UL-SCH: Uplink Shared CHannel) resource. Further, the uplink control information may include HARQ-ACK (Hybrid Automatic Repeat request ACK knowledgement).
 PDSCHは、MAC層からの下りリンクデータ(DL-SCH: Downlink Shared CHannel)の送信に用いられてよい。また、下りリンクの場合にはシステム情報(SI: System Information)やランダムアクセス応答(RAR: Random Access Response)などの送信に用いられて良い。 PDSCH may be used for transmission of downlink data (DL-SCH: Downlink Shared CHannel) from the MAC layer. Further, in the case of a downlink, it may be used for transmission of system information (SI: System Information) and random access response (RAR: Random Access Response).
 PUSCHは、MAC層からの上りリンクデータ(UL-SCH: Uplink Shared CHannel)または上りリンクデータと共にHARQ-ACKおよび/またはCSIを送信するために用いられてもよい。またPUSCHは、CSIのみ、または、HARQ-ACKおよびCSIのみを送信するために用いられてもよい。すなわちPUSCHは、UCIのみを送信するために用いられてもよい。また、PDSCHまたはPUSCHは、RRCシグナリング(RRCメッセージとも称する)、およびMACコントロールエレメントを送信するために用いられてもよい。ここで、PDSCHにおいて、基地局装置から送信されるRRCシグナリングは、セル内における複数の端末装置に対して共通のシグナリングであってもよい。また、基地局装置から送信されるRRCシグナリングは、ある端末装置に対して専用のシグナリング(dedicated signalingとも称する)であってもよい。すなわち、端末装置固有(UEスペシフィック)の情報は、ある端末装置に対して専用のシグナリングを用いて送信されてもよい。また、PUSCHは、上りリンクにおいてUEの能力(UE Capability)の送信に用いられてもよい。 PUSCH may be used to transmit HARQ-ACK and / or CSI together with uplink data (UL-SCH: Uplink Shared CHannel) or uplink data from the MAC layer. PUSCH may also be used to transmit CSI only, or HARQ-ACK and CSI only. That is, PUSCH may be used to transmit only UCI. PDSCH or PUSCH may also be used to transmit RRC signaling (also referred to as RRC message) and MAC control elements. Here, in PDSCH, the RRC signaling transmitted from the base station device may be a signal common to a plurality of terminal devices in the cell. Further, the RRC signaling transmitted from the base station device may be dedicated signaling (also referred to as dedicated signaling) to a certain terminal device. That is, the information unique to the terminal device (UE specific) may be transmitted to a certain terminal device using a dedicated signaling. PUSCH may also be used to transmit UE Capability on the uplink.
 PRACHは、ランダムアクセスプリアンブルを送信するために用いられてもよい。PRACHは、初期コネクション確立(initial connection establishment)プロシージャ、ハンドオーバプロシージャ、コネクション再確立(connection re-establishment)プロシージャ、上りリンク送信に対する同期(タイミング調整)、およびPUSCH(UL-SCH)リソースの要求を示すために用いられてもよい。 PRACH may be used to send a random access preamble. PRACH is used to indicate initial connection establishment procedures, handover procedures, connection re-establishment procedures, synchronization (timing adjustment) for uplink transmissions, and requests for PUSCH (UL-SCH) resources. May be used for.
 MACの機能の一例について説明する。MACは、MAC副層(サブレイヤ)と呼ばれて良い。MACは、多様な論理チャネル(ロジカルチャネル: Logical Channel)を、対応するトランスポートチャネルに対してマッピングを行う機能を持って良い。論理チャネルは、論理チャネル識別子(Logical Channel Identity、又はLogical Channel ID)によって識別されて良い。MACは上位のRLCと、論理チャネル(ロジカルチャネル)で接続されて良い。論理チャネルは、伝送される情報の種類によって、制御情報を伝送する制御チャネルと、ユ-ザ情報を伝送するトラフィックチャネルに分けられて良い。また論理チャネルは、上りリンク論理チャネルと、下りリンク論理チャネルに分けられて良い。MACは、一つ又は複数の異なる論理チャネルに所属するMAC SDUを多重化(multiplexing)して、PHYに提供する機能を持って良い。またMACは、PHYから提供されたMAC PDUを逆多重化(demultiplexing)し、各MAC SDUが所属する論理チャネルを介して上位レイヤに提供する機能を持って良い。またMACは、HARQ(Hybrid Automatic Repeat reQuest)を通して誤り訂正を行う機能を持って良い。またMACは、スケジューリング情報(scheduling information)をレポートする、スケジューリングレポート(Scheduling Report: SR)機能を持って良い。MACは、動的スケジューリングを用いて、端末装置間の優先処理を行う機能を持って良い。またMACは、一つの端末装置内の論理チャネル間の優先処理を行う機能を持って良い。MACは、一つの端末装置内でオーバーラップしたリソースの優先処理を行う機能を持って良い。E-UTRA MACはMultimedia Broadcast Multicast Services(MBMS)を識別する機能を持って良い。またNR MACは、マルチキャスト/ブロードキャストサービス(Multicast Broadcast Service: MBS)を識別する機能を持って良い。MACは、トランスポートフォーマットを選択する機能を持って良い。MACは、間欠受信(DRX: Discontinuous Reception)及び/又は間欠送信(DTX: Discontinuous Transmission)を行う機能、ランダムアクセス(Random Access: RA)手順を実行する機能、送信可能電力の情報を通知する、パワーヘッドルームレポート(Power Headroom Report: PHR)機能、送信バッファのデータ量情報を通知する、バッファステータスレポート(Buffer Status Report: BSR)機能、などを持って良い。NR MACは帯域適応(Bandwidth Adaptation: BA)機能を持って良い。またE-UTRA MACで用いられるMAC PDUフォーマットとNR MACで用いられるMAC PDUフォーマットは異なって良い。またMAC PDUには、MACにおいて制御を行うための要素である、MAC制御要素(MACコントロールエレメント: MAC CE)が含まれて良い。 An example of the MAC function will be explained. The MAC may be referred to as a MAC sublayer. The MAC may have a function of mapping various logical channels (logical channels: Logical Channels) to the corresponding transport channels. The logical channel may be identified by a logical channel identifier (LogicalChannelIdentity or LogicalChannelID). The MAC may be connected to the upper RLC by a logical channel (logical channel). The logical channel may be divided into a control channel for transmitting control information and a traffic channel for transmitting user information, depending on the type of information to be transmitted. Further, the logical channel may be divided into an uplink logical channel and a downlink logical channel. The MAC may have the function of multiplexing MAC SDUs belonging to one or more different logical channels and providing them to the PHY. The MAC may also have the function of demultiplexing the MAC PDU provided by the PHY and providing it to the upper layer via the logical channel to which each MAC SDU belongs. In addition, the MAC may have a function of performing error correction through HARQ (Hybrid Automatic Repeat reQuest). In addition, the MAC may have a scheduling report (Scheduling Report: SR) function that reports scheduling information. The MAC may have a function of performing priority processing between terminal devices by using dynamic scheduling. Further, the MAC may have a function of performing priority processing between logical channels in one terminal device. The MAC may have a function of prioritizing overlapping resources in one terminal device. E-UTRA MAC may have a function to identify Multimedia Broadcast Multicast Services (MBMS). Further, the NR MAC may have a function of identifying a multicast / broadcast service (Multicast Broadcast Service: MBS). The MAC may have the ability to select a transport format. MAC has a function to perform intermittent reception (DRX: Discontinuous Reception) and / or intermittent transmission (DTX: Discontinuous Transmission), a function to execute a random access (Random Access: RA) procedure, and a power to notify information on transmittable power. It may have a headroom report (Power Headroom Report: PHR) function, a buffer status report (Buffer Status Report: BSR) function, etc. to notify the data amount information of the transmission buffer. The NR MAC may have a Bandwidth Adaptation (BA) function. Also, the MAC PDU format used in E-UTRA MAC and the MAC PDU format used in NR MAC may be different. Further, the MAC PDU may include a MAC control element (MAC control element: MAC CE), which is an element for performing control in the MAC.
 E-UTRA及び/又はNRで用いられる、上りリンク(UL: Uplink)、及び/又は下りリンク(DL:Downlink)用論理チャネルについて説明する。 The logical channel for uplink (UL: Uplink) and / or downlink (DL: Downlink) used in E-UTRA and / or NR will be described.
 BCCH(Broadcast Control Channel)は、システム情報(SI: System Information)等の、制御情報を報知(broadcast)するための下りリンク論理チャネルであって良い。 BCCH (Broadcast Control Channel) may be a downlink logical channel for broadcasting control information such as system information (SI: System Information).
 PCCH(Paging Control Channel)は、ページング(Paging)メッセージを運ぶための下りリンク論理チャネルであって良い。 PCCH (Paging Control Channel) may be a downlink logical channel for carrying a paging message.
 CCCH(Common Control Channel)は、端末装置と基地局装置との間で制御情報を送信するための論理チャネルであって良い。CCCHは、端末装置が、RRC接続を有しない場合に用いられて良い。またCCCHは基地局装置と複数の端末装置との間で使われて良い。 CCCH (Common Control Channel) may be a logical channel for transmitting control information between the terminal device and the base station device. CCCH may be used when the terminal device does not have an RRC connection. CCCH may also be used between a base station appliance and a plurality of terminal appliances.
 DCCH(Dedicated Control Channel)は、端末装置と基地局装置との間で、1対1(point-to-point)の双方向(bi-directional)で、専用制御情報を送信するための論理チャネルであって良い。専用制御情報とは、各端末装置専用の制御情報であって良い。DCCHは、端末装置が、RRC接続を有する場合に用いられて良い。 DCCH (Dedicated Control Channel) is a logical channel for transmitting dedicated control information in a one-to-point bi-directional manner between a terminal device and a base station device. It's okay to have it. The dedicated control information may be control information dedicated to each terminal device. DCCH may be used when the terminal device has an RRC connection.
 DTCH(Dedicated Traffic Channel)は、端末装置と基地局装置との間で、1対1(point-to-point)で、ユーザデータを送信するための論理チャネルであって良い。DTCHは専用ユーザデータを送信するための論理チャネルであって良い。専用ユーザデータとは、各端末装置専用のユーザデータであって良い。DTCHは上りリンク、下りリンク両方に存在して良い。 DTCH (Dedicated Traffic Channel) may be a logical channel for transmitting user data on a one-to-one basis (point-to-point) between a terminal device and a base station device. DTCH may be a logical channel for transmitting dedicated user data. The dedicated user data may be user data dedicated to each terminal device. DTCH may exist on both the uplink and the downlink.
 MTCH(Multicast Traffic Channel)は、基地局装置から端末装置に対し、データを送信するための1対多(point-to-multipoint)の下りリンクチャネルであって良い。MTCHはマルチキャスト用論理チャネルであって良い。MTCHは、端末装置がMBMSを受信する場合にのみ、該当端末装置によって使われて良い。 MTCH (Multicast Traffic Channel) may be a one-to-multipoint downlink channel for transmitting data from a base station device to a terminal device. MTCH may be a logical channel for multicast. MTCH may be used by the terminal device only if the terminal device receives MBMS.
 MCCH(Multicast Control Channel)は、基地局装置から端末装置へ、一つ又は複数のMTCHに対するMBMS制御情報を送るための、1対多(point-to-multipoint)の下りリンクチャネルであって良い。MCCHはマルチキャスト用論理チャネルであって良い。MCCHは端末装置がMBMSを受信する、又は端末装置がMBMSを受信する事に興味がある時にのみ、該当端末装置によって使われて良い。 MCCH (Multicast Control Channel) may be a one-to-multipoint downlink channel for sending MBMS control information for one or more MTCHs from a base station device to a terminal device. MCCH may be a logical channel for multicast. MCCH may be used by a terminal device only when the terminal device receives MBMS or is interested in receiving MBMS.
 SC-MTCH(Single Cell Multicast Traffic Channel)は、基地局装置から端末装置に対し、SC-PTMを用いてデータを送信するための1対多(point-to-multipoint)の下りリンクチャネルであって良い。SC-MTCHはマルチキャスト用論理チャネルであって良い。SC-MTCHは、端末装置がSC-PTM(Single Cell Point-To-Multipoint)を用いてMBMSを受信する場合にのみ、該当端末装置によって使われて良い。 SC-MTCH (Single Cell Multicast Traffic Channel) is a one-to-multipoint downlink channel for transmitting data from a base station device to a terminal device using SC-PTM. good. SC-MTCH may be a logical channel for multicast. SC-MTCH may be used by the terminal device only when the terminal device receives MBMS using SC-PTM (Single Cell Point-To-Multipoint).
 SC-MCCH(Single Cell Multicast Control Channel)は、基地局装置から端末装置へ、一つ又は複数のSC-MTCHに対するMBMS制御情報を送るための、1対多(point-to-multipoint)の下りリンクチャネルであって良い。SC-MCCHはマルチキャスト用論理チャネルであって良い。SC-MCCHは端末装置がSC-PTMを用いてMBMSを受信する、又は端末装置がSC-PTMを用いてMBMSを受信する事に興味がある時にのみ、該当端末装置によって使われて良い。 SC-MCCH (Single Cell Multicast Control Channel) is a one-to-multipoint downlink for sending MBMS control information for one or more SC-MTCHs from a base station device to a terminal device. It can be a channel. SC-MCCH may be a logical channel for multicast. SC-MCCH may be used by the terminal device only when the terminal device receives MBMS using SC-PTM or the terminal device is interested in receiving MBMS using SC-PTM.
 E-UTRA及び/又はNRにおける上りリンクの、論理チャネルとトランスポートチャネルのマッピングについて説明する。 Explain the mapping between the logical channel and the transport channel of the uplink in E-UTRA and / or NR.
 CCCHは、上りリンクトランスポートチャネルである、UL-SCH(Uplink Shared Channel)にマップされて良い。 CCCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
 DCCHは、上りリンクトランスポートチャネルである、UL-SCH(Uplink Shared Channel)にマップされて良い。 DCCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
 DTCHは、上りリンクトランスポートチャネルである、UL-SCH(Uplink Shared Channel)にマップされて良い。 DTCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
 E-UTRA及び/又はNRにおける下りリンクの、論理チャネルとトランスポートチャネルのマッピングについて説明する。 Explain the mapping between the logical channel and the transport channel of the downlink in E-UTRA and / or NR.
 BCCHは、下りリンクトランスポートチャネルであるBCH(Broadcast Channel)、及び/又はDL-SCH(Downlink Shared Channel)にマップされて良い。 BCCH may be mapped to BCH (Broadcast Channel) and / or DL-SCH (Downlink Shared Channel), which are downlink transport channels.
 PCCHは、下りリンクトランスポートチャネルであるPCH(Paging Channel)にマップされて良い。 PCCH may be mapped to PCH (Paging Channel), which is a downlink transport channel.
 CCCHは、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされて良い。 CCCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
 DCCHは、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされて良い。 DCCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
 DTCHは、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされて良い。 DTCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
 MTCHは、下りリンクトランスポートチャネルであるMCH(Multicast Channel)にマップされて良い。 MTCH may be mapped to MCH (Multicast Channel), which is a downlink transport channel.
 MCCHは、下りリンクトランスポートチャネルであるMCH(Multicast Channel)にマップされて良い。 MCCH may be mapped to MCH (Multicast Channel), which is a downlink transport channel.
 SC-MTCHは、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされて良い。 SC-MTCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
 SC-MTCHは、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされて良い。 SC-MTCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
 RLCの機能の一例について説明する。RLCは、RLC副層(サブレイヤ)と呼ばれて良い。E-UTRA RLCは、上位レイヤのPDCPから提供されたデータを、分割(Segmentation)及び/又は結合(Concatenation)し、下位層(下位レイヤ)に提供する機能を持って良い。E-UTRA RLCは、下位レイヤから提供されたデータに対し、再組立て(reassembly)及びリオーダリング(re-ordering)を行い、上位レイヤに提供する機能を持って良い。NR RLCは、上位レイヤのPDCPから提供されたデータに、PDCPで付加されたシーケンス番号とは独立したシーケンス番号を付加する機能を持って良い。またNR RLCは、PDCPから提供されたデータ分割(Segmentation)し、下位レイヤに提供する機能を持って良い。またNR RLCは、下位レイヤから提供されたデータに対し、再組立て(reassembly)を行い、上位レイヤに提供する機能を持って良い。またRLCは、データの再送機能及び/又は再送要求機能(Automatic Repeat reQuest: ARQ)を持って良い。またRLCは、ARQによりエラー訂正を行う機能を持って良い。ARQを行うために、RLCの受信側から送信側に送られる、再送が必要なデータを示す制御情報を、ステータスレポートと言って良い。またRLCの送信側から受信側に送られる、ステータスレポート送信指示の事をポール(poll)と言って良い。またRLCは、データ重複の検出を行う機能を持って良い。またRLCはデータ破棄の機能を持って良い。RLCには、トランスパレントモード(TM: Transparent Mode)、非応答モード(UM: Unacknowledged Mode)、応答モード(AM: Acknowledged Mode)の3つのモードがあって良い。TMでは上位層から受信したデータの分割は行わず、RLCヘッダの付加は行わなくて良い。TM RLCエンティティは単方向(uni-directional)のエンティティであって、送信(transmitting)TM RLCエンティティとして、又は受信(receiving)TM RLCエンティティとして設定されて良い。UMでは上位層から受信したデータの分割及び/又は結合、RLCヘッダの付加等は行うが、データの再送制御は行わなくて良い。UM RLCエンティティは単方向のエンティティであっても良いし双方向(bi-directional)のエンティティであっても良い。UM RLCエンティティが単方向のエンティティである場合、UM RLCエンティティは送信UM RLCエンティティとして、又は受信UMRLCエンティティとして設定されて良い。UM RLCエンティティが双方向のエンティティである場合、UM RRCエンティティは送信(transmitting)サイド及び受信(receiving)サイドから構成されるUM RLCエンティティとして設定されて良い。AMでは上位層から受信したデータの分割及び/又は結合、RLCヘッダの付加、データの再送制御等を行って良い。AM RLCエンティティは双方向のエンティティであって、送信(transmitting)サイド及び受信(receiving)サイドから構成されるAM RLCとして設定されて良い。なお、TMで下位層に提供するデータ、及び/又は下位層から提供されるデータの事をTMD PDUと呼んで良い。またUMで下位層に提供するデータ、及び/又は下位層から提供されるデータの事をUMD PDUと呼んで良い。またAMで下位層に提供するデータ、又は下位層から提供されるデータの事をAMD PDUと呼んで良い。E-UTRA RLCで用いられるRLC PDUフォーマットとNR RLCで用いられるRLC PDUフォーマットは異なって良い。またRLC PDUには、データ用RLC PDUと制御用RLC PDUがあって良い。データ用RLC PDUを、RLC DATA PDU(RLC Data PDU、RLCデータPDU)と呼んで良い。また制御用RLC PDUを、RLC CONTROL PDU(RLC Control PDU、RLCコントロールPDU、RLC制御PDU)と呼んで良い。 An example of RLC functions will be explained. RLC may be referred to as an RLC sublayer. The E-UTRA RLC may have a function of segmenting and / or concatenation the data provided from the PDCP of the upper layer and providing it to the lower layer (lower layer). E-UTRA RLC may have a function of reassembling and re-ordering the data provided from the lower layer and providing it to the upper layer. The NR RLC may have a function of adding a sequence number independent of the sequence number added by the PDCP to the data provided by the PDCP of the upper layer. In addition, NR RLC may have the function of segmenting the data provided by PDCP and providing it to the lower layer. Further, NR RLC may have a function of reassembling the data provided from the lower layer and providing it to the upper layer. In addition, RLC may have a data retransmission function and / or a retransmission request function (Automatic Repeat reQuest: ARQ). In addition, RLC may have a function to correct errors by ARQ. Control information indicating data that needs to be retransmitted, which is sent from the receiving side of RLC to the transmitting side in order to perform ARQ, may be called a status report. Also, the status report transmission instruction sent from the sender side of RLC to the receiver side may be called a pole. RLC may also have a function to detect data duplication. RLC may also have a data discard function. The RLC may have three modes: transparent mode (TM: Transparent Mode), non-response mode (UM: Unacknowledged Mode), and response mode (AM: Acknowledged Mode). In TM, the data received from the upper layer is not divided and the RLC header need not be added. The TM RLC entity is a uni-directional entity and may be configured as a transmitting TM RLC entity or as a receiving TM RLC entity. In UM, data received from the upper layer is divided and / or combined, RLC header is added, etc., but data retransmission control does not have to be performed. The UMRLC entity may be a unidirectional entity or a bi-directional entity. If the UMRLC entity is a unidirectional entity, the UMRLC entity may be configured as a sending UMRLC entity or as a receiving UMRLC entity. If the UM RLC entity is a bidirectional entity, the UM RRC entity may be configured as a UM RLC entity consisting of a transmitting side and a receiving side. In AM, data received from the upper layer may be divided and / or combined, an RLC header may be added, and data retransmission control may be performed. The AMRLC entity is a bidirectional entity and may be configured as an AMRLC consisting of a transmitting side and a receiving side. The data provided to the lower layer by TM and / or the data provided from the lower layer may be referred to as TMDPDU. Further, the data provided to the lower layer by UM and / or the data provided from the lower layer may be referred to as UMD PDU. Further, the data provided to the lower layer by AMD or the data provided from the lower layer may be called AMD PDU. The RLC PDU format used in E-UTRA RLC and the RLC PDU format used in NR RLC may be different. Further, the RLC PDU may include an RLC PDU for data and an RLC PDU for control. The RLC PDU for data may be referred to as an RLC DATA PDU (RLC Data PDU, RLC data PDU). Further, the control RLC PDU may be called an RLC CONTROL PDU (RLC Control PDU, RLC control PDU, RLC control PDU).
 PDCPの機能の一例について説明する。PDCPは、PDCP副層(サブレイヤ)と呼ばれて良い。PDCPは、シーケンス番号のメンテナンスを行う機能を持って良い。またPDCPは、IPパケット(IP Packet)や、イーサネットフレーム等のユーザデータを無線区間で効率的に伝送するための、ヘッダ圧縮・解凍機能を持ってもよい。IPパケットのヘッダ圧縮・解凍に用いられるプロトコルをROHC(Robust Header Compression)プロトコルと呼んで良い。またイーサネットフレームヘッダ圧縮・解凍に用いられるプロトコルをEHC(Ethernet(登録商標)Header Compression)プロトコルと呼んで良い。また、PDCPは、デ-タの暗号化・復号化の機能を持ってもよい。また、PDCPは、デ-タの完全性保護・完全性検証の機能を持ってもよい。またPDCPは、リオーダリング(re-ordering)の機能を持って良い。またPDCPは、PDCP SDUの再送機能を持って良い。またPDCPは、破棄タイマー(discard timer)を用いたデータ破棄を行う機能を持って良い。またPDCPは、多重化(Duplication)機能を持って良い。またPDCPは、重複受信したデータを破棄する機能を持って良い。PDCPエンティティは双方向のエンティティであって、送信(transmitting)PDCPエンティティ、及び受信(receiving)PDCPエンティティから構成されて良い。またE-UTRA PDCPで用いられるPDCP PDUフォーマットとNR PDCPで用いられるPDCP PDUフォーマットは異なって良い。またPDCP PDUには、データ用PDCP PDUと制御用PDCP PDUがあって良い。データ用PDCP PDUを、PDCP DATA PDU(PDCP Data PDU、PDCPデータPDU)と呼んで良い。また制御用PDCP PDUを、PDCP CONTROL PDU(PDCP Control PDU、PDCPコントロールPDU、PDCP制御PDU)と呼んで良い。 An example of the PDCP function will be explained. PDCP may be referred to as a PDCP sublayer. PDCP may have a function to maintain the sequence number. The PDCP may also have a header compression / decompression function for efficiently transmitting user data such as IP packets and Ethernet frames in the wireless section. The protocol used for IP packet header compression / decompression may be called the ROHC (Robust Header Compression) protocol. The protocol used for Ethernet frame header compression / decompression may be called the EHC (Ethernet (registered trademark) Header Compression) protocol. The PDCP may also have a data encryption / decryption function. The PDCP may also have the function of data integrity protection / integrity verification. The PDCP may also have a re-ordering function. The PDCP may also have a PDCP SDU retransmission function. In addition, PDCP may have a function of discarding data using a discard timer (discard timer). The PDCP may also have a Duplication function. The PDCP may also have a function of discarding duplicate received data. The PDCP entity is a bidirectional entity and may consist of a transmitting PDCP entity and a receiving PDCP entity. Also, the PDCP PDU format used in E-UTRA PDCP and the PDCP PDU format used in NR PDCP may be different. Further, the PDCP PDU may include a PDCP PDU for data and a PDCP PDU for control. The PDCP PDU for data may be referred to as a PDCP DATA PDU (PDCP Data PDU, PDCP data PDU). Further, the control PDCP PDU may be called a PDCP CONTROL PDU (PDCP Control PDU, PDCP control PDU, PDCP control PDU).
 PDCPにおいて、暗号化、又は完全性保護の処理を行う際、COUNT値を用いて良い。COUNT値は、PDCPの状態変数であるHFN(Hyper Frame Number)と、PDCP PDUのヘッダに付加されるシーケンス番号(SN: Sequence Number)から構成されて良い。シーケンス番号は、送信PDCPエンティティでPDCP DATA PDUが生成される度に、1加算されて良い。HFNは、送信PDCPエンティティ、及び受信PDCPエンティティでシーケンス番号が最大値に達する度に、1加算されて良い。また、送信PDCPエンティティ、及び受信PDCPエンティティでCOUNT値を管理するために、次の(A)から(F)の状態変数(ステート変数)の一部又は全てが使われて良い。
  (A)次に送信されるPDCP SDUのCOUNT値を示すステート変数。TX_NEXTという名称のステート変数であって良い。
  (B)本PDCPエンティティにおいて、次に送信されるPDCP SDUのシーケンス番号を示すステート変数。Next_PDCP_TX_SNという名称のステート変数であって良い。
  (C)本PDCPエンティティにおいて、PDCP PDUのCOUNT値を生成するために使われるHFN値を表すステート変数。TX_HFNという名称のステート変数であって良い。
  (D)受信PDCPエンティティにおいて、次に受信する事が予想されるPDCP SDUのCOUNT値を示すステート変数。RX_NEXTという名称のステート変数であって良い。
  (E)受信PDCPエンティティにおいて、次に受信する事が予想されるPDCP SDUのシーケンス番号を示すステート変数。Next_PDCP_RX_SNという名称のステート変数であって良い。
  (F)本PDCPエンティティにおいて、受信したPDCP PDUに対するCOUNT値を生成するために使われるHFN値を表すステート変数。RX_HFNという名称のステート変数であって良い。
In PDCP, the COUNT value may be used when performing encryption or integrity protection processing. The COUNT value may be composed of HFN (Hyper Frame Number), which is a PDCP state variable, and a sequence number (SN: Sequence Number) added to the header of the PDCP PDU. The sequence number may be incremented by 1 each time the sending PDCP entity generates a PDCP DATA PDU. The HFN may be incremented by 1 each time the sequence number reaches the maximum value in the transmit PDCP entity and the receive PDCP entity. Further, in order to manage the COUNT value in the sending PDCP entity and the receiving PDCP entity, some or all of the following state variables (state variables) (A) to (F) may be used.
(A) A state variable that indicates the COUNT value of the PDCP SDU to be sent next. It may be a state variable named TX_NEXT.
(B) In this PDCP entity, a state variable indicating the sequence number of the PDCP SDU to be transmitted next. It can be a state variable named Next_PDCP_TX_SN.
(C) A state variable that represents the HFN value used to generate the COUNT value for the PDCP PDU in this PDCP entity. It can be a state variable named TX_HFN.
(D) A state variable that indicates the COUNT value of the PDCP SDU that is expected to be received next in the receiving PDCP entity. It may be a state variable named RX_NEXT.
(E) In the receiving PDCP entity, a state variable indicating the sequence number of the PDCP SDU that is expected to be received next. It can be a state variable named Next_PDCP_RX_SN.
(F) A state variable that represents the HFN value used to generate the COUNT value for the received PDCP PDU in this PDCP entity. It may be a state variable named RX_HFN.
 また、PDCPにおいて、リオーダリング(re-ordering)とは、PDCP SDUを受信バッファ(リオーダリングバッファ)に格納し、PDCP DATA PDUのヘッダ情報から得られるCOUNT値の順番通りにPDCP SDUを上位レイヤに引き渡すための処理であって良い。リオーダリングにおいて、受け取ったPDCPデータPDUのCOUNT値が、まだ上位レイヤに受け渡していない最初のPDCP SDUのCOUNT値である場合に、格納されているPDCP SDUをCOUNT値の順番通りに上位レイヤに受け渡す処理を行って良い。すなわちリオーダリングにおいて、受信したPDCPデータPDUのCOUNT値より小さいCOUNT値を持つPDCPデータPDUが受信できていない(PDCPデータPDUがロスしている)場合には、その受信したPDCPデータPDUをPDCP SDUに変換してリオーダリングバッファに格納し、ロスしているPDCPデータPDUを全て受信し、PDCP SDUに変換されてから、上位レイヤに受け渡す処理を行って良い。リオーダリングにおいて、PDCPデータPDUのロスを検出するために、リオーダリングタイマー(t-Reorderingという名称のタイマー)が使われて良い。また、リオーダリングのために、次の(A)から(F)の状態変数(ステート変数)のうちの一部又は全てが使われて良い。
  (A)受信PDCPエンティティにおいて、次に受信する事が予想されるPDCP SDUのCOUNT値を示すステート変数。RX_NEXTという名称のステート変数であって良い。
  (B)受信PDCPエンティティにおいて、次に受信する事が予想されるPDCP SDUのシーケンス番号を示すステート変数。Next_PDCP_RX_SNという名称のステート変数であって良い。
  (C)本PDCPエンティティにおいて、受信したPDCP PDUに対するCOUNT値を生成するために使われるHFN値を表すステート変数。RX_HFNという名称のステート変数であって良い。
  (D)受信PDCPエンティティにおいて、上位層に配信していない受信待ちのPDCP SDUのうち最初のPDCP PDUのCOUNT値を示すステート変数。RX_DELIVという名称のステート変数であって良い。
  (E)受信PDCPエンティティにおいて、最後に上位層に配信したPDCP SDUのPDCP PDUのシーケンス番号を示すステート変数。Last_Submitted_PDCP_RX_SNという名称のステート変数であって良い。
  (F)受信PDCPエンティティにおいて、リオーダリングタイマーを開始させたPDCP PDUのCOUNT値の次のCOUNT値を示すステート変数。RX_REORDという名称のステート変数、又はReordering_PDCP_RX_COUNTという名称のステート変数であって良い。
In PDCP, re-ordering means that the PDCP SDU is stored in the receive buffer (reordering buffer), and the PDCP SDU is placed in the upper layer in the order of the COUNT values obtained from the header information of the PDCP DATA PDU. It may be a process for delivery. In reordering, if the COUNT value of the received PDCP data PDU is the COUNT value of the first PDCP SDU that has not yet been passed to the upper layer, the stored PDCP SDU is received by the upper layer in the order of the COUNT value. You may perform the process of passing. That is, in reordering, if a PDCP data PDU with a COUNT value smaller than the COUNT value of the received PDCP data PDU cannot be received (PDCP data PDU is lost), the received PDCP data PDU is used as PDCP SDU. It may be converted to and stored in the reordering buffer, all the lost PDCP data PDUs may be received, converted to PDCP SDU, and then passed to the upper layer. In reordering, a reordering timer (a timer named t-Reordering) may be used to detect the loss of PDCP data PDUs. Further, for reordering, some or all of the following state variables (state variables) (A) to (F) may be used.
