[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022075018A1 - Glass plate manufacturing method - Google Patents

Glass plate manufacturing method Download PDF

Info

Publication number
WO2022075018A1
WO2022075018A1 PCT/JP2021/033758 JP2021033758W WO2022075018A1 WO 2022075018 A1 WO2022075018 A1 WO 2022075018A1 JP 2021033758 W JP2021033758 W JP 2021033758W WO 2022075018 A1 WO2022075018 A1 WO 2022075018A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
inspection step
inspection
manufacturing
defect
Prior art date
Application number
PCT/JP2021/033758
Other languages
French (fr)
Japanese (ja)
Inventor
翔 北川
直樹 熊崎
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to KR1020237011336A priority Critical patent/KR20230078689A/en
Priority to CN202180068777.XA priority patent/CN116324390A/en
Publication of WO2022075018A1 publication Critical patent/WO2022075018A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8803Visual inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • G01N2021/8861Determining coordinates of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/10Scanning
    • G01N2201/104Mechano-optical scan, i.e. object and beam moving

Definitions

  • the present invention relates to a method for manufacturing a glass plate, which comprises a step of inspecting the presence or absence of defects contained in the molded glass plate during transportation.
  • various glass plates such as glass plates for flat panel displays (FPDs) such as liquid crystal displays and electroluminescence displays are made by molding molten glass melted in a melting furnace into a strip-shaped glass ribbon. It is manufactured by cutting the glass ribbon to a predetermined size after it has been sufficiently cooled.
  • a down draw method such as an overflow down draw method (fusion method) or a slot down draw method is generally used for forming the glass ribbon.
  • the glass ribbon is molded in a vertical position. From the viewpoint of space saving of manufacturing equipment, the cutting process, ear cutting process, transport process, inspection process, and packing process are performed in the vertical posture for the purpose of omitting the process of changing the posture of the glass plate. There is.
  • typical defects of the glass plate include foam defects and foreign matter defects (for example, exfoliated matter from a refractory or the like), and the influence on the quality of the glass plate differs between the foam defects and the foreign matter defects. Therefore, the permissible size of bubble defects and the permissible size of foreign matter defects are different, and even if the defects have the same size, the pass / fail criteria differ depending on the type of defect. Further, by feeding back the information on the type of defect to the upstream process such as the melting process and the molding process, it is possible to reduce the defect and improve the yield. Therefore, it is necessary to distinguish between foam defects and foreign matter defects. Examples of the inspection method for that purpose include those disclosed in Patent Document 2.
  • the bright-field optical system and the dark-field optical system are combined to identify the coordinates of the defect, an image of the defect is imaged, and the type of the defect is identified based on the image of the image of the defect. ing.
  • the technical subject of the present invention is to accurately identify the type of defect in the vertical glass plate.
  • the present invention which was devised to solve the above problems, comprises a molding process of forming a glass ribbon by a down-draw method, a cutting process of cutting a glass plate by cutting the molded glass ribbon at a predetermined length, and a cutting process of cutting out a glass plate.
  • a method for manufacturing a glass plate comprising a transporting step of transporting the cut out glass plate in a vertical position in parallel with the main surface of the glass plate, and an inspection step of inspecting the glass plate during the transporting step.
  • a first inspection step of specifying the coordinates of the defect of the glass plate and a second inspection step of identifying the type of the defect located at the coordinates specified in the first inspection step are performed. It is characterized by being prepared. According to such a configuration, by separating the identification of the coordinates of the defect and the identification of the type of the defect into separate steps, it is possible to accurately identify the type of the defect with respect to the glass plate conveyed in the vertical posture.
  • the upper part and the lower part of the glass plate are sandwiched in the inspection step. According to such a configuration, the amplitude of the shaking of the glass plate can be suppressed to be small, and the glass plate can be inspected accurately.
  • the holding mechanism for holding the glass plate applies a tensile force to the glass plate in the vertical direction and the width direction. According to such a configuration, the amplitude of the shaking of the glass plate can be suppressed to be smaller, and the glass plate can be inspected more accurately.
  • the first inspection step includes a linear light source along the vertical direction and a line sensor camera.
  • the entire main surface of the glass plate can be imaged by passing the linear light source and the line sensor camera once through the glass plate, so that the coordinates of the defects of the entire main surface of the glass plate can be quickly obtained. Can be identified.
  • the second inspection step has an imaging system, and the imaging system includes a light source unit that irradiates the glass plate with inspection light and the defect located at the coordinates specified in the first inspection step. It is preferable to have a microscopic optical unit that magnifies the image of the above and an image pickup unit that captures the magnified image of the defect. According to such a configuration, the image of the defect can be imaged at an appropriate magnification, and the defect can be directly magnified and visually observed, so that the type of the defect can be identified more accurately.
  • the imaging system it is preferable to drive the imaging system in the vertical direction and the width direction of the glass plate. With such a configuration, the imaging system can be easily moved to the coordinates of the defect identified in the first inspection step.
  • the glass plate in the transfer step, the glass plate is carried in to the second inspection step and the glass plate is carried out from the second inspection step, and the glass plate is carried out to the second inspection step. It is preferable to keep the imaging system on standby below the lower end of the glass plate during the loading and unloading of the glass plate from the second inspection step. Generally, when the magnification of the imaging system is increased, the focal length of the imaging system becomes shorter. Therefore, it is necessary to make the distance between the image pickup system and the glass plate closer than that of the conventional inspection method, and there is a possibility that the glass plate and the image pickup system collide with each other during the transportation of the glass plate. By making the image pickup system stand by below the lower end of the glass plate, it is possible to prevent the glass plate from colliding with the image pickup system during loading into the second inspection process and during removal from the second inspection step.
  • the image pickup system is placed in the width direction below the lower end of the glass plate during the loading of the glass plate into the second inspection step and the loading of the glass plate from the second inspection step. It is preferable to make it stand by in the substantially central part of the above. According to such a configuration, the collision between the image pickup system and the glass plate is prevented, and the moving distance of the image pickup system from the standby position to the coordinates of the defect specified in the first inspection step is shortened, so that the second inspection step It can reduce the time required for.
  • the imaging system in the first inspection step, the coordinates of the defect with respect to the end face of the glass plate are recorded, and in the second inspection step, the end face of the glass plate is detected by using the position detecting means. It is preferable to move the imaging system to a coordinate position with respect to the end face. Due to mechanical errors in the transport process, the glass plates carried into the second inspection process do not always stop at the same position.
  • the reference of the coordinates of the second inspection step is constant regardless of the stop position of the glass plate, if the variation of the stop position of the glass plate is large, the defect to be imaged is out of the field of view of the imaging system and cannot be imaged. There is a risk that the type of glass cannot be identified.
  • the imaging system By detecting the position of the end face of the glass plate and using it as a reference for the coordinates in the second inspection step, the imaging system can be moved to a position where the defect can be accommodated in the field of view.
  • the inspection step further includes a third inspection step in which the inspector visually inspects the appearance of the glass plate, and the third inspection step is performed in parallel with the second inspection step. Is preferable.
  • the inspection time and the inspection space can be shortened as compared with the case where the second inspection step and the third inspection step are carried out individually.
  • the inspection step the upper region in the vertical direction of the glass plate is inspected in the third inspection step, the lower region is inspected in the second inspection step, and the third inspection step It is preferable that the area to be inspected in the second inspection step is wider than the area to be inspected. Defects in the glass plate occur continuously along the flow direction in the molding process, that is, the vertical direction.
  • the glass plate is suspended, supported and transported from above in a vertical position, but by setting the area to be inspected in the second inspection process to the lower side of the glass plate, equipment for carrying out the second inspection process and equipment for carrying out the second inspection process, It is possible to prevent the interference of the equipment for transporting the glass plate.
  • the third inspection step is to inspect the appearance of the glass plate such as pulse and uneven thickness, and it is not necessary to inspect a wide area. By making the area to be inspected in the second inspection step wider than the area to be inspected in the third inspection step, it is possible to specify as many types of defects whose coordinates are specified in the first inspection step as possible.
  • the second inspection step excludes the area to be inspected in the third inspection step. Defects in the glass plate occur continuously along the vertical direction. Therefore, it is not necessary to inspect the entire range in the vertical direction, but it is sufficient to inspect the entire range in the width direction. According to such a configuration, the time required for the second inspection step and the third inspection step can be shortened.
  • the number of the defects identified in the second inspection step is smaller than the number of the coordinates of the defects specified in the first inspection step.
  • the first inspection step can be inspected in a time required to pass the line sensor camera once through the glass plate.
  • the second inspection step since the imaging system is driven for the coordinates of the defects specified in the first inspection step and the image is taken, the number of defects whose coordinates are specified in the first inspection step is larger than a certain number. In that case, the inspection time of the second inspection step is longer than that of the first inspection step. Therefore, the number of defects imaged in the second inspection step is limited to a certain number or less. With such a configuration, it is possible to prevent the time required for the inspection process from becoming longer than necessary.
  • the type of defect of the glass plate in the vertical posture can be accurately identified.
  • FIG. 1 shows an embodiment of a method for manufacturing a glass plate according to the present invention.
  • the glass plate manufacturing apparatus 1 includes a molding step S1 in which the molten glass Gm is stretched downward X to form a strip-shaped glass ribbon Gr, and a slow cooling step S2 in which the glass ribbon Gr formed in the molding step S1 is slowly cooled.
  • an ear cutting step S5 for removing thick portions (ears) formed at both ends in the width direction Y
  • a first inspection step S6 for inspecting the glass plate G obtained in the ear cutting step S5.
  • the second inspection step S7, the third inspection step S8, and the packing step S9 for packing the glass plate G that has passed the inspection are provided.
  • the glass ribbon Gr is molded from the molten glass Gm melted in a melting furnace (not shown) using the overflow downdraw method.
  • the molded body 21 is arranged in the molded body 2, and the molten glass Gm overflowing from the top 211 of the molded body 21 having a wedge-shaped cross section on both sides is formed on the outer surface portion of the molded body 21.
  • the glass ribbon Gr is molded by fusing and integrating at the lower end portion 213 of the molded body while flowing down along the 212.
  • the molten glass Gm (or glass ribbon Gr) is guided by the edge roller 22 and stretched downward X.
  • the molding step S1 is not limited to the one using the overflow down draw method, and for example, another down draw method such as a slot down draw method or a redraw method, or a float method may be used.
  • the glass ribbon Gr is slowly cooled.
  • the slow cooling furnace is provided with a predetermined temperature gradient in the internal space toward the downward X.
  • the glass ribbon Gr continuous with the molded body 21 is guided by the annealing roller 31 arranged in the slow cooling unit 3, and moves downward X in the internal space of the slow cooling furnace as it moves downward. It is slowly cooled so that the temperature becomes low. Along with this, the internal strain of the glass ribbon Gr is removed.
  • the glass ribbon Gr is cut to a predetermined length.
  • the cutout portion 4 includes an arm 41, and first, both ends of the glass ribbon Gr in the width direction Y are sandwiched by chucks 42 attached to the arm 41.
  • the wheel cutter 43 is run along the width direction Y of the glass ribbon Gr along the planned cutting line of one main surface of the glass ribbon Gr.
  • the ribbon line 46 is formed.
  • the arm 41 rotates around the fulcrum bar 45 and applies bending stress along the scribe line 46 to cut (cut) the glass ribbon Gr along the scribe line 46.
  • a glass plate G having a predetermined length can be obtained from the glass ribbon Gr.
  • the glass ribbon Gr is cut in a vertical posture (for example, a vertical posture), and the obtained glass plate G is conveyed in the vertical posture in the transport step S4.
  • the cutting method of the glass ribbon Gr is not limited to cutting by bending stress, and may be, for example, laser cutting or laser fusing.
  • the glass plate G produced in the cutting step S3 is transported to each step after the selvage cutting step S5 in a vertical posture.
  • the transport unit 5 includes an upper holding mechanism 51, an upper guide rail 52, and a moving body 53.
  • the upper holding mechanism 51 holds the upper portion of the glass plate G in the vertical posture, and then the moving body 53 moves along the upper guide rail 52 extending in the width direction Y of the glass plate G to convey the glass plate G.
  • both ends (ears) of the glass plate G in the width direction Y are cut. Both ends of the glass plate G in the width direction Y may be relatively thicker than the central portion in the width direction Y, and both ends thereof are called selvage portions.
  • the selvage cutting portion 6 includes a holding portion 61, a wheel cutter 62, and a support bar 63 in the first station ST1.
  • the glass plate G transported to the first station ST1 by the transport step S4 is delivered to the sandwiching portion 61, and the upper portion is suspended and supported in a vertical posture.
  • the wheel cutter 62 forms a scribe line 67 along the upward direction X of the glass plate G in a state of being supported by the support bar 63 from the back surface of the glass plate G.
  • the glass plate G is delivered to the upper holding mechanism 51 in the transport step S4 and is transported to the second station ST2.
  • the second station ST2 includes a holding portion 64, a pressing portion 65, and a support bar 66.
  • the glass plate G transported to the second station ST2 by the transport step S4 is delivered to the holding portion 64, and the upper portion is suspended and supported in a vertical posture.
  • the pressing portion 65 bends the glass plate G with the support bar 66 as a fulcrum by pushing the selvage portion 68 toward the back surface side.
