[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012153662A1 - Method for inspecting minute defect of translucent board-like body, and apparatus for inspecting minute defect of translucent board-like body - Google Patents

Method for inspecting minute defect of translucent board-like body, and apparatus for inspecting minute defect of translucent board-like body Download PDF

Info

Publication number
WO2012153662A1
WO2012153662A1 PCT/JP2012/061458 JP2012061458W WO2012153662A1 WO 2012153662 A1 WO2012153662 A1 WO 2012153662A1 JP 2012061458 W JP2012061458 W JP 2012061458W WO 2012153662 A1 WO2012153662 A1 WO 2012153662A1
Authority
WO
WIPO (PCT)
Prior art keywords
translucent plate
defect
imaging unit
inspection
main imaging
Prior art date
Application number
PCT/JP2012/061458
Other languages
French (fr)
Japanese (ja)
Inventor
宗寿 加藤
静則 金子
祐介 有田
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020137029662A priority Critical patent/KR20140022064A/en
Priority to CN201280022528.8A priority patent/CN103534582A/en
Priority to JP2013513986A priority patent/JPWO2012153662A1/en
Publication of WO2012153662A1 publication Critical patent/WO2012153662A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens

Definitions

  • the present invention relates to a method for inspecting minute defects of a plate-like body such as a light-transmitting glass plate and an inspection apparatus for minute defects of a light-transmitting plate-like body.
  • This type of glass substrate for flat panel displays is formed into a plate shape by pouring the melted raw material onto a float bath, and after slowly cooling the molded product, it is cut into a predetermined size and the surface is polished if necessary. It is manufactured by washing.
  • the glass substrate after cleaning is transported to a packing process by a transport device such as a conveyor, and optical inspection is performed for minute defects such as bubbles, scratches, and foreign matters on the way. For example, illumination is performed on a glass substrate, a weak change in brightness and darkness of the glass substrate is captured with an optical camera, and minute defects are identified by image processing.
  • a guide (moving means) movable along the glass substrate transport direction is provided on a transport path for transporting the glass substrate, and an illumination device and a light receiving means are provided on the moving means.
  • An inspection apparatus having a configuration in which the moving direction of the moving means is set to be the same as the conveying direction of the glass substrate and a speed control device is provided in the moving means is known (see Patent Document 1).
  • the moving speed of the moving means is set to be lower than the conveying speed of the glass substrate, and the moving speed of the moving means is set to be higher than the conveying speed of the glass substrate. It is possible to cope with both the case where the inspection is performed by setting and the case where the movement speed of the moving means is set to be the same as the conveyance speed of the glass substrate.
  • the present inventor in the method of inspecting the translucent plate-like body such as a large glass substrate in the middle of transport, when the translucent plate-like body is dotted with a plurality of minute defects Even so, it is an object of the present invention to provide a micro defect inspection method and a micro defect inspection apparatus capable of precisely inspecting the micro defect without reducing the transport speed of the translucent plate-like body.
  • the present invention relates to a method for inspecting a micro defect existing in a translucent plate-like body while conveying the translucent plate-like body along a conveyance path, and irradiating the translucent plate-like body with light.
  • Preliminary inspection step of identifying the position of the minute defect existing in the surface direction of the main surface of the translucent plate by imaging the main surface of the translucent plate with a preliminary imaging unit; The main imaging unit is moved in a direction intersecting the transport direction of the translucent plate along the surface direction of the translucent plate in accordance with the position of the minute defect obtained in the preliminary inspection step.
  • a scrutiny inspection step of imaging the minute defect while moving in the transport direction in a state of being aligned with the minute defect.
  • the main imaging unit in the detailed inspection step, is moved and positioned in a direction intersecting the transport direction of the light-transmitting plate-like body, The micro defect can be imaged while moving the main imaging unit at the same speed as the translucent plate along the conveyance path in synchronization with the movement of the micro defect entering the field of view of the main imaging unit.
  • the scrutiny inspection step a plurality of main imaging units are arranged along the conveyance path, and the position of the minute defect specified in the preliminary inspection step is determined.
  • the main image pickup unit can be individually moved in correspondence with the above, and the minute defects can be individually imaged.
  • the inspection method for minute defects of the light-transmitting plate-like body according to the present invention is installed on the upstream side of the conveyance path among the plurality of main imaging units provided along the conveyance path in the detailed inspection step.
  • the main imaging unit moves in response to the approach of a specific microdefect to capture the microdefect, but the main imaging unit on the upstream side of the transport path moves to image the microdefect.
  • the other main imaging unit installed on the downstream side of the transport path moves with respect to the approaching minute defect so that the minute defect can be imaged.
  • the inspection method for minute defects of the light-transmitting plate-like body of the present invention can perform both dark field inspection and bright field inspection in each of the preliminary inspection step and the close inspection step.
  • the method for inspecting a micro defect of the light transmitting plate-like body of the present invention is present in the surface direction of the main surface of the light transmitting plate-like body using a line sensor camera as the preliminary imaging unit.
  • the position of the minute defect can be specified, and the minute defect can be imaged using an area camera as the main imaging unit in the inspection step.
  • the area camera is directed in a direction orthogonal to the transport direction of the light-transmitting plate-like body, and the area camera is The micro defects can be imaged by inclining the main surface of the translucent plate-like body with respect to the region moving along the transport path.
  • the present invention provides an inspection apparatus for a micro defect of a light transmitting plate that inspects a micro defect existing in a light transmitting plate that is transported along a transport path.
  • An illuminator that emits light a preliminary inspection machine that includes a preliminary imaging unit that images the entire main surface of the translucent plate-like body, and an image of the translucent plate-like body that is captured by the preliminary imaging unit Management device for identifying position information of minute defects existing in the surface direction of the main surface of the translucent plate from information, illuminator for irradiating light to the translucent plate, and the translucent plate
  • a main imaging unit that images the main surface of the light-transmitting body, the light-transmitting plate-shaped body of the light-transmitting plate-shaped body along the surface direction of the light-transmitting plate-shaped body in accordance with the positional information of the minute defect specified by the preliminary inspection machine
  • a first transport unit that moves the main imaging unit in a direction intersecting the transport direction, and the transport direction of the translucent plate-shaped body;
  • the second transport unit is at a constant speed with the light-transmitting plate-like body in the same direction as the transport direction of the light-transmitting plate-like body.
  • the main imaging unit can be moved.
  • the inspection device for minute defects of the light-transmitting plate-like body according to the present invention is such that the main image pickup unit including the main image pickup unit, the first transfer unit, and the second transfer unit includes the light-transmitting plate-like body. A plurality of installations can be made along the conveyance direction.
  • the inspection apparatus for minute defects of the light-transmitting plate-like body includes a plurality of main imaging units provided along the conveyance path, wherein the main imaging unit installed on the upstream side of the conveyance path is specified.
  • the micro-defect is imaged by moving in response to the approach of the micro-defect, but the main imaging unit on the upstream side of the transport path moves and the next time is faster than the time required to image the micro-defect.
  • the management device can be provided with a function of moving another main imaging unit installed on the downstream side of the conveyance path with respect to the approaching minute defect and imaging the minute defect. .
  • the preliminary inspection machine can be provided with a preliminary imaging unit as a bright field inspection device and a preliminary imaging unit as a dark field inspection device.
  • the preliminary imaging unit can be a line sensor camera and the main imaging unit can be an area camera.
  • the inspection device for minute defects of the light-transmitting plate-like body of the present invention is such that the area camera is directed in a direction intersecting with the transport direction of the light-transmitting plate-like body, and the main body of the light-transmitting plate-like body.
  • the surface may be inclined with respect to the region in which the surface is moved along the conveyance path.
  • the main imaging unit is moved in a direction crossing the transport direction of the translucent plate according to the position of the minute defect in the surface direction of the translucent plate specified by the image of the preliminary inspection machine. Alignment is performed, and the aligned main imaging unit captures images while moving in the transport direction of the translucent plate while capturing minute defects, ensuring sufficient exposure time without using a high shutter speed. As a result, high-definition imaging of minute defects can be performed, and minute defects can be inspected with high accuracy. If the main imaging unit that captures minute defects moves while moving at the same speed as the translucent plate in the transport direction of the translucent plate, high-definition imaging that does not cause blur in the main imaging unit This contributes to improving the inspection accuracy of minute defects.
  • FIG. 1 is a schematic diagram showing the overall configuration of the inspection apparatus according to the first embodiment of the present invention.
  • 2 (a) and 2 (b) show an example of an optical system as a dark field inspection device of a preliminary inspection machine provided in the inspection apparatus, and FIG. 2 (a) shows a detection state of a back surface reflection image.
  • FIG. 2B is an explanatory diagram illustrating an example of a detection state of a real image.
  • 3 (a) and 3 (b) show an optical system of a close inspection machine provided in the inspection apparatus, and
  • FIG. 3 (a) shows an example of a detection state of a dark field optical system.
  • (B) is a figure which shows an example of the detection state of a bright field optical system.
  • FIG. 4 (a) and 4 (b) show the positional relationship between the illuminator of the scrutinizing inspection machine provided in the inspection apparatus and the main imaging unit.
  • FIG. 4 (a) is a front view and FIG. 4 (b). Is a plan view.
  • FIG. 5 is a plan view showing an overall configuration of a close inspection machine provided in the inspection apparatus.
  • 6 (a) and 6 (b) show an example of a linear motion unit that constitutes a transport unit provided in the inspection apparatus, and
  • FIG. 6 (a) shows a linear motion unit that constitutes a first transport unit.
  • FIG. 6B is a configuration diagram of a linear motion unit constituting the second transport unit.
  • FIGS. 7 (a) to 7 (g) show an example of a state in which an inspection is performed while following a plurality of defects of a translucent plate using the inspection apparatus provided in the inspection apparatus.
  • FIGS. 7 (a) to 7 (g) are diagrams showing a state in which the inspection device follows each of the scattered defects.
  • FIG. 8 is a plan view showing a partial configuration of a close inspection machine provided in the inspection apparatus according to the second embodiment of the present invention.
  • FIG. 9 is a configuration diagram showing another example of an optical system provided in the inspection apparatus according to the present invention.
  • FIG. 1 shows an example of an inspection line provided with an inspection apparatus according to the present invention.
  • the inspection apparatus 1 of the present embodiment has a plurality of rectangular translucent plates 2 such as plate glass that can be conveyed horizontally. It is provided along the conveyance path 3 composed of a roller conveyor.
  • the transport path 3 is a series of transported after the molten glass raw material is flowed into a float bath shape and formed into a sheet glass, the sheet glass is cut into a sheet glass of a predetermined size, and the surface is polished. It is provided as a part of the plate glass production line.
  • a cleaning device 5 is installed on the entrance side (left end portion side in FIG. 1) of the transport path 3 shown in FIG. 1, and the translucent plate-like body 2 such as plate glass transported from the previous cutting step in a horizontal state is After the front and back surfaces are cleaned by the cleaning device 5, they are horizontally transported to the transport path 3 in which the inspection device 1 is provided.
  • a preliminary inspection machine 6 and a close inspection machine 7 are installed after the cleaning device 5 along the transport path 3, and a management device 8 for controlling these inspection machines is electrically connected to the preliminary inspection machine 6 and the close inspection machine 7. Connected and provided.
  • the preliminary inspection machine 6 includes a dark field appearance inspection device 10 and a bright field appearance inspection device 11.
  • the dark field visual inspection device 10 is a kind of dark field visual inspection device for inspecting in the dark field mainly the appearance of a flaw such as a hairline formed on the translucent plate-like body 2.
  • the bright-field appearance inspector 11 is a bubble portion caused by bubbles formed inside the translucent plate-like body 2 and a crater portion caused by bubbles appearing on the front and back surfaces of the translucent plate-like body 2 It is a kind of bright-field inspector for inspecting mainly in the bright field.
  • the close inspection machine 7 includes a first inspection device 12 that is a type of dark field inspection device and a second inspection device 13 that is a type of bright field inspection device.
  • the dark field inspection device is a case where an imaging unit such as a camera captures the angle of illumination when light enters the translucent plate 2 from the illuminator and the reflected light from the translucent plate 2. Inspection that prescribes the positional relationship between the illuminator and the imaging unit so that the optical axis of the imaging unit is installed at an angle that deviates from the angle at which the specularly reflected light is obtained, and basically a dark field where no reflected light enters Indicates a vessel. Further, the bright field inspection device is a case where an imaging unit such as a camera captures the angle of illumination when light enters the translucent plate 2 from the illuminator and the reflected light from the translucent plate 2.
  • the optical axis of the imaging unit is installed at an angle at which regular reflection light can be obtained, and the positional relationship between the illuminator and the imaging unit is defined so that the reflected light can be basically captured and captured as a bright field.
  • the configuration tester is shown.
  • the downstream side of the transport path 3 is located above the entrance side of the transport path 3.
  • An illuminator 15 that irradiates illumination light obliquely downward toward the side is provided.
  • a rod lens 15b is provided at the tip of a rod-shaped main body 15a, and a device that collects and irradiates illumination light obliquely from above to the measurement position on the surface of the translucent plate-like body 2. It is provided as.
  • a preliminary imaging unit (line sensor camera) 16 is provided on the downstream side along the conveyance path 3 and facing the previous illuminator 15, facing the upstream side of the conveyance path 3 and obliquely downward.
  • the line sensor camera 16 When the illumination light from the illuminator 15 is reflected by the surface of the translucent plate-like body 2, the line sensor camera 16 is shifted from the regular reflection direction R1 to the position where the optical axis is removed (in FIG. 2, it is shifted obliquely downward). In the configuration installed at (position), it is configured for dark field inspection equipment. In the configuration shown in FIG. 2, the dark field appearance inspection device 10 is configured to include the illuminator 15 and the line sensor camera 16.
  • the line sensor camera 16 used in the present embodiment has a resolution capable of discriminating defects such as a scratch having a size of about 10 ⁇ m ⁇ 100 ⁇ m or more formed on the translucent plate-like body 2.
  • the resolution is an example, and it is a matter of course that a line sensor camera having a higher resolution may be used.
  • the dark field visual inspection device 10 when the incident angle of the illumination light of the illuminator 15 is 45 ° (elevation angle with respect to the horizontal: 45 °), the angle of the optical axis of the line sensor camera 16 is 30 °. (Elevation angle with respect to horizontal: 30 °).
  • the line sensor camera 16 is installed with the optical axis aligned with the regular reflection direction R1
  • it is provided as a bright field inspection device, and the optical axis is set in the regular reflection direction indicated by the two-dot chain line in FIG.
  • the bright-field visual inspection device 11 is configured by including the line sensor camera 16 and the illuminator 15 that are aligned.
  • the illuminator 15 and the line sensor camera 16 are mounted on a frame (not shown) while maintaining individual elevation angles, and the frame moves in the width direction of the transport path 3 (a translucent plate that moves along the transport path 3).
  • a plurality of them are installed in the width direction of the body 2.
  • the plurality of line sensor cameras 16 share and cover a region having a predetermined width in the width direction of the translucent plate-like body 2 that is horizontally transported along the transport path 3. Since only one of these line sensor cameras 16 can cover the entire width of the translucent plate-like body 2, a plurality of translucent plates can be provided with high resolution by installing a plurality of units as described above.
  • the entire width of the body 2 can be imaged.
  • the plurality of line sensor cameras 16 are continuously operated while the translucent plate-like body 2 passes through to take an image, thereby dark field over the entire surface direction of the main surface (front surface) of the translucent plate-like body 2. Inspection or bright field inspection is possible.
  • the illumination light irradiated from the illuminator 15 onto the surface of the translucent plate-like body 2 is specularly reflected when the surface of the translucent plate-like body 2 is flat with no defects.
  • no light is incident on the line sensor camera 16 as a dark field inspection device, and the dark field state is maintained.
  • the translucent plate-like body 2 has a defect such as a scratch or a foreign substance, the scattered light generated there enters the line sensor camera 16 as a dark field inspection device, and is thus detected as a bright spot.
  • the defects detected by this method are all those that generate scattered light, and in addition to scratches, internal bubbles, cullet adhesion, and the like can be detected.
  • FIG. 1 the defects detected by this method are all those that generate scattered light, and in addition to scratches, internal bubbles, cullet adhesion, and the like can be detected.
  • the dark field visual inspection device 10 is connected to the management device 8 through the data wiring 17, and the bright field visual inspection device 11 is connected to the management device 8 through the data wiring 18.
  • Information on the inspection result of the entire surface of the translucent plate-like body 2 imaged and inspected individually by the bright-field appearance inspection device 11 can be sent to the management device 8.
  • the dark-field appearance inspection device 10 detects the presence of a bright spot in the case of a dark-field image, for example, by binarizing the image of the translucent plate-like body 2 to emphasize light and dark.
  • the bright field visual inspector 11 has a function of detecting the presence of dark spots in the case of a bright field image, recording their coordinate positions, and recording them in a storage unit.
  • the management device 8 includes a personal computer including a storage unit, a control unit, and an arithmetic unit, and receives inspection results sent from the dark field visual inspection device 10 and the bright field visual inspection device 11. And the management apparatus 8 is connected to the close inspection machine 7 via the control line 19, and controls the 1st inspection device 12 and the 2nd inspection device 13 so that it may mention later.
  • the first inspection instrument 12 which is a kind of dark field inspection instrument, is arranged in the width direction of the conveyance path 3 as shown in FIG. And a first main imaging unit (first area camera) 21 provided on the other side in the width direction of the transport path 3.
  • the second inspection device 13 which is a kind of bright field inspection device, includes an illuminator 22 provided on one side in the width direction of the conveyance path 3 and a second inspection device provided on the other side in the width direction of the conveyance path 3.
  • a main imaging unit (second area camera) 23 is provided.
  • the illuminator 20 and the first area camera 21 are arranged so as to face each other along the width direction of the transport path 3, the illuminator 20 faces obliquely downward, and the light transmission moving along the transport path 3.
  • the first area camera 21 is disposed obliquely downward on the side toward which the reflected light is directed.
  • the illuminator 22 and the second area camera 23 are arranged so as to face each other along the width direction of the transport path 3, the illuminator 22 faces obliquely downward, and the translucent light moving along the transport path 3.
  • the second area camera 23 is disposed obliquely downward on the side toward which the reflected light is directed.
  • the first inspection device 12 that is a kind of dark field inspection device includes a ring-shaped light emitting portion 20 a and has a ring shape with respect to the surface of the translucent plate-like body 2. Irradiate light. Therefore, on the surface of the translucent plate-like body 2, a bright region S ⁇ b> 1 illuminated in a ring shape and a dark region S ⁇ b> 2 where the illumination light inside thereof does not hit.
  • the first area camera 21 is arranged so that the elevation angle of its optical axis 21b is the same as the elevation angle of the central axis 20b of the ring-shaped light emitting section 20a, and the first area camera 21 is the previous ring-shaped light emitting section 20a.
  • the dark area S2 formed on the surface of the translucent plate-like body 2 can be imaged as an imaging area. Since the first area camera 21 uses the dark region S2 as a field of view, it functions as a dark field inspection device.
  • the second inspection device 13 which is a kind of bright field inspection device, includes a planar light emitting portion 22 a and is planar with respect to the surface of the translucent plate-like body 2. Irradiate light. Therefore, a bright region S3 illuminated in a planar shape is formed on the surface of the translucent plate-like body 2.
  • the second area camera 23 is arranged so that the elevation angle of the optical axis 23b is the same as the elevation angle of the central axis 22b of the planar light emitting unit 22a, and the second area camera 23 is the previous planar light emitting unit 22a.
  • a bright area S3 formed on the surface of the translucent plate-like body 2 can be imaged as an imaging area.
  • the second area camera 23 functions as a bright field inspector because the bright area S3 is the field of view.
  • FIG. 4 is a diagram for further explaining the positional relationship between the illuminator 20 provided with the ring-shaped light emitting portion 20 a provided in the first inspection device 12 and the first area camera 21.
  • the illumination light is incident on the surface of the translucent plate 2 from the ring-shaped light emitting portion 20a obliquely from above, and the first area camera 21 is the translucent plate.
  • the first area camera 21 is arranged with its optical axis along the width direction of the transport path 3. That is, the first area camera 21 is installed obliquely downward in the width direction of the transport path 3 (direction intersecting the transport direction of the translucent plate-like body 2).
  • a rectangular region 21A that is elongated in the transport direction of the translucent plate-like body 2 and an elongated rectangular region 21B that is not focused on both sides thereof (both sides in the width direction of the transport path 3). Is formed.
  • a rectangular area 21B that is out of focus is formed in both the area closer to and far from the first area camera 21 than the rectangular area 21A in focus.