(A) A state variable that indicates the COUNT value of the PDCP SDU that is expected to be received next in the receiving PDCP entity. It may be a state variable named RX_NEXT.
(B) A state variable indicating the sequence number of the PDCP SDU that is expected to be received next in the received PDCP entity. It can be a state variable named Next_PDCP_RX_SN.
(C) A state variable that represents the HFN value used to generate the COUNT value for the received PDCP PDU in this PDCP entity. It may be a state variable named RX_HFN.
(D) In the received PDCP entity, a state variable indicating the COUNT value of the first PDCP PDU among the PDCP SDUs waiting to be received that have not been delivered to the upper layer. It may be a state variable named RX_DELIV.
(E) In the received PDCP entity, a state variable indicating the sequence number of the PDCP PDU of the PDCP SDU that was last delivered to the upper layer. It may be a state variable named Last_Submitted_PDCP_RX_SN.
(F) In the received PDCP entity, a state variable that indicates the COUNT value next to the COUNT value of the PDCP PDU that started the reordering timer. It may be a state variable named RX_REORD or a state variable named Reordering_PDCP_RX_COUNT.
 PDCPにおけるステータスレポーティング(Status Reporting)について説明する。上位レイヤよりPDCPステータスレポートの送信が設定された、Acknowledged ModeのRLCを用いるDRB(AM DRB: Acknowledged Mode Data Radio Bearer)において、受信PDCPエンティティは次の(A)から(D)の何れか条件を満たす時、PDCPステータスレポートを起動(trigger)しても良い。また、上位レイヤよりPDCPステータスレポートの送信が設定された、Unacknowledged ModeのRLCを用いるDRB(UM DRB: Unacknowledged Mode Data Radio Bearer) において、受信PDCPエンティティは次の(C)の条件を満たす時、PDCPステータスレポートを起動(trigger)しても良い。
  (A)上位レイヤがPDCPエンティティの再確立(re-establishment)を要求する。
  (B)上位レイヤがPDCPデータリカバリを要求する。
  (C)上位レイヤがアップリンクデータスイッチを要求する。
  (D)上位レイヤがDAPS(Dual Active Protocol Stack)を解放するためにこのPDCPエンティティを再設定し、かつdaps source releaseという名称のパラメータが設定されている。
Status reporting in PDCP will be described. In DRB (AM DRB: Acknowledged Mode Data Radio Bearer) using RLC of Acknowledged Mode in which transmission of PDCP status report is set from the upper layer, the receiving PDCP entity satisfies one of the following conditions (A) to (D). When met, you may trigger the PDCP status report. In addition, in DRB (UM DRB: Unacknowledged Mode Data Radio Bearer) using RLC of Unacknowledged Mode in which transmission of PDCP status report is set from the upper layer, when the receiving PDCP entity meets the following conditions (C), PDCP You may also trigger a status report.
(A) The upper layer requests the re-establishment of the PDCP entity.
(B) The upper layer requests PDCP data recovery.
(C) The upper layer requests an uplink data switch.
(D) The upper layer has reconfigured this PDCP entity to release the DAPS (Dual Active Protocol Stack), and a parameter named daps source release has been set.
 PDCPステータスレポートの送信が起動された場合、受信PDCPエンティティはPDCPステータスレポートの作成を行って良い。PDCPステータスレポートの作成は、PDCPステータスレポート用のPDCP制御PDUに、上位層に配信していない受信待ちのPDCP SDUのうち最初のPDCP PDUのCOUNT値を含む、受信待ちのPDCP SDUの情報を格納する事により行われて良い。PDCPステータスレポートを作成した受信PDCPエンティティは、送信PDCPエンティティを経由して、作成したPDCPステータスレポートを下位レイヤに提出して良い。 When sending the PDCP status report is activated, the receiving PDCP entity may create the PDCP status report. To create a PDCP status report, the PDCP control PDU for the PDCP status report contains information on the PDCP SDU waiting to be received, including the COUNT value of the first PDCP PDU waiting to be received that has not been delivered to the upper layer. It may be done by doing. The receiving PDCP entity that created the PDCP status report may submit the created PDCP status report to a lower layer via the sending PDCP entity.
 なお、本発明の実施の形態において、上位レイヤよりPDCPステータスレポートの送信が設定されたUM DRBのPDCPエンティティは、上位レイヤからPDCPデータリカバリを要求された事を判断して良い。上位レイヤからPDCPデータリカバリを要求された事を判断したUM DRBのPDCPエンティティは、上位レイヤからPDCPデータリカバリを要求された事に基づいて、受信PDCPエンティティにおいてPDCPステータスレポートを作成し、送信PDCPエンティティを経由して、作成したPDCPステータスレポートを下位レイヤに提出しても良い。なお、下位レイヤとは、PDCPエンティティに紐づいているRLCベアラのUM RLCエンティティであって良い。なお、本発明の実施の形態において、UM DRBがDAPSベアラで無い場合にのみ、上位レイヤよりPDCPステータスレポートの送信が設定されたUM DRBのPDCPエンティティは、上位レイヤからPDCPデータリカバリを要求された事を判断して良い。DAPSベアラとは、PDCPエンティティにソースセル用の1つ又は複数のRLCエンティティと、ターゲットセル用の1つ又は複数のRLCエンティティが紐づいているベアラであって良い。また上述のPDCPデータリカバリは、上位レイヤよりPDCPにステータスレポートの送信を要求する事を意味する他の名称であって良い。 In the embodiment of the present invention, it may be determined that the PDCP entity of UMDRB, which is set to send the PDCP status report from the upper layer, has requested PDCP data recovery from the upper layer. The PDCP entity of UMDRB that determines that PDCP data recovery is requested from the upper layer creates a PDCP status report in the receiving PDCP entity based on the PDCP data recovery request from the upper layer, and the sending PDCP entity. The created PDCP status report may be submitted to the lower layer via. The lower layer may be the UM RLC entity of the RLC bearer associated with the PDCP entity. In the embodiment of the present invention, only when the UMDRB is not a DAPS bearer, the PDCP entity of the UMDRB to which the PDCP status report transmission is set from the upper layer is requested to recover the PDCP data from the upper layer. You can judge the matter. The DAPS bearer may be a bearer in which one or more RLC entities for the source cell and one or more RLC entities for the target cell are associated with the PDCP entity. Further, the PDCP data recovery described above may be another name meaning that the PDCP is requested to send a status report from the upper layer.
 ROHCについて説明する。本発明の実施の形態において、ROHCをROHCプロトコルと言い換えて良い。ROHCは、IP、UDP、TCP、RTPなどのヘッダ情報を圧縮(compress)する機能及び解凍(decompress)する機能を持って良い。ROHCにおいて、圧縮機(compressor)がヘッダ情報を圧縮するヘッダ圧縮機能を持って良い。またROHCにおいて、解凍機(decompressor)がヘッダ情報を解凍するヘッダ解凍機能を持って良い。圧縮機は、圧縮機が保有するコンテキストを用いてヘッダ圧縮を行って良い。解凍機は解凍機が保有するコンテキストを用いてヘッダ解凍を行って良い。本発明の実施の形態において、コンテキストをROHCコンテキストと言い換えて良い。解凍機におけるコンテキストは、圧縮機から全てのヘッダ情報を受信する事により生成されて良い。圧縮機及び解凍機におけるコンテキストはIPフロー毎に保有されて良い。コンテキストを識別するために、コンテキスト識別子(Context Identifier: CID)が用いられて良い。コンテキスト識別子の最大値の情報、ヘッダ圧縮・解凍の方法を示すプロファイル(profile)の情報などは、ヘッダ圧縮・解凍を行う前に、圧縮機と解凍機の間で折衝(negotiate)されて良い。 Explain ROHC. In embodiments of the present invention, ROHC may be paraphrased as the ROHC protocol. ROHC may have a function of compressing and decompressing header information such as IP, UDP, TCP, and RTP. In ROHC, the compressor may have a header compression function that compresses the header information. Also, in ROHC, the decompressor may have a header decompression function to decompress the header information. The compressor may perform header compression using the context possessed by the compressor. The decompression machine may decompress the header using the context possessed by the decompression machine. In embodiments of the present invention, the context may be paraphrased as a ROHC context. The context in the decompressor may be generated by receiving all the header information from the compressor. The context in the compressor and decompressor may be retained for each IP flow. A context identifier (Context Identifier: CID) may be used to identify the context. Information on the maximum value of the context identifier, profile information indicating the method of header compression / decompression, etc. may be negotiated between the compressor and the decompression machine before header compression / decompression.
 ROHCにおいてヘッダ情報は、静的部分(static parts)と動的部分(dynamic parts)に分類されて良い。ROHCにおけるヘッダ情報の静的部分とは、IPフローに所属する各パケットのヘッダ情報のうち、殆ど変化しない情報であって良い。ROHCにおけるヘッダ情報の静的部分は例えば、IPv4ヘッダやIPv6ヘッダにおける送信元(source)アドレス、宛先(destination)アドレス、バージョン、UDPヘッダやTCPヘッダにおける送信元ポート、宛先ポートなどを含む情報であって良い。またROHCにおけるヘッダ情報の動的部分とは、IPフローに所属する各パケットのヘッダ情報のうち、パケット毎に変化し得る情報であって良い。ROHCにおけるヘッダ情報の動的部分は例えば、IPv6ヘッダにおけるトラフッククラス、ホップリミット、IPv4ヘッダにおけるType of service、Time to Live、UDPヘッダにおけるチェックサム、RTPヘッダにおけるRTPシーケンス番号、RTPタイムスタンプなどを含む情報であって良い。 In ROHC, header information may be classified into static parts and dynamic parts. The static part of the header information in ROHC may be information that hardly changes among the header information of each packet belonging to the IP flow. The static part of the header information in ROHC is, for example, information including a source address, a destination address, a version in an IPv4 header or an IPv6 header, a source port in a UDP header or a TCP header, a destination port, and the like. It's okay. Further, the dynamic part of the header information in ROHC may be information that can change for each packet among the header information of each packet belonging to the IP flow. The dynamic part of the header information in ROHC includes, for example, trahook class in IPv6 header, hop limit, Type of service in IPv4 header, Time to Live, check sum in UDP header, RTP sequence number in RTP header, RTP time stamp, etc. It may be information.
 ROHCの圧縮機にはIR(Initialization and Refresh)ステート、FO(First Order)ステート、SO(Second Order)ステートの3つのステートが存在して良い。IRステートが用いられる場合、圧縮機は圧縮対象となるヘッダ情報を圧縮せず、全てのヘッダ情報を解凍機へ送信して良い。FOステートが用いられる場合、圧縮機は圧縮対象ヘッダ情報のうち、静的部分のほとんどを圧縮し、一部の静的部分と動的部分は圧縮せずに解凍機へと送信して良い。SOステートが用いられる場合、ヘッダの圧縮率が最高となり、圧縮機からはRTPシーケンス番号等の限られた情報のみを送信して良い。 The ROHC compressor may have three states: IR (Initialization and Refresh) state, FO (First Order) state, and SO (Second Order) state. When the IR state is used, the compressor may not compress the header information to be compressed and may send all the header information to the decompressor. When the FO state is used, the compressor may compress most of the static part of the header information to be compressed, and send some static part and dynamic part to the decompressor without compression. When the SO state is used, the compression rate of the header is the highest, and only limited information such as the RTP sequence number may be transmitted from the compressor.
 ROHCの解凍機にはNC(No Context)ステート、SC(Static Context)ステート、FC(Full Context)ステートの3つのステートが存在して良い。解凍機の初期状態はNCステートであって良い。NCステートにおいてコンテキストを取得し、正しくヘッダ解凍が行われる状態となった場合、FCステートへと遷移して良い。またFCステートにおいて連続的にヘッダ解凍が失敗した場合、SCステートやNCステートに遷移して良い。 The ROHC decompressor may have three states: NC (NoContext) state, SC (StaticContext) state, and FC (FullContext) state. The initial state of the defroster may be NC state. When the context is acquired in the NC state and the header is decompressed correctly, the transition to the FC state may be performed. If header decompression fails continuously in the FC state, it may transition to the SC state or NC state.
 ROHCの処理モードには、U-mode(Unidirectional mode)、O-mode(Bidirectional Optimistic mode)、R-mode(Bidirectional Reliable mode)の3つのモードが存在して良い。U-modeでは、ROHCフィードバックパケットを使用しなくて良い。U-modeにおいて、圧縮機における低圧縮モードから高圧縮モードへの遷移、即ちIRステートからFOステートへの遷移、及び/又はFOステートからSOステートへの遷移、及び/又はIRステートからSOステートへの遷移は、一定数のパケットを送信することで実施されて良い。また、U-modeにおいて、圧縮機における高圧縮モードから低圧縮モードへの遷移、即ちSOステートからFOステートへの遷移、及び/又はFOステートからIRステートへの遷移、及び/又はSOステートからIRステートへの遷移は、は一定周期毎に実施する事により、ヘッダ解凍に必要な情報を定期的に解凍機へ送信して良い。O-modeでは、解凍機が圧縮機にROHCフィードバックパケットを送信する事により、圧縮機にコンテキストの更新要求を行って良い。R-modeにおいて、圧縮機は、解凍機よりROHCフィードバックパケットよるヘッダ解凍成功通知を受け取る事により、低圧縮モードから高圧縮モードへ遷移して良い。またR-modeにおいて、圧縮機は、解凍機よりROHCフィードバックパケットよるコンテキスト更新要求を受け取る事により、高圧縮モードから低圧縮モードへ遷移して良い。ROHCの処理モードはU-modeから開始されて良い。ROHCの処理モードの遷移は、解凍機が決定して良い。解凍機はROHCフィードバックパケットを用いて、圧縮機へ処理モードの遷移を促して良い。 There may be three ROHC processing modes: U-mode (Unidirectional mode), O-mode (Bidirectional Optimistic mode), and R-mode (Bidirectional Reliable mode). In U-mode, it is not necessary to use ROHC feedback packets. In U-mode, the transition from low compression mode to high compression mode in the compressor, that is, the transition from IR state to FO state, and / or the transition from FO state to SO state, and / or from IR state to SO state. The transition may be performed by transmitting a fixed number of packets. Also, in U-mode, the transition from high compression mode to low compression mode in the compressor, that is, the transition from SO state to FO state, and / or the transition from FO state to IR state, and / or from SO state to IR. The transition to the state may be performed at regular intervals, so that the information necessary for header decompression may be periodically transmitted to the decompression machine. In O-mode, the decompressor may send a ROHC feedback packet to the compressor to request the compressor to update the context. In R-mode, the compressor may transition from the low compression mode to the high compression mode by receiving the header decompression success notification by the ROHC feedback packet from the decompression machine. Further, in the R-mode, the compressor may transition from the high compression mode to the low compression mode by receiving the context update request by the ROHC feedback packet from the decompression machine. The ROHC processing mode may be started from U-mode. The transition of the processing mode of ROHC may be determined by the defroster. The decompressor may use the ROHC feedback packet to urge the compressor to transition to the processing mode.
 SDAPの機能の一例について説明する。SDAPは、サービスデータ適応プロトコル層(サービスデータ適応プロトコルレイヤ)である。SDAPは、5GC110から基地局装置を介して端末装置に送られるダウンリンクのQoSフローとデータ無線ベアラ(DRB)との対応付け(マッピング:mapping)、及び/又は端末装置から基地局装置を介して5GC110に送られるアップリンクのQoSフローと、DRBとのマッピングを行う機能を持って良い。またSDAPはマッピングルール情報を格納する機能を持って良い。またSDAPはQoSフロー識別子(QoS Flow ID: QFI)のマーキングを行う機能を持って良い。なお、SDAP PDUには、データ用SDAP PDUと制御用SDAP PDUがあって良い。データ用SDAP PDUをSDAP DATA PDU(SDAP Data PDU、SDAPデータPDU)と呼んで良い。また制御用SDAP PDUをSDAP CONTROL PDU(SDAP Control PDU、SDAPコントロールPDU、SDAP制御PDU)と呼んで良い。なお端末装置のSDAPエンティティは、PDUセッションに対して一つ存在して良い。 An example of SDAP functions will be explained. SDAP is a service data adaptation protocol layer (service data adaptation protocol layer). SDAP maps the downlink QoS flow sent from the 5GC110 to the terminal device via the base station device and the data radio bearer (DRB) (mapping), and / or from the terminal device via the base station device. It may have a function to map the uplink QoS flow sent to the 5GC110 with the DRB. SDAP may also have a function to store mapping rule information. In addition, SDAP may have a function of marking a QoS flow identifier (QoS Flow ID: QFI). The SDAP PDU may include a data SDAP PDU and a control SDAP PDU. SDAP PDU for data may be called SDAP DATA PDU (SDAP Data PDU, SDAP data PDU). Further, the control SDAP PDU may be called an SDAP CONTROL PDU (SDAP Control PDU, SDAP control PDU, SDAP control PDU). Note that there may be one SDAP entity for the terminal device for the PDU session.
 RRCの機能の一例について説明する。RRCは、報知(ブロードキャスト:broadcast)機能を持って良い。RRCは、EPC104及び/又は5GC110からの呼び出し(ページング:Paging)機能を持って良い。RRCは、gNB108又は5GC100に接続するeNB102からの呼び出し(ページング:Paging)機能を持って良い。またRRCは、RRC接続管理機能を持って良い。またRRCは、無線ベアラ制御機能を持って良い。またRRCは、セルグループ制御機能を持って良い。またRRCは、モビリティ(mobility)制御機能を持って良い。またRRCは端末装置測定レポーティング及び端末装置測定レポーティング制御機能を持って良い。またRRCは、QoS管理機能を持って良い。またRRCは、無線リンク失敗の検出及び復旧の機能を持って良い。RRCは、RRCメッセージを用いて、報知、ページング、RRC接続管理、無線ベアラ制御、セルグループ制御、モビィティ制御、端末装置測定レポーティング及び端末装置測定レポーティング制御、QoS管理、無線リンク失敗の検出及び復旧等を行って良い。なお、E-UTRA RRCで用いられるRRCメッセージやパラメータは、NR RRCで用いられるRRCメッセージやパラメータと異なって良い。 An example of the function of RRC will be explained. The RRC may have a broadcast function. The RRC may have a calling (paging) function from EPC104 and / or 5GC110. The RRC may have a call (paging) function from the eNB 102 that connects to the gNB 108 or 5GC100. The RRC may also have an RRC connection management function. The RRC may also have a wireless bearer control function. The RRC may also have a cell group control function. The RRC may also have a mobility control function. Further, the RRC may have a terminal device measurement reporting and a terminal device measurement reporting control function. The RRC may also have a QoS management function. The RRC may also have a function of detecting and recovering a wireless link failure. RRC uses RRC messages for notification, paging, RRC connection management, wireless bearer control, cell group control, mobility control, terminal device measurement reporting and terminal device measurement reporting control, QoS management, detection and recovery of wireless link failures, etc. You may go. The RRC message or parameter used in E-UTRA RRC may be different from the RRC message or parameter used in NR RRC.
 RRCメッセージは、論理チャネルのBCCHを用いて送られて良いし、論理チャネルのPCCHを用いて送られて良いし、論理チャネルのCCCHを用いて送られて良いし、論理チャネルのDCCHを用いて送られて良いし、論理チャネルのMCCHを用いて送られて良い。 The RRC message may be sent using the BCCH of the logical channel, the PCCH of the logical channel, the CCCH of the logical channel, or the DCCH of the logical channel. It may be sent or it may be sent using the MCCH of the logical channel.
 BCCHを用いて送られるRRCメッセージには、例えばマスター情報ブロック(Master Information Block: MIB)が含まれて良いし、各タイプのシステム情報ブロック(System Information Block: SIB)が含まれて良いし、他のRRCメッセージが含まれて良い。PCCHを用いて送られるRRCメッセージには、例えばページングメッセージが含まれて良いし、他のRRCメッセージが含まれて良い。 The RRC message sent using BCCH may include, for example, a master information block (MIB), each type of system information block (System Information Block: SIB), and others. RRC message may be included. The RRC message sent using the PCCH may include, for example, a paging message, or may include other RRC messages.
 CCCHを用いてアップリンク(UL)方向送られるRRCメッセージには、例えばRRCセットアップ要求メッセージ(RRC Setup Request)、RRC再開要求メッセージ(RRC Resume Request)、RRC再確立要求メッセージ(RRC Reestablishment Request)、RRCシステム情報要求メッセージ(RRC System Info Request)などが含まれて良い。また例えばRRC接続要求メッセージ(RRC Connection Request)、RRCコネクション再開要求メッセージ(RRC Connection Resume Request)、RRC接続再確立要求メッセージ(RRC Connection Reestablishment Request)などが含まれて良い。また他のRRCメッセージが含まれて良い。 RRC messages sent in the uplink (UL) direction using CCCH include, for example, RRC Setup Request message (RRC Setup Request), RRC Resume Request Message (RRC Resume Request), RRC Reestablishment Request Message (RRC Reestablishment Request), and RRC. A system information request message (RRC System Info Request) may be included. Further, for example, an RRC connection request message (RRC Connection Request), an RRC connection restart request message (RRC Connection Resume Request), an RRC connection reestablishment request message (RRC Connection Reestablishment Request), and the like may be included. It may also contain other RRC messages.
 CCCHを用いてダウンリンク(DL)方向送られるRRCメッセージには、例えばRRC接続拒絶メッセージ(RRC Connection Reject)、RRC接続セットアップメッセージ(RRC Connection Setup)、RRCコネクション再確立メッセージ(RRC Connection Reestablishment)、RRCコネクション再確立拒絶メッセージ(RRC Connection Reestablishment Reject)などが含まれて良い。また例えばRRC拒絶メッセージ(RRC Reject)、RRCセットアップメッセージ(RRC Setup)、RRC再開メッセージ(RRC Resume)などが含まれて良い。また他のRRCメッセージが含まれて良い。 RRC messages sent in the downlink (DL) direction using CCCH include, for example, RRC Connection Reject message, RRC Connection Setup message, RRC Connection Reestablishment message, and RRC. A connection reestablishment refusal message (RRC Connection Reestablishment Reject) or the like may be included. Further, for example, an RRC reject message (RRC Reject), an RRC setup message (RRC Setup), an RRC restart message (RRC Resume), and the like may be included. It may also contain other RRC messages.
 DCCHを用いてアップリンク(UL)方向送られるRRCメッセージには、例えば測定報告メッセージ(Measurement Report)、RRCコネクション再設定完了メッセージ(RRC Connection Reconfiguration Complete)、RRC接続セットアップ完了メッセージ(RRC Connection SetupComplete)、RRC接続再確立完了メッセージ(RRC Connection Reestablishment Complete)、セキュリティモード完了メッセージ(Security Mode Complete)、UE能力情報メッセージ(UE Capability Information)などが含まれて良い。また例えば測定報告メッセージ(Measurement Report)、RRC再設定完了メッセージ(RRC Reconfiguration Complete)、RRCセットアップ完了メッセージ(RRC Setup Complete)、RRC再確立完了メッセージ(RRC Reestablishment Complete)、RRC再開完了メッセージ(RRC Resume Complete)、セキュリティモード完了メッセージ(Security Mode Complete)、UE能力情報メッセージ(UE Capability Information)、カウンターチェック応答メッセージ(Counter Check Response)などが含まれて良い。また他のRRCメッセージが含まれて良い。 RRC messages sent in the uplink (UL) direction using DCCH include, for example, measurement report message (Measurement Report), RRC connection reconfiguration completion message (RRC Connection Reconfiguration Complete), RRC connection setup completion message (RRC Connection Setup Complete), An RRC connection reestablishment completion message (RRC Connection Reestablishment Complete), a security mode completion message (Security Mode Complete), a UE capability information message (UE Capability Information), and the like may be included. Also, for example, measurement report message (Measurement Report), RRC reconfiguration completion message (RRC Reconfiguration Complete), RRC setup completion message (RRC Setup Complete), RRC reestablishment completion message (RRC Reestablishment Complete), RRC resumption completion message (RRC Resume Complete). ), Security mode completion message (Security Mode Complete), UE capability information message (UE Capability Information), counter check response message (Counter Check Response), and the like may be included. It may also contain other RRC messages.
 DCCHを用いてダウンリンク(DL)方向送られるRRCメッセージには、例えばRRC接続再設定メッセージ(RRC Connection Reconfiguration)、RRC接続解放メッセージ(RRC ConnectionRelease)、セキュリティモードコマンドメッセージ(Security Mode Command)、UE能力照会メッセージ(UE Capability Enquiry)などが含まれて良い。また例えRRC再設定メッセージ(RRC Reconfiguration)、RRC再開メッセージ(RRC Resume)、RRC解放メッセージ(RRC Release)、RRC再確立メッセージ(RRC Reestablishment)、セキュリティモードコマンドメッセージ(Security Mode Command)、UE能力照会メッセージ(UE Capability Enquiry)、カウンターチェックメッセージ(Counter Check)などが含まれて良い。また他のRRCメッセージが含まれて良い。 RRC messages sent in the downlink (DL) direction using DCCH include, for example, RRC connection reconfiguration message (RRC Connection Reconfiguration), RRC connection release message (RRC Connection Release), security mode command message (Security Mode Command), and UE capability. Inquiry messages (UE Capability Inquiry) etc. may be included. Also, for example, RRC reconfiguration message (RRC Reconfiguration), RRC restart message (RRC Resume), RRC release message (RRC Release), RRC reestablishment message (RRC Reestablishment), security mode command message (Security Mode Command), UE capability inquiry message. (UE Capability Inquiry), counter check message (Counter Check), etc. may be included. It may also contain other RRC messages.
 NASの機能の一例について説明する。NASは、認証機能を持って良い。またNASは、モビリティ(mobility)管理を行う機能を持って良い。またNASは、セキュリティ制御の機能を持って良い。 An example of NAS functions will be explained. NAS may have an authentication function. NAS may also have the ability to manage mobility. The NAS may also have a security control function.
 前述のPHY、MAC、RLC、PDCP、SDAP、RRC、NASの機能は一例であり、各機能の一部あるいは全てが実装されなくてもよい。また、各層(各レイヤ)の機能の一部あるいは全部が他の層(レイヤ)に含まれてもよい。 The above-mentioned PHY, MAC, RLC, PDCP, SDAP, RRC, and NAS functions are examples, and some or all of the functions may not be implemented. Further, a part or all of the functions of each layer (each layer) may be included in another layer (layer).
 なお、端末装置のAS層の上位層(不図示)にはIPレイヤ、及びIPレイヤより上のTCP(Transmission Control Protocol)レイヤ、UDP(User Datagram Protocol)レイヤ、などが存在して良い。また端末装置のAS層の上位層には、イーサネット層が存在して良い。端末装置のAS層の上位層PDU層(PDUレイヤ)と呼んで良い。PDUレイヤにはIPレイヤ、TCPレイヤ、UDPレイヤ、イーサネットレイヤ等が含まれて良い。IPレイヤ、TCPレイヤ、UDPレイヤ、イーサネットレイヤ、PDUレイヤ等の上位層に、アプリケーションレイヤが存在して良い。アプリケーションレイヤには、3GPPにおいて規格化されているサービス網の一つである、IMS(IP Multimedia Subsystem)で用いられるSIP(Session Initiation Protocol)やSDP(Session Description Protocol)が含まれて良い。またアプリケーション層にはメディア通信に用いられるRTP(Real-time Transport Protocol)、及び/又はメディア通信制御にRTCP(Real-time Transport Control Protocol)、HTTP(HyperText Transfer Protocol)等のプロトコルが含まれて良い。またアプリケーションレイヤには、各種メディアのコーデック等が含まれて良い。またRRCレイヤはSDAPレイヤの上位レイヤであって良い。 Note that the upper layer (not shown) of the AS layer of the terminal device may include an IP layer, a TCP (Transmission Control Protocol) layer above the IP layer, a UDP (User Datagram Protocol) layer, and the like. Further, an Ethernet layer may exist in the upper layer of the AS layer of the terminal device. It may be called an upper layer PDU layer (PDU layer) of the AS layer of the terminal device. The PDU layer may include an IP layer, a TCP layer, a UDP layer, an Ethernet layer, and the like. An application layer may exist in an upper layer such as an IP layer, a TCP layer, a UDP layer, an Ethernet layer, and a PDU layer. The application layer may include SIP (Session Initiation Protocol) and SDP (Session Description Protocol) used in IMS (IP Multimedia Subsystem), which is one of the service networks standardized in 3GPP. In addition, the application layer may include RTP (Real-time Transport Protocol) used for media communication, and / or protocols such as RTCP (Real-time Transport Control Protocol) and HTTP (HyperText Transfer Protocol) for media communication control. .. Further, the application layer may include codecs of various media and the like. The RRC layer may be an upper layer of the SDAP layer.
 次にLTE及びNRにおけるUE122の状態遷移について説明する。EPC、又は5GCに接続するUE122は、RRC接続が設立されている(RRC connection has been established)とき、UE122はRRC_CONNECTED状態であってよい。RRC接続が設立されている状態とは、UE122が、後述のUEコンテキストの一部又は全てを保持している状態を含んで良い。またRRC接続が設立されている状態とは、UE122がユニキャストデータを送信、及び/又は受信できる状態を含んで良い。またUE122は、RRC接続が休止(サスペンド:suspend)しているとき、UE122はRRC_INACTIVE状態であってよい。また、UE122がRRC_INACTIVE状態になるのは、UE122が5GCに接続している場合で、RRC接続が休止しているときであって良い。UE122が、RRC_CONNECTED状態でも、RRC_INACTIVE状態でも無いとき、UE122はRRC_IDLE状態であってよい。 Next, the state transition of UE122 in LTE and NR will be explained. The UE 122 connected to the EPC or 5GC may be in the RRC_CONNECTED state when the RRC connection is established (RRC connection has been established). The state in which the RRC connection is established may include the state in which the UE 122 holds a part or all of the UE context described later. Further, the state in which the RRC connection is established may include a state in which the UE 122 can transmit and / or receive unicast data. UE122 may also be in the RRC_INACTIVE state when the RRC connection is suspended. Further, the UE 122 may be in the RRC_INACTIVE state when the UE 122 is connected to the 5GC and the RRC connection is suspended. UE122 may be in the RRC_IDLE state when it is neither in the RRC_CONNECTED state nor in the RRC_INACTIVE state.