  • the inspection steps include a first inspection step S6 for specifying the coordinates of defects in the glass plate G, a second inspection step S7 for specifying the type of defects in the glass plate G, and defects and first inspections that regularly appear in the flow direction. It has a third inspection step S8 for inspecting defects that cannot be detected in the inspection step S6 and the second inspection step S7.
  • the first inspection step S6, the second inspection step S7, and the third inspection step S8 will be described in detail.
  • the first inspection device 7 provided with the support mechanism 71, the bright field inspection machine 72, and the dark field inspection machine 73 is used.
  • the glass plate G transported to the first inspection step S6 by the transport step S4 is delivered to the support mechanism 71.
  • the upper holding mechanism 711 sandwiches the upper part of the glass plate G
  • the lower holding mechanism 712 holds the lower part of the glass plate G, respectively.
  • the chucks constituting the upper pinching mechanism 711 and the lower pinching mechanism 712 are connected to the air cylinder 713, respectively.
  • the air cylinder 713 can send compressed air from an air supply device (for example, an air compressor) (not shown), and sucks the air remaining in the air cylinder 713 by an air suction device (for example, a vacuum pump) (not shown). It is possible to discharge. Then, the air pressure in the air cylinder 713 is adjusted by the air supply device and the air suction device, and a predetermined force is applied by moving the piston contained in the cylinder by the pressure.
  • an air supply device for example, an air compressor
  • an air suction device for example, a vacuum pump
  • the upper downstream chuck group 7111 is upward and downstream
  • the upper upstream chuck group 7112 is upward and upstream
  • the lower downstream chuck group 7121 is downward and downstream
  • the lower upstream chuck group 7122 is downward.
  • the bright field inspection machine 72 includes a bright field light source 721 and a bright field camera 722.
  • the bright-field camera 722 is arranged on the optical axis of the bright-field light source 721 so that the light emitted from the bright-field light source 721 to the glass plate G and transmitted through the glass plate G can be captured.
  • a light-shielding plate 723 that forms a bright part and a dark part in the field of view of the bright-field camera 722 is installed between the glass plate G and the bright-field camera 722.
  • the dark field inspection machine 73 includes a dark field light source 731 and a dark field camera 732, and the dark field camera 732 can capture the light scattered by the defect of the glass plate G by irradiating the glass plate G from the dark field light source 731. As such, it is arranged at a position off the optical axis of the dark field light source 731. Further, a plurality of bright-field light sources 721 and dark-field light sources 731 are arranged along the vertical direction X of the glass plate G to form a linear light source. Further, a plurality of bright-field cameras 722 and dark-field cameras 732 are similarly arranged along the vertical direction X to form line sensor cameras, respectively.
  • the entire main surface of the glass plate G can be imaged by passing the linear light source and the line sensor camera once through the glass plate G, so that the coordinates of the defects of the entire main surface of the glass plate G can be quickly identified. ..
  • the bright-field light source 721 and the dark-field light source 731 may be unitized so that the imaging position of the bright-field inspection machine 72 and the imaging position of the dark-field inspection machine 73 on the glass plate G match. ..
  • a beam splitter 74 is installed between the glass plate G and the light-shielding plate 723 using a dark-field light source 731 having a wavelength different from that of the bright-field light source 721, and the light and the dark-field camera imaged by the bright-field camera 722.
  • the light imaged by the 732 is separated.
  • the bright field light source 721 and the dark field light source 731 may not be unitized, and the optical paths of the bright field inspection machine 72 and the dark field inspection machine 73 may be made independent.
  • the LED light source is used as the bright field light source 721 and the dark field light source 731, but a metal halide lamp or a laser light source may be used.
  • the bright field inspection machine 72 and the dark field inspection machine 73 can be integrally moved in the width direction Y of the glass plate G. While moving in the width direction Y of the glass plate G, the entire main surface of the glass plate G is imaged. By comparing the obtained bright-field image and dark-field image, the presence or absence of defects is identified, and the coordinates are recorded in a database (not shown). The reference of the coordinates is the upper end and the downstream end face of the glass plate G.
  • the glass plate G is handed over to the upper holding mechanism 51 of the transporting step S4, and then is transported to the second inspection step S7.
  • the second inspection device 8 provided with the support mechanism 81, the image pickup system 82, and the image pickup system drive mechanism 83 is used.
  • the glass plate G transported to the second inspection step S7 by the transport step S4 is delivered to the support mechanism 81.
  • the upper holding mechanism 811 holds the upper part of the glass plate G
  • the lower holding mechanism 812 holds the lower part of the glass plate G, respectively.
  • the chucks constituting the upper pinching mechanism 811 and the lower pinching mechanism 812 are each connected to the air cylinder 813.
  • the air cylinder 813 is connected to an air supply device and an air suction device (not shown) to apply a predetermined force.
  • the upper downstream chuck group 8111 is in the upward and downstream sides
  • the upper upstream chuck group 8112 is in the upward and upstream sides
  • the lower downstream chuck group 8121 is in the downward and downstream sides
  • the lower upstream chuck group 8122 is in the lower direction.
  • a tensile force is applied to the vertical direction X and the width direction Y of the glass plate G on the direction and the upstream side.
  • the tensile force is preferably 120 N or more.
  • the position detecting means 84 is used to detect and record the positions of the upper end and the downstream end surface of the glass plate G.
  • the position detecting means 84 for example, a transmission type laser sensor or the like can be used. As a result, the imaging system can be moved to a position where defects can be accommodated in the field of view of the imaging unit 823.
  • the image pickup system 82 includes a light source unit 821, a microscopic optical unit 822, and an image pickup unit 823.
  • the light source unit 821 irradiates the glass plate G with inspection light, magnifies the image of the defect of the glass plate G by the microscopic optical unit 822, and images the image on the image pickup unit 823.
  • the image of the defect includes an image in which the inspection light is reflected by the defect and an image in which the light reflected by the back surface of the glass plate G is blocked by the defect.
  • the LED light source is used as the light source unit 821, but a metal halide lamp or a laser light source may be used.
  • the image pickup system 82 is attached to the vertical drive mechanism 832, and the vertical drive mechanism 832 is attached to the width direction drive mechanism 831.
  • the vertical drive mechanism 832 and the width direction drive mechanism 831 are provided with a servomotor, a linear motion guide, and a ball screw, and are driven in the vertical direction X and the width direction Y, respectively.
  • the image pickup system 82 can move to an arbitrary position in the region to be inspected in the second inspection step S7 of the glass plate G and take an image.
  • the driving method of the vertical drive mechanism 832 and the width direction drive mechanism 831 is not limited to the ball screw, and a timing belt, a chain, or the like may be used. Further, a linear motor may be used as an alternative to the servo motor and the ball screw.
  • the image pickup system 82 stands by in the region A below the lower end of the glass plate G shown in FIG. As a result, it is possible to prevent the glass plate G from coming into contact with the image pickup system 82 even if the glass plate G is greatly shaken during the delivery to the second inspection step S7. Further, the imaging system 82 stands by in the region B at the substantially central portion in the width direction Y of the glass plate G, so that the coordinates of the defect identified in the first inspection step S6 are located on the upstream side or the downstream side of the farthest upper side. Even if there is, the distance traveled to the coordinates of the defect can be shortened. When the glass plate G is carried out from the second inspection step S7, it is preferable to make the image pickup system 82 stand by in the area A or the area B as in the case of carrying in the glass plate G.
  • the imaging system 82 After the glass plate G is sandwiched by the upper pinching mechanism 811 and the lower pinching mechanism 812, the imaging system 82 is moved to the coordinates of the defect specified in the first inspection step S6.
  • the reference of the coordinates is the upper end surface and the downstream end surface of the glass plate G detected by the position detecting means 84.
  • the image pickup system 82 moves from the area A or the area B to the coordinates of the defect, the image pickup system 82 passes between the lower downstream side chuck group 8121 and the lower upstream side chuck group 8122.
  • the number of coordinates to be imaged is limited to a predetermined number or less so that the time required for the second inspection step S7 is within the transport tact time.
  • the imaging system 82 After imaging the defect at the coordinates to be imaged, the imaging system 82 passes between the lower downstream side chuck group 8121 and the lower upstream side chuck group 8122 again, moves to the area A or the area B, and stands by.
  • the type of defect is specified based on the image of the defect captured in the second inspection step S7.
  • the type of the identified defect is associated with the information on the number and coordinates of the defect identified in the first inspection step S6, and is stored in a database (not shown).
  • the third inspection apparatus 9 provided with the third inspection table 91, the third inspection light source 92, and the light source cover 93 is used.
  • the inspector stands on the third inspection table 91 at a predetermined height and cannot find the veins and uneven thickness of the glass plate G in the first inspection step S6 and the second inspection step S7. Visually detect defects and defects that appear regularly in the flow direction. By irradiating the end face of the glass plate G with the inspection light from the third inspection light source 92, the visibility of defects such as pulse and uneven thickness is improved and the detection is facilitated.
  • the LED light source is used as the third inspection light source 92, but a metal halide lamp, a laser light source, or the like may be used.
  • the third inspection device 9 is arranged at a position common to the second inspection device 8 so that the second inspection step S7 and the third inspection step S8 can be performed in parallel. This makes it possible to shorten the time required for the inspection process and save space. Further, the lower region C in the vertical direction X of the glass plate G is inspected in the second inspection step S7, and the upper region D narrower than the region C is inspected in the third inspection step S8. Defects in the glass plate G occur continuously along the flow direction in the molding process, that is, the vertical direction X. By dividing the area to be inspected by the glass plate G into the lower area C and the upper area D, the entire range can be inspected in the width direction Y in each inspection process, and defects in the width direction Y can be inspected.
  • the glass plate G is suspended, supported and transported from above in a vertical posture, but by setting the region to be inspected in the second inspection step S7 to the lower side of the glass plate G, the second inspection step It is possible to prevent interference between the equipment for carrying out S7 and the transport unit 5.
  • the third inspection step S8 inspects the appearance of the glass plate G such as the veins and uneven thickness, and it is not necessary to inspect a wide area. By making the area C wider than the area D, it is possible to specify as many types of defects whose coordinates are specified in the first inspection step S6 as possible. As a result, the time required for the second inspection step S7 and the third inspection step S8 can be shortened.
  • the number of defects identified in the second inspection step S7 is reduced to be smaller than the number of coordinates of the defects specified in the first inspection step S6.
  • the first inspection step S6 can be inspected in a time required only once the line sensor camera is passed through the glass plate G.
  • the imaging system 82 is driven for the coordinates of the defects specified in the first inspection step S6 to take an image, so that the number of defects whose coordinates are specified in the first inspection step S6 is increased.
  • the inspection time of the second inspection step S7 is longer than that of the first inspection step S6. Therefore, the number of defects imaged in the second inspection step S7 is limited to a certain number or less. With such a configuration, it is possible to prevent the time required for the second inspection step S7 from becoming longer than necessary.
  • the inspection result of the glass plate G is determined based on the results of the first inspection step S6, the second inspection step S7, and the third inspection step S8.
  • the glass plate G is handed over to the upper holding mechanism 51 of the transport step S4. If the glass plate G passes the inspection, it is transported to the packing process S9, and if the inspection fails, it is disposed of at a disposal location (not shown).
  • the glass plate manufacturing apparatus 1 configured as described above, regarding the glass plate G conveyed in the vertical posture by dividing the identification of the coordinates of the defect and the identification of the type of the defect into separate steps. , The type of defect can be identified accurately.
  • the present invention is not limited to the configuration of the above embodiment, and is not limited to the above-mentioned action and effect.
  • the present invention can be modified in various ways without departing from the gist of the present invention.
  • the present invention is limited to this. Not done. It is not always necessary to apply a tensile force to the glass plate G, and the lower portion of the glass plate G may not be sandwiched but only the upper portion may be sandwiched.
  • the bright field inspection machine 72 and the dark field inspection machine 73 specify the coordinates of the defect by using the light transmitted through the glass plate G, but the present invention is not limited to this.
  • a method of specifying the coordinates of the defect by using the light reflected from the glass plate G may also be used.
  • the glass plate G is passed through the line sensor camera for inspection, but the inspection is not limited to this.
  • the line sensor camera may be fixed and the glass plate G may be relatively moved to take an image of the entire glass plate.
  • the image pickup system 82 uses the light reflected by the glass plate G to image the defect, but the present invention is not limited to this. A method of imaging defects using light transmitted through the glass plate G may also be used.
  • the image pickup system 82 is made to stand by in the area A or the area B when the glass plate G is carried in or out, but the present invention is not limited to this.
  • the image pickup system 82 may move in the direction perpendicular to the surface of the glass plate and stand by when the glass plate G is carried in or out.
  • the third inspection device 9 is arranged above the second inspection device 8, and the second inspection step and the third inspection step are performed in parallel, but the present invention is not limited to this.
  • the third inspection device 9 may be arranged on the downstream side of the second inspection device 8, and the third inspection step S8 may be carried out after the completion of the second inspection step S7. Further, the entire surface of the glass plate G may be inspected in the second inspection step S7 and the third inspection step S8, or the third inspection step may be omitted.
  • the present invention can be suitably used for manufacturing a glass plate including a step of inspecting the presence or absence of defects contained in the molded glass plate during transportation.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