  • the illuminator 20 and the first area camera 21 are accommodated inside the first frame member 24 shown in FIG. 3A while maintaining their inclination angles, and the illuminator 22 and the second area camera 23. Are accommodated in the second frame member 25 shown in FIG. 3B while maintaining their inclination angles.
  • a window portion is formed at the bottom of these frame members 24 and 25, so that illumination light can be applied to the translucent plate-like body 2 and reflected light from the translucent plate-like body 2 can be imaged. ing.
  • the first inspector 12 of the present embodiment is a first frame member 24 that movably supports the first frame member 24 including the previous illuminator 20 and the first area camera 21. It is composed of four first main imaging units 30 (hereinafter referred to as main imaging units 30 in this specification) constituted by one conveyance unit 27 and second conveyance unit 28.
  • the second inspector 13 is a first transport unit that movably supports a second frame member 25 including the previous illuminator 22 and the second area camera 23. 27 and four second main image pickup units 31 (hereinafter referred to as main image pickup units 31 in the present specification).
  • These area cameras 21 and 23 preferably have a high resolution of about 8 to 10 ⁇ m per pixel and can capture high-definition images.
  • the first transport unit 27 provided in the first inspector 12 is a linear motion unit 33 along the width direction of the transport path 3 with respect to the portal frame having a size extending over the entire length in the width direction of the transport path 3. Is configured to be attached.
  • the linear motion unit 33 is provided with a screw screw portion 35 at the inner center of an elongated box-shaped frame member 34, and has a screw hole portion that engages with the screw screw portion 35.
  • the provided slider member 36 is provided so as to be movable in the length direction of the frame member 34 in accordance with the rotation of the screw thread portion 35.
  • a drive source such as a servo motor is built in one end side of the frame member 34, and the screw screw portion 35 can be driven to rotate in forward and reverse directions.
  • the rotational speed and direction of the screw screw portion 35 by the servo motor can be adjusted.
  • the moving direction moving direction along the width direction of the conveyance path 3
  • moving speed of the slider member 36 can be adjusted.
  • a second transport unit 28 is attached to the slider member 36.
  • the second transport unit 28 has the same structure as the first transport unit 27, but includes a linear motion unit 33 ⁇ / b> A shorter than the linear motion unit 33.
  • the structure of the linear motion unit 33A is the same as that of the linear motion unit 33, and includes a frame member 34A, a screw thread portion 35A, and a slider member 36A.
  • the linear motion unit 33A constituting the second transport unit 28 is attached to the slider member 36 so as to face the downstream side of the translucent plate-like body 2 in the transport direction and to be parallel to the transport direction.
  • the second transport unit 28 is formed shorter than the first transport unit 27, and the first frame member 24 described above is provided on the slider member 36A of the second transport unit 28 as shown in FIG.
  • the illuminator 20 and the first area camera 21 are attached obliquely downward.
  • the linear motion units 33 and 33A have a feed screw type servo motor and a device showing a moving speed of 1000 mm / second is commercially available. Therefore, the first area camera 21 is moved. The necessary and sufficient speed can be obtained.
  • the illuminator 20 and the first area camera 21 are moved along the first conveyance unit 27 in the width direction of the conveyance path 3 from end to end (in other words, the horizontal direction conveyed along the conveyance path 3.
  • the light-transmitting plate-like body 2 in a state can be moved linearly (from one side end to the other side end).
  • the illuminator 20 and the first area camera 21 can be linearly moved along the second conveyance unit 28 in the conveyance direction of the translucent plate-like body 2 from the proximal end side to the distal end side.
  • the translucent plate-like body 2 to be inspected in the inspection apparatus 1 of the present embodiment is, for example, a G8 size glass plate known as display device glass, and is a plate glass of 2500 mm ⁇ 2200 mm and a thickness of about 0.7 mm. Therefore, the length of the first transport unit 27 is formed to a size that can cover the width of the plate glass to be inspected.
  • the size of the translucent plate-like body 2 has various sizes for use as a display device, and there are various sizes in other application fields.
  • the length of the first transport unit is determined. The speed at which the translucent plate-like body 2 is transported along the transport path 3 may be arbitrary.
  • the length of the second transport section 28 is The length can be set such that the first frame member 24 or the second frame member 25 can be moved by about 100 mm to 150 mm.
  • the second transport unit 28 is located at the center in the length direction of the first transport unit 27, and the neutral position is the initial state.
  • the second transport unit 28 moves from the neutral position in the width direction of the translucent plate-like body 2 and, as will be described later, when the first area camera 21 takes an image, returns to the neutral position and moves to the next. It is comprised so that it may wait for in preparation.
  • the first area camera 21 of the second transport unit 28 is disposed at the end of the first transport unit 27 at the center of the first transport unit 27. This is desirable in that it can move faster because it requires less travel distance to the defect than if it is.
  • the main imaging unit 31 provided in the second inspection device 13 includes the first conveyance unit 27 and the second conveyance unit 28 in the same manner as the main imaging unit 30 described above. However, the main imaging unit 31 is different in that a frame member 25 including an illuminator 22 and a second area camera 23 is attached to the second transport unit 28.
  • the illuminator 20 and the first area camera 21 provided in the first inspection device 12 are provided as a dark field inspection device, and the illuminator provided in the second inspection device 13. 22 and the second area camera 23 are provided as a bright field inspection device.
  • a position detection sensor for detecting the tip position of the translucent plate-like body 2 on the upstream side along the conveyance path 3 with respect to the installation position of the four main imaging units 30 constituting the first inspector 12. 38 is provided, and the tip position of the translucent plate-like body 2 is detected on the upstream side along the conveyance path 3 with respect to the installation positions of the four main imaging units 31 constituting the second inspection device 13.
  • a position detection sensor 39 is provided. The position detection sensor 38 is provided for grasping the tip position of the translucent plate 2 close to the first inspection device 12, and the position detection sensor 39 is transparent to the second inspection device 13. It is provided to grasp the tip position of the optical plate-like body 2.
  • the position detection sensor 38 detects the approach of the translucent plate 2, the focal position of the first area camera 21 of the first main imaging unit 30 and the tip position of the translucent plate 2 Thus, as will be described later, the movement of the first area camera 21 can be started by operating the first main imaging unit 30.
  • the 1st tester 12 is connected to the control apparatus 14 with a display apparatus via the connection line 12a, and the 2nd tester 13 is attached to the display apparatus via the connection line 13a.
  • the image captured by the first area camera 21 of the first inspection device 12 and the image captured by the second area camera 23 of the second inspection device 13 are respectively displayed on the display device. It is configured so that it can be displayed.
  • the preliminary inspection machine 6 is applied to the translucent plate-like body 2 that has been transported horizontally along the transport path 3.
  • a dark field inspection is performed in the full width direction of the translucent plate-like body 2 by the dark field appearance inspecting device 10 to detect the position of a scratch and the like.
  • Bright field inspection is performed in the full width direction of the body 2 to detect the position of defects such as bubbles.
  • the images picked up by the dark-field appearance inspector 10 and the bright-field appearance inspector 11 are sent to the management device 8, and the coordinate position of the defect along the surface of the translucent plate-like body 2 is specified in the management device 8. 8 is stored in the storage unit 8.
  • the management device 8 controls the operation of the first inspection device 12 and the second inspection device 13 of the close inspection machine 7 in accordance with the coordinate position of the defect of the translucent plate-like body 2.
  • the defect K exists at an arbitrary position of the translucent plate-like body 2, an image captured by either the dark-field appearance inspector 10 or the bright-field appearance inspector 11. Is determined by image processing by the management device 8 and its coordinate position (the X coordinate position in the direction from the front end to the rear end of the translucent plate-like body 2 and the width direction both ends of the translucent plate-like body 2) The coordinate position in the Y direction along the width direction from one of the ends is specified. Based on the identified coordinate position information in the XY directions, the second transport unit 28 of the first main imaging unit 30 waiting at the initial position of the center of the first transport unit 27 is moved to the center of the transport path 3. The focal point position of the first area camera 21 is moved to the coordinate position in the Y direction by moving in the width direction from the neutral position of the unit, and alignment is performed at the position where the defect K is scheduled to pass.
  • the defect K of the translucent plate-like body 2 is the first area.
  • the first frame member 24 is caused to travel along the second transport unit 28 at the same speed as the transport speed of the translucent plate-like body 2 in accordance with the timing of passing the focal position of the camera 21. During this travel, the illumination light is irradiated around the defect K from the ring-shaped light emitting unit 20a, and the first area camera 21 captures an image in the dark field.
  • the first area camera 21 has a high resolution
  • the first area camera 21 moves at a constant speed along with the defect K along the conveyance path 3 by a distance corresponding to the length of the second conveyance unit 28. Even without this, with the normal shutter speed, the portion of the defect K can be imaged at high resolution without blurring without causing underexposure. Further, the illumination light of the illuminator 20 does not need to be increased more than necessary, and the illumination light only needs to have brightness that can be imaged within the range of the normal shutter speed.
  • the conveyance speed of the translucent plate-like body 2 is, for example, 18 m / min (300 mm / sec)
  • the resolution of the inspection machine is 10 ⁇ m / pixel and image blurring is allowed for one pixel. If it is preferable that the camera is stopped, a time required to travel 10 ⁇ m is a necessary shutter time within 0.033 msec, and a very high shutter speed of 1/30000 seconds or less is required.
  • the aperture of the first area camera can be selected from about 4 to 8. If the aperture is increased, the depth of field will be deepened and the in-focus area will be expanded. However, increasing the aperture will compensate for the lack of illumination. In addition, it is necessary to reduce the shutter speed or increase the illumination intensity.
  • the allowable width of the above-described speed deviation is narrowed.
  • adding illumination to increase illumination illuminance increases the weight of the device, which increases the inertial force during driving and increases the rigidity of the driving device, making the device heavy and balanced. It is preferable to configure so that it can be realized at the shutter speed.
  • the position detection sensor 39 is replaced with the translucent plate-like body. 2 approach is detected.
  • the positional relationship between the first main imaging unit 31 and the translucent plate-like body 2 becomes clear, so the first second The conveyance unit 28 is moved in the same manner as the positioning operation performed in the first inspector 12, and the portion of the defect K is imaged in the bright field by the second area camera 23.
  • the second area camera 23 has a high resolution, it moves at a constant speed along the conveyance path 3 along with the defect K by a distance corresponding to the length of the second conveyance unit 28, so that the shutter speed is high. Even if it is not, the defect K can be imaged with high resolution without blurring without making the illumination light stronger than necessary with the normal shutter speed.
  • the defect K portion can be imaged with high resolution and no blur by using both the dark field and bright field inspection methods, so that various defects K such as scratches, bubbles, and foreign matter can be detected with high definition. Can do.
  • the images captured by the first area camera 21 and the second area camera 23 are displayed on the image display device provided in the control device 14, respectively. The presence or absence of K can also be determined.
  • FIG. 5 illustrates an example of an inspection method in the case where the defect K exists only in one place on the translucent plate-like body 2, but a plurality of defects K are formed on the translucent plate-like body 2.
  • An example of the inspection method will be described below with reference to FIG.
  • FIG. 7A shows the first inspector 12 including four main imaging units 30 provided with the first frame member 24 including the first area camera 21.
  • FIG. 7A a case will be described in which the translucent plate-like body 2 on which the defects K1 to K5 are formed approaches.
  • the existence of the defects K1 to K5 has already been inspected when the translucent plate-like body 2 passes through the preliminary inspection machine 6 in the previous stage, and is translucently transported horizontally along the transport path 3 at a constant speed.
  • the management device 8 In the XY coordinates along the surface direction of the surface of the plate-like body 2, the management device 8 has already identified and grasped the individual coordinate position information of the defects K1 to K5.
  • the coordinates of the defects K1 to K5 are specified in order according to the distance from the tip position of the translucent plate-like body 2.
  • the management device 8 that grasps the position of the defect K1 operates the first main imaging unit 30, and the first The second conveyance unit 28 is moved in the Y direction along the conveyance unit 27 to align the focal area of the first area camera 21 at the same coordinate position as the Y coordinate position of the defect K1. Since the management device 8 grasps the X coordinate position of the defect K1, the first frame member along the second transport unit 28 when the defect K1 reaches the focal region of the first area camera 21. 24 is moved synchronously with the translucent plate-like body 2 at a constant speed, and the defect K1 can be imaged with high definition by the first area camera 21 as shown in FIG. 7B.
  • the defect K2 After the defect K1 is imaged, the defect K2 approaches the first main imaging unit 30, so the second conveyance unit 28 is moved in the Y direction along the first conveyance unit 27, and the Y coordinate of the defect K2
  • the focal area of the first area camera 21 is aligned with the same coordinates as shown in FIG. Since the management device 8 grasps the X coordinate position of the defect K2, the first frame member along the second transport unit 28 when the defect K2 reaches the focal region of the first area camera 21. 24 is synchronized with the translucent plate-like body 2 at a constant speed, and the first area camera 21 can image the defect K2 with high definition.
  • the defect K3 After photographing the defect K2, the defect K3 approaches the first main imaging unit 30. However, the defect K2 and the defect K3 are close to each other, and the tracking operation of the first main imaging unit 30 is not in time. If 8 determines, the management apparatus 8 operates the second main imaging unit 30. The second main imaging unit 30 moves the second transport unit 28 in the Y direction along the first transport unit 27 to align the first area camera 21 with the same coordinate as the Y coordinate of the defect K3. I do. Since the management device 8 grasps the X coordinate position of the defect K3, the first frame member 24 is moved along the second conveyance unit 28 when the defect K3 reaches the focal region of the first area camera 21. The defect K3 can be imaged with high definition by the first area camera 21 as shown in FIG.
  • the defect K4 After photographing the defect K3, the defect K4 approaches the second main imaging unit 30. However, the defect K3 and the defect K4 are close to each other, and the tracking operation of the second main imaging unit 30 is not in time. If 8 determines, the management apparatus 8 operates the third main imaging unit 30. The third main imaging unit 30 moves the second transport unit 28 in the Y direction along the first transport unit 27 to align the first area camera 21 with the same coordinate as the Y coordinate of the defect K4. I do. Since the management device 8 grasps the X coordinate position of the defect K4, the first frame member 24 is moved along the second transport unit 28 when the defect K4 reaches the focal area of the first area camera 21. The defect K4 can be imaged with high definition by the first area camera 21 as shown in FIG.
  • the defect K5 After photographing the defect K4, the defect K5 approaches the first main imaging unit 30. However, the defect K4 and the defect K5 are sufficiently separated from each other, and the management apparatus 8 is in time for the follow-up operation of the first main imaging unit 30. Is determined, the management device 8 operates the first main imaging unit 30. The first main imaging unit 30 moves the second transport unit 28 in the Y direction along the first transport unit 27 to align the first area camera 21 with the same coordinate as the Y coordinate of the defect K5. I do. Since the management device 8 grasps the X coordinate position of the defect K5, the first frame member 24 is moved along the second transport unit 28 when the defect K5 reaches the focal region of the first area camera 21. The defect K5 can be imaged with high definition by the first area camera 21 as shown in FIG. After imaging the defect K5, the first area camera 21 returns to the initial position in the center of the first transport unit 27 to prepare for the next defect inspection.
  • the management device 8 is driven mainly by the first main imaging unit 30 and determines that the first main imaging unit 30 cannot follow from the XY coordinate positions of the defects K1 to K5. Only in this case, the second main imaging unit 30, the third main imaging unit 30, and the fourth main imaging unit 30 are sequentially operated to inspect defects. According to the moving speed of the translucent plate-like body 2 conveyed along the conveyance path 3, the first to fourth main imaging units 30 are sequentially used to inspect the defects, so that the translucency is obtained. Even if a plurality of defects K1 to K5 are formed on the plate-like body 2, the inspection apparatus 1 of the present embodiment can perform high-definition imaging while following all the defects without any trouble.
  • the translucent plate-like body 2 having a plurality of defects K1 to K5 can be inspected with high accuracy.
  • the plurality of main imaging units 30 can be operated to increase the height without any trouble. There is an effect that can be inspected with accuracy.
  • the first main imaging unit 30 since the first main imaging unit 30 is frequently operated, there is a possibility that the first main imaging unit 30 may fail preferentially during repeated use. In this case, if the first main imaging unit 30 fails and stops operating, no image is sent, so that the failure of the first main imaging unit 30 can be immediately grasped.
  • the second main imaging unit 30 can be operated with the second main imaging unit 30 as a main body, with the second main imaging unit 30 regarded as the first main imaging unit 30.
  • FIG. 8 shows a second embodiment of the inspection apparatus according to the present invention.
  • the first inspection device 42 provided in the transport path 3 two first devices are arranged in the width direction.
  • An embodiment is shown in which the first main imaging units 50 and 51 are provided, and the two main units are provided in four rows for a total of eight main imaging units.
  • the main imaging units 50 in the right front row in the transport direction have the same configuration as the previous main imaging unit 30, but the length of the first transport unit 27 ⁇ / b> A is long. The difference is that the length of the conveyance path 3 is about half the width direction.
  • the main imaging units 51 in the left column facing forward in the conveyance direction have a similar configuration to the previous main imaging unit 30, but the length of the first conveyance unit 27B is the same. It is formed in a length about half the width direction of the conveyance path 3 so that the second conveyance unit 28A extends to the opposite side to the conveyance direction of the translucent plate-like body 2 with respect to the first conveyance unit 27B. The difference is that it is attached to the first transport section 27B at a right angle.
  • the first transport unit 27A, 27B and the second transport unit 28 are configured by linear motion units 33, 33A as shown in FIG. 6, which is the same as the structure of the previous embodiment.
  • the length of the first transport units 27A and 27B is set to about half of the transport path 3, and the second transport moves along the first transport units 27A and 27B. Since the moving distance of the portions 28 and 28A is shortened, if the moving speed of the second transporting portions 28 and 28A is equivalent to that of the structure of the first embodiment, these are the widths of the translucent plate-like body 2. It can be moved along the direction in a shorter time (half time) than the structure of the first embodiment described above based on FIG. For this reason, the followability of the 2nd conveyance parts 28 and 28A to the fault currently formed in translucent plate-like object 2 improves.
  • main imaging units 30 or main imaging units 31 are provided for the first inspector 12 and the second inspector 13 .
  • the number of installation may be arbitrary.
  • a small number of installations may be used, and in some cases, a configuration in which four or more main imaging units are provided for inspection may be used.
  • both the dark-field visual inspection device 10 and the bright-field visual inspection device 11 are provided in the preliminary inspection machine 6, only one of them may be provided.
  • the inspection devices provided in the scrutinization inspection machine 7 are preferably both the first inspection device 12 and the second inspection device 13, but only one of them may be provided.
  • FIG. 9 shows another structural example for the area cameras 21 and 23 provided in the inspection apparatus according to the present invention.
  • the area cameras 21 and 23 described above are in relation to the movement region of the translucent plate-like body 2.
  • the first main imaging unit (area camera) 60 is arranged vertically downward above the surface of the moving area of the translucent plate-like body 2 while being arranged obliquely downward.
  • An example of the structure is shown.
  • the area camera 60 is shown as an example of a configuration capable of imaging a defect as a bright-field inspection device or a dark-field inspection device even when arranged vertically downward.
  • a half mirror member 61 is provided above the translucent plate-like body 2
  • an area camera 60 is provided above the half mirror member 61 with the optical axis vertically downward, and illumination is performed on the side of the half mirror member 61.
  • a vessel 62 is provided.
  • the illumination light incident on the half mirror member 61 from the illuminator 62 is perpendicularly incident on the surface of the translucent plate-like body 2 and the upward reflected light from the translucent plate-like body 2 is reflected.
  • the bright field inspection or dark field inspection of the translucent plate 2 can be performed.
  • the illumination field 62 to the field range of the area camera 60 is used. Irradiate illumination light with uniform brightness.
  • the translucent plate-like body 2 can be imaged by the area camera 60 whose optical axis is directed vertically downward with respect to the translucent plate-like body 2. If the area camera 60 shown in FIG. 9 is used, since the entire photographing area is focused at the focal position of the area camera 60, high-definition imaging with high resolution can be performed. As in the structure of the previous embodiment, the direction of the area cameras 21 and 23 may be either diagonally downward or vertically downward as in the example of FIG. 9. In the present invention, the direction of the illumination light There are no restrictions on the orientation of the camera.
  • the technology of the present invention can be widely applied to methods and apparatuses for inspecting glass for display devices, optical glass, medical glass, architectural glass, vehicle glass, and other general glass products.
  • second Frame member 27, 27A, 27B ... first transport unit, 28, 28A ... second transport unit, 30 ... first main imaging unit, 31 ... second main imaging unit, 33, 33A ... linear motion unit , 42 ... 1st inspection device, 50, 51 ... Main imaging unit, 60 ... 1st main imaging (Area camera), K, K1 ⁇ K5 ... small drawback.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