 なお、UE122がEPCに接続している場合、RRC_INACTIVE状態を持たないが、E-UTRANによってRRC接続の休止が開始されてもよい。UE122がEPCに接続している場合、RRC接続が休止されるとき、UE122はUEのASコンテキストと復帰(リジューム:resume)に用いる識別子(resume Identity)を保持してRRC_IDLE状態に遷移して良い。UE122のRRCレイヤの上位レイヤ(例えばNASレイヤ)は、UE122がUEのASコンテキストを保持しており、かつE-UTRANによってRRC接続の復帰が許可(Permit)されており、かつUE122がRRC_IDLE状態からRRC_CONNECTED状態に遷移する必要があるとき、休止されたRRC接続の復帰を開始してもよい。 If UE122 is connected to EPC, it does not have RRC_INACTIVE status, but E-UTRAN may start hibernation of RRC connection. When the UE122 is connected to the EPC, when the RRC connection is suspended, the UE122 may hold the AS context of the UE and the identifier (resume Identity) used for the resume (resume) and transition to the RRC_IDLE state. In the upper layer of the RRC layer of UE122 (for example, NAS layer), UE122 holds the AS context of UE, and E-UTRAN allows the return of RRC connection (Permit), and UE122 is from the RRC_IDLE state. When it is necessary to transition to the RRC_CONNECTED state, the reinstatement of the suspended RRC connection may be started.
 EPC104に接続するUE122と、5GC110に接続するUE122とで、休止の定義が異なってよい。また、UE122がEPCに接続している場合(RRC_IDLE状態で休止している場合)と、UE122が5GCに接続している場合(RRC_INACTIVE状態で休止している場合)とで、UE122が休止から復帰する手順のすべてあるいは一部が異なってよい。 The definition of hibernation may be different between UE122 connected to EPC104 and UE122 connected to 5GC110. Also, when UE122 is connected to the EPC (when it is hibernating in the RRC_IDLE state) and when UE122 is connected to 5GC (when it is hibernating in the RRC_INACTIVE state), the UE122 returns from hibernation. All or part of the procedure may be different.
 なお、RRC_CONNECTED状態、RRC_INACTIVE状態、RRC_IDLE状態の事をそれぞれ、接続状態(connected mode)、不活性状態(inactive mode)、アイドル状態(idle mode)と呼んで良いし、RRC接続状態(RRC connected mode)、RRC不活性状態(RRC inactive mode)、RRCアイドル状態(RRC idle mode)と呼んで良い。 The RRC_CONNECTED state, RRC_INACTIVE state, and RRC_IDLE state may be called the connected state (connected mode), the inactive state (inactive mode), and the idle state (idle mode), respectively, and the RRC connected state (RRC connected mode). , RRC inactive state (RRC inactive mode), RRC idle state (RRC idle mode) may be called.
 UE122が保持するUEのASコンテキストは、現在のRRC設定、現在のセキュリティコンテキスト、ROHC(RObust Header Compression)状態を含むPDCP状態、接続元(Source)のPCellで使われていたC-RNTI(Cell Radio Network Temporary Identifier)、セル識別子(cell Identity)、接続元のPCellの物理セル識別子、のすべてあるいは一部を含む情報であってよい。なお、eNB102およびgNB108の内のいずれかまたは全ての保持するUEのASコンテキストは、UE122が保持するUEのASコンテキストと同じ情報を含んでもよいし、UE122が保持するUEのASコンテキストに含まれる情報とは異なる情報が含まれてもよい。 The UE AS context held by UE122 is the current RRC setting, the current security context, the PDCP state including the ROHC (RObust Header Compression) state, and the C-RNTI (Cell Radio) used in the PCell of the connection source (Source). Information may include all or part of a Network Temporary Identifier), a cell identifier, and a physical cell identifier of the PCell of the connection source. The AS context of the UE held by any or all of the eNB 102 and gNB 108 may include the same information as the AS context of the UE held by the UE 122, or the information contained in the AS context of the UE held by the UE 122. May contain different information.
 セキュリティコンテキストとは、ASレベルにおける暗号鍵、NH(Next Hop parameter)、次ホップのアクセス鍵導出に用いられるNCC(Next Hop Chaining Counter parameter)、選択されたASレベルの暗号化アルゴリズムの識別子、リプレイ保護のために用いられるカウンター、のすべてあるいは一部を含む情報であってよい。 The security context is the encryption key at the AS level, NH (Next Hop parameter), NCC (Next Hop Chaining Counter parameter) used to derive the access key for the next hop, the identifier of the selected AS level encryption algorithm, and replay protection. It may be information containing all or part of the counters used for.
 端末装置に対し基地局装置から設定される、セルグループ(Cell Group)について説明する。セルグループは、1つのスペシャルセル(Special Cell: SpCell)で構成されて良い。またセルグループは、1つのSpCellと、1つ又は複数のセカンダリセル(Secondary Cell: SCell)から構成されて良い。即ちセルグループは、1つのSpCellと、必要に応じて(optionally)1つ又は複数のSCellから構成されて良い。なおMACエンティティがマスターセルグループ(Master Cell Group: MCG)に関連付けられている場合、SpCellはプライマリセル(Primary Cell: PCell)を意味して良い。またMACエンティティがセカンダリセルグループ(Secondary Cell Group: SCG)に関連付けられている場合、SpCellはプライマリSCGセル(Primary SCG Cell: PSCell)を意味して良い。またMACエンティティがセルグループに関連付けられていない場合、SpCellはPCellを意味して良い。PCell、PSCellおよびSCellはサービングセルである。SpCellはPUCCH送信およびコンテンション基準ランダムアクセス(contention-based Random Access)をサポートして良いし、またSpCellは常に活性化されても良い。PCellはRRCアイドル状態の端末装置がRRC接続状態に遷移する際の、RRC接続確立手順に用いられるセルであって良い。またPCellは、端末装置がRRC接続の再確立を行う、RRC接続再確立手順に用いられるセルであって良い。またPCellは、ハンドオーバの際のランダムアクセス手順に用いられるセルであって良い。PSCellは、後述するセカンダリノード(Secondary Node: SN)追加の際に、ランダムアクセス手順に用いられるセルであって良い。またSpCellは、上述の用途以外の用途に用いられるセルであって良い。なお、セルグループがSpCell及び1つ以上のSCellから構成される場合、このセルグループにはキャリアアグリゲーション(carrier aggregation: CA)が設定されていると言って良い。また、CAが設定されている端末装置に対して、SpCellに対して追加の無線リソースを提供しているセルはSCellを意味して良い。 The cell group (Cell Group) set from the base station device to the terminal device will be explained. A cell group may be composed of one special cell (Special Cell: SpCell). Further, the cell group may be composed of one SpCell and one or a plurality of secondary cells (Secondary Cell: S Cell). That is, a cell group may consist of one SpCell and optionally one or more SCells. When the MAC entity is associated with the master cell group (Master Cell Group: MCG), SpCell may mean the primary cell (Primary Cell: PCell). When the MAC entity is associated with a secondary cell group (Secondary Cell Group: SCG), SpCell may mean a primary SCG cell (Primary SCG Cell: PS Cell). Also, SpCell may mean PCell if the MAC entity is not associated with a cell group. PCell, PSCell and SCell are serving cells. SpCell may support PUCCH transmission and contention-based Random Access, and SpCell may always be activated. The PCell may be a cell used for the RRC connection establishment procedure when the terminal device in the RRC idle state transitions to the RRC connection state. The PCell may also be a cell used in the RRC connection reestablishment procedure in which the terminal device reestablishes the RRC connection. Further, the PCell may be a cell used for a random access procedure at the time of handover. The PSCell may be a cell used for a random access procedure when a secondary node (Secondary Node: SN), which will be described later, is added. Further, the SpCell may be a cell used for a purpose other than the above-mentioned uses. When a cell group is composed of SpCell and one or more SCells, it can be said that carrier aggregation (CA) is set in this cell group. Further, a cell that provides additional radio resources to SpCell for a terminal device in which CA is set may mean SCell.
 RRCによって設定されているサービングセルのグループで、その中の上りリンクが設定されているセルに対し同じタイミング参照セル(timing reference cell)および同じタイミングアドバンスの値を使用しているセルグループの事をタイミングアドバンスグループ(Timing Advance Group: TAG)と呼んで良い。またMACエンティティのSpCellを含むTAGはプライマリタイミングアドバンスグループ(Primary Timing Advance Group: PTAG)を意味して良い。また上記PTAG以外のTAGはセカンダリタイミングアドバンスグループ(Secondary Timing Advance Group: STAG)を意味して良い。 Timing of serving cell groups set by RRC that use the same timing reference cell and the same timing advance value for the cells in which the uplink is set. It may be called an advance group (Timing Advance Group: TAG). Further, the TAG including the SpCell of the MAC entity may mean the Primary Timing Advance Group (PTAG). Further, a TAG other than the above PTAG may mean a secondary timing advance group (STAG).
 またDual Connectivity(DC)や、Multi-Radio Dual Connectivity(MR-DC)が行われる場合、端末装置対し基地局装置からセルグループの追加が行われて良い。DCとは、第1の基地局装置(第1のノード)と第2の基地局装置(第2のノード)がそれぞれ構成するセルグループの無線リソースを利用してデータ通信を行う技術であって良い。MR-DCはDCに含まれる技術であって良い。DCを行うために、第1の基地局装置が第2の基地局装置を追加して良い。第1の基地局装置の事をマスターノード(Master Node: MN)と呼んで良い。またマスターノードが構成するセルグループをマスターセルグループ(Master Cell Group: MCG)と呼んで良い。第2の基地局装置の事をセカンダリノード(Secondary Node: SN)と呼んで良い。またセカンダリノードが構成するセルグループをセカンダリセルグループ(Secondary Cell Group: SCG)と呼んで良い。なお、マスターノードとセカンダリノードは同じ基地局装置内に構成されていても良い。 When Dual Connectivity (DC) or Multi-Radio Dual Connectivity (MR-DC) is performed, a cell group may be added from the base station device to the terminal device. DC is a technology for performing data communication using the radio resources of the cell group configured by the first base station device (first node) and the second base station device (second node). good. MR-DC may be a technique included in DC. The first base station appliance may add a second base station appliance to perform DC. The first base station device may be called a master node (MasterNode: MN). Further, the cell group composed of the master node may be called a master cell group (Master Cell Group: MCG). The second base station device may be called a secondary node (SN). A cell group composed of a secondary node may be called a secondary cell group (SCG). The master node and the secondary node may be configured in the same base station device.
 また、DCが設定されていない場合において、端末装置に設定されるセルグループの事をMCGと呼んで良い。また、DCが設定されていない場合において、端末装置に設定されるSpCellはPCellであって良い。 Also, when DC is not set, the cell group set in the terminal device may be called MCG. Further, when DC is not set, the SpCell set in the terminal device may be PCell.
 なお、MR-DCとは、MCGにE-UTRA,SCGにNRを用いたDCを行う技術であって良い。またMR-DCとは、MCGにNR,SCGにE-UTRAを用いたDCを行う技術であっても良い。またMR-DCとは、MCG及びSCGの両方にNRを用いたDCを行う技術であっても良い。MCGにE-UTRA,SCGにNRを用いるMR-DCの例として、コア網にEPCを用いるEN-DC(E-UTRA-NR Dual Connectivity)があって良いし、コア網に5GCを用いるNGEN-DC(NG-RAN E-UTRA-NR Dual Connectivity)があって良い。またMCGにNR,SCGにE-UTRAを用いるMR-DCの例として、コア網に5GCを用いるNE-DC(NR-E-UTRA Dual Connectivity)があって良い。またMCG及びSCGの両方にNRを用いるMR-DCの例として、コア網に5GCを用いるNR-DC(NR-NR Dual Connectivity)があって良い。 MR-DC may be a technique for performing DC using E-UTRA for MCG and NR for SCG. Further, MR-DC may be a technique for performing DC using NR for MCG and E-UTRA for SCG. Further, MR-DC may be a technique for performing DC using NR for both MCG and SCG. As an example of MR-DC that uses E-UTRA for MCG and NR for SCG, there may be EN-DC (E-UTRA-NR Dual Connectivity) that uses EPC for the core network, and NGEN- that uses 5GC for the core network. There may be DC (NG-RAN E-UTRA-NR Dual Connectivity). Further, as an example of MR-DC using NR for MCG and E-UTRA for SCG, NE-DC (NR-E-UTRA Dual Connectivity) using 5GC for the core network may be used. Further, as an example of MR-DC that uses NR for both MCG and SCG, there may be NR-DC (NR-NR Dual Connectivity) that uses 5GC for the core network.
 なお端末装置において、MACエンティティは各セルグループに対して1つ存在して良い。例えば端末装置にDC又はMR-DCが設定される場合において、MCGに対する1つのMACエンティティ、及びSCGに対する1つのMACエンティティが存在して良い。端末装置におけるMCGに対するMACエンティティは、全ての状態(RRCアイドル状態、RRC接続状態、及びRRC不活性状態など)の端末装置において、常に確立されていて良い。また端末装置におけるSCGに対するMACエンティティは、端末装置にSCGが設定される際、端末装置によってクリエイト(create)されて良い。また端末装置の各セルグループに対するMACエンティティは、端末装置が基地局装置からRRCメッセージを受け取る事により設定が行われて良い。EN-DC、及びNGEN-DCにおいて、MCGに対するMACエンティティはE-UTRA MACエンティティであっても良く、SCGに対するMACエンティティはNR MACエンティティであって良い。また、NE-DCにおいて、MCGに対するMACエンティティはNR MACエンティティであっても良く、SCGに対するMACエンティティはE-UTRA MACエンティティであって良い。またNR-DCにおいて、MCG及びSCGに対するMACエンティティは共にNR MACエンティティであって良い。なお、MACエンティティが各セルグループに対して1つ存在する事を、MACエンティティは各SpCellに対して1つ存在すると言い換えて良い。また、各セルグループに対する1つのMACエンティティを、各SpCellに対する1つのMACエンティティと言い換えて良い。 In the terminal device, one MAC entity may exist for each cell group. For example, when DC or MR-DC is set in the terminal device, one MAC entity for MCG and one MAC entity for SCG may exist. The MAC entity for MCG in the terminal device may always be established in the terminal device in all states (RRC idle state, RRC connected state, RRC inactive state, etc.). Further, the MAC entity for SCG in the terminal device may be created by the terminal device when the SCG is set in the terminal device. Further, the MAC entity for each cell group of the terminal device may be set by the terminal device receiving an RRC message from the base station device. In EN-DC and NGEN-DC, the MAC entity for MCG may be an E-UTRA MAC entity, and the MAC entity for SCG may be an NR MAC entity. Further, in NE-DC, the MAC entity for MCG may be an NR MAC entity, and the MAC entity for SCG may be an E-UTRA MAC entity. Further, in NR-DC, the MAC entity for MCG and SCG may be both NR MAC entity. In addition, the fact that there is one MAC entity for each cell group can be rephrased as having one MAC entity for each SpCell. Also, one MAC entity for each cell group may be paraphrased as one MAC entity for each SpCell.
 無線ベアラについて説明する。E-UTRAのSRBにはSRB0からSRB2が定義されて良いし、これ以外のSRBが定義されて良い。NRのSRBにはSRB0からSRB3が定義されてよいし、これ以外のSRBが定義されて良い。SRB0は、論理チャネルのCCCHを用いて送信、及び/又は受信が行われる、RRCメッセージのためのSRBであってよい。SRB1は、RRCメッセージのため、及びSRB2の確立前のNASメッセージのためのSRBであって良い。SRB1を用いて送信、及び/又は受信が行われるRRCメッセージには、ピギーバックされたNASメッセージが含まれて良い。SRB1を用いて送信、及び/又は受信される全てのRRCメッセージやNASメッセージには、論理チャネルのDCCHが用いられて良い。SRB2は、NASメッセージのため、及び記録測定情報(logged measurement information)を含むRRCメッセージのためのSRBであってよい。SRB2を用いて送信、及び/又は受信される全てのRRCメッセージやNASメッセージには、論理チャネルのDCCHが用いられて良い。また、SRB2はSRB1よりも低い優先度であってよい。SRB3は、端末装置に、EN-DC,NGEN-DC、NR-DCなどが設定されているときの特定のRRCメッセージを送信、及び/又は受信するためのSRBであって良い。SRB3を用いて送信、及び/又は受信される全てのRRCメッセージやNASメッセージには、論理チャネルのDCCHが用いられて良い。また、その他の用途のために他のSRBが用意されてもよい。DRBは、ユーザデータのための無線ベアラであって良い。DRBを用いて送信、及び/又は受信が行われるRRCメッセージには、論理チャネルのDTCHが用いられても良い。 Explain the wireless bearer. SRB0 to SRB2 may be defined in the SRB of E-UTRA, and other SRBs may be defined. SRB0 to SRB3 may be defined for SRB of NR, and other SRBs may be defined. SRB0 may be an SRB for RRC messages transmitted and / or received using the CCCH of the logical channel. SRB1 may be an SRB for RRC messages and for NAS messages before SRB2 is established. RRC messages transmitted and / or received using SRB1 may include NAS messages that have been piggybacked. DCCH of the logical channel may be used for all RRC messages and NAS messages transmitted and / or received using SRB1. SRB2 may be an SRB for NAS messages and for RRC messages containing logged measurement information. DCCH of the logical channel may be used for all RRC messages and NAS messages transmitted and / or received using SRB2. Also, SRB2 may have a lower priority than SRB1. The SRB3 may be an SRB for transmitting and / or receiving a specific RRC message when EN-DC, NGEN-DC, NR-DC, etc. are set in the terminal device. DCCH of the logical channel may be used for all RRC messages and NAS messages transmitted and / or received using SRB3. Also, other SRBs may be prepared for other uses. The DRB may be a wireless bearer for user data. The logical channel DTCH may be used for RRC messages transmitted and / or received using the DRB.
 端末装置における無線ベアラについて説明する。無線ベアラにはRLCベアラが含まれて良い。RLCベアラは1つ又は2つのRLCエンティティと論理チャネルで構成されて良い。RLCベアラにRLCエンティティが2つ存在する場合のRLCエンティティはTM RLCエンティティ、及び/又は単方向UMモードのRLCエンティティにおける、送信RLCエンティティ及び受信RLCエンティティであって良い。SRB0は1つのRLCベアラから構成されて良い。SRB0のRLCベアラはTMのRLCエンティティ、及び論理チャネルから構成されて良い。SRB0は全ての状態(RRCアイドル状態、RRC接続状態、及びRRC不活性状態など)の端末装置において、常に確立されていて良い。SRB1は端末装置がRRCアイドル状態からRRC接続状態に遷移する際、基地局装置から受信するRRCメッセージにより、端末装置に1つ確立及び/又は設定されて良い。SRB1は1つのPDCPエンティティ、及び1つ又は複数のRLCベアラから構成されて良い。SRB1のRLCベアラはAMのRLCエンティティ、及び論理チャネルから構成されて良い。SRB2はASセキュリティが活性化されたRRC接続状態の端末装置が基地局装置から受信するRRCメッセージにより、端末装置に1つ確立及び/又は設定されて良い。SRB2は1つのPDCPエンティティ、及び1つ又は複数のRLCベアラから構成されて良い。SRB2のRLCベアラはAMのRLCエンティティ、及び論理チャネルから構成されて良い。なお、SRB1及びSRB2の基地局装置側のPDCPはマスターノードに置かれて良い。SRB3はEN-DC、又はNGEN-DC、又はNR-DCにおけるセカンダリノードが追加される際、又はセカンダリノードが変更される際に、ASセキュリティが活性化されたRRC接続状態の端末装置が基地局装置から受信するRRCメッセージにより、端末装置に1つ確立及び/又は設定されて良い。SRB3は端末装置とセカンダリノードとの間のダイレクトSRBであって良い。SRB3は1つのPDCPエンティティ、及び1つ又は複数のRLCベアラから構成されて良い。SRB3のRLCベアラはAMのRLCエンティティ、及び論理チャネルから構成されて良い。SRB3の基地局装置側のPDCPはセカンダリノードに置かれて良い。DRBはASセキュリティが活性化されたRRC接続状態の端末装置が基地局装置から受信するRRCメッセージにより、端末装置に1つ又は複数確立及び/又は設定されて良い。DRBは1つのPDCPエンティティ、及び1つ又は複数のRLCベアラから構成されて良い。DRBのRLCベアラはAM又はUMのRLCエンティティ、及び論理チャネルから構成されて良い。 The wireless bearer in the terminal device will be explained. The radio bearer may include an RLC bearer. The RLC bearer may consist of one or two RLC entities and a logical channel. When there are two RLC entities in the RLC bearer, the RLC entity may be a TM RLC entity and / or a transmit RLC entity and a receive RLC entity in the RLC entity in unidirectional UM mode. SRB0 may consist of one RLC bearer. The RLC bearer of SRB0 may consist of RLC entity of TM and logical channel. SRB0 may always be established in the terminal device in all states (RRC idle state, RRC connected state, RRC inactive state, etc.). One SRB1 may be established and / or set in the terminal device by the RRC message received from the base station device when the terminal device transitions from the RRC idle state to the RRC connection state. SRB1 may consist of one PDCP entity and one or more RLC bearers. The RLC bearer of SRB1 may consist of the RLC entity of AM and the logical channel. One SRB2 may be established and / or set in the terminal device by the RRC message received from the base station device by the terminal device in the RRC connected state in which AS security is activated. SRB2 may consist of one PDCP entity and one or more RLC bearers. The SRB2 RLC bearer may consist of an AM RLC entity and a logical channel. The PDCP on the base station device side of SRB1 and SRB2 may be placed on the master node. In SRB3, when a secondary node in EN-DC, NGEN-DC, or NR-DC is added, or when the secondary node is changed, the terminal device in the RRC connection state with AS security activated is the base station. One may be established and / or set in the terminal device by the RRC message received from the device. SRB3 may be a direct SRB between the terminal device and the secondary node. SRB3 may consist of one PDCP entity and one or more RLC bearers. The SRB3 RLC bearer may consist of an AM RLC entity and a logical channel. The PDCP on the base station device side of SRB3 may be placed on the secondary node. The DRB may be established and / or set in the terminal device by the RRC message received from the base station device by the terminal device in the RRC connected state in which AS security is activated. The DRB may consist of one PDCP entity and one or more RLC bearers. The RLC bearer of the DRB may consist of an AM or UM RLC entity and a logical channel.
 なお、MR-DCにおいて、マスターノードにPDCPが置かれる無線ベアラの事を、MN終端(ターミネティド:terminated)ベアラと呼んで良い。また、MR-DCにおいて、セカンダリノードにPDCPが置かれる無線ベアラの事を、SN終端(ターミネティド:terminated)ベアラと呼んで良い。なお、MR-DCにおいて、RLCベアラがMCGにのみ存在する無線ベアラの事を、MCGベアラ(MCG bearer)と呼んで良い。また、MR-DCにおいて、RLCベアラがSCGにのみ存在する無線ベアラの事を、SCGベアラ(SCG bearer)と呼んで良い。またDCにおいて、RLCベアラがMCG及びSCG両方に存在する無線ベアラの事をスプリットベアラ(split bearer)と呼んで良い。 In MR-DC, the wireless bearer in which the PDCP is placed on the master node may be called the MN terminal (terminated) bearer. Also, in MR-DC, the radio bearer in which the PDCP is placed on the secondary node may be called the SN terminated bearer. In MR-DC, a wireless bearer in which RLC bearer exists only in MCG may be called MCG bearer. Further, in MR-DC, a wireless bearer in which RLC bearer exists only in SCG may be called SCG bearer. In DC, a radio bearer in which RLC bearers exist in both MCG and SCG may be called a split bearer.
 端末装置にMR-DCが設定される場合、端末装置に確立/及び又は設定されるSRB1及びSRB2のベアラタイプは、MN終端MCGベアラ及び/又はMN終端スプリットベアラであって良い。また端末装置にMR-DCが設定される場合、端末装置に確立/及び又は設定されるSRB3のベアラタイプは、SN終端SCGベアラであって良い。また端末装置にMR-DCが設定される場合、端末装置に確立/及び又は設定されるDRBのベアラタイプは、全てのベアラタイプのうちの何れかであって良い。 When MR-DC is set in the terminal device, the bearer types of SRB1 and SRB2 established / and / or set in the terminal device may be MN-terminated MCG bearer and / or MN-terminated split bearer. When MR-DC is set in the terminal device, the bearer type of SRB3 established / and / or set in the terminal device may be an SN-terminated SCG bearer. When MR-DC is set in the terminal device, the bearer type of the DRB established / and / or set in the terminal device may be any of all bearer types.
 E-UTRAで構成されるセルグループに確立及び/又は設定されるRLCベアラに対し、確立及び/又は設定されるRLCエンティティは、E-UTRA RLCであって良い。またNRで構成されるセルグループに確立及び/又は設定されるRLCベアラに対し、確立及び/又は設定されるRLCエンティティは、NR RLCであって良い。端末装置にEN-DCが設定され場合、MN終端MCGベアラに対し確立及び/又は設定されるPDCPエンティティは、E-UTRA PDCP又はNR PDCPの何れかであって良い。また端末装置にEN-DCが設定される場合、その他のベアラタイプの無線ベアラ、即ちMN終端スプリットベアラ、MN終端SCGベアラ、SN終端MCGベアラ、SN終端スプリットベアラ、及びSN終端SCGベアラ、に対して確立及び/又は設定されるPDCPは、NR PDCPであって良い。また端末装置にNGEN-DC、又はNE-DC、又はNR-DCが設定される場合、全てのベアラタイプにおける無線ベアラに対して確立及び/又は設定されるPDCPエンティティは、NR PDCPであって良い。 The RLC entity established and / or set for the RLC bearer established and / or set in the cell group composed of E-UTRA may be E-UTRA RLC. The RLC entity established and / or set for the RLC bearer established and / or set in the cell group composed of NR may be NR RLC. When EN-DC is set for the terminal device, the PDCP entity established and / or set for the MN-terminated MCG bearer may be either E-UTRA PDCP or NR PDCP. Also, when EN-DC is configured on the terminal device, for other bearer type radio bearers, namely MN-terminated split bearer, MN-terminated SCG bearer, SN-terminated MCG bearer, SN-terminated split bearer, and SN-terminated SCG bearer. The PDCP established and / or set may be NR PDCP. When NGEN-DC, NE-DC, or NR-DC is set for the terminal device, the PDCP entity established and / or set for the wireless bearer in all bearer types may be NR PDCP. ..
 なおNRにおいて、端末装置に確立及び/又は設定されるDRBは1つのPDUセッションに紐づけられ良い。端末装置において1つのPDUセッションに対し、1つのSDAPエンティティが確立及び/又は設定されて良い。端末装置に確立及び/又は設定SDAPエンティティ、PDCPエンティティ、RLCエンティティ、及び論理チャネルは、端末装置が基地局装置から受信するRRCメッセージにより確立及び/又は設定されて良い。 In NR, the DRB established and / or set in the terminal device may be associated with one PDU session. One SDAP entity may be established and / or configured for one PDU session in the terminal device. Established and / or set in the terminal device SDAP entity, PDCP entity, RLC entity, and logical channel may be established and / or set by the RRC message received by the terminal device from the base station device.
 なお、MR-DCが設定されるか否かに関わらず、マスターノードがeNB102でEPC104をコア網とするネットワーク構成をE-UTRA/EPCと呼んで良い。またマスターノードがeNB102で5GC110をコア網とするネットワーク構成をE-UTRA/5GCと呼んで良い。またマスターノードがgNB108で5GC110をコア網とするネットワーク構成をNR、又はNR/5GCと呼んで良い。MR-DCが設定されない場合において、上述のマスターノードとは、端末装置と通信を行う基地局装置の事を指して良い。 Regardless of whether MR-DC is set or not, the network configuration in which the master node is eNB102 and EPC104 is the core network may be called E-UTRA / EPC. A network configuration in which the master node is eNB102 and 5GC110 is the core network may be called E-UTRA / 5GC. A network configuration in which the master node is gNB108 and the 5GC110 is the core network may be called NR or NR / 5GC. When MR-DC is not set, the above-mentioned master node may refer to a base station device that communicates with a terminal device.
 次にLTE及びNRにおけるハンドオーバについて説明する。ハンドオーバとはRRC接続状態のUE122がサービングセルを変更する処理であって良い。ハンドオーバは、UE122がeNB102、及び/又はgNB108より、ハンドオーバを指示するRRCメッセージを受信した時に行われて良い。ハンドオーバを指示するRRCメッセージとは、ハンドオーバを指示するパラメータ(例えばMobilityControlInfoという名称の情報要素、又はReconfigurationWithSyncという名称の情報要素)を含むRRCコネクションの再設定に関するメッセージの事であって良い。なお上述のMobilityControlInfoという名称の情報要素の事を、モビリティ制御設定情報要素、又はモビリティ制御設定、又はモビリティ制御情報と言い換えて良い。なお上述のReconfigurationWithSyncという名称の情報要素の事を同期付再設定情報要素、又は同期付再設定と言い換えて良い。またハンドオーバを指示するRRCメッセージとは、他のRATのセルへの移動を示すメッセージ(例えばMobilityFromEUTRACommand、又はMobilityFromNRCommand)の事であって良い。またハンドオーバの事を同期付再設定(reconfiguration withsync)と言い換えて良い。またUE122がハンドオーバを行う事ができる条件に、ASセキュリティが活性化されている時、SRB2が確立されている時、少なくとも一つのDRBが確立している事のうちの一部又は全てを含んで良い。 Next, the handover in LTE and NR will be described. The handover may be a process in which the UE 122 in the RRC connected state changes the serving cell. The handover may be performed when the UE 122 receives an RRC message instructing the handover from the eNB 102 and / or gNB 108. The RRC message instructing the handover may be a message regarding the resetting of the RRC connection including the parameter instructing the handover (for example, the information element named MobilityControlInfo or the information element named ReconfigurationWithSync). The above-mentioned information element named MobilityControlInfo may be rephrased as a mobility control setting information element, a mobility control setting, or a mobility control information. The above-mentioned information element named Reconfiguration WithSync may be rephrased as a reconfiguration information element with synchronization or a reconfiguration with synchronization. The RRC message instructing the handover may be a message indicating the movement of another RAT to a cell (for example, MobilityFromEUTRACommand or MobilityFromNRCommand). In addition, handover may be paraphrased as reconfiguration with sync. In addition, the conditions under which the UE 122 can perform handover include a part or all of the fact that AS security is activated, SRB2 is established, and at least one DRB is established. good.