This glass plate G manufacturing method comprises a formation step S1 for forming a glass ribbon Gr using a downdraw method, a cutout step S3 for cutting out glass plates G by cutting off each prescribed length of the formed glass ribbon Gr, a conveyance step S4 for conveying a cut out glass plate G in a vertical orientation and parallel to the main surface of the glass plate G, and an inspection step for inspecting the glass plate G during the conveyance step S4, wherein the inspection step comprises a first inspection step S6 for specifying the coordinates of a defect in the glass plate G and a second inspection step S7 for identifying the type of the defect positioned at the coordinates specified in the first inspection step S6. As a result, it is possible to accurately identify the type of a defect in a glass plate being conveyed in a vertical orientation.

Description

ガラス板の製造方法Glass plate manufacturing method
 本発明は、成形されたガラス板に含まれる欠陥の有無を搬送中に検査する工程を含むガラス板の製造方法に関する。 The present invention relates to a method for manufacturing a glass plate, which comprises a step of inspecting the presence or absence of defects contained in the molded glass plate during transportation.
 周知のように、液晶ディスプレイ、エレクトロルミネッセンスディスプレイなどのフラットパネルディスプレイ(FPD)用のガラス板を初めとする各種ガラス板は、溶融炉で溶融された溶融ガラスを帯状のガラスリボンに成形し、このガラスリボンを十分に冷却した後に所定寸法に切断することにより製作される。ここで、ガラスリボンの成形には、フロート法の他、オーバーフローダウンドロー法(フュージョン法)やスロットダウンドロー法などのダウンドロー法などが一般的に利用されている。 As is well known, various glass plates such as glass plates for flat panel displays (FPDs) such as liquid crystal displays and electroluminescence displays are made by molding molten glass melted in a melting furnace into a strip-shaped glass ribbon. It is manufactured by cutting the glass ribbon to a predetermined size after it has been sufficiently cooled. Here, in addition to the float method, a down draw method such as an overflow down draw method (fusion method) or a slot down draw method is generally used for forming the glass ribbon.
 ダウンドロー法では、縦姿勢でガラスリボンが成形される。製造設備の省スペースの観点から、ガラス板の姿勢を変更する工程を省くことを目的として、縦姿勢の状態で切り出し工程、耳部切断工程、搬送工程、検査工程、及び梱包工程が行われている。 In the down draw method, the glass ribbon is molded in a vertical position. From the viewpoint of space saving of manufacturing equipment, the cutting process, ear cutting process, transport process, inspection process, and packing process are performed in the vertical posture for the purpose of omitting the process of changing the posture of the glass plate. There is.
 しかしながら、ガラス板を縦姿勢で搬送する場合、上端を吊り下げ支持して搬送するため、ガラス板が揺れやすい。この状態で検査を行うと、揺れによって板厚方向に変位した箇所が焦点から外れやすく、正確に検査することが困難である。この課題を解決する検査工程としては、例えば特許文献1に開示のものが挙げられる。同文献に開示の検査工程では、縦姿勢のガラス板の上部及び下部を挟持し、上下方向に引張力を付与することで揺れの振幅を抑え、検査する箇所が焦点から外れることを防止している。 However, when transporting the glass plate in a vertical posture, the glass plate is liable to shake because the upper end is suspended and supported for transport. If the inspection is performed in this state, the portion displaced in the plate thickness direction due to the shaking tends to be out of focus, and it is difficult to perform the inspection accurately. Examples of the inspection process for solving this problem include those disclosed in Patent Document 1. In the inspection process disclosed in the same document, the upper and lower parts of the glass plate in the vertical posture are sandwiched and a tensile force is applied in the vertical direction to suppress the amplitude of the shaking and prevent the inspected part from being out of focus. There is.
 ところで、ガラス板の代表的な欠陥としては、泡欠陥と異物欠陥(例えば、耐火物等からの剥離物など)があり、泡欠陥と異物欠陥とでは、ガラス板の品質に与える影響が異なる。そのため、泡欠陥の許容サイズと異物欠陥の許容サイズとが異なり、同一サイズの欠陥であっても欠陥の種類によって合否基準が異なる。また、欠陥の種類の情報を溶融工程や成形工程等の上流工程にフィードバックすることで、欠陥を減らし歩留まりを向上することができる。したがって、泡欠陥と異物欠陥を識別する必要がある。そのための検査方法としては、例えば特許文献2に開示のものが挙げられる。同文献に開示の検査工程では、明視野光学系と暗視野光学系を組み合わせて欠陥の座標を特定するとともに、欠陥の像を撮像し、撮像した欠陥の像に基づいて欠陥の種類を識別している。 By the way, typical defects of the glass plate include foam defects and foreign matter defects (for example, exfoliated matter from a refractory or the like), and the influence on the quality of the glass plate differs between the foam defects and the foreign matter defects. Therefore, the permissible size of bubble defects and the permissible size of foreign matter defects are different, and even if the defects have the same size, the pass / fail criteria differ depending on the type of defect. Further, by feeding back the information on the type of defect to the upstream process such as the melting process and the molding process, it is possible to reduce the defect and improve the yield. Therefore, it is necessary to distinguish between foam defects and foreign matter defects. Examples of the inspection method for that purpose include those disclosed in Patent Document 2. In the inspection process disclosed in the same document, the bright-field optical system and the dark-field optical system are combined to identify the coordinates of the defect, an image of the defect is imaged, and the type of the defect is identified based on the image of the image of the defect. ing.
特開2009-236771号公報Japanese Unexamined Patent Publication No. 2009-2367771 特開2018―112411号公報Japanese Unexamined Patent Publication No. 2018-112411
 しかしながら特許文献2に記載の従来の検査方法では、欠陥の座標と欠陥の種類を同時に特定するため、ガラス板の欠陥を高精度に撮像し、その種類を正確に識別することが困難であった。 However, in the conventional inspection method described in Patent Document 2, since the coordinates of the defect and the type of the defect are specified at the same time, it is difficult to image the defect of the glass plate with high accuracy and accurately identify the type. ..
 本発明は、縦姿勢のガラス板の欠陥の種類を正確に識別することを技術的課題とする。 The technical subject of the present invention is to accurately identify the type of defect in the vertical glass plate.
 上記課題を解決すべく創案された本発明は、ダウンドロー法でガラスリボンを成形する成形工程と、成形された前記ガラスリボンを所定長さ毎に切断することでガラス板を切り出す切り出し工程と、切り出された前記ガラス板を縦姿勢で前記ガラス板の主面と平行に搬送する搬送工程と、前記搬送工程中に前記ガラス板の検査を行う検査工程と、を有するガラス板の製造方法であって、前記検査工程では、前記ガラス板の欠陥の座標を特定する第一検査工程と、前記第一検査工程で特定された前記座標に位置する前記欠陥の種類を識別する第二検査工程とを備えることを特徴とする。このような構成によれば、欠陥の座標の特定と欠陥の種類の特定を別工程に分けることによって、縦姿勢で搬送されるガラス板に関して、欠陥の種類を正確に識別できる。 The present invention, which was devised to solve the above problems, comprises a molding process of forming a glass ribbon by a down-draw method, a cutting process of cutting a glass plate by cutting the molded glass ribbon at a predetermined length, and a cutting process of cutting out a glass plate. A method for manufacturing a glass plate, comprising a transporting step of transporting the cut out glass plate in a vertical position in parallel with the main surface of the glass plate, and an inspection step of inspecting the glass plate during the transporting step. In the inspection step, a first inspection step of specifying the coordinates of the defect of the glass plate and a second inspection step of identifying the type of the defect located at the coordinates specified in the first inspection step are performed. It is characterized by being prepared. According to such a configuration, by separating the identification of the coordinates of the defect and the identification of the type of the defect into separate steps, it is possible to accurately identify the type of the defect with respect to the glass plate conveyed in the vertical posture.
 上記の構成において、前記検査工程では、前記ガラス板の上部及び下部が挟持されることが好ましい。このような構成によれば、前記ガラス板の揺れの振幅を小さく抑えることができ、ガラス板を正確に検査できる。 In the above configuration, it is preferable that the upper part and the lower part of the glass plate are sandwiched in the inspection step. According to such a configuration, the amplitude of the shaking of the glass plate can be suppressed to be small, and the glass plate can be inspected accurately.
 上記の構成において、前記ガラス板を挟持する挟持機構は、前記ガラス板に対し上下方向及び幅方向に引張力を付与することが好ましい。このような構成によれば、前記ガラス板の揺れの振幅をより小さく抑えることができ、ガラス板をより正確に検査できる。 In the above configuration, it is preferable that the holding mechanism for holding the glass plate applies a tensile force to the glass plate in the vertical direction and the width direction. According to such a configuration, the amplitude of the shaking of the glass plate can be suppressed to be smaller, and the glass plate can be inspected more accurately.
 上記の構成において、前記第一検査工程は、上下方向に沿った線状光源とラインセンサカメラとを有することが好ましい。このような構成によれば、ガラス板に対して線状光源とラインセンサカメラを一度通過させることでガラス板の主面全体を撮像できるため、ガラス板の主面全体の欠陥の座標を速やかに特定できる。 In the above configuration, it is preferable that the first inspection step includes a linear light source along the vertical direction and a line sensor camera. According to such a configuration, the entire main surface of the glass plate can be imaged by passing the linear light source and the line sensor camera once through the glass plate, so that the coordinates of the defects of the entire main surface of the glass plate can be quickly obtained. Can be identified.
 上記の構成において、前記第二検査工程は撮像系を有し、前記撮像系は、前記ガラス板に検査光を照射する光源部と、前記第一検査工程で特定された座標に位置する前記欠陥の像を拡大する顕微光学部と、拡大された前記欠陥の像を撮像する撮像部と、を有することが好ましい。このような構成によれば、欠陥の像を適切な倍率で撮像することができ、欠陥を直接拡大して目視できるため、欠陥の種類をより正確に識別できる。 In the above configuration, the second inspection step has an imaging system, and the imaging system includes a light source unit that irradiates the glass plate with inspection light and the defect located at the coordinates specified in the first inspection step. It is preferable to have a microscopic optical unit that magnifies the image of the above and an image pickup unit that captures the magnified image of the defect. According to such a configuration, the image of the defect can be imaged at an appropriate magnification, and the defect can be directly magnified and visually observed, so that the type of the defect can be identified more accurately.
 上記の構成において、前記撮像系を、前記ガラス板の上下方向及び、幅方向に駆動させることが好ましい。このような構成によれば、第一検査工程で特定した欠陥の座標に撮像系を容易に移動させることができる。 In the above configuration, it is preferable to drive the imaging system in the vertical direction and the width direction of the glass plate. With such a configuration, the imaging system can be easily moved to the coordinates of the defect identified in the first inspection step.
 上記の構成において、前記搬送工程は、前記第二検査工程への前記ガラス板の搬入と、前記第二検査工程からの前記ガラス板の搬出を行い、前記第二検査工程への前記ガラス板の搬入中と、前記第二検査工程からの前記ガラス板の搬出中は、前記撮像系を前記ガラス板の下端より下側に待機させておくことが好ましい。一般的には、撮像系の倍率を高めると、撮像系の焦点距離は短くなる。そのため、撮像系とガラス板との距離を従来の検査方法よりも近づける必要があり、ガラス板の搬送中にガラス板と撮像系が衝突する恐れがある。撮像系をガラス板の下端より下側に待機させることで、ガラス板の第二検査工程への搬入中及び第二検査工程からの搬出中の撮像系とガラス板の衝突を防止できる。 In the above configuration, in the transfer step, the glass plate is carried in to the second inspection step and the glass plate is carried out from the second inspection step, and the glass plate is carried out to the second inspection step. It is preferable to keep the imaging system on standby below the lower end of the glass plate during the loading and unloading of the glass plate from the second inspection step. Generally, when the magnification of the imaging system is increased, the focal length of the imaging system becomes shorter. Therefore, it is necessary to make the distance between the image pickup system and the glass plate closer than that of the conventional inspection method, and there is a possibility that the glass plate and the image pickup system collide with each other during the transportation of the glass plate. By making the image pickup system stand by below the lower end of the glass plate, it is possible to prevent the glass plate from colliding with the image pickup system during loading into the second inspection process and during removal from the second inspection step.
 上記の構成において、前記第二検査工程への前記ガラス板の搬入中と、前記第二検査工程からの前記ガラス板の搬出中は、前記撮像系を前記ガラス板の下端より下側の幅方向における略中央部に待機させておくことが好ましい。このような構成によれば、撮像系とガラス板の衝突を防止するとともに、待機位置から第一検査工程で特定した欠陥の座標への撮像系の移動距離を短縮することで、第二検査工程にかかる時間を短縮できる。 In the above configuration, the image pickup system is placed in the width direction below the lower end of the glass plate during the loading of the glass plate into the second inspection step and the loading of the glass plate from the second inspection step. It is preferable to make it stand by in the substantially central part of the above. According to such a configuration, the collision between the image pickup system and the glass plate is prevented, and the moving distance of the image pickup system from the standby position to the coordinates of the defect specified in the first inspection step is shortened, so that the second inspection step It can reduce the time required for.
 上記の構成において、前記第一検査工程では、前記ガラス板の端面を基準とする前記欠陥の座標を記録し、前記第二検査工程では、位置検出手段を用いて前記ガラス板の端面を検出し、前記端面を基準とする座標位置に前記撮像系を移動させることが好ましい。搬送工程における機械的な誤差により、第二検査工程へ搬入されるガラス板は必ずしも同じ位置で停止するとは限らない。第二検査工程の座標の基準をガラス板の停止位置に関わらず一定としていた場合、ガラス板の停止位置のばらつきが大きいと、撮像すべき欠陥が撮像系の視野から外れて撮像できず、欠陥の種類が識別できない恐れがある。第二検査工程においてガラス板の端面の位置を検出して座標の基準とすることで、撮像系を視野内に欠陥を収められる位置に移動させることができる。 In the above configuration, in the first inspection step, the coordinates of the defect with respect to the end face of the glass plate are recorded, and in the second inspection step, the end face of the glass plate is detected by using the position detecting means. It is preferable to move the imaging system to a coordinate position with respect to the end face. Due to mechanical errors in the transport process, the glass plates carried into the second inspection process do not always stop at the same position. When the reference of the coordinates of the second inspection step is constant regardless of the stop position of the glass plate, if the variation of the stop position of the glass plate is large, the defect to be imaged is out of the field of view of the imaging system and cannot be imaged. There is a risk that the type of glass cannot be identified. By detecting the position of the end face of the glass plate and using it as a reference for the coordinates in the second inspection step, the imaging system can be moved to a position where the defect can be accommodated in the field of view.
