WO2022075381A1 - 繊維不織布、フィルタ及び繊維不織布の製造方法 - Google Patents
繊維不織布、フィルタ及び繊維不織布の製造方法 Download PDFInfo
- Publication number
- WO2022075381A1 WO2022075381A1 PCT/JP2021/037058 JP2021037058W WO2022075381A1 WO 2022075381 A1 WO2022075381 A1 WO 2022075381A1 JP 2021037058 W JP2021037058 W JP 2021037058W WO 2022075381 A1 WO2022075381 A1 WO 2022075381A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nonwoven fabric
- fibrous nonwoven
- resin
- temperature
- resin composition
- Prior art date
Links
- 239000004745 nonwoven fabric Substances 0.000 title claims abstract description 256
- 239000000835 fiber Substances 0.000 title claims abstract description 153
- 238000000034 method Methods 0.000 title claims description 58
- 238000004519 manufacturing process Methods 0.000 title claims description 57
- 125000003118 aryl group Chemical group 0.000 claims abstract description 59
- 229920001643 poly(ether ketone) Polymers 0.000 claims abstract description 55
- 239000007789 gas Substances 0.000 claims description 117
- 238000010438 heat treatment Methods 0.000 claims description 115
- 229920005989 resin Polymers 0.000 claims description 101
- 239000011347 resin Substances 0.000 claims description 101
- 239000011342 resin composition Substances 0.000 claims description 87
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 34
- 229920002530 polyetherether ketone Polymers 0.000 claims description 34
- 239000000112 cooling gas Substances 0.000 claims description 24
- 239000002657 fibrous material Substances 0.000 claims description 13
- 238000002844 melting Methods 0.000 claims description 13
- 230000008018 melting Effects 0.000 claims description 13
- 239000004744 fabric Substances 0.000 claims description 12
- 238000002425 crystallisation Methods 0.000 claims description 10
- 230000008025 crystallization Effects 0.000 claims description 10
- 239000000155 melt Substances 0.000 claims description 10
- 239000004750 melt-blown nonwoven Substances 0.000 claims description 8
- 238000007599 discharging Methods 0.000 claims description 3
- 238000009987 spinning Methods 0.000 description 31
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 20
- 238000005259 measurement Methods 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000001816 cooling Methods 0.000 description 9
- 239000002759 woven fabric Substances 0.000 description 9
- 239000000428 dust Substances 0.000 description 8
- 230000035699 permeability Effects 0.000 description 8
- -1 polyethylene terephthalate Polymers 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 5
- 239000005977 Ethylene Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229920005604 random copolymer Polymers 0.000 description 5
- 229920005992 thermoplastic resin Polymers 0.000 description 5
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 238000000113 differential scanning calorimetry Methods 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 4
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- YPVPQMCSLFDIKA-UHFFFAOYSA-N 3-ethylpent-1-ene Chemical compound CCC(CC)C=C YPVPQMCSLFDIKA-UHFFFAOYSA-N 0.000 description 1
- SUWJESCICIOQHO-UHFFFAOYSA-N 4-methylhex-1-ene Chemical compound CCC(C)CC=C SUWJESCICIOQHO-UHFFFAOYSA-N 0.000 description 1
- GVNWZKBFMFUVNX-UHFFFAOYSA-N Adipamide Chemical compound NC(=O)CCCCC(N)=O GVNWZKBFMFUVNX-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 241000692870 Inachis io Species 0.000 description 1
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004751 flashspun nonwoven Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 229920004889 linear high-density polyethylene Polymers 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000012567 medical material Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001652 poly(etherketoneketone) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/098—Melt spinning methods with simultaneous stretching
- D01D5/0985—Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/96—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from other synthetic polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
- B01D39/1607—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
- B01D39/1623—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/088—Cooling filaments, threads or the like, leaving the spinnerettes
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/098—Melt spinning methods with simultaneous stretching
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/66—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyethers
- D01F6/665—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyethers from polyetherketones, e.g. PEEK
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4326—Condensation or reaction polymers
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/56—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/005—Synthetic yarns or filaments
- D04H3/009—Condensation or reaction polymers
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/16—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/04—Additives and treatments of the filtering material
- B01D2239/0435—Electret
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/06—Filter cloth, e.g. knitted, woven non-woven; self-supported material
- B01D2239/0604—Arrangement of the fibres in the filtering material
- B01D2239/0618—Non-woven
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/06—Filter cloth, e.g. knitted, woven non-woven; self-supported material
- B01D2239/0604—Arrangement of the fibres in the filtering material
- B01D2239/0622—Melt-blown
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/10—Filtering material manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/12—Special parameters characterising the filtering material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/12—Special parameters characterising the filtering material
- B01D2239/1216—Pore size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/12—Special parameters characterising the filtering material
- B01D2239/1233—Fibre diameter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/12—Special parameters characterising the filtering material
- B01D2239/1258—Permeability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/12—Special parameters characterising the filtering material
- B01D2239/1291—Other parameters
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/06—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyethers
- D10B2331/061—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyethers polyetherketones, polyetheretherketones, e.g. PEEK
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/04—Heat-responsive characteristics
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2505/00—Industrial
- D10B2505/04—Filters
Definitions
- the present invention relates to a fibrous nonwoven fabric, a filter and a method for manufacturing a fibrous nonwoven fabric.
- Aromatic polyetherketone has a high melting point and excellent heat resistance, so it may be used as a non-woven fabric for filter media, battery separators, etc.
- melt-blown non-woven fabric made of polyetheretherketone resin, having an average fiber diameter of 1 to 20 ⁇ m, a grain size of 5 to 120 g / m 2 , a breathability of 1 to 400 cc / cm 2 / sec, and a thickness of 0.
- a melt-blown nonwoven fabric characterized by having physical properties of 05 to 1.0 mm, a tensile strength of 2 to 50 N / 25 mm, and a tensile elongation of 1 to 100% has been proposed (see, for example, Patent Document 1).
- Patent Document 2 Japanese Patent Application Laid-Open No. 2010-106388
- the nonwoven fabric made of the polyetheretherketone resin described in Patent Document 1 and Patent Document 2 may be inferior in performance when used as a filter.
- the performance of the filter is expressed, for example, as a quality factor (Q value).
- Q value is a value obtained from the pressure loss and the collection efficiency of particles.
- a non-woven fabric When a non-woven fabric is used as a filter, it is preferable that not only the Q value at room temperature is high but also the filter performance is maintained in a wide temperature range. Therefore, it is preferable that the fluctuation of the Q value is small even when the temperature changes, and it is desirable that the decrease of the Q value is suppressed even after the filter is exposed to a high temperature, for example.
- the thermoplastic resin constituting the non-woven fabric dissolves when the filter is exposed to a high temperature, and the Q value after the heat treatment is significantly lowered as compared with that before the heat treatment. This tends to cause problems such as deterioration of filter performance when the temperature changes.
- the present disclosure has been made in view of the above, and describes a fibrous nonwoven fabric having a high Q value at room temperature and capable of suppressing a decrease in the Q value due to heat treatment, a filter containing the fibrous nonwoven fabric, and a method for producing the fibrous nonwoven fabric.
- the purpose is to provide.
- ⁇ 1> Contains fibers containing aromatic polyetherketone, A fibrous nonwoven fabric in which the coefficient of variation of the fiber diameter of the fiber is 100% or less.
- ⁇ 2> The fibrous nonwoven fabric according to ⁇ 1>, wherein the fiber has a viscosity at 400 ° C. of 50 Pa ⁇ s to 500 Pa ⁇ s.
- ⁇ 3> The fibrous nonwoven fabric according to ⁇ 1> or ⁇ 2>, wherein the average fiber diameter of the fibers is 10 ⁇ m or less.
- ⁇ 4> The fibrous nonwoven fabric according to any one of ⁇ 1> to ⁇ 3>, wherein the aromatic polyetherketone contains a polyetheretherketone.
- ⁇ 5> The fibrous nonwoven fabric according to any one of ⁇ 1> to ⁇ 4>, wherein the fibrous nonwoven fabric includes a meltblown nonwoven fabric.
- ⁇ 7> By the melt blown method, a molten resin or resin composition containing an aromatic polyetherketone is discharged from a spinneret together with a heating gas, and the resin or the resin composition is stretched by the heating gas to form a fibrous product. Including the process of The flow rate of the heating gas is 150 Nm 3 / hour / m to 1000 Nm 3 / hour / m.
- the temperature of the heating gas is Ta (° C.)
- the temperature of the molten resin or the resin composition is Tp (° C.)
- the crystallization temperature of the aromatic polyetherketone is Tc (° C.)
- the aromatic polyetherketone is Tm (° C.).
- a method for producing a fibrous nonwoven fabric which comprises a step of stretching the resin or the resin composition with the heating gas to form a fibrous material while cooling. Equation (3) 300 ° C ⁇ Tp-Tq ⁇ 550 ° C ⁇ 12> The method for producing a fibrous nonwoven fabric according to ⁇ 11>, wherein the flow rate of the cooling gas is 1000 Nm 3 / hour / m to 20000 Nm 3 / hour / m. ⁇ 13> The method for producing a fibrous nonwoven fabric according to ⁇ 11> or ⁇ 12>, wherein the temperature of the cooling gas is 30 ° C. or lower.
- a fibrous nonwoven fabric having a high Q value at room temperature and capable of suppressing a decrease in the Q value due to heat treatment a filter containing the fibrous nonwoven fabric, and a method for producing the fibrous nonwoven fabric.
- FIG. 1 is a schematic view showing an example of the configuration of a fiber-woven fabric manufacturing apparatus used in the fiber-woven fabric manufacturing method 1 of the present disclosure.
- FIG. 2 is a schematic view showing an example of the configuration of the fiber-woven fabric manufacturing apparatus used in the fiber-woven fabric manufacturing method 2 of the present disclosure.
- the Q value of the fibrous nonwoven fabric is a value calculated by the following formula (a) using the collection efficiency and the pressure loss. As shown in the following equation, the lower the pressure loss and the higher the collection performance, the higher the Q value, and it can be seen that the filtration performance when the fibrous nonwoven fabric is used for the filter is good.
- Q value (Pa -1 ) -[ln (1- [collection efficiency]) / (pressure loss (Pa))] (a)
- the collection efficiency and the pressure loss can be measured by the methods described in Examples described later.
- Y ( df ) (-) at the average fiber diameter d f of the fibers constituting the fibrous nonwoven fabric is as described in Russell, Stephen J. Handbook of conveyeds. Woodhead Publishing, P488, 2006. It is expressed by the following formula (b).
- Y (df) is the collection efficiency at the average fiber diameter d f
- df is the average fiber diameter (m)
- ⁇ is the volume fraction occupied by the fibrous nonwoven fabric (-).