The present invention is a method for inspecting a minute defect present in a translucent board-like body, while transferring the translucent board-like body along a transfer path. The method for inspecting a minute defect of a transparent board-like body has: a preliminary inspection step, wherein the position of the minute defect is specified by irradiating the translucent board-like body with light and picking up an image of the main surface of the translucent board-like body by means of a preliminary image pickup unit, said minute defect being present in the surface direction of the main surface of the translucent board-like body; and a detail inspection step, wherein, corresponding to the minute defect position obtained in the preliminary inspection step, a main image pickup unit is moved in the direction, which is along the surface of the translucent board-like body and intersects the transfer direction of the translucent board-like body, and the image of the minute defect is picked up, while moving the main image pickup unit in the transfer direction in the state wherein the main image pickup unit is aligned with the minute defect.

Description

透光性板状体の微小欠点の検査方法および透光性板状体の微小欠点の検査装置Inspection method for minute defects of translucent plate and inspection apparatus for minute defects of translucent plate
 本発明は、透光性を有するガラス板等の板状体の微小欠点の検査方法および透光性板状体の微小欠点の検査装置に関する。 The present invention relates to a method for inspecting minute defects of a plate-like body such as a light-transmitting glass plate and an inspection apparatus for minute defects of a light-transmitting plate-like body.
 今日、ガラス板はフラットパネルディスプレイ等の電子機器に用いられていることから、板厚が薄く、泡、傷、異物等の欠点が極めて少ないか、あるいは全く欠点が存在しないガラス板が求められている。
 この種のフラットパネルディスプレイ用ガラス基板は、溶解した原料をフロートバス上に流して板状に成形し、その成形品を徐冷後、所定の大きさに切断し、必要に応じ表面を研磨し、洗浄することで製作されている。
 洗浄後のガラス基板は、コンベア等の搬送装置により梱包工程に搬送されるが、その途中で泡、傷、異物等の微小欠点について光学的な検査が行われている。例えば、ガラス基板に照明を当て、ガラス基板の微弱な明暗の変化を光学カメラで撮像し、画像処理により微小欠点を識別することが行われている。
Today, glass plates are used in electronic devices such as flat panel displays, so there is a need for glass plates that are thin and have few defects such as bubbles, scratches, and foreign materials, or have no defects at all. Yes.
This type of glass substrate for flat panel displays is formed into a plate shape by pouring the melted raw material onto a float bath, and after slowly cooling the molded product, it is cut into a predetermined size and the surface is polished if necessary. It is manufactured by washing.
The glass substrate after cleaning is transported to a packing process by a transport device such as a conveyor, and optical inspection is performed for minute defects such as bubbles, scratches, and foreign matters on the way. For example, illumination is performed on a glass substrate, a weak change in brightness and darkness of the glass substrate is captured with an optical camera, and minute defects are identified by image processing.
 ガラス基板の検査装置の一例として、ガラス基板を搬送する搬送路の上に、ガラス基板の搬送方向に沿って移動可能なガイド(移動手段)を設け、この移動手段に照明装置と受光手段を設け、移動手段の移動方向をガラス基板の搬送方向と同一に設定し、移動手段に速度制御装置を設けた構成の検査装置が知られている(特許文献1参照)。
 特許文献1に記載されている検査装置は、移動手段の移動速度をガラス基板の搬送速度よりも低速に設定して検査する場合と、移動手段の移動速度をガラス基板の搬送速度よりも高速に設定して検査する場合と、移動手段の移動速度をガラス基板の搬送速度と同一に設定して検査する場合のそれぞれに対応できる。
As an example of a glass substrate inspection apparatus, a guide (moving means) movable along the glass substrate transport direction is provided on a transport path for transporting the glass substrate, and an illumination device and a light receiving means are provided on the moving means. An inspection apparatus having a configuration in which the moving direction of the moving means is set to be the same as the conveying direction of the glass substrate and a speed control device is provided in the moving means is known (see Patent Document 1).
In the inspection apparatus described in Patent Document 1, the moving speed of the moving means is set to be lower than the conveying speed of the glass substrate, and the moving speed of the moving means is set to be higher than the conveying speed of the glass substrate. It is possible to cope with both the case where the inspection is performed by setting and the case where the movement speed of the moving means is set to be the same as the conveyance speed of the glass substrate.
日本国特開2009-80088号公報Japanese Unexamined Patent Publication No. 2009-80088
 ガラス基板を搬送しながら撮像する従来の検査装置であると、ぶれのない高精細な画像を得るためには、高速シャッターを使用する必要があるが、高速シャッターを用いると露光時間が足りなくなって微小欠点の微細な変化を撮像することが困難となる問題がある。そのため、検査工程のガラス基板の搬送速度を落とすか、又はガラス基板を搬送途中で一端停止させてから撮像する必要があるが、これらの手段はいずれにおいてもガラス基板の生産性を低下させるという問題がある。また、板ガラス等の透光性板状体を照明する場合、入射光に対して反射光が4~8%程度になるので、反射光の強度を高くするにしても、限界があり、露光不足となり易い問題もある。
 従来の検査装置においてガラス基板に複数の微小欠点が点在していた場合、ガラス基板を搬送している途中において点在する複数の微小欠点を逐一撮像することは極めて難しく、従って複数の微小欠点が点在する状態で形成されているガラス基板の検査を正確に行うことが難しかった。
With a conventional inspection device that captures images while transporting a glass substrate, it is necessary to use a high-speed shutter to obtain a high-definition image without blurring. However, using a high-speed shutter results in insufficient exposure time. There is a problem that it is difficult to image a minute change of a minute defect. Therefore, it is necessary to reduce the conveyance speed of the glass substrate in the inspection process, or to stop the glass substrate during the conveyance and then take an image, but any of these means reduces the productivity of the glass substrate. There is. In addition, when illuminating a translucent plate such as plate glass, the reflected light is about 4 to 8% with respect to the incident light. Therefore, even if the intensity of the reflected light is increased, there is a limit and the exposure is insufficient. There is also a problem that tends to be.
When a plurality of minute defects are scattered on the glass substrate in the conventional inspection apparatus, it is extremely difficult to image the plurality of minute defects scattered in the middle of the transportation of the glass substrate. It was difficult to accurately inspect the glass substrate formed in the state where the dots are scattered.
 これらの背景に基づき、本発明者は、大型のガラス基板などの透光性板状体を搬送途中で検査する方法において、透光性板状体に複数の微小欠点が点在していた場合であっても、透光性板状体の搬送速度を落とすことなく微小欠点の精密な検査が可能な微小欠点の検査方法と微小欠点の検査装置の提供を目的とする。 Based on these backgrounds, the present inventor, in the method of inspecting the translucent plate-like body such as a large glass substrate in the middle of transport, when the translucent plate-like body is dotted with a plurality of minute defects Even so, it is an object of the present invention to provide a micro defect inspection method and a micro defect inspection apparatus capable of precisely inspecting the micro defect without reducing the transport speed of the translucent plate-like body.
 本発明は、透光性板状体を搬送路に沿って搬送しながら該透光性板状体に存在する微小欠点を検査する方法において、前記透光性板状体に光を照射して前記透光性板状体の主表面を予備撮像部で撮像することで、前記透光性板状体の主表面の面方向に存在する前記微小欠点の位置を特定する予備検査ステップと、前記予備検査ステップで得られた前記微小欠点の位置に合わせて、前記透光性板状体の面方向に沿って前記透光性板状体の前記搬送方向と交差する方向に主撮像部を移動し、前記微小欠点に位置合わせした状態で前記搬送方向に移動しつつ前記微小欠点を撮像する精査検査ステップと、を有する透光性板状体の微小欠点の検査方法に関する。 The present invention relates to a method for inspecting a micro defect existing in a translucent plate-like body while conveying the translucent plate-like body along a conveyance path, and irradiating the translucent plate-like body with light. Preliminary inspection step of identifying the position of the minute defect existing in the surface direction of the main surface of the translucent plate by imaging the main surface of the translucent plate with a preliminary imaging unit; The main imaging unit is moved in a direction intersecting the transport direction of the translucent plate along the surface direction of the translucent plate in accordance with the position of the minute defect obtained in the preliminary inspection step. And a scrutiny inspection step of imaging the minute defect while moving in the transport direction in a state of being aligned with the minute defect.
 本発明の透光性板状体の微小欠点の検査方法は、前記精査検査ステップにおいて、前記主撮像部を前記透光性板状体の搬送方向に交差する方向に移動させて位置決めし、前記主撮像部の視野に入った微小欠点の移動に同期させて前記主撮像部を前記搬送路に沿って前記透光性板状体と等速で移動させつつ、前記微小欠点を撮像できる。
 本発明の透光性板状体の微小欠点の検査方法は、前記精査検査ステップにおいて、前記搬送路に沿って複数の主撮像部を配置し、前記予備検査ステップにおいて特定された微小欠点の位置に対応させて前記主撮像部を個別に移動させ、前記微小欠点を個々に撮像することができる。
 本発明の透光性板状体の微小欠点の検査方法は、前記精査検査ステップにおいて、前記搬送路に沿って複数設けられた主撮像部のうち、前記搬送路の上流側に設置されている前記主撮像部が特定の微小欠点の接近に対応して移動することで該微小欠点を撮像するが、前記搬送路の上流側の前記主撮像部が移動して該微小欠点を撮像するために要する時間よりも早く次の微小欠点が接近する場合、前記搬送路の下流側に設置されている他の主撮像部が接近中の該微小欠点に対し移動することで該微小欠点を撮像できる。
In the inspection method for minute defects of the light-transmitting plate-like body of the present invention, in the detailed inspection step, the main imaging unit is moved and positioned in a direction intersecting the transport direction of the light-transmitting plate-like body, The micro defect can be imaged while moving the main imaging unit at the same speed as the translucent plate along the conveyance path in synchronization with the movement of the micro defect entering the field of view of the main imaging unit.
In the inspection method for minute defects of the light-transmitting plate-like body according to the present invention, in the scrutiny inspection step, a plurality of main imaging units are arranged along the conveyance path, and the position of the minute defect specified in the preliminary inspection step is determined. The main image pickup unit can be individually moved in correspondence with the above, and the minute defects can be individually imaged.
The inspection method for minute defects of the light-transmitting plate-like body according to the present invention is installed on the upstream side of the conveyance path among the plurality of main imaging units provided along the conveyance path in the detailed inspection step. The main imaging unit moves in response to the approach of a specific microdefect to capture the microdefect, but the main imaging unit on the upstream side of the transport path moves to image the microdefect. When the next minute defect approaches closer than the required time, the other main imaging unit installed on the downstream side of the transport path moves with respect to the approaching minute defect so that the minute defect can be imaged.
 本発明の透光性板状体の微小欠点の検査方法は、前記予備検査ステップと前記精査検査ステップのそれぞれにおいて、暗視野検査及び明視野検査の両方を実施できる。
 本発明の透光性板状体の微小欠点の検査方法は、前記予備検査ステップにおいて、前記予備撮像部としてラインセンサカメラを用いて前記透光性板状体の主表面の面方向に存在する微小欠点の位置を特定し、前記精査検査ステップにおいて、前記主撮像部としてエリアカメラを用いて前記微小欠点を撮像することができる。
 本発明の透光性板状体の微小欠点の検査方法は、前記精査検査ステップにおいて、前記エリアカメラを前記透光性板状体の搬送方向に対し直交する方向に向け、前記エリアカメラを前記透光性板状体の主表面が前記搬送路に沿って移動する領域に対し傾斜させて前記微小欠点を撮像できる。
The inspection method for minute defects of the light-transmitting plate-like body of the present invention can perform both dark field inspection and bright field inspection in each of the preliminary inspection step and the close inspection step.
In the preliminary inspection step, the method for inspecting a micro defect of the light transmitting plate-like body of the present invention is present in the surface direction of the main surface of the light transmitting plate-like body using a line sensor camera as the preliminary imaging unit. The position of the minute defect can be specified, and the minute defect can be imaged using an area camera as the main imaging unit in the inspection step.
In the inspection method for minute defects of the light-transmitting plate-like body according to the present invention, in the detailed inspection step, the area camera is directed in a direction orthogonal to the transport direction of the light-transmitting plate-like body, and the area camera is The micro defects can be imaged by inclining the main surface of the translucent plate-like body with respect to the region moving along the transport path.
 また、本発明は、搬送路に沿って搬送される透光性板状体に存在する微小欠点を検査する透光性板状体の微小欠点の検査装置において、前記透光性板状体に光を照射する照明器、及び前記透光性板状体の主表面を全面にわたり撮像する予備撮像部を備えた予備検査機と、該予備撮像部が撮像した前記透光性板状体の画像情報から前記透光性板状体の主表面の面方向に存在する微小欠点の位置情報を特定する管理装置と、前記透光性板状体に光を照射する照明器、前記透光性板状体の主表面を撮像する主撮像部、前記予備検査機で特定された前記微小欠点の位置情報に合わせて前記透光性板状体の面方向に沿って前記透光性板状体の搬送方向と交差する方向に前記主撮像部を移動させる第一の搬送部、及び前記透光性板状体の搬送方向に前記主撮像部を移動させる第二の搬送部を備えた精査検査機とを具備した透光性板状体の微小欠点の検査装置に関する。 Further, the present invention provides an inspection apparatus for a micro defect of a light transmitting plate that inspects a micro defect existing in a light transmitting plate that is transported along a transport path. An illuminator that emits light, a preliminary inspection machine that includes a preliminary imaging unit that images the entire main surface of the translucent plate-like body, and an image of the translucent plate-like body that is captured by the preliminary imaging unit Management device for identifying position information of minute defects existing in the surface direction of the main surface of the translucent plate from information, illuminator for irradiating light to the translucent plate, and the translucent plate A main imaging unit that images the main surface of the light-transmitting body, the light-transmitting plate-shaped body of the light-transmitting plate-shaped body along the surface direction of the light-transmitting plate-shaped body in accordance with the positional information of the minute defect specified by the preliminary inspection machine A first transport unit that moves the main imaging unit in a direction intersecting the transport direction, and the transport direction of the translucent plate-shaped body; An inspection system for a microstructure defect of the light-transmitting plate body; and a review test machine having a second transport unit that moves the image pickup unit.
 本発明の透光性板状体の微小欠点の検査装置は、前記第二の搬送部が、前記透光性板状体の搬送方向と同じ方向に前記透光性板状体と等速で前記主撮像部を移動させる構成にできる。
 本発明の透光性板状体の微小欠点の検査装置は、前記主撮像部、前記第一の搬送部および前記第二の搬送部を備えた主撮像ユニットが、前記透光性板状体の搬送方向に沿って複数設置された構成にできる。
 本発明の透光性板状体の微小欠点の検査装置は、前記搬送路に沿って複数設けられた主撮像部のうち、搬送路の上流側に設置されている前記主撮像部が特定の微小欠点の接近に対応して移動することで該微小欠点を撮像するが、前記搬送路の上流側の前記主撮像部が移動して該微小欠点を撮像するために要する時間よりも早く次の微小欠点が接近する場合、前記搬送路の下流側に設置されている他の主撮像部を接近中の該微小欠点に対し移動させて該微小欠点を撮像する機能を管理装置に備えることができる。
In the inspection apparatus for minute defects of the light-transmitting plate-like body of the present invention, the second transport unit is at a constant speed with the light-transmitting plate-like body in the same direction as the transport direction of the light-transmitting plate-like body. The main imaging unit can be moved.
The inspection device for minute defects of the light-transmitting plate-like body according to the present invention is such that the main image pickup unit including the main image pickup unit, the first transfer unit, and the second transfer unit includes the light-transmitting plate-like body. A plurality of installations can be made along the conveyance direction.
The inspection apparatus for minute defects of the light-transmitting plate-like body according to the present invention includes a plurality of main imaging units provided along the conveyance path, wherein the main imaging unit installed on the upstream side of the conveyance path is specified. The micro-defect is imaged by moving in response to the approach of the micro-defect, but the main imaging unit on the upstream side of the transport path moves and the next time is faster than the time required to image the micro-defect. When a minute defect approaches, the management device can be provided with a function of moving another main imaging unit installed on the downstream side of the conveyance path with respect to the approaching minute defect and imaging the minute defect. .
 本発明の透光性板状体の微小欠点の検査装置は、前記予備検査機が明視野検査器としての予備撮像部と暗視野検査器としての予備撮像部と、を設けることができる。
 本発明の透光性板状体の微小欠点の検査装置は、前記予備撮像部をラインセンサカメラとし、前記主撮像部をエリアカメラとすることができる。
 本発明の透光性板状体の微小欠点の検査装置は、前記エリアカメラが前記透光性板状体の搬送方向と交差する方向に向けられ、かつ、前記透光性板状体の主表面を前記搬送路に沿って移動させる領域に対し傾斜配置されていてもよい。
In the inspection apparatus for minute defects of the light-transmitting plate-like body of the present invention, the preliminary inspection machine can be provided with a preliminary imaging unit as a bright field inspection device and a preliminary imaging unit as a dark field inspection device.
In the inspection apparatus for minute defects of the light-transmitting plate-like body of the present invention, the preliminary imaging unit can be a line sensor camera and the main imaging unit can be an area camera.
The inspection device for minute defects of the light-transmitting plate-like body of the present invention is such that the area camera is directed in a direction intersecting with the transport direction of the light-transmitting plate-like body, and the main body of the light-transmitting plate-like body. The surface may be inclined with respect to the region in which the surface is moved along the conveyance path.
 本発明によれば、予備検査機の撮像により特定した透光性板状体の面方向の微小欠点の位置に合わせて透光性板状体の搬送方向と交差する方向に主撮像部を移動して位置合わせを行い、位置合わせした主撮像部が微小欠点を捕らえつつ透光性板状体の搬送方向に移動しながら撮像するので、高速なシャッター速度を用いなくとも十分な露光時間を確保できる結果、微小欠点の高精細な撮像が可能となり、微小欠陥を精度よく検査できる。微小欠点を捕らえた主撮像部が透光性板状体の搬送方向に透光性板状体と等速で移動しながら撮像するならば、主撮像部においてぶれの生じていない高精細な撮像が可能となり、微小欠点の検査精度向上に寄与する。 According to the present invention, the main imaging unit is moved in a direction crossing the transport direction of the translucent plate according to the position of the minute defect in the surface direction of the translucent plate specified by the image of the preliminary inspection machine. Alignment is performed, and the aligned main imaging unit captures images while moving in the transport direction of the translucent plate while capturing minute defects, ensuring sufficient exposure time without using a high shutter speed. As a result, high-definition imaging of minute defects can be performed, and minute defects can be inspected with high accuracy. If the main imaging unit that captures minute defects moves while moving at the same speed as the translucent plate in the transport direction of the translucent plate, high-definition imaging that does not cause blur in the main imaging unit This contributes to improving the inspection accuracy of minute defects.
図1は、本発明に係る第一実施形態の検査装置の全体構成を示す概略図である。FIG. 1 is a schematic diagram showing the overall configuration of the inspection apparatus according to the first embodiment of the present invention. 図2(a)および2(b)は、同検査装置に設けられる予備検査機の暗視野検査器としての光学系の一例を示すもので、図2(a)は裏面反射像の検出状態の一例を示す説明図、図2(b)は実像の検出状態の一例を示す説明図である。2 (a) and 2 (b) show an example of an optical system as a dark field inspection device of a preliminary inspection machine provided in the inspection apparatus, and FIG. 2 (a) shows a detection state of a back surface reflection image. FIG. 2B is an explanatory diagram illustrating an example of a detection state of a real image. 図3(a)および3(b)は、同検査装置に設けられる精査検査機の光学系を示すもので、図3(a)は暗視野光学系の検出状態の一例を示す図、図3(b)は明視野光学系の検出状態の一例を示す図である。3 (a) and 3 (b) show an optical system of a close inspection machine provided in the inspection apparatus, and FIG. 3 (a) shows an example of a detection state of a dark field optical system. (B) is a figure which shows an example of the detection state of a bright field optical system. 図4(a)および4(b)は、同検査装置に設けられる精査検査機の照明器と主撮像部の配置関係を示すもので、図4(a)は正面図、図4(b)は平面図である。4 (a) and 4 (b) show the positional relationship between the illuminator of the scrutinizing inspection machine provided in the inspection apparatus and the main imaging unit. FIG. 4 (a) is a front view and FIG. 4 (b). Is a plan view. 図5は、同検査装置に設けられる精査検査機の全体構成を示す平面図である。FIG. 5 is a plan view showing an overall configuration of a close inspection machine provided in the inspection apparatus. 図6(a)および6(b)は、同検査装置に設けられる搬送部を構成する直動ユニットの一例を示すもので、図6(a)は第一の搬送部を構成する直動ユニットの構成図、図6(b)は第二の搬送部を構成する直動ユニットの構成図である。6 (a) and 6 (b) show an example of a linear motion unit that constitutes a transport unit provided in the inspection apparatus, and FIG. 6 (a) shows a linear motion unit that constitutes a first transport unit. FIG. 6B is a configuration diagram of a linear motion unit constituting the second transport unit. 図7(a)~7(g)は、同検査装置に設けられる精査検査装置を用いて透光性板状体の複数の欠点に追従しつつ検査を行っている状態の一例を示すもので、図7(a)~7(g)は点在するそれぞれの欠点に検査器が追従している状態をそれぞれ示す図である。FIGS. 7 (a) to 7 (g) show an example of a state in which an inspection is performed while following a plurality of defects of a translucent plate using the inspection apparatus provided in the inspection apparatus. FIGS. 7 (a) to 7 (g) are diagrams showing a state in which the inspection device follows each of the scattered defects. 図8は、本発明に係る第二実施形態の検査装置に設けられている精査検査機の部分構成を示す平面図である。FIG. 8 is a plan view showing a partial configuration of a close inspection machine provided in the inspection apparatus according to the second embodiment of the present invention. 図9は、本発明に係る検査装置に設けられる光学系の他の例を示す構成図である。FIG. 9 is a configuration diagram showing another example of an optical system provided in the inspection apparatus according to the present invention.
 「第一実施形態」
 以下、添付図面を参照して本発明に係る検査装置の第一実施形態について説明するが、本発明は以下に説明する実施形態に制限されるものではない。