 上記の構成において、前記検査工程は、検査者が目視による前記ガラス板の外観検査を行う第三検査工程を更に有し、前記第三検査工程は、前記第二検査工程と並行して行われることが好ましい。第二検査工程と第三検査工程を並行して実施することで、個別に実施するよりも検査時間と検査スペースを短縮できる。 In the above configuration, the inspection step further includes a third inspection step in which the inspector visually inspects the appearance of the glass plate, and the third inspection step is performed in parallel with the second inspection step. Is preferable. By carrying out the second inspection step and the third inspection step in parallel, the inspection time and the inspection space can be shortened as compared with the case where the second inspection step and the third inspection step are carried out individually.
 上記の構成において、前記検査工程では、前記ガラス板の上下方向における上側の領域を前記第三検査工程で検査し、下側の領域を前記第二検査工程で検査し、前記第三検査工程で検査する領域よりも前記第二検査工程で検査する領域のほうが広いことが好ましい。ガラス板の欠陥は成形工程における流れ方向、つまり上下方向に沿って連続して発生する。第二検査工程及び第三検査工程で検査する領域を上下に分けることにより、夫々の検査工程で幅方向に渡って全範囲を検査することができ、幅方向に渡る欠陥の分布が得られる。また、ガラス板は縦姿勢で上側から吊り下げ支持され搬送されるが、第二検査工程で検査する領域をガラス板の下側にすることにより、第二検査工程を実施するための設備と、ガラス板を搬送するための設備の干渉を防ぐことができる。また、第三検査工程はガラス板の脈理や偏肉等の外観を検査するものであり、広い領域を検査する必要はない。第二検査工程で検査する領域を第三検査工程で検査する領域よりも広くすることで、第一検査工程で座標が特定された欠陥の種類をできる限り多く特定することができる。 In the above configuration, in the inspection step, the upper region in the vertical direction of the glass plate is inspected in the third inspection step, the lower region is inspected in the second inspection step, and the third inspection step It is preferable that the area to be inspected in the second inspection step is wider than the area to be inspected. Defects in the glass plate occur continuously along the flow direction in the molding process, that is, the vertical direction. By dividing the area to be inspected in the second inspection step and the third inspection step into upper and lower parts, the entire range can be inspected in the width direction in each inspection step, and the distribution of defects in the width direction can be obtained. In addition, the glass plate is suspended, supported and transported from above in a vertical position, but by setting the area to be inspected in the second inspection process to the lower side of the glass plate, equipment for carrying out the second inspection process and equipment for carrying out the second inspection process, It is possible to prevent the interference of the equipment for transporting the glass plate. In addition, the third inspection step is to inspect the appearance of the glass plate such as pulse and uneven thickness, and it is not necessary to inspect a wide area. By making the area to be inspected in the second inspection step wider than the area to be inspected in the third inspection step, it is possible to specify as many types of defects whose coordinates are specified in the first inspection step as possible.
 上記の構成において、前記第二検査工程は、前記第三検査工程で検査する領域を除外して検査を行うことが好ましい。ガラス板の欠陥は上下方向に沿って連続して発生する。そのため、上下方向に渡って全範囲を検査する必要はなく、幅方向に渡って全範囲を検査すれば良い。このような構成によれば、第二検査工程及び第三検査工程にかかる時間を短縮できる。 In the above configuration, it is preferable that the second inspection step excludes the area to be inspected in the third inspection step. Defects in the glass plate occur continuously along the vertical direction. Therefore, it is not necessary to inspect the entire range in the vertical direction, but it is sufficient to inspect the entire range in the width direction. According to such a configuration, the time required for the second inspection step and the third inspection step can be shortened.
 上記の構成において、前記第一検査工程で特定する前記欠陥の前記座標の数よりも、前記第二検査工程で識別する前記欠陥の数のほうが少ないことが好ましい。第一検査工程は、ガラス板に対してラインセンサカメラを一度通過させるだけの時間で検査可能である。一方で第二検査工程では、第一検査工程で特定された欠陥の座標に対して撮像系を駆動し、撮像するため、第一検査工程で座標が特定された欠陥の数が一定数より多い場合は、第一検査工程より第二検査工程の検査時間が長くなる。そのため、第二検査工程で撮像する欠陥の数を一定数以下に制限する。このような構成によれば、検査工程にかかる時間が必要以上に長くなることを防止できる。 In the above configuration, it is preferable that the number of the defects identified in the second inspection step is smaller than the number of the coordinates of the defects specified in the first inspection step. The first inspection step can be inspected in a time required to pass the line sensor camera once through the glass plate. On the other hand, in the second inspection step, since the imaging system is driven for the coordinates of the defects specified in the first inspection step and the image is taken, the number of defects whose coordinates are specified in the first inspection step is larger than a certain number. In that case, the inspection time of the second inspection step is longer than that of the first inspection step. Therefore, the number of defects imaged in the second inspection step is limited to a certain number or less. With such a configuration, it is possible to prevent the time required for the inspection process from becoming longer than necessary.
 以上のような本発明によれば、縦姿勢のガラス板の欠陥の種類を正確に識別できる。 According to the present invention as described above, the type of defect of the glass plate in the vertical posture can be accurately identified.
ガラス板の製造方法の概略図である。It is a schematic diagram of the manufacturing method of a glass plate. 成形工程と徐冷工程の概略図である。It is a schematic diagram of a molding process and a slow cooling process. 切り出し工程の概略図である。It is a schematic diagram of a cutting process. 搬送工程の概略図である。It is a schematic diagram of a transport process. 耳部切断工程の概略図である。It is a schematic diagram of the selvage cutting process. 第一検査工程の概略図である。It is a schematic diagram of the 1st inspection process. 明視野検査機及び暗視野検査機の概略図である。It is a schematic diagram of a bright-field inspection machine and a dark-field inspection machine. 第二検査工程の概略図である。It is a schematic diagram of the 2nd inspection process. 撮像系の概略図である。It is a schematic diagram of an imaging system. 第三検査工程の概略図である。It is a schematic diagram of the 3rd inspection process.
 本発明に係るガラス板の製造方法の一実施形態について説明する。 An embodiment of a method for manufacturing a glass plate according to the present invention will be described.
 図1に本発明に係るガラス板の製造方法の一実施形態を示す。ガラス板製造装置1は、溶融ガラスGmを下方向Xに延伸して帯状のガラスリボンGrを成形する成形工程S1と、成形工程S1で成形されたガラスリボンGrを徐冷する徐冷工程S2と、徐冷工程S2で徐冷されたガラスリボンGrを所定の大きさに切断してガラス板Gを得る切り出し工程S3と、切り出されたガラス板Gを縦姿勢で幅方向Yに搬送する搬送工程S4と、幅方向Yの両端部に形成された肉厚部(耳部)を除去する耳部切断工程S5と、耳部切断工程S5で得たガラス板Gを検査する第一検査工程S6、第二検査工程S7、及び第三検査工程S8と、検査に合格したガラス板Gを梱包する梱包工程S9とを備える。 FIG. 1 shows an embodiment of a method for manufacturing a glass plate according to the present invention. The glass plate manufacturing apparatus 1 includes a molding step S1 in which the molten glass Gm is stretched downward X to form a strip-shaped glass ribbon Gr, and a slow cooling step S2 in which the glass ribbon Gr formed in the molding step S1 is slowly cooled. A cutting step S3 for cutting the glass ribbon Gr slowly cooled in the slow cooling step S2 to a predetermined size to obtain a glass plate G, and a transporting step for transporting the cut glass plate G in a vertical posture in the width direction Y. S4, an ear cutting step S5 for removing thick portions (ears) formed at both ends in the width direction Y, and a first inspection step S6 for inspecting the glass plate G obtained in the ear cutting step S5. The second inspection step S7, the third inspection step S8, and the packing step S9 for packing the glass plate G that has passed the inspection are provided.
 成形工程S1では、オーバーフローダウンドロー法を用いて図示しない溶融炉で溶融された溶融ガラスGmからガラスリボンGrを成形する。詳細には、図2に示すように、成形部2には成形体21が配置され、断面楔形の成形体21の頂部211から両側に溢れ出た夫々の溶融ガラスGmを成形体21の外側面部212に沿って流下させながら成形体の下端部213で融合一体化させることで、ガラスリボンGrを成形する。この場合、溶融ガラスGm(又はガラスリボンGr)はエッジローラ22にガイドされ、下方向Xに延伸される。なお、成形工程S1は、オーバーフローダウンドロー法を用いたものに限定されるものではなく、例えばスロットダウンドロー法やリドロー法などの他のダウンドロー法や、フロート法を用いてもよい。 In the molding step S1, the glass ribbon Gr is molded from the molten glass Gm melted in a melting furnace (not shown) using the overflow downdraw method. Specifically, as shown in FIG. 2, the molded body 21 is arranged in the molded body 2, and the molten glass Gm overflowing from the top 211 of the molded body 21 having a wedge-shaped cross section on both sides is formed on the outer surface portion of the molded body 21. The glass ribbon Gr is molded by fusing and integrating at the lower end portion 213 of the molded body while flowing down along the 212. In this case, the molten glass Gm (or glass ribbon Gr) is guided by the edge roller 22 and stretched downward X. The molding step S1 is not limited to the one using the overflow down draw method, and for example, another down draw method such as a slot down draw method or a redraw method, or a float method may be used.
 徐冷工程S2では、ガラスリボンGrが徐冷される。徐冷炉は内部空間に下方向Xに向かって所定の温度勾配を設けられている。図2に示すように、成形体21に連続するガラスリボンGrは、徐冷部3に配置されたアニーラローラ31によって案内されながら、徐冷炉の内部空間を下方向Xに向かって移動するに連れて、温度が低くなるように徐冷される。これに伴い、ガラスリボンGrの内部歪が除去される。 In the slow cooling step S2, the glass ribbon Gr is slowly cooled. The slow cooling furnace is provided with a predetermined temperature gradient in the internal space toward the downward X. As shown in FIG. 2, the glass ribbon Gr continuous with the molded body 21 is guided by the annealing roller 31 arranged in the slow cooling unit 3, and moves downward X in the internal space of the slow cooling furnace as it moves downward. It is slowly cooled so that the temperature becomes low. Along with this, the internal strain of the glass ribbon Gr is removed.
 切り出し工程S3では、ガラスリボンGrを所定長さに切断する。図3に示すように、切り出し部4はアーム41を備え、初めにガラスリボンGrは幅方向Yの両端部をアーム41に取り付けられたチャック42によって挟持される。次に、支持バー44が裏面からガラスリボンGrを支えた状態で、ガラスリボンGrの一方の主面の切断予定線に沿ってホイールカッター43をガラスリボンGrの幅方向Yに沿って走行させ、スクライブ線46を形成させる。その後、支点バー45を支点として、アーム41が回転してスクライブ線46に沿って曲げ応力を作用させることで、ガラスリボンGrをスクライブ線46に沿って切断(割断)する。これにより、ガラスリボンGrから所定長さのガラス板Gが得られる。本実施形態では、切り出し工程S3において、ガラスリボンGrを縦姿勢(例えば、鉛直姿勢)のまま切断し、得られたガラス板Gを縦姿勢のまま搬送工程S4にて搬送する。なお、ガラスリボンGrの切断方法は曲げ応力による割断に限定されるものではなく、例えばレーザ割断やレーザ溶断などであっても良い。 In the cutting step S3, the glass ribbon Gr is cut to a predetermined length. As shown in FIG. 3, the cutout portion 4 includes an arm 41, and first, both ends of the glass ribbon Gr in the width direction Y are sandwiched by chucks 42 attached to the arm 41. Next, with the support bar 44 supporting the glass ribbon Gr from the back surface, the wheel cutter 43 is run along the width direction Y of the glass ribbon Gr along the planned cutting line of one main surface of the glass ribbon Gr. The ribbon line 46 is formed. After that, the arm 41 rotates around the fulcrum bar 45 and applies bending stress along the scribe line 46 to cut (cut) the glass ribbon Gr along the scribe line 46. As a result, a glass plate G having a predetermined length can be obtained from the glass ribbon Gr. In the present embodiment, in the cutting step S3, the glass ribbon Gr is cut in a vertical posture (for example, a vertical posture), and the obtained glass plate G is conveyed in the vertical posture in the transport step S4. The cutting method of the glass ribbon Gr is not limited to cutting by bending stress, and may be, for example, laser cutting or laser fusing.
 搬送工程S4では、切り出し工程S3で作製されたガラス板Gを縦姿勢の状態で耳部切断工程S5以降の各工程へ搬送する。図4に示すように、搬送部5は、上部挟持機構51と上部ガイドレール52と、移動体53を備える。上部挟持機構51が縦姿勢のガラス板Gの上部を挟持し、続いてガラス板Gの幅方向Yに延びる上部ガイドレール52に沿って移動体53が移動し、ガラス板Gを搬送する。 In the transport step S4, the glass plate G produced in the cutting step S3 is transported to each step after the selvage cutting step S5 in a vertical posture. As shown in FIG. 4, the transport unit 5 includes an upper holding mechanism 51, an upper guide rail 52, and a moving body 53. The upper holding mechanism 51 holds the upper portion of the glass plate G in the vertical posture, and then the moving body 53 moves along the upper guide rail 52 extending in the width direction Y of the glass plate G to convey the glass plate G.
 耳部切断工程S5では、ガラス板Gの幅方向Yの両端部(耳部)を切断する。ガラス板Gの幅方向Yの両端部は、幅方向Yの中央部よりも相対的に厚みが大きくなる場合があり、この両端部は耳部と呼ばれる。図5に示すように、耳部切断部6は、第一ステーションST1において、挟持部61とホイールカッター62と支持バー63を備える。搬送工程S4によって第一ステーションST1に搬送されたガラス板Gは、挟持部61に受け渡され、縦姿勢で上部を吊り下げ支持される。ホイールカッター62は、ガラス板Gの裏面から支持バー63が支えた状態でガラス板Gの上方向Xに沿ってスクライブ線67を形成させる。その後、ガラス板Gは搬送工程S4の上部挟持機構51に受け渡され、第二ステーションST2に搬送される。第二ステーションST2は、挟持部64と、押圧部65と支持バー66を備える。搬送工程S4によって第二ステーションST2に搬送されたガラス板Gは、挟持部64に受け渡され、縦姿勢で上部を吊り下げ支持される。押圧部65は、耳部68を裏面側に押し込むことで、ガラス板Gを支持バー66を支点として湾曲させる。これにより、スクライブ線67及びその近傍に曲げ応力を付与し、ガラス板Gをスクライブ線67に沿って上方向Xに割断する。耳部68を取り除かれたガラス板Gは搬送工程S4によって検査工程に搬送される。 In the selvage cutting step S5, both ends (ears) of the glass plate G in the width direction Y are cut. Both ends of the glass plate G in the width direction Y may be relatively thicker than the central portion in the width direction Y, and both ends thereof are called selvage portions. As shown in FIG. 5, the selvage cutting portion 6 includes a holding portion 61, a wheel cutter 62, and a support bar 63 in the first station ST1. The glass plate G transported to the first station ST1 by the transport step S4 is delivered to the sandwiching portion 61, and the upper portion is suspended and supported in a vertical posture. The wheel cutter 62 forms a scribe line 67 along the upward direction X of the glass plate G in a state of being supported by the support bar 63 from the back surface of the glass plate G. After that, the glass plate G is delivered to the upper holding mechanism 51 in the transport step S4 and is transported to the second station ST2. The second station ST2 includes a holding portion 64, a pressing portion 65, and a support bar 66. The glass plate G transported to the second station ST2 by the transport step S4 is delivered to the holding portion 64, and the upper portion is suspended and supported in a vertical posture. The pressing portion 65 bends the glass plate G with the support bar 66 as a fulcrum by pushing the selvage portion 68 toward the back surface side. As a result, bending stress is applied to the scribe line 67 and its vicinity, and the glass plate G is cut in the upward direction X along the scribe line 67. The glass plate G from which the selvage portion 68 has been removed is transported to the inspection step by the transport step S4.