 端末装置と基地局装置との間で送受信される、RRCメッセージのフローについて説明する。図4は、本発明の実施の形態に係るRRCにおける、各種設定のための手順(procedure)のフローの一例を示す図である。図4は、基地局装置(eNB102、及び/又はgNB108)から端末装置(UE122)にRRCメッセージが送られる場合のフローの一例である。 The flow of RRC messages sent and received between the terminal device and the base station device will be explained. FIG. 4 is a diagram showing an example of a flow of procedures for various settings in the RRC according to the embodiment of the present invention. FIG. 4 is an example of a flow when an RRC message is sent from the base station device (eNB 102 and / or gNB 108) to the terminal device (UE122).
 図4において、基地局装置はRRCメッセージを作成する(ステップS400)。基地局装置におけるRRCメッセージの作成は、基地局装置が報知情報(SI: System Information)やページング情報を配信するため行われて良い。また基地局装置におけるRRCメッセージの作成は、基地局装置が特定の端末装置に対して処理を行わせるために行われて良い。特定の端末装置に対して行わせる処理は、例えばセキュリティに関する設定、RRC接続の再設定、異なるRATへのハンドオーバ、RRC接続の休止、RRC接続の解放などの処理を含んで良い。RRC接続の再設定処理には、例えば無線ベアラの制御(確立、変更、解放など)、セルグループの制御(確立、追加、変更、解放など)、メジャメント設定、ハンドオーバ、セキュリティ鍵更新、などの処理が含まれて良い。また基地局装置におけるRRCメッセージの作成は、端末装置から送信されたRRCメッセージへの応答のために行われて良い。端末装置から送信されたRRCメッセージへの応答は、例えばRRCセットアップ要求への応答、RRC再接続要求への応答、RRC再開要求への応答などを含んで良い。RRCメッセージには各種情報通知や設定のためのパラメータが含まれる。これらのパラメータは、フィールド及び/又は情報要素呼ばれて良く、ASN.1(Abstract Syntax Notation One)という記述方式を用いて記述されて良い。なお本発明の実施の形態において、パラメータを情報と言い換える事もある。 In Fig. 4, the base station device creates an RRC message (step S400). The RRC message may be created in the base station device so that the base station device distributes broadcast information (SI: System Information) and paging information. Further, the RRC message may be created in the base station device so that the base station device can perform processing on a specific terminal device. The process to be performed on a specific terminal device may include, for example, security-related settings, RRC connection resetting, handover to a different RAT, suspension of RRC connection, release of RRC connection, and the like. RRC connection resetting processes include, for example, wireless bearer control (establishment, modification, release, etc.), cell group control (establishment, addition, modification, release, etc.), measurement setting, handover, security key update, etc. May be included. Further, the RRC message may be created in the base station device in order to respond to the RRC message transmitted from the terminal device. The response to the RRC message transmitted from the terminal device may include, for example, a response to an RRC setup request, a response to an RRC reconnection request, a response to an RRC restart request, and the like. RRC messages include parameters for various information notifications and settings. These parameters may be called fields and / or information elements, and may be described using a description method called ASN.1 (Abstract Syntax Notation One). In the embodiment of the present invention, the parameter may be paraphrased as information.
 図4において、次に基地局装置は、作成したRRCメッセージを端末装置に送信する(ステップS402)。次に端末装置は受信した上述のRRCメッセージに従って、設定などの処理が必要な場合には処理を行う(ステップS404)。処理を行った端末装置は、基地局装置に対し、応答のためのRRCメッセージを送信して良い(不図示)。 In FIG. 4, the base station device then sends the created RRC message to the terminal device (step S402). Next, the terminal device performs processing when processing such as setting is required according to the received RRC message (step S404). The processed terminal device may send an RRC message for response to the base station device (not shown).
 RRCメッセージは、上述の例に限らず、他の目的に使われて良い。 The RRC message is not limited to the above example, and may be used for other purposes.
 なおMR-DCにおいて、マスターノード側のRRCが、SCG側の設定(セルグループ設定、無線ベアラ設定、測定設定など)のためのRRCメッセージを、端末装置との間で転送するのに用いられて良い。例えばEN-DC、又はNGEN-DCにおいて、eNB102とUE122との間で送受信されるE-UTRAのRRCメッセージに、NRのRRCメッセージがコンテナの形で含まれて良い。またNE-DCにおいて、gNB108とUE122との間で送受信されるNRのRRCメッセージに、E-UTRAのRRCメッセージがコンテナの形で含まれて良い。SCG側の設定のためのRRCメッセージは、マスターノードとセカンダリノードの間で送受信されて良い。 In MR-DC, the RRC on the master node side is used to transfer RRC messages for SCG side settings (cell group settings, wireless bearer settings, measurement settings, etc.) to and from the terminal device. good. For example, in EN-DC or NGEN-DC, the RRC message of E-UTRA sent and received between eNB102 and UE122 may include the RRC message of NR in the form of a container. Further, in NE-DC, the RRC message of NR transmitted and received between gNB108 and UE122 may include the RRC message of E-UTRA in the form of a container. RRC messages for settings on the SCG side may be sent and received between the master node and the secondary node.
 なお、MR-DCを利用する場合に限らず、eNB102からUE122に送信されるE-UTRA用RRCメッセージに、NR用RRCメッセージが含まれていて良いし、gNB108からUE122に送信されるNR用RRCメッセージに、E-UTRA用RRCメッセージが含まれていて良い。 Not limited to using MR-DC, the RRC message for E-UTRA transmitted from eNB 102 to UE122 may include the RRC message for NR, and the RRC for NR transmitted from gNB 108 to UE 122 may be included. The message may include an RRC message for E-UTRA.
 RRCコネクションの再設定に関するRRCメッセージに含まれる、パラメータの一例を説明する。図7は、図4において、NRでのRRCコネクションの再設定に関するメッセージに含まれる、無線ベアラ設定に関するフィールド、及び/又は情報要素を表すASN.1記述の一例である。また図8は、図4において、E-UTRAでのRRCコネクションの再設定に関するメッセージに含まれる、無線ベアラ設定に関するフィールド、及び/又は情報要素を表すASN.1記述の一例である。図7、図8に限らず、本発明の実施の形態におけるASN.1の例で、<略>及び<中略>とは、ASN.1の表記の一部ではなく、他の情報を省略している事を示す。なお<略>又は<中略>という記載の無い所でも、情報要素が省略されていて良い。なお本発明の実施の形態においてASN.1の例はASN.1表記方法に正しく従ったものではない。本発明の実施の形態においてASN.1の例は、本発明の実施形態におけるRRCメッセージのパラメータの一例を表記したものであり、他の名称や他の表記が用いられて良い。またASN.1の例は、説明が煩雑になることを避けるために、本発明の一形態と密接に関連する主な情報に関する例のみを示す。なお、ASN.1で記述されるパラメータを、フィールド、情報要素等に区別せず、全て情報要素と言う場合がある。また本発明の実施の形態において、RRCメッセージに含まれる、ASN.1で記述されるフィールド、情報要素等を、情報と言い換えても良く、パラメータと言い換えても良い。なおRRCコネクションの再設定に関するメッセージとは、NRにおけるRRC再設定メッセージであって良いし、E-UTRAにおけるRRCコネクション再設定メッセージであって良い。 An example of the parameters included in the RRC message regarding the resetting of the RRC connection will be explained. FIG. 7 is an example of an ASN.1 description representing a field and / or information element relating to the radio bearer configuration included in the message relating to the reconfiguration of the RRC connection in NR in FIG. Further, FIG. 8 is an example of an ASN.1 description representing a field and / or an information element related to the radio bearer setting included in the message regarding the resetting of the RRC connection in E-UTRA in FIG. Not limited to FIGS. 7 and 8, in the example of ASN.1 in the embodiment of the present invention, <omitted> and <omitted> are not a part of the notation of ASN.1 and other information is omitted. Show that you are. Information elements may be omitted even where there is no description of <omitted> or <omitted>. In the embodiment of the present invention, the example of ASN.1 does not correctly follow the ASN.1 notation method. In the embodiment of the present invention, the example of ASN.1 describes an example of the parameters of the RRC message in the embodiment of the present invention, and other names and other notations may be used. Further, the example of ASN.1 shows only an example relating to the main information closely related to one embodiment of the present invention in order to avoid complicated explanation. The parameters described in ASN.1 may be referred to as information elements without distinguishing them into fields, information elements, and the like. Further, in the embodiment of the present invention, the fields, information elements, etc. described in ASN.1 included in the RRC message may be paraphrased as information or may be paraphrased as parameters. The message regarding the resetting of the RRC connection may be an RRC resetting message in NR or an RRC connection resetting message in E-UTRA.
 図7においてRadioBearerConfigで表される情報要素は、SRB、DRB等の無線ベアラの設定、変更、解放等に使われる情報要素であって良い。RadioBearerConfigで表される情報要素は、後述のPDCP設定情報要素や、SDAP設定情報要素を含んで良い。RadioBearerConfigで表される情報要素を、無線ベアラ設定情報要素、又は無線ベアラ設定と言い換えて良い。RadioBearerConfigで表される情報要素に含まれる、SRB-ToAddModで表される情報要素は、SRB(シグナリング無線ベアラ)設定を示す情報要素であって良い。SRB-ToAddModで表される情報要素を、SRB設定情報要素、又はSRB設定と言い換えて良い。またSRB-ToAddModListで表される情報要素は、SRB設定のリストであって良い。RadioBearerConfigで表される情報要素に含まれる、DRB-ToAddModで表される情報要素は、DRB(データ無線ベアラ)設定を示す情報要素であって良い。DRB-ToAddModで表される情報要素を、DRB設定情報要素、又はDRB設定と言い換えて良い。DRB-ToAddModListで表される情報要素は、DRB設定のリストであって良い。なお、SRB設定、及びDRB設定を、無線ベアラ設定と言い換えても良い。 The information element represented by RadioBearerConfig in FIG. 7 may be an information element used for setting, changing, releasing, etc. of wireless bearers such as SRB and DRB. The information element represented by RadioBearerConfig may include a PDCP setting information element described later and an SDAP setting information element. The information element represented by RadioBearerConfig may be paraphrased as a radio bearer setting information element or a radio bearer setting. The information element represented by SRB-ToAddMod included in the information element represented by RadioBearerConfig may be an information element indicating the SRB (signaling radio bearer) setting. The information element represented by SRB-ToAddMod may be paraphrased as an SRB setting information element or an SRB setting. The information element represented by SRB-ToAddModList may be a list of SRB settings. The information element represented by DRB-ToAddMod included in the information element represented by RadioBearerConfig may be an information element indicating a DRB (data radio bearer) setting. The information element represented by DRB-ToAddMod may be paraphrased as a DRB setting information element or a DRB setting. The information element represented by DRB-ToAddModList may be a list of DRB settings. The SRB setting and the DRB setting may be paraphrased as a wireless bearer setting.
 SRB設定情報要素の中の、srb-Identityで表されるフィールドは、追加又は変更するSRBのSRB識別子(SRB Identity)の情報であり、各端末装置においてSRBを一意に識別する識別子であって良い。SRB設定情報要素の中の、srb-Identityで表されるフィールドの事を、SRB識別子フィールド、またはSRB識別子と言い換えて良い。またSRB識別子を無線ベアラ識別子と言い換えて良い。 The field represented by srb-Identity in the SRB setting information element is the SRB identifier (SRB Identity) information of the SRB to be added or changed, and may be an identifier that uniquely identifies the SRB in each terminal device. .. The field represented by srb-Identity in the SRB setting information element may be paraphrased as an SRB identifier field or an SRB identifier. Further, the SRB identifier may be paraphrased as a wireless bearer identifier.
 DRB設定情報要素の中の、drb-Identityで表されるフィールドは、追加又は変更するDRBのDRB識別子(DRB Identity)の情報であり、各端末装置においてDRBを一意に識別する識別子であって良い。DRB設定情報要素の中の、drb-Identityで表されるフィールドの事を、DRB識別子フィールド、またはDRB識別子と言い換えて良い。DRB識別子の値は図7の例では1から32の整数値としているが、別の値を取って良い。DCの場合、DRB識別子は、UE122のスコープ内で固有であって良い。またDRB識別子を無線ベアラ識別子と言い換えて良い。 The field represented by drb-Identity in the DRB setting information element is the information of the DRB identifier (DRB Identity) of the DRB to be added or changed, and may be an identifier that uniquely identifies the DRB in each terminal device. .. The field represented by drb-Identity in the DRB setting information element may be paraphrased as a DRB identifier field or a DRB identifier. The value of the DRB identifier is an integer value from 1 to 32 in the example of FIG. 7, but another value may be taken. For DCs, the DRB identifier may be unique within the scope of UE122. Further, the DRB identifier may be paraphrased as a wireless bearer identifier.
 DRB設定情報要素の中の、cnAssociationで表されるフィールドは、無線ベアラが後述のeps-bearerIdentityで表されるフィールドに関連付くか、後述のSDAP-Configで表される情報要素に関連付けられるかを示すフィールドであって良い。cnAssociationで表されるフィールドを、コア網関連付けフィールド又はコア網関連付けと言い換えて良い。cnAssociationで表されるフィールドは、端末装置がEPC104と接続する場合に後述するEPSベアラ識別子フィールド(eps-bearerIdentity)を含んで良い。またcnAssociationで表されるフィールドは、端末装置がコア網5GC110と接続する場合に後述するSDAP設定を示す情報要素(SDAP-Config)を含んで良い。eps-bearerIdentityで示されるフィールドは、EPSベアラを特定すするEPSベアラ識別子を示すフィールドであって良い。eps-bearerIdentityで示されるフィールドを、EPSベアラ識別子フィールド又はEPSベアラ識別子と言い換えて良い。 In the DRB setting information element, the field represented by cnAssociation determines whether the wireless bearer is associated with the field represented by eps-bearerIdentity described later or the information element represented by SDAP-Config described later. It may be the field shown. The field represented by cnAssociation may be paraphrased as a core network association field or a core network association. The field represented by the cnAssociation may include an EPS bearer identifier field (eps-bearerIdentity) described later when the terminal device connects to the EPC104. Further, the field represented by the cnAssociation may include an information element (SDAP-Config) indicating the SDAP setting described later when the terminal device is connected to the core network 5GC110. The field indicated by eps-bearerIdentity may be a field indicating an EPS bearer identifier that identifies the EPS bearer. The field indicated by eps-bearerIdentity may be paraphrased as an EPS bearer identifier field or an EPS bearer identifier field.
 SDAP-Configで表される情報要素は、SDAPエンティティの設定又は再設定に関する情報であっても良い。SDAP-Configで表される情報要素を、SDAP設定情報要素又はSDAP設定と言い換えて良い。 The information element represented by SDAP-Config may be information related to the setting or resetting of the SDAP entity. The information element represented by SDAP-Config may be rephrased as the SDAP setting information element or the SDAP setting.
 SDAP設定情報要素に含まれる、pdu-sessionで示されるフィールドは、該当無線ベアラにマップ(map)されるQoSフローが所属するPDUセッションのPDUセッション識別子であって良い。pdu-sessionで示されるフィールドを、PDUセッション識別子フィールド又はPDUセッション識別子と言い換えて良い。PDUセッション識別子とはPDUセッションのPDUセッション識別子であって良い。また該当無線ベアラとは、本SDAP設定フィールドを含むDRB設定の、DRB識別子に紐づくDRBの事であって良い。 The field indicated by pdu-session included in the SDAP setting information element may be the PDU session identifier of the PDU session to which the QoS flow mapped to the corresponding radio bearer belongs. The field indicated by pdu-session may be paraphrased as a PDU session identifier field or a PDU session identifier. The PDU session identifier may be the PDU session identifier of the PDU session. The corresponding wireless bearer may be a DRB associated with a DRB identifier in the DRB setting including this SDAP setting field.
 SDAP設定情報要素に含まれる、mappedQoS-FlowsToAddで示されるフィールドは、該当無線ベアラに追加でマップさせる、アップリンクQoSフローの、QoSフロー識別子(QFI: QoSFlow Identity)フィールドのリストを示す情報であって良い。mappedQoS-FlowsToAddで示されるフィールドを、追加するQoSフローフィールド又は追加するQoSフローと言い換えて良い。上述のQoSフローは本SDAP設定情報要素に含まれるPDUセッションが示すPDUセッションのQoSフローであって良い。また該当無線ベアラとは、本SDAP設定フィールドを含むDRB設定の、DRB識別子に紐づくDRBの事であって良い。 The field indicated by mappedQoS-FlowsToAdd included in the SDAP setting information element is information indicating a list of QoS flow identifier (QFI: QoSFlowIdentity) fields of the uplink QoS flow to be additionally mapped to the corresponding radio bearer. good. The field indicated by mappedQoS-FlowsToAdd may be paraphrased as an additional QoS flow field or an additional QoS flow. The above-mentioned QoS flow may be the QoS flow of the PDU session indicated by the PDU session included in the SDAP setting information element. The corresponding wireless bearer may be a DRB associated with a DRB identifier in the DRB setting including this SDAP setting field.
 また、SDAP設定情報要素に含まれる、mappedQoS-FlowsToReleaseで示されるフィールドは、該当無線ベアラにマップしているQoSフローのうち、対応関係を解放するQoSフローの、QoSフロー識別子情報要素のリストを示す情報であって良い。mappedQoS-FlowsToReleaseで示されるフィールドを、解放するQoSフローフィールド又は解放するQoSフローと言い換えて良い。上述のQoSフローは本SDAP設定情報要素に含まれるPDUセッションが示すPDUセッションのQoSフローであって良い。また該当無線ベアラとは、本SDAP設定フィールドを含むDRB設定の、DRB識別子に紐づくDRBの事であって良い。 In addition, the field indicated by mappedQoS-FlowsToRelease included in the SDAP setting information element indicates a list of QoS flow identifier information elements of the QoS flows that release the correspondence among the QoS flows mapped to the corresponding radio bearer. It may be information. The field indicated by mappedQoS-FlowsToRelease may be rephrased as a QoS flow field to be released or a QoS flow to be released. The above-mentioned QoS flow may be the QoS flow of the PDU session indicated by the PDU session included in the SDAP setting information element. The corresponding wireless bearer may be a DRB associated with a DRB identifier in the DRB setting including this SDAP setting field.
 またSDAP設定情報要素には、この他に、該当無線ベアラを介して送信するアップリンクデータにアップリンク用SDAPヘッダが存在するか否かを示すフィールド、該当無線ベアラを介して受信するダウンリンクデータにダウンリンク用SDAPヘッダが存在するか否か事を示すフィールド、該当無線ベアラがデフォルト無線ベアラ(デフォルトDRB)であるか否かを示すフィールドなどが含まれて良い。また該当無線ベアラとは、本SDAP設定フィールドを含むDRB設定の、DRB識別子に紐づくDRBの事であって良い。 In addition to this, the SDAP setting information element includes a field indicating whether or not the uplink SDAP header exists in the uplink data transmitted via the corresponding wireless bearer, and the downlink data received via the corresponding wireless bearer. May include a field indicating whether or not the downlink SDAP header exists, a field indicating whether or not the corresponding radio bearer is the default radio bearer (default DRB), and the like. The corresponding wireless bearer may be a DRB associated with a DRB identifier in the DRB setting including this SDAP setting field.
 また、SRB設定情報要素、及びDRB設定情報要素の中の、PDCP-Configで表される情報要素は、NR PDCPエンティティの設定に関する情報要素であっても良い。PDCP-Configで表される情報要素を、PDCP設定情報要素又はPDCP設定と言い換えて良い。NR PDCPエンティティの設定に関する情報要素には、アップリンク用シーケンス番号のサイズを示すフィールド、ダウンリンク用シーケンス番号のサイズを示すフィールド、ヘッダ圧縮(ROHC: RObust Header Compression)のプロファイルを示すフィールド、リオーダリング(re-ordering)タイマーの値を示すフィールドなどが含まれて良い。 Further, the information element represented by PDCP-Config in the SRB setting information element and the DRB setting information element may be an information element related to the setting of the NR PDCP entity. The information element represented by PDCP-Config may be paraphrased as a PDCP setting information element or a PDCP setting. Information elements related to the setting of the NR PDCP entity include a field indicating the size of the uplink sequence number, a field indicating the size of the downlink sequence number, a field indicating the profile of header compression (ROHC: RObustHeaderCompression), and reordering. (Re-ordering) A field indicating the value of the timer may be included.
 RadioBearerConfigで表される情報要素に含まれる、DRB-ToReleaseListで表される情報要素は、解放する1つ以上のDRB識別子を示す情報を含んで良い。 The information element represented by DRB-ToReleaseList included in the information element represented by RadioBearerConfig may include information indicating one or more DRB identifiers to be released.
 図8においてRadioResourceConfigDedicatedで表される情報要素は、無線ベアラの設定、変更、解放等に使われる情報要素であって良い。RadioResourceConfigDedicatedで表される情報要素に含まれる、SRB-ToAddModで表される情報要素は、SRB(シグナリング無線ベアラ)設定を示す情報であっても良い。SRB-ToAddModで表される情報要素を、SRB設定情報要素又はSRB設定と言い換えて良い。SRB-ToAddModListで表される情報要素はSRB設定を示す情報のリストであって良い。RadioResourceConfigDedicatedで表される情報要素に含まれる、DRB-ToAddModで表される情報要素は、DRB(データ無線ベアラ)設定を示す情報であって良い。DRB-ToAddModで表される情報要素を、DRB設定情報要素又はDRB設定と言い換えて良い。DRB-ToAddModListで表される情報要素は、DRB設定を示す情報のリストであって良い。なお、SRB設定、及びDRB設定のうちの何れか、または全ての事を、無線ベアラ設定と言い換えても良い。 The information element represented by RadioResourceConfigDedicated in FIG. 8 may be an information element used for setting, changing, releasing, etc. of the wireless bearer. The information element represented by SRB-ToAddMod included in the information element represented by RadioResourceConfigDedicated may be information indicating the SRB (signaling radio bearer) setting. The information element represented by SRB-ToAddMod may be paraphrased as an SRB setting information element or an SRB setting. The information element represented by SRB-ToAddModList may be a list of information indicating the SRB setting. The information element represented by DRB-ToAddMod included in the information element represented by RadioResourceConfigDedicated may be information indicating the DRB (data radio bearer) setting. The information element represented by DRB-ToAddMod may be paraphrased as a DRB setting information element or a DRB setting. The information element represented by DRB-ToAddModList may be a list of information indicating the DRB setting. In addition, any one or all of SRB setting and DRB setting may be paraphrased as wireless bearer setting.
 SRB設定情報要素の中の、srb-Identityで表されるフィールドは、追加又は変更するSRBのSRB識別子(SRB Identity)の情報であり、各端末装置においてSRBを一意に識別する識別子であって良い。SRB設定情報要素の中の、srb-Identityで表されるフィールドの事を、SRB識別子フィールド、またはSRB識別子と言い換えて良い。またSRB識別子を無線ベアラ識別子と言い換えて良い。図8のSRB識別子は、図7のSRB識別子と、同一の役割をもって良い。 The field represented by srb-Identity in the SRB setting information element is the SRB identifier (SRB Identity) information of the SRB to be added or changed, and may be an identifier that uniquely identifies the SRB in each terminal device. .. The field represented by srb-Identity in the SRB setting information element may be paraphrased as an SRB identifier field or an SRB identifier. Further, the SRB identifier may be paraphrased as a wireless bearer identifier. The SRB identifier in FIG. 8 may have the same role as the SRB identifier in FIG. 7.
 DRB設定の中の、drb-Identityで表されるフィールドは、追加又は変更するDRBのDRB識別子(DRB Identity)の情報であり、各端末装置においてDRBを一意に識別する識別子であって良い。DRB設定情報要素の中の、drb-Identityで表されるフィールドの事を、DRB識別子フィールド、またはDRB識別子と言い換えて良い。DRB識別子の値は、図8の例では1から32の整数値としているが、別の値を取って良い。またDRB識別子を無線ベアラ識別子と言い換えて良い。図8のDRB識別子は、図7のDRB識別子と、同一の役割をもって良い。 The field represented by drb-Identity in the DRB setting is the information of the DRB identifier (DRB Identity) of the DRB to be added or changed, and may be an identifier that uniquely identifies the DRB in each terminal device. The field represented by drb-Identity in the DRB setting information element may be paraphrased as a DRB identifier field or a DRB identifier. The value of the DRB identifier is an integer value from 1 to 32 in the example of FIG. 8, but another value may be taken. Further, the DRB identifier may be paraphrased as a wireless bearer identifier. The DRB identifier in FIG. 8 may have the same role as the DRB identifier in FIG. 7.
 DRB設定情報要素の中の、eps-BearerIdentityで表されるフィールドは、各端末装置においてEPSベアラを一意に識別するEPSベアラ識別子であって良い。eps-BearerIdentityで表されるフィールドを、EPSベアラ識別子フィールド又はEPSベアラ識別子と言い換えて良い。EPSベアラ識別子の値は、図8の例では1から15の整数値としているが、別の値を取って良い。図8のEPSベアラ識別子は、図7のEPSベアラ識別子と、同一の役割をもって良い。またEPSベアラ識別子と、DRB識別子とは各端末装置において、1対1に対応して良い。 The field represented by eps-BearerIdentity in the DRB setting information element may be an EPS bearer identifier that uniquely identifies the EPS bearer in each terminal device. The field represented by eps-BearerIdentity may be paraphrased as an EPS bearer identifier field or an EPS bearer identifier field. The value of the EPS bearer identifier is an integer value from 1 to 15 in the example of FIG. 8, but another value may be used. The EPS bearer identifier in FIG. 8 may have the same role as the EPS bearer identifier in FIG. 7. Further, the EPS bearer identifier and the DRB identifier may have a one-to-one correspondence in each terminal device.
 またSRB設定情報要素、及びDRB設定情報要素の中の、PDCP-Configで表される情報要素はE-UTRA PDCPエンティティの設定に関する情報要素であって良い。PDCP-Configで表される情報要素をPDCP設定情報要素又はPDCP設定と言い換えて良い。E-UTRA PDCPエンティティの設定に関する情報要素には、シーケンス番号のサイズを示すフィールド、ヘッダ圧縮(ROHC: RObust Header Compression)のプロファイルを示すフィールド、リオーダリング(re-ordering)タイマーの値を示すフィールドなどが含まれて良い。 Further, among the SRB setting information element and the DRB setting information element, the information element represented by PDCP-Config may be an information element related to the setting of the E-UTRA PDCP entity. The information element represented by PDCP-Config may be paraphrased as a PDCP setting information element or a PDCP setting. Information elements related to the setting of the E-UTRA PDCP entity include a field indicating the size of the sequence number, a field indicating the profile of header compression (ROHC: RObust Header Compression), and a field indicating the value of the re-ordering timer. May be included.
 また図8に示すSRB設定情報要素には、更にE-UTRA RLCエンティティ設定に関するフィールドを含んで良い(不図示)。E-UTRA RLCエンティティ設定に関するフィールドの事を、RLC設定フィールド又はRLC設定と言い換えて良い。また、図8に示すSRB設定情報要素には、論理チャネル設定に関する情報要素を含んで良い(不図示)。論理チャネル設定に関する情報要素を、論理チャネル設定情報要素又は論理チャネル設定と言い換えて良い。 Further, the SRB setting information element shown in FIG. 8 may further include a field related to the E-UTRA RLC entity setting (not shown). The field related to E-UTRA RLC entity setting may be rephrased as RLC setting field or RLC setting. Further, the SRB setting information element shown in FIG. 8 may include an information element related to the logical channel setting (not shown). The information element related to the logical channel setting may be paraphrased as the logical channel setting information element or the logical channel setting.
 また図8に示すDRB設定情報要素には、更にE-UTRA RLCエンティティ設定に関する情報要素を含んでも良い(不図示)。E-UTRA RLCエンティティ設定に関する情報要素の事を、RLC設定情報要素又はRLC設定と言い換えて良い。また、図8に示すDRB設定情報要素には、論理チャネル識別子(identity: ID)情報を示すフィールドが含まれて良い。論理チャネル識別子(identity: ID)情報を示すフィールドを、論理チャネル識別子フィールド又は論理チャネル識別子と言い換えて良い。また、図8に示すDRB設定情報要素には、論理チャネル設定に関する情報要素を含んで良い(不図示)。論理チャネル設定に関する情報要素を、論理チャネル設定情報要素又は論理チャネル設定と言い換えて良い。なお論理チャネル識別子は無線ベアラ識別子に紐づいて良い。 Further, the DRB setting information element shown in FIG. 8 may further include an information element related to the E-UTRA RLC entity setting (not shown). The information element related to the E-UTRA RLC entity setting may be rephrased as the RLC setting information element or the RLC setting. Further, the DRB setting information element shown in FIG. 8 may include a field indicating logical channel identifier (identity: ID) information. A field indicating logical channel identifier (identity: ID) information may be paraphrased as a logical channel identifier field or a logical channel identifier. Further, the DRB setting information element shown in FIG. 8 may include an information element related to the logical channel setting (not shown). The information element related to the logical channel setting may be paraphrased as the logical channel setting information element or the logical channel setting. The logical channel identifier may be associated with the wireless bearer identifier.
 RadioResourceConfigDedicatedで表される情報要素に含まれる、DRB-ToReleaseListで表される情報要素は、解放する一つ以上のDRB識別子を示す情報を含んで良い。 The information element represented by DRB-ToReleaseList included in the information element represented by RadioResourceConfigDedicated may include information indicating one or more DRB identifiers to be released.
 なおNRにおいて、各無線ベアラに対するNR RLCエンティティ設定に関する情報要素、論理チャネル識別子(identity: ID)情報を示す情報要素、論理チャネル設定に関する情報要素等のRLCベアラ設定に関する情報要素は、図7におけるRadioBearerConfigで表される情報要素ではなく、セルグループ設定に関する情報要素に含まれて良い(不図示)。セルグループ設定に関する情報要素は、RRCコネクションの再設定に関するメッセージに含まれて良い。セルグループ設定に関する情報要素を、セルグループ設定情報要素、又はセルグループ設定と言い換えて良い。NR RLCエンティティ設定に関する情報要素を、RLC設定情報要素、又はRLC設定と言い換えて良い。論理チャネル識別子情報を示す情報要素を、論理チャネル識別子情報要素又は論理チャネル識別子と言い換えて良い。論理チャネル設定に関する情報要素を、論理チャネル設定情報要素又は論理チャネル識別子と言い換えて良い。なお論理チャネル識別子は無線ベアラ識別子に紐づいて良い。 In NR, the information element related to RLC bearer setting such as the information element related to NR RLC entity setting for each radio bearer, the information element indicating logical channel identifier (identity: ID) information, and the information element related to logical channel setting is RadioBearerConfig in FIG. It may be included in the information element related to the cell group setting instead of the information element represented by (not shown). Information elements related to cell group settings may be included in the message regarding resetting the RRC connection. The information element related to the cell group setting may be paraphrased as a cell group setting information element or a cell group setting. The information element related to the NR RLC entity setting may be paraphrased as the RLC setting information element or the RLC setting. The information element indicating the logical channel identifier information may be paraphrased as a logical channel identifier information element or a logical channel identifier. The information element related to the logical channel setting may be paraphrased as the logical channel setting information element or the logical channel identifier. The logical channel identifier may be associated with the wireless bearer identifier.