- h represents the thickness (m) of the fibrous nonwoven fabric
- E represents the collecting capacity per standard unit area for a flow orthogonal to the fibrous nonwoven fabric (-)
- ef represents the effective fiber length coefficient (-).
- ⁇ P 0 The pressure loss ⁇ P 0 (Pa) at the average fiber diameter df of the fibers constituting the fibrous nonwoven fabric is as described in Russell, Stephen J. Handbook of comprisings. Woodhead Publishing, P488, 2006. It is represented by c).
- ⁇ P 0 is the pressure loss (Pa) at the average fiber diameter d f
- df is the average fiber diameter (m)
- ⁇ is the body integration rate (-) occupied by the fiber non-woven fabric
- h Is the thickness (m) of the fiber non-woven fabric
- ⁇ is the fluid viscosity (Pa ⁇ s)
- U 0 is the fluid velocity (m / s).
- excellent Q value in comparison between a certain non-woven fabric and another non-woven fabric means that the average fiber diameter is the same value, for example, the Q value when the average fiber diameter is converted to 5 ⁇ m is high. do.
- E / ef can be calculated by substituting the measured value of the collection efficiency, the measured value of the average fiber diameter, the volume fraction occupied by the fibrous nonwoven fabric, and the thickness of the fibrous nonwoven fabric into the equation (b). Next, the volume fraction occupied by the fibrous nonwoven fabric, the thickness of the fibrous nonwoven fabric, and the calculated E / ef are substituted into the equation (b), and further, the average fiber diameter df is a value of 5 ⁇ 10-6 m (5 ⁇ m). By substituting the above into the equation (b), the collection efficiency when the average fiber diameter is converted to 5 ⁇ m can be obtained.
- the fibrous nonwoven fabric of the present disclosure contains a fiber containing an aromatic polyetherketone, and the coefficient of variation of the fiber diameter of the fiber is 100% or less.
- the fibrous nonwoven fabric of the present disclosure suppresses variations in fiber diameter, so that a filter formed using the fibrous nonwoven fabric has excellent collection efficiency.
- the filter formed by using the fibrous nonwoven fabric of the present disclosure not only has a high Q value at room temperature, but also maintains the filter performance in a wide temperature range. Further, even after the filter is exposed to a high temperature of about 250 ° C., the decrease in Q value is suppressed.
- the difference between the Q value at room temperature and the Q value at room temperature after exposure to high temperature is small, and the Q value fluctuates in a wide temperature range. Suppressed, the fibrous nonwoven fabrics of the present disclosure tend to have excellent performance retention.
- the fibrous nonwoven fabric of the present disclosure preferably has a viscosity of the fiber at 400 ° C. of 50 Pa ⁇ s to 500 Pa ⁇ s, preferably 60 Pa ⁇ s to 250 Pa ⁇ s, from the viewpoint of suppressing spinning defects and reducing the average fiber diameter. It is more preferably s, and even more preferably 70 Pa ⁇ s to 95 Pa ⁇ s.
- the method for measuring the viscosity in the present disclosure is as described in Examples described later.
- the average fiber diameter of the fibers constituting the fibrous nonwoven fabric of the present disclosure is preferably 10 ⁇ m or less, and the strength and trapping of the fibrous nonwoven fabric are preferably 10 ⁇ m or less from the viewpoint that the filter formed by using the fibrous nonwoven fabric preferably captures smaller particles. From the viewpoint of collection efficiency, it is more preferably 0.1 ⁇ m to 10 ⁇ m, further preferably 0.3 ⁇ m to 8.0 ⁇ m, and particularly preferably 0.5 ⁇ m to 5.0 ⁇ m.
- the average fiber diameter of the fibers constituting the fibrous nonwoven fabric can be obtained as follows. An electron micrograph (magnification 1000 times) of the fiber non-woven fabric is taken, the diameter of the fiber is measurable from the obtained photograph, and the image is taken and measured until the total number of measured fibers exceeds 100. Is repeated, and the calculated average value of the obtained fiber diameters is taken as the above-mentioned average fiber diameter.
- the coefficient of variation (CV value) of the fiber diameter of the fibers constituting the fibrous nonwoven fabric of the present disclosure is 100% or less, and is preferably 90% or less from the viewpoint of collection efficiency formed by using the fibrous nonwoven fabric. , 85% or less is more preferable.
- the CV value is not particularly limited as long as it is 0% or more, and may be, for example, 30% or more, or 50% or more.
- the CV value can be calculated by multiplying the standard deviation (Dp) of the measurement result of the average fiber diameter by 100 by the value obtained by dividing by the average fiber diameter (Da) (see the following formula).
- CV value [standard deviation (Dp) / average fiber diameter (Da)] x 100
- the average pore diameter of the pores of the fibrous nonwoven fabric measured at a basis weight of 10 g / m 2 is preferably 0.01 ⁇ m to 10.0 ⁇ m, and more preferably 0.1 ⁇ m to 3.0 ⁇ m.
- the average pore diameter of the fibrous nonwoven fabric can be measured by the bubble point method. Specifically, the test piece of the fibrous nonwoven fabric may be impregnated with a fluorine-based inert liquid, and the pore size may be measured with a capillary flow poromometer.
- the basis weight of the fibrous nonwoven fabric may be appropriately determined depending on the intended use, and is preferably 1 g / m 2 to 200 g / m 2 , more preferably 5 g / m 2 to 100 g / m 2 .
- the basis weight is 1 g / m 2 or more, the strength of the fibrous nonwoven fabric tends to be improved and it tends to be easy to manufacture.
- the basis weight is 200 g / m 2 or less, the pressure loss does not become too high, and there is a tendency that the filter can be suitably used.
- the method for measuring the basis weight of the fibrous nonwoven fabric in the present disclosure is as described in Examples described later.
- the thickness of the fibrous nonwoven fabric may be appropriately determined depending on the intended use, and is preferably 0.01 mm to 1.00 mm, more preferably 0.05 mm to 0.60 mm, for example.
- the thickness is 0.01 mm or more, the balance between the dust collection efficiency and the pressure loss is preferably secured when the filter is used, and the Q value of the filter tends to be further improved.
- the thickness is 1. When it is 00 mm or less, the thickness of the filter tends to be thin, which is preferable.
- the fibrous nonwoven fabric of the present disclosure since the collection efficiency is improved by suppressing the variation in the fiber diameter, the Q value tends to be excellent even if the thickness is reduced as compared with the conventional fibrous nonwoven fabric.
- the method for measuring the thickness of the fibrous nonwoven fabric in the present disclosure is as described in Examples described later.
- the air permeability of the fibrous nonwoven fabric may be appropriately determined depending on the intended use, and is preferably 0.1 cm 3 / cm 2 / sec to 200 cm 3 / cm 2 / sec, preferably 1.0 cm 3 / cm 2 / sec to 150 cm. More preferably, it is 3 / cm 2 / sec.
- the air permeability is 0.1 cm 3 / cm 2 / sec or more, the pressure loss tends to be lower, and when the air permeability is 200 cm 3 / cm 2 / sec or less, the collection efficiency tends to be further improved. ..
- the method for measuring the air permeability of the fibrous nonwoven fabric in the present disclosure is as described in Examples described later.
- the fibrous nonwoven fabric of the present disclosure is not particularly limited as long as it contains at least one type of nonwoven fabric.
- the non-woven fabric included in the fibrous non-woven fabric of the present disclosure include melt blown non-woven fabric, spunbond non-woven fabric, wet non-woven fabric, spunlace non-woven fabric, dry non-woven fabric, dry pulp non-woven fabric, air-laid non-woven fabric, water jet non-woven fabric, flash spun non-woven fabric, open fiber non-woven fabric, and needle punch.
- Various known short-fiber non-woven fabrics and long-fiber non-woven fabrics for example, long-fiber cellulose non-woven fabrics
- the fibrous nonwoven fabric of the present disclosure preferably contains a meltblown nonwoven fabric.
- the fibrous nonwoven fabric of the present disclosure may be composed of one kind of nonwoven fabric or may be composed of two or more kinds of nonwoven fabrics.
- the fibrous nonwoven fabric of the present disclosure may be used as a single-layer nonwoven fabric or as a nonwoven fabric constituting at least one layer of a laminated body.
- layers constituting the laminated nonwoven fabric include, in addition to the fibrous nonwoven fabric of the present disclosure, other nonwoven fabrics such as conventional meltblown nonwoven fabric, spunbonded nonwoven fabric, needle punched nonwoven fabric, spunlaced nonwoven fabric, woven fabric, knitted fabric, paper and the like. Can be mentioned.
- the fibrous nonwoven fabric of the present disclosure can be widely used in applications in which the fibrous nonwoven fabric is usually used.
- applications of the fibrous nonwoven fabric include filters, sanitary materials, medical materials, packaging materials, battery separators, heat insulating materials, heat insulating materials, protective clothing, clothing materials, electronic materials, sound absorbing materials and the like.
- the fibrous nonwoven fabric of the present disclosure can be preferably used as a filter for, for example, a gas filter (air filter), a liquid filter, or the like.
- a gas filter air filter
- a liquid filter or the like.
- the fibrous nonwoven fabric of the present disclosure since the above-mentioned CV value, that is, the variation in the fiber diameter is small, it is difficult to form relatively large holes (defect sites) between the fibers. As a result, the fibrous nonwoven fabric of the present disclosure is suitably used for a high-performance filter having excellent filtration performance.
- the fibrous nonwoven fabric of the present disclosure may be charged.
- the charged fibrous nonwoven fabric is preferably used for an air filter.
- the charged fibrous nonwoven fabric can be obtained by subjecting the fibrous nonwoven fabric before charging to a charging process as described later.
- the fiber contained in the fibrous nonwoven fabric of the present disclosure contains an aromatic polyetherketone.
- the aromatic polyether ketone include a structure having an aromatic ring such as a benzene ring, an ether bond, and an aromatic ring such as a benzene ring in this order, an aromatic ring such as a benzene ring, a ketone bond, and a benzene ring.
- the structure is not particularly limited as long as it has a structure having aromatic rings in this order and a polymer having a plurality of aromatic rings.
- the aromatic polyetherketone may further have a skeleton other than an aromatic ring, an ether bond and a ketone bond, for example, an ester bond.
- aromatic polyetherketone examples include polyetherketone, polyetherketoneketone, polyetheretherketoneketone, polyetherketone ester, and the like, and polyetheretherketone is preferable from the viewpoint of heat resistance.
- the above-mentioned fiber may contain one kind of aromatic polyetherketone, or may contain two or more kinds of aromatic polyetherketones.