"First embodiment"
Hereinafter, a first embodiment of an inspection apparatus according to the present invention will be described with reference to the accompanying drawings, but the present invention is not limited to the embodiment described below.
 図1は、本発明に係る検査装置が設けられた検査ラインの一例を示し、本実施形態の検査装置1は、板ガラスなどの矩形状の透光性板状体2を水平に搬送可能な複数のローラコンベアなどで構成される搬送路3に沿って設けられている。この搬送路3は、例えば、溶融したガラス原料をフロートバス状に流して板状ガラスに成形し、その板状ガラスを所定の大きさの板ガラスに切断し、表面を研磨した後に搬送される一連の板ガラス製造ラインの一部として設けられている。
 図1に示す搬送路3の入口側(図1の左端部側)には洗浄装置5が設置され、水平状態で前段の切断工程から搬送されてきた板ガラスなどの透光性板状体2は洗浄装置5によってその表裏面が洗浄された後、検査装置1が設けられている搬送路3に水平搬送される。
FIG. 1 shows an example of an inspection line provided with an inspection apparatus according to the present invention. The inspection apparatus 1 of the present embodiment has a plurality of rectangular translucent plates 2 such as plate glass that can be conveyed horizontally. It is provided along the conveyance path 3 composed of a roller conveyor. For example, the transport path 3 is a series of transported after the molten glass raw material is flowed into a float bath shape and formed into a sheet glass, the sheet glass is cut into a sheet glass of a predetermined size, and the surface is polished. It is provided as a part of the plate glass production line.
A cleaning device 5 is installed on the entrance side (left end portion side in FIG. 1) of the transport path 3 shown in FIG. 1, and the translucent plate-like body 2 such as plate glass transported from the previous cutting step in a horizontal state is After the front and back surfaces are cleaned by the cleaning device 5, they are horizontally transported to the transport path 3 in which the inspection device 1 is provided.
 搬送路3に沿って洗浄装置5の後に予備検査機6と精査検査機7が設置され、これらの検査機を制御するための管理装置8が予備検査機6と精査検査機7に電気的に接続されて設けられている。
 予備検査機6は、暗視野外観検査器10と明視野外観検査器11を備えている。暗視野外観検査器10とは、透光性板状体2に形成されているヘアライン等の傷の外観を主体に暗視野にて検査するための暗視野検査器の一種である。明視野外観検査器11とは、透光性板状体2の内部に形成されている泡に起因する気泡部、透光性板状体2の表面や裏面に出た泡に起因するクレーター部分などを主体に明視野にて検査するための明視野検査器の一種である。
 精査検査機7は、暗視野検査器の一種である第一の検査器12と明視野検査器の一種である第二の検査器13を備えている。
A preliminary inspection machine 6 and a close inspection machine 7 are installed after the cleaning device 5 along the transport path 3, and a management device 8 for controlling these inspection machines is electrically connected to the preliminary inspection machine 6 and the close inspection machine 7. Connected and provided.
The preliminary inspection machine 6 includes a dark field appearance inspection device 10 and a bright field appearance inspection device 11. The dark field visual inspection device 10 is a kind of dark field visual inspection device for inspecting in the dark field mainly the appearance of a flaw such as a hairline formed on the translucent plate-like body 2. The bright-field appearance inspector 11 is a bubble portion caused by bubbles formed inside the translucent plate-like body 2 and a crater portion caused by bubbles appearing on the front and back surfaces of the translucent plate-like body 2 It is a kind of bright-field inspector for inspecting mainly in the bright field.
The close inspection machine 7 includes a first inspection device 12 that is a type of dark field inspection device and a second inspection device 13 that is a type of bright field inspection device.
 暗視野検査器とは、照明器から透光性板状体2に光を入射する際の照明の角度と透光性板状体2からの反射光をカメラ等の撮像部が捕らえる場合に、正反射光が得られる角度からずれた角度に撮像部の光軸を設置しておき、基本的に反射光が入らない暗視野として撮像できるように照明器と撮像部の位置関係を規定した検査器を示す。また、明視野検査器とは、照明器から透光性板状体2に光を入射する際の照明の角度と透光性板状体2からの反射光をカメラ等の撮像部が捕らえる場合に、正反射光が得られる角度に撮像部の光軸を設置しておき、基本的に反射光を捕らえることができ、明視野として撮像できるように照明器と撮像部の位置関係を規定した構成の検査器を示す。 The dark field inspection device is a case where an imaging unit such as a camera captures the angle of illumination when light enters the translucent plate 2 from the illuminator and the reflected light from the translucent plate 2. Inspection that prescribes the positional relationship between the illuminator and the imaging unit so that the optical axis of the imaging unit is installed at an angle that deviates from the angle at which the specularly reflected light is obtained, and basically a dark field where no reflected light enters Indicates a vessel. Further, the bright field inspection device is a case where an imaging unit such as a camera captures the angle of illumination when light enters the translucent plate 2 from the illuminator and the reflected light from the translucent plate 2. In addition, the optical axis of the imaging unit is installed at an angle at which regular reflection light can be obtained, and the positional relationship between the illuminator and the imaging unit is defined so that the reflected light can be basically captured and captured as a bright field. The configuration tester is shown.
 例えば、図2(a)に示すように、透光性板状体2が搬送路3に沿って矢印a1方向に水平搬送される構成において、搬送路3の入口側上方に搬送路3の下流側に向いて斜め下向きに照明光を照射する照明器15が設けられている。この図の例ではロッド状の本体部15aの先端部にロッドレンズ15bが設けられた構成とされ、透光性板状体2の表面の計測位置に斜め上方から照明光を集光照射する装置として設けられている。
 搬送路3に沿って下流側であって先の照明器15に対向する位置に予備撮像部(ラインセンサカメラ)16が搬送路3の上流側に向き、かつ、斜め下向きに設けられている。
For example, as shown in FIG. 2A, in the configuration in which the translucent plate-like body 2 is horizontally transported in the direction of the arrow a1 along the transport path 3, the downstream side of the transport path 3 is located above the entrance side of the transport path 3. An illuminator 15 that irradiates illumination light obliquely downward toward the side is provided. In the example of this figure, a rod lens 15b is provided at the tip of a rod-shaped main body 15a, and a device that collects and irradiates illumination light obliquely from above to the measurement position on the surface of the translucent plate-like body 2. It is provided as.
A preliminary imaging unit (line sensor camera) 16 is provided on the downstream side along the conveyance path 3 and facing the previous illuminator 15, facing the upstream side of the conveyance path 3 and obliquely downward.
 このラインセンサカメラ16は、照明器15からの照明光が透光性板状体2の表面で反射する場合、その正反射方向R1から光軸を外した位置(図2では斜め下方にずれた位置)に設置された構成では、暗視野検査器対応として構成されている。図2に示す構成では照明器15とラインセンサカメラ16を備えて暗視野外観検査器10が構成されている。本実施形態において用いられるラインセンサカメラ16は、例えば、透光性板状体2に形成されている10μm×100μm程度以上の大きさの傷等の欠点を判別できる解像度を有する。なお、解像度は一例であり、更に解像度の高いラインセンサカメラを用いてもよいのは勿論である。
 暗視野外観検査器10の一例として、照明器15の照明光の入射角度を45゜(水平を基準とする仰角:45゜)とした場合に、ラインセンサカメラ16の光軸の角度を30゜(水平を基準とする仰角:30゜)として設置される。
 また、正反射方向R1に光軸を一致させてラインセンサカメラ16が設置された構成では、明視野検査器として設けられ、図2(a)の2点鎖線に示す正反射方向に光軸を揃えたラインセンサカメラ16と照明器15を備えて明視野外観検査器11が構成される。
When the illumination light from the illuminator 15 is reflected by the surface of the translucent plate-like body 2, the line sensor camera 16 is shifted from the regular reflection direction R1 to the position where the optical axis is removed (in FIG. 2, it is shifted obliquely downward). In the configuration installed at (position), it is configured for dark field inspection equipment. In the configuration shown in FIG. 2, the dark field appearance inspection device 10 is configured to include the illuminator 15 and the line sensor camera 16. The line sensor camera 16 used in the present embodiment has a resolution capable of discriminating defects such as a scratch having a size of about 10 μm × 100 μm or more formed on the translucent plate-like body 2. Note that the resolution is an example, and it is a matter of course that a line sensor camera having a higher resolution may be used.
As an example of the dark field visual inspection device 10, when the incident angle of the illumination light of the illuminator 15 is 45 ° (elevation angle with respect to the horizontal: 45 °), the angle of the optical axis of the line sensor camera 16 is 30 °. (Elevation angle with respect to horizontal: 30 °).
Further, in the configuration in which the line sensor camera 16 is installed with the optical axis aligned with the regular reflection direction R1, it is provided as a bright field inspection device, and the optical axis is set in the regular reflection direction indicated by the two-dot chain line in FIG. The bright-field visual inspection device 11 is configured by including the line sensor camera 16 and the illuminator 15 that are aligned.
 これらの照明器15とラインセンサカメラ16は、個々の仰角を維持した状態で図示略のフレームに搭載され、このフレームが搬送路3の幅方向(搬送路3に沿って移動する透光性板状体2の幅方向)に複数設置されている。これら複数のラインセンサカメラ16が、搬送路3に沿って水平搬送される透光性板状体2の幅方向の所定幅の領域を分担してカバーする。これらのラインセンサカメラ16は、1台のみで透光性板状体2の全幅をカバーできる訳ではないので、上述のように複数台設置することで、高精細な解像度でもって透光性板状体2の全幅を撮像できる。これら複数のラインセンサカメラ16を透光性板状体2が通過する間、連続動作させて撮像することで、透光性板状体2の主表面(表面)の面方向全域にわたり、暗視野検査あるいは明視野検査が可能となる。 The illuminator 15 and the line sensor camera 16 are mounted on a frame (not shown) while maintaining individual elevation angles, and the frame moves in the width direction of the transport path 3 (a translucent plate that moves along the transport path 3). A plurality of them are installed in the width direction of the body 2. The plurality of line sensor cameras 16 share and cover a region having a predetermined width in the width direction of the translucent plate-like body 2 that is horizontally transported along the transport path 3. Since only one of these line sensor cameras 16 can cover the entire width of the translucent plate-like body 2, a plurality of translucent plates can be provided with high resolution by installing a plurality of units as described above. The entire width of the body 2 can be imaged. The plurality of line sensor cameras 16 are continuously operated while the translucent plate-like body 2 passes through to take an image, thereby dark field over the entire surface direction of the main surface (front surface) of the translucent plate-like body 2. Inspection or bright field inspection is possible.
 図2(a)に示すように、照明器15から透光性板状体2の表面に照射された照明光は、透光性板状体2の表面が無欠点で平坦な場合は正反射のみとなり、暗視野検査器としてのラインセンサカメラ16には光が入射せず、暗視野の状態が保たれる。透光性板状体2に傷や異物等の欠点がある場合は、そこで生じた散乱光が暗視野検査器としてのラインセンサカメラ16に入射するので、明点として検出される。この方式で検出される欠点は、散乱光を発生させるもの全てであり、傷以外にも、内部泡、カレット付着等を検出できる。また、図2(a)に示す如く、傷が透光性板状体2の表面側に存在する場合は、像が二重に重なって撮像され、透光性板状体2の裏面側に存在する傷の場合は二重にはなっていない一重の像が得られる。なお、二重の像が得られる場合、二重像の間の距離から欠点の深さを推定できる。 As shown in FIG. 2A, the illumination light irradiated from the illuminator 15 onto the surface of the translucent plate-like body 2 is specularly reflected when the surface of the translucent plate-like body 2 is flat with no defects. Thus, no light is incident on the line sensor camera 16 as a dark field inspection device, and the dark field state is maintained. When the translucent plate-like body 2 has a defect such as a scratch or a foreign substance, the scattered light generated there enters the line sensor camera 16 as a dark field inspection device, and is thus detected as a bright spot. The defects detected by this method are all those that generate scattered light, and in addition to scratches, internal bubbles, cullet adhesion, and the like can be detected. In addition, as shown in FIG. 2A, when a scratch is present on the front surface side of the translucent plate-like body 2, the images are doubled and captured on the back side of the translucent plate-like body 2. In the case of existing scratches, a single image that is not doubled is obtained. When a double image is obtained, the depth of the defect can be estimated from the distance between the double images.
 前記暗視野外観検査器10は、データ配線17を介し管理装置8に接続され、明視野外観検査器11は、データ配線18を介し管理装置8に接続されていて、暗視野外観検査器10と明視野外観検査器11とが個別に撮像し検査した透光性板状体2の表面全面の検査結果の情報を管理装置8に送ることができるようになっている。
 暗視野外観検査器10は、透光性板状体2の画像を、例えば、二値化処理して明暗を強調して、暗視野画像の場合に輝点の存在を検知する。
 明視野外観検査器11は、明視野画像の場合は暗い点の存在を検知し、それらの座標位置を記録して記憶部に記録する機能を有する。
 管理装置8は、記憶部と制御部と演算装置を備えたパーソナルコンピュータからなり、暗視野外観検査器10と明視野外観検査器11から送られてくる検査結果を受け取る。そして、管理装置8は、制御線19を介し精査検査機7に接続されていて、後述するように第一の検査器12と第二の検査器13を制御するようになっている。
The dark field visual inspection device 10 is connected to the management device 8 through the data wiring 17, and the bright field visual inspection device 11 is connected to the management device 8 through the data wiring 18. Information on the inspection result of the entire surface of the translucent plate-like body 2 imaged and inspected individually by the bright-field appearance inspection device 11 can be sent to the management device 8.
The dark-field appearance inspection device 10 detects the presence of a bright spot in the case of a dark-field image, for example, by binarizing the image of the translucent plate-like body 2 to emphasize light and dark.
The bright field visual inspector 11 has a function of detecting the presence of dark spots in the case of a bright field image, recording their coordinate positions, and recording them in a storage unit.
The management device 8 includes a personal computer including a storage unit, a control unit, and an arithmetic unit, and receives inspection results sent from the dark field visual inspection device 10 and the bright field visual inspection device 11. And the management apparatus 8 is connected to the close inspection machine 7 via the control line 19, and controls the 1st inspection device 12 and the 2nd inspection device 13 so that it may mention later.
 搬送路3の下流側に設けられている精査検査機7において、暗視野検査器の一種である第一の検査器12は、図3(a)に示すように、搬送路3の幅方向一側に設けられた照明器20と、搬送路3の幅方向他側に設けられた第一の主撮像部(第一のエリアカメラ)21を備えている。また、明視野検査器の一種である第二の検査器13は、搬送路3の幅方向一側に設けられた照明器22と、搬送路3の幅方向他側に設けられた第二の主撮像部(第二のエリアカメラ)23を備えている。
 照明器20と第一のエリアカメラ21は、搬送路3の幅方向に沿って対向するように配置され、照明器20が斜め下向きに向いており、搬送路3に沿って移動中の透光性板状体2の表面に照明光を照射した場合、その反射光が向かう側に第一のエリアカメラ21が斜め下向きに配置されている。
 照明器22と第二のエリアカメラ23は、搬送路3の幅方向に沿って対向するように配置され、照明器22が斜め下向きに向いており、搬送路3に沿って移動中の透光性板状体2の表面に照明光を照射した場合、その反射光が向かう側に第二のエリアカメラ23が斜め下向きに配置されている。
In the scrutiny inspection machine 7 provided on the downstream side of the conveyance path 3, the first inspection instrument 12, which is a kind of dark field inspection instrument, is arranged in the width direction of the conveyance path 3 as shown in FIG. And a first main imaging unit (first area camera) 21 provided on the other side in the width direction of the transport path 3. The second inspection device 13, which is a kind of bright field inspection device, includes an illuminator 22 provided on one side in the width direction of the conveyance path 3 and a second inspection device provided on the other side in the width direction of the conveyance path 3. A main imaging unit (second area camera) 23 is provided.
The illuminator 20 and the first area camera 21 are arranged so as to face each other along the width direction of the transport path 3, the illuminator 20 faces obliquely downward, and the light transmission moving along the transport path 3. When the illumination light is irradiated on the surface of the property plate-like body 2, the first area camera 21 is disposed obliquely downward on the side toward which the reflected light is directed.
The illuminator 22 and the second area camera 23 are arranged so as to face each other along the width direction of the transport path 3, the illuminator 22 faces obliquely downward, and the translucent light moving along the transport path 3. When the illumination light is irradiated on the surface of the property plate-like body 2, the second area camera 23 is disposed obliquely downward on the side toward which the reflected light is directed.
 暗視野検査器の一種である第一の検査器12は、図3(a)に示すように、リング状の発光部20aを備え、透光性板状体2の表面に対し、リング状に光を照射する。よって透光性板状体2の表面には、リング状に照明された明領域S1とその内側の照明光が当たらない暗領域S2が形成される。
 第一のエリアカメラ21は、その光軸21bの仰角をリング状の発光部20aの中心軸20bの仰角と同じ角度として配置され、第一のエリアカメラ21は、先のリング状の発光部20aが透光性板状体2の表面に形成する暗領域S2を撮像エリアとして撮像できるように配置されている。第一のエリアカメラ21は、暗領域S2を視野とするため、暗視野検査器として機能する。
As shown in FIG. 3A, the first inspection device 12 that is a kind of dark field inspection device includes a ring-shaped light emitting portion 20 a and has a ring shape with respect to the surface of the translucent plate-like body 2. Irradiate light. Therefore, on the surface of the translucent plate-like body 2, a bright region S <b> 1 illuminated in a ring shape and a dark region S <b> 2 where the illumination light inside thereof does not hit.
The first area camera 21 is arranged so that the elevation angle of its optical axis 21b is the same as the elevation angle of the central axis 20b of the ring-shaped light emitting section 20a, and the first area camera 21 is the previous ring-shaped light emitting section 20a. Are arranged so that the dark area S2 formed on the surface of the translucent plate-like body 2 can be imaged as an imaging area. Since the first area camera 21 uses the dark region S2 as a field of view, it functions as a dark field inspection device.
 明視野検査器の一種である第二の検査器13は、図3(b)に示すように、面状の発光部22aを備え、透光性板状体2の表面に対し、面状に光を照射する。よって透光性板状体2の表面には、面状に照明された明領域S3が形成される。
 第二のエリアカメラ23は、その光軸23bの仰角を面状の発光部22aの中心軸22bの仰角と同じ角度として配置され、第二のエリアカメラ23は、先の面状の発光部22aが透光性板状体2の表面に形成する明領域S3を撮像エリアとして撮像できるように配置されている。第二のエリアカメラ23は、明領域S3を視野とするため、明視野検査器として機能する。
As shown in FIG. 3 (b), the second inspection device 13, which is a kind of bright field inspection device, includes a planar light emitting portion 22 a and is planar with respect to the surface of the translucent plate-like body 2. Irradiate light. Therefore, a bright region S3 illuminated in a planar shape is formed on the surface of the translucent plate-like body 2.
The second area camera 23 is arranged so that the elevation angle of the optical axis 23b is the same as the elevation angle of the central axis 22b of the planar light emitting unit 22a, and the second area camera 23 is the previous planar light emitting unit 22a. Are arranged so that a bright area S3 formed on the surface of the translucent plate-like body 2 can be imaged as an imaging area. The second area camera 23 functions as a bright field inspector because the bright area S3 is the field of view.
 図4は、第一の検査器12に設けられているリング状の発光部20aを備えた照明器20と第一のエリアカメラ21の位置関係を更に説明するための図である。図4(b)において、リング状の発光部20aから透光性板状体2の表面に斜め上方から照明光を入射している状態と、第一のエリアカメラ21が透光性板状体2の表面を撮像する場合、焦点の合う領域の状態を示している。
 第一のエリアカメラ21は、その光軸を搬送路3の幅方向に沿って配置されている。即ち、第一のエリアカメラ21は、搬送路3の幅方向(透光性板状体2の搬送方向と交差する方向)に、斜め下方に向いて設置されており、第一のエリアカメラ21が焦点を合わせることができる領域は、透光性板状体2の搬送方向に細長い矩形状領域21Aとされ、その両側(搬送路3の幅方向両側)に焦点が合わない細長い矩形状領域21Bが形成される。換言すると、ピントが合う矩形状領域21Aよりも第一のエリアカメラ21に近い領域と遠い領域の両方にピントが合わない矩形状領域21Bが形成される。このように、第一のエリアカメラ21の矩形状領域21Aを透光性板状体2の搬送方向に長く延在させることによって、後述する如く、搬送路3に沿って搬送される透光性板状体2の欠点を捕らえ易くできる特徴がある。この特徴については後に詳述する。
FIG. 4 is a diagram for further explaining the positional relationship between the illuminator 20 provided with the ring-shaped light emitting portion 20 a provided in the first inspection device 12 and the first area camera 21. 4B, the illumination light is incident on the surface of the translucent plate 2 from the ring-shaped light emitting portion 20a obliquely from above, and the first area camera 21 is the translucent plate. When the surface of 2 is imaged, the state of the in-focus area is shown.
The first area camera 21 is arranged with its optical axis along the width direction of the transport path 3. That is, the first area camera 21 is installed obliquely downward in the width direction of the transport path 3 (direction intersecting the transport direction of the translucent plate-like body 2). Can be focused on a rectangular region 21A that is elongated in the transport direction of the translucent plate-like body 2, and an elongated rectangular region 21B that is not focused on both sides thereof (both sides in the width direction of the transport path 3). Is formed. In other words, a rectangular area 21B that is out of focus is formed in both the area closer to and far from the first area camera 21 than the rectangular area 21A in focus. In this way, by extending the rectangular region 21A of the first area camera 21 in the transport direction of the translucent plate-like body 2, the translucency transported along the transport path 3 as will be described later. There exists the characteristic which can catch the fault of the plate-shaped body 2 easily. This feature will be described in detail later.
 前記照明器20と第一のエリアカメラ21は、それらの傾斜角度を維持したまま図3(a)に示す第一のフレーム部材24の内部に収容され、照明器22と第二のエリアカメラ23は、それらの傾斜角度を維持したまま図3(b)に示す第二のフレーム部材25の内部に収容されている。これらのフレーム部材24、25の底部に窓部が形成されており、それぞれ透光性板状体2に対する照明光の照射と透光性板状体2からの反射光の撮像ができるようになっている。 The illuminator 20 and the first area camera 21 are accommodated inside the first frame member 24 shown in FIG. 3A while maintaining their inclination angles, and the illuminator 22 and the second area camera 23. Are accommodated in the second frame member 25 shown in FIG. 3B while maintaining their inclination angles. A window portion is formed at the bottom of these frame members 24 and 25, so that illumination light can be applied to the translucent plate-like body 2 and reflected light from the translucent plate-like body 2 can be imaged. ing.
 本実施形態の第一の検査器12は、詳細には図5に示すように、先の照明器20と第一のエリアカメラ21を備えた第一のフレーム部材24を移動自在に支持した第一の搬送部27および第二の搬送部28により構成された4基の第一の主撮像ユニット30(以下、本明細書において主撮像ユニット30という)から構成されている。
 第二の検査器13は、詳細には図5に示すように、先の照明器22と第二のエリアカメラ23を備えた第二のフレーム部材25を移動自在に支持した第一の搬送部27と第二の搬送部28により構成された4基の第二の主撮像ユニット31(以下、本明細書において主撮像ユニット31という)から構成されている。これらのエリアカメラ21、23は1画素で8~10μm程度の高解像を有し、高精細な画像を撮像できるものが望ましい。