 また図7又は図8を用いて説明した一部、又は全てのフィールドや情報要素は、オプショナルであって良い。即ち図7又は図8を用いて説明したフィールドや情報要素は必要や条件に応じてRRCコネクションの再設定に関するメッセージに含まれて良い。またRRCコネクションの再設定に関するメッセージには、無線ベアラの設定に関する情報要素の他に、フル設定が適用される事を意味するフィールドなどが含まれて良い。フル設定が適用される事を意味するフィールドは、fullConfigなどの情報要素名で表されても良く、true、enableなどを用いてフル設定が適用される事を示して良い。 Further, some or all fields and information elements described with reference to FIG. 7 or FIG. 8 may be optional. That is, the fields and information elements described with reference to FIG. 7 or FIG. 8 may be included in the message regarding the resetting of the RRC connection as necessary or conditional. In addition to the information element related to the wireless bearer setting, the message regarding the resetting of the RRC connection may include a field indicating that the full setting is applied. The field meaning that the full setting is applied may be represented by an information element name such as fullConfig, and may be indicated by using true, enable, etc. to indicate that the full setting is applied.
 以上の説明をベースとして、本発明の様々な実施の形態を説明する。なお、以下の説明で省略される各処理については上記で説明した各処理が適用されてよい。 Based on the above description, various embodiments of the present invention will be described. In addition, each process described above may be applied to each process omitted in the following description.
 図5は本発明の実施の形態における端末装置(UE122)の構成を示すブロック図である。なお、説明が煩雑になることを避けるために、図5では、本発明の一形態と密接に関連する主な構成部のみを示す。 FIG. 5 is a block diagram showing the configuration of the terminal device (UE122) according to the embodiment of the present invention. In addition, in order to avoid complicated explanation, FIG. 5 shows only the main components closely related to one embodiment of the present invention.
 図5に示すUE122は、基地局装置よりRRCメッセージ等を受信する受信部500、及び受信したメッセージに含まれるパラメータに従って処理を行う処理部502、および基地局装置にRRCメッセージ等を送信する送信部504から成る。上述の基地局装置とは、eNB102であっても良いし、gNB108であっても良い。また、処理部502には様々な層(例えば、物理層、MAC層、RLC層、PDCP層、SDAP層、RRC層、およびNAS層)の機能の一部または全部が含まれてよい。すなわち、処理部502には、物理層処理部、MAC層処理部、RLC層処理部、PDCP層処理部、SDAP処理部、RRC層処理部、およびNAS層処理部の一部または全てが含まれてよい。 The UE 122 shown in FIG. 5 includes a receiving unit 500 that receives an RRC message or the like from a base station device, a processing unit 502 that performs processing according to parameters included in the received message, and a transmitting unit that transmits an RRC message or the like to the base station device. It consists of 504. The above-mentioned base station apparatus may be eNB 102 or gNB 108. In addition, the processing unit 502 may include some or all of the functions of various layers (for example, physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer, RRC layer, and NAS layer). That is, the processing unit 502 includes a physical layer processing unit, a MAC layer processing unit, an RLC layer processing unit, a PDCP layer processing unit, an SDAP processing unit, an RRC layer processing unit, and a part or all of the NAS layer processing unit. It's okay.
 図6は本発明の実施の形態における基地局装置の構成を示すブロック図である。なお、説明が煩雑になることを避けるために、図6では、本発明の一形態と密接に関連する主な構成部のみを示す。上述の基地局装置とは、eNB102であっても良いし、gNB108であっても良い。 FIG. 6 is a block diagram showing the configuration of the base station apparatus according to the embodiment of the present invention. In addition, in order to avoid complicated explanation, FIG. 6 shows only the main components closely related to one embodiment of the present invention. The above-mentioned base station apparatus may be eNB 102 or gNB 108.
 図6に示す基地局装置は、UE122へRRCメッセージ等を送信する送信部600、及びパラメータを含むRRCメッセージを作成し、UE122に送信する事により、UE122の処理部502に処理を行わせる処理部602、およびUE122からRRCメッセージ等を受信する受信部604から成る。また、処理部602には様々な層(例えば、物理層、MAC層、RLC層、PDCP層、SDAP層、RRC層、およびNAS層)の機能の一部または全部が含まれてよい。すなわち、処理部602には、物理層処理部、MAC層処理部、RLC層処理部、PDCP層処理部、SDAP処理部、RRC層処理部、およびNAS層処理部の一部または全部が含まれてよい。 The base station apparatus shown in FIG. 6 has a transmission unit 600 that transmits an RRC message or the like to the UE 122, and a processing unit that creates an RRC message including parameters and transmits the RRC message to the UE 122 to cause the processing unit 502 of the UE 122 to perform processing. It consists of a receiving unit 604 that receives RRC messages and the like from 602 and UE 122. In addition, the processing unit 602 may include some or all of the functions of various layers (for example, physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer, RRC layer, and NAS layer). That is, the processing unit 602 includes a physical layer processing unit, a MAC layer processing unit, an RLC layer processing unit, a PDCP layer processing unit, an SDAP processing unit, an RRC layer processing unit, and a part or all of the NAS layer processing unit. It's okay.
 図9~図11用いて、SC-PTMを用いたMBMS送信/受信の動作の概要を説明する。なお、以下の説明において用いられる用語である、MBMS、MBMSサービス、MBMSセッションは同等の意味を持つ用語であっても良く、互いに言い換えられても良い。 Fig. 9 to Fig. 11 will be used to explain the outline of MBMS transmission / reception operation using SC-PTM. The terms MBMS, MBMS service, and MBMS session, which are used in the following description, may have the same meaning or may be paraphrased with each other.
 図9は、SC-PTMを用いたMBMS受信の設定のための手順のフローを示す図である。図10は、図9における、SIB20(System Information Block Type 20)に含まれる、フィールド、及び/又は情報要素を表すASN.1記述の一例を示す図である。また図11は、図9におけるSC-PTM設定メッセージ(SCPTMConfiguration)に含まれる、フィールド、及び/又は情報要素を表すASN.1記述の一例を示す図である。 FIG. 9 is a diagram showing the flow of the procedure for setting MBMS reception using SC-PTM. FIG. 10 is a diagram showing an example of an ASN.1 description representing a field and / or an information element included in SIB20 (System Information Block Type 20) in FIG. Further, FIG. 11 is a diagram showing an example of an ASN.1 description representing a field and / or an information element included in the SC-PTM configuration message (SCPTM Configuration) in FIG.
 図9に示すように、eNB102の処理部602は、RRCメッセージであるSIB20(System Information Block type 20)を作成し、送信部600より、BCCHを介してUE122へ送信する。UE122の受信部500は、SIB20を受信する。(ステップS900)。 As shown in FIG. 9, the processing unit 602 of the eNB 102 creates an RRC message SIB20 (System Information Block type 20) and transmits it from the transmitting unit 600 to the UE 122 via BCCH. The receiver 500 of UE122 receives SIB20. (Step S900).
 SIB20は、SC-PTMを用いたMBMSの送信に関する制御情報(具体的には、SC-MCCH)の取得に必要な情報を含む。例えば、SIB20は、SC-MCCHの内容が変更され得る周期を示すsc-mcch-ModificationPeriodで表されるフィールド、SC-MCCHの送信(再送)時間間隔を無線フレーム数で示すsc-mcch-RepetitionPeriodで表されるフィールド、SC-MCCHがスケジュールされる無線フレームのオフセットを示すsc-mcch-Offsetで表されるフィールド、SC-MCCHがスケジュールされるサブフレームを示すsc-mcch-FirstSubframeで表されるフィールド、SC-MCCHがスケジュールされるサブフレームの期間を示すsc-mcch-durationで表されるフィールド、等のフィールド、及び/又は情報要素のうちの一部又は全てを含む。 SIB20 includes information necessary for acquiring control information (specifically, SC-MCCH) related to MBMS transmission using SC-PTM. For example, SIB20 is a field represented by sc-mcch-ModificationPeriod that indicates the period in which the contents of SC-MCCH can be changed, and sc-mcch-RepetitionPeriod that indicates the transmission (retransmission) time interval of SC-MCCH by the number of wireless frames. Fields represented, fields represented by sc-mcch-Offset indicating the offset of the radio frame to which SC-MCCH is scheduled, fields represented by sc-mcch-FirstSubframe indicating the subframe to which SC-MCCH is scheduled. , Fields such as sc-mcch-duration indicating the duration of the subframe in which the SC-MCCH is scheduled, and / or include some or all of the information elements.
 次にeNB102の処理部は、RRCメッセージであるSC―PTM設定メッセージ(SCPTM Configuration)を作成し、送信部600よりSC-MCCHを介して送信する。UE122の受信部500は、SIB20の設定に基づいて、SC-PTM設定情報を受信する。物理層において、SC-MCCHの送信にはSC-RNTI(Single Cell RNTI)が用いられる。(ステップS902)。 Next, the processing unit of eNB102 creates an SC-PTM configuration message (SCPTM Configuration), which is an RRC message, and sends it from the transmission unit 600 via SC-MCCH. The receiver 500 of UE122 receives SC-PTM setting information based on the setting of SIB20. In the physical layer, SC-RNTI (Single Cell RNTI) is used for SC-MCCH transmission. (Step S902).
 SC-PTM設定情報は、MBMS受信に適用可能な制御情報を含む。例えばSC-PTM設定情報は、当該情報を送信するセルにおける各SC-MTCHの設定を含むsc-mtch-InfoListで表されるフィールド、及びMBMSを提供する隣接セルのリストであるscptm-NeighbourCellListで表されるフィールド、等のフィールド、及び/又は情報要素のうちの一部又は全てを含む。 SC-PTM setting information includes control information applicable to MBMS reception. For example, the SC-PTM setting information is represented by a field represented by sc-mtch-InfoList containing the setting of each SC-MTCH in the cell transmitting the information, and by scptm-NeighbourCellList which is a list of adjacent cells providing MBMS. Fields, etc., and / or include some or all of the information elements.
 sc-mtch-InfoListは、1又は複数のSC-MTCH-Infoで表される情報要素を含む。各SC-MTCH-Infoは、MBMSセッションの情報であるmbmsSessionInfoで表されるフィールド、マルチキャストグループ(具体的には、特定グループ宛てのSC-MTCH)を識別するRNTI(Radio Network Temporary Identifier)であるg-RNTIで表されるフィールド、SC-MTCHのためのDRX情報であるsc-mtch-schedulingInfoで表されるフィールド、当該MBMSセッションがSC-MTCHを用いて受信できる近隣セルの情報であるsc-mtch-neighbourCellで表されるフィールド、等のフィールドのうちの一部又は全てを含む。mbmsSessionInfoは、MBMSベアラサービスを識別する識別子、TMGI(Temporary Mobile Group Identity)であるtmgiで表されるフィールド、及びMBMSセッションの識別子であるsessionIdで表されるフィールド、等のフィールドのうちの一部又は全てを含む。 The sc-mtch-InfoList contains information elements represented by one or more SC-MTCH-Info. Each SC-MTCH-Info is a field represented by mbmsSessionInfo, which is MBMS session information, and is an RNTI (Radio Network Temporary Identifier) that identifies a multicast group (specifically, SC-MTCH addressed to a specific group). -Fields represented by RNTI, fields represented by sc-mtch-schedulingInfo, which is DRX information for SC-MTCH, and sc-mtch, which is information on neighboring cells that the MBMS session can receive using SC-MTCH. -Includes some or all of the fields represented by neighborCell, etc. mbmsSessionInfo is a part of the fields such as the identifier that identifies the MBMS bearer service, the field represented by tmgi that is TMGI (Temporary Mobile Group Identity), and the field represented by sessionId that is the identifier of the MBMS session. Including all.
 UE122の処理部502は、興味のあるMBMSセッションの受信を開始するために、SC-PTMを用いたMBMSセッション受信用の無線ベアラである、SC-MRB(Single Cell MBMS Point to Multipoint Radio Bearer)確立処理を行っても良い(ステップS904)。SC-MRB確立処理は、例えば当該MBMSセッションの開始の時、UE122が興味のあるMBMSサービスがSC-MRBを介して提供されるセルに入った時、MBMSサービスに興味を持った時、MBMSサービスの受信が抑制されていたUE能力の限界が取り除かれた時、等に起動されても良い。SC-MRB確立処理はUE122がRRC_IDLE状態の時に行われても良いし、UE122がRRC_CONNECTED状態の時に行われても良い。UE122の処理部502はSC-MRB確立処理を行う際、以下の(A)から(D)の処理のうちの一部又は全てを行っても良い。
  (A)SC-MCCH及びSC-MTCHのデフォルト設定に従って、RLCエンティティを確立する。
  (B)確立するSC-MRBに適用するSC-MTCH論理チャネルを設定し、MACエンティティを、上述のSC-PTM設定メッセージを受信したセルに対し、上述のSC-PTM設定メッセージに従って、当該MBMSセッションを受信できるようインストラクト(instruct)する。
  (C)確立するSC-MRBに対し、物理レイヤを上述のsc-mtch-InfoListに基づいて設定する。
  (D)上位レイヤに対し、確立したSC-MRBに対応するtmgiとsessionIdを通知する事により、SC-MRBの確立を知らせる。
The processing unit 502 of UE122 establishes SC-MRB (Single Cell MBMS Point to Multipoint Radio Bearer), which is a wireless bearer for receiving MBMS sessions using SC-PTM, in order to start receiving MBMS sessions of interest. Processing may be performed (step S904). The SC-MRB establishment process is performed, for example, at the start of the MBMS session, when the MBMS service of interest to UE122 enters a cell provided via SC-MRB, or when the MBMS service becomes interested. It may be activated when the limit of the UE ability for which reception of is suppressed is removed. The SC-MRB establishment process may be performed when the UE 122 is in the RRC_IDLE state, or may be performed when the UE 122 is in the RRC_CONNECTED state. When performing the SC-MRB establishment process, the processing unit 502 of the UE 122 may perform a part or all of the following processes (A) to (D).
(A) Establish an RLC entity according to the default settings of SC-MCCH and SC-MTCH.
(B) Set the SC-MTCH logical channel to be applied to the SC-MRB to be established, and set the MAC entity to the cell that received the above SC-PTM configuration message for the MBMS session according to the above SC-PTM configuration message. Instruct so that you can receive.
(C) For the SC-MRB to be established, set the physical layer based on the above sc-mtch-InfoList.
(D) Notify the upper layer of the establishment of SC-MRB by notifying the tmgi and sessionId corresponding to the established SC-MRB.
 UE122の処理部502は、上述のSC-PTM設定メッセージに従って、確立したSC-MRBを介して当該MBMSセッションを受信する(ステップS906)。当該MBMSセッションを受信する以前に、UE122の処理部502は、SC-MRBを介してMBMSサービスを受信する事、又は受信する事に興味がある事をeNB102に通知するための、MBMS興味通知メッセージ(MBMSInterestIndication)を作成し、送信部504よりeNB102に送信しても良い(不図示)。MBMS興味通知メッセージには、MBMSサービス受信をユニキャスト受信よりも優先するか否かの情報を含んでも良い。またMBMS興味通知メッセージは、SIB20を受信した後、RRC_CONNECTED状態に遷移する際、又はRRC_CONNECTED状態に遷移した後に送られても良い。またMBMS興味通知メッセージは、ハンドオーバの際にSIB20を受信した場合に送られても良いし、RRCコネクションの再確立の際にSIB20を受信した場合に送られても良い。 The processing unit 502 of UE122 receives the MBMS session via the established SC-MRB according to the above SC-PTM setting message (step S906). Prior to receiving the MBMS session, the processing unit 502 of the UE 122 notifies the eNB 102 that the MBMS service is received or is interested in receiving the MBMS service via the SC-MRB. (MBMSInterestIndication) may be created and transmitted from the transmitter 504 to the eNB 102 (not shown). The MBMS interest notification message may include information on whether or not MBMS service reception is prioritized over unicast reception. Further, the MBMS interest notification message may be sent at the time of transitioning to the RRC_CONNECTED state after receiving SIB20, or after transitioning to the RRC_CONNECTED state. Further, the MBMS interest notification message may be sent when SIB20 is received at the time of handover, or may be sent when SIB20 is received at the time of reestablishing the RRC connection.
 UE122の処理部502は、MBMSセッションの受信を停止するために、SC-MRB解放処理を行っても良い(ステップS908)。SC-MRB解放処理は例えば、受信しているMBMSセッションを停止する時、SC-MRBが確立されているセルから離れる時、MBMSサービスに対する興味が失われた時、UE能力の限界でMBMSサービスの受信が抑制される時、等に起動されても良い。SC-MRB解放処理はUE122がRRC_IDLE状態の時に行われても良いし、UE122がRRC_CONNECTED状態の時に行われても良い。UE122の処理部502はSC-MRB解放処理を行う際、以下の(A)から(B)の処理のうちの一部又は全てを行っても良い。
  (A)解放するSC-MRBのRLCエンティティ、及び関連するMACと物理レイヤ設定を解放する。
  (B)上位レイヤに対し、解放したSC-MRBに対応するtmgiとsessionIdを通知する事により、SC-MRBの解放を知らせる。
The processing unit 502 of UE122 may perform SC-MRB release processing in order to stop the reception of the MBMS session (step S908). The SC-MRB release process is, for example, when the receiving MBMS session is stopped, when the SC-MRB leaves the established cell, when the interest in the MBMS service is lost, and the MBMS service is limited to the UE capability. It may be activated when reception is suppressed. The SC-MRB release process may be performed when the UE 122 is in the RRC_IDLE state, or may be performed when the UE 122 is in the RRC_CONNECTED state. When performing the SC-MRB release process, the processing unit 502 of the UE 122 may perform a part or all of the following processes (A) to (B).
(A) Release the SC-MRB RLC entity to be released, and the related MAC and physical layer settings.
(B) Notify the release of SC-MRB by notifying the upper layer of tmgi and sessionId corresponding to the released SC-MRB.
 以上、SC-PTMを用いたMBMS受信の設定に関する動作の概要を説明した。SC-PTMを用いた基地局装置からのMBMS送信/端末装置におけるMBMS受信(以下MBMS送信/受信と記述する)の他、MBSFNを用いたMBMS送信/受信も規格化されている。しかしながら、SC-PTMを用いたMBMS送信/受信、及びMBSFNを用いたMBMS送信/受信は、RATとしてE-UTRAを用いる。RATとしてNRを用いたマルチキャスト・ブロードキャストサービス(MBS: Multicast Broadcast Service)送信/受信は、まだ規格化されていない。 The outline of the operation related to the setting of MBMS reception using SC-PTM has been explained above. In addition to MBMS transmission / reception in terminal equipment from base station equipment using SC-PTM (hereinafter referred to as MBMS transmission / reception), MBMS transmission / reception using MBSFN is also standardized. However, MBMS transmission / reception using SC-PTM and MBMS transmission / reception using MBSFN use E-UTRA as the RAT. Multicast broadcast service (MBS: Multicast Broadcast Service) transmission / reception using NR as RAT has not been standardized yet.
 図12を用いて、本発明の実施の形態における、UE122及びgNB108の動作の一例を説明する。なお、本発明の実施の形態において用いられる用語である、MBS、MBSサービス、MBSセッション、MBSベアラは同等の意味を持つ用語であっても良く、互いに言い換えられても良い。また本発明の実施の形態において用いられる用語である、MBS、MBSサービス、MBSセッションは、MBMS、MBMSサービス、MBMSセッションと同等の意味を持つ用語であっても良い。また本発明の実施の形態において、UE122にMBS受信用にMBS用無線ベアラが確立及び/又は設定されて良い。またgNB108においてMBS伝送用にMBS用無線ベアラが確立及び/又は設定されて良い。また本発明の実施の形態において、MBS用無線ベアラの事をMRB(Multicast Radio Bearer)という名称を用いて説明するが、別の名称であっても良い。また本発明の実施の形態において、UE122に確立及び/又は設定されるMRBは、MBSを1対多(Point-to-Multipoint)で受信するためのMRBであって良いし、MBSを1対1(ポイント・ツー・ポイント:Point-to-Point)で受信するためのMRBであって良い。また本発明の実施の形態において、MBSを1対多(Point-to-Multipoint)で受信するためのMRBと、MBSを1対1(ポイント・ツー・ポイント:Point-to-Point)で受信するためのMRBは同じMRBであっても良い。即ち、1つのMRBが、MBSを1対多で受信する能力及びMBSを1対1で受信する能力を持っても良い。1つのMRBが、MBSを1対多で受信する能力及びMBSを1対1で受信する能力を持つ場合、MRBはMBSを1対多で受信及び/又は伝送するための1つ又は複数のRLCベアラ、及びMBSを1対1で受信及び/又は伝送するための1つ又は複数のRLCベアラを含んで良い。1つのMRBが、MBSを1対多で受信する能力及びMBSを1対1で受信する能力を持つ場合、MBSを1対多で受信及び/又は伝送するための1つ又は複数のRLCベアラ、及びMBSを1対1で受信及び/又は伝送するための1つ又は複数のRLCベアラは1つのPDCPエンティティに紐づいて良い。またMRBには1つ又は複数のQoSフローが紐づけられて良い。なお、MBSを1対1(ポイント・ツー・ポイント:Point-to-Point)で受信するためのMRBはDRBであっても良い。 An example of the operation of UE122 and gNB108 in the embodiment of the present invention will be described with reference to FIG. The terms MBS, MBS service, MBS session, and MBS bearer used in the embodiments of the present invention may have the same meaning or may be paraphrased with each other. Further, the terms MBS, MBS service, and MBS session used in the embodiment of the present invention may be terms having the same meanings as MBMS, MBMS service, and MBMS session. Further, in the embodiment of the present invention, an MBS radio bearer may be established and / or set in the UE 122 for MBS reception. In addition, a wireless bearer for MBS may be established and / or set for MBS transmission in gNB108. Further, in the embodiment of the present invention, the wireless bearer for MBS will be described by using the name MRB (Multicast Radio Bearer), but another name may be used. Further, in the embodiment of the present invention, the MRB established and / or set in the UE 122 may be an MRB for receiving MBS in a point-to-multipoint manner, and may be an MRB for receiving MBS in a one-to-one manner. It may be an MRB for receiving (point-to-point). Further, in the embodiment of the present invention, the MRB for receiving MBS on a one-to-many basis (Point-to-Multipoint) and the MBS on a one-to-one basis (Point-to-Point) are received. The MRB for this may be the same MRB. That is, one MRB may have the ability to receive MBS one-to-many and the ability to receive MBS one-to-one. If one MRB has the ability to receive MBS one-to-many and one-to-many MBS, then the MRB has one or more RLCs to receive and / or transmit MBS one-to-many. It may include bearers and one or more RLC bearers for one-to-one reception and / or transmission of MBS. One or more RLC bearers for receiving and / or transmitting MBS one-to-many, where one MRB has the ability to receive MBS one-to-many and one-to-one MBS. And one or more RLC bearers for one-to-one reception and / or transmission of MBS may be associated with one PDCP entity. Further, one or more QoS flows may be associated with the MRB. The MRB for receiving MBS on a one-to-one basis (point-to-point) may be DRB.
 MBSを1対多で受信、及び/又は伝送するとは、MBSをMTCHやSC-MTCHなどのマルチキャスト用論理チャネルを介して受信、及び/又は伝送する事であっても良い。またMBSを1対1で受信、及び/又は伝送するとは、MBSをDTCHなどの専用ユーザデータ用論理チャネルを介して受信、及び/又は伝送する事であっても良い。なお、本発明の実施の形態において、MBSを1対多で受信、及び/又は伝送するとは、MBSをマルチキャストで受信、及び/又は伝送すると言い換えられても良い。また本発明の実施の形態において、MBSを1対1で受信、及び/又は伝送するとは、MBSをユニキャストで受信、及び/又は伝送すると言い換えられても良い。またMBSを1対1で受信、及び/又は伝送する場合、セキュリティが適用されて良い。またMBSを1対多で受信、及び/又は伝送する場合、セキュリティが適用されなくて良い。セキュリティとは暗号化及び復号化(ciphering and deciphering)、及び/又は完全性保護及び検証(integrity protection and verification)であって良い。 Receiving and / or transmitting MBS on a one-to-many basis may mean receiving and / or transmitting MBS via a logical channel for multicast such as MTCH or SC-MTCH. Further, receiving and / or transmitting MBS on a one-to-one basis may mean receiving and / or transmitting MBS via a dedicated user data logic channel such as DTCH. In the embodiment of the present invention, receiving and / or transmitting MBS on a one-to-many basis may be paraphrased as receiving and / or transmitting MBS by multicast. Further, in the embodiment of the present invention, receiving and / or transmitting MBS on a one-to-one basis may be paraphrased as receiving and / or transmitting MBS on a unicast basis. Also, when receiving and / or transmitting MBS on a one-to-one basis, security may be applied. Also, when receiving and / or transmitting MBS one-to-many, security does not have to be applied. Security may be ciphering and deciphering, and / or integrity protection and verification.
 図12は、本発明の実施の形態における、NRにおけるMBS受信手順のフローの一例を示す図である。なお、本実施の形態において、パラメータ及び/又は情報とは、ASN.1におけるフィールド、及び/又は情報要素であっても良い。 FIG. 12 is a diagram showing an example of the flow of the MBS reception procedure in NR in the embodiment of the present invention. In this embodiment, the parameter and / or information may be a field and / or an information element in ASN.1.
 図12に示すように、gNB108の処理部602は、MBS送信に関する制御情報の取得に必要な情報をブロードキャストするために、RRCメッセージの一つである第1のSIB(System Information Block)を作成し、送信部600よりUE122へ送信しても良い。UE122の受信部500は、上述の第1のSIBを受信する。なお、上述の第1のSIBは、BCCH論理チャネルを介して送信されても良いし、別の論理チャネルを介して送信されても良い。また上述のMBS送信に関する制御情報の取得に必要な情報とは、MCCH(Multicast Control Channel)論理チャネル(以下の説明においてMCCHと呼ぶ事もある)に関する情報であっても良い。上述のMCCHとは、gNB108からUE122へ、一つ又は複数のMTCH(Multicast Traffic Channel)論理チャネル(以下の説明においてMTCHと呼ぶ事もある)に対するMBS制御情報、及び/又はMBS設定情報、及び/又はMBS情報を送るための1対多(point-to-multipoint)の下りリンクチャネルであっても良い。また上述のMTCHとは、gNB108からUE122へ、MBSのデータを送信するための1対多(point-to-multipoint)の下りリンクチャネルであっても良い。また上述のMCCHはマルチキャスト制御チャネルであっても良い。また上述のMTCHはマルチキャストトラフィックチャネルであっても良い。上述のMTCHはUE122がMBSを受信する場合にのみ、そのUE122によって使われても良い。なお、上述のMCCHは、MBS-MCCH、NR-MCCH等の、別の名称で呼ばれても良い。また上述のMTCHは、MBS-MTCH、NR-MTCH等の、別の名称で呼ばれても良い。また上述のMCCHは、下りリンクトランスポートチャネルであるMCH(Multicast Channel)にマップされても良いし、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされても良い。また上述のMTCHは、下りリンクトランスポートチャネルであるMCH(Multicast Channel)にマップされても良いし、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされても良い。また上述の、一つ又は複数のMTCH論理チャネルに対するMBS制御情報、及び/又はMBS設定情報、及び/又はMBS情報は、上述の第1のSIBに含まれても良いし、上述の第1のSIBとは別の第2のSIBに含まれても良い。(ステップS1200) As shown in FIG. 12, the processing unit 602 of gNB108 creates a first SIB (System Information Block), which is one of the RRC messages, in order to broadcast the information necessary for acquiring the control information related to MBS transmission. , May be transmitted from the transmitter 600 to UE122. The receiver 500 of the UE 122 receives the first SIB described above. The above-mentioned first SIB may be transmitted via the BCCH logical channel, or may be transmitted via another logical channel. Further, the information necessary for acquiring the control information related to the above-mentioned MBS transmission may be information related to the MCCH (Multicast Control Channel) logical channel (sometimes referred to as MCCH in the following description). The above-mentioned MCCH is MBS control information and / or MBS setting information for one or more MTCH (Multicast Traffic Channel) logical channels (sometimes referred to as MTCH in the following description) from gNB108 to UE122, and / Alternatively, it may be a point-to-multipoint downlink channel for sending MBS information. Further, the above-mentioned MTCH may be a one-to-multipoint downlink channel for transmitting MBS data from gNB108 to UE122. Further, the above-mentioned MCCH may be a multicast control channel. Further, the above-mentioned MTCH may be a multicast traffic channel. The MTCH mentioned above may be used by a UE 122 only if it receives an MBS. The above-mentioned MCCH may be referred to by another name such as MBS-MCCH or NR-MCCH. Further, the above-mentioned MTCH may be referred to by another name such as MBS-MTCH, NR-MTCH and the like. Further, the above-mentioned MCCH may be mapped to an MCH (Multicast Channel) which is a downlink transport channel, or may be mapped to a DL-SCH (Downlink Shared Channel) which is a downlink transport channel. Further, the above-mentioned MTCH may be mapped to an MCH (Multicast Channel) which is a downlink transport channel, or may be mapped to a DL-SCH (Downlink Shared Channel) which is a downlink transport channel. Further, the above-mentioned MBS control information and / or MBS setting information and / or MBS information for one or more MTCH logical channels may be included in the above-mentioned first SIB, or may be included in the above-mentioned first SIB. It may be included in a second SIB separate from the SIB. (Step S1200)
 上述の第1のSIBには、例えば、MCCHの内容が変更され得る周期を示すパラメータ、MCCHの送信(再送)時間間隔に関するパラメータ、MCCHがスケジュールされる無線フレームのオフセットを示すパラメータ、MCCHがスケジュールされるスロットを示すパラメータ、MCCHがスケジュールされるスロットの期間を示すパラメータ、等のパラメータのうちの一部又は全てを含んでも良い。なお上述のMCCHの送信(再送)時間間隔に関するパラメータは無線フレーム数で示されても良い。 The first SIB described above includes, for example, a parameter indicating a period in which the contents of the MCCH can be changed, a parameter indicating the transmission (retransmission) time interval of the MCCH, a parameter indicating the offset of the radio frame to which the MCCH is scheduled, and the MCCH being scheduled. It may include some or all of parameters such as a parameter indicating the slot to be played, a parameter indicating the duration of the slot to which the MCCH is scheduled, and the like. The above-mentioned parameter related to the transmission (retransmission) time interval of MCCH may be indicated by the number of radio frames.