- the above-mentioned fiber may contain only aromatic polyetherketone as a resin, or may contain aromatic polyetherketone and other resins.
- aromatic polyetherketone and other resins include thermoplastic resins.
- the content of the aromatic polyetherketone in the resin contained in the fiber is preferably 50% by mass or more, more preferably 90% by mass or more, based on the total amount of the resin. It is preferably 99% by mass or more, and more preferably 99% by mass or more.
- the upper limit of the content of the aromatic polyetherketone in the resin contained in the above-mentioned fiber is not particularly limited.
- thermoplastic resin that can be contained in the above-mentioned fibers is not particularly limited, and is not particularly limited.
- Copolymers or copolymers of ⁇ -olefins such as 1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, polyethylene terephthalate, polybutylene terephthalate, polyethylene na
- polyester such as phthalate, nylon-6, nylon-66, polyamide such as polymethoxylen adipamide, polyvinyl chloride, polyimide, ethylene / vinyl acetate copolymer, polyacrylonitrile, polycarbonate, polystyrene, and ionomer.
- the thermoplastic resin may be composed of one kind or a mixture of two or more kinds.
- Examples of the ⁇ -olefin homopolymer or copolymer include ethylene / propylene random copolymer, high-pressure low-density polyethylene, linear low-density polyethylene (LLDPE), high-density polyethylene, and ethylene / 1-butene random.
- Ethylene-based polymers such as ethylene random copolymers such as polymers; propylene random copolymers such as polypropylene (propylene homopolymer), propylene / ethylene random copolymers, propylene / 1-butene random copolymers, etc.
- Propylene-based polymers; poly1-butene, poly4-methyl-1-pentene and the like can be mentioned.
- the fibers contained in the fibrous nonwoven fabric of the present disclosure may contain commonly used additives, if necessary.
- additives for example, various known additives such as antioxidants, weather stabilizers, heat stabilizers, light stabilizers, antistatic agents, antifogging agents, lubricants, dyes, pigments, natural oils, synthetic oils, waxes and the like. Agents are mentioned.
- the content of the aromatic polyetherketone in the fiber is preferably 50% by mass or more, more preferably 90% by mass or more, and 99% by mass, based on the total amount of the fiber. % Or more is more preferable.
- the upper limit of the content of the aromatic polyetherketone in the above-mentioned fiber is not particularly limited.
- the fibrous nonwoven fabric manufacturing method 1 and the fibrous nonwoven fabric manufacturing method 2 will be described.
- the method for producing the fibrous nonwoven fabric of the present disclosure is not limited to these production methods.
- a molten resin or resin composition containing an aromatic polyetherketone is discharged from a spinneret together with a heating gas by a melt blown method, and the resin or the resin composition is discharged by the heating gas.
- the heating gas flow rate is 150 Nm 3 / hour / m to 1000 Nm 3 / hour / m, the temperature of the heating gas is Ta (° C.), and the molten resin is included.
- the temperature of the heating gas (Ta) is the same as the temperature of the molten resin or resin composition (temperature of the spinneret) (Tp). Or, it is generally higher than that.
- the present inventors make the temperature of the heating gas (Ta) lower than the temperature of the molten resin or the resin composition (Tp) by a certain amount or more, and control the flow rate of the heating gas within a predetermined range. By doing so, it has been found that the above-mentioned fibrous nonwoven fabric having a small variation in fiber diameter can be produced.
- the difference between the Q value at room temperature and the Q value at room temperature after exposure to high temperature is small.
- the fluctuation of the Q value is suppressed in a wide temperature range, and the fibrous nonwoven fabric tends to have excellent performance retention.
- the method 1 for producing a fibrous nonwoven fabric of the present disclosure from the viewpoint of obtaining a fibrous nonwoven fabric having a small variation in fiber diameter, it is not necessary to separately spray a cooling gas for quenching the resin or the resin composition discharged from the spinneret, for example, spinning. It is not necessary to further perform the step of spraying the cooling gas at 30 ° C. or lower on the resin or the resin composition discharged from the mouthpiece. That is, it is not necessary to spray the gas in a plurality of steps, and the gas can be sprayed in one step. Further, as described in Republished Patent No.
- a suction hood is arranged along the outer peripheral surface of a suction roll, a suction belt, etc., and airflow control by the suction hood is performed. You don't have to go. Therefore, the fibrous nonwoven fabric manufacturing method 1 of the present disclosure can be realized with a relatively simple device configuration.
- a molten resin or resin composition containing an aromatic polyetherketone is discharged from a spinneret together with a heating gas by a melt blown method, and the resin or the resin composition is stretched by the heating gas. Including the step of making a fibrous material.
- the melt blown method is a method in which when a molten resin or resin composition is discharged into a fibrous form from a spinneret, heating gas is applied from both sides of the melted discharge material (discharged resin or resin composition) and heating is performed. This is a method of reducing the diameter of the discharged material by accompanying gas.
- a resin containing an aromatic polyetherketone or a resin composition containing an aromatic polyetherketone and at least one of other resins and additives as a raw material is produced by using an extruder or the like. Melt.
- the molten resin or resin composition is introduced into a spinneret connected to the tip of the extruder and discharged into a fibrous form from the spinneret of the spinneret.
- a heating gas ejected from a gas nozzle of a spinneret is applied to the resin or resin composition discharged in the form of fibers, and the resin or resin composition is stretched by the heating gas to cause the resin or resin composition. Is refined.
- the preferred conditions for the content of the aromatic polyetherketone contained in the above-mentioned resin are the same as the content of the aromatic polyetherketone in the resin contained in the above-mentioned fiber. Further, the preferable conditions of the lower limit of the content of the aromatic polyetherketone contained in the above-mentioned resin composition are the same as the above-mentioned content of the aromatic polyetherketone in the fiber.
- the upper limit of the content of the aromatic polyetherketone contained in the above-mentioned resin composition is not particularly limited as long as it is less than 100% by mass.
- the aromatic polyetherketone contained in the resin or the resin composition preferably contains a polyetheretherketone from the viewpoint of heat resistance.
- the viscosity of the resin or resin composition at 400 ° C. is 50 Pa ⁇ s from the viewpoint of excellent spinning stability of the resin or resin composition and from the viewpoint that fibers having a small average fiber diameter can be easily obtained by facilitating spinning. It is preferably about 500 Pa ⁇ s, more preferably 70 Pa ⁇ s to 260 Pa ⁇ s, and even more preferably 80 Pa ⁇ s to 105 Pa ⁇ s.
- the resin and the resin composition for which the viscosity is to be measured means the resin and the resin composition before melting.
- the temperature (Ta) of the heating gas when the temperature (Ta) of the heating gas is higher than the crystallization temperature (Tc), it is possible to suppress the poor stretching due to the solidification of the discharged resin or the resin composition, and the fiber.
- the increase in diameter can be suppressed.
- the temperature (Ta) of the heating gas is Tm + 200 ° C. or lower, not only is it easy to adjust ⁇ T (Tp-Ta) to the above range, but also thread breakage due to a decrease in the melt viscosity of the discharged resin or the resin composition is suppressed. can.
- the temperature (Ta) of the heating gas is more likely to satisfy the following formula (1)'. preferable. Equation (1)'Tm-30 ⁇ Ta ⁇ Tm + 200
- Tp-Ta is preferably 40 ° C to 180 ° C, more preferably 80 ° C to 140 ° C, from the viewpoint of the balance between suppressing variation in fiber diameter and suppressing increase in fiber diameter.
- ⁇ T is 40 ° C. or higher, the average fiber diameter tends to be smaller, which is preferable.
- the temperature (Ta) of the heating gas may be selected so as to satisfy the above-mentioned formula (1), preferably further to the formula (1)', depending on the type of aromatic polyetherketone.
- the temperature (Ta) of the heating gas is preferably, for example, 300 ° C to 500 ° C, more preferably 320 ° C to 480 ° C, and 340 ° C to 340 ° C. It is more preferably 440 ° C.
- the temperature (Tp) of the molten resin or resin composition may be selected so as to satisfy the above formula (2) according to the type of aromatic polyetherketone.
- the temperature (Tp) of the melted resin composition is preferably, for example, 360 ° C to 520 ° C, more preferably 400 ° C to 490 ° C. It is more preferably 460 ° C to 490 ° C.
- the temperature (Tp) of the molten resin or the resin composition can be measured as the set temperature of the spinneret (die).
- the temperature of the heating gas (Ta) can be measured as the temperature of the heating gas immediately after being discharged from the spinneret (die). Specifically, the temperature of the heating gas (Ta) can be measured as the temperature of the heating gas at the opening of the gas nozzle of the spinneret (die).
- the temperature (Ta) of the heating gas at the opening of the gas nozzle is predetermined.
- the supply temperature of the heating gas so as to be the temperature of; under predetermined conditions (for example, die temperature, heating gas flow rate), the temperature of the heating gas (Ta) at the opening of the gas nozzle.
- Data showing the relationship between the temperature of the heating gas and the supply temperature of the heating gas is prepared in advance, and based on the data, the temperature of the heating gas (Ta) at the opening of the gas nozzle becomes a predetermined temperature. This may be done by adjusting the supply temperature of the heating gas.
- the crystallization temperature (Tc) and melting point (Tm) of the aromatic polyetherketone can be measured using DSC (differential scanning calorimetry). Specifically, as a differential scanning calorimeter (DSC), DSC Pyr manufactured by PerkinElmer Co., Ltd. Using is1 or DSC7020 manufactured by SI Nanotechnology, the temperature reached for each aromatic polyetherketone (490 ° C. in the case of polyetheretherketone) was set for each sample (about 5 mg) under a nitrogen atmosphere (20 mL / min).
- DSC differential scanning calorimeter
- the melting point (Tm) is calculated from the peak peak of the crystal melting peak in, and the crystallization temperature (Tc) is calculated from the peak peak of the crystallization peak in the temperature lowering process.
- Tm melting point
- the discharge amount of the resin composition per spinning nozzle of the spinneret is usually 0.01 g / min to 3.0 g / min, preferably 0.05 g / min to 2.0 g / min.
- the discharge rate is 0.01 g / min or more, not only the productivity of the fibrous nonwoven fabric is not easily impaired, but also the yarn breakage of the fibers is easily suppressed.
- the discharge rate is 3.0 g / min or less, it is easy to sufficiently reduce the fiber diameter.
- the flow rate of the heating gas is 150 Nm 3 / hour / m to 1000 Nm 3 / hour / m from the viewpoint of reducing the fiber diameter constituting the fibrous nonwoven fabric and reducing the variation in the fiber diameter (narrowing the fiber diameter distribution). be.