 検査工程は、ガラス板Gの欠陥の座標を特定する第一検査工程S6と、ガラス板Gの欠陥の種類を特定する第二検査工程S7と、流れ方向に規則的に出現する欠陥や第一検査工程S6及び第二検査工程S7で検出できない欠陥を検査する第三検査工程S8とを有する。以下、第一検査工程S6、第二検査工程S7、及び第三検査工程S8について詳細に説明する。 The inspection steps include a first inspection step S6 for specifying the coordinates of defects in the glass plate G, a second inspection step S7 for specifying the type of defects in the glass plate G, and defects and first inspections that regularly appear in the flow direction. It has a third inspection step S8 for inspecting defects that cannot be detected in the inspection step S6 and the second inspection step S7. Hereinafter, the first inspection step S6, the second inspection step S7, and the third inspection step S8 will be described in detail.
 第一検査工程S6では、図6に示すように支持機構71、明視野検査機72、暗視野検査機73を備えた第一検査装置7を用いる。搬送工程S4によって第一検査工程S6に搬送されたガラス板Gは、支持機構71に受け渡される。詳細には、上部挟持機構711がガラス板Gの上部を、下部挟持機構712がガラス板Gの下部を夫々挟持する。これにより検査中のガラス板Gの揺れの振幅を小さく抑えることができ、欠陥の座標を正確に特定できる。 In the first inspection step S6, as shown in FIG. 6, the first inspection device 7 provided with the support mechanism 71, the bright field inspection machine 72, and the dark field inspection machine 73 is used. The glass plate G transported to the first inspection step S6 by the transport step S4 is delivered to the support mechanism 71. Specifically, the upper holding mechanism 711 sandwiches the upper part of the glass plate G, and the lower holding mechanism 712 holds the lower part of the glass plate G, respectively. As a result, the amplitude of the shaking of the glass plate G during inspection can be suppressed to a small value, and the coordinates of the defect can be accurately specified.
 上部挟持機構711及び下部挟持機構712を構成するチャックは、夫々エアシリンダ713に接続されている。エアシリンダ713は、図示しないエア供給装置(例えばエアコンプレッサ)から圧縮空気を送り込むことが可能であるとともに、図示しないエア吸引装置(例えば真空ポンプ)によりエアシリンダ713内に残存する空気を吸引して排出することが可能となっている。そして、エア供給装置とエア吸引装置によってエアシリンダ713内の空気圧を調整し、その圧力でシリンダに内包されたピストンを移動させることで所定の力を付与する。上部下流側チャック群7111は上方向及び下流側に、上部上流側チャック群7112は上方向及び上流側に、下部下流側チャック群7121は下方向及び下流側に、下部上流側チャック群7122は下方向及び上流側に移動することで、ガラス板に引張力を付与する。つまり、ガラス板Gは上下方向X及び幅方向Yに引張力が付与される。これによりガラス板Gの揺れの振幅をより小さく抑えることができ、欠陥の座標をより正確に特定できる。 The chucks constituting the upper pinching mechanism 711 and the lower pinching mechanism 712 are connected to the air cylinder 713, respectively. The air cylinder 713 can send compressed air from an air supply device (for example, an air compressor) (not shown), and sucks the air remaining in the air cylinder 713 by an air suction device (for example, a vacuum pump) (not shown). It is possible to discharge. Then, the air pressure in the air cylinder 713 is adjusted by the air supply device and the air suction device, and a predetermined force is applied by moving the piston contained in the cylinder by the pressure. The upper downstream chuck group 7111 is upward and downstream, the upper upstream chuck group 7112 is upward and upstream, the lower downstream chuck group 7121 is downward and downstream, and the lower upstream chuck group 7122 is downward. By moving in the direction and upstream, a tensile force is applied to the glass plate. That is, the glass plate G is subjected to tensile force in the vertical direction X and the width direction Y. As a result, the amplitude of the shaking of the glass plate G can be suppressed to be smaller, and the coordinates of the defect can be specified more accurately.
 ガラス板Gに引張力が付与された後、図7に示すように、明視野検査機72と暗視野検査機73を備えた第一検査装置7を用いてガラス板Gの主面を撮像する。明視野検査機72は明視野光源721と明視野カメラ722とを備える。明視野カメラ722は明視野光源721からガラス板Gに照射されてガラス板Gを透過した光を捉えられるよう、明視野光源721の光軸上に配置される。ガラス板Gと明視野カメラ722との間に、明視野カメラ722の視野内に明部と暗部を形成する遮光板723を設置する。暗視野検査機73は、暗視野光源731と暗視野カメラ732とを備え、暗視野カメラ732は、暗視野光源731からガラス板Gに照射されてガラス板Gの欠陥で散乱した光を捉えられるよう、暗視野光源731の光軸から外れた位置に配置される。また、明視野光源721及び暗視野光源731はガラス板Gの上下方向Xに沿って複数配置され、線状光源を成す。さらに、明視野カメラ722及び暗視野カメラ732も同様に上下方向Xに沿って複数配置され、夫々ラインセンサカメラを成す。これにより、ガラス板Gに対して線状光源とラインセンサカメラを一度通過させることでガラス板Gの主面全体を撮像できるため、ガラス板Gの主面全体の欠陥の座標を速やかに特定できる。なお、図7に示すように、明視野光源721と暗視野光源731をユニット化し、ガラス板G上の明視野検査機72の撮像位置と暗視野検査機73の撮像位置を一致させても良い。その場合、明視野光源721の波長と異なる波長の暗視野光源731を用いて、ガラス板Gと遮光板723の間にビームスプリッタ74を設置し、明視野カメラ722で撮像する光と暗視野カメラ732で撮像する光を分離する。また、明視野光源721と暗視野光源731をユニット化せず、明視野検査機72と暗視野検査機73の光路を独立させても良い。なお、本実施形態では明視野光源721及び暗視野光源731としてLED光源を使用しているが、メタルハライドランプやレーザ光源を使用しても良い。 After the tensile force is applied to the glass plate G, as shown in FIG. 7, the main surface of the glass plate G is imaged by using the first inspection device 7 provided with the bright field inspection machine 72 and the dark field inspection machine 73. .. The bright field inspection machine 72 includes a bright field light source 721 and a bright field camera 722. The bright-field camera 722 is arranged on the optical axis of the bright-field light source 721 so that the light emitted from the bright-field light source 721 to the glass plate G and transmitted through the glass plate G can be captured. A light-shielding plate 723 that forms a bright part and a dark part in the field of view of the bright-field camera 722 is installed between the glass plate G and the bright-field camera 722. The dark field inspection machine 73 includes a dark field light source 731 and a dark field camera 732, and the dark field camera 732 can capture the light scattered by the defect of the glass plate G by irradiating the glass plate G from the dark field light source 731. As such, it is arranged at a position off the optical axis of the dark field light source 731. Further, a plurality of bright-field light sources 721 and dark-field light sources 731 are arranged along the vertical direction X of the glass plate G to form a linear light source. Further, a plurality of bright-field cameras 722 and dark-field cameras 732 are similarly arranged along the vertical direction X to form line sensor cameras, respectively. As a result, the entire main surface of the glass plate G can be imaged by passing the linear light source and the line sensor camera once through the glass plate G, so that the coordinates of the defects of the entire main surface of the glass plate G can be quickly identified. .. As shown in FIG. 7, the bright-field light source 721 and the dark-field light source 731 may be unitized so that the imaging position of the bright-field inspection machine 72 and the imaging position of the dark-field inspection machine 73 on the glass plate G match. .. In that case, a beam splitter 74 is installed between the glass plate G and the light-shielding plate 723 using a dark-field light source 731 having a wavelength different from that of the bright-field light source 721, and the light and the dark-field camera imaged by the bright-field camera 722. The light imaged by the 732 is separated. Further, the bright field light source 721 and the dark field light source 731 may not be unitized, and the optical paths of the bright field inspection machine 72 and the dark field inspection machine 73 may be made independent. In this embodiment, the LED light source is used as the bright field light source 721 and the dark field light source 731, but a metal halide lamp or a laser light source may be used.
 明視野検査機72及び暗視野検査機73は一体となってガラス板Gの幅方向Yに移動可能である。ガラス板Gの幅方向Yに移動しながら、ガラス板Gの主面全体を撮像する。得られた明視野画像と暗視野画像を比較することで欠陥の有無を識別し、その座標を図示しないデータベースに記録する。座標の基準はガラス板Gの上端及び下流側端面とする。 The bright field inspection machine 72 and the dark field inspection machine 73 can be integrally moved in the width direction Y of the glass plate G. While moving in the width direction Y of the glass plate G, the entire main surface of the glass plate G is imaged. By comparing the obtained bright-field image and dark-field image, the presence or absence of defects is identified, and the coordinates are recorded in a database (not shown). The reference of the coordinates is the upper end and the downstream end face of the glass plate G.
 第一検査工程S6の完了後、ガラス板Gは搬送工程S4の上部挟持機構51へと受け渡され、続いて第二検査工程S7へと搬送される。 After the completion of the first inspection step S6, the glass plate G is handed over to the upper holding mechanism 51 of the transporting step S4, and then is transported to the second inspection step S7.
 第二検査工程S7では、図8に示すように支持機構81、撮像系82及び撮像系駆動機構83を備えた第二検査装置8を用いる。搬送工程S4によって第二検査工程S7に搬送されたガラス板Gは、支持機構81に受け渡される。詳細には、上部挟持機構811がガラス板Gの上部を、下部挟持機構812がガラス板Gの下部を夫々挟持する。 In the second inspection step S7, as shown in FIG. 8, the second inspection device 8 provided with the support mechanism 81, the image pickup system 82, and the image pickup system drive mechanism 83 is used. The glass plate G transported to the second inspection step S7 by the transport step S4 is delivered to the support mechanism 81. Specifically, the upper holding mechanism 811 holds the upper part of the glass plate G, and the lower holding mechanism 812 holds the lower part of the glass plate G, respectively.
 上部挟持機構811及び下部挟持機構812を構成するチャックは夫々エアシリンダ813に接続されている。エアシリンダ813はエアシリンダ713と同様に図示しないエア供給装置とエア吸引装置に接続され、所定の力を付与する。上部下流側チャック群8111は上方向及び下流側に、上部上流側チャック群8112は上方向及び上流側に、下部下流側チャック群8121は下方向及び下流側に、下部上流側チャック群8122は下方向及び上流側に、ガラス板Gの上下方向X及び幅方向Yに引張力を付与する。なお、引張力は120N以上であることが好ましい。 The chucks constituting the upper pinching mechanism 811 and the lower pinching mechanism 812 are each connected to the air cylinder 813. Like the air cylinder 713, the air cylinder 813 is connected to an air supply device and an air suction device (not shown) to apply a predetermined force. The upper downstream chuck group 8111 is in the upward and downstream sides, the upper upstream chuck group 8112 is in the upward and upstream sides, the lower downstream chuck group 8121 is in the downward and downstream sides, and the lower upstream chuck group 8122 is in the lower direction. A tensile force is applied to the vertical direction X and the width direction Y of the glass plate G on the direction and the upstream side. The tensile force is preferably 120 N or more.
 上部挟持機構811及び下部挟持機構812がガラス板Gを挟持した状態で、位置検出手段84を用いてガラス板Gの上端、及び下流側端面の位置を検出し、記録する。位置検出手段84として、例えば透過型レーザセンサなどが使用できる。これにより、撮像部823の視野内に欠陥を収められる位置に撮像系を移動させることができる。 With the upper pinching mechanism 811 and the lower pinching mechanism 812 sandwiching the glass plate G, the position detecting means 84 is used to detect and record the positions of the upper end and the downstream end surface of the glass plate G. As the position detecting means 84, for example, a transmission type laser sensor or the like can be used. As a result, the imaging system can be moved to a position where defects can be accommodated in the field of view of the imaging unit 823.
 図9に示すように、撮像系82は光源部821、顕微光学部822及び撮像部823を備える。光源部821はガラス板Gに対して検査光を照射し、ガラス板Gの欠陥の像を顕微光学部822で拡大し、撮像部823で撮像する。なお、欠陥の像には、検査光が欠陥で反射した像と、ガラス板Gの裏面で反射した光が欠陥で遮られた像が含まれる。本実施形態では光源部821としてLED光源を使用しているが、メタルハライドランプやレーザ光源を用いても良い。 As shown in FIG. 9, the image pickup system 82 includes a light source unit 821, a microscopic optical unit 822, and an image pickup unit 823. The light source unit 821 irradiates the glass plate G with inspection light, magnifies the image of the defect of the glass plate G by the microscopic optical unit 822, and images the image on the image pickup unit 823. The image of the defect includes an image in which the inspection light is reflected by the defect and an image in which the light reflected by the back surface of the glass plate G is blocked by the defect. In the present embodiment, the LED light source is used as the light source unit 821, but a metal halide lamp or a laser light source may be used.
 撮像系82は上下方向駆動機構832に取り付けられており、上下方向駆動機構832は幅方向駆動機構831に取り付けられている。上下方向駆動機構832及び幅方向駆動機構831はサーボモータ、直動ガイド及びボールねじを備え夫々上下方向X及び幅方向Yに駆動する。これにより撮像系82は、ガラス板Gの第二検査工程S7で検査を行う領域内の任意の位置に移動し撮像することができる。なお、上下方向駆動機構832及び幅方向駆動機構831の駆動方法はボールねじに限定されるものではなく、タイミングベルトやチェーンなどを使用しても良い。また、サーボモータとボールねじの代替としてリニアモータを使用しても良い。 The image pickup system 82 is attached to the vertical drive mechanism 832, and the vertical drive mechanism 832 is attached to the width direction drive mechanism 831. The vertical drive mechanism 832 and the width direction drive mechanism 831 are provided with a servomotor, a linear motion guide, and a ball screw, and are driven in the vertical direction X and the width direction Y, respectively. As a result, the image pickup system 82 can move to an arbitrary position in the region to be inspected in the second inspection step S7 of the glass plate G and take an image. The driving method of the vertical drive mechanism 832 and the width direction drive mechanism 831 is not limited to the ball screw, and a timing belt, a chain, or the like may be used. Further, a linear motor may be used as an alternative to the servo motor and the ball screw.
 搬送工程S4でガラス板Gを第二検査工程S7へ搬入する際、撮像系82は図8に示すガラス板Gの下端より下側の領域Aに待機することが好ましい。これにより第二検査工程S7への搬入中にガラス板Gが大きく揺れた場合でも撮像系82に接触することを防止することができる。さらに、撮像系82がガラス板Gの幅方向Yにおける略中央部の領域Bに待機することで、第一検査工程S6で特定された欠陥の座標が最も遠い上部側の上流側や下流側にあったとしても、欠陥の座標への移動距離を短くすることができる。なお、ガラス板Gを第二検査工程S7から搬出する際も、搬入する際と同様に撮像系82を領域A又は領域Bに待機させることが好ましい。 When the glass plate G is carried into the second inspection step S7 in the transport step S4, it is preferable that the image pickup system 82 stands by in the region A below the lower end of the glass plate G shown in FIG. As a result, it is possible to prevent the glass plate G from coming into contact with the image pickup system 82 even if the glass plate G is greatly shaken during the delivery to the second inspection step S7. Further, the imaging system 82 stands by in the region B at the substantially central portion in the width direction Y of the glass plate G, so that the coordinates of the defect identified in the first inspection step S6 are located on the upstream side or the downstream side of the farthest upper side. Even if there is, the distance traveled to the coordinates of the defect can be shortened. When the glass plate G is carried out from the second inspection step S7, it is preferable to make the image pickup system 82 stand by in the area A or the area B as in the case of carrying in the glass plate G.