As shown in detail in FIG. 5, the first inspector 12 of the present embodiment is a first frame member 24 that movably supports the first frame member 24 including the previous illuminator 20 and the first area camera 21. It is composed of four first main imaging units 30 (hereinafter referred to as main imaging units 30 in this specification) constituted by one conveyance unit 27 and second conveyance unit 28.
As shown in detail in FIG. 5, the second inspector 13 is a first transport unit that movably supports a second frame member 25 including the previous illuminator 22 and the second area camera 23. 27 and four second main image pickup units 31 (hereinafter referred to as main image pickup units 31 in the present specification). These area cameras 21 and 23 preferably have a high resolution of about 8 to 10 μm per pixel and can capture high-definition images.
 第一の検査器12に設けられている第一の搬送部27は、搬送路3の幅方向全長に跨る大きさの門型フレームに対し、搬送路3の幅方向に沿って直動ユニット33が取り付けられた構成にされている。直動ユニット33は、一例として図6(a)に示すように、細長い箱形のフレーム部材34の内側中央にスクリューねじ部35が設けられ、このスクリューねじ部35に係合するねじ孔部を備えたスライダー部材36がスクリューねじ部35の回転に応じてフレーム部材34の長さ方向に移動自在に設けられている。フレーム部材34の一端側にはサーボモータなどの駆動源が内蔵されていて、スクリューねじ部35を正逆方向に回転駆動することができ、サーボモータによるスクリューねじ部35の回転速度と回転方向を調整することで、スライダー部材36の移動方向(搬送路3の幅方向に沿う移動方向)と移動速度を調整できる。 The first transport unit 27 provided in the first inspector 12 is a linear motion unit 33 along the width direction of the transport path 3 with respect to the portal frame having a size extending over the entire length in the width direction of the transport path 3. Is configured to be attached. As an example, as shown in FIG. 6A, the linear motion unit 33 is provided with a screw screw portion 35 at the inner center of an elongated box-shaped frame member 34, and has a screw hole portion that engages with the screw screw portion 35. The provided slider member 36 is provided so as to be movable in the length direction of the frame member 34 in accordance with the rotation of the screw thread portion 35. A drive source such as a servo motor is built in one end side of the frame member 34, and the screw screw portion 35 can be driven to rotate in forward and reverse directions. The rotational speed and direction of the screw screw portion 35 by the servo motor can be adjusted. By adjusting, the moving direction (moving direction along the width direction of the conveyance path 3) and moving speed of the slider member 36 can be adjusted.
 スライダー部材36には第二の搬送部28が取り付けられている。第二の搬送部28は第一の搬送部27と同等構造であるが、直動ユニット33より短い直動ユニット33Aからなる。直動ユニット33Aの構造は、直動ユニット33と同等構造であり、フレーム部材34Aとスクリューねじ部35Aとスライダー部材36Aが備えられている。
 第二の搬送部28を構成する直動ユニット33Aは、透光性板状体2の搬送方向下流側に向いて、該搬送方向と平行に向くようにスライダー部材36に取り付けられている。第二の搬送部28は、第一の搬送部27よりも短く形成され、第二の搬送部28のスライダー部材36Aには先に説明した第一のフレーム部材24が、図3に示すように照明器20と第一のエリアカメラ21を斜め下向きに取り付けられている。
 前記直動ユニット33、33Aは現状の技術において、送りねじ式でサーボモータを利用した構成において、1000mm/秒の移動速度を示す装置が市販されているので、第一のエリアカメラ21を移動させるために必要十分な速度を得ることができる。
A second transport unit 28 is attached to the slider member 36. The second transport unit 28 has the same structure as the first transport unit 27, but includes a linear motion unit 33 </ b> A shorter than the linear motion unit 33. The structure of the linear motion unit 33A is the same as that of the linear motion unit 33, and includes a frame member 34A, a screw thread portion 35A, and a slider member 36A.
The linear motion unit 33A constituting the second transport unit 28 is attached to the slider member 36 so as to face the downstream side of the translucent plate-like body 2 in the transport direction and to be parallel to the transport direction. The second transport unit 28 is formed shorter than the first transport unit 27, and the first frame member 24 described above is provided on the slider member 36A of the second transport unit 28 as shown in FIG. The illuminator 20 and the first area camera 21 are attached obliquely downward.
In the current technology, the linear motion units 33 and 33A have a feed screw type servo motor and a device showing a moving speed of 1000 mm / second is commercially available. Therefore, the first area camera 21 is moved. The necessary and sufficient speed can be obtained.
 以上の構成により、第一の搬送部27に沿って照明器20と第一のエリアカメラ21を搬送路3の幅方向に端から端まで(換言すると、搬送路3に沿って搬送される水平状態の透光性板状体2の一側端から他側端まで)直線移動できる。更に、照明器20と第一のエリアカメラ21を第二の搬送部28に沿ってその基端部側から先端部側まで透光性板状体2の搬送方向に直線移動することができる。
 本実施形態の検査装置1において検査対象とする透光性板状体2は、例えば、表示装置用ガラスとして知られているG8サイズのもので2500mm×2200mm、厚さ0.7mm程度の板ガラスであるので、第一の搬送部27の長さについては、検査対象とする板ガラスの幅をカバーできる大きさに形成される。勿論、透光性板状体2の大きさは表示装置用途として種々のサイズがあり、また、他の適用分野においても種々のサイズがあるので、目的とする透光性板状体の幅に合わせて第一の搬送部の長さを決定する。
 搬送路3に沿って透光性板状体2を搬送する速度は任意でよいが、例えば、表示装置用途の板ガラスで15~20m/分程度であり、第二の搬送部28の長さは第一のフレーム部材24あるいは第二のフレーム部材25を100mm~150mm程度移動できる長さに設定できる。
 なお、図5に示す構成では、第一の搬送部27の長さ方向中央部に第二の搬送部28が位置されていて、この中立位置の状態が初期状態とされている。第二の搬送部28はこの中立位置の状態から透光性板状体2の幅方向に移動し、後述する如く、第一のエリアカメラ21が撮像すると、中立位置に復帰し、次の移動に備えて待機するように構成されている。なお、初期状態として、第一の搬送部27の中央部に第2の搬送部28の第一のエリアカメラ21が配置されている方が、第一の搬送部27の端部側に配置されている場合よりも欠点までの移動距離が少なくて済むので、より早く移動できる点で望ましい。
With the above configuration, the illuminator 20 and the first area camera 21 are moved along the first conveyance unit 27 in the width direction of the conveyance path 3 from end to end (in other words, the horizontal direction conveyed along the conveyance path 3. The light-transmitting plate-like body 2 in a state can be moved linearly (from one side end to the other side end). Furthermore, the illuminator 20 and the first area camera 21 can be linearly moved along the second conveyance unit 28 in the conveyance direction of the translucent plate-like body 2 from the proximal end side to the distal end side.
The translucent plate-like body 2 to be inspected in the inspection apparatus 1 of the present embodiment is, for example, a G8 size glass plate known as display device glass, and is a plate glass of 2500 mm × 2200 mm and a thickness of about 0.7 mm. Therefore, the length of the first transport unit 27 is formed to a size that can cover the width of the plate glass to be inspected. Of course, the size of the translucent plate-like body 2 has various sizes for use as a display device, and there are various sizes in other application fields. In addition, the length of the first transport unit is determined.
The speed at which the translucent plate-like body 2 is transported along the transport path 3 may be arbitrary. For example, it is about 15 to 20 m / min for a plate glass for use in a display device, and the length of the second transport section 28 is The length can be set such that the first frame member 24 or the second frame member 25 can be moved by about 100 mm to 150 mm.
In the configuration shown in FIG. 5, the second transport unit 28 is located at the center in the length direction of the first transport unit 27, and the neutral position is the initial state. The second transport unit 28 moves from the neutral position in the width direction of the translucent plate-like body 2 and, as will be described later, when the first area camera 21 takes an image, returns to the neutral position and moves to the next. It is comprised so that it may wait for in preparation. In the initial state, the first area camera 21 of the second transport unit 28 is disposed at the end of the first transport unit 27 at the center of the first transport unit 27. This is desirable in that it can move faster because it requires less travel distance to the defect than if it is.
 第二の検査器13に設けられている主撮像ユニット31において、第一の搬送部27、第二の搬送部28を備えている点については先に説明した主撮像ユニット30の場合と同様であるが、主撮像ユニット31においては、第二の搬送部28に照明器22と第二のエリアカメラ23を備えたフレーム部材25が取り付けられている点が異なる。
 本実施形態の構造において、第一の検査器12に設けられている照明器20と第一のエリアカメラ21は暗視野検査器として設けられ、第二の検査器13に設けられている照明器22と第二のエリアカメラ23は明視野検査器として設けられている。
The main imaging unit 31 provided in the second inspection device 13 includes the first conveyance unit 27 and the second conveyance unit 28 in the same manner as the main imaging unit 30 described above. However, the main imaging unit 31 is different in that a frame member 25 including an illuminator 22 and a second area camera 23 is attached to the second transport unit 28.
In the structure of this embodiment, the illuminator 20 and the first area camera 21 provided in the first inspection device 12 are provided as a dark field inspection device, and the illuminator provided in the second inspection device 13. 22 and the second area camera 23 are provided as a bright field inspection device.
 前記第一の検査器12を構成する4基の主撮像ユニット30の設置位置に対し、搬送路3に沿って上流側には透光性板状体2の先端位置検出のための位置検出センサ38が設けられ、前記第二の検査器13を構成する4基の主撮像ユニット31の設置位置に対し、搬送路3に沿って上流側には透光性板状体2の先端位置を検出するための位置検出センサ39が設けられている。
 位置検出センサ38は、第一の検査器12に対し接近した透光性板状体2の先端位置を把握するために設けられ、位置検出センサ39は第二の検査器13に対し接近した透光性板状体2の先端位置を把握するために設けられている。
 前記位置検出センサ38が、透光性板状体2の接近を検出すると、第一番目の主撮像ユニット30の第一のエリアカメラ21の焦点位置と透光性板状体2の先端位置との距離関係が判明するので、後述する如く、第一番目の主撮像ユニット30を動作させて第一のエリアカメラ21の移動を開始できる。
 なお、図1に示すように、第一の検査器12は、接続線12aを介し表示装置付きの制御装置14に接続され、第二の検査器13は、接続線13aを介し表示装置付きの制御装置14に接続されていて、第一の検査器12の第一のエリアカメラ21が撮像した画像と、第二の検査器13の第二のエリアカメラ23が撮像した画像をそれぞれ表示装置に表示できるように構成されている。
A position detection sensor for detecting the tip position of the translucent plate-like body 2 on the upstream side along the conveyance path 3 with respect to the installation position of the four main imaging units 30 constituting the first inspector 12. 38 is provided, and the tip position of the translucent plate-like body 2 is detected on the upstream side along the conveyance path 3 with respect to the installation positions of the four main imaging units 31 constituting the second inspection device 13. A position detection sensor 39 is provided.
The position detection sensor 38 is provided for grasping the tip position of the translucent plate 2 close to the first inspection device 12, and the position detection sensor 39 is transparent to the second inspection device 13. It is provided to grasp the tip position of the optical plate-like body 2.
When the position detection sensor 38 detects the approach of the translucent plate 2, the focal position of the first area camera 21 of the first main imaging unit 30 and the tip position of the translucent plate 2 Thus, as will be described later, the movement of the first area camera 21 can be started by operating the first main imaging unit 30.
In addition, as shown in FIG. 1, the 1st tester 12 is connected to the control apparatus 14 with a display apparatus via the connection line 12a, and the 2nd tester 13 is attached to the display apparatus via the connection line 13a. Connected to the control device 14, the image captured by the first area camera 21 of the first inspection device 12 and the image captured by the second area camera 23 of the second inspection device 13 are respectively displayed on the display device. It is configured so that it can be displayed.
 本実施形態の検査装置1により透光性板状体2に存在する欠点を検査するには、搬送路3に沿って水平搬送されてきた透光性板状体2に対し、予備検査機6において最初に暗視野外観検査器10により透光性板状体2の全幅方向に暗視野検査を行い、傷等の位置検出を行い、次に、明視野外観検査器11により透光性板状体2の全幅方向に明視野検査を行い、泡等の欠点の位置検出を行う。暗視野外観検査器10と明視野外観検査器11が撮像した画像は管理装置8に送られ、管理装置8において透光性板状体2の表面に沿う欠点の座標位置が特定され、管理装置8に設けられている記憶部に欠点の座標位置が記憶される。
 この透光性板状体2の欠点の座標位置に合わせて、管理装置8が精査検査機7の第一の検査器12と第二の検査器13の作動を制御する。
In order to inspect the defects existing in the translucent plate-like body 2 by the inspection apparatus 1 of the present embodiment, the preliminary inspection machine 6 is applied to the translucent plate-like body 2 that has been transported horizontally along the transport path 3. First, a dark field inspection is performed in the full width direction of the translucent plate-like body 2 by the dark field appearance inspecting device 10 to detect the position of a scratch and the like. Bright field inspection is performed in the full width direction of the body 2 to detect the position of defects such as bubbles. The images picked up by the dark-field appearance inspector 10 and the bright-field appearance inspector 11 are sent to the management device 8, and the coordinate position of the defect along the surface of the translucent plate-like body 2 is specified in the management device 8. 8 is stored in the storage unit 8.
The management device 8 controls the operation of the first inspection device 12 and the second inspection device 13 of the close inspection machine 7 in accordance with the coordinate position of the defect of the translucent plate-like body 2.
 一例として、図5に示す如く、透光性板状体2の任意の位置に欠点Kが存在していた場合、暗視野外観検査器10と明視野外観検査器11のどちらかが撮像した画像を管理装置8が画像処理により判別してその座標位置(透光性板状体2の先端から後端に向かう方向のX方向の座標位置と、透光性板状体2の幅方向両端のうちどちらか一方の端部から幅方向に沿うY方向の座標位置)を特定する。
 この特定したXY方向の座標位置情報に基づき、第一の搬送部27の中央部の初期位置で待機している第一番目の主撮像ユニット30の第二の搬送部28を搬送路3の中央部の中立位置から幅方向に移動させて、第一のエリアカメラ21の焦点位置をY方向の座標位置に移動させ、欠点Kが通過する予定の位置に位置合わせを行う。
As an example, as shown in FIG. 5, when the defect K exists at an arbitrary position of the translucent plate-like body 2, an image captured by either the dark-field appearance inspector 10 or the bright-field appearance inspector 11. Is determined by image processing by the management device 8 and its coordinate position (the X coordinate position in the direction from the front end to the rear end of the translucent plate-like body 2 and the width direction both ends of the translucent plate-like body 2) The coordinate position in the Y direction along the width direction from one of the ends is specified.
Based on the identified coordinate position information in the XY directions, the second transport unit 28 of the first main imaging unit 30 waiting at the initial position of the center of the first transport unit 27 is moved to the center of the transport path 3. The focal point position of the first area camera 21 is moved to the coordinate position in the Y direction by moving in the width direction from the neutral position of the unit, and alignment is performed at the position where the defect K is scheduled to pass.
 第一の検査器12の上流側に設けられた位置検出センサ38が透光性板状体2の先端位置の通過を検知するので、透光性板状体2の欠点Kが第一のエリアカメラ21の焦点位置を通過するタイミングに合わせて透光性板状体2の搬送速度と等速で第二の搬送部28に沿って第一のフレーム部材24を走行させる。この走行中に、リング状の発光部20aから照明光を欠点Kの周囲に照射するとともに第一のエリアカメラ21で暗視野により撮像する。第一のエリアカメラ21は高解像度であるが、第二の搬送部28の長さに相当する距離だけ搬送路3に沿って欠点Kとともに同期して等速移動するので、高速なシャッタースピードではなくても、通常のシャッタースピードでもって、露光不足を生じることなく欠点Kの部分をぶれなく高解像度で撮像できる。また、照明器20の照明光についても必要以上に輝度を高める必要が無く、通常シャッタースピードの範囲で撮像可能な明るさを有していればよい。 Since the position detection sensor 38 provided on the upstream side of the first inspection device 12 detects the passage of the tip position of the translucent plate-like body 2, the defect K of the translucent plate-like body 2 is the first area. The first frame member 24 is caused to travel along the second transport unit 28 at the same speed as the transport speed of the translucent plate-like body 2 in accordance with the timing of passing the focal position of the camera 21. During this travel, the illumination light is irradiated around the defect K from the ring-shaped light emitting unit 20a, and the first area camera 21 captures an image in the dark field. Although the first area camera 21 has a high resolution, the first area camera 21 moves at a constant speed along with the defect K along the conveyance path 3 by a distance corresponding to the length of the second conveyance unit 28. Even without this, with the normal shutter speed, the portion of the defect K can be imaged at high resolution without blurring without causing underexposure. Further, the illumination light of the illuminator 20 does not need to be increased more than necessary, and the illumination light only needs to have brightness that can be imaged within the range of the normal shutter speed.
 なお、透光性板状体2の搬送速度が、例えば、18m/分(300mm/秒)である場合、精査機の解像度を10μm/画素と仮定し、像のブレを1画素分許容する条件とすることが好ましいとすると、カメラが停止している状態では、10μm進む時間は0.033msec以内のシャッター時間が必要条件となり、1/30000秒以下の極めて高速なシャッタースピードが要求される。
 これに対して第一のエリアカメラ21が追従することを考慮すると、シャッタースピードを1/250としても、1画素分のブレを許容できる速度差は0.15m/分(=2.5mm/秒)で0.83%となる。シャッタースピードを1/1000とする場合は、0.6m/分(=10mm/秒)で3.33%の差を許容できる。
 従って、上述のように、1/30000秒以下の極めて高速なシャッタースピードを採用しなくとも、本実施形態を採用することで汎用のシャッタースピード、例えば、1/250~1/1000秒で撮像できることが分かる。
 また、第一のエリアカメラの絞りは4~8程度を選択することができ、絞りを大きくすると被写界深度が深くなり、焦点の合う領域が広がるが、絞りを大きくすると照度不足を補うために、シャッタースピードを遅くするか、照明の照度を上げることが必要となる。シャッタースピードを遅くすると、前述した速度ずれの許容幅が狭くなる。また、照明照度を上げるために照明を追加すると、装置重量が増加するので、駆動時の慣性力が大きくなり、駆動装置の剛性を高める必要があり、装置が重厚になるので、バランスの取れたシャッタースピードで実現できるように構成することが好ましい。
In addition, when the conveyance speed of the translucent plate-like body 2 is, for example, 18 m / min (300 mm / sec), it is assumed that the resolution of the inspection machine is 10 μm / pixel and image blurring is allowed for one pixel. If it is preferable that the camera is stopped, a time required to travel 10 μm is a necessary shutter time within 0.033 msec, and a very high shutter speed of 1/30000 seconds or less is required.
On the other hand, considering that the first area camera 21 follows, even if the shutter speed is 1/250, the speed difference that can allow blurring for one pixel is 0.15 m / min (= 2.5 mm / sec). ) Is 0.83%. When the shutter speed is 1/1000, a difference of 3.33% can be allowed at 0.6 m / min (= 10 mm / sec).
Therefore, as described above, even if an extremely high shutter speed of 1/30000 seconds or less is not used, it is possible to capture images at a general-purpose shutter speed, for example, 1/250 to 1/1000 seconds, by adopting this embodiment. I understand.
In addition, the aperture of the first area camera can be selected from about 4 to 8. If the aperture is increased, the depth of field will be deepened and the in-focus area will be expanded. However, increasing the aperture will compensate for the lack of illumination. In addition, it is necessary to reduce the shutter speed or increase the illumination intensity. When the shutter speed is slowed down, the allowable width of the above-described speed deviation is narrowed. In addition, adding illumination to increase illumination illuminance increases the weight of the device, which increases the inertial force during driving and increases the rigidity of the driving device, making the device heavy and balanced. It is preferable to configure so that it can be realized at the shutter speed.
 また、第一の検査器12の領域を欠点Kが通過して第二の検査器13の領域に透光性板状体2が接近したならば、位置検出センサ39が透光性板状体2の接近を検出する。透光性板状体2が位置検出センサ39の観測位置を通過すると、第一番目の主撮像ユニット31と透光性板状体2の位置関係が判明するので、第一番目の第二の搬送部28を先の第一の検査器12において行った位置決め動作と同様に移動させて欠点Kの部分を第二のエリアカメラ23により明視野により撮像する。第二のエリアカメラ23は高解像度であるが、第二の搬送部28の長さに相当する距離だけ搬送路3に沿って欠点Kとともに同期して等速移動するので、高速なシャッタースピードでなくても、通常のシャッタースピードでもって、照明光を必要以上に強力にしなくとも、欠点Kの部分をぶれなく高解像度で撮像できる。
 以上の操作により、暗視野と明視野の両方の検査方式により高解像度でぶれなく欠点Kの部分を撮像できるので、傷、泡、異物の付着等、種々の欠点Kを高精細に検知することができる。
 なお、第一のエリアカメラ21と第二のエリアカメラ23により撮像した画像はそれぞれ制御装置14に設けられている画像表示装置に表示されるので、肉眼観察等によりオペレーターが精査することで、欠点Kの有無を判別することもできる。
Further, if the defect K passes through the region of the first inspection device 12 and the translucent plate-like body 2 approaches the region of the second inspection device 13, the position detection sensor 39 is replaced with the translucent plate-like body. 2 approach is detected. When the translucent plate-like body 2 passes through the observation position of the position detection sensor 39, the positional relationship between the first main imaging unit 31 and the translucent plate-like body 2 becomes clear, so the first second The conveyance unit 28 is moved in the same manner as the positioning operation performed in the first inspector 12, and the portion of the defect K is imaged in the bright field by the second area camera 23. Although the second area camera 23 has a high resolution, it moves at a constant speed along the conveyance path 3 along with the defect K by a distance corresponding to the length of the second conveyance unit 28, so that the shutter speed is high. Even if it is not, the defect K can be imaged with high resolution without blurring without making the illumination light stronger than necessary with the normal shutter speed.
By the above operation, the defect K portion can be imaged with high resolution and no blur by using both the dark field and bright field inspection methods, so that various defects K such as scratches, bubbles, and foreign matter can be detected with high definition. Can do.
The images captured by the first area camera 21 and the second area camera 23 are displayed on the image display device provided in the control device 14, respectively. The presence or absence of K can also be determined.
 図5は、透光性板状体2に一箇所のみ欠点Kが存在していた場合の検査方法の一例について説明したが、透光性板状体2に複数の欠点Kが形成されていた場合の検査方法の一例について図7を基に以下に説明する。
 図7(a)は、第一のエリアカメラ21を備えた第一のフレーム部材24が設けられた主撮像ユニット30を4基備える第一の検査器12を示している。図7(a)に示すように、仮に、欠点K1~K5が形成されていた透光性板状体2が接近してきた場合について説明する。
 欠点K1~K5の存在は前段の予備検査機6を透光性板状体2が通過した際に既に検査されていて、搬送路3に沿って一定の速度で水平搬送されている透光性板状体2の表面の面方向に沿うXY座標において、欠点K1~K5の個々の座標位置情報は、管理装置8が既に特定して把握している。欠点K1~K5は、透光性板状体2の先端位置からの距離に応じて順番に座標位置が特定されている。