- the flow rate of the heating gas is 150 Nm 3 / hour / m or more, it is easy to sufficiently stretch the discharged resin composition, and it is easy to sufficiently reduce the fiber diameter.
- the flow rate of the heating gas is 1000 Nm 3 / hour / m or less, it is easy to suppress the increase in the variation in the fiber diameter due to the turbulence of the air flow.
- the flow rate of the heating gas is preferably 250 Nm 3 / hour / m to 850 Nm 3 / hour / m.
- the type of the heating gas is not particularly limited, and examples thereof include a molten resin such as air, carbon dioxide gas, and nitrogen gas, or a gas that is inert to the resin composition. Among these, air is preferable from the viewpoint of economy.
- the discharged resin or resin composition is stretched by a heating gas to obtain a fibrous material.
- the average fiber diameter of the fibrous material is preferably 10 ⁇ m or less from the viewpoint that the filter formed by using the produced fibrous nonwoven fabric preferably captures smaller particles, and the strength and collection efficiency of the fibrous nonwoven fabric are improved. From the viewpoint, it is more preferably 0.1 ⁇ m to 10 ⁇ m, further preferably 0.3 ⁇ m to 8.0 ⁇ m, and particularly preferably 0.5 ⁇ m to 5.0 ⁇ m.
- the method for measuring the average fiber diameter of the fibrous material is the same as the above-mentioned method for measuring the average fiber diameter of the fiber.
- the method 1 for producing a fibrous nonwoven fabric of the present disclosure may further include a step of collecting the fibrous material in the form of a web after the above-mentioned step of forming the fibrous material.
- this collecting step for example, the obtained fibrous material is collected in the form of a web on a collector. Further, when collecting on the collector, air may be sucked from the back side of the collector when viewed from the fiber to promote the collection.
- collectors include perforated belts, perforated drums, and the like.
- the collection of fibrous substances may be promoted by sucking air from the back surface side of the collector.
- the finely divided fibers may be collected on a desired substrate provided in advance on the collector.
- the base material provided in advance include other non-woven fabrics such as melt blown non-woven fabric, spunbond non-woven fabric, needle punching and spunlace non-woven fabric, woven fabric, knitted fabric, paper and the like. This makes it possible to obtain an ultrafine fiber non-woven fabric laminate used in a high-performance filter, wiper, or the like.
- the fibrous nonwoven fabric manufacturing apparatus used in the fibrous nonwoven fabric manufacturing method 1 of the present disclosure will be described with reference to FIG.
- FIG. 1 is a schematic diagram showing an example of the configuration of the fiber-woven fabric manufacturing apparatus 10.
- the fibrous nonwoven fabric manufacturing apparatus 10 includes an extruder 20, a die (spinning cap) 30, and a collection mechanism 40.
- the extruder 20 has a hopper 21 and a compression unit 22. Then, the extruder 20 melts the solid resin or the resin composition charged in the hopper 21 in the compression unit 22.
- the extruder 20 may be a single-screw extruder or a multi-screw extruder such as a twin-screw extruder. From the viewpoint of improving spinning stability, it is preferable to melt the resin or the resin composition using a twin-screw extruder.
- the die (spinning cap) 30 is arranged so as to be connected to the tip of the extruder 20.
- the die 30 has a plurality of spinning nozzles 31 and two gas nozzles 32.
- the plurality of spinning nozzles 31 are usually arranged in a row. Then, the molten resin or resin composition conveyed from the extruder 20 is introduced into the spinning nozzle 31, and the resin or resin composition is discharged in a fibrous form from the nozzle opening.
- the diameter of the spinning nozzle can be, for example, 0.05 mm to 0.80 mm.
- the temperature (Tp) of the molten resin or the resin composition can be adjusted by the set temperature of the die 30.
- the distance between the small holes in the spinning nozzle of the spinneret is preferably 0.1 mm to 2.0 mm, more preferably 0.15 mm to 1.8 mm.
- the distance between the small holes is 0.1 mm or more, the variation in the fiber diameter tends to be smaller.
- the distance between the small holes is 2.0 mm or less, the production efficiency tends to be further improved.
- the two gas nozzles (air nozzles) 32 are arranged in the vicinity of the nozzle opening of the spinning nozzle 31, specifically, on both sides of the row of the plurality of spinning nozzles 31. Then, the gas nozzle 32 injects a heating gas (heated compressed gas) near the opening of the spinning nozzle 31. As shown in FIG. 1, the gas nozzle 32 injects a heating gas into the resin or the resin composition immediately after being discharged from the opening of the spinning nozzle 31.
- the heating gas supplied to the gas nozzle 32 is supplied from the gas heating device 50.
- the temperature (Ta) of the heating gas can be adjusted by a heating temperature adjusting means (not shown) attached to the gas heating device 50.
- the collection mechanism 40 has a perforated belt (collector) 41, rollers 42 and 42 that support and convey the perforated belt, and an air suction unit 43 arranged on the back side of the collection surface of the perforated belt 41.
- the air suction unit 43 is connected to the blower 44. Then, the collecting mechanism 40 collects the obtained fibrous material on the moving porous belt 41.
- the resin or the resin composition melted by the extruder 20 is introduced into the spinning nozzle 31 of the die (spinning cap) 30 and discharged from the opening of the spinning nozzle 31.
- the heating gas is injected toward the vicinity of the opening of the spinning nozzle 31. Then, the discharged resin or resin composition is stretched and refined by the heating gas to become a fibrous material.
- the temperature (Ta) of the heating gas is adjusted so as to satisfy the above-mentioned equations (1) and (2).
- the molten resin or resin composition is appropriately quenched and stretched.
- the flow rate of the heating gas is adjusted so as to satisfy the above range. Therefore, even if the molten resin or the resin composition is rapidly cooled, it can be sufficiently stretched. Therefore, it is possible to reduce the variation in the fiber diameter while reducing the fiber diameter.
- the discharged fibrous material is collected on the porous belt 41 to obtain a fibrous nonwoven fabric.
- the method 2 for producing a fibrous nonwoven fabric of the present disclosure is a cooling gas supplied from both sides in the mechanical direction by discharging a molten resin or resin composition containing an aromatic polyetherketone from a spinneret together with a heating gas by a melt blown method.
- This method includes a step of stretching the resin or the resin composition with the heating gas to form a fibrous product while cooling the resin or the resin composition.
- the method 2 for producing the fibrous nonwoven fabric of the present disclosure is not limited to the method in which the heating gas is discharged so as to satisfy the above formulas (1) and (2), and when the resin or the resin composition is stretched by the heating gas. In addition, it differs from the above-mentioned manufacturing method 1 of the fibrous nonwoven fabric of the present disclosure in that the resin or the resin composition is cooled by the cooling gas supplied from both sides in the mechanical direction. In the method 2 for producing a fibrous nonwoven fabric of the present disclosure, the heating gas and the cooling gas are combined to cool the heating gas by separately spraying a cooling gas for rapidly cooling the resin or the resin composition discharged from the spinneret.
- the fibrous resin or the resin composition is cooled immediately after discharge, and it is possible to suppress the fusion of the adjacent fibrous resin or the resin composition, and as a result, the variation in the fiber diameter can be suppressed. Therefore, the above-mentioned fibrous nonwoven fabric having a small variation in fiber diameter can be manufactured.
- the discharge of the heating gas satisfies the above formula (1) from the viewpoint of suppressing an increase in the fiber diameter.
- Tp-Ta is not particularly limited when the temperature of the heating gas is Ta (° C) and the temperature of the molten resin or resin composition is Tp (° C). ..
- Tp-Ta ( ⁇ T) may be substantially equal, or -30 ⁇ Tp-Ta ⁇ 30.
- the temperature (Ta) of the heating gas may be selected according to the type of aromatic polyetherketone.
- the temperature (Ta) of the heating gas is preferably, for example, 330 ° C to 550 ° C, more preferably 370 ° C to 520 ° C, and 430 ° C to 430 ° C. It is more preferably 520 ° C.
- the temperature (Tp) of the melted resin or the resin composition may be the same as the preferable range of Tp described in the above-mentioned method 1 for producing a fibrous nonwoven fabric.
- the temperature of the cooling gas is preferably 30 ° C. or lower, preferably 5 ° C. to 25 ° C., from the viewpoint of preferably suppressing variations in fiber diameter due to fusion of adjacent fibrous resins or resin compositions immediately after discharge.
- the temperature is more preferably 5 ° C to 20 ° C.
- the flow rate of the cooling gas is preferably 1000 Nm 3 / hour / m to 20000 Nm 3 / hour / m, more preferably 3000 Nm 3 / hour / m to 18000 Nm 3 / hour / m, and more preferably 5000 Nm 3 / hour / m. It is more preferably m to 15000 Nm 3 / hour / m.
- the type of cooling gas is not particularly limited, and examples thereof include cooling air.
- the present inventors have set Tp-Tq ( ⁇ T) when the temperature of the molten resin or resin composition is Tp (° C) and the temperature of the cooling gas is Tq (° C). It has been found that the above-mentioned fibrous nonwoven fabric having a smaller variation in fiber diameter can be produced by controlling') within a predetermined range. For example, it is preferable to discharge the heating gas and supply the cooling gas so as to satisfy the following formula (3). Equation (3) 350 ° C ⁇ Tp-Tq ⁇ 550 ° C
- ⁇ T' is preferably 370 ° C to 520 ° C, more preferably 400 ° C to 500 ° C.
- the fibrous nonwoven fabric manufacturing apparatus used in the fibrous nonwoven fabric manufacturing method 2 of the present disclosure will be described with reference to FIG.
- FIG. 2 is a schematic diagram showing an example of the configuration of the fibrous nonwoven fabric manufacturing apparatus 100. As shown in FIG. 2, the fibrous nonwoven fabric manufacturing apparatus 100 differs from the fibrous nonwoven fabric manufacturing apparatus 10 shown in FIG. 1 in that an attachment 34 for introducing cooling air is attached to the die 30.
- the attachment 34 is removable from the die 30.
- the die 30 injects heating gas (heated compressed gas) from the gas nozzle 32 into the vicinity of the opening of the spinning nozzle 31 while discharging the molten resin or resin composition from the spinning nozzle 31.
- the attachment 34 supplies the cooling gas in the direction of arrow B from the horizontal direction to the molten resin or resin composition and the heating gas discharged from the die 30.
- the resin or the resin composition is stretched by the heating gas to obtain a fibrous material.
- the heating gas and the cooling gas merge to cool the heating gas.
- the method 2 for producing a fibrous nonwoven fabric of the present disclosure it is possible to produce a fibrous nonwoven fabric having an excellent Q value when used as a filter.