 次にgNB108の処理部は、上述のMCCHで送信されるRRCメッセージを作成し、送信部600より送信しても良い。UE122の受信部500は、上述の第1のSIBの設定に基づいて、上述のMCCHで送信されたRRCメッセージを受信しても良い。上述のMCCHの送信には、上述のMCCH送信を識別するための専用のRNTI(Radio Network Temporary Identifier)が用いられても良い。また上述のMCCH送信を識別するための専用のRNTIの値は、特定の値が使われても良いし、上述の第1のSIBにより値が設定されても良い。本発明の実施の形態において、上述のMCCHで送信されるRRCメッセージをMBS設定情報メッセージというメッセージ名を用いて説明するが、別のメッセージ名であっても良い。(ステップS1202) Next, the processing unit of gNB108 may create an RRC message transmitted by the above-mentioned MCCH and transmit it from the transmission unit 600. The receiver 500 of the UE 122 may receive the RRC message transmitted by the MCCH described above based on the setting of the first SIB described above. For the above-mentioned MCCH transmission, a dedicated RNTI (Radio Network Temporary Identifier) for identifying the above-mentioned MCCH transmission may be used. Further, as the value of the dedicated RNTI for identifying the above-mentioned MCCH transmission, a specific value may be used, or a value may be set by the above-mentioned first SIB. In the embodiment of the present invention, the RRC message transmitted by the MCCH described above will be described using the message name MBS setting information message, but may be another message name. (Step S1202)
 上述のMBS設定情報メッセージは、MBS受信のためのパラメータであるMBS MTCHパラメータを1つ又は複数含んでも良い。例えばMBS MTCHパラメータは、図11におけるSC-MTCH-InfoListで示される情報要素が、1つ又は複数のSC-MTCH-Infoで示される情報要素をリストの形で含むように、1つ又は複数のMBS MTCHパラメータは、リストの形で上述のMBS設定情報メッセージに含まれて良い。またMBS MTCHパラメータは、各MBSセッションに対し存在して良い。例えば、第1のMBSセッションに対して、第1のMBS MTCHパラメータが、第2のMBSセッションに対して、第2のMBS MTCHパラメータが其々存在して良い。なお、本発明の実施の形態において、上述のMBS受信のためのパラメータを、MBS MTCHパラメータという名称を用いて説明するが、別の名称であっても良い。 The above-mentioned MBS setting information message may include one or more MBS MTCH parameters, which are parameters for receiving MBS. For example, the MBS MTCH parameter is one or more such that the information element represented by SC-MTCH-InfoList in FIG. 11 contains one or more information elements represented by SC-MTCH-Info in the form of a list. The MBS MTCH parameters may be included in the above MBS configuration information message in the form of a list. Also, the MBS MTCH parameter may be present for each MBS session. For example, the first MBS MTCH parameter may be present for the first MBS session, and the second MBS MTCH parameter may be present for the second MBS session. In the embodiment of the present invention, the above-mentioned parameters for MBS reception will be described using the name MBS MTCH parameter, but may be another name.
 MBS MTCHパラメータは、MBSセッションの情報に関するパラメータ、マルチキャストグループ(特定グループ宛てのMTCH)を識別するRNTIを示すパラメータ、論理チャネル識別子を示すパラメータ、MTCHのためのDRX情報に関するパラメータ、同一のMBSを提供する隣接セルのリストを示すパラメータ、MBSセッションにROHCが適用されるか否かを示すパラメータ、MBSセッションに用いられるROHCに関するパラメータ、HFN(Hyper Frame Number)に関するパラメータ、COUNTに関するパラメータ、ステータスレポートのタイマーに関するパラメータ等のパラメータのうちの一部又は全てを含んでも良い。上述のMBSセッションの情報に関するパラメータには、例えばMBSを識別する識別子であるTMGI(Temporary Mobile Group Identity)を示すパラメータ、MBS(又はMBMS)セッションの識別子であるSession IDを示すパラメータ、MBSセッションが属するPDUセッションを示すパラメータ、MBSセッションに用いられるQoSフローを示すパラメータ、等のパラメータうちの一部又は全てを含んでも良い。また上述のMBS MTCHパラメータのうちの一部又は全ては上述の第1のSIBに含まれても良いし、上述の第2のSIBに含まれても良いし、上述の第1のSIB及び第2のSIBとは別の、第3のSIBに含まれても良い。 MBS MTCH parameters provide parameters for MBS session information, parameters for RNTI to identify multicast groups (MTCH addressed to a specific group), parameters for logical channel identifiers, parameters for DRX information for MTCH, and the same MBS. Parameters indicating the list of adjacent cells to be used, parameters indicating whether ROHC is applied to the MBS session, parameters related to ROHC used for the MBS session, parameters related to HFN (HyperFrameNumber), parameters related to COUNT, and status report timer. It may include some or all of the parameters such as the parameters related to. The above-mentioned parameters related to MBS session information include, for example, a parameter indicating TMGI (Temporary Mobile Group Identity) which is an identifier for identifying MBS, a parameter indicating Session ID which is an identifier of MBS (or MBMS) session, and an MBS session. It may include some or all of the parameters such as the parameter indicating the PDU session and the parameter indicating the QoS flow used for the MBS session. Further, some or all of the above-mentioned MBS MTCH parameters may be contained in the above-mentioned first SIB, the above-mentioned second SIB, the above-mentioned first SIB and the above-mentioned first SIB. It may be included in a third SIB, which is separate from the second SIB.
 なお、上述の同一のMBSを提供する隣接セルのリストを示すパラメータには、同一のMBSをMTCH、及び/又はMRBを介して提供する隣接セルのリストを示すパラメータが含まれても良いし、同一のMBSをユニキャスト、及び/又はDTCH、及び/又はDRBを介して提供する隣接セルのリストを示すパラメータが含まれても良い。 It should be noted that the above-mentioned parameter indicating the list of adjacent cells providing the same MBS may include a parameter indicating the list of adjacent cells providing the same MBS via MTCH and / or MRB. Parameters indicating a list of adjacent cells that provide the same MBS via unicast and / or DTCH and / or DRB may be included.
 また、MBS設定情報メッセージ及び/又はMBS MTCHパラメータは、MRB設定に関するパラメータを含んで良い。MRB設定に関するパラメータは、MRBを識別する識別子、SDAP設定情報要素、PDCP設定情報要素を含むパラメータのうちの、一部又は全てを含んで良い。また上述のMRB設定に関するパラメータは、1つ又は複数のRLCベアラ設定情報要素を含んで良い。上述のRLCベアラ設定情報要素は、RLCエンティティを確立及び/又は設定するためのRLC設定情報要素、論理チャネル設定のための論理チャネル情報要素のうちの一部又は全てを含んで良い。また上述のRLCベアラ設定情報要素は、MRB設定とは別の情報要素に含まれ、上述のMRBを識別する識別子等により、MRB設定に関するパラメータに紐づけられても良い。また上述のMRB設定には、MBSを1対多で受信するRLCベアラを識別するパラメータが含まれて良い。また上述のMRB設定には、MBSを1対1で受信するRLCベアラを識別するパラメータが含まれて良い。上述のMBSを1対多で受信するRLCベアラを識別するパラメータ、及び/又はMBSを1対1で受信するRLCベアラを識別するパラメータとは、論理チャネル識別子であって良い。なお、上述のMBSセッションにROHCが適用されるか否かを示すパラメータ、及び/又はMBSセッションに用いられるROHCに関するパラメータ、及び/又はHFN(Hyper Frame Number)に関するパラメータ、及び/又はCOUNTに関するパラメータ、及び/又はステータスレポートのタイマーに関するパラメータ等は、MRB設定に関するパラメータに含まれても良いし、PDCP設定情報要素に含まれても良い。また上述のPDUセッションを示すパラメータ、及び/又はQoSフローを示すパラメータ等は、MRB設定に関するパラメータに含まれても良いし、SDAP設定情報要素に含まれても良い。また上述のPDUセッションを示すパラメータとはPDUセッションIDであっても良い。 Further, the MBS setting information message and / or the MBS MTCH parameter may include a parameter related to the MRB setting. The parameters related to the MRB setting may include a part or all of the parameters including the identifier identifying the MRB, the SDAP setting information element, and the PDCP setting information element. Further, the parameters related to the MRB setting described above may include one or more RLC bearer setting information elements. The above-mentioned RLC bearer setting information element may include a part or all of an RLC setting information element for establishing and / or setting an RLC entity, and a logical channel information element for logical channel setting. Further, the above-mentioned RLC bearer setting information element may be included in an information element different from the MRB setting, and may be associated with a parameter related to the MRB setting by the above-mentioned identifier for identifying the MRB or the like. The MRB settings described above may also include parameters that identify RLC bearers that receive MBS one-to-many. The MRB settings described above may also include parameters that identify RLC bearers that receive MBS on a one-to-one basis. The parameter for identifying the RLC bearer that receives the MBS one-to-many and / or the parameter for identifying the RLC bearer that receives the MBS one-to-one may be a logical channel identifier. In addition, the parameter indicating whether ROHC is applied to the above-mentioned MBS session, and / or the parameter related to ROHC used for the MBS session, and / or the parameter related to HFN (HyperFrameNumber), and / or the parameter related to COUNT, And / or parameters related to the timer of the status report may be included in the parameters related to the MRB setting, or may be included in the PDCP setting information element. Further, the above-mentioned parameters indicating the PDU session and / or the parameters indicating the QoS flow may be included in the parameters related to the MRB setting, or may be included in the SDAP setting information element. Further, the parameter indicating the above-mentioned PDU session may be a PDU session ID.
 UE122は受信部500よりMBS設定情報メッセージを受信し、処理部502において、興味のあるMBSセッションの受信を開始する処理を行って良い。(ステップS1204) The UE 122 may receive the MBS setting information message from the receiving unit 500, and the processing unit 502 may perform a process of starting the reception of the MBS session of interest. (Step S1204)
 ステップS1204において、UE122の処理部502は、ステップS1202において受信したMBS設定情報メッセージから、興味のあるMBSセッションにROHCが適用されるか否かを判断して良い。興味のあるMBSセッションにROHCが適用されるか否かの判断は、上述のMBS設定情報メッセージ及び/又はMBS MTCHパラメータに、上述のROHCが適用されるか否かを示すパラメータが含まれているか否かにより行われて良い。即ち上述のMBS設定情報メッセージ及び/又は興味のあるMBSセッションに対するMBS MTCHパラメータに、ROHCが適用されるか否かを示すパラメータが含まれている場合にはROHCが適用されると判断し、上述のMBS設定情報メッセージ及び/又は興味のあるMBSセッションに対するMBS MTCHパラメータに、ROHCが適用されるか否かを示すパラメータが含まれていない場合にはROHCが適用されないと判断して良い。またROHCが適用されるか否かの判断は、上述のMBS設定情報メッセージ及び/又は興味のあるMBSセッションに対するMBS MTCHパラメータに含まれる上述のROHCが適用されるか否かを示すパラメータの値により行って良い。即ち上述のMBS設定情報メッセージ及び/又は興味のあるMBSセッションに対するMBS MTCHパラメータに含まれる、ROHCが適用されるか否かを示すパラメータが、ROHCを適用する事を示す値の場合には、ROHCが適用されると判断し、上述のMBS設定情報メッセージ及び/又は興味のあるMBSセッションに対するMBS MTCHパラメータに含まれる、ROHCが適用されるか否かを示すパラメータが、ROHCを適用しない事を示す場合には、ROHCが適用されないと判断して良い。またROHCが適用されるか否かの判断は、上述のMBS設定情報メッセージ及び/又は興味のあるMBSセッションに対するMBS MTCHパラメータに、上述のMBSセッションに用いられるROHCに関するパラメータが含まれているか否かにより判断して良い。即ち上述のMBS設定情報メッセージ及び/又は興味のあるMBSセッションに対するMBS MTCHパラメータに、MBSセッションに用いられるROHCに関するパラメータが含まれている場合には、ROHCが適用されると判断して良い。また上述のMBS設定情報メッセージ及び/又は興味のあるMBSセッションに対するMBS MTCHパラメータに、MBSセッションに用いられるROHCに関するパラメータが含まれていない場合には、ROHCが適用されないと判断して良い。なお興味のあるMBSセッションを、UE122が受信したいセッション、UE122が受信しようとしているセッションなどと言い換えて良い。 In step S1204, the processing unit 502 of UE122 may determine whether or not ROHC is applied to the MBS session of interest from the MBS setting information message received in step S1202. The determination of whether ROHC is applied to the MBS session of interest is determined by whether the above-mentioned MBS setting information message and / or MBS MTCH parameter includes a parameter indicating whether or not the above-mentioned ROHC is applied. It may be done depending on whether or not. That is, if the above-mentioned MBS setting information message and / or the MBS MTCH parameter for the MBS session of interest contains a parameter indicating whether or not ROHC is applied, it is determined that ROHC is applied, and the above-mentioned If the MBS setting information message and / or the MBS MTCH parameter for the MBS session of interest does not include a parameter indicating whether or not ROHC is applied, it may be determined that ROHC is not applied. In addition, whether or not ROHC is applied is determined by the above-mentioned MBS setting information message and / or the value of the parameter indicating whether or not the above-mentioned ROHC included in the MBS MTCH parameter for the MBS session of interest is applied. You can go. That is, if the parameter indicating whether ROHC is applied or not included in the above-mentioned MBS setting information message and / or the MBS MTCH parameter for the MBS session of interest is a value indicating that ROHC is applied, ROHC The parameter indicating whether ROHC is applied or not, which is included in the above-mentioned MBS setting information message and / or MBS MTCH parameter for the MBS session of interest, indicates that ROHC is not applied. In that case, it may be judged that ROHC does not apply. In addition, whether or not ROHC is applied is determined by whether or not the above-mentioned MBS setting information message and / or the MBS MTCH parameter for the MBS session of interest includes the parameter related to ROHC used for the above-mentioned MBS session. You may judge by. That is, if the MBS setting information message and / or the MBS MTCH parameter for the MBS session of interest includes the parameter related to ROHC used for the MBS session, it may be determined that ROHC is applied. If the MBS setting information message and / or the MBS MTCH parameter for the MBS session of interest does not include the parameter related to ROHC used for the MBS session, it may be determined that ROHC is not applied. The MBS session you are interested in can be rephrased as a session that UE122 wants to receive, a session that UE122 is about to receive, and so on.
 なお、上述のMBSセッションに用いられるROHCに関するパラメータは、ROHCに用いられるコンテキスト識別子(Context identifier: CID)の最大値に関するパラメータ、ROHCに用いられるプロファイル(profile)に関するパラメータ、及びPDCP再確立(PDCP re-establishment)の際にROHCヘッダ圧縮プロトコルを継続するかリセットするかを示すパラメータのうちの一部又は全てを含んで良い。また上述のMBSセッションに用いられるROHCに関するパラメータは、全てのヘッダ情報が得られるタイミングに関するパラメータを含んで良い。上述の全てのヘッダ情報が得られるタイミングは、全てのヘッダ情報が得られる周期であって良い。上述の全てのヘッダ情報が得られるタイミングに関するパラメータは、全てのヘッダ情報のうちの一部又は全てが変更され得る周期を示すパラメータ、全てのヘッダ情報が送信される時間間隔を無線フレーム数で示すパラメータ、全てのヘッダ情報の送信がスケジュールされる無線フレームのオフセットを示すパラメータ、全てのヘッダ情報の送信がスケジュールされるスロットを示すパラメータ、全てのヘッダ情報の送信がスケジュールされるスロットの期間(window length)を示すパラメータのうちの一部又は全てを含んで良い。上述の全てのヘッダ情報とはROHCにおいて圧縮対象となるヘッダ (IPヘッダ、UDPヘッダ、TCPヘッダ、RTPヘッダなど) 情報のうちの全てのヘッダ情報であって良い。また上述の全てのヘッダ情報が得られるタイミングを、ROHCコンテキスト情報が得られるタイミングと言い換えて良い。また上述の全てのヘッダ情報が得られるタイミングを、IRステート、及び/又はFOステート、及び/又はSOステートを用いて送信されるタイミングと言い換えて良い。全てのヘッダ情報が得られるタイミングとは、UE122がMBS又はMTCHを受信し始めるタイミングであって良い。また上述の全てのヘッダ情報が得られるタイミングとは、UE122がMBS又はMTCHを受信し始めるべきタイミングであっても良い。 The parameters related to ROHC used in the above-mentioned MBS session are the parameter related to the maximum value of the Context identifier (CID) used for ROHC, the parameter related to the profile used for ROHC, and PDCP reestablishment (PDCP re). -Establishment) may include some or all of the parameters indicating whether to continue or reset the ROHC header compression protocol. Further, the parameters related to ROHC used in the above-mentioned MBS session may include parameters related to the timing at which all header information is obtained. The timing at which all the above-mentioned header information is obtained may be a cycle in which all the header information is obtained. The above-mentioned parameters related to the timing at which all header information is obtained are parameters indicating a cycle in which some or all of all header information can be changed, and the time interval in which all header information is transmitted is indicated by the number of wireless frames. Parameters, parameters indicating the offset of the radio frame where transmission of all header information is scheduled, parameters indicating the slots where transmission of all header information is scheduled, period of slots where transmission of all header information is scheduled (window) It may include some or all of the parameters indicating length). All the above-mentioned header information may be all header information among the header information (IP header, UDP header, TCP header, RTP header, etc.) to be compressed in ROHC. Further, the timing at which all the above header information is obtained may be rephrased as the timing at which ROHC context information is obtained. Further, the timing at which all the above header information is obtained may be rephrased as the timing at which the IR state and / or the FO state and / or the SO state are transmitted. The timing at which all the header information is obtained may be the timing at which the UE 122 starts receiving MBS or MTCH. Further, the timing at which all the above header information is obtained may be the timing at which the UE 122 should start receiving MBS or MTCH.
 またステップS1204において、興味のあるMBSセッションにROHCが適用されると判断したUE122の処理部502は、興味のあるMBSセッションにROHCが適用される事に基づいてROHCコンテキスト情報の取得が必要であると判断して良い。またステップS1204において、興味のあるMBSセッションにROHCが適用されないと判断したUE122の処理部502は、興味のあるMBSセッションにROHCが適用さない事に基づいてROHCコンテキスト情報の取得が必要では無いと判断して良い。 Further, in step S1204, the processing unit 502 of UE122, which determines that ROHC is applied to the MBS session of interest, needs to acquire ROHC context information based on the fact that ROHC is applied to the MBS session of interest. You can judge that. Also, in step S1204, the processing unit 502 of UE122, which determines that ROHC is not applied to the MBS session of interest, does not need to acquire ROHC context information based on the fact that ROHC is not applied to the MBS session of interest. You can judge.
 またステップS1204において、興味のあるMBSセッションにROHCが適用されると判断、又はROHCコンテキスト情報の取得が必要である判断したUE122の処理部502は、ROHCコンテキストの取得処理を行って良い。上述のROHCコンテキストの取得処理は、UE122がRRC_IDLE状態又はRRC_INACTIVE状態から、RRC_CONNECTED状態に遷移する事であって良い。UE122のRRC_IDLE状態からRRC_CONNECTED状態への遷移は、UE122がgNB108に対しRRCセットアップ要求メッセージを送信し、gNB108から上述のRRCセットアップ要求メッセージに対する応答メッセージとしてRRCセットアップメッセージを受信する事により行われて良い。またUE122のRRC_INACTIVE状態からRRC_CONNECTED状態への遷移は、UE122がgNB108に対しRRC再開要求メッセージを送信し、gNB108から上述のRRC再開要求メッセージに対する応答メッセージとして、RRC再開メッセージやRRCセットアップメッセージを受信する事により行われて良い。また、UE122がRRC_IDLE状態又はRRC_INACTIVE状態から、RRC_CONNECTED状態に遷移する際、又はUE122がRRC_IDLE状態又はRRC_INACTIVE状態から、RRC_CONNECTED状態に遷移した後で、UE122はgNB108に対し、興味があるMBSセッションに関する情報を含むRRCメッセージを送っても良い。 Further, in step S1204, the processing unit 502 of UE122, which determines that ROHC is applied to the MBS session of interest or determines that it is necessary to acquire ROHC context information, may perform the ROHC context acquisition process. The ROHC context acquisition process described above may be that the UE 122 transitions from the RRC_IDLE state or the RRC_INACTIVE state to the RRC_CONNECTED state. The transition from the RRC_IDLE state to the RRC_CONNECTED state of UE122 may be performed by the UE122 sending an RRC setup request message to gNB108 and receiving an RRC setup message from gNB108 as a response message to the above-mentioned RRC setup request message. In the transition from the RRC_INACTIVE state of UE122 to the RRC_CONNECTED state, UE122 sends an RRC restart request message to gNB108, and gNB108 receives an RRC restart message or RRC setup message as a response message to the above-mentioned RRC restart request message. May be done by. Also, when UE122 transitions from the RRC_IDLE state or RRC_INACTIVE state to the RRC_CONNECTED state, or after UE122 transitions from the RRC_IDLE state or RRC_INACTIVE state to the RRC_CONNECTED state, UE122 informs gNB108 about the MBS session of interest. You may send an RRC message containing it.
 RRC_CONNECTED状態に遷移したUE122には、MBSセッションを1対1で受信するためのMRB又はMBSセッションを受信するDRBが確立及び/又は設定されて良い。MBSセッションを1対1で受信するためのMRBとは、MBSセッションを1対多で受信するための1つ又は複数のRLCベアラと、MBSセッションを1対1で受信するための1つ又は複数のRLCベアラを含む無線ベアラであって良い。またMBSセッションを1対1で受信するためのMRBを確立及び/又は設定するとは、MRBセッションを1対多で受信するためのRLCベアラのみを持つMRBに、MRBセッションを1対1で受信するためのRLCベアラが追加で確立及び/又は設定される事であって良い。MRBセッションを1対1で受信するためのRLCベアラが追加で確立及び/又は設定されるとは、確立及び/又は確立した、MBSセッションを1対1で受信するためのRLCベアラを、上述の、MRBセッションを1対多で受信するためのRLCベアラのみを持つMRBのPDCPエンティティに関連付ける事であって良い。上述のROHCコンテキストの取得処理は、UE122が上述の興味があるMBSセッションを1対1で受信する事により行われて良い。(ステップS1206) In the UE 122 that has transitioned to the RRC_CONNECTED state, an MRB for receiving an MBS session on a one-to-one basis or a DRB for receiving an MBS session may be established and / or set. MRB for receiving MBS sessions on a one-to-one basis is one or more RLC bearers for receiving MBS sessions on a one-to-many basis and one or more for receiving MBS sessions on a one-to-one basis. It may be a wireless bearer including the RLC bearer of. Also, establishing and / or setting an MRB to receive an MBS session on a one-to-one basis means receiving an MRB session on a one-to-one basis to an MRB that has only an RLC bearer to receive an MRB session on a one-to-many basis. The RLC bearer for this may be additionally established and / or set. An additional RLC bearer for receiving MRB sessions on a one-to-one basis is established and / or configured as described above for an established and / or established RLC bearer for receiving an MBS session on a one-to-one basis. , May be associated with an MRB PDCP entity that has only an RLC bearer to receive MRB sessions one-to-many. The above-mentioned ROHC context acquisition process may be performed by the UE 122 receiving the above-mentioned interested MBS session on a one-to-one basis. (Step S1206)
 またステップS1204における上述のROHCコンテキストの取得処理は、UE122が上述のMBS設定情報メッセージ及び/又は興味のあるMBSセッションに対するMBS MTCHパラメータに含まれる、ROHCに関するパラメータに従って行って良い。例えばUE122は上述の全てのヘッダ情報が得られるタイミングに関するパラメータに従って、全てのヘッダ情報が得られるタイミング情報を取得し、全てのヘッダ情報が得られるタイミングにおいてROHCコンテキスト情報を取得して良い。なお、UE122は、UE122のRRCにおいて上述の全てのヘッダ情報が得られるタイミングに関するパラメータに従って、全てのヘッダ情報が得られるタイミング情報を取得し、取得したタイミング情報の一部又は全てを含む情報をUE122のMACエンティティに通知する事により、全てのヘッダ情報が得られるタイミングにおいてROHCコンテキスト情報を取得して良い。またUE122のRRCが取得したタイミング情報の一部又は全てを含む情報をUE122のMACエンティティに通知する際、MBSセッションの1対多での受信に用いられるRNTIの情報を一緒に送っても良い。なお、UE122はRRC_IDLE状態、又はRRC_INACTIVE状態、又はRRC_CONNECTED状態において、上述のMBS設定情報メッセージ及び/又は興味のあるMBSセッションに対するMBS MTCHパラメータに含まれる、ROHCに関するパラメータに従ったROHCコンテキストの取得処理を行って良い。なお上述の全てのヘッダ情報が得られるタイミングを、IRステート、及び/又はFOステート、及び/又はSOステートが用いられるタイミングと言い換えても良い。また上述の全てのヘッダ情報が得られるタイミングを、ROHCコンテキスト情報が得られるタイミングと言い換えても良い。また上述の全てのヘッダ情報が得られるタイミングを、MBS又はMTCHの受信を開始するタイミングと言い換えても良い。また上述の全てのヘッダ情報が得られるタイミングは、ROHCにおいてヘッダ圧縮の対象となるヘッダ(IPヘッダ、UDPヘッダ、TCPヘッダ、RTPヘッダなど)に含まれる全ての情報が得られるタイミングを意味する別の用語に言い換えられて良い。(ステップS1206) Further, the above-mentioned ROHC context acquisition process in step S1204 may be performed according to the parameters related to ROHC included in the above-mentioned MBS setting information message and / or MBS MTCH parameter for the MBS session of interest. For example, the UE 122 may acquire the timing information at which all the header information is obtained according to the above-mentioned parameters related to the timing at which all the header information is obtained, and may acquire the ROHC context information at the timing when all the header information is obtained. The UE 122 acquires the timing information from which all the header information is obtained according to the parameters related to the timing at which all the header information is obtained in the RRC of the UE 122, and the information including a part or all of the acquired timing information is the UE 122. ROHC context information may be acquired at the timing when all header information is obtained by notifying the MAC entity of. In addition, when notifying the MAC entity of UE122 of the information including a part or all of the timing information acquired by RRC of UE122, the information of RNTI used for one-to-many reception of the MBS session may be sent together. In the RRC_IDLE state, RRC_INACTIVE state, or RRC_CONNECTED state, UE122 performs the ROHC context acquisition process according to the parameters related to ROHC included in the above-mentioned MBS setting information message and / or MBS MTCH parameter for the MBS session of interest. You can go. The timing at which all the above header information is obtained may be rephrased as the timing at which the IR state and / or the FO state and / or the SO state are used. Further, the timing at which all the above header information is obtained may be rephrased as the timing at which ROHC context information is obtained. Further, the timing at which all the above header information is obtained may be rephrased as the timing at which reception of MBS or MTCH is started. Further, the timing at which all the above-mentioned header information is obtained means the timing at which all the information contained in the header (IP header, UDP header, TCP header, RTP header, etc.) subject to header compression in ROHC is obtained. Can be paraphrased into the term. (Step S1206)
 またステップS1204において、UE122の処理部502が興味のあるMBSセッションにROHCが適用されないと判断、又はROHCコンテキスト情報の取得が必要では無いと判断した場合、UE122の処理部502は、ROHCコンテキスト情報の取得を目的としたRRC_CONNECTED状態への遷移は必要無いと判断して良い。またステップS1204において、UE122の処理部502が興味のあるMBSセッションにROHCが適用されないと判断、又はROHCコンテキスト情報の取得が必要では無いと判断した場合、UE122の処理部502は、RRC_IDLE状態又はRRC_INNACTIVE状態において、ROHCコンテキスト情報を取得する事なく、MBSサービスを受信して良い。またステップS1204において、UE122の処理部502が興味のあるMBSセッションにROHCが適用されないと判断、又はROHCコンテキスト情報の取得が必要では無いと判断した場合、UE122の処理部502は、RRC_CONNECTED状態において、ROHCコンテキスト情報を取得する事なく、MBSサービスを受信して良い。(ステップS1206) If, in step S1204, the processing unit 502 of the UE 122 determines that ROHC is not applied to the MBS session of interest, or that it is not necessary to acquire the ROHC context information, the processing unit 502 of the UE 122 determines that the ROHC context information is not applied. It may be judged that the transition to the RRC_CONNECTED state for the purpose of acquisition is not necessary. If, in step S1204, the processing unit 502 of the UE 122 determines that ROHC is not applied to the MBS session of interest, or that it is not necessary to acquire the ROHC context information, the processing unit 502 of the UE 122 is in the RRC_IDLE state or RRC_INNACTIVE. In the state, MBS service may be received without acquiring ROHC context information. If, in step S1204, the processing unit 502 of the UE 122 determines that ROHC is not applied to the MBS session of interest, or that it is not necessary to acquire the ROHC context information, the processing unit 502 of the UE 122 determines that the RRC_CONNECTED state is used. MBS service may be received without acquiring ROHC session information. (Step S1206)
 ステップS1204において、UE122の処理部502は、ステップS1202において受信したMBS設定情報メッセージに、興味のあるMBSセッションに対しHFN(Hyper Frame Number)に関するパラメータが含まれているかを判断して良い。上述のHFNに関するパラメータとは、gNB108がMBSセッション伝送に用いる、又は用いているHFNに関するパラメータであって良い。上述のHFNに関するパラメータとは、gNB108がMBSセッション伝送に用いる、又は用いているHFNの値をUE122が取得する必要がある事を示すパラメータであっても良い。gNB108がMBSセッション伝送MBSセッションに用いる、又は用いているHFNとは、gNB108がMBSセッション伝送に用いる、又は用いている、送信(transmitting)PDCPエンティティの状態変数であるHFNであって良い。gNB108は、MBS設定情報メッセージを送信する際に、gNB108がMBSセッション伝送に用いる、又は用いている、送信(transmitting)PDCPエンティティのHFNの最新の値をHFNに関するパラメータにセットして良い。また上述のHFNに関するパラメータとは、gNB108からMCCH又はMTCHを用いてHFNの値が送られるタイミングに関するパラメータであって良い。gNB108からMCCH又はMTCHを用いてHFNの値が送られるタイミングとは、例えばHFNの値が変更され得る周期を示すパラメータ、HFNの値が送信される時間間隔を無線フレーム数で示すパラメータ、HFNの値がスケジュールされる無線フレームのオフセットを示すパラメータ、HFNの値がスケジュールされるスロットを示すパラメータ、HFNの値がスケジュールされるスロットの期間(window length)を示すパラメータ、のうちの一部又は全てを含んで良い。gNB108は、HFNの値が送られるタイミングで、gNB108がMBSセッション伝送に用いる、又は用いている、送信(transmitting)PDCPエンティティのHFNの最新の値、又はMBSセッション伝送に用いた最後のHFNの値、又は次のMBSセッション伝送に用いるHFNの値をRRCメッセージ及び/又はPDCP制御PDUにセットして送信して良い。 In step S1204, the processing unit 502 of UE122 may determine whether the MBS setting information message received in step S1202 contains a parameter related to HFN (HyperFrameNumber) for the MBS session of interest. The above-mentioned HFN-related parameters may be HFN-related parameters used or used by gNB108 for MBS session transmission. The above-mentioned HFN-related parameter may be a parameter indicating that the UE 122 needs to acquire the value of the HFN used or used by the gNB 108 for MBS session transmission. The HFN used or used by gNB108 for MBS session transmission may be an HFN which is a state variable of the transmitting PDCP entity used or used by gNB108 for MBS session transmission. The gNB 108 may set the latest value of the HFN of the transmitting PDCP entity that the gNB 108 uses or uses for MBS session transmission as a parameter for HFN when transmitting the MBS configuration information message. Further, the above-mentioned parameter related to HFN may be a parameter related to the timing at which the value of HFN is sent from gNB108 using MCCH or MTCH. The timing at which the HFN value is sent from gNB108 using MCCH or MTCH is, for example, a parameter indicating the period during which the HFN value can be changed, a parameter indicating the time interval at which the HFN value is transmitted by the number of radio frames, and HFN. Some or all of the parameters that indicate the offset of the radio frame for which the value is scheduled, the parameter that indicates the slot for which the HFN value is scheduled, and the parameter that indicates the window length for which the HFN value is scheduled. May include. gNB108 is the latest HFN value of the transmitting PDCP entity that gNB108 uses or uses for MBS session transmission, or the last HFN value used for MBS session transmission, when the HFN value is sent. , Or the value of HFN used for the next MBS session transmission may be set in the RRC message and / or PDCP control PDU and transmitted.