FIG. 5 illustrates an example of an inspection method in the case where the defect K exists only in one place on the translucent plate-like body 2, but a plurality of defects K are formed on the translucent plate-like body 2. An example of the inspection method will be described below with reference to FIG.
FIG. 7A shows the first inspector 12 including four main imaging units 30 provided with the first frame member 24 including the first area camera 21. As shown in FIG. 7A, a case will be described in which the translucent plate-like body 2 on which the defects K1 to K5 are formed approaches.
The existence of the defects K1 to K5 has already been inspected when the translucent plate-like body 2 passes through the preliminary inspection machine 6 in the previous stage, and is translucently transported horizontally along the transport path 3 at a constant speed. In the XY coordinates along the surface direction of the surface of the plate-like body 2, the management device 8 has already identified and grasped the individual coordinate position information of the defects K1 to K5. The coordinates of the defects K1 to K5 are specified in order according to the distance from the tip position of the translucent plate-like body 2.
 図7(a)に示すように、透光性板状体2が第一の検査器12の第一番目の主撮像ユニット30に接近すると、図7(a)では略されているが図5に示す位置検出センサ38が透光性板状体2の先端位置を検出するので、欠点K1の位置を把握している管理装置8が第一番目の主撮像ユニット30を作動させ、第一の搬送部27に沿って第二の搬送部28をY方向に移動させて欠点K1のY座標位置と同一座標位置に第一のエリアカメラ21の焦点領域を位置合わせする。
 管理装置8は、欠点K1のX座標位置を把握しているので、第一のエリアカメラ21の焦点領域に欠点K1が到達した時点で、第二の搬送部28に沿って第一のフレーム部材24を透光性板状体2と等速で同期移動させ、図7(b)に示すように第一のエリアカメラ21で欠点K1を高精細に撮像できる。
As shown in FIG. 7A, when the translucent plate-like body 2 approaches the first main imaging unit 30 of the first inspection device 12, it is omitted in FIG. Since the position detection sensor 38 shown in FIG. 1 detects the tip position of the translucent plate-like body 2, the management device 8 that grasps the position of the defect K1 operates the first main imaging unit 30, and the first The second conveyance unit 28 is moved in the Y direction along the conveyance unit 27 to align the focal area of the first area camera 21 at the same coordinate position as the Y coordinate position of the defect K1.
Since the management device 8 grasps the X coordinate position of the defect K1, the first frame member along the second transport unit 28 when the defect K1 reaches the focal region of the first area camera 21. 24 is moved synchronously with the translucent plate-like body 2 at a constant speed, and the defect K1 can be imaged with high definition by the first area camera 21 as shown in FIG. 7B.
 欠点K1の撮像後、欠点K2が第一番目の主撮像ユニット30に接近するので、第一の搬送部27に沿って第二の搬送部28をY方向に移動させて欠点K2のY座標と同一座標に第一のエリアカメラ21の焦点領域を図7(c)に示すように位置合わせする。管理装置8は、欠点K2のX座標位置を把握しているので、第一のエリアカメラ21の焦点領域に欠点K2が到達した時点で、第二の搬送部28に沿って第一のフレーム部材24を透光性板状体2と等速で同期移動させ、第一のエリアカメラ21で欠点K2を高精細に撮像できる。 After the defect K1 is imaged, the defect K2 approaches the first main imaging unit 30, so the second conveyance unit 28 is moved in the Y direction along the first conveyance unit 27, and the Y coordinate of the defect K2 The focal area of the first area camera 21 is aligned with the same coordinates as shown in FIG. Since the management device 8 grasps the X coordinate position of the defect K2, the first frame member along the second transport unit 28 when the defect K2 reaches the focal region of the first area camera 21. 24 is synchronized with the translucent plate-like body 2 at a constant speed, and the first area camera 21 can image the defect K2 with high definition.
 欠点K2の撮影後、欠点K3が第一番目の主撮像ユニット30に接近するが、欠点K2と欠点K3は近接していて、第一番目の主撮像ユニット30の追従動作では間に合わないと管理装置8が判断すると、管理装置8は第二番目の主撮像ユニット30を作動させる。
 第二番目の主撮像ユニット30は、第一の搬送部27に沿って第二の搬送部28をY方向に移動させて欠点K3のY座標と同一座標に第一のエリアカメラ21の位置合わせを行う。
 管理装置8は欠点K3のX座標位置を把握しているので、第一のエリアカメラ21の焦点領域に欠点K3が到達した時点で第二の搬送部28に沿って第一のフレーム部材24を透光性板状体2と等速で同期移動させ、図7(d)に示すように第一のエリアカメラ21で欠点K3を高精細に撮像できる。
After photographing the defect K2, the defect K3 approaches the first main imaging unit 30. However, the defect K2 and the defect K3 are close to each other, and the tracking operation of the first main imaging unit 30 is not in time. If 8 determines, the management apparatus 8 operates the second main imaging unit 30.
The second main imaging unit 30 moves the second transport unit 28 in the Y direction along the first transport unit 27 to align the first area camera 21 with the same coordinate as the Y coordinate of the defect K3. I do.
Since the management device 8 grasps the X coordinate position of the defect K3, the first frame member 24 is moved along the second conveyance unit 28 when the defect K3 reaches the focal region of the first area camera 21. The defect K3 can be imaged with high definition by the first area camera 21 as shown in FIG.
 欠点K3の撮影後、欠点K4が第二番目の主撮像ユニット30に接近するが、欠点K3と欠点K4は近接していて、第二番目の主撮像ユニット30の追従動作では間に合わないと管理装置8が判断すると、管理装置8は第三番目の主撮像ユニット30を作動させる。
 第三番目の主撮像ユニット30は、第一の搬送部27に沿って第二の搬送部28をY方向に移動させて欠点K4のY座標と同一座標に第一のエリアカメラ21の位置合わせを行う。
 管理装置8は欠点K4のX座標位置を把握しているので、第一のエリアカメラ21の焦点領域に欠点K4が到達した時点で第二の搬送部28に沿って第一のフレーム部材24を透光性板状体2と等速で同期移動させ、図7(e)に示すように第一のエリアカメラ21で欠点K4を高精細に撮像できる。
After photographing the defect K3, the defect K4 approaches the second main imaging unit 30. However, the defect K3 and the defect K4 are close to each other, and the tracking operation of the second main imaging unit 30 is not in time. If 8 determines, the management apparatus 8 operates the third main imaging unit 30.
The third main imaging unit 30 moves the second transport unit 28 in the Y direction along the first transport unit 27 to align the first area camera 21 with the same coordinate as the Y coordinate of the defect K4. I do.
Since the management device 8 grasps the X coordinate position of the defect K4, the first frame member 24 is moved along the second transport unit 28 when the defect K4 reaches the focal area of the first area camera 21. The defect K4 can be imaged with high definition by the first area camera 21 as shown in FIG.
 欠点K4の撮影後、欠点K5が第一番目の主撮像ユニット30に接近するが、欠点K4と欠点K5は充分離れていて、第一番目の主撮像ユニット30の追従動作では間に合うと管理装置8が判断すると、管理装置8は第一番目の主撮像ユニット30を作動させる。
 第一番目の主撮像ユニット30は、第一の搬送部27に沿って第二の搬送部28をY方向に移動させて欠点K5のY座標と同一座標に第一のエリアカメラ21の位置合わせを行う。
 管理装置8は欠点K5のX座標位置を把握しているので、第一のエリアカメラ21の焦点領域に欠点K5が到達した時点で第二の搬送部28に沿って第一のフレーム部材24を透光性板状体2と等速で同期移動させ、図7(f)に示すように第一のエリアカメラ21で欠点K5を高精細に撮像できる。
 欠点K5の撮像後、第一のエリアカメラ21は第一の搬送部27の中央の初期位置に復帰し、次の欠点の検査に備える。
After photographing the defect K4, the defect K5 approaches the first main imaging unit 30. However, the defect K4 and the defect K5 are sufficiently separated from each other, and the management apparatus 8 is in time for the follow-up operation of the first main imaging unit 30. Is determined, the management device 8 operates the first main imaging unit 30.
The first main imaging unit 30 moves the second transport unit 28 in the Y direction along the first transport unit 27 to align the first area camera 21 with the same coordinate as the Y coordinate of the defect K5. I do.
Since the management device 8 grasps the X coordinate position of the defect K5, the first frame member 24 is moved along the second transport unit 28 when the defect K5 reaches the focal region of the first area camera 21. The defect K5 can be imaged with high definition by the first area camera 21 as shown in FIG.
After imaging the defect K5, the first area camera 21 returns to the initial position in the center of the first transport unit 27 to prepare for the next defect inspection.
 以上説明したように、管理装置8は、第一番目の主撮像ユニット30を主体として駆動し、欠点K1~K5のXY座標位置から、第一番目の主撮像ユニット30が追従不可能と判断した場合にのみ第二番目の主撮像ユニット30、第三番目の主撮像ユニット30、第四番目の主撮像ユニット30を順次作動させて欠点の検査を行う。
 搬送路3に沿って搬送される透光性板状体2の移動速度に応じて、第一番目~第四番目までの主撮像ユニット30を順次用いて欠点の検査を行うので、透光性板状体2に複数の欠点K1~K5が形成されていた場合であっても、本実施形態の検査装置1であれば、支障なく全ての欠点に追従しながら高精細な撮像ができる。従って、複数の欠点K1~K5を有する透光性板状体2を高精度で検査できる効果がある。また、欠点K1~K5において、複数の欠点が透光性板状体2の搬送方向に極めて接近して存在していた場合であっても、複数の主撮像ユニット30を作動させて支障なく高精度で検査できる効果がある。
As described above, the management device 8 is driven mainly by the first main imaging unit 30 and determines that the first main imaging unit 30 cannot follow from the XY coordinate positions of the defects K1 to K5. Only in this case, the second main imaging unit 30, the third main imaging unit 30, and the fourth main imaging unit 30 are sequentially operated to inspect defects.
According to the moving speed of the translucent plate-like body 2 conveyed along the conveyance path 3, the first to fourth main imaging units 30 are sequentially used to inspect the defects, so that the translucency is obtained. Even if a plurality of defects K1 to K5 are formed on the plate-like body 2, the inspection apparatus 1 of the present embodiment can perform high-definition imaging while following all the defects without any trouble. Therefore, there is an effect that the translucent plate-like body 2 having a plurality of defects K1 to K5 can be inspected with high accuracy. In addition, in the defects K1 to K5, even when a plurality of defects exist extremely close to the transport direction of the translucent plate-like body 2, the plurality of main imaging units 30 can be operated to increase the height without any trouble. There is an effect that can be inspected with accuracy.
 なお、本実施形態の検査装置において、第一番目の主撮像ユニット30の動作回数が多いので、繰り返し使用する間に第一番目の主撮像ユニット30が優先的に故障する可能性がある。この場合、第一番目の主撮像ユニット30が故障して動作を停止すると、画像が送られてこないので、第一番目の主撮像ユニット30の故障を直ちに把握することができ、この場合は第二番目の主撮像ユニット30を第一番目の主撮像ユニット30に見立てて第二番目の主撮像ユニット30を主体として動作させることができる。 In the inspection apparatus according to the present embodiment, since the first main imaging unit 30 is frequently operated, there is a possibility that the first main imaging unit 30 may fail preferentially during repeated use. In this case, if the first main imaging unit 30 fails and stops operating, no image is sent, so that the failure of the first main imaging unit 30 can be immediately grasped. The second main imaging unit 30 can be operated with the second main imaging unit 30 as a main body, with the second main imaging unit 30 regarded as the first main imaging unit 30.
 「第二実施形態」
 図8は、本発明に係る検査装置の第二実施形態を示すもので、本実施形態の構造では搬送路3に設けられている第一の検査器42において、幅方向に2基の第一番目の主撮像ユニット50、51を併設し、併設した2基のユニットを4列、合計8基の主撮像ユニットを設けた実施形態を示す。
 図8に示す第一の検査器42において、搬送方向に向いて前方右側の列の主撮像ユニット50は先の主撮像ユニット30と同等構成であるが、第一の搬送部27Aの長さが搬送路3の幅方向半分程度の長さに形成されている点が異なる。
 図8に示す第一の検査器42において、搬送方向前方に向いて左側の列の主撮像ユニット51は先の主撮像ユニット30と類似構成であるが、第一の搬送部27Bの長さが搬送路3の幅方向半分程度の長さに形成され、第二の搬送部28Aが第一の搬送部27Bに対し、透光性板状体2の搬送方向と反対側に延出するように第一の搬送部27Bに直角に取り付けられている点が異なる。第一の搬送部27A、27Bと第二の搬送部28が図6に示すような直動ユニット33、33Aから構成されている点については先の実施形態の構造と同様である。
"Second embodiment"
FIG. 8 shows a second embodiment of the inspection apparatus according to the present invention. In the structure of this embodiment, in the first inspection device 42 provided in the transport path 3, two first devices are arranged in the width direction. An embodiment is shown in which the first main imaging units 50 and 51 are provided, and the two main units are provided in four rows for a total of eight main imaging units.
In the first inspection device 42 shown in FIG. 8, the main imaging units 50 in the right front row in the transport direction have the same configuration as the previous main imaging unit 30, but the length of the first transport unit 27 </ b> A is long. The difference is that the length of the conveyance path 3 is about half the width direction.
In the first inspection device 42 shown in FIG. 8, the main imaging units 51 in the left column facing forward in the conveyance direction have a similar configuration to the previous main imaging unit 30, but the length of the first conveyance unit 27B is the same. It is formed in a length about half the width direction of the conveyance path 3 so that the second conveyance unit 28A extends to the opposite side to the conveyance direction of the translucent plate-like body 2 with respect to the first conveyance unit 27B. The difference is that it is attached to the first transport section 27B at a right angle. The first transport unit 27A, 27B and the second transport unit 28 are configured by linear motion units 33, 33A as shown in FIG. 6, which is the same as the structure of the previous embodiment.
 図8に示す実施形態の構造においては、第一の搬送部27A、27Bの長さを搬送路3の半分程度に設定し、第一の搬送部27A、27Bに沿って移動する第二の搬送部28、28Aの移動距離を短くしているので、第二の搬送部28、28Aの移動速度を第一実施形態の構造と同等とするならば、これらを透光性板状体2の幅方向に沿って図5を基に先に説明した第一実施形態の構造よりも短時間(半分程度の時間)で移動させることができる。このため、透光性板状体2に形成されている欠点に対する第二の搬送部28、28Aの追従性が向上する。また、追従性が向上するため、仮に、透光性板状体2の幅が2倍程度の大きい透光性板状体に適用した場合であっても、第一実施形態の搬送部と同じ移動速度であっても同等の追従性を確保できるので、より大型の透光性板状体の欠点の検査に対応できる。 In the structure of the embodiment shown in FIG. 8, the length of the first transport units 27A and 27B is set to about half of the transport path 3, and the second transport moves along the first transport units 27A and 27B. Since the moving distance of the portions 28 and 28A is shortened, if the moving speed of the second transporting portions 28 and 28A is equivalent to that of the structure of the first embodiment, these are the widths of the translucent plate-like body 2. It can be moved along the direction in a shorter time (half time) than the structure of the first embodiment described above based on FIG. For this reason, the followability of the 2nd conveyance parts 28 and 28A to the fault currently formed in translucent plate-like object 2 improves. Moreover, since followability improves, even if it is a case where it applies to a translucent plate-shaped body whose width | variety of the translucent plate-shaped body 2 is about twice as large, it is the same as the conveyance part of 1st embodiment. Since the same followability can be secured even at the moving speed, it is possible to cope with the inspection of the defect of the larger transparent plate-like body.
 なお、先の実施形態では第一の検査器12と第二の検査器13について、4基の主撮像ユニット30あるいは主撮像ユニット31を設けた例について説明したが、主撮像ユニット30、31の設置個数は任意でよい。製造時の欠点が少ない透光性板状体を検査する場合は少ない設置個数でよく、場合によっては4基以上の数の主撮像ユニットを設けて検査する構成でもよい。
 予備検査機6に設ける検査器は暗視野外観検査器10と明視野外観検査器11の両方であることが好ましいが、どちらか一方のみを設けてもよい。精査検査機7に設ける検査器は第一の検査器12と第二の検査器13の両方であることが好ましいが、どちらか一方のみを設けてもよい。
In the previous embodiment, an example in which four main imaging units 30 or main imaging units 31 are provided for the first inspector 12 and the second inspector 13 has been described. The number of installation may be arbitrary. When inspecting a translucent plate-like body with few defects at the time of manufacture, a small number of installations may be used, and in some cases, a configuration in which four or more main imaging units are provided for inspection may be used.
Although it is preferable that both the dark-field visual inspection device 10 and the bright-field visual inspection device 11 are provided in the preliminary inspection machine 6, only one of them may be provided. The inspection devices provided in the scrutinization inspection machine 7 are preferably both the first inspection device 12 and the second inspection device 13, but only one of them may be provided.
 図9は、本発明に係る検査装置に設けられるエリアカメラ21、23に対する他の構造例を示すもので、先に説明したエリアカメラ21、23が透光性板状体2の移動領域に対し斜め下向きに配置された構成であるのに対し、透光性板状体2の移動領域の表面に対しその領域よりも上方に垂直下向きに第一の主撮像部(エリアカメラ)60が配置された構造例を示す。
 このエリアカメラ60は、垂直下向きに配置されていても明視野検査器あるいは暗視野検査器として欠点の撮像ができる構成の一例として示す。前記の実施形態のように4基ずつ設けられている第一のエリアカメラ21と照明器20のセット、あるいは、第二のエリアカメラ23と照明器22のセットのうち、1つ以上のセットをこの実施形態の構造で置き換えることができる。
 透光性板状体2の上方にハーフミラー部材61が設けられ、そのハーフミラー部材61の上方に光軸を垂直下向きにしてエリアカメラ60が設けられ、ハーフミラー部材61の側方側に照明器62が設けられている。
FIG. 9 shows another structural example for the area cameras 21 and 23 provided in the inspection apparatus according to the present invention. The area cameras 21 and 23 described above are in relation to the movement region of the translucent plate-like body 2. The first main imaging unit (area camera) 60 is arranged vertically downward above the surface of the moving area of the translucent plate-like body 2 while being arranged obliquely downward. An example of the structure is shown.
The area camera 60 is shown as an example of a configuration capable of imaging a defect as a bright-field inspection device or a dark-field inspection device even when arranged vertically downward. One or more sets of the set of the first area camera 21 and the illuminator 20 or the set of the second area camera 23 and the illuminator 22 that are provided by four each as in the above-described embodiment. It can be replaced with the structure of this embodiment.
A half mirror member 61 is provided above the translucent plate-like body 2, an area camera 60 is provided above the half mirror member 61 with the optical axis vertically downward, and illumination is performed on the side of the half mirror member 61. A vessel 62 is provided.
 この例の構成では、照明器62からハーフミラー部材61に入射させた照明光を透光性板状体2の表面に垂直に入射し、透光性板状体2からの上向きの反射光をハーフミラー部材61を介してエリアカメラ60で捕らえ、エリアカメラ60で透光性板状体2の表面を撮像することで透光性板状体2の明視野検査あるいは暗視野検査ができる。エリアカメラ60を用いて明視野検査を行う場合は、照明器62からエリアカメラ60の視野範囲に対し。均一な明るさの照明光を照射する。暗視野検査を行う場合は、照明器62からリング状の照明光を照射し、リング状照明光の中心の暗い領域をエリアカメラ60の視野として捕らえて撮像すればよい。 In the configuration of this example, the illumination light incident on the half mirror member 61 from the illuminator 62 is perpendicularly incident on the surface of the translucent plate-like body 2 and the upward reflected light from the translucent plate-like body 2 is reflected. By capturing with the area camera 60 via the half mirror member 61 and imaging the surface of the translucent plate 2 with the area camera 60, the bright field inspection or dark field inspection of the translucent plate 2 can be performed. When performing a bright field inspection using the area camera 60, the illumination field 62 to the field range of the area camera 60 is used. Irradiate illumination light with uniform brightness. When performing a dark field inspection, it is only necessary to irradiate the illumination light from the illuminator 62 and capture a dark area at the center of the ring illumination light as a field of view of the area camera 60 and take an image.
 図9に示すように、ハーフミラー部材61を用いることで、透光性板状体2に対し垂直下向きに光軸を向けたエリアカメラ60で透光性板状体2の撮像ができる。図9に示すエリアカメラ60であるならば、エリアカメラ60の焦点位置で撮影領域全面のピントが合うので分解能の高い高精細な撮像ができる。
 先の実施形態の構造のように、エリアカメラ21、23の向きを斜め下向きとしても、図9の例のように垂直下向きとしてもいずれの向きであってもよく、本発明において照明光の向きやカメラの向きに制限はない。
As shown in FIG. 9, by using the half mirror member 61, the translucent plate-like body 2 can be imaged by the area camera 60 whose optical axis is directed vertically downward with respect to the translucent plate-like body 2. If the area camera 60 shown in FIG. 9 is used, since the entire photographing area is focused at the focal position of the area camera 60, high-definition imaging with high resolution can be performed.
As in the structure of the previous embodiment, the direction of the area cameras 21 and 23 may be either diagonally downward or vertically downward as in the example of FIG. 9. In the present invention, the direction of the illumination light There are no restrictions on the orientation of the camera.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の範囲と精神を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2011年5月10日出願の日本特許出願2011-105362に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the scope and spirit of the invention.
This application is based on Japanese Patent Application 2011-105362 filed on May 10, 2011, the contents of which are incorporated herein by reference.
 本発明の技術は、表示装置用ガラス、光学用ガラス、医療用ガラス、建築用ガラス、車両用ガラス、その他一般のガラス製品を検査する方法と装置に広く適用できる。 The technology of the present invention can be widely applied to methods and apparatuses for inspecting glass for display devices, optical glass, medical glass, architectural glass, vehicle glass, and other general glass products.
 1…検査装置、3…搬送路、6…予備検査機、7…精査検査機、8…管理装置、10…暗視野外観検査器、11…明視野外観検査器、12…第一の検査器、13…第二の検査器、14…制御装置、15…照明器、16…予備撮像部(ラインセンサカメラ)、17、18…データ配線、20…照明器、21…第一の主撮像部(第一のエリアカメラ)、21A、21B…矩形状領域、22…照明器、23…第二の主撮像部(第二のエリアカメラ)、24…第一のフレーム部材、25…第二のフレーム部材、27、27A、27B…第一の搬送部、28、28A…第二の搬送部、30…第一の主撮像ユニット、31…第二の主撮像ユニット、33、33A…直動ユニット、42…第一の検査器、50、51…主撮像ユニット、60…第一の主撮像部(エリアカメラ)、K、K1~K5…微小欠点。 DESCRIPTION OF SYMBOLS 1 ... Inspection apparatus, 3 ... Conveyance path, 6 ... Preliminary inspection machine, 7 ... Detailed inspection machine, 8 ... Management apparatus, 10 ... Dark field appearance inspection device, 11 ... Bright field appearance inspection device, 12 ... First inspection device DESCRIPTION OF SYMBOLS 13 ... 2nd test | inspection device 14 ... Control apparatus 15 ... Illuminator 16 ... Preliminary imaging part (line sensor camera), 17, 18 ... Data wiring, 20 ... Illuminator, 21 ... 1st main imaging part (First area camera), 21A, 21B ... rectangular region, 22 ... illuminator, 23 ... second main imaging unit (second area camera), 24 ... first frame member, 25 ... second Frame member, 27, 27A, 27B ... first transport unit, 28, 28A ... second transport unit, 30 ... first main imaging unit, 31 ... second main imaging unit, 33, 33A ... linear motion unit , 42 ... 1st inspection device, 50, 51 ... Main imaging unit, 60 ... 1st main imaging (Area camera), K, K1 ~ K5 ... small drawback.