- the attachment 34 is attached to the die 30 in the vertical direction without any gap. Therefore, an air passage for taking in external air is not formed, the generation of a vortex is suppressed in the upper part of the attachment 34, and the turbulent flow of the heating gas due to the vortex is unlikely to occur. Therefore, it is possible to preferably prevent the adjacent fibrous resin or resin composition from being fused by turbulent flow immediately after discharge.
- the attachment 34 may have a gap between it and the die 30 in the vertical direction. In this case, it is preferable that the attachment 34 and the die 30 are airtight in the machine direction from the viewpoint of suppressing the inflow of air in the machine direction and suppressing fusion due to turbulent flow.
- the die 30 is heated to discharge the heating gas, and the temperature difference between the die 30 and the attachment 34 is large.
- the above-mentioned fibrous nonwoven fabric of the present disclosure and the fibrous nonwoven fabric manufactured by the above-mentioned manufacturing method 1 or manufacturing method 2 may be charged.
- the method of charging is not particularly limited as long as the fibrous nonwoven fabric can be electretized.
- a corona charging method a method of applying water or a water-soluble organic solvent aqueous solution to the fibrous nonwoven fabric and then drying the fabric to electret (the method).
- the methods described in JP-A-9-501604, JP-A-2002-115177, etc. can be mentioned.
- an electric field strength of 15 kV / cm or more is preferable, and an electric field strength of 20 kV / cm or more is more preferable.
- the filters of the present disclosure include the above-mentioned fibrous nonwoven fabrics of the present disclosure. As a result, the filter of the present disclosure suppresses variations in fiber diameter and is excellent in filter accuracy.
- Example 1 A fibrous nonwoven fabric was produced using the manufacturing apparatus shown in FIG. Specifically, PEEK (polyetheretherketone, Solvey, Ketaspire KT-890P, resin viscosity at 400 ° C. of 99 Pa ⁇ s) is melted using a twin-screw extruder, and the melted PEEK is supplied to the die. , Set temperature: 480 ° C die (melted PEEK temperature Tp), discharge rate per spinning nozzle: 0.2 g / min, intersmall hole distance: 1.0 mm, heating blown from both sides of the spinning nozzle It was discharged together with air (temperature Ta: 350 ° C., flow rate: 300 Nm 3 / hour / m).
- PEEK polyetheretherketone, Solvey, Ketaspire KT-890P, resin viscosity at 400 ° C. of 99 Pa ⁇ s
- the diameter of the spinning nozzle of the die was 0.4 mm. Then, the fibrous PEEK was collected on a collector so that the basis weight was 15 g / m 2 , and a fibrous nonwoven fabric was obtained.
- Tc crystallization temperature
- Tm melting point
- the viscosities of the resins used in each Example and each Comparative Example were determined as follows. Specifically, using a capillary leometer (product name; Capillograph 1D PMD-C, manufactured by Toyo Seiki Seisakusho Co., Ltd.) and the resins used in each example and each comparative example, the shear stress and shear strain rate are measured under the following conditions. The shear viscosity ( ⁇ ) (Pa ⁇ s) was calculated based on the following formula and used as the viscosity of the resin.
- ⁇ (Pa) represents the apparent shear stress
- ⁇ dot (Pa) (a symbol with a dot ( ⁇ ) above ⁇ ; hereinafter simply referred to as “ ⁇ ”) is the shear strain rate.
- Example 2 and 3 A fibrous nonwoven fabric was obtained in the same manner as in Example 1 except that the temperature of the heated air was changed as shown in Table 1 in Example 1.
- Example 4 The fibrous nonwoven fabric was prepared in the same manner as in Example 1 except that PEEK used in Example 1 was changed to PEEK (polyetheretherketone, Solvay, Ketaspire KT-880P, resin viscosity at 400 ° C. 220 Pa ⁇ s). Obtained.
- the crystallization temperature (Tc) of PEEK was 177 ° C, and the melting point (Tm) of PEEK was 349 ° C.
- Example 5 A fibrous nonwoven fabric was produced using the manufacturing apparatus shown in FIG. Specifically, the molten PEEK used in Example 1 is supplied to the die, and the discharge rate per spinning nozzle is 0.2 g from the die having a set temperature of 480 ° C. (the temperature Tp of the molten PEEK). At / min, it was discharged together with heated air (temperature Ta: 480 ° C., flow rate: 300 Nm 3 / hour / m) blown from both sides of the spinning nozzle. The diameter of the spinning nozzle of the die was 0.4 mm. Further, the temperature Tq of the cooling air was 10 ° C., and the flow rate of the cooling air was 12000 Nm 3 / hour / m. Then, the fibrous PEEK was collected on a collector so that the basis weight was 15 g / m 2 , and a fibrous nonwoven fabric was obtained.
- the molten PEEK used in Example 1 is supplied to the die, and the discharge rate per spinning
- Example 6 A fibrous nonwoven fabric was obtained in the same manner as in Example 5 except that the temperature of the melted PEEK, the temperature of the heating air, and the temperature of the cooling air were changed as shown in Table 1.
- Example 1 Example 1 except that the PEEK is melted by using a single-screw extruder instead of the twin-screw extruder in Example 1 and the temperature of the die and the temperature of the heated air are changed as shown in Table 2. A fibrous nonwoven fabric was obtained in the same manner as above.
- Example 5 The PEEK used in Example 1 was changed to PP (polypropylene, ExxonMobil, Achieve 6936G2, weight average molecular weight: 55,000), and the die temperature and the heating air temperature were changed as shown in Table 2. A fibrous nonwoven fabric was obtained in the same manner as in Example 1.
- Example 6 The PEEK used in Example 1 was changed to PET (polyethylene terephthalate, manufactured by Mitsui Chemicals, Inc., Mitsui PET, IV: 0.62), and the temperature of the die and the temperature of the heated air were as shown in Table 2. A fibrous nonwoven fabric was obtained in the same manner as in Example 1 except that the temperature was changed to.
- PET polyethylene terephthalate, manufactured by Mitsui Chemicals, Inc., Mitsui PET, IV: 0.62
- Table 2 Polyethylene terephthalate, manufactured by Mitsui Chemicals, Inc., Mitsui PET, IV: 0.62
- a fibrous nonwoven fabric was obtained in the same manner as in Example 1 except that the temperature was changed to.
- the physical characteristics (average fiber diameter, CV value, basis weight, thickness, and air permeability) of the obtained fibrous nonwoven fabric were measured by the following method.
- Average fiber diameter ( ⁇ m) and coefficient of variation (CV value) of the fibers constituting the fibrous nonwoven fabric Using an electron microscope (S-3500N manufactured by Hitachi, Ltd.), a photograph of a fibrous nonwoven fabric having a magnification of 1000 times was taken. The diameter of the fiber can be measured from the obtained photograph. The diameter of the fiber is measured, and imaging and measurement are repeated until the total number of measured fibers exceeds 100, and the arithmetic average value of the diameter of the obtained fiber is averaged. The fiber diameter was used.
- Air permeability (cm 3 / cm 2 / sec) Five samples of 150 mm in the vertical direction ⁇ 150 mm in the horizontal direction were collected, and the air permeability was measured under the condition of the flow rate at a pressure difference of 125 Pa by a Frazier air permeability measuring machine according to JIS L 1096: 2010.
- the dust collection efficiency of the fibrous nonwoven fabric which had not been heat-treated was measured by the following method. Three samples of 15 cm ⁇ 15 cm were collected from an arbitrary part of the fibrous nonwoven fabric, and the collection efficiency of each sample was measured using a collection performance measuring device (Model 8130 manufactured by Tokyo Dyrec Co., Ltd.). In measuring the collection efficiency, NaCl particle dust with a central diameter of 0.3 ⁇ m is generated by an atomizer, then the sample is set in the holder, and the air volume is set so that the filter passing speed is 5.3 cm / sec.
- the dust concentration was stabilized in the range of 15 mg / m 3 to 20 mg / m 3 by adjusting with a flow rate adjusting valve.
- the upstream dust number D2 and the downstream dust number D1 of the sample were detected by a laser particle detector, and the second decimal place of the numerical value obtained by the following formula was rounded off to obtain the collection efficiency.
- the pressure loss of the fibrous nonwoven fabric that had not been heat-treated was determined by reading the static pressure difference between the upstream and downstream of the sample at the time of measuring the collection efficiency with a pressure gauge.
- the pressure loss shown in Tables 1 and 2 is an arithmetic mean value obtained using three samples.
- the volume fraction occupied by the fibrous nonwoven fabric, the thickness of the fibrous nonwoven fabric, and the calculated E / ef are substituted into the equation (b), and further, the average fiber diameter df is a value of 5 ⁇ 10-6 m (5 ⁇ m).
- the collection efficiency (5 ⁇ m conversion value).
- the density of PEEK is 132 kg / m 3 .
- the above-mentioned (measurement of pressure loss (Pa) of non-woven fabric not heat-treated), (conversion of collection efficiency of non-woven fabric not heat-treated), (pressure loss of non-woven fabric not heat-treated).
- the measurement, conversion and calculation of each physical property after the heat treatment were carried out by the same method as (conversion) and (calculation of Q value of the fibrous nonwoven fabric not heat-treated).
- the ratio of the Q value of the fibrous nonwoven fabric after the heat treatment to the Q value of the fibrous nonwoven fabric not heat-treated was determined as the performance retention rate. The higher the performance retention rate, the more the decrease in the Q value due to the heat treatment is suppressed.
- Tables 1 and 2 show the production conditions of the fibrous nonwoven fabrics of Examples 1 to 6 and Comparative Examples 1 to 6 and the evaluation results of the fibrous nonwoven fabric.