 ガラス板Gを上部挟持機構811及び下部挟持機構812で挟持した後、撮像系82を第一検査工程S6で特定した欠陥の座標へと移動させる。座標の基準は、位置検出手段84にて検出したガラス板Gの上端及び下流側端面とする。撮像系82が領域A又は領域Bから欠陥の座標へと移動する際は、下部下流側チャック群8121と下部上流側チャック群8122の間を撮像系82が通過する。撮像する座標の数は、第二検査工程S7にかかる時間が搬送タクト時間以内となるよう、所定の数以下に制限される。撮像予定の座標で欠陥を撮像した後、撮像系82は再び下部下流側チャック群8121と下部上流側チャック群8122の間を通過し、領域A又は領域Bへ移動し待機する。 After the glass plate G is sandwiched by the upper pinching mechanism 811 and the lower pinching mechanism 812, the imaging system 82 is moved to the coordinates of the defect specified in the first inspection step S6. The reference of the coordinates is the upper end surface and the downstream end surface of the glass plate G detected by the position detecting means 84. When the image pickup system 82 moves from the area A or the area B to the coordinates of the defect, the image pickup system 82 passes between the lower downstream side chuck group 8121 and the lower upstream side chuck group 8122. The number of coordinates to be imaged is limited to a predetermined number or less so that the time required for the second inspection step S7 is within the transport tact time. After imaging the defect at the coordinates to be imaged, the imaging system 82 passes between the lower downstream side chuck group 8121 and the lower upstream side chuck group 8122 again, moves to the area A or the area B, and stands by.
 第二検査工程S7で撮像された欠陥の像に基づいて、欠陥の種類が特定される。特定された欠陥の種類は、第一検査工程S6で特定された欠陥の数と座標の情報と紐づけられ、図示しないデータベースに保存される。 The type of defect is specified based on the image of the defect captured in the second inspection step S7. The type of the identified defect is associated with the information on the number and coordinates of the defect identified in the first inspection step S6, and is stored in a database (not shown).
 図10に示すように、第三検査工程S8では第三検査台91、第三検査光源92及び光源カバー93を備えた第三検査装置9を用いる。第三検査工程S8では、検査者が所定の高さの第三検査台91の上に立ち、ガラス板Gの脈理や偏肉など、第一検査工程S6及び第二検査工程S7で発見できない欠陥や、流れ方向に規則的に出現する欠陥を目視によって検出する。第三検査光源92から検査光をガラス板Gの端面に照射することで、脈理や偏肉などの欠陥の視認性を向上し、検出しやすくする。さらに、第三検査光源92とガラス板Gの端面を開閉式の光源カバー93で覆うことで、ガラス板Gの端面に入射しなかった光を遮光し、検査者の作業性を向上している。光源カバー93はトグル機構によって開閉されるため、ガラス板Gを強く挟み込むことができ、より効果的に遮光できる。なお、本実施形態では第三検査光源92としてLED光源を使用しているが、メタルハライドランプやレーザ光源などでも良い。 As shown in FIG. 10, in the third inspection step S8, the third inspection apparatus 9 provided with the third inspection table 91, the third inspection light source 92, and the light source cover 93 is used. In the third inspection step S8, the inspector stands on the third inspection table 91 at a predetermined height and cannot find the veins and uneven thickness of the glass plate G in the first inspection step S6 and the second inspection step S7. Visually detect defects and defects that appear regularly in the flow direction. By irradiating the end face of the glass plate G with the inspection light from the third inspection light source 92, the visibility of defects such as pulse and uneven thickness is improved and the detection is facilitated. Further, by covering the end faces of the third inspection light source 92 and the glass plate G with the openable light source cover 93, the light that did not enter the end face of the glass plate G is shielded, and the workability of the inspector is improved. .. Since the light source cover 93 is opened and closed by the toggle mechanism, the glass plate G can be strongly sandwiched and light can be shielded more effectively. In the present embodiment, the LED light source is used as the third inspection light source 92, but a metal halide lamp, a laser light source, or the like may be used.
 第二検査工程S7と第三検査工程S8を並行して実施できるよう、第三検査装置9は第二検査装置8と共通の位置に配置される。これにより検査工程にかかる時間の短縮と省スペース化を実現できる。また、ガラス板Gの上下方向Xにおける下側の領域Cを第二検査工程S7で検査し、領域Cより狭い上側の領域Dを第三検査工程S8で検査する。ガラス板Gの欠陥は成形工程における流れ方向、つまり上下方向Xに沿って連続して発生する。ガラス板Gの検査する領域を、下側の領域C及び上側の領域Dに分けることにより、夫々の検査工程で幅方向Yに渡って全範囲を検査することができ、幅方向Yに渡る欠陥の分布が得られる。また、ガラス板Gは搬送工程S4において、縦姿勢で上側から吊り下げ支持され搬送されるが、第二検査工程S7で検査する領域をガラス板Gの下側にすることにより、第二検査工程S7を実施するための設備と、搬送部5との干渉を防ぐことができる。また、第三検査工程S8はガラス板Gの脈理や偏肉等の外観を検査するものであり、広い領域を検査する必要はない。領域Cを領域Dよりも広くすることで、第一検査工程S6で座標が特定された欠陥の種類をできる限り多く特定することができる。これにより第二検査工程S7及び第三検査工程S8にかかる時間を短縮できる。 The third inspection device 9 is arranged at a position common to the second inspection device 8 so that the second inspection step S7 and the third inspection step S8 can be performed in parallel. This makes it possible to shorten the time required for the inspection process and save space. Further, the lower region C in the vertical direction X of the glass plate G is inspected in the second inspection step S7, and the upper region D narrower than the region C is inspected in the third inspection step S8. Defects in the glass plate G occur continuously along the flow direction in the molding process, that is, the vertical direction X. By dividing the area to be inspected by the glass plate G into the lower area C and the upper area D, the entire range can be inspected in the width direction Y in each inspection process, and defects in the width direction Y can be inspected. Distribution is obtained. Further, in the transport step S4, the glass plate G is suspended, supported and transported from above in a vertical posture, but by setting the region to be inspected in the second inspection step S7 to the lower side of the glass plate G, the second inspection step It is possible to prevent interference between the equipment for carrying out S7 and the transport unit 5. Further, the third inspection step S8 inspects the appearance of the glass plate G such as the veins and uneven thickness, and it is not necessary to inspect a wide area. By making the area C wider than the area D, it is possible to specify as many types of defects whose coordinates are specified in the first inspection step S6 as possible. As a result, the time required for the second inspection step S7 and the third inspection step S8 can be shortened.
 また、第一検査工程S6で特定する欠陥の座標の数よりも、第二検査工程S7で識別する欠陥の数を少なくすることが好ましい。第一検査工程S6は、ガラス板Gに対してラインセンサカメラを一度通過させるだけの時間で検査可能である。一方で第二検査工程S7では、第一検査工程S6で特定された欠陥の座標に対して撮像系82を駆動し、撮像するため、第一検査工程S6で座標が特定された欠陥の数が一定数より多い場合は、第一検査工程S6より第二検査工程S7の検査時間が長くなる。そのため、第二検査工程S7で撮像する欠陥の数を一定数以下に制限する。このような構成によれば、第二検査工程S7にかかる時間が必要以上に長くなることを防止できる。 Further, it is preferable to reduce the number of defects identified in the second inspection step S7 to be smaller than the number of coordinates of the defects specified in the first inspection step S6. The first inspection step S6 can be inspected in a time required only once the line sensor camera is passed through the glass plate G. On the other hand, in the second inspection step S7, the imaging system 82 is driven for the coordinates of the defects specified in the first inspection step S6 to take an image, so that the number of defects whose coordinates are specified in the first inspection step S6 is increased. When it is more than a certain number, the inspection time of the second inspection step S7 is longer than that of the first inspection step S6. Therefore, the number of defects imaged in the second inspection step S7 is limited to a certain number or less. With such a configuration, it is possible to prevent the time required for the second inspection step S7 from becoming longer than necessary.
 第一検査工程S6、第二検査工程S7、及び第三検査工程S8の結果に基づいて、ガラス板Gの検査結果が決定される。 The inspection result of the glass plate G is determined based on the results of the first inspection step S6, the second inspection step S7, and the third inspection step S8.
 第二検査工程S7及び第三検査工程S8の完了後、ガラス板Gは搬送工程S4の上部挟持機構51へと受け渡さる。ガラス板Gは検査合格の場合は梱包工程S9へ搬送され、検査不合格の場合は図示しない廃棄場所へと廃棄される。 After the completion of the second inspection step S7 and the third inspection step S8, the glass plate G is handed over to the upper holding mechanism 51 of the transport step S4. If the glass plate G passes the inspection, it is transported to the packing process S9, and if the inspection fails, it is disposed of at a disposal location (not shown).
 以上のように構成された本実施形態にかかるガラス板製造装置1によれば、欠陥の座標の特定と欠陥の種類の特定を別工程に分けることによって、縦姿勢で搬送されるガラス板Gに関して、欠陥の種類を正確に識別できる。 According to the glass plate manufacturing apparatus 1 according to the present embodiment configured as described above, regarding the glass plate G conveyed in the vertical posture by dividing the identification of the coordinates of the defect and the identification of the type of the defect into separate steps. , The type of defect can be identified accurately.
 なお、本発明は、上記実施形態の構成に限定されるものではなく、上記した作用効果に
限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能
である。
The present invention is not limited to the configuration of the above embodiment, and is not limited to the above-mentioned action and effect. The present invention can be modified in various ways without departing from the gist of the present invention.
 上記の実施形態では、第一検査工程S6及び第二検査工程S7において、ガラス板Gの上部及び下部を挟持し、上下方向X及び幅方向Yに引張力を付与しているが、これに限定されない。ガラス板Gに引張力を必ずしも付与する必要はなく、ガラス板Gの下部を挟持せず上部のみを挟持しても良い。 In the above embodiment, in the first inspection step S6 and the second inspection step S7, the upper part and the lower part of the glass plate G are sandwiched and tensile force is applied in the vertical direction X and the width direction Y, but the present invention is limited to this. Not done. It is not always necessary to apply a tensile force to the glass plate G, and the lower portion of the glass plate G may not be sandwiched but only the upper portion may be sandwiched.
 上記の実施形態では、第一検査工程S6において、明視野検査機72及び暗視野検査機73がガラス板Gを透過した光を用いて欠陥の座標を特定しているが、これに限定されない。ガラス板Gを反射する光を用いて欠陥の座標を特定する方式でも良い。 In the above embodiment, in the first inspection step S6, the bright field inspection machine 72 and the dark field inspection machine 73 specify the coordinates of the defect by using the light transmitted through the glass plate G, but the present invention is not limited to this. A method of specifying the coordinates of the defect by using the light reflected from the glass plate G may also be used.
 上記の実施形態では、第一検査工程S6において、ガラス板Gに対してラインセンサカメラを通過させて検査を行っているが、これに限定されない。ラインセンサカメラを固定し、ガラス板Gを相対的に移動させることでガラス板の全体を撮像するようにしても良い。 In the above embodiment, in the first inspection step S6, the glass plate G is passed through the line sensor camera for inspection, but the inspection is not limited to this. The line sensor camera may be fixed and the glass plate G may be relatively moved to take an image of the entire glass plate.
 上記の実施形態では、第二検査工程S7において、撮像系82がガラス板Gで反射した光を用いて欠陥を撮像しているが、これに限定されない。ガラス板Gを透過する光を用いて欠陥を撮像する方式でも良い。 In the above embodiment, in the second inspection step S7, the image pickup system 82 uses the light reflected by the glass plate G to image the defect, but the present invention is not limited to this. A method of imaging defects using light transmitted through the glass plate G may also be used.
 上記の実施形態では、第二検査工程S7において、ガラス板Gの搬入時又は搬出時に、撮像系82を領域A又は領域Bに待機させていたが、これに限定されない。ガラス板Gの搬入時又は搬出時に、撮像系82がガラス板の面に垂直な方向に移動し、待機しても良い。 In the above embodiment, in the second inspection step S7, the image pickup system 82 is made to stand by in the area A or the area B when the glass plate G is carried in or out, but the present invention is not limited to this. The image pickup system 82 may move in the direction perpendicular to the surface of the glass plate and stand by when the glass plate G is carried in or out.
 上記の実施形態では、第三検査装置9を第二検査装置8の上部に配置し、第二検査工程と第三検査工程を並行して行っていたが、これに限定されない。第三検査装置9を第二検査装置8よりも下流側に配置し、第二検査工程S7の終了後に第三検査工程S8を実施しても良い。また、第二検査工程S7及び第三検査工程S8でガラス板Gの全面を検査しても良く、第三検査工程を省略しても良い。 In the above embodiment, the third inspection device 9 is arranged above the second inspection device 8, and the second inspection step and the third inspection step are performed in parallel, but the present invention is not limited to this. The third inspection device 9 may be arranged on the downstream side of the second inspection device 8, and the third inspection step S8 may be carried out after the completion of the second inspection step S7. Further, the entire surface of the glass plate G may be inspected in the second inspection step S7 and the third inspection step S8, or the third inspection step may be omitted.
 本発明は、成形されたガラス板に含まれる欠陥の有無を搬送中に検査する工程を含むガラス板の製造に好適に使用することができる。 The present invention can be suitably used for manufacturing a glass plate including a step of inspecting the presence or absence of defects contained in the molded glass plate during transportation.
S1  成形工程
S2  徐冷工程
S3  切り出し工程
S4  搬送工程
S5  耳部切断工程
S6  第一検査工程
S7  第二検査工程
S8  第三検査工程
S9  梱包工程
1   ガラス板製造装置
7   第一検査装置
71  支持機構
72  明視野検査機
73  暗視野検査機
8   第二検査装置
81  支持機構
82  撮像系
821 光源部
822 顕微光学部
823 撮像部
84  位置検出手段
9   第三検査装置
G   ガラス板
Gr  ガラスリボン
S1 Molding process S2 Slow cooling process S3 Cutting process S4 Transport process S5 Ear cutting process S6 First inspection process S7 Second inspection process S8 Third inspection process S9 Packing process 1 Glass plate manufacturing device 7 First inspection device 71 Support mechanism 72 Bright-field inspection machine 73 Dark-field inspection machine 8 Second inspection device 81 Support mechanism 82 Imaging system 821 Light source unit 822 Microscopic optical unit 823 Imaging unit 84 Position detection means 9 Third inspection device G Glass plate Gr Glass ribbon