Claims (14)

  1.  透光性板状体を搬送路に沿って搬送しながら該透光性板状体に存在する微小欠点を検査する方法において、
     前記透光性板状体に光を照射して前記透光性板状体の主表面を予備撮像部で撮像することで、前記透光性板状体の主表面の面方向に存在する前記微小欠点の位置を特定する予備検査ステップと、
     前記予備検査ステップで得られた前記微小欠点の位置に合わせて、前記透光性板状体の面方向に沿って前記透光性板状体の搬送方向と交差する方向に主撮像部を移動し、前記微小欠点に位置合わせした状態で前記搬送方向に移動しつつ前記微小欠点を撮像する精査検査ステップと、
     を有する透光性板状体の微小欠点の検査方法。
    In a method for inspecting a micro defect existing in the translucent plate while conveying the translucent plate along the conveyance path,
    By irradiating light to the translucent plate-like body and imaging the main surface of the translucent plate-like body with a preliminary imaging unit, the surface existing in the surface direction of the main surface of the translucent plate-like body A pre-inspection step for locating the micro defects,
    The main imaging unit is moved in the direction intersecting the transport direction of the translucent plate along the surface direction of the translucent plate in accordance with the position of the minute defect obtained in the preliminary inspection step. And a scrutiny inspection step for imaging the minute defect while moving in the transport direction in a state aligned with the minute defect;
    A method for inspecting a minute defect of a translucent plate-like body having a surface.
  2.  前記精査検査ステップにおいて、前記主撮像部を前記透光性板状体の搬送方向に交差する方向に移動させて位置決めし、前記主撮像部の視野に入った微小欠点の移動に同期させて前記主撮像部を前記搬送路に沿って前記透光性板状体と等速で移動させつつ、前記微小欠点を撮像する請求項1に記載の透光性板状体の微小欠点の検査方法。 In the scrutiny inspection step, the main imaging unit is moved and positioned in a direction intersecting the transport direction of the translucent plate-like body, and the main imaging unit is synchronized with the movement of a minute defect entering the field of view of the main imaging unit. The method for inspecting a micro defect of a light transmitting plate-like body according to claim 1, wherein the micro image is picked up while moving a main imaging unit at a constant speed with the light transmitting plate body along the transport path.
  3.  前記精査検査ステップにおいて、前記搬送路に沿って複数の主撮像部を配置し、前記予備検査ステップにおいて特定された微小欠点の位置に対応させて前記主撮像部を個別に移動させ、前記微小欠点を個々に撮像する請求項1または2に記載の透光性板状体の微小欠点の検査方法。 In the scrutiny inspection step, a plurality of main imaging units are arranged along the conveyance path, the main imaging unit is individually moved in correspondence with the position of the micro defect specified in the preliminary inspection step, and the micro defect is The method for inspecting a micro defect of a light-transmitting plate-like body according to claim 1 or 2, wherein each of said images is individually imaged.
  4.  前記精査検査ステップにおいて、前記搬送路に沿って複数設けられた主撮像部のうち、前記搬送路の上流側に設置されている前記主撮像部が特定の微小欠点の接近に対応して移動することで該微小欠点を撮像するが、前記搬送路の上流側の前記主撮像部が移動して該微小欠点を撮像するために要する時間よりも早く次の微小欠点が接近する場合、前記搬送路の下流側に設置されている他の主撮像部が接近中の該微小欠点に対し移動することで該微小欠点を撮像する請求項3に記載の透光性板状体の微小欠点の検査方法。 In the scrutiny inspection step, among the main imaging units provided along the conveyance path, the main imaging unit installed on the upstream side of the conveyance path moves in response to the approach of a specific minute defect. In this case, when the main imaging unit on the upstream side of the transport path moves and the next micro defect approaches earlier than the time required to capture the micro defect, the transport path The inspection method of the micro defect of the translucent plate-shaped body of Claim 3 which images the micro defect by moving the other main imaging part installed downstream of the micro defect that is approaching .
  5.  前記予備検査ステップと前記精査検査ステップのそれぞれにおいて、暗視野検査及び明視野検査の両方を実施する請求項1~4のいずれか一項に記載の透光性板状体の微小欠点の検査方法。 The method for inspecting a micro defect of a light-transmitting plate according to any one of claims 1 to 4, wherein both a dark field inspection and a bright field inspection are performed in each of the preliminary inspection step and the close inspection step. .
  6.  前記予備検査ステップにおいて、前記予備撮像部としてラインセンサカメラを用いて前記透光性板状体の主表面の面方向に存在する微小欠点の位置を特定し、前記精査検査ステップにおいて、前記主撮像部としてエリアカメラを用いて前記微小欠点を撮像する請求項1~5のいずれか一項に記載の透光性板状体の微小欠点の検査方法。 In the preliminary inspection step, a position of a minute defect existing in the surface direction of the main surface of the translucent plate-like body is specified using a line sensor camera as the preliminary imaging unit, and in the detailed inspection step, the main imaging is performed. The method for inspecting a minute defect of a light-transmitting plate according to any one of claims 1 to 5, wherein the minute defect is imaged using an area camera as a part.
  7.  前記精査検査ステップにおいて、前記エリアカメラを前記透光性板状体の搬送方向に対し直交する方向に向け、前記エリアカメラを前記透光性板状体の主表面が前記搬送路に沿って移動する領域に対し傾斜させて前記微小欠点を撮像する請求項6に記載の透光性板状体の微小欠点の検査方法。 In the inspection step, the area camera is directed in a direction orthogonal to the transport direction of the translucent plate, and the main surface of the translucent plate moves along the transport path in the area camera. The method for inspecting a minute defect of a light transmitting plate-like body according to claim 6, wherein the minute defect is imaged while being inclined with respect to a region to be processed.
  8.  搬送路に沿って搬送される透光性板状体に存在する微小欠点を検査する透光性板状体の微小欠点の検査装置において、
     前記透光性板状体に光を照射する照明器、及び前記透光性板状体の主表面を全面にわたり撮像する予備撮像部を備えた予備検査機と、
     該予備撮像部が撮像した前記透光性板状体の画像情報から前記透光性板状体の主表面の面方向に存在する微小欠点の位置情報を特定する管理装置と、
     前記透光性板状体に光を照射する照明器、前記透光性板状体の主表面を撮像する主撮像部、前記予備検査機で特定された前記微小欠点の位置情報に合わせて前記透光性板状体の面方向に沿って前記透光性板状体の搬送方向と交差する方向に前記主撮像部を移動させる第一の搬送部、及び前記透光性板状体の搬送方向に前記主撮像部を移動させる第二の搬送部を備えた精査検査機と、
     を具備した透光性板状体の微小欠点の検査装置。
    In the inspection device for the micro defects of the translucent plate that inspects the micro defects existing in the translucent plate transported along the transport path,
    An illuminator that irradiates light to the translucent plate-like body, and a preliminary inspection machine that includes a preliminary imaging unit that images the entire main surface of the translucent plate-like body;
    A management device that identifies position information of minute defects existing in the surface direction of the main surface of the translucent plate from the image information of the translucent plate captured by the preliminary imaging unit;
    An illuminator that irradiates light to the translucent plate-shaped body, a main imaging unit that images the main surface of the translucent plate-shaped body, and the positional information of the minute defects identified by the preliminary inspection machine A first transport unit that moves the main imaging unit in a direction that intersects the transport direction of the translucent plate-like body along the surface direction of the translucent plate-like body, and transport of the translucent plate-like body A scrutinizing machine comprising a second transport unit for moving the main imaging unit in the direction;
    Inspection device for minute defects of translucent plate-like body.
  9.  前記第二の搬送部が、前記透光性板状体の搬送方向と同じ方向に前記透光性板状体と等速で前記主撮像部を移動させる能力を有する請求項8に記載の透光性板状体の微小欠点の検査装置。 9. The transparent device according to claim 8, wherein the second transport unit has an ability to move the main imaging unit at the same speed as the translucent plate in the same direction as the transport direction of the translucent plate. Inspection device for minute defects of optical plate.
  10.  前記主撮像部、前記第一の搬送部および前記第二の搬送部を備えた主撮像ユニットが、前記透光性板状体の搬送方向に沿って複数設置された請求項8または9に記載の透光性板状体の微小欠点の検査装置。 The main imaging unit provided with the said main imaging part, said 1st conveyance part, and said 2nd conveyance part was multiply installed along the conveyance direction of the said translucent plate-shaped object. Inspection device for minute defects of translucent plate-like body.
  11.  前記搬送路に沿って複数設けられた主撮像部のうち、前記搬送路の上流側に設置されている前記主撮像部が特定の微小欠点の接近に対応して移動することで該微小欠点を撮像するが、前記搬送路の上流側の前記主撮像部が移動して該微小欠点を撮像するために要する時間よりも早く次の微小欠点が接近する場合、前記搬送路の下流側に設置されている他の主撮像部を接近中の該微小欠点に対し移動させて該微小欠点を撮像する機能を管理装置に備えた請求項10に記載の透光性板状体の微小欠点の検査装置。 Among the plurality of main imaging units provided along the conveyance path, the main imaging unit installed on the upstream side of the conveyance path moves corresponding to the approach of a specific micro defect, thereby removing the micro defect. When the main imaging unit on the upstream side of the conveyance path moves and the next minute defect approaches earlier than the time required to image the minute defect, it is installed on the downstream side of the conveyance path. 11. The inspection apparatus for a micro defect of a translucent plate-like body according to claim 10, wherein the management device is provided with a function of moving the other main imaging unit with respect to the micro defect that is approaching and imaging the micro defect. .
  12.  前記予備検査機が明視野検査器としての予備撮像部と暗視野検査器としての予備撮像部と、を備えた請求項8~11のいずれか一項に記載の透光性板状体の微小欠点の検査装置。 The microscopicity of the translucent plate-shaped body according to any one of claims 8 to 11, wherein the preliminary inspection machine includes a preliminary imaging unit as a bright field inspection device and a preliminary imaging unit as a dark field inspection device. Defect inspection device.
  13.  前記予備撮像部がラインセンサカメラであり、前記主撮像部がエリアカメラである請求項8~12のいずれか一項に記載の透光性板状体の微小欠点の検査装置。 The inspection apparatus for minute defects of a light-transmitting plate-like body according to any one of claims 8 to 12, wherein the preliminary imaging unit is a line sensor camera and the main imaging unit is an area camera.
  14.  前記エリアカメラが前記透光性板状体の搬送方向と交差する方向に向けられ、かつ、前記透光性板状体の主表面を前記搬送路に沿って移動させる領域に対し傾斜配置された請求項8~13のいずれか一項に記載の透光性板状体の微小欠点の検査装置。 The area camera is directed in a direction crossing the transport direction of the translucent plate-like body, and is inclined with respect to a region in which the main surface of the translucent plate-like body is moved along the transport path. The inspection device for minute defects of a light-transmitting plate-like body according to any one of claims 8 to 13.
PCT/JP2012/061458 2011-05-10 2012-04-27 Method for inspecting minute defect of translucent board-like body, and apparatus for inspecting minute defect of translucent board-like body WO2012153662A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137029662A KR20140022064A (en) 2011-05-10 2012-04-27 Method for inspecting minute defect of translucent board-like body, and apparatus for inspecting minute defect of translucent board-like body
CN201280022528.8A CN103534582A (en) 2011-05-10 2012-04-27 Method for inspecting minute defect of translucent board-like body, and apparatus for inspecting minute defect of translucent board-like body
JP2013513986A JPWO2012153662A1 (en) 2011-05-10 2012-04-27 Inspection method for minute defects of translucent plate and inspection apparatus for minute defects of translucent plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-105362 2011-05-10
JP2011105362 2011-05-10