 ステップS1204において、UE122の処理部502が、受信したMBS設定情報メッセージに、興味のあるMBSセッションに対しHFNに関するパラメータが含まれていると判断した場合には、UE122のRRCは上述のHFNに関するパラメータに従ってHFNの値を取得し、UE122のMRBのPDCPエンティティに通知しても良い。また、UE122のRRCは上述のHFNに関するパラメータに従って、UE122のMRBのPDCPエンティティが、HFNの値を取得できるよう処理を行っても良い。UE122のRRCは、上述のHFNの値が送られるタイミングに関するパラメータ従って、HFNの値が送られるタイミング情報を取得し、取得したタイミング情報の一部又は全てを含む情報をUE122のMACエンティティに通知する事により、HFNの値が送られるタイミングにおいてUE122のRRC及び/又MRBのPDCPエンティティがHFNの値を取得できるように処理して良い。またUE122のRRCが取得したタイミング情報の一部又は全てを含む情報をUE122のMACエンティティに通知する際、MBSセッションの1対多での受信に用いられるRNTIの情報を一緒に送っても良い。UE122のMRBのPDCPエンティティは、上位レイヤから通知されたHFNの値、又はPDCP制御PDUを受信する事により取得したHFNの値を、受信(receiving)PDCPエンティティのHFNとしてセットして良い。 If, in step S1204, the processing unit 502 of UE122 determines that the received MBS configuration information message contains parameters related to HFN for the MBS session of interest, the RRC of UE122 determines the parameters related to HFN described above. You may get the value of HFN according to and notify the PDCP entity of MRB of UE122. Further, the RRC of UE122 may be processed so that the PDCP entity of MRB of UE122 can acquire the value of HFN according to the above-mentioned parameters related to HFN. The RRC of UE122 acquires the timing information regarding the timing at which the HFN value is sent, and notifies the MAC entity of UE122 of the information including a part or all of the acquired timing information. Thereby, the RRC of UE122 and / or the PDCP entity of MRB may be processed so that the value of HFN can be acquired at the timing when the value of HFN is sent. In addition, when notifying the MAC entity of UE122 of the information including a part or all of the timing information acquired by RRC of UE122, the information of RNTI used for one-to-many reception of the MBS session may be sent together. The PDCP entity of MRB of UE122 may set the value of HFN notified from the upper layer or the value of HFN acquired by receiving the PDCP control PDU as the HFN of the receiving PDCP entity.
 またステップS1204において、UE122の処理部502が、受信したMBS設定情報メッセージに、興味のあるMBSセッションに対しHFNに関するパラメータが含まれていると判断した場合には、UE122はRRC_IDLE状態又はRRC_INACTIVE状態から、RRC_CONNECTED状態に遷移しても良い。RRC_CONNECTED状態のUE122のRRCは、gNB108より、HFNの値を含むRRCメッセージを、DCCHを経由して受信する事により、HFNの値を取得しても良い。UE122のRRCは上述の取得したHFNの値を、UE122のMRBのPDCPエンティティに通知しても良い。UE122のMRBのPDCPエンティティは、上位レイヤから通知されたHFNの値を、受信(receiving)PDCPエンティティのHFNとしてセットして良い。 If, in step S1204, the processing unit 502 of the UE 122 determines that the received MBS setting information message contains parameters related to HFN for the MBS session of interest, the UE 122 is moved from the RRC_IDLE state or the RRC_INACTIVE state. , RRC_CONNECTED state may be transitioned. The RRC of UE122 in the RRC_CONNECTED state may acquire the HFN value by receiving the RRC message including the HFN value from gNB108 via DCCH. The RRC of UE122 may notify the PDCP entity of MRB of UE122 of the above-mentioned acquired HFN value. The PDCP entity of MRB of UE122 may set the value of HFN notified from the upper layer as the HFN of the receiving PDCP entity.
 ステップS1204において、UE122の処理部502は、ステップS1202において受信したMBS設定情報メッセージに、興味のあるMBSセッションに対しCOUNTに関するパラメータが含まれているかを判断して良い。上述のCOUNTに関するパラメータとは、gNB108がMBSセッション伝送に用いる、又は用いているCOUNT値に関するパラメータであって良い。上述のCOUNTに関するパラメータとは、gNB108がMBSセッション伝送に用いる、又は用いているCOUNTの値をUE122が取得する必要がある事を示すパラメータであっても良い。gNB108がMBSセッション伝送MBSセッションに用いる、又は用いているCOUNT値とは、gNB108がMBSセッション伝送に用いる、又は用いている、送信(transmitting)PDCPエンティティの状態変数であるCOUNT値であって良い。gNB108は、MBS設定情報メッセージを送信する際に、gNB108がMBSセッション伝送に用いている、送信(transmitting)PDCPエンティティのCOUNT値の最新の値をCOUNTに関するパラメータにセットして良い。また上述のCOUNTに関するパラメータとは、gNB108からMCCH又はMTCHを用いてCOUNT値が送られるタイミングに関するパラメータであって良い。gNB108からMCCH又はMTCHを用いてCOUNT値が送られるタイミングとは、例えばCOUNT値が変更され得る周期を示すパラメータ、COUNT値が送信される時間間隔を無線フレーム数で示すパラメータ、COUNT値がスケジュールされる無線フレームのオフセットを示すパラメータ、COUNT値がスケジュールされるスロットを示すパラメータ、COUNT値がスケジュールされるスロットの期間(window length)を示すパラメータ、のうちの一部又は全てを含んで良い。gNB108は、COUNT値が送られるタイミングで、gNB108がMBSセッション伝送に用いる、又は用いている、送信(transmitting)PDCPエンティティのCOUNT値の最新の値、又はMBSセッション伝送に用いた最後のCOUNT値、又は次のMBSセッション伝送に用いるCOUNT値をRRCメッセージ及び/又はPDCP制御PDUにセットして送信して良い。 In step S1204, the processing unit 502 of UE122 may determine whether the MBS setting information message received in step S1202 contains a parameter related to COUNT for the MBS session of interest. The parameter related to COUNT described above may be a parameter related to the COUNT value used or used by gNB108 for MBS session transmission. The above-mentioned COUNT parameter may be a parameter indicating that the UE 122 needs to acquire the COUNT value used or used by gNB108 for MBS session transmission. The COUNT value used or used by gNB108 for MBS session transmission may be the COUNT value which is the state variable of the transmitting PDCP entity used or used by gNB108 for MBS session transmission. When sending the MBS setting information message, gNB108 may set the latest value of the COUNT value of the transmitting PDCP entity used by gNB 108 for MBS session transmission in the parameter related to COUNT. Further, the above-mentioned parameter related to COUNT may be a parameter related to the timing at which the COUNT value is sent from gNB108 using MCCH or MTCH. The timing at which the COUNT value is sent from gNB108 using MCCH or MTCH is, for example, a parameter indicating the cycle in which the COUNT value can be changed, a parameter indicating the time interval in which the COUNT value is transmitted in terms of the number of radio frames, and the COUNT value being scheduled. It may include some or all of a parameter indicating the offset of the radio frame, a parameter indicating a slot in which the COUNT value is scheduled, and a parameter indicating the period (window length) of the slot in which the COUNT value is scheduled. gNB108 is the latest COUNT value of the transmitting PDCP entity used or used by gNB108 for MBS session transmission at the time the COUNT value is sent, or the last COUNT value used for MBS session transmission. Alternatively, the COUNT value used for the next MBS session transmission may be set in the RRC message and / or the PDCP control PDU and transmitted.
 ステップS1204において、UE122の処理部502が、受信したMBS設定情報メッセージに、興味のあるMBSセッションに対しCOUNTに関するパラメータが含まれていると判断した場合には、UE122のRRCは上述のCOUNTに関するパラメータに従ってCOUNT値を取得し、UE122のMRBのPDCPエンティティに通知しても良い。また、UE122のRRCは上述のCOUNTに関するパラメータに従って、UE122のMRBのPDCPエンティティが、COUNT値を取得できるよう処理を行っても良い。UE122のRRCは、上述のCOUNT値が送られるタイミングに関するパラメータ従って、COUNT値が送られるタイミング情報を取得し、取得したタイミング情報の一部又は全てを含む情報をUE122のMACエンティティに通知する事により、COUNT値が送られるタイミングにおいてUE122のRRC及び/又MRBのPDCPエンティティがCOUNT値を取得できるように処理して良い。またUE122のRRCが取得したタイミング情報の一部又は全てを含む情報をUE122のMACエンティティに通知する際、MBSセッションの1対多での受信に用いられるRNTIの情報を一緒に送っても良い。UE122のMRBのPDCPエンティティは、上位レイヤから通知された、又はPDCP制御PDUを受信する事により取得したCOUNT値を、受信(receiving)PDCPエンティティのCOUNT値としてセットして良い。 If, in step S1204, the processing unit 502 of UE122 determines that the received MBS configuration information message contains a parameter related to COUNT for the MBS session of interest, the RRC of UE122 determines the parameter related to COUNT described above. You may get the COUNT value according to and notify the PDCP entity of MRB of UE122. Further, the RRC of UE122 may perform processing so that the PDCP entity of MRB of UE122 can acquire the COUNT value according to the above-mentioned parameters related to COUNT. The RRC of UE122 is a parameter related to the timing when the COUNT value is sent as described above. Therefore, by acquiring the timing information when the COUNT value is sent and notifying the MAC entity of UE122 of the information including a part or all of the acquired timing information. , It may be processed so that the RRC of UE122 and / or the PDCP entity of MRB can acquire the COUNT value at the timing when the COUNT value is sent. In addition, when notifying the MAC entity of UE122 of the information including a part or all of the timing information acquired by RRC of UE122, the information of RNTI used for one-to-many reception of the MBS session may be sent together. The PDCP entity of the MRB of UE122 may set the COUNT value notified from the upper layer or obtained by receiving the PDCP control PDU as the COUNT value of the receiving PDCP entity.
 またステップS1204において、UE122の処理部502が、受信したMBS設定情報メッセージに、興味のあるMBSセッションに対しCOUNTに関するパラメータが含まれていると判断した場合には、UE122はRRC_IDLE状態又はRRC_INACTIVE状態から、RRC_CONNECTED状態に遷移しても良い。RRC_CONNECTED状態のUE122のRRCは、gNB108より、COUNT値を含むRRCメッセージを、DCCHを経由して受信する事により、COUNT値を取得しても良い。UE122のRRCは上述の取得したCOUNT値を、UE122のMRBのPDCPエンティティに通知しても良い。UE122のMRBのPDCPエンティティは、上位レイヤから通知されたCOUNT値を、受信(receiving)PDCPエンティティのCOUNT値としてセットして良い。 If, in step S1204, the processing unit 502 of the UE 122 determines that the received MBS setting information message contains a parameter related to COUNT for the MBS session of interest, the UE 122 is moved from the RRC_IDLE state or the RRC_INACTIVE state. , RRC_CONNECTED state may be transitioned. The RRC of UE122 in the RRC_CONNECTED state may acquire the COUNT value by receiving the RRC message including the COUNT value from gNB108 via DCCH. The RRC of UE122 may notify the PDCP entity of MRB of UE122 of the obtained COUNT value described above. The PDCP entity of MRB of UE122 may set the COUNT value notified from the upper layer as the COUNT value of the receiving PDCP entity.
 またステップS1204において、UE122のMRBのPDCPエンティティが、上位レイヤから通知されたCOUNT値、又はPDCP制御PDUを受信する事により取得したCOUNT値を、受信(receiving)PDCPエンティティのCOUNT値としてセットする際、PDCPエンティティの受信側において、次に受信する事が予想されるPDCP SDUのCOUNT値を示す状態変数にセットして良い。またUE122のMRBのPDCPエンティティが、上位レイヤから通知されたCOUNT値、又はPDCP制御PDUを受信する事により取得したCOUNT値を、受信(receiving)PDCPエンティティのCOUNT値としてセットする際、PDCPエンティティの受信側において、上位層に配信していない受信待ちのPDCP SDUのうち最初のPDCP PDUのCOUNT値を示す状態変数にセットして良い。またUE122のMRBのPDCPエンティティが、上位レイヤから通知されたCOUNT値、又はPDCP制御PDUを受信する事により取得したCOUNT値を、受信(receiving)PDCPエンティティのCOUNT値としてセットする際、上述のCOUNT値を、HFN部分とSN(Sequence Number)部分とに分けてセットして良い。 Further, in step S1204, when the PDCP entity of MRB of UE122 sets the COUNT value notified from the upper layer or the COUNT value acquired by receiving the PDCP control PDU as the COUNT value of the receiving PDCP entity. , On the receiving side of the PDCP entity, it may be set in a state variable indicating the COUNT value of PDCP SDU that is expected to be received next. Also, when the PDCP entity of MRB of UE122 sets the COUNT value notified from the upper layer or the COUNT value acquired by receiving the PDCP control PDU as the COUNT value of the receiving PDCP entity, the PDCP entity On the receiving side, it may be set in a state variable indicating the COUNT value of the first PDCP PDU among the PDCP SDUs waiting to be received that have not been delivered to the upper layer. Also, when the PDCP entity of MRB of UE122 sets the COUNT value notified from the upper layer or the COUNT value acquired by receiving the PDCP control PDU as the COUNT value of the receiving PDCP entity, the above-mentioned COUNT The value may be set separately for the HFN part and the SN (Sequence Number) part.
 またステップS1204において、UE122の処理部502が、興味のあるMBSセッションに対しHFNに関するパラメータが含まれていないと判断した場合、及び/又は興味のあるMBSセッションに対しCOUNTに関するパラメータが含まれていないと判断した場合、UE122の処理部502は、HFNの値の取得、及び/又はCOUNT値の取得を目的としたRRC_CONNECTED状態への遷移は必要無いと判断して良い。またステップS1204において、UE122の処理部502が、興味のあるMBSセッションに対しHFNに関するパラメータが含まれていないと判断した場合、及び/又は興味のあるMBSセッションに対しCOUNTに関するパラメータが含まれていないと判断した場合、UE122の処理部502は、RRC_IDLE状態又はRRC_INNACTIVE状態において、HFNの値、及び/又はCOUNT値を取得する事なく、MBSサービスを受信して良い。またステップS1204において、UE122の処理部502が、興味のあるMBSセッションに対しHFNに関するパラメータが含まれていないと判断した場合、及び/又は興味のあるMBSセッションに対しCOUNTに関するパラメータが含まれていないと判断した場合、UE122の処理部502は、RRC_CONNECTED状態において、HFNの値、及び/又はCOUNT値を取得する事なく、MBSサービスを受信して良い。(ステップS1206) Also, in step S1204, if the processing unit 502 of UE122 determines that the parameter related to HFN is not included for the MBS session of interest, and / or the parameter related to COUNT is not included for the MBS session of interest. If it is determined that, the processing unit 502 of UE122 may determine that the transition to the RRC_CONNECTED state for the purpose of acquiring the HFN value and / or the COUNT value is not necessary. Also, in step S1204, if the processing unit 502 of UE122 determines that the parameter related to HFN is not included for the MBS session of interest, and / or the parameter related to COUNT is not included for the MBS session of interest. If it is determined that, the processing unit 502 of the UE 122 may receive the MBS service in the RRC_IDLE state or the RRC_INNACTIVE state without acquiring the HFN value and / or the COUNT value. Also, in step S1204, if the processing unit 502 of UE122 determines that the parameter related to HFN is not included for the MBS session of interest, and / or the parameter related to COUNT is not included for the MBS session of interest. If it is determined that, the processing unit 502 of UE122 may receive the MBS service in the RRC_CONNECTED state without acquiring the HFN value and / or the COUNT value. (Step S1206)
 ステップS1204において、UE122の処理部502は、ステップS1202において受信したMBS設定情報メッセージに、興味のあるMBSセッションに対しステータスレポートのタイマーに関するパラメータが含まれているかを判断して良い。上述のステータスレポートのタイマーに関するパラメータとは、PDCPステータスレポート送信に用いられるタイマーの値であって良い。受信したMBS設定情報メッセージに、興味のあるMBSセッションに対しステータスレポートのタイマーに関するパラメータが含まれていると判断した場合には、UE122の処理部502は受信したPDCPステータスレポート送信に用いられるタイマーの値を設定して良い。PDCPステータスレポート送信に用いられるタイマーは、UE122のPDCPエンティティがPDCP PDU又はPDCP PDUのロスを検出する事に用いられて良い。PDCPステータスレポート送信に用いられるタイマーは、PDCPエンティティ毎に1つのみ走るタイマーであって良い。またPDCPステータスレポート送信に用いられるタイマーは、UE122がPDCP PDU又はPDCP PDUのロスを検出した時に開始又は再開始されて良い。例えばPDCPステータスレポート送信に用いられるタイマーは、UE122のPDCPが下位レイヤからPDCPデータPDUを受信した際に、PDCPステータスレポート送信に用いられるタイマーが走って(running)いない事、及び/又は次に受信する事が予想されるPDCP SDUのCOUNT値を示すステート変数(例えばRX_NEXTという名称のステート変数)が、上位層に配信していない受信待ちのPDCP SDUのうち最初のPDCP PDUのCOUNT値を示すステート変数(例えばRX_DELIVという名称のステート変数)より大きい事を含む条件を満たすに基づいて、開始又は再開始されて良い。またPDCPステータスレポート送信に用いられるタイマーは、UE122がPDCP PDU又はPDCP PDUのロスが無くなった時に停止及び/又はリセットされて良い。例えばPDCPステータスレポート送信に用いられるタイマーは、PDCPステータスレポート送信に用いられるタイマーが走って(running)いる事、及び/又は次に受信する事が予想されるPDCP SDUのCOUNT値を示すステート変数(例えばRX_NEXTという名称のステート変数)が、上位層に配信していない受信待ちのPDCP SDUのうち最初のPDCP PDUのCOUNT値を示すステート変数(例えばRX_DELIVという名称のステート変数)と等しい事に基づいて、停止及び/又はリセットされて良い。上述の等しいを、大なり又は等しいと言い換えて良い。また上述の等しいを、小なり又は等しいと言い換えて良い。またPDCPステータスレポート送信に用いられるタイマーが満了した事に基づいて、MRBのPDCPエンティティのステータスレポートが起動されて良い。またPDCPステータスレポート送信に用いられるタイマーは、PDCPエンティティが上位レイヤより休止(suspend)を要求された事に基づいて停止及び/又はリセットされて良い。またPDCPステータスレポート送信に用いられるタイマーは、PDCPエンティティが上位レイヤより再確立を要求された事に基づいて停止及び/又はリセットされて良い。またPDCPステータスレポート送信に用いられるタイマーは、PDCPエンティティが上位レイヤより再設定を要求された事に基づいて停止及び/又はリセットされて良い。 In step S1204, the processing unit 502 of UE122 may determine whether the MBS setting information message received in step S1202 contains a parameter related to the timer of the status report for the MBS session of interest. The parameter related to the timer of the above-mentioned status report may be the value of the timer used for transmitting the PDCP status report. If it is determined that the received MBS configuration information message contains parameters related to the timer of the status report for the MBS session of interest, the processing unit 502 of UE122 will use the timer used to send the received PDCP status report. You may set the value. The timer used to send the PDCP status report may be used by the PDCP entity of UE122 to detect the loss of PDCP PDU or PDCP PDU. The timer used to send the PDCP status report may be a timer that runs only once per PDCP entity. Further, the timer used for transmitting the PDCP status report may be started or restarted when the UE 122 detects the loss of the PDCP PDU or the PDCP PDU. For example, the timer used to send the PDCP status report is that when the PDCP of UE122 receives the PDCP data PDU from the lower layer, the timer used to send the PDCP status report is not running and / or is received next. The state variable indicating the COUNT value of the PDCP SDU that is expected to be (for example, the state variable named RX_NEXT) indicates the COUNT value of the first PDCP PDU among the PDCP SDUs waiting to be received that have not been delivered to the upper layer. It may be started or restarted based on a condition that includes being larger than a variable (eg, a state variable named RX_DELIV). Further, the timer used for transmitting the PDCP status report may be stopped and / or reset when the UE 122 has no loss of PDCP PDU or PDCP PDU. For example, the timer used to send a PDCP status report is a state variable that indicates that the timer used to send a PDCP status report is running and / or the COUNT value of the PDCP SDU that is expected to be received next. For example, based on the fact that the state variable named RX_NEXT) is equal to the state variable indicating the COUNT value of the first PDCP PDU among the PDCP SDUs waiting to be received that have not been delivered to the upper layer (for example, the state variable named RX_DELIV). , Stop and / or may be reset. The above equality may be paraphrased as greater than or equal to. Further, the above equality may be paraphrased as less than or equal. Also, the status report of the PDCP entity of MRB may be triggered based on the expiration of the timer used to send the PDCP status report. Also, the timer used to send the PDCP status report may be stopped and / or reset based on the PDCP entity being requested to suspend by the higher layer. Also, the timer used to send the PDCP status report may be stopped and / or reset based on the PDCP entity being requested to be reestablished by the higher layer. Also, the timer used to send the PDCP status report may be stopped and / or reset based on the PDCP entity being requested to be reset by the upper layer.
 なお、MRBはUE122が興味のあるMBSセッション毎に確立及び/又は設定されて良い。UE122に複数のMRBが確立及び/又は設定されている場合には、ステップS1204における処理は、処理は該当するMRBに対し行われて良い。 MRB may be established and / or set for each MBS session in which UE122 is interested. When a plurality of MRBs are established and / or set in UE122, the processing in step S1204 may be performed on the corresponding MRB.
 ステップS1206において、興味のあるMBSセッションの受信を開始する前に、UE122の処理部502は、興味のあるMBSセッションの受信を開始するために、1つ又は複数のMRB確立処理を行っても良い。MRB確立処理は、例えば当該MBSセッションの開始の時、UE122が興味のあるMBSサービスがMRBを介して提供されるセルに入った事、MBSサービスに興味を持った事、MBSサービスの受信が抑制されていたUE能力の限界が取り除かれた事、等に基づいて起動されても良い。MRB確立処理はUE122がRRC_IDLE状態の時に行われても良いし、UE122がRRC_INACTIVE状態の時に行われても良いし、UE122がRRC_CONNECTED状態の時に行われても良い。また、MRB確立処理は、UE112がRRC_CONNECTED状態の時に、gNB108よりMRBを確立する事を示唆するRRCメッセージを、DCCH介して受信する、又は受信した事に基づいて起動されても良い。上述のMRBを確立する事を示唆するRRCメッセージは、上述のステップS1202における、MBS設定情報メッセージに含まれるパラメータの一部又は全てを含んで良い。UE122の処理部502は、UE122が保有する各エンティティに対するデフォルト設定情報、ステップS1202においてMCCHを介して受信したMBS設定情報メッセージに含まれるMBS設定に関するパラメータ、上述のDCCHを介して受信したMRBを確立する事を示唆するRRCメッセージに含まれるMBS設定に関するパラメータのうちの一部又は全てを含む設定情報を用いて、MRB確立処理を行って良い。 In step S1206, before starting the reception of the MBS session of interest, the processing unit 502 of the UE 122 may perform one or more MRB establishment processes in order to start the reception of the MBS session of interest. .. In the MRB establishment process, for example, at the start of the MBS session, the MBS service that UE122 is interested in enters the cell provided via MRB, the MBS service is interested, and the reception of the MBS service is suppressed. It may be activated based on the fact that the limit of the UE ability that has been used has been removed. The MRB establishment process may be performed when the UE 122 is in the RRC_IDLE state, may be performed when the UE 122 is in the RRC_INACTIVE state, or may be performed when the UE 122 is in the RRC_CONNECTED state. Further, the MRB establishment process may be started based on the fact that the RRC message suggesting that the MRB is established from gNB108 is received via DCCH when the UE 112 is in the RRC_CONNECTED state. The RRC message suggesting establishing the MRB described above may include some or all of the parameters contained in the MBS configuration information message in step S1202 described above. The processing unit 502 of UE122 establishes the default setting information for each entity owned by UE122, the parameters related to the MBS setting included in the MBS setting information message received via MCCH in step S1202, and the MRB received via DCCH described above. The MRB establishment process may be performed using the setting information including some or all of the parameters related to the MBS setting included in the RRC message suggesting the operation.
 UE122の処理部502はMRB確立処理を行う際、次の(A)から(M)の処理のうちの一部又は全てを含む処理を行っても良い。
  (A)MBSを提供するPDUセッション、及び/又はMBS設定に関するパラメータに含まれるPDUセッションを示すパラメータに該当するPDUセッションに、SDAPエンティティが存在しない場合には、SDAPエンティティを確立、及び/又は設定する。
  (B)MRB確立に関するデフォルト設定に従って、又はgNB108から受信した設定に従って、PDCPエンティティを確立する。
  (C)MRB確立に関するデフォルト設定、又は基地局から受信した設定に従って、RLCエンティティを確立、及び/又は設定するする。
  (D)MRB確立に関するデフォルト設定、又は基地局から受信した設定に従って、MBSを1対多で受信するRLCベアラのRLCエンティティを確立、及び/又は設定する。
  (E)MRB確立に関するデフォルト設定、又は基地局から受信した設定に従って、MBSを1対多で受信するRLCベアラのロジカルチャネルをMACエンティティに設定する。
  (F)処理(D)及び/又は処理(E)で確立及び/又は設定したRLCベアラ又はRLCベアラのロジカルチャネルを、処理(B)で確立及び/又は設定したPDCPエンティティに関連付ける。
  (G)MRB確立に関するデフォルト設定、又は基地局から受信した設定に従って、MBSを1対1で受信するRLCベアラのRLCエンティティを確立、及び/又は設定する。
  (H)MRB確立に関するデフォルト設定、又は基地局から受信した設定に従って、MBSを1対1で受信するRLCベアラのロジカルチャネルをMACエンティティに設定する。
  (I)処理(G)及び/又は処理(H)で確立及び/又は設定したRLCベアラ又はRLCベアラのロジカルチャネルを、処理(B)で確立及び/又は設定したPDCPエンティティに関連付ける。
  (J)SDAPエンティティと確立したMRBとを関連付ける。
  (K)上位レイヤに対し、確立したMRBに対応するTMGI、Session ID、PDUセッションID、QoSフローのうちの一部又は全てを含む情報を通知する事により、MRBの確立を知らせる。
  (L)本MRBのPDCPエンティティに対し、暗号化機能の不活性化(ciphering disabled)が設定されていない場合、処理(B)で確立したPDCPエンティティに対し、暗号化アルゴリズムを設定し、マスター鍵を使うかセカンダリ鍵を使うかを示すパラメータに従って、マスター鍵又はセカンダリ鍵を適用する。
  (M)本MRBのPDCPエンティティに対し、完全性保護が設定されている場合、処理(B)で確立したPDCPエンティティに対し、完全性保護アルゴリズムを設定し、マスター鍵を使うかセカンダリ鍵を使うかを示すパラメータに従って、マスター鍵又はセカンダリ鍵を適用する。
When performing the MRB establishment process, the processing unit 502 of the UE 122 may perform a process including a part or all of the following processes (A) to (M).
(A) If the SDAP entity does not exist in the PDU session that provides the MBS and / or the PDU session that corresponds to the parameter indicating the PDU session included in the parameters related to the MBS setting, establish and / or set the SDAP entity. do.
(B) Establish a PDCP entity according to the default settings for MRB establishment or according to the settings received from gNB108.
(C) Establish and / or set the RLC entity according to the default settings for MRB establishment or the settings received from the base station.
(D) Establish and / or set the RLC entity of the RLC bearer that receives MBS one-to-many according to the default setting for MRB establishment or the setting received from the base station.
(E) Set the logical channel of the RLC bearer that receives MBS one-to-many to the MAC entity according to the default setting for establishing MRB or the setting received from the base station.
(F) Associate the RLC bearer or RLC bearer logical channel established and / or set in process (D) and / or process (E) with the PDCP entity established and / or set in process (B).
(G) Establish and / or set the RLC entity of the RLC bearer that receives MBS on a one-to-one basis according to the default settings for establishing MRB or the settings received from the base station.
(H) Set the logical channel of the RLC bearer that receives MBS on a one-to-one basis to the MAC entity according to the default settings for establishing MRB or the settings received from the base station.
(I) Associate the RLC bearer or RLC bearer logical channel established and / or set in process (G) and / or process (H) with the PDCP entity established and / or set in process (B).
(J) Associate the SDAP entity with the established MRB.
(K) Notify the establishment of MRB by notifying the upper layer of information including a part or all of TMGI, Session ID, PDU session ID, and QoS flow corresponding to the established MRB.
(L) If the encryption function is not disabled (ciphering disabled) for the PDCP entity of this MRB, the encryption algorithm is set for the PDCP entity established in process (B) and the master key is set. Apply the master or secondary key according to the parameters that indicate whether to use or use the secondary key.
(M) If integrity protection is set for the PDCP entity of this MRB, set the integrity protection algorithm for the PDCP entity established in process (B) and use the master key or the secondary key. The master key or secondary key is applied according to the parameter indicating.