- the fibrous nonwoven fabrics obtained in Examples 1 to 6 have a lower CV value than the fibrous nonwoven fabrics obtained in Comparative Examples 1 to 4, and have a Q value and a heat treatment of the fibrous nonwoven fabric that has not been heat-treated. It was later shown that the Q value of the fibrous nonwoven fabric was excellent. Since the resin of the fibrous nonwoven fabric obtained in Comparative Example 5 was melted during heating at 250 ° C., the Q value of the fibrous nonwoven fabric after the heat treatment could not be measured. It was shown that in the fibrous nonwoven fabric obtained in Comparative Example 6, the Q value of the fibrous nonwoven fabric after the heat treatment was significantly lower than the Q value of the fibrous nonwoven fabric not treated with heat.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Nonwoven Fabrics (AREA)
- Filtering Materials (AREA)
Abstract
Description
[特許文献1] 特開2008-81893号公報
[特許文献2] 特開2010-106388号公報
<1> 芳香族ポリエーテルケトンを含有する繊維を含み、
前記繊維の繊維径の変動係数が100%以下である繊維不織布。
<2> 400℃での前記繊維の粘度が50Pa・s~500Pa・sである<1>に記載の繊維不織布。
<3> 前記繊維の平均繊維径が10μm以下である<1>又は<2>に記載の繊維不織布。
<4> 前記芳香族ポリエーテルケトンがポリエーテルエーテルケトンを含む<1>~<3>のいずれか1つに記載の繊維不織布。
<5> 前記繊維不織布はメルトブローン不織布を含む、<1>~<4>のいずれか1つに記載の繊維不織布。
<6> <1>~<5>のいずれか1つに記載の繊維不織布を含むフィルタ。
<7> メルトブローン法により、芳香族ポリエーテルケトンを含む溶融した樹脂又は樹脂組成物を紡糸口金から加熱ガスとともに吐出し、前記加熱ガスにより前記樹脂又は前記樹脂組成物を延伸して、繊維状物とする工程を含み、
前記加熱ガスの流量を150Nm3/時/m~1000Nm3/時/mとし、
前記加熱ガスの温度をTa(℃)、前記溶融した樹脂又は前記樹脂組成物の温度をTp(℃)、前記芳香族ポリエーテルケトンの結晶化温度をTc(℃)、前記芳香族ポリエーテルケトンの融点をTm(℃)としたとき、前記加熱ガスの吐出は、下記式(1)及び(2)を満たすように行う繊維不織布の製造方法。
式(1) Tc<Ta≦Tm+200
式(2) 40≦Tp-Ta≦190
<8> 400℃での前記樹脂又は前記樹脂組成物の粘度が50Pa・s~500Pa・sである<7>に記載の繊維不織布の製造方法。
<9> 前記加熱ガスの吐出は、下記式(1)’をさらに満たすように行う<7>又は<8>に記載の繊維不織布の製造方法。
式(1)’ Tm-30≦Ta≦Tm+200
<10> 前記加熱ガスの流量を250Nm3/時/m~850Nm3/時/mとする<7>~<9>のいずれか1つに記載の繊維不織布の製造方法。
<11> メルトブローン法により、芳香族ポリエーテルケトンを含む溶融した樹脂又は樹脂組成物を紡糸口金から加熱ガスとともに吐出し、機械方向の両面から供給される冷却ガスで前記樹脂又は前記樹脂組成物を冷却しつつ、前記加熱ガスにより前記樹脂又は前記樹脂組成物を延伸して、繊維状物とする工程を含む繊維不織布の製造方法。
式(3) 300℃≦Tp-Tq≦550℃
<12> 前記冷却ガスの流量が1000Nm3/時/m~20000Nm3/時/mである<11>に記載の繊維不織布の製造方法。
<13> 前記冷却ガスの温度が30℃以下である<11>又は<12>に記載の繊維不織布の製造方法。
<14> 前記溶融した樹脂又は前記樹脂組成物の温度をTp(℃)、前記冷却ガスの温度をTq(℃)としたとき、前記加熱ガスの吐出及び前記冷却ガスの供給は、下記式(3)を満たす<11>~<13>のいずれか1つに記載の繊維不織布の製造方法。
式(3) 350℃≦Tp-Tq≦550℃
<15> 前記芳香族ポリエーテルケトンがポリエーテルエーテルケトンを含む<7>~<14>のいずれか1つに記載の繊維不織布の製造方法。
<16> 二軸押出機を用いて前記芳香族ポリエーテルケトンを含む樹脂又は樹脂組成物を溶融する<11>~<15>のいずれか1つに記載の繊維不織布の製造方法。
本開示において段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
本開示において、組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
Q値(Pa-1)=-[ln(1-[捕集効率])/(圧力損失(Pa))] (a)
圧力損失の実測値、平均繊維径の実測値、繊維不織布の占める体積分率、及び繊維不織布の厚みを式(c)に代入すると、U0ηを算出できる。次に、繊維不織布の占める体積分率、繊維不織布の厚み及び算出したU0ηを式(c)に代入し、さらに、平均繊維径dfとして5×10-6m(5μm)の値を式(c)に代入することで、平均繊維径を5μmに換算した際の圧力損失を求めることができる。
平均繊維径を5μmに換算した際の捕集効率及び平均繊維径を5μmに換算した際の圧力損失を、式(a)に代入することで平均繊維径を5μmに換算した際のQ値を求めることができる。
本開示の繊維不織布は、芳香族ポリエーテルケトンを含有する繊維を含み、前記繊維の繊維径の変動係数が100%以下である。これにより、本開示の繊維不織布は、繊維径のばらつきが抑制されているため、繊維不織布を用いて形成されたフィルタは捕集効率に優れる。より具体的には、本開示の繊維不織布を用いて形成されたフィルタは、室温でのQ値が高いだけでなく、幅広い温度範囲にてフィルタ性能が維持される。さらに、前記フィルタを250℃程度の高温に晒した後であってもQ値の低下が抑制される。また、本開示の繊維不織布を用いて形成されたフィルタでは、室温でのQ値と、高温に曝した後の室温でのQ値との差が小さく、幅広い温度範囲にてQ値の変動が抑制され、本開示の繊維不織布は性能保持性に優れる傾向にある。
本開示における粘度の測定方法は後述の実施例に記載の通りである。
CV値=[標準偏差(Dp)/平均繊維径(Da)]×100
本開示における繊維不織布の目付の測定方法は後述の実施例に記載の通りである。
本開示における繊維不織布の厚みの測定方法は後述の実施例に記載の通りである。
本開示における繊維不織布の通気度の測定方法は後述の実施例に記載の通りである。
本開示の繊維不織布は、1種の不織布から構成されるものであってもよく、2種以上の不織布から構成されるものであってもよい。
前述の繊維は、1種の芳香族ポリエーテルケトンを含有していてもよく、2種以上の芳香族ポリエーテルケトンを含有していてもよい。
前述の繊維に含まれる樹脂中の芳香族ポリエーテルケトンの含有率の上限は特に限定されない。
前述の繊維中の芳香族ポリエーテルケトンの含有率の上限は特に限定されない。
本開示の繊維不織布の製造方法1は、メルトブローン法により、芳香族ポリエーテルケトンを含む溶融した樹脂又は樹脂組成物を紡糸口金から加熱ガスとともに吐出し、前記加熱ガスにより前記樹脂又は前記樹脂組成物を延伸して、繊維状物とする工程を含み、前記加熱ガスの流量を150Nm3/時/m~1000Nm3/時/mとし、前記加熱ガスの温度をTa(℃)、前記溶融した樹脂又は前記樹脂組成物の温度をTp(℃)、前記芳香族ポリエーテルケトンの結晶化温度をTc(℃)、前記芳香族ポリエーテルケトンの融点をTm(℃)としたとき、前記加熱ガスの吐出は、下記式(1)及び(2)を満たすように行う方法である。
式(1) Tc<Ta≦Tm+200
式(2) 40≦Tp-Ta≦190
さらに、加熱ガスの流量を調整することで、延伸効果が十分に発現して繊維径の増大を抑制することができ、吐出直後に隣接する繊維状の樹脂又は樹脂組成物が融着することによる繊維径のばらつきも抑制できる。本開示の繊維不織布の製造方法1によれば、フィルタとしたときに室温でのQ値が高く、かつ熱処理によるQ値の低下が抑制可能な繊維不織布を製造し得る。さらに、本開示の繊維不織布の製造方法1にて製造された繊維不織布を用いて形成されたフィルタでは、室温でのQ値と、高温に曝した後の室温でのQ値との差が小さく、幅広い温度範囲にてQ値の変動が抑制され、前記繊維不織布は性能保持性に優れる傾向にある。
また、前述の樹脂組成物に含まれる芳香族ポリエーテルケトンの含有率の下限の好ましい条件は、前述の繊維中の芳香族ポリエーテルケトンの含有率と同様である。前述の樹脂組成物に含まれる芳香族ポリエーテルケトンの含有率の上限は100質量%未満であれば特に限定されない。
樹脂又は樹脂組成物に含まれる芳香族ポリエーテルケトンは、耐熱性の観点から、ポリエーテルエーテルケトンを含むことが好ましい。
粘度の測定対象となる樹脂及び樹脂組成物は、溶融前の樹脂及び樹脂組成物を意味する。
式(1) Tc<Ta≦Tm+200
式(2) 40≦Tp-Ta≦190
式(1)’ Tm-30≦Ta≦Tm+200
加熱ガスの温度(Ta)は、紡糸口金(ダイ)から吐出された直後の加熱ガスの温度として測定することができる。具体的には、加熱ガスの温度(Ta)は、紡糸口金(ダイ)のガスノズルの開口部における加熱ガスの温度として測定することができる。加熱ガスの温度(Ta)の調整は、例えば紡糸口金(ダイ)のガスノズルの開口部の加熱ガスの温度(Ta)を測定しながら、当該ガスノズルの開口部の加熱ガスの温度(Ta)が所定の温度となるように、加熱ガスの供給温度を調整することによって行ってもよいし;所定の条件(例えばダイ温度、加熱ガス流量)下で、ガスノズルの開口部の加熱ガスの温度(Ta)と加熱ガスの供給温度との関係を示すデータ(検量線)を予め準備しておき、そのデータに基づいて、ガスノズルの開口部の加熱ガスの温度(Ta)が所定の温度となるように、加熱ガスの供給温度を調整することによって行ってもよい。
具体的には、示差走査型熱量計(DSC)としてパーキンエルマー社製DSC Pyr
is1又はエスアイアイ・ナノテクノロジー社製DSC7020を用い、窒素雰囲気下(20mL/min)、試料(約5mg)を、芳香族ポリエーテルケトンごとに設定した到達温度(ポリエーテルエーテルケトンの場合は490℃)まで昇温し、その温度で3分間保持した後、10℃/分で30℃まで冷却して30℃で1分間保持し、10℃/分で上記到達温度まで昇温し、昇温過程における結晶溶融ピークのピーク頂点から融点(Tm)を算出し、降温過程における結晶化ピークのピーク頂点から結晶化温度(Tc)を算出する。なお、複数の結晶溶融ピークが観測された場合は、高温側ピークを融点(Tm)とする。
繊維状物の平均繊維径の測定方法は、前述の繊維の平均繊維径の測定方法と同様である。
本開示の繊維不織布の製造方法2は、メルトブローン法により、芳香族ポリエーテルケトンを含む溶融した樹脂又は樹脂組成物を紡糸口金から加熱ガスとともに吐出し、機械方向の両面から供給される冷却ガスで前記樹脂又は前記樹脂組成物を冷却しつつ、前記加熱ガスにより前記樹脂又は前記樹脂組成物を延伸して、繊維状物とする工程を含む方法である。
溶融した樹脂又は樹脂組成物の温度(Tp)は、前述の繊維不織布の製造方法1に記載のTpの好ましい範囲と同様であってもよい。