Claims (13)

  1.  ダウンドロー法でガラスリボンを成形する成形工程と、成形された前記ガラスリボンを所定長さ毎に切断することでガラス板を切り出す切り出し工程と、切り出された前記ガラス板を縦姿勢で前記ガラス板の主面と並行に搬送する搬送工程と、前記搬送工程中に前記ガラス板の検査を行う検査工程と、を有するガラス板の製造方法であって、
     前記検査工程では、前記ガラス板の欠陥の座標を特定する第一検査工程と、前記第一検査工程で特定された前記座標に位置する前記欠陥の種類を識別する第二検査工程とを備えることを特徴とするガラス板の製造方法。
    A molding process of forming a glass ribbon by the down draw method, a cutting process of cutting out a glass plate by cutting the molded glass ribbon at a predetermined length, and a glass plate of the cut out glass plate in a vertical position. A method for manufacturing a glass plate, comprising a transporting step of transporting the glass plate in parallel with the main surface of the glass plate and an inspection step of inspecting the glass plate during the transporting step.
    The inspection step includes a first inspection step of specifying the coordinates of the defect of the glass plate and a second inspection step of identifying the type of the defect located at the coordinates specified in the first inspection step. A method for manufacturing a glass plate.
  2.  前記検査工程では、前記ガラス板の上部及び下部が挟持されることを特徴とする請求項1に記載のガラス板の製造方法。 The method for manufacturing a glass plate according to claim 1, wherein in the inspection step, the upper portion and the lower portion of the glass plate are sandwiched.
  3.  前記ガラス板を挟持する挟持機構は、前記ガラス板に対し上下方向及び幅方向に引張力を付与することを特徴とする請求項2に記載のガラス板の製造方法。 The method for manufacturing a glass plate according to claim 2, wherein the holding mechanism for holding the glass plate applies a tensile force to the glass plate in the vertical direction and the width direction.
  4.  前記第一検査工程は、上下方向に沿った線状光源とラインセンサカメラとを有することを特徴とする請求項1~3のいずれかに記載のガラス板の製造方法。 The method for manufacturing a glass plate according to any one of claims 1 to 3, wherein the first inspection step includes a linear light source along the vertical direction and a line sensor camera.
  5.  前記第二検査工程は撮像系を有し、
     前記撮像系は、前記ガラス板に検査光を照射する光源部と、前記第一検査工程で特定された座標に位置する前記欠陥の像を拡大する顕微光学部と、拡大された前記欠陥の像を撮像する撮像部と、を有することを特徴とする請求項1~4のいずれかに記載のガラス板の製造方法。
    The second inspection step has an imaging system and has an imaging system.
    The imaging system includes a light source unit that irradiates the glass plate with inspection light, a microscopic optical unit that magnifies an image of the defect located at coordinates specified in the first inspection step, and an enlarged image of the defect. The method for manufacturing a glass plate according to any one of claims 1 to 4, wherein the image pickup unit is provided with an image pickup unit.
  6.  前記撮像系を、前記ガラス板の上下方向及び、幅方向に駆動させることを特徴とする請求項5に記載のガラス板の製造方法。 The method for manufacturing a glass plate according to claim 5, wherein the imaging system is driven in the vertical direction and the width direction of the glass plate.
  7.  前記搬送工程は、前記第二検査工程への前記ガラス板の搬入と、前記第二検査工程からの前記ガラス板の搬出を行い、
     前記第二検査工程への前記ガラス板の搬入中と、前記第二検査工程からの前記ガラス板の搬出中は、前記撮像系を前記ガラス板の下端より下側に待機させておくことを特徴とする請求項5又は6のいずれかに記載のガラス板の製造方法。
    In the transfer step, the glass plate is carried in to the second inspection step and the glass plate is carried out from the second inspection step.
    During the loading of the glass plate into the second inspection step and the loading of the glass plate from the second inspection step, the imaging system is kept on standby below the lower end of the glass plate. The method for manufacturing a glass plate according to any one of claims 5 or 6.
  8.  前記第二検査工程への前記ガラス板の搬入中と、前記第二検査工程からの前記ガラス板の搬出中は、前記撮像系を前記ガラス板の下端より下側の幅方向における略中央部に待機させておくことを特徴とする請求項7に記載のガラス板の製造方法。 During the loading of the glass plate into the second inspection step and the loading of the glass plate from the second inspection step, the imaging system is placed in a substantially central portion in the width direction below the lower end of the glass plate. The method for manufacturing a glass plate according to claim 7, wherein the glass plate is kept on standby.
  9.  前記第一検査工程では、前記ガラス板の端面を基準とする前記欠陥の座標を記録し、
     前記第二検査工程では、位置検出手段を用いて前記ガラス板の端面を検出し、前記端面を基準とする座標位置に前記撮像系を移動させることを特徴とする請求項5~8のいずれかに記載のガラス板の製造方法。
    In the first inspection step, the coordinates of the defect with respect to the end face of the glass plate are recorded.
    The second inspection step is any one of claims 5 to 8, wherein the end face of the glass plate is detected by using a position detecting means, and the image pickup system is moved to a coordinate position with respect to the end face. The method for manufacturing a glass plate according to.
  10.  前記検査工程は、検査者が目視による前記ガラス板の外観検査を行う第三検査工程を更に有し、
     前記第三検査工程は、前記第二検査工程と並行して行われることを特徴とする請求項1~9のいずれかに記載のガラス板の製造方法。
    The inspection step further includes a third inspection step in which the inspector visually inspects the appearance of the glass plate.
    The method for manufacturing a glass plate according to any one of claims 1 to 9, wherein the third inspection step is performed in parallel with the second inspection step.
  11.  前記検査工程では、前記ガラス板の上下方向における上側の領域を前記第三検査工程で検査し、下側の領域を前記第二検査工程で検査し、
     前記第三検査工程で検査する領域よりも前記第二検査工程で検査する領域のほうが広いことを特徴とする請求項10に記載のガラス板の製造方法。
    In the inspection step, the upper region in the vertical direction of the glass plate is inspected in the third inspection step, and the lower region is inspected in the second inspection step.
    The method for manufacturing a glass plate according to claim 10, wherein the area to be inspected in the second inspection step is wider than the area to be inspected in the third inspection step.
  12.  前記第二検査工程は、前記第三検査工程で検査する領域を除外して検査を行うことを特徴とする請求項11に記載のガラス板の製造方法。 The method for manufacturing a glass plate according to claim 11, wherein the second inspection step excludes an area to be inspected in the third inspection step.
  13.  前記第一検査工程で特定する前記欠陥の前記座標の数よりも、前記第二検査工程で識別する前記欠陥の数のほうが少ないことを特徴とする請求項1~12のいずれかに記載のガラス板の製造方法。 The glass according to any one of claims 1 to 12, wherein the number of the defects identified in the second inspection step is smaller than the number of coordinates of the defects specified in the first inspection step. How to make a board.
PCT/JP2021/033758 2020-10-07 2021-09-14 Glass plate manufacturing method WO2022075018A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237011336A KR20230078689A (en) 2020-10-07 2021-09-14 Manufacturing method of glass plate
CN202180068777.XA CN116324390A (en) 2020-10-07 2021-09-14 Method for manufacturing glass plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020169492A JP2022061531A (en) 2020-10-07 2020-10-07 Method for producing glass plate
JP2020-169492 2020-10-07