 1つ又は複数のMRBを確立したUE122の処理部502は、1つ又は複数のMRBのPDCPエンティティにおいてPDCPステータスレポートが起動された場合、PDCPステータスレポートを作成し、gNB108へ送信して良い。UE122の処理部502は、MRBのPDCPエンティティにおいてPDCPステータスレポートを作成した場合、作成したPDCPステータスレポートを、MRBのPDCPエンティティに紐づく、MBSを1対1で受信するRLCベアラのRLCエンティティに対して提出し、MRBのPDCPエンティティに紐づく、MBSを1対多で受信するRLCベアラのRLCエンティティに対しては提出しなくて良い。上述の「作成したPDCPステータスレポートを、MRBのPDCPエンティティに紐づく、MBSを1対1で受信するRLCベアラのRLCエンティティに対して提出し、MRBのPDCPエンティティに紐づく、MBSを1対多で受信するRLCベアラのRLCエンティティに対しては提出しなくて良い。」を、「作成したPDCPステータスレポートを、MRBのPDCPエンティティに紐づく、MBSを1対1で受信するRLCベアラのRLCエンティティに対してのみ提出して良い。」と言い換えて良い。なおMRBのPDCPエンティティにおけるPDCPレポーティングの起動は、上位レイヤよりPDCPステータスレポートの送信が設定されたMRBに対してのみ行われて良い。(ステップS1208) When the PDCP status report is started in the PDCP entity of one or more MRBs, the processing unit 502 of UE122 that has established one or more MRBs may create a PDCP status report and send it to gNB108. When the processing unit 502 of UE122 creates a PDCP status report in the PDCP entity of MRB, the created PDCP status report is linked to the PDCP entity of MRB to the RLC entity of RLC bearer that receives MBS on a one-to-one basis. It is not necessary to submit to the RLC bearer RLC entity that receives MBS one-to-many, which is associated with the PDCP entity of MRB. Submit the above-mentioned "Created PDCP status report to RLC bearer RLC entity that receives MBS one-to-one, which is associated with MRB PDCP entity, and MBS one-to-many associated with MRB PDCP entity. "You do not have to submit it to the RLC entity of the RLC bearer received by.", "The created PDCP status report is linked to the PDCP entity of MRB, and the RLC entity of the RLC bearer that receives MBS on a one-to-one basis. You may submit it only to. " Note that PDCP reporting in the PDCP entity of MRB may be activated only for MRB for which PDCP status report transmission is set from the upper layer. (Step S1208)
 またステップS1208において、UE122の処理部502は、1つ又は複数のMRBのPDCPエンティティにおいてPDCPステータスレポートが起動された場合、MRBのPDCPエンティティに、MBSを1対1で受信するRLCベアラが紐づいているかを判断し、MBSを1対1で受信するRLCベアラが紐づいている事に基づいて、PDCPステータスレポートを作成し、作成したステータスレポートを、上述のMRBを1対1で受信するRLCベアラのRLCエンティティにのみ提出して良い。またUE122の処理部502は、MRBのPDCPエンティティにおいてPDCPステータスレポートが起動された場合、MRBのPDCPエンティティに、MBSを1対1で受信するRLCベアラが紐づいているかを判断し、MBSを1対1で受信するRLCベアラが紐づいていない事に基づいて、PDCPステータスレポートを作成しなくて良い。 Further, in step S1208, when the PDCP status report is activated in one or more MRB PDCP entities, the processing unit 502 of UE122 associates the MRB PDCP entity with an RLC bearer that receives MBS on a one-to-one basis. Create a PDCP status report based on the fact that the RLC bearer that receives MBS on a one-to-one basis is linked, and the created status report is received on an RLC on a one-to-one basis as described above. You may only submit to Beara's RLC entity. In addition, when the PDCP status report is activated in the PDCP entity of the MRB, the processing unit 502 of the UE 122 determines whether the RLC bearer that receives the MBS on a one-to-one basis is associated with the PDCP entity of the MRB, and sets the MBS to 1. It is not necessary to create a PDCP status report based on the fact that the RLC bearer received on a one-to-one basis is not linked.
 またステップS1208において、UE122の処理部502は、1つ又は複数のMRBのPDCPエンティティにおいてPDCPステータスレポートが起動された場合、PDCPステータスレポートを作成し、MRBのPDCPエンティティに、MBSを1対1で受信するRLCベアラが紐づいているかを判断し、MBSを1対1で受信するRLCベアラが紐づいている事に基づいて、作成したPDCPステータスレポートを、上述のMRBを1対1で受信するRLCベアラのRLCエンティティにのみ提出して良い。またUE122の処理部502は、MRBのPDCPエンティティにおいてPDCPステータスレポートが起動された場合、PDCPステータスレポートを作成し、MRBのPDCPエンティティに、MBSを1対1で受信するRLCベアラが紐づいているかを判断し、MBSを1対1で受信するRLCベアラが紐づいていない事に基づいて、作成したPDCPステータスレポートを下位レイヤに提出しなくて良い。またUE122の処理部502は、MRBのPDCPエンティティにおいてPDCPステータスレポートが起動された場合、PDCPステータスレポートを作成し、MRBのPDCPエンティティに、MBSを1対1で受信するRLCベアラが紐づいているかを判断し、MBSを1対1で受信するRLCベアラが紐づいていない事に基づいて、作成したPDCPステータスレポートを破棄して良い。 Further, in step S1208, when the PDCP status report is started in one or more MRB PDCP entities, the processing unit 502 of UE122 creates a PDCP status report and assigns MBS to the MRB PDCP entity on a one-to-one basis. Determine if the RLC bearer to be received is linked, and receive the MBS on a one-to-one basis. It may only be submitted to the RLC entity of the RLC bearer. In addition, the processing unit 502 of UE122 creates a PDCP status report when the PDCP status report is started in the PDCP entity of MRB, and is the RLC bearer that receives MBS on a one-to-one basis linked to the PDCP entity of MRB? It is not necessary to submit the created PDCP status report to the lower layer based on the fact that the RLC bearer that receives MBS on a one-to-one basis is not linked. In addition, the processing unit 502 of UE122 creates a PDCP status report when the PDCP status report is started in the PDCP entity of MRB, and is the RLC bearer that receives MBS on a one-to-one basis linked to the PDCP entity of MRB? You may discard the created PDCP status report based on the fact that the RLC bearer that receives MBS on a one-to-one basis is not linked.
 また、上述のMBSを1対1で受信するRLCベアラのRLCエンティティとは、AM RLCエンティティであって良い。また、上述のMBSを1対1で受信するRLCベアラが紐づいているRLCエンティティとは、双方向のUM RLCエンティティであって良い。また、上述のMBSを1対1で受信するRLCベアラが紐づいているRLCエンティティとは、単方向のUM RLCエンティティの送信UM RLCエンティティ及び/又は受信UMRLCエンティティであって良い。 Further, the RLC entity of the RLC bearer that receives the above-mentioned MBS on a one-to-one basis may be an AM RLC entity. Further, the RLC entity associated with the RLC bearer that receives the above-mentioned MBS on a one-to-one basis may be a bidirectional UM RLC entity. Further, the RLC entity associated with the RLC bearer that receives the above-mentioned MBS on a one-to-one basis may be a transmission UMRLC entity and / or a reception UMRLC entity of a unidirectional UMRLC entity.
 ステップS1208において、PDCPステータスレポートの起動は、RRCレイヤ又は上位レイヤからPDCPステータスレポートの送信が要求された事に基づいて行われて良い。上述のRRCレイヤ又は上位レイヤからPDCPステータスレポートの送信が要求された事とは、RRCレイヤ又は上位レイヤからPDCPデータリカバリが要求された事であって良い。またステップS1208において、PDCPステータスレポートの起動は、MRBのPDCPエンティティに紐づく1つ又は複数のRLCベアラが解放、又はサスペンド、又はディアクティベートされた事に基づいて行われて良い。またステップS1208において、PDCPステータスレポートの起動は、ステップS1204において設定した上述のステータスレポートのタイマーがPDCPエンティティにおいて満了した事により行われて良い。またステップS1208において、PDCPステータスレポートの起動は、MRBを受信するRLCベアラが切り替わった事に基づいて行われて良い。上述のMRBを受信するRLCベアラが切り替わったとは、MRBを受信するRLCベアラが、MBSを1対多で受信するRLCベアラから、MBSを1対1で受信するRLCベアラに切り替わった事であって良い。また上述のMRBを受信するRLCベアラが切り替わったとは、MRBを受信するRLCベアラが、MBSを1対1で受信するRLCベアラから、MBSを1対多で受信するRLCベアラに切り替わった事であっても良い。 In step S1208, the PDCP status report may be started based on the request for transmission of the PDCP status report from the RRC layer or the upper layer. The request for transmission of the PDCP status report from the above-mentioned RRC layer or higher layer may mean that the PDCP data recovery is requested from the RRC layer or higher layer. Further, in step S1208, the activation of the PDCP status report may be performed based on the release, suspension, or deactivation of one or more RLC bearers associated with the PDCP entity of MRB. Further, in step S1208, the PDCP status report may be activated when the timer of the above-mentioned status report set in step S1204 has expired in the PDCP entity. Further, in step S1208, the activation of the PDCP status report may be performed based on the fact that the RLC bearer that receives the MRB is switched. The above-mentioned switching of the RLC bearer that receives the MRB means that the RLC bearer that receives the MRB has switched from the RLC bearer that receives the MBS one-to-many to the RLC bearer that receives the MBS one-to-one. good. In addition, the above-mentioned RLC bearer that receives MRB is switched because the RLC bearer that receives MRB is switched from the RLC bearer that receives MBS one-to-one to the RLC bearer that receives MBS one-to-many. May be.
 またステップS1208において、UE122の処理部502は、UE122がgNB108より受信したRRCメッセージに、UE122の1つ又は複数のMRBに対するPDCPステータスレポート送信の要求を意味するパラメータが含まれている場合、UE122のRRCからUE122のMRBのPDCPレイヤに対し、PDCPステータスレポートの送信を要求して良い。なお、上述のRRCメッセージはDCCHを介して送られるRRCメッセージであっても良いし、MCCHを介して送られるRRCメッセージであって良い。また上述の1つ又は複数のMRBに対するPDCPステータスレポート送信の要求を意味するパラメータは、MRBを識別する識別子、及びMBSセッションの情報に関するパラメータのうちの一部又は全てを含んで良い。またステップS1208において、UE122の処理部502は、UE122がgNB108よりPDCPステータスレポート送信の要求を意味するRRCメッセージを受信した場合、UE122のRRCからUE122のMRBのPDCPレイヤに対し、PDCPステータスレポートの送信を要求して良い。なお、上述のPDCPステータスレポート送信の要求を意味するRRCメッセージはDCCHを介して送られるRRCメッセージであっても良いし、MCCHを介して送られるRRCメッセージであって良い。上述のPDCPステータスレポート送信の要求を意味するRRCメッセージは、MRBを識別する識別子、及びMBSセッションの情報に関するパラメータのうちの一部又は全てを含んで良い。 Further, in step S1208, if the RRC message received by the UE 122 from the gNB 108 contains a parameter indicating a request for PDCP status report transmission to one or more MRBs of the UE 122, the processing unit 502 of the UE 122 determines the UE 122. The RRC may request the PDCP layer of the MRB of UE122 to send a PDCP status report. The above-mentioned RRC message may be an RRC message sent via DCCH or an RRC message sent via MCCH. Also, the parameters that mean the request for PDCP status report transmission to one or more MRBs described above may include an identifier that identifies the MRB and some or all of the parameters related to the information of the MBS session. Further, in step S1208, when UE122 receives an RRC message indicating a request for PDCP status report transmission from gNB108, the processing unit 502 of UE122 transmits a PDCP status report from RRC of UE122 to the PDCP layer of MRB of UE122. May be requested. The RRC message meaning the request for transmission of the PDCP status report described above may be an RRC message sent via DCCH or an RRC message sent via MCCH. The RRC message, which means the request to send the PDCP status report described above, may include an identifier that identifies the MRB and some or all of the parameters related to the MBS session information.
 またステップS1208において、UE122の処理部502は、gNB108から、UE122の1つ又は複数のMRBに対し、カウンターチェックのためのRRCメッセージ(カウンターチェックメッセージ)を受信した事に基づいて、カウンターチェック処理を行い、結果をカウンターチェック応答のためのRRCメッセージ(カウンターチェック応答メッセージ)にセットしてgNB108へ報告して良い。上述のカウンターチェックのためのRRCメッセージは、MRBを識別する識別子、MBSセッションの情報に関するパラメータ、MRBに関連付いているアップリンク方向及び/又はダウンリンク方向のCOUNT値の最上位ビット(Most Significant Bit: MSB)値のうちの一部又は全てを含んで良い。上述のカウンターチェックのためのRRCメッセージは、gNB108からUE122に対し、gNB108のMSBに関連付いている現在のCOUNT値のMSB値を通知し、UE122のMSBに関連付いている現在のCOUNT値のMSB値との比較結果をUE122からgNB108に報告するよう要求するメッセージであって良い。カウンターチェック処理においてUE122の処理部502は、UE122に確立されているMRBに対し、次の(A)から(D)の処理のうちの一部又は全てを含む処理を行って良い。
  (A)MRBが単方向のベアラで、アップリンク方向及び/又はダウンリンク方向に対するするCOUNTが存在しない場合、COUNT値が存在しない方向のCOUNT値を'0'と仮定する。
  (B)カウンターチェックのためのRRCメッセージに、MRBを識別する識別子及び/又はMBSセッションの情報に関するパラメータが含まれていないMRBに対し、UE122が保有するアップリンク方向及び/又はダウンリンク方向に対するCOUNT値を、カウンターチェック応答のためのRRCメッセージにセット。
  (C)カウンターチェックのためのRRCメッセージに、アップリンク方向及び/又はダウンリンク方向のCOUNT値のMSB値が含まれているMRBに対し、受信した上述のアップリンク方向及び/又はダウンリンク方向のCOUNT値のMSB値が、UE122が保有するアップリンク方向及び/又はダウンリンク方向のCOUNT値と異なる場合には、UE122が保有するアップリンク方向及び/又はダウンリンク方向に対するCOUNT値を、カウンターチェック応答のためのRRCメッセージにセット。
  (D)カウンターチェックのためのRRCメッセージに、MRBを識別する識別子及び/又はMBSセッションの情報に関するパラメータが含まれているMRBに対し、UE122が保有するアップリンク方向及び/又はダウンリンク方向に対するCOUNT値を、カウンターチェック応答のためのRRCメッセージにセット。
Further, in step S1208, the processing unit 502 of the UE 122 performs a counter check process based on the fact that the RRC message (counter check message) for the counter check is received from the gNB 108 to one or more MRBs of the UE 122. Then, the result may be set in an RRC message (counter check response message) for a counter check response and reported to gNB108. The above-mentioned RRC message for counterchecking is an identifier that identifies the MRB, parameters related to MBS session information, and the most significant bit of the uplink and / or downlink COUNT value associated with the MRB. : MSB) May include some or all of the values. The above RRC message for countercheck informs gNB108 to UE122 of the MSB value of the current COUNT value associated with the MSB of gNB108 and the MSB of the current COUNT value associated with the MSB of UE122. It may be a message requesting that the comparison result with the value be reported from UE122 to gNB108. In the counter check process, the processing unit 502 of the UE 122 may perform a process including a part or all of the following processes (A) to (D) on the MRB established in the UE 122.
(A) If the MRB is a unidirectional bearer and there is no COUNT for the uplink direction and / or the downlink direction, the COUNT value in the direction where the COUNT value does not exist is assumed to be '0'.
(B) For MRBs that do not contain an identifier that identifies the MRB and / or a parameter related to MBS session information in the RRC message for counter checking, COUNT for the uplink direction and / or downlink direction held by UE122. Set the value in the RRC message for the countercheck response.
(C) The RRC message for countercheck contains the MSB value of the COUNT value in the uplink direction and / or the downlink direction for the MRB received above in the uplink direction and / or the downlink direction. If the MSB value of the COUNT value is different from the COUNT value in the uplink direction and / or the downlink direction held by UE122, the COUNT value for the uplink direction and / or the downlink direction held by UE122 is counter-checked. Set to RRC message for.
(D) For MRBs whose RRC message for countercheck contains an identifier that identifies the MRB and / or a parameter related to MBS session information, COUNT for the uplink direction and / or downlink direction held by UE122. Set the value in the RRC message for the countercheck response.
 なお、上記説明において、興味のあるMBSセッションを、MBSセッションと言い換えて良い。 In the above explanation, the MBS session you are interested in may be paraphrased as an MBS session.
 なお、上記説明において、MBSを1対1で受信するRLCベアラとは、MBSに対するフィードバックをgNB108に送信するRLCベアラの事であっても良い。 In the above explanation, the RLC bearer that receives MBS on a one-to-one basis may be an RLC bearer that sends feedback to MBS to gNB108.
 なお上記説明において、RLCベアラを、RLCエンティティと言い換えて良い。また上記説明において、RLCベアラを、論理チャネルと言い換えて良い。 In the above explanation, RLC bearer may be paraphrased as RLC entity. Further, in the above description, the RLC bearer may be paraphrased as a logical channel.
 なお、上記説明において、PDCPエンティティとは、受信PDCPエンティティ及び/又は送信PDCPエンティティであって良い。 In the above description, the PDCP entity may be a receiving PDCP entity and / or a transmitting PDCP entity.
 なお、上記説明において、ROHCを、Ethernet Header Compression(EHC)と言い換えて良い。 In the above explanation, ROHC may be paraphrased as Ethernet Header Compression (EHC).
 このように、本発明の実施の形態では、端末装置がはPDCPステータスレポートを、MBSを1対1で受信するRLCベアラにのみ送信する事により、NRを用いて効率的にMBSを制御することができる端末装置、基地局装置、及び方法を提供することができる。 Thus, in the embodiment of the present invention, the terminal device efficiently controls the MBS using NR by transmitting the PDCP status report only to the RLC bearer that receives the MBS on a one-to-one basis. Can provide terminal devices, base station devices, and methods that can be used.
 上記説明における無線ベアラは、DRB、SRB、及びMRBのうちの一部又は全てであって良い。 The radio bearer in the above description may be a part or all of DRB, SRB, and MRB.
 また上記説明において、「紐づける」、「対応付ける」、「関連付ける」等の表現は、互いに換言されてもよい。 Further, in the above explanation, expressions such as "associate", "associate", and "associate" may be paraphrased with each other.
 また上記説明において、「前記~」を「上述の~」と言い換えてよい。 Further, in the above explanation, "the above" may be paraphrased as "the above".
 また上記説明において、「SCGのSpCell」を「PSCell」と言い換えてよい。 Also, in the above explanation, "SCG SpCell" may be paraphrased as "PS Cell".
 また上記説明における各処理の例、又は各処理のフローの例において、ステップの一部または全ては実行されなくても良い。また上記説明における各処理の例、又は各処理のフローの例において、ステップの順番は異なっても良い。また上記説明における各処理の例、又は各処理のフローの例において、各ステップ内の一部または全ての処理は実行されなくても良い。また上記説明における各処理の例、又は各処理のフローの例において、各ステップ内の処理の順番は異なっても良い。また上記説明において「Aである事に基づいてBを行う」は、「Bを行う」と言い換えられても良い。即ち「Bを行う」事は「Aである事」と独立して実行されても良い。 Further, in the example of each process in the above description or the example of the flow of each process, some or all of the steps may not be executed. Further, in the example of each process in the above description or the example of the flow of each process, the order of the steps may be different. Further, in the example of each process in the above description or the example of the flow of each process, some or all the processes in each step may not be executed. Further, in the example of each process in the above description or the example of the flow of each process, the order of the processes in each step may be different. Further, in the above description, "doing B based on being A" may be paraphrased as "doing B". That is, "doing B" may be executed independently of "being A".
 なお、上記説明において、「AをBと言い換えてよい」は、AをBと言い換えることに加え、BをAと言い換える意味も含んでよい。また上記説明において、「CはDであって良い」と「CはEであって良い」とが記載されている場合には、「DはEであって良い」事を含んでも良い。また上記説明において、「FはGであって良い」と「GはHであって良い」とが記載されている場合には、「FはHであっても良い」事を含んでも良い。 In the above explanation, "A may be paraphrased as B" may include the meaning of paraphrasing B as A in addition to paraphrasing A as B. Further, in the above description, when "C may be D" and "C may be E" are described, "D may be E" may be included. Further, in the above description, when "F may be G" and "G may be H" are described, "F may be H" may be included.
 また上記説明において、「A」という条件と、「B」という条件が、相反する条件の場合には、「B」という条件は、「A」という条件の「その他」の条件として表現されても良い。 Further, in the above description, when the condition "A" and the condition "B" are contradictory, the condition "B" may be expressed as the "other" condition of the condition "A". good.
 以下、本発明の実施形態における、端末装置、および、方法の種々の態様について説明する。 Hereinafter, various aspects of the terminal device and the method according to the embodiment of the present invention will be described.
 (1)基地局装置と通信する端末装置であって、前記端末装置は、MBSを1対多受信するための第1のRLCベアラ、及びでMBSを1対1受信するための第2のRLCベアラを有し、前記第1のRLCベアラ及び前記第2のRLCベアラは、同一のPDCPエンティティに紐づき、前記PDCPエンティティは、PDCPステータスレポートを作成した場合、前記PDCPステータスレポートを、前記第2のRLCベアラのみに提出する。 (1) A terminal device that communicates with a base station device, wherein the terminal device is a first RLC bearer for receiving one-to-many MBS and a second RLC for receiving one-to-one MBS. Having a bearer, the first RLC bearer and the second RLC bearer are associated with the same PDCP entity, and when the PDCP entity creates a PDCP status report, the PDCP status report is referred to as the second. Submit only to RLC bearers.
 (2)基地局装置と通信する端末装置の方法であって、前記端末装置は、MBSを1対多受信するための第1のRLCベアラ、及びでMBSを1対1受信するための第2のRLCベアラを有し、前記第1のRLCベアラ及び前記第2のRLCベアラは、同一のPDCPエンティティに紐づき、前記PDCPエンティティは、PDCPステータスレポートを作成した場合、前記PDCPステータスレポートを、前記第2のRLCベアラのみに提出する。 (2) A method of a terminal device that communicates with a base station device, wherein the terminal device is a first RLC bearer for receiving one-to-many MBS, and a second for receiving MBS one-to-one. The first RLC bearer and the second RLC bearer are associated with the same PDCP entity, and when the PDCP entity creates a PDCP status report, the PDCP status report is linked to the PDCP status report. Submit only to the second RLC bearer.
 本発明の一態様に関わる装置で動作するプログラムは、本発明の一態様に関わる上述した実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、処理時に一時的にRandom Access Memory(RAM)などの揮発性メモリに読み込まれ、あるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。 The program that operates on the device according to one aspect of the present invention is a program that controls a Central Processing Unit (CPU) or the like to operate a computer so as to realize the functions of the above-described embodiment related to one aspect of the present invention. There may be. The program or the information handled by the program is temporarily read into volatile memory such as Random Access Memory (RAM) at the time of processing, or stored in non-volatile memory such as flash memory or Hard Disk Drive (HDD), and is required. The CPU reads, corrects, and writes accordingly.
 なお、上述した実施形態における装置の一部、をコンピュータで実現するようにしてもよい。その場合、この制御機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体等のいずれであってもよい。 It should be noted that a part of the apparatus in the above-described embodiment may be realized by a computer. In that case, a program for realizing this control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by a computer system and executed. The term "computer system" as used herein is a computer system built into a device and includes hardware such as an operating system and peripheral devices. Further, the "computer-readable recording medium" may be any of a semiconductor recording medium, an optical recording medium, a magnetic recording medium, and the like.
 さらに「コンピュータが読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。 Furthermore, a "computer-readable recording medium" is a medium that dynamically holds a program for a short period of time, such as a communication line when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. In that case, a program may be held for a certain period of time, such as a volatile memory inside a computer system serving as a server or a client. Further, the above-mentioned program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system.
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、すなわち典型的には集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサであってもよいし、代わりにプロセッサは従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであってもよい。汎用用途プロセッサ、または前述した各回路は、デジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。 Further, each functional block or feature of the device used in the above-described embodiment can be implemented or executed in an electric circuit, that is, typically an integrated circuit or a plurality of integrated circuits. Electrical circuits designed to perform the functions described herein can be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or others. Programmable Logic Devices, Discrete Gate or Transistor Logic, Discrete Hardware Components, or Combinations thereof. The general purpose processor may be a microprocessor or instead the processor may be a conventional processor, controller, microcontroller, or state machine. The general-purpose processor or each of the above-mentioned circuits may be composed of a digital circuit or an analog circuit. In addition, when an integrated circuit technology that replaces the current integrated circuit appears due to advances in semiconductor technology, it is also possible to use an integrated circuit based on this technology.
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。 The invention of the present application is not limited to the above-described embodiment. In the embodiment, an example of the device has been described, but the present invention is not limited to this, and the present invention is not limited to this, and the stationary or non-movable electronic device installed indoors and outdoors, for example, an AV device, a kitchen device, and the like. It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other living equipment.
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明の一態様は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and design changes and the like within a range not deviating from the gist of the present invention are also included. Further, one aspect of the present invention can be variously modified within the scope of the claims, and the technical aspects of the present invention can also be obtained by appropriately combining the technical means disclosed in the different embodiments. Included in the range. Further, the elements described in the above-described embodiment include a configuration in which elements having the same effect are replaced with each other.
 本発明の一態様は、例えば、通信システム、通信機器(例えば、携帯電話装置、基地局装置、無線LAN装置、或いはセンサーデバイス)、集積回路(例えば、通信チップ)、又はプログラム等において、利用することができる。 One aspect of the present invention is used in, for example, a communication system, a communication device (for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (for example, a communication chip), a program, or the like. be able to.
100 E-UTRA
102 eNB
104 EPC
106 NR
108 gNB
110 5GC
112、114、116,118、120、124 インタフェース
122 UE
200、300 PHY
202、302 MAC
204、304 RLC
206、306 PDCP
208、308 RRC
310 SDAP
210、312 NAS
500、604 受信部
502、602 処理部
504、600 送信部
100 E-UTRA
102 eNB
104 EPC
106 NR
108 gNB
110 5GC
112, 114, 116, 118, 120, 124 interfaces
122 UE
200, 300 PHY
202, 302 MAC
204, 304 RLC
206, 306 PDCP
208, 308 RRC
310 SDAP
210, 312 NAS
500, 604 receiver
502, 602 Processing unit
504, 600 transmitter

Claims (2)

  1.  基地局装置と通信する端末装置であって、
     前記端末装置は、MBSを1対多受信するための第1のRLCベアラ、及びでMBSを1対1受信するための第2のRLCベアラを有し、
     前記第1のRLCベアラ及び前記第2のRLCベアラは、同一のPDCPエンティティに紐づき、
     前記PDCPエンティティは、PDCPステータスレポートを作成した場合、前記PDCPステータスレポートを、前記第2のRLCベアラのみに提出する、
     端末装置。
    A terminal device that communicates with a base station device.
    The terminal device has a first RLC bearer for one-to-many MBS reception and a second RLC bearer for one-to-one MBS reception.
    The first RLC bearer and the second RLC bearer are linked to the same PDCP entity.
    When the PDCP entity creates a PDCP status report, it submits the PDCP status report only to the second RLC bearer.
    Terminal device.
  2.  基地局装置と通信する端末装置の方法であって、
     前記端末装置は、MBSを1対多受信するための第1のRLCベアラ、及びでMBSを1対1受信するための第2のRLCベアラを有し、
     前記第1のRLCベアラ及び前記第2のRLCベアラは、同一のPDCPエンティティに紐づき、
     前記PDCPエンティティは、PDCPステータスレポートを作成した場合、前記PDCPステータスレポートを、前記第2のRLCベアラのみに提出する、
     方法。
    It is a method of a terminal device that communicates with a base station device.
    The terminal device has a first RLC bearer for one-to-many MBS reception and a second RLC bearer for one-to-one MBS reception.
    The first RLC bearer and the second RLC bearer are linked to the same PDCP entity.
    When the PDCP entity creates a PDCP status report, it submits the PDCP status report only to the second RLC bearer.
    Method.
PCT/JP2021/037645 2020-10-13 2021-10-12 Terminal device and method WO2022080339A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022556981A JPWO2022080339A1 (en) 2020-10-13 2021-10-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020172376 2020-10-13
JP2020-172376 2020-10-13

Publications (1)

Publication Number Publication Date
WO2022080339A1 true WO2022080339A1 (en) 2022-04-21

Family

ID=81209141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037645 WO2022080339A1 (en) 2020-10-13 2021-10-12 Terminal device and method

Country Status (2)

Country Link
JP (1) JPWO2022080339A1 (en)
WO (1) WO2022080339A1 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Mechanisms to improve reliability for UEs in RRC_CONNECTED", 3GPP DRAFT; R2-2007633, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic meeting; 20200817 - 20200828, 6 August 2020 (2020-08-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051911086 *
HUAWEI, HISILICON: "Reliability enhancement and dynamic control of transmission area for NR MBS", 3GPP DRAFT; R2-2007028, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051911876 *
MEDIATEK INC.: "UE Reception Model of MBS Radio Bearer and its Dynamic PTM/PTP switch", 3GPP DRAFT; R2-2006575, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051911518 *

Also Published As

Publication number Publication date
JPWO2022080339A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
WO2022085640A1 (en) Terminal device, base station device, and method
WO2022071234A1 (en) Terminal device, communication method, and base station device
WO2021221009A1 (en) Terminal device, method, and integrated circuit
WO2022080300A1 (en) Terminal device and method
WO2022085664A1 (en) Terminal device, base station device, and method
WO2022131342A1 (en) Terminal device, base station device, and method
WO2022085663A1 (en) Method and integrated circuit
WO2022080306A1 (en) Terminal device, base station device, and method
WO2022080419A1 (en) Terminal device, base station device, and method
WO2022030456A1 (en) Terminal device, base station device, and method
WO2022030441A1 (en) Terminal device, base station device, and method
WO2022080339A1 (en) Terminal device and method
WO2022080301A1 (en) Terminal device and method
WO2022080304A1 (en) Terminal device, base station device, and method
WO2022138567A1 (en) Terminal device, base station device, and method
WO2022255279A1 (en) Terminal device, base station device, and method
WO2022255293A1 (en) Terminal device, base station device, and method
WO2022255303A1 (en) Terminal device, base station device, and method
WO2022255305A1 (en) Terminal device, base station device, and method
WO2022255288A1 (en) Terminal device, base station device, and method
WO2023276947A1 (en) Terminal device, base station device, and method
JP7494064B2 (en) Terminal device, base station device, method, and integrated circuit
WO2021221010A1 (en) Terminal device, method, and integrated circuit
WO2022080341A1 (en) Terminal device, base station device, and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880078

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556981

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880078

Country of ref document: EP

Kind code of ref document: A1