Publications (1)

Publication Number Publication Date
WO2012153662A1 true WO2012153662A1 (en) 2012-11-15

Family

ID=47139146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061458 WO2012153662A1 (en) 2011-05-10 2012-04-27 Method for inspecting minute defect of translucent board-like body, and apparatus for inspecting minute defect of translucent board-like body

Country Status (5)

Country Link
JP (1) JPWO2012153662A1 (en)
KR (1) KR20140022064A (en)
CN (1) CN103534582A (en)
TW (1) TW201245701A (en)
WO (1) WO2012153662A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017068124A (en) * 2015-09-30 2017-04-06 日東電工株式会社 Inspection method of long-sized polarizer
WO2017104354A1 (en) * 2015-12-17 2017-06-22 日本電気硝子株式会社 Glass plate manufacturing method
WO2017104575A1 (en) * 2015-12-16 2017-06-22 株式会社リコー Testing system and testing method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI468672B (en) * 2013-12-27 2015-01-11 Chroma Ate Inc Optical detection device
JP6723633B2 (en) * 2015-12-10 2020-07-15 株式会社ディスコ Inspection equipment
US10289930B2 (en) * 2017-02-09 2019-05-14 Glasstech, Inc. System and associated for online measurement of the optical characteristics of a glass sheet
JP6425054B1 (en) * 2017-10-12 2018-11-21 第一精工株式会社 Imaging method and resin sealing apparatus in resin sealing apparatus
CN108872256A (en) * 2018-09-13 2018-11-23 广东中航特种玻璃技术有限公司 A kind of method of on-line checking original sheet glass impurity
KR102643705B1 (en) * 2021-07-14 2024-03-05 주식회사 야스 Substrate Inspetion System with Hybride Optical unit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815177A (en) * 1994-06-29 1996-01-19 Kawasaki Steel Corp Method and apparatus for imaging surface defect
JP2000009661A (en) * 1998-06-26 2000-01-14 Ntn Corp Flat panel inspection device
JP2005062165A (en) * 2003-07-28 2005-03-10 Nitto Denko Corp Inspection method for sheet-shaped product, inspection system, sheet-shaped product and image display apparatus
JP2006242821A (en) * 2005-03-04 2006-09-14 Seiko Epson Corp Imaging method of optical panel, inspection method of optical panel, imaging device of optical panel and inspection device of optical panel
JP2006292404A (en) * 2005-04-06 2006-10-26 Olympus Corp Visual inspection device
JP2008082704A (en) * 2006-09-25 2008-04-10 Olympus Corp Substrate inspection device and substrate inspection method
JP2008134148A (en) * 2006-11-28 2008-06-12 Kobe Steel Ltd Sectional shape measuring method and sectional shape measuring device
JP2010133846A (en) * 2008-12-05 2010-06-17 Omron Corp Appearance inspection device
JP2010256338A (en) * 2009-03-30 2010-11-11 Panasonic Corp Imaging inspection device and imaging inspection method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6930772B2 (en) * 2001-07-05 2005-08-16 Nippon Sheet Glass Company, Limited Method and device for inspecting defect of sheet-shaped transparent body
JP2009014617A (en) * 2007-07-06 2009-01-22 Olympus Corp Substrate visual inspection apparatus
JP2009080088A (en) * 2007-09-27 2009-04-16 Olympus Corp Substrate appearance inspection apparatus
CN101852744B (en) * 2009-03-30 2012-11-21 松下电器产业株式会社 Imaging check device and imaging check method
CN102023164B (en) * 2009-09-23 2015-09-16 法国圣-戈班玻璃公司 For detecting the apparatus and method of the local defect of transparent plate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815177A (en) * 1994-06-29 1996-01-19 Kawasaki Steel Corp Method and apparatus for imaging surface defect
JP2000009661A (en) * 1998-06-26 2000-01-14 Ntn Corp Flat panel inspection device
JP2005062165A (en) * 2003-07-28 2005-03-10 Nitto Denko Corp Inspection method for sheet-shaped product, inspection system, sheet-shaped product and image display apparatus
JP2006242821A (en) * 2005-03-04 2006-09-14 Seiko Epson Corp Imaging method of optical panel, inspection method of optical panel, imaging device of optical panel and inspection device of optical panel
JP2006292404A (en) * 2005-04-06 2006-10-26 Olympus Corp Visual inspection device
JP2008082704A (en) * 2006-09-25 2008-04-10 Olympus Corp Substrate inspection device and substrate inspection method
JP2008134148A (en) * 2006-11-28 2008-06-12 Kobe Steel Ltd Sectional shape measuring method and sectional shape measuring device
JP2010133846A (en) * 2008-12-05 2010-06-17 Omron Corp Appearance inspection device
JP2010256338A (en) * 2009-03-30 2010-11-11 Panasonic Corp Imaging inspection device and imaging inspection method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017068124A (en) * 2015-09-30 2017-04-06 日東電工株式会社 Inspection method of long-sized polarizer
WO2017104575A1 (en) * 2015-12-16 2017-06-22 株式会社リコー Testing system and testing method
JPWO2017104575A1 (en) * 2015-12-16 2018-08-30 株式会社リコー Inspection system and inspection method
WO2017104354A1 (en) * 2015-12-17 2017-06-22 日本電気硝子株式会社 Glass plate manufacturing method
JP2017111033A (en) * 2015-12-17 2017-06-22 日本電気硝子株式会社 Method for manufacturing glass plate
KR20180093867A (en) * 2015-12-17 2018-08-22 니폰 덴키 가라스 가부시키가이샤 Manufacturing method of glass plate
TWI702389B (en) * 2015-12-17 2020-08-21 日商日本電氣硝子股份有限公司 Manufacturing method of glass plate
KR102623714B1 (en) * 2015-12-17 2024-01-11 니폰 덴키 가라스 가부시키가이샤 Manufacturing method of glass plate

Also Published As

Publication number Publication date
TW201245701A (en) 2012-11-16
KR20140022064A (en) 2014-02-21
CN103534582A (en) 2014-01-22
JPWO2012153662A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
WO2012153662A1 (en) Method for inspecting minute defect of translucent board-like body, and apparatus for inspecting minute defect of translucent board-like body
JP5272909B2 (en) Inspection device
TWI393878B (en) Panel inspection device and inspection method of panel
EP2401603A1 (en) System and method for detecting defects of substrate
JP2010048745A (en) Defect inspection system and defect inspection method
CN110208269B (en) Method and system for distinguishing foreign matters on surface of glass from foreign matters inside glass
KR20090033031A (en) Substrate surface inspection apparatus
JP2007256106A (en) Display panel inspection device and display panel inspection method using the same
JP2014119255A (en) Device for inspecting optical film and method for inspecting optical film
JP2015105930A (en) Minute defect inspection method for translucent substrate and minute defect inspection device for translucent substrate
JP2010066023A (en) Substrate inspection apparatus and substrate inspection method
WO2015174114A1 (en) Substrate inspection device
JP2015225003A (en) Appearance inspection device
JP2005069989A (en) Inspection apparatus
JP4932595B2 (en) Surface flaw inspection device
JP2020106295A (en) Sheet defect inspection device
KR20230044505A (en) Methods and Apparatus for Inspecting Materials
JP2013044578A (en) Substrate inspection method and device
JP2012194067A (en) Surface inspection device
CN110945347B (en) Damage inspection method for optical display panel
JP4506448B2 (en) Container foreign matter detection device
JP2019023588A (en) Defect inspection system and defect inspection method
JP2013079902A (en) Method and device for inspecting defect of glass substrate, and defect inspection system of glass substrate
JP2011203132A (en) Visual inspection apparatus
JP4177204B2 (en) Container foreign matter inspection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782895

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013513986

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137029662

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12782895

Country of ref document: EP

Kind code of ref document: A1