Publications (1)

Publication Number Publication Date
WO2022075018A1 true WO2022075018A1 (en) 2022-04-14

Family

ID=81126483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033758 WO2022075018A1 (en) 2020-10-07 2021-09-14 Glass plate manufacturing method

Country Status (4)

Country Link
JP (1) JP2022061531A (en)
KR (1) KR20230078689A (en)
CN (1) CN116324390A (en)
WO (1) WO2022075018A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255232A (en) * 2000-03-10 2001-09-21 Micronics Japan Co Ltd Inspection device for display panel substrate
US20050011229A1 (en) * 2002-12-05 2005-01-20 Peter Lisec Device for securing material plates, such as glass sheets, during the working thereof
KR20050026253A (en) * 2003-09-09 2005-03-15 로체 시스템즈(주) Vertical glass-plate cutting machine
JP2006194858A (en) * 2004-12-17 2006-07-27 Micronics Japan Co Ltd Inspection system of display panel
CN101718714A (en) * 2009-11-25 2010-06-02 河北东旭投资集团有限公司 System and method for detecting surface defects of flat glass
JP2014211415A (en) * 2013-04-22 2014-11-13 日本電気硝子株式会社 Plate glass conveyance apparatus, plate glass conveyance method, and plate glass inspection apparatus
JP2015105930A (en) * 2013-12-02 2015-06-08 旭硝子株式会社 Minute defect inspection method for translucent substrate and minute defect inspection device for translucent substrate
JP2017111033A (en) * 2015-12-17 2017-06-22 日本電気硝子株式会社 Method for manufacturing glass plate
JP2018104221A (en) * 2016-12-26 2018-07-05 日本電気硝子株式会社 Production method of glass plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180112411A (en) 2017-04-04 2018-10-12 원영식 Exhaust device for chamber residual gas exhaust

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255232A (en) * 2000-03-10 2001-09-21 Micronics Japan Co Ltd Inspection device for display panel substrate
US20050011229A1 (en) * 2002-12-05 2005-01-20 Peter Lisec Device for securing material plates, such as glass sheets, during the working thereof
KR20050026253A (en) * 2003-09-09 2005-03-15 로체 시스템즈(주) Vertical glass-plate cutting machine
JP2006194858A (en) * 2004-12-17 2006-07-27 Micronics Japan Co Ltd Inspection system of display panel
CN101718714A (en) * 2009-11-25 2010-06-02 河北东旭投资集团有限公司 System and method for detecting surface defects of flat glass
JP2014211415A (en) * 2013-04-22 2014-11-13 日本電気硝子株式会社 Plate glass conveyance apparatus, plate glass conveyance method, and plate glass inspection apparatus
JP2015105930A (en) * 2013-12-02 2015-06-08 旭硝子株式会社 Minute defect inspection method for translucent substrate and minute defect inspection device for translucent substrate
JP2017111033A (en) * 2015-12-17 2017-06-22 日本電気硝子株式会社 Method for manufacturing glass plate
JP2018104221A (en) * 2016-12-26 2018-07-05 日本電気硝子株式会社 Production method of glass plate

Also Published As

Publication number Publication date
KR20230078689A (en) 2023-06-02
JP2022061531A (en) 2022-04-19
CN116324390A (en) 2023-06-23

Similar Documents

Publication Publication Date Title
JP5403389B2 (en) Glass substrate inspection apparatus and glass substrate inspection method
KR101697216B1 (en) Plate glass inspection unit and manufacturing facility
JP2008170429A (en) Plate glass defect detector, plate glass manufacturing method, plate glass article, plate glass quality determination device, and plate glass inspection method
WO2012153662A1 (en) Method for inspecting minute defect of translucent board-like body, and apparatus for inspecting minute defect of translucent board-like body
TWI841484B (en) Apparatus and method for inspecting a glass sheet
CN110036281B (en) Method for inspecting glass plate, method for manufacturing glass plate, and glass plate inspection apparatus
WO2017204766A2 (en) A quality control system for semi-finished glass products
JP2015105930A (en) Minute defect inspection method for translucent substrate and minute defect inspection device for translucent substrate
JP2014092373A (en) Automatic quality inspection device for optical glass base material, and automatic quality inspection method for optical glass base material
JP2010019834A (en) Glass plate defect inspection apparatus and manufacturing method of glass plate for flat panel display
WO2022075018A1 (en) Glass plate manufacturing method
CN108139336B (en) Method for manufacturing glass plate
CN111257344A (en) Detection equipment for tape-type work piece
KR100756519B1 (en) Glass cutting system and inspection method of cutting position
KR20060082842A (en) The mobile phone window inspection apparatus
KR101310808B1 (en) Glass cutting system and inspection method of scribing position
JP7054481B2 (en) How to manufacture flat glass
JP2007187630A (en) Method and apparatus for detecting flaw of pattern
KR102625796B1 (en) A method of inspecting a glass sheet, a method of manufacturing a glass sheet and a glass manufacturing apparatus
JP2024095541A (en) Method for manufacturing glass plate and device for manufacturing glass plate
JP2000346810A (en) Lead frame flapping prevention mechanism and lead frame inspection apparatus
CN118929203A (en) Method and apparatus for manufacturing glass plate
JP2001228091A (en) Method and apparatus for inspecting flaw
KR20220161174A (en) Die bonding device and manufacturing method of semiconductor device
CN118302392A (en) Method and apparatus for treating glass ribbon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877321

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237011336

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877321

Country of ref document: EP

Kind code of ref document: A1