式(3) 350℃≦Tp-Tq≦550℃
本開示のフィルタは、前述の本開示の繊維不織布を含む。これにより、本開示のフィルタは、繊維径のばらつきが抑制されており、フィルタ精度に優れる。
図1に示される製造装置を用いて、繊維不織布を作製した。具体的には、二軸押出機を用いてPEEK(ポリエーテルエーテルケトン、Solvey社、キータスパイアKT-890P、400℃での樹脂粘度99Pa・s)を溶融し、溶融したPEEKをダイに供給し、設定温度:480℃のダイ(溶融したPEEKの温度Tp)から、紡糸ノズル1つあたりの吐出量:0.2g/分、小孔間距離:1.0mmで、紡糸ノズルの両側から吹き出す加熱エア(温度Ta:350℃、流量:300Nm3/時/m)とともに吐出した。ダイの紡糸ノズルの直径は、0.4mmであった。そして、繊維状のPEEKを、目付量が15g/m2となるようにコレクター上に捕集し、繊維不織布を得た。なお、PEEKの結晶化温度(Tc)及び融点(Tm)は、前述の方法で測定した値を採用した。PEEKの結晶化温度(Tc)は176℃であり、PEEKの融点(Tm)は347℃であった。
各実施例及び各比較例で用いた樹脂の粘度は、以下のようにして求めた。具体的には、キャピラリーレオメーター(製品名;キャピログラフ1D PMD-C、株式会社東洋精機製作所製)並びに各実施例及び各比較例で用いた樹脂を用い、下記条件でせん断応力及びせん断歪み速度を求め、下記式に基づいてせん断粘度(η)(Pa・s)を算出し、樹脂の粘度とした。
[測定条件]
測定機器:キャピログラフ1D PMD-C (株式会社東洋精機製作所製)
キャピラリー内径:Φ=0.2[mm]
測定温度:400℃
キャピラリー長さ/キャピラリー内径(L/D):10
ピストン速度:2.5×102(1/秒)
せん断粘度(η)(Pa・s)は、上記L/Dが10のときの見かけのせん断応力及びせん断歪み速度の各値から、下記式で算出される。
見かけのせん断応力τ(Pa)は、ピストン荷重p(Pa)とキャピラリー内径D(mm)、キャピラリー長さL(mm)からτ=pD/π4Lで表され、せん断応力γ(Pa)は、体積流量Q(mm3/s)を用いてγ=32Q/πD3で表される。
実施例1にて加熱エアの温度を表1に示される通りに変更した以外は実施例1と同様にして繊維不織布を得た。
実施例1にて使用したPEEKをPEEK(ポリエーテルエーテルケトン、Solvey社、キータスパイアKT-880P、400℃での樹脂粘度220Pa・s)に変更した以外は実施例1と同様にして繊維不織布を得た。PEEKの結晶化温度(Tc)は177℃であり、PEEKの融点(Tm)は349℃であった。
図2に示される製造装置を用いて、繊維不織布を作製した。具体的には、実施例1にて用いた溶融したPEEKをダイに供給し、設定温度:480℃のダイ(溶融したPEEKの温度Tp)から、紡糸ノズル1つあたりの吐出量:0.2g/分で、紡糸ノズルの両側から吹き出す加熱エア(温度Ta:480℃、流量:300Nm3/時/m)とともに吐出した。ダイの紡糸ノズルの直径は、0.4mmであった。さらに、冷却エアの温度Tqは10℃であり、冷却エアの流量は12000Nm3/時/mであった。そして、繊維状のPEEKを、目付量が15g/m2となるようにコレクター上に捕集し、繊維不織布を得た。
実施例5にて溶融したPEEKの温度、加熱エアの温度、及び冷却エアの温度を表1に示される通りに変更した以外は実施例5と同様にして繊維不織布を得た。
実施例1にて二軸押出機の代わりに単軸押出機を用いてPEEKを溶融する点及び、ダイの温度及び加熱エアの温度を表2に示される通りに変更した点以外は実施例1と同様にして繊維不織布を得た。
実施例1にて加熱エアの温度を表2に示される通りに変更した以外は実施例1と同様にして繊維不織布を得た。
実施例1にて使用したPEEKをPP(ポリプロピレン、ExxonMobil社製、Achieve 6936G2、重量平均分子量:5.5万)に変更し、ダイの温度及び加熱エアの温度を表2に示される通りに変更した以外は実施例1と同様にして繊維不織布を得た。
実施例1にて使用したPEEKをPET(ポリエチレンテレフタレート、三井化学(株)社製、三井PET、IV:0.62)に変更し、ダイの温度及び加熱エアの温度を表2に示される通りに変更した以外は実施例1と同様にして繊維不織布を得た。
電子顕微鏡(日立製作所製S-3500N)を用いて、倍率1000倍の繊維不織布の写真を撮影した。得られた写真から繊維の直径を測定可能な繊維の直径を測定し、測定した繊維の本数の合計が100本を超えるまで撮像と測定を繰り返し、得られた繊維の直径の算術平均値を平均繊維径とした。
CV値=[標準偏差(Dp)/平均繊維径(Da)]×100
縦方向100mm×横方向100mmの試料を3個採取して、各試料の重量をそれぞれ測定した。得られた値の平均値を単位面積当たりに換算し、小数点以下第一位を四捨五入して、目付量(g/m2)とした。
目付を測定した試料の中央及び四隅の5点の厚みを、厚み計(PEACOCK社製、品番「R1-250」、測定端子25mmφ)を用いて、荷重7g/m2で測定した。目付を測定した試料の10点の試料につき、この方法で厚みを測定し、その平均値を厚み(mm)とした。
縦方向150mm×横方向150mmの試料を5個採取し、JIS L 1096:2010に準じたフラジール通気度測定機による圧力差125Paでの流量の条件で通気度の測定を行った。
各実施例及び各比較例で得られた繊維不織布を構成する繊維の粘度を、前述の(樹脂粘度の測定)と同様の方法によって求めた。
各実施例及び各比較例で得られた繊維不織布について、加熱処理していない繊維不織布の粉塵の捕集効率を、以下の方法で測定した。繊維不織布の任意の部分から、15cm×15cmのサンプルを3個採取し、それぞれのサンプルについて、捕集性能測定装置(東京ダイレック(株)社製、Model8130)を用いて捕集効率を測定した。捕集効率の測定にあたっては、個数中央径:0.3μmをもつNaCl粒子ダストをアトマイザーで発生させ、次にサンプルをホルダーにセットし、風量をフィルタ通過速度が5.3cm/secになるように流量調整バルブで調整し、ダスト濃度を15mg/m3~20mg/m3の範囲で安定させた。サンプルの上流のダスト個数D2及び下流のダスト個数D1をレーザー式粒子検出器で検出し、下記計算式にて求めた数値の小数点以下第2位を四捨五入し捕集効率を求めた。なお、表1及び表2中に記載の捕集効率は、3個のサンプルを用いて測定した算術平均値である。
捕集効率=〔1-(D1/D2)〕
(D1:下流のダスト個数、D2:上流のダスト個数)
加熱処理していない繊維不織布の圧力損失は捕集効率測定時のサンプルの上流及び下流の静圧差を圧力計で読み取ることで求めた。なお、表1及び表2中に記載の圧力損失は、3個のサンプルを用いて求めた算術平均値である。
加熱処理していない繊維不織布の捕集効率の実測値、平均繊維径の実測値、繊維不織布の目付をPEEKの密度に繊維不織布の厚みを乗じた値で割った値(目付/(密度×厚み))である繊維不織布の占める体積分率、及び繊維不織布の厚みを前述の式(b)に代入して、E/efを算出した。次に、繊維不織布の占める体積分率、繊維不織布の厚み及び算出したE/efを式(b)に代入し、さらに、平均繊維径dfとして5×10-6m(5μm)の値を式(b)に代入することで、捕集効率(5μm換算値)を求めた。
なお、PEEKの密度は132kg/m3である。
加熱処理していない繊維不織布の圧力損失の実測値、平均繊維径の実測値、繊維不織布の占める体積分率、及び繊維不織布の厚みを式(c)に代入して、U0ηを算出した。次に、繊維不織布の占める体積分率、繊維不織布の厚み及び算出したU0ηを式(c)に代入し、さらに、平均繊維径dfとして5×10-6m(5μm)の値を式(c)に代入することで、圧力損失(5μm換算値)を求めた。
得られた捕集効率(5μm換算値)及び圧力損失(5μm換算値)から、式(a)を用いて、Q値(5μm換算値)を算出した。
各実施例及び各比較例で得られた繊維不織布について、以下の方法で高温条件に晒した。繊維不織布の任意の部分から、15cm×15cmのサンプルを3個採取し、それぞれのサンプルについて、それぞれ100gの分銅で四隅を固定し、250℃に加熱した1mm厚のアルミ平板上に置いた。24時間後、アルミ平板ごと取り出し、室温で6時間放置し室温に戻した。その後、前述の(加熱処理していない繊維不織布の捕集効率の測定)と同様の方法で加熱処理後での捕集効率を測定した。
さらに、前述の(加熱処理していない繊維不織布の圧力損失(Pa)の測定)、(加熱処理していない繊維不織布の捕集効率の換算)、(加熱処理していない繊維不織布の圧力損失の換算)及び(加熱処理していない繊維不織布のQ値の算出)と同様の方法で加熱処理後での各物性の測定、換算及び算出を行った。
また、加熱処理していない繊維不織布のQ値に対する加熱処理後の繊維不織布のQ値の比率を性能保持率として求めた。性能保持率が高いほど、熱処理によるQ値の低下が抑制されていることを意味する。
比較例5にて得られた繊維不織布は、250℃にて加熱中、樹脂が溶解してしまったため、加熱処理後の繊維不織布のQ値は測定できなかった。
比較例6にて得られた繊維不織布は、加熱処理後での繊維不織布のQ値が、加熱処理していない繊維不織布のQ値よりも大きく低下することが示された。
本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
20 押出機
21 ホッパー
22 圧縮部
30 ダイ(紡糸口金)
31 紡糸ノズル
32 ガスノズル
34 アタッチメント
40 捕集機構
41 多孔ベルト
42 ローラ
43 エア吸引部
44 ブロワー
50 ガス加熱装置
P 溶融した樹脂又は樹脂組成物
G 加熱ガス
Claims (16)
- 芳香族ポリエーテルケトンを含有する繊維を含み、
前記繊維の繊維径の変動係数が100%以下である繊維不織布。 - 400℃での前記繊維の粘度が50Pa・s~500Pa・sである請求項1に記載の繊維不織布。
- 前記繊維の平均繊維径が10μm以下である請求項1又は請求項2に記載の繊維不織布。
- 前記芳香族ポリエーテルケトンがポリエーテルエーテルケトンを含む請求項1~請求項3のいずれか1項に記載の繊維不織布。
- 前記繊維不織布はメルトブローン不織布を含む、請求項1~請求項4のいずれか1項に記載の繊維不織布。
- 請求項1~請求項5のいずれか1項に記載の繊維不織布を含むフィルタ。
- メルトブローン法により、芳香族ポリエーテルケトンを含む溶融した樹脂又は樹脂組成物を紡糸口金から加熱ガスとともに吐出し、前記加熱ガスにより前記樹脂又は前記樹脂組成物を延伸して、繊維状物とする工程を含み、
前記加熱ガスの流量を150Nm3/時/m~1000Nm3/時/mとし、
前記加熱ガスの温度をTa(℃)、前記溶融した樹脂又は前記樹脂組成物の温度をTp(℃)、前記芳香族ポリエーテルケトンの結晶化温度をTc(℃)、前記芳香族ポリエーテルケトンの融点をTm(℃)としたとき、前記加熱ガスの吐出は、下記式(1)及び(2)を満たすように行う繊維不織布の製造方法。
式(1) Tc<Ta≦Tm+200
式(2) 40≦Tp-Ta≦190 - 400℃での前記樹脂又は前記樹脂組成物の粘度が50Pa・s~500Pa・sである請求項7に記載の繊維不織布の製造方法。
- 前記加熱ガスの吐出は、下記式(1)’をさらに満たすように行う請求項7又は請求項8に記載の繊維不織布の製造方法。
式(1)’ Tm-30≦Ta≦Tm+200 - 前記加熱ガスの流量を250Nm3/時/m~850Nm3/時/mとする請求項7~請求項9のいずれか1項に記載の繊維不織布の製造方法。
- メルトブローン法により、芳香族ポリエーテルケトンを含む溶融した樹脂又は樹脂組成物を紡糸口金から加熱ガスとともに吐出し、機械方向の両面から供給される冷却ガスで前記樹脂又は前記樹脂組成物を冷却しつつ、前記加熱ガスにより前記樹脂又は前記樹脂組成物を延伸して、繊維状物とする工程を含む繊維不織布の製造方法。
- 前記冷却ガスの流量が1000Nm3/時/m~20000Nm3/時/mである請求項11に記載の繊維不織布の製造方法。
- 前記冷却ガスの温度が30℃以下である請求項11又は請求項12に記載の繊維不織布の製造方法。
- 前記溶融した樹脂又は前記樹脂組成物の温度をTp(℃)、前記冷却ガスの温度をTq(℃)としたとき、前記加熱ガスの吐出及び前記冷却ガスの供給は、下記式(3)を満たす請求項11~請求項13のいずれか1項に記載の繊維不織布の製造方法。
式(3) 350℃≦Tp-Tq≦550℃ - 前記芳香族ポリエーテルケトンがポリエーテルエーテルケトンを含む請求項7~請求項14のいずれか1項に記載の繊維不織布の製造方法。
- 二軸押出機を用いて前記芳香族ポリエーテルケトンを含む樹脂又は樹脂組成物を溶融する請求項11~請求項15のいずれか1項に記載の繊維不織布の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/247,903 US20230372848A1 (en) | 2020-10-07 | 2021-10-06 | Fiber nonwoven fabric, filter, and method of fiber nonwoven fabric |
CN202180068503.0A CN116348191A (zh) | 2020-10-07 | 2021-10-06 | 纤维无纺布、过滤器和纤维无纺布的制造方法 |
KR1020237011779A KR20230061540A (ko) | 2020-10-07 | 2021-10-06 | 섬유 부직포, 필터 및 섬유 부직포의 제조 방법 |
JP2022555544A JPWO2022075381A1 (ja) | 2020-10-07 | 2021-10-06 | |
EP21877680.5A EP4209258A1 (en) | 2020-10-07 | 2021-10-06 | Fiber nonwoven fabric, filter, and method for manufacturing fiber nonwoven fabric |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-170104 | 2020-10-07 | ||
JP2020170104 | 2020-10-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022075381A1 true WO2022075381A1 (ja) | 2022-04-14 |
Family
ID=81126968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/037058 WO2022075381A1 (ja) | 2020-10-07 | 2021-10-06 | 繊維不織布、フィルタ及び繊維不織布の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20230372848A1 (ja) |
EP (1) | EP4209258A1 (ja) |
JP (1) | JPWO2022075381A1 (ja) |
KR (1) | KR20230061540A (ja) |
CN (1) | CN116348191A (ja) |
TW (1) | TW202217107A (ja) |
WO (1) | WO2022075381A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09501604A (ja) | 1993-08-17 | 1997-02-18 | ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー | エレクトレット濾過材の荷電方法 |
JP2002115177A (ja) | 2000-10-11 | 2002-04-19 | Toray Ind Inc | エレクトレット加工品の製造方法 |
JP2008081893A (ja) | 2006-09-28 | 2008-04-10 | Tapyrus Co Ltd | ポリエーテルエーテルケトン製メルトブロー不織布、その製造方法及びそれからなる耐熱性電池セパレータ |
JP2008240225A (ja) * | 2007-03-01 | 2008-10-09 | Toray Ind Inc | ポリエーテルエーテルケトンモノフィラメントおよびその製造法、およびポリエーテルエーテルケトンモノフィラメントからなるフィルター |
JP2010106388A (ja) | 2008-10-29 | 2010-05-13 | Asahi Kasei Fibers Corp | 耐熱性不織布 |
JP2012520950A (ja) * | 2009-03-20 | 2012-09-10 | アーケマ・インコーポレイテッド | ポリエーテルケトンケトン不織布マット |
JP2018106827A (ja) * | 2016-12-22 | 2018-07-05 | 株式会社ダイセル | 電解質膜補強材及び電解質膜 |
JP2020170104A (ja) | 2019-04-04 | 2020-10-15 | 株式会社ジャパンディスプレイ | 電子機器 |
-
2021
- 2021-10-06 JP JP2022555544A patent/JPWO2022075381A1/ja active Pending
- 2021-10-06 EP EP21877680.5A patent/EP4209258A1/en active Pending
- 2021-10-06 CN CN202180068503.0A patent/CN116348191A/zh active Pending
- 2021-10-06 WO PCT/JP2021/037058 patent/WO2022075381A1/ja unknown
- 2021-10-06 KR KR1020237011779A patent/KR20230061540A/ko unknown
- 2021-10-06 US US18/247,903 patent/US20230372848A1/en active Pending
- 2021-10-07 TW TW110137389A patent/TW202217107A/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09501604A (ja) | 1993-08-17 | 1997-02-18 | ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー | エレクトレット濾過材の荷電方法 |
JP2002115177A (ja) | 2000-10-11 | 2002-04-19 | Toray Ind Inc | エレクトレット加工品の製造方法 |
JP2008081893A (ja) | 2006-09-28 | 2008-04-10 | Tapyrus Co Ltd | ポリエーテルエーテルケトン製メルトブロー不織布、その製造方法及びそれからなる耐熱性電池セパレータ |
JP2008240225A (ja) * | 2007-03-01 | 2008-10-09 | Toray Ind Inc | ポリエーテルエーテルケトンモノフィラメントおよびその製造法、およびポリエーテルエーテルケトンモノフィラメントからなるフィルター |
JP2010106388A (ja) | 2008-10-29 | 2010-05-13 | Asahi Kasei Fibers Corp | 耐熱性不織布 |
JP2012520950A (ja) * | 2009-03-20 | 2012-09-10 | アーケマ・インコーポレイテッド | ポリエーテルケトンケトン不織布マット |
JP2018106827A (ja) * | 2016-12-22 | 2018-07-05 | 株式会社ダイセル | 電解質膜補強材及び電解質膜 |
JP2020170104A (ja) | 2019-04-04 | 2020-10-15 | 株式会社ジャパンディスプレイ | 電子機器 |
Non-Patent Citations (1)
Title |
---|
RUSSELLSTEPHEN J: "Handbook of nonwovens", 2006, WOODHEAD PUBLISHING, pages: 488 |
Also Published As
Publication number | Publication date |
---|---|
EP4209258A1 (en) | 2023-07-12 |
JPWO2022075381A1 (ja) | 2022-04-14 |
KR20230061540A (ko) | 2023-05-08 |
TW202217107A (zh) | 2022-05-01 |
US20230372848A1 (en) | 2023-11-23 |
CN116348191A (zh) | 2023-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5813008B2 (ja) | メルトブロー不織布、その製造方法および装置 | |
JP5021740B2 (ja) | 単一成分の濾過/補強単一層を有する折り畳み式マスク | |
US20170065917A1 (en) | Non-woven fiber fabric, and production method and production device therefor | |
TW200819160A (en) | Molded monocomponent monolayer respirator with bimodal monolayer monocomponent media | |
JP6496009B2 (ja) | 不織布およびその製造方法 | |
WO2017142021A1 (ja) | 不織布、フィルタ及び不織布の製造方法 | |
JP7551553B2 (ja) | 不織布、フィルタ、吸音材及びメルトブローン不織布の製造方法 | |
JP6511594B1 (ja) | メルトブローン不織布、フィルタ、及びメルトブローン不織布の製造方法 | |
WO2022075381A1 (ja) | 繊維不織布、フィルタ及び繊維不織布の製造方法 | |
JP7299316B2 (ja) | メルトブロー不織布、フィルター、及びメルトブロー不織布の製造方法 | |
TW201920795A (zh) | 熔噴不織布、不織布積層體和過濾器 | |
US20200330911A1 (en) | Melt-blown nonwoven fabric, filter, and method of producing melt-blown nonwoven fabric | |
KR101282784B1 (ko) | 수직기류를 이용한 단섬유 공급장치 | |
JP2021195670A (ja) | 繊維不織布、フィルタ、繊維不織布の製造方法及びエレクトレット繊維不織布の製造方法 | |
WO2020202899A1 (ja) | 液体フィルター用のメルトブロー不織布、当該メルトブロー不織布の積層体及び積層体を備える液体用フィルター | |
JP2020165013A (ja) | 繊維不織布の製造方法 | |
JP2022183506A (ja) | スパンボンド不織布および芯鞘型複合繊維 | |
CN103228832B (zh) | 熔喷非织造布、其制造方法及装置 | |
JP2020190057A (ja) | 不織布、不織布の積層体、及びそれらを含むフィルター |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21877680 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022555544 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20237011779 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2021877680 Country of ref document: EP Effective date: 20230404 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |