[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022054653A1 - 抗ウイルス性繊維基材、及びその製造方法 - Google Patents

抗ウイルス性繊維基材、及びその製造方法 Download PDF

Info

Publication number
WO2022054653A1
WO2022054653A1 PCT/JP2021/032047 JP2021032047W WO2022054653A1 WO 2022054653 A1 WO2022054653 A1 WO 2022054653A1 JP 2021032047 W JP2021032047 W JP 2021032047W WO 2022054653 A1 WO2022054653 A1 WO 2022054653A1
Authority
WO
WIPO (PCT)
Prior art keywords
antiviral
calcium hydroxide
base material
fiber base
mass
Prior art date
Application number
PCT/JP2021/032047
Other languages
English (en)
French (fr)
Inventor
浩喜 平山
明則 中村
勝丈 澤野
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020152484A external-priority patent/JP2022046874A/ja
Priority claimed from JP2020152485A external-priority patent/JP2022046875A/ja
Priority claimed from JP2020156922A external-priority patent/JP2022050798A/ja
Priority claimed from JP2020171259A external-priority patent/JP2022062998A/ja
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2022054653A1 publication Critical patent/WO2022054653A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • B32B29/04Layered products comprising a layer of paper or cardboard next to a particulate layer
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/07Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof
    • D06M11/30Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof with oxides of halogens, oxyacids of halogens or their salts, e.g. with perchlorates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/44Oxides or hydroxides of elements of Groups 2 or 12 of the Periodic Table; Zincates; Cadmates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/12Coatings without pigments applied as a solution using water as the only solvent, e.g. in the presence of acid or alkaline compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/36Biocidal agents, e.g. fungicidal, bactericidal, insecticidal agents

Definitions

  • the present invention relates to an antiviral fiber base material and a method for producing the same.
  • Such antibacterial goods include, for example, a resin film and copper particles adhering to at least one surface of the resin film, have a total light transmittance of 20% or more at a wavelength of 380 to 780 nm, and have an average circle of copper particles.
  • An antibacterial sheet having an equivalent diameter of 10 to 30 nm and an adhesion amount of copper particles of 100 to 200 mg / ⁇ m 2 has been proposed (see Patent Document 1). Further, for example, a mask carrying silver zeolite, silver apatite, or the like has been proposed (see, for example, Patent Documents 2 and 3).
  • An object of the present invention is to provide a fiber base material capable of sustaining antiviral properties for a long period of time, and a method for producing the same.
  • a fiber base material containing an alkaline earth metal hydroxide can maintain antiviral properties for a long period of time, and has completed the present invention.
  • a sheet carrying calcium hydroxide and satisfying a specific condition can maintain antiviral properties for a long time.
  • a non-woven fabric satisfying a specific condition is suitable as a material for an antiviral mask.
  • a fiber molded product containing both hypochlorite and an alkaline earth metal hydroxide such as calcium hydroxide so as to have a specific effective chlorine concentration has long antiviral properties. I found that it could last for a long time.
  • the present invention is as follows.
  • Anti-viral fiber substrate (Ia) The amount of the calcium hydroxide particles supported is 1.0 to 50.0 g / m 2
  • IIb Calcium hydroxide residual rate of 20% or more when left in a carbon dioxide gas curing device having a humidity of 60% RH, a temperature of 30 ° C., and a carbon dioxide gas concentration of 2% for 5 days
  • Krem water absorption is 5.0 mm or less.
  • a support of pulp fiber paper having a grain size of 10 to 200 g / m 2 contains calcium hydroxide particles having a median diameter of 0.5 to 10.0 ⁇ m and a resin binder, and the calcium hydroxide concentration is 1.
  • a method for producing an antiviral fiber base material which comprises a coating step of applying a dispersion liquid of 0 to 50.0% by mass and a drying step of drying a support coated with the dispersion liquid.
  • An antiviral fibrous substrate which is an antiviral nonwoven fabric carrying calcium hydroxide particles and which satisfies the following requirements (IIa) to (IIc).
  • the amount of the calcium hydroxide particles supported is 0.3 to 5.0 g / m 2
  • Air permeability is 30 to 150 cc / cm 2 / sec
  • Calcium hydroxide residual rate of 30% or more when left in a carbon dioxide gas curing device with a humidity of 60% RH, a temperature of 30 ° C., and a carbon dioxide gas concentration of 2% for 12 hours
  • Single fiber diameter of 0.05 to The calcium hydroxide is contained in calcium hydroxide particles and a binder resin having a median diameter of 1.0 to 10.0 ⁇ m with respect to a non-woven fabric made of 1.0 ⁇ m polyolefin or polyester and having a grain size of 10 to 50 g / m 2 .
  • An antiviral fiber base material comprising a coating step of applying
  • An anti-virus including a step of preparing a slurry containing hypochlorite, an alkaline earth metal hydroxide, a binder, and water, and a step of impregnating the fiber molded body with the slurry.
  • a method for manufacturing a sex fiber base material is
  • the fiber base material of the present invention can maintain antiviral properties for a long time.
  • the antiviral fiber base material of the present invention is characterized by containing an alkaline earth metal hydroxide.
  • the fiber base material include paper, non-woven fabric, and woven fabric.
  • the alkaline earth metal hydroxide include magnesium hydroxide and calcium hydroxide.
  • other antiviral components such as hypochlorite may be used in combination.
  • antiviral fiber base material of the present invention examples include (I) the antiviral sheet of the present invention, (II) the antiviral non-viral fabric of the present invention, and (III) the antiviral of the present invention, which are specifically described below.
  • a viral fiber molded body can be preferably exemplified.
  • the antiviral sheet of the present invention has an antiviral layer containing calcium hydroxide particles and a resin binder on a paper support, and is characterized by satisfying the following requirements (Ia) and (Ib). ..
  • the amount of the calcium hydroxide particles supported is 1.0 to 50.0 g / m 2
  • the antiviral sheet of the present invention suppresses the carbonization of calcium hydroxide and can maintain the desired antiviral property for a long time. Therefore, virus infection can be suppressed by affixing various products to a contact portion or the like that is touched by a person.
  • the sheet of the present invention usually has antiviral properties against bacteria as well as antiviral properties.
  • the antiviral sheet of the present invention When the antiviral sheet of the present invention is attached to a product and used, a product that can be touched by a human can be preferably exemplified as an applicable product, specifically, a doorknob, an electric switch, a stationery, and the like.
  • Examples include sanitary goods such as disinfectant bottles. That is, the antiviral sheet of the present invention is a doorknob sheet attached to a door knob, a switch sheet attached to electric switches, a stationery sheet attached to stationery such as a pen, and a disinfectant bottle (pump pressing portion). It can be used as a sanitary goods sheet to be attached to sanitary goods such as. It can also be used as a mounting sheet on which sanitary products such as disinfectant bottles and mask boxes are placed.
  • the antiviral sheet of the present invention can be used for various purposes as described above, the antiviral sheet (virus) whose use is not particularly specified so that the purchaser can appropriately determine the method of use. It can be sold as an infection control sheet).
  • the amount of calcium hydroxide particles carried in the antiviral sheet of the present invention is 1.0 to 50.0 g / m 2 , preferably 2.0 to 40.0 g / m 2 . .0 to 30.0 g / m 2 is more preferable, and 5.0 to 30.0 g / m 2 is even more preferable. If the loading amount is less than 1.0 g / m 2 , the desired antiviral property cannot be maintained for a long time. Further, when the loading amount exceeds 50.0 g / m 2 , the calcium hydroxide particles are often dropped off, which is not economical.
  • the amount of calcium hydroxide carried is calculated by adding a cut test piece to pure water, stirring sufficiently, titrating with hydrochloric acid, and quantifying the drops.
  • the amount of calcium hydroxide supported here is also a reference amount (CA0 I ) for calculating the residual rate of calcium hydroxide after carbonation (5 days) of the requirement (Ib) described later.
  • the residual rate of calcium hydroxide (5 days) after carbonation of the antiviral sheet of the present invention is 20% or more, preferably 30% or more, more preferably 40% or more, and 50%. The above is more preferable. If the residual rate of calcium hydroxide after carbonation (5 days) is less than 20%, the desired virality cannot be maintained for a long time.
  • the calcium hydroxide residual rate (5 days) after carbonation indicates carbon dioxide resistance (carbon dioxide gas resistance), and indicates the effect of suppressing carbon dioxide-induced carbonation of calcium hydroxide. be. Since the carbon dioxide concentration in a normal room is 0.1% or less, the viral sheet of the present invention in which calcium hydroxide remains at least 20% under these conditions (carbon dioxide 2%, 5 days) is several months. To some extent, antiviral properties can be sustained.
  • the calcium hydroxide residual rate (5 days) after carbonation is calculated as follows. For a test piece left in a carbon dioxide curing device having a humidity of 60% RH, a temperature of 30 ° C., and a carbon dioxide concentration of 2% for 5 days, calcium hydroxide was quantified and the amount of calcium hydroxide was determined in the same manner as in the above requirement (Ia). Find (CA1 I ). Subsequently, the residual rate of calcium hydroxide after carbonation (5 days) is calculated from the following formula.
  • the antiviral sheet of the present invention preferably satisfies the following requirement (Ic) from the viewpoint that the desired antiviral property is surely maintained for a long time.
  • Residual amount of calcium hydroxide after being left in a carbon dioxide curing device having a humidity of 60% RH, a temperature of 30 ° C., and a carbon dioxide gas concentration of 2% for 5 days Is 0.2 g / m 2 or more, preferably 1.0 g / m 2 or more, more preferably 2.0 g / m 2 or more, still more preferably 3.0 g / m 2 or more, and particularly preferably 5. 0g / m 2 or more
  • the paper as a support used for the antiviral sheet of the present invention may be Western paper or Japanese paper, but Western paper is preferable from the viewpoint of water absorption.
  • Western paper is preferable from the viewpoint of water absorption.
  • the Krem water absorption rate which indicates the water absorption of paper, is preferably 5.0 mm or less, more preferably 3.0 mm or less. This prevents water and the binder resin contained in the coating dispersion from being absorbed inside more than necessary, and calcium hydroxide is supported in a good state in the anti-virus layer.
  • the measurement of the Krem water absorption degree is carried out in accordance with the Krem water absorption test (JIS-P-8141).
  • the basis weight of the paper is preferably 10 to 200 g / m 2 , more preferably 20 to 120 g / m 2 .
  • the basis weight of paper is measured according to the method for measuring mass per unit area of JIS L 1096 (fabric test method for woven fabrics and knitted fabrics).
  • the antiviral sheet of the present invention preferably has an adhesive layer on the surface opposite to the antiviral layer of the support. This makes it possible to easily attach the antiviral sheet to various products.
  • the structure of the adhesive layer is preferably from the support side to the strong adhesive layer, the base material, and the detachable weak adhesive layer in this order. This facilitates attachment / detachment (adhesion and peeling) of the antiviral sheet to the product.
  • the antiviral layer 3 is provided on the paper 2 as a support, and the opposite side of the antiviral layer 3 of the paper 2 is provided.
  • the adhesive layer 4 is provided on the surface.
  • the adhesive layer 4 is provided in the order of the strong adhesive layer 5, the base material 6, and the removable weak adhesive layer 7 from the paper 2 side.
  • An intermediate layer having various functions may be provided between each layer (including paper and a base material).
  • the adhesive strength of the weak adhesive layer is preferably 0.1 to 2.0 N / 20 mm, more preferably 0.3 to 1.5 N / 20 mm, from the viewpoint of the balance between the adhesive strength and the peeling.
  • the adhesive strength is measured according to the adhesive tape test method of JIS Z0237.
  • 0.1 N / 20 mm means that a weight of 0.1 N is required when a 20 mm wide tape is folded back 180 ° in the longitudinal direction and peeled off.
  • the thickness of the antiviral sheet of the present invention is preferably about 0.05 to 3.0 mm, more preferably 0.1 to 2.0 mm, and even more preferably 0.1 to 1.0 mm. When the thickness is within this range, the sheet has a predetermined flexibility, and it becomes easy to attach the sheet according to the curved shape of the product or the like.
  • the thickness referred to here is the thickness including the adhesive layer when the adhesive layer is provided.
  • a method for producing the antiviral sheet of the present invention for example, a coating step of applying a dispersion liquid containing calcium hydroxide particles and a binder resin to a support and a support to which the dispersion liquid is applied are dried.
  • a method having a drying step can be mentioned, and it is preferable to produce by the following method.
  • it contains calcium hydroxide particles and a resin binder having a median diameter of 0.5 to 10.0 ⁇ m with respect to a support of pulp fiber paper having a Krem water absorption of 5 mm or less and a grain of 10 to 200 g / m 2 .
  • a method having a coating step of applying a dispersion having a calcium hydroxide concentration of 1.0 to 50.0% by mass and a drying step of drying the support coated with the dispersion is preferable.
  • the dispersion it is preferable to use an aqueous dispersion mainly composed of water.
  • the median diameter (D50) of the calcium hydroxide particles is 0.5 to 10.0 ⁇ m, preferably 0.8 to 8.0 ⁇ m, and more preferably 1.0 to 6.0 ⁇ m. If the median diameter is less than 0.5 ⁇ m, carbonation is likely to proceed, and the desired antiviral property may not be maintained for a long time. Further, if the median diameter exceeds 10.0 ⁇ m, the calcium hydroxide particles are easily removed from the support and may not be stably supported on the sheet. Since the particle size of the calcium hydroxide particles does not change before and after being carried on the sheet, the median diameter of the calcium hydroxide particles used for production can be considered to be the median diameter of the antiviral sheet.
  • the median diameter (D50) is calculated from the volume-based particle size distribution measured using a laser diffraction type particle size analyzer using ethanol as the dispersion medium.
  • the calcium hydroxide particles (median diameter 0.5 to 10.0 ⁇ m) used in the present invention have a smaller particle size than ordinary industrial calcium hydroxide, and industrial calcium hydroxide is pulverized or classified. May be used.
  • the calcium hydroxide concentration in the dispersion is 1.0 to 50.0% by mass, preferably 5.0 to 40.0% by mass, and more preferably 10.0 to 30.0% by mass. preferable. If the calcium hydroxide concentration is less than 1.0% by mass, it becomes difficult to support a sufficient amount of calcium hydroxide on the support. Further, if the calcium hydroxide concentration exceeds 50.0% by mass, the handleability at the time of coating is poor, and there is a possibility that coating unevenness may occur.
  • binder resin examples include water-soluble resins and water-dispersible resins, and water-soluble resins are preferable. As a result, when the droplets containing water adhere to the sheet, the resin is dissolved and the droplets (virus) effectively contact the calcium hydroxide, and the virus can be killed more effectively.
  • water-soluble resin examples include polyvinyl alcohol, polyethylene glycol, polypropylene glycol, polyvinylpyrrolidone, carboxymethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, poly (N-hydroxyethyl acrylamide), and poly (N-hydroxyethyl acrylamide).
  • N-hydroxyethylmethacrylamide), poly (acryloylmorpholin), polyacrylic acid and its salts, polystyrene sulfonic acid and its salts and the like can be mentioned.
  • a resin made of a nonionic polymer that does not react with calcium hydroxide particles is preferable, and polyvinyl alcohol, polyethylene glycol, and polypropylene glycol are more preferable. From the viewpoint of solubility, polyvinyl alcohol is particularly preferable, and polyvinyl alcohol having a saponification degree of 70 mol% or more and 100 mol% or less is most preferable.
  • a surfactant and a dispersant may be blended in the same manner as in (III) the fiber treatment slurry of the antiviral fiber molded product of the present invention described later.
  • the blending amount (concentration in the dispersion) of the binder resin is preferably 5.0 to 40.0% by mass, more preferably 5.0 to 20.0% by mass. Within this range, calcium hydroxide particles can be appropriately supported on the support.
  • the method for applying the calcium hydroxide dispersion in the coating step is not particularly limited as long as it can be uniformly applied to the sheet, such as a dipping method, a spray method, a roll coating method, a curtain coating method, and a gravure printing method. , Various coating methods can be mentioned.
  • drying in the drying step various drying methods such as natural drying and warm air drying can be used.
  • an adhesive layer forming step after the drying step.
  • an adhesive sheet having a strong adhesive layer formed on one surface of the base material and a weak adhesive layer formed on the other surface is manufactured, and the strong adhesive layer side of the adhesive sheet is supported. Attach it to the surface of the body where the antiviral layer is not provided.
  • the adhesive sheet a commercially available one may be used.
  • the antiviral nonwoven fabric of the present invention is characterized by supporting calcium hydroxide particles and satisfying the following requirements (IIa) to (IIc).
  • the antiviral non-woven fabric of the present invention suppresses the carbonization of calcium hydroxide and can maintain the desired antiviral property for a long time. Therefore, it is suitable as a material for an antiviral mask, and an antiviral mask using this non-woven fabric can maintain excellent antiviral properties during the period of use.
  • the nonwoven fabric of the present invention usually has antiviral properties as well as antiviral properties.
  • the amount of calcium hydroxide particles carried in the antiviral nonwoven fabric of the present invention is 0.3 to 5.0 g / m 2 , preferably 0.8 to 4.5 g / m 2 . More preferably, it is 0.0 to 4.0 g / m 2 . If the loading amount is less than 0.3 g / m 2 , the desired antiviral property cannot be maintained for a long time. Further, if the loading amount exceeds 5.0 g / m 2 , the desired air permeability cannot be obtained.
  • the amount of calcium hydroxide carried is calculated by adding a cut test piece to pure water, stirring sufficiently, titrating with hydrochloric acid, and quantifying the drops.
  • the amount of calcium hydroxide carried here is also a reference amount (CA0 II ) for calculating the residual ratio of calcium hydroxide after carbonation (12 hours), which will be described later.
  • the air permeability of the antiviral nonwoven fabric of the present invention is 30 to 150 cc / cm 2 / sec, preferably 40 to 140 cc / cm 2 / sec. If the air permeability is less than 30 cc / cm 2 / sec, the air permeability is poor and it cannot be used for applications that require air permeability (air fluidity) such as masks. Further, if the air permeability exceeds 150 cc / cm 2 / sec, the desired filter (filtration, capture) effect cannot be obtained, and it cannot be used for applications requiring a filter effect such as a mask.
  • the air permeability is measured according to the air permeability measurement method of JIS L 1096 (fabric test method for woven fabrics and knitted fabrics).
  • the residual rate of calcium hydroxide (12 hours) after carbonation of the antiviral nonwoven fabric of the present invention is 30% or more, preferably 35% or more, and more preferably 40% or more. If the residual rate of calcium hydroxide after carbonation (12 hours) is less than 30%, the desired virality cannot be sustained for a long time.
  • the calcium hydroxide residual rate (12 hours) after carbonation indicates carbon dioxide resistance (carbon dioxide gas resistance), and indicates the effect of suppressing carbon dioxide-induced carbonation of calcium hydroxide. be.
  • the mask frequently comes into contact with carbon dioxide contained in human exhaled breath, and the non-woven fabric of the present invention suppresses the carbonation of calcium hydroxide even in such an environment where the influence of carbon dioxide is large.
  • Antiviral property can be sustained for a long time.
  • the calcium hydroxide residual rate (12 hours) after carbonation is calculated as follows. For a test piece left in a carbon dioxide curing device having a humidity of 60% RH, a temperature of 30 ° C., and a carbon dioxide concentration of 2% for 12 hours, calcium hydroxide was quantified and the amount of calcium hydroxide was determined in the same manner as in the above requirement (IIa). Find (CA1 II ). Subsequently, the residual rate of calcium hydroxide after carbonation (12 hours) is calculated from the following formula.
  • the antiviral nonwoven fabric of the present invention preferably satisfies the following requirement (IId) from the viewpoint that the desired virality is surely maintained for a long time.
  • Examples of the material of the nonwoven fabric used for the antiviral nonwoven fabric of the present invention include synthetic resins used for ordinary masks such as polyolefin and polyester.
  • Examples of the polyolefin include polyethylene and polypropylene.
  • Examples of the polyester include polyethylene terephthalate and polybutylene terephthalate.
  • the single fiber diameter of the synthetic resin (fiber) constituting the non-woven fabric is preferably 0.05 to 1.0 ⁇ m, more preferably 0.1 to 0.8 ⁇ m.
  • the basis weight of the nonwoven fabric is preferably 10 to 50 g / m 2 , more preferably 15 to 40 g / m 2 .
  • the thickness of the nonwoven fabric is preferably 50 to 150 ⁇ m, more preferably 70 to 120 ⁇ m.
  • the basis weight of the non-woven fabric is measured according to the method for measuring the mass per unit area of JIS L 1096 (fabric test method for woven fabrics and knitted fabrics).
  • Examples of the method for producing the antiviral nonwoven fabric of the present invention include a coating step of applying a dispersion liquid containing calcium hydroxide particles and a binder resin to the nonwoven fabric, and a drying step of drying the nonwoven fabric coated with the dispersion liquid.
  • a coating step of applying a dispersion liquid containing calcium hydroxide particles and a binder resin to the nonwoven fabric and a drying step of drying the nonwoven fabric coated with the dispersion liquid.
  • calcium hydroxide particles having a median diameter of 1.0 to 10.0 ⁇ m with respect to a non-woven fabric made of polyolefin or polyester having a single fiber diameter of 0.05 to 1.0 ⁇ m and having a grain size of 10 to 50 g / m 2 .
  • a method comprising a coating step of applying the dispersion liquid containing the binder resin and having a calcium hydroxide concentration of 1.0 to 10.0% by mass and a drying step of drying the nonwoven fabric coated with the dispersion liquid is preferable.
  • the dispersion it is preferable to use an aqueous dispersion mainly composed of water.
  • the median diameter (D50) of the calcium hydroxide particles is 1.0 to 10.0 ⁇ m, preferably 1.5 to 8.0 ⁇ m, and more preferably 2.0 to 6.0 ⁇ m. If the median diameter is less than 1.0 ⁇ m, carbonation is likely to proceed, and the desired antiviral property may not be maintained for a long time. Further, if the median diameter exceeds 10.0 ⁇ m, the calcium hydroxide particles are easily removed from the non-woven fabric, and there is a possibility that the calcium hydroxide particles cannot be stably supported on the non-woven fabric. Since the particle size of the calcium hydroxide particles does not change before and after being carried on the non-woven fabric, the median diameter of the calcium hydroxide particles used in the production can be considered to be the median diameter of the antiviral non-woven fabric.
  • the median diameter (D50) is calculated from the volume-based particle size distribution measured using a laser diffraction type particle size analyzer using ethanol as the dispersion medium.
  • the calcium hydroxide particles (median diameter 1.0 to 10.0 ⁇ m) used in the present invention have a smaller particle size than ordinary industrial calcium, and are used by pulverizing industrial calcium hydroxide. May be good.
  • the calcium hydroxide concentration in the dispersion is 1.0 to 10.0% by mass, more preferably 1.0 to 5.0% by mass, as described above. If the calcium hydroxide concentration is less than 1.0% by mass, it becomes difficult to support a sufficient amount of calcium hydroxide on the nonwoven fabric. Further, if the calcium hydroxide concentration exceeds 10.0% by mass, the amount of calcium hydroxide carried becomes excessive, and there is a possibility that sufficient air permeability cannot be ensured.
  • binder resin examples include water-soluble resins and water-dispersible resins, and water-soluble resins are preferable.
  • water-soluble resin examples include polyvinyl alcohol, polyethylene glycol, polypropylene glycol, polyvinylpyrrolidone, carboxymethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, poly (N-hydroxyethyl acrylamide), and poly (N-hydroxyethyl acrylamide).
  • N-hydroxyethylmethacrylamide poly (acryloylmorpholin), polyacrylic acid and its salts, polystyrene sulfonic acid and its salts and the like can be mentioned.
  • a resin made of a nonionic polymer that does not react with calcium hydroxide particles is preferable, and polyvinyl alcohol, polyethylene glycol, and polypropylene glycol are more preferable. From the viewpoint of solubility, polyvinyl alcohol is particularly preferable, and polyvinyl alcohol having a saponification degree of 70 mol% or more and 100 mol% or less is most preferable.
  • a surfactant and a dispersant may be blended in the same manner as in (III) the fiber treatment slurry of the antiviral fiber molded product of the present invention described later.
  • the blending amount (concentration in the dispersion) of the binder resin is preferably 1.0 to 10.0% by mass, more preferably 1.0 to 5.0% by mass. Within this range, calcium hydroxide particles can be appropriately supported on the non-woven fabric, and antiviral properties can be exhibited more effectively.
  • the method for applying the calcium hydroxide dispersion in the coating step is not particularly limited as long as it can be uniformly applied to the non-woven fabric, such as a dipping method, a spray method, a roll coating method, a curtain coating method, and a gravure printing method. , Various coating methods can be mentioned.
  • drying in the drying step various drying methods such as natural drying and warm air drying can be used.
  • the antiviral mask of the present invention comprises a mask main body and an ear hook portion, and the mask main body is provided with the above-mentioned antiviral nonwoven fabric of the present invention.
  • the antiviral non-woven fabric of the present invention has a high residual rate of calcium hydroxide after carbonation (12 hours) (requirement (IIc)). Therefore, the antiviral property can be maintained for a long time even in a mask that comes into contact with carbon dioxide contained in exhaled breath.
  • Examples of the antiviral mask of the present invention include household masks, medical masks (surgical masks), and industrial masks (dustproof masks), and household masks and medical masks (surgical masks) are preferable.
  • the shape is not particularly limited, such as a pleated type and a three-dimensional type.
  • the antiviral mask of the present invention is usually a disposable mask.
  • the present invention when the mask body is composed of two or more layers of non-woven fabric superimposed on each other and the side in contact with the face is the first layer, the present invention is applied to the second and subsequent layers. It is preferable that the antiviral non-woven fabric of the present invention is provided. Further, it is preferable that the nonwoven fabric is superposed on three or more layers, and it is preferable that the antiviral nonwoven fabric of the present invention is used as the intermediate layer of this layer. Further, it is preferable to arrange the nonwoven fabric so that the surface on which the calcium hydroxide particles are supported faces the opposite side to the face side. Further, it is preferable that the superposed nonwoven fabric is integrated by heat welding or ultrasonic welding around it. With such a configuration, it is possible to prevent the influence of calcium hydroxide on the skin and ensure the antiviral property.
  • the antiviral fiber molded product of the present invention is characterized by containing hypochlorite and an alkaline earth metal hydroxide and having an effective chlorine concentration of 0.01 to 5% by mass.
  • the antiviral fiber molded product of the present invention contains both hypochlorite and an alkaline earth metal hydroxide such as calcium hydroxide so as to have a specific effective chlorine concentration for a long period of time. It is possible to maintain high antiviral activity over the years. As a result, the product using the antiviral fiber molded product can be used for a long period of time while maintaining high antiviral properties, so that the number of replacements can be reduced.
  • hypochlorite is a salt of hypochlorous acid HClO, which is a combination of hypochlorous acid ion ClO ⁇ and a cation by an ionic bond.
  • Typical examples of hypochlorite include sodium hypochlorite, calcium hypochlorite and the like.
  • the blending amount of hypochlorite is determined so that the effective chlorine concentration of the antiviral fiber molded body is 0.01 to 5% by mass per antiviral fiber molded body.
  • the effective chlorine concentration is 0.01% by mass or more, the antiviral fiber molded product can maintain high antiviral activity for a long period of time.
  • the effective chlorine concentration is 5% by mass or less, the odor peculiar to hypochlorous acid can be suppressed, the product can be used with less discomfort, and high air permeability can be easily obtained.
  • the effective chlorine concentration of the antiviral fiber molded product of the present invention is preferably 0.1 to 3% by mass.
  • the effective chlorine concentration is preferably about 0.1 to 1% by mass.
  • the effective chlorine concentration of the antiviral fiber molded body of the present invention indicates the amount of effective chlorine per mass of the antiviral fiber molded body in mass% units.
  • the effective chlorine concentration can be measured by an iodine titration method in which potassium iodide is added and titration is performed with a sodium thiosulfate solution using starch as an indicator.
  • alkaline earth metal hydroxide examples include magnesium hydroxide and calcium hydroxide.
  • the present inventors consider the mechanism by which the decomposition of hypochlorite is suppressed by the alkaline earth metal hydroxide as follows. That is, the presence of the alkaline earth metal element of the alkaline earth metal hydroxide and the hypochlorite at the same time makes the hypochlorite retained on the surface of the alkaline earth metal hydroxide moderately stable. It is presumed that hypochlorite is retained without being decomposed for a long period of time, and it becomes possible to maintain high antiviral activity for a long period of time.
  • the content of the alkaline earth metal hydroxide in the antiviral fiber molded product of the present invention is preferably 0.5 to 20% by mass, preferably 1 to 10% by mass, per antiviral fiber molded product. Is even more preferable.
  • the content of the alkaline earth metal hydroxide is 0.5% by mass or more, it becomes easy to maintain high antiviral properties for a long period of time.
  • the content of the alkaline earth metal hydroxide is 20% by mass or less, it becomes easy to obtain high air permeability, and it becomes easy to maintain good texture and handleability of the fiber molded product.
  • the content of the alkaline earth metal hydroxide in the antiviral fiber molded body is the amount of the alkaline earth metal hydroxide per mass of the antiviral fiber molded body in mass% units. It can be obtained by Japanese titration.
  • the alkaline earth metal hydroxide is supported on the fiber molded body as an embodiment in which the fiber molded body contains hypochlorite and an alkaline earth metal hydroxide.
  • the fact that the alkaline earth metal hydroxide is supported on the fiber molded body means that the particles of the alkaline earth metal hydroxide are attached to the fiber surface of the fiber molded body. The adhesion of the alkaline earth metal hydroxide particles to the fiber surface can be confirmed by microscopic observation by observing at least one alkaline earth metal particle in contact with the fiber.
  • a particle component other than the alkaline earth metal can be present in the fiber molded body, it may be confirmed by elemental analysis or the like that the attached particles are the alkaline earth metal hydroxide.
  • the most preferable embodiment is present between the fibers in a state where the hypochlorite is present on the surface of the particles of the alkaline earth metal hydroxide supported on the fiber molded body, which can be obtained by the production method described later. Aspects are mentioned.
  • the alkali metal hydroxide particles having hypochlorite on the surface are present between the fibers by, for example, adhering to the fibers by the action of a binder.
  • the fiber molded body of the present invention is not particularly limited as long as it is a molded body formed of fibers, and can be appropriately selected depending on the intended use.
  • sheet-shaped molded products are preferable, and non-woven fabrics, woven fabrics, knitted fabrics and the like are typical examples.
  • the types of fibers constituting the fiber molded body are not particularly limited, and are, for example, chemical fibers such as polyester, nylon, acrylic, polyurethane, diacetate and rayon, natural vegetable fibers such as cotton, silk and hemp, wool and the like. Examples include natural animal fiber.
  • these fiber types may be used alone or in combination of two or more.
  • the basis weight and thickness of the sheet-shaped fiber molded body may be appropriately determined according to the purpose, but generally, the basis weight is about 10 to 200 g / m 2 and the thickness is 0.05 to 5.0 mm. A degree of fiber molding is used.
  • the method for producing the antiviral fiber molded product of the present invention is not particularly limited, but typical production methods include hypochlorite, alkaline earth metal hydroxide, binder, and water. Examples thereof include a step of preparing a slurry containing the above (hereinafter, may be referred to as “fiber treatment slurry”) and a step of impregnating the fiber molded body with the slurry.
  • the amount of hypochlorite to be blended in the fiber treatment slurry is adjusted so that the effective chlorine concentration of the obtained antiviral fiber molded product is within the above range, but generally, the fiber treatment slurry is effective. It is preferable to adjust the chlorine concentration to be about 0.001 to 20% by mass.
  • the content of the alkaline earth metal hydroxide in the fiber treatment slurry is appropriately determined so that the content of the alkaline earth metal hydroxide in the obtained antiviral fiber molded product is within the above range. It is good, but generally, it is preferably about 2 to 50% by mass.
  • the content of alkaline earth metal hydroxide in the fiber treatment slurry of the present invention can be measured by neutralization titration.
  • the average particle size of the dispersed alkaline earth metal hydroxide particles is preferably 0.05 to 5 ⁇ m, more preferably 0.1 to 1 ⁇ m. By setting the average particle size to 5 ⁇ m or less, the alkaline earth metal hydroxide particles are less likely to settle even when left to stand for a long period of time, and are easy to handle.
  • the average particle size of the alkaline earth metal hydroxide in the present invention is the average volume particle size d50 measured by the laser diffraction / scattering method.
  • a water-soluble resin having a solubility in 100 g of water at 25 ° C. of 20 g or more can be used, and for example, polyvinyl alcohol, sodium polyacrylate, and polyethylene can be used. Glycol, polyethylene oxide, polyacrylamide, melamine formalin resin, polyethyleneimine, polyamide polyamine epichlorohydrin resin and the like can be mentioned. These may be used alone, and the combined use of a plurality of them is not limited at all.
  • polyvinyl alcohol is preferable from the viewpoint of solubility, and polyvinyl alcohol having a saponification degree of 70 mol% or more and 100 mol% or less is particularly preferable.
  • the blending amount of the binder in the fiber treatment slurry is not particularly limited, but is preferably 2 to 20% by mass in order to efficiently impart a high antiviral to the fiber.
  • a binder By using such a binder, it becomes easy to support the alkaline earth metal hydroxide on the fiber molded body.
  • the blending amount of water contained in the fiber treatment slurry is not particularly limited, and the blending amount may be sufficient to dissolve the binder while dispersing the alkaline earth metal hydroxide particles.
  • a surfactant may be added to the fiber treatment slurry.
  • alkaline earth metal hydroxides tend to adhere to the fibers.
  • the blending amount of the surfactant is preferably 0.2 to 5.0% by mass.
  • examples of the surfactant include the following. Ionic surfactants: sodium dodecylbenzene sulfonate, sodium lauryl sulfate, sodium polyoxyethylene alkyl ether sulfate, etc.
  • Amphoteric tenside lauryl betaine, lauryldimethylamine oxide, etc.
  • Nonionic surfactant polyoxyethylene alkyl ether, polyethylene glycol fatty acid ester, etc. Hydroxymethyl cellulose, hydroxyethyl cellulose.
  • a dispersant may be added to the fiber treatment slurry.
  • the dispersant is not particularly limited as long as it has a large molecular weight and can disperse an alkaline earth metal hydroxide, and conventionally known dispersants can be used. Typical examples thereof include polymer dispersants such as lignin sulfonate, melamine sulfonate, naphthalene sulfonate, and polycarboxylate, and among these, polycarboxylate is preferable. ..
  • the blending amount of the dispersant in the fiber treatment slurry is usually about 0.05 to 10% by mass, preferably 0.1 to 5.0% by mass.
  • the fiber treatment slurry preferably has a viscosity of 50 to 3000 mPa ⁇ s, more preferably 100 to 1000 mPa ⁇ s.
  • the viscosity of the fiber processing slurry in the present invention is measured at 25 ° C. by a tuning fork vibration viscometer.
  • the fiber molded body is impregnated with a fiber treatment slurry to contain hypochlorite and an alkaline earth metal hydroxide.
  • a fiber treatment slurry to contain hypochlorite and an alkaline earth metal hydroxide.
  • the fiber molded body is immersed in the fiber processing slurry, or the fiber processing slurry is applied to the fiber molded body with a brush or the like.
  • the method for producing an antiviral fiber molded body of the present invention it is preferable to further include a step of removing water from the fiber molded body impregnated with the fiber treatment slurry.
  • the step of removing water is not particularly limited as long as it is a method of removing water by a method in which a predetermined amount of each additive remains in the fiber molded product.
  • the antiviral fiber molded body of the present invention includes, for example, filters for masks and air conditioners, clothing such as aprons and lab coats, curtains, floor mats, table sheets, sheets, protective covers such as doorknobs and handles, and chairs. You can mention the cover and so on.
  • parts such as doorknobs, handles, and chairs in public places that are supposed to be touched by an unspecified number of people generally require frequent cleaning to prevent the virus from adhering to a high degree. If a cover manufactured by the antiviral fiber molded product of the present invention is applied to these parts, the high antiviral effect will be maintained for a long period of time, so that it is not necessary to frequently clean or replace the cover. It will be better. Therefore, the viral fiber molded body of the present invention is particularly suitable for use as a cover for a chair such as a doorknob and a protective cover for a handle.
  • the antiviral agent of the present invention is characterized by containing hypochlorite and an alkaline earth metal hydroxide and having an effective chlorine concentration of 0.001 to 20% by mass.
  • the antiviral agent of the present invention can obtain high antiviral activity for a long period of time when used, the number of times the antiviral agent is used can be reduced as compared with the conventional case.
  • the blending amount of hypochlorite is determined so that the effective chlorine concentration of the antiviral agent is 0.001 to 20% by mass as described above.
  • the effective chlorine concentration is 0.001% by mass or more, the antiviral agent can maintain high antiviral activity for a long period of time.
  • the effective chlorine concentration is 20% by mass or less, the odor peculiar to hypochlorous acid can be suppressed and the product can be used with less discomfort.
  • the effective chlorine concentration of the antiviral agent of the present invention is preferably 0.005 to 15% by mass, more preferably 0.01 to 10% by mass.
  • the effective chlorine concentration can be measured by an iodine titration method in which potassium iodide is added to a measurement sample and titrated with a sodium thiosulfate solution using starch as an indicator.
  • hypochlorite and alkaline earth metal hydroxide and the estimation mechanism in which the decomposition of hypochlorite is suppressed by alkaline earth metal hydroxide, are described in (III) Anti-anti-degradation of the present invention. It is the same as described for the viral fiber molded body.
  • the antiviral agent of the present invention may contain other components other than hypochlorite and alkaline earth metal hydroxide as long as the antiviral property is not significantly reduced.
  • examples of other components include solvents, surfactants, dispersants, colorants, thickeners, water-soluble resins and the like.
  • the antiviral agent of the present invention preferably contains water as a solvent.
  • the alkaline earth metal hydroxide is calcium hydroxide or magnesium hydroxide, the solubility in water is low, so that the antiviral agent of the present invention containing water is in the form of an aqueous slurry. By using an aqueous slurry, it becomes easy to apply it uniformly to a solid surface or the like and use it, which makes it easy to use.
  • the solvent of the aqueous slurry may be water alone or a mixture of water and an organic solvent such as alcohol.
  • an organic solvent such as alcohol.
  • 70% by mass or more of the solvent is preferably water, and 90% by mass or more is more preferably water from the viewpoint of ease of use.
  • the content of the alkaline earth metal hydroxide is not particularly limited, but is preferably 2 to 50% by mass, more preferably 5 to 30% by mass. ..
  • the content of the alkaline earth metal hydroxide is 2% by mass or more, it becomes easy to maintain high antiviral activity for a long period of time.
  • the content of the alkaline earth metal hydroxide is 50% by mass or less, it becomes easy to maintain the effective chlorine concentration in the case of an aqueous slurry of 20% by mass or less.
  • the content of alkaline earth metal hydroxide in the present invention may change over time and is calculated by neutralization titration.
  • the average particle size of the alkaline earth metal hydroxide particles dispersed in the slurry as solid content is preferably 0.05 to 5 ⁇ m, and is preferably 0.1 to 5 ⁇ m. It is more preferably 1 ⁇ m.
  • the average particle size of the alkaline earth metal hydroxide in the present invention is the average volume particle size d50 measured by the laser diffraction / scattering method.
  • the viscosity is preferably 50 to 3000 mPa ⁇ s, more preferably 100 to 1000 mPa ⁇ s.
  • the viscosity of the antiviral agent in the present invention is measured at 25 ° C. with a tuning fork vibration viscometer.
  • a surfactant and a dispersant may be blended in the same manner as in (III) the fiber treatment slurry of the antiviral fiber molded product of the present invention.
  • a binder material may be contained.
  • the binder material for example, a resin that dissolves in the slurry can be used, and for example, polyvinyl alcohol, sodium polyacrylate, polyethylene glycol, polyethylene oxide, polyacrylamide, melamine formalin resin, polyethyleneimine, polyamide polyamine epichlorohydrin resin and the like can be used. Can be mentioned.
  • hypochlorite is added to the aqueous slurry of alkali metal hydroxide while adjusting the effective chlorine concentration to a desired value.
  • the method can be mentioned.
  • the method of using the antiviral agent of the present invention is not particularly limited, and examples thereof include a method of spraying.
  • the antiviral agent of the present invention is an aqueous slurry, it can be sprayed. Further, in the case of an aqueous slurry, it is also possible to impart antiviral properties to the member by applying the antiviral agent of the present invention to the member or immersing the member in the antiviral agent of the present invention.
  • the antiviral agent of the present invention can be used in the above (III) production of the antiviral fiber molded product of the present invention. In addition, it can be used as an antiviral agent that imparts antiviral properties to an object by spraying, dropping, or the like.
  • Coat liquid AI slaked lime x I 30% by mass + polyvinyl alcohol (PVA) 10% by mass + residual water
  • Coat liquid BI slaked lime x I 20% by mass + PVA 10% by mass + residual water
  • Coat liquid CI slaked lime x I 10 % by mass % + PVA 10% by mass + residual water coating liquid
  • DI slaked lime x I 2% by mass + PVA 10% by mass + residual water coating liquid
  • EI slaked lime y I 10 % by mass + PVA 10% by mass + residual water
  • the median diameter (D50) of slaked lime x I is 4.5 ⁇ m, and the median diameter (D50) of slaked lime y I is 0.20 ⁇ m.
  • the median diameter (D50) was calculated from the results of measuring the volume-based particle size distribution using a laser diffraction type particle size analyzer using ethanol as a dispersion medium.
  • polyvinyl alcohol 500 polymerization degree of about 500 manufactured by Wako Pure Chemical Industries, Ltd. was used.
  • water ion-exchanged water was used.
  • the basis weight was measured according to the method for measuring the mass per unit area of JIS L 1096 (fabric test method for woven fabrics and knitted fabrics).
  • the support was fixed to a glass plate (length 300 x width 250 x thickness 10 mm) with tape, and the coating liquid was coated using a bar coater. Then, the support was removed from the glass plate and dried in a constant temperature air dryer at 60 ° C. for 20 minutes to prepare a calcium hydroxide-supported sheet (test piece).
  • a commercially available adhesive sheet to be an adhesive layer was attached to a sheet excluding the parts used for the following quantification and evaluation to produce a sheet having an adhesive layer.
  • the amount of calcium hydroxide (requirement Ia) was calculated for the produced test piece. Specifically, it was carried out by the following method.
  • the produced test piece was left in a carbon dioxide curing device having a humidity of 60% RH, a temperature of 30 ° C., and a carbon dioxide gas concentration of 2% for 5 days, and the residual amount and residual rate of calcium hydroxide after carbonation (requirements Ib, Ic) was confirmed. Specifically, it was carried out by the following method.
  • the produced test specimens were confirmed to have anti-virus properties after being left in a carbon dioxide curing device having a humidity of 60% RH, a temperature of 30 ° C., and a carbon dioxide gas concentration of 2% for 5 days.
  • the virus infectivity was measured by the "plaque method” in accordance with the antiviral test of textile products (JIS L 1922). "Influenza A virus” was used as the virus used. The specific method is shown below.
  • test piece (mass 0.4 g) was placed in a vial. 2) 0.2 ml of virus solution was inoculated and left at 25 ° C. for 2 hours. 3) 20 ml of SCDLP medium was added, and the virus was washed out from the test piece. 4) The virus infectious titer (amount of infectious virus) of the washed-out liquid was measured by the plaque method.
  • Antiviral activity value ⁇ 2.0 ... Low effect ( ⁇ ) 3.0> Antiviral activity value ⁇ 2.0 ⁇ ⁇ ⁇ Effective ( ⁇ ) Antiviral activity value ⁇ 3.0 ⁇ ⁇ ⁇ Sufficient effect ( ⁇ )
  • Examples I-1 to I-6 are also excellent in the residual amount and residual rate of calcium hydroxide after being left in carbon dioxide gas for 5 days, and the antiviral property is maintained for a long time. I understand. In addition, the sheet thickness was thin and the flexibility was good, and it could be attached to the arc-shaped doorknob without any problem.
  • Comparative Examples I-1 and I-2 if the initial carrying amount of calcium hydroxide is too small, the progress of carbonation progresses even if calcium hydroxide having an appropriate particle size is initially carried. It is not possible to secure the desired residual rate of calcium hydroxide after carbonization at an early stage, and sufficient antiviral properties cannot be maintained. Further, as in Comparative Examples I-3 and I-4, if the diameter of the supporting calcium hydroxide particles is too small, the progress of carbonation progresses even if a sufficient amount of calcium hydroxide is initially carried. It is not possible to secure the desired residual rate of calcium hydroxide after carbonization at an early stage, and the antiviral property cannot be maintained.
  • the median diameter (D50) of slaked lime x II is 5.0 ⁇ m
  • the median diameter (D50) of slaked lime y II is 0.5 ⁇ m.
  • the median diameter (D50) was calculated from the results of measuring the volume-based particle size distribution using a laser diffraction type particle size analyzer using ethanol as a dispersion medium.
  • polyvinyl alcohol 500 polymerization degree of about 500 manufactured by Wako Pure Chemical Industries, Ltd. was used.
  • water ion-exchanged water was used.
  • Non-woven fabric The following non-woven fabric was used.
  • the basis weight was measured according to the method for measuring the mass per unit area of JIS L 1096 (fabric test method for woven fabrics and knitted fabrics).
  • the non-woven fabric was fixed to a glass plate (length 300 x width 250 x thickness 10 mm) with tape, and the coating liquid was coated using a bar coater. Then, the nonwoven fabric was removed from the glass plate and dried in a constant temperature blower dryer at 60 ° C. for 20 minutes to prepare a calcium hydroxide-supported nonwoven fabric (test piece).
  • the amount of calcium hydroxide (requirement IIa) and the air permeability (requirement IIb) were determined. Specifically, it was carried out by the following method.
  • the produced test piece was left in a carbon dioxide curing device having a humidity of 60% RH, a temperature of 30 ° C, and a carbon dioxide concentration of 2% for 12 hours, and the residual amount and residual rate of calcium hydroxide after carbonation (requirements IIc, IId) was confirmed. Specifically, it was carried out by the following method.
  • the produced test specimens were confirmed to have anti-virus properties after being left in a carbon dioxide curing device having a humidity of 60% RH, a temperature of 30 ° C., and a carbon dioxide gas concentration of 2% for 12 hours.
  • the virus infectivity was measured by the "plaque method” in accordance with the antiviral test of textile products (JIS L 1922). "Influenza A virus” was used as the virus used. The specific method is shown below.
  • test piece (mass 0.4 g) was placed in a vial. 2) 0.2 ml of virus solution was inoculated and left at 25 ° C. for 2 hours. 3) 20 ml of SCDLP medium was added, and the virus was washed out from the test piece. 4) The virus infectious titer (amount of infectious virus) of the washed-out liquid was measured by the plaque method.
  • Antiviral activity value ⁇ 2.0 ... Low effect ( ⁇ ) 3.0> Antiviral activity value ⁇ 2.0 ⁇ ⁇ ⁇ Effective ( ⁇ ) Antiviral activity value ⁇ 3.0 ⁇ ⁇ ⁇ Sufficient effect ( ⁇ )
  • Examples II-1 to II-6 are excellent in air permeability, and also have excellent residual amount and residual rate of calcium hydroxide after being left in carbon dioxide gas for 12 hours, and have excellent antiviral properties. Can be seen to last for a long time.
  • Comparative Examples II-1 and II-2 when the initial carrying amount of calcium hydroxide is too small, the progress of carbonation is rapid, the residual amount and residual rate of calcium hydroxide are low, and sufficient antivirus. I can't sustain my sex. Further, as in Comparative Examples II-3 and II-4, if the initial amount of calcium hydroxide supported is too large, the air permeability is poor and the basic performance as a mask cannot be guaranteed. Further, as in Comparative Examples II-5 and II-6, if the diameter of the supporting calcium hydroxide particles is too small, carbonation proceeds quickly even if a sufficient amount of calcium carbonate is initially carried. , The desired residual rate of calcium hydroxide after carbonation cannot be guaranteed, and antiviral properties cannot be maintained.
  • ⁇ Measurement of effective chlorine concentration of antiviral fiber molded product 5 g of a fiber molded body cut into about 10 mm ⁇ 10 mm was added to 500 ml of pure water, and the mixture was stirred at 20 ° C. for 5 hours with a stirrer as water, and the test was performed in the same manner as the measurement of the effective chlorine concentration of the slurry. The effective chlorine concentration in water was calculated. The effective chlorine concentration of the antiviral fiber molded body was calculated from the effective chlorine concentration in the test water and the mass of the pure water and the fiber molded body used for producing the test water.
  • the virus infectivity was measured by the "plaque method" in accordance with the antiviral test of textile products (JIS L 1922).
  • the virus used was "influenza A virus”.
  • the test method is as follows. (Measurement of viral load titer of evaluation sample) 1. 1. A predetermined amount of the evaluation sample (0.4 g in the case of a fiber molded product and 0.1 g in the case of a slurry) is placed in a sterilized 50 mL vial and sterilized by an autoclave. 2. 2. 0.2 ml of the virus solution is inoculated into the evaluation sample and left at 25 ° C. for 2 hours. 3. 3. 3.
  • the virus infectious titer Vb (amount of infectious virus) of the evaluation sample after washing out the virus is measured by the plaque method.
  • the virus infectivity titer Vc of the control sample was measured by using a control sample (polyethylene sheet of AS ONE Co., Ltd.) instead of the evaluation sample.
  • the antiviral activity value Mv of the evaluation sample was calculated by the following formula 1.
  • Mv log (V b ) -log (V c ) ... Equation 1
  • the antiviral activity of the evaluation sample was judged as follows.
  • ⁇ Measurement of calcium hydroxide content in fiber molded product 5 g of a fiber molded piece cut into 10 mm ⁇ 10 mm was added to 500 ml of pure water, and the mixture was stirred with a stirrer for 5 hours to prepare a measurement sample. Then, with phenolphthalein as an indicator, titration was performed with 0.1 mol / L hydrochloric acid in the presence of the fiber-molded body piece in the measurement sample, and the amount of calcium hydroxide in the measurement sample was calculated from the titration amount. From this, the amount of calcium hydroxide supported on the fiber molded body was calculated.
  • the average volume particle size d50 was measured by a laser diffraction / scattering method using a laser diffraction type particle size distribution measuring device (SALD-2300 type manufactured by Shimadzu Corporation).
  • the materials used in the test are as follows.
  • Polycarboxylic acid type anionic surfactant product name: ST-491, solid content (polymer dispersant) concentration: 40% by mass, water: 60% by mass
  • Binder Polyvinyl alcohol manufactured by Kuraray Co., Ltd., product name: Kuraray Poval 5-98, saponification degree: 98-99 mol%
  • E Fiber molded body: Non-woven fabric manufactured by Sanwa Paper Co., Ltd., Material: Polyester, Thickness: 0.08 mm, Metsuke amount: 30 g / m 2
  • Example III-1 An aqueous calcium hydroxide mixture was obtained by stirring 45 g of a calcium hydroxide slurry, 2.5 g of a polymer dispersant solution, 5 g of a binder, and 47.5 g of water at 25 ° C. for 2 hours. Next, 0.05 g of calcium hypochlorite was added as a hypochlorite to the obtained aqueous calcium hydroxide mixture, and the mixture was stirred at 25 ° C. for 15 minutes to obtain a fiber treatment slurry. Table 5 shows the blending amount of each component, and Table 6 shows the physical characteristics of the fiber treatment slurry.
  • the obtained fiber treatment slurry was applied to the fiber molded body with a brush, and then dried at 60 ° C. for 20 minutes to remove water to obtain an antiviral fiber molded body.
  • the obtained antiviral fiber molded product was measured for effective chlorine concentration, evaluation of antiviral activity, antiviral activity persistence test, and calcium hydroxide content. The results are shown in Table 7.
  • Example III-2 An anti-virus fiber molded product was obtained in the same manner as in Example 1 except that the blending amount of each component of the fiber treatment slurry was adjusted as shown in Table 5, and the obtained anti-virus fiber molded product was obtained. The effective chlorine concentration of the virus was measured, the antiviral activity was evaluated, the antiviral activity persistence test was performed, and the calcium hydroxide content was measured. The results are shown in Table 7. Table 6 shows the physical characteristics of the fiber treatment slurry.
  • Example III-1 An antiviral fiber molded product was obtained in the same manner as in Example 1 except that an aqueous calcium hypochlorite aqueous solution (effective chlorine concentration 0.05% by mass, binder 5% by mass) was used as the fiber treatment slurry. The effective chlorine concentration of the antiviral fiber molded product was measured, the antiviral activity was evaluated, the antiviral activity persistence test was performed, and the calcium hydroxide content was measured. The results are shown in Table 7. Table 6 shows the physical characteristics of the fiber treatment slurry.
  • Example III-2 An antiviral fiber molded product was prepared in the same manner as in Example 1 except that an aqueous calcium hydroxide mixture (calcium hydroxide 3% by mass, polymer dispersant 1% by mass, binder 5% by mass) was used as the fiber treatment slurry.
  • the obtained antiviral fiber molded product was evaluated for antiviral activity, antiviral activity persistence test, and calcium hydroxide content was measured. The results are shown in Table 7.
  • Table 6 shows the physical characteristics of the fiber treatment slurry.
  • Examples 1 and 2 which are the antiviral fiber molded products of the present invention, contain a fiber molded product not containing calcium hydroxide (Comparative Example III-1) and hypochlorite. It retained higher antiviral activity for a longer period of time than the non-fiber molded product (Comparative Example III-2).
  • the virus infectivity was measured by the "plaque method" in accordance with the antiviral test of textile products (JIS L 1922).
  • the virus used was "influenza A virus”.
  • the test method is as follows. (Measurement of viral load titer of evaluation sample) 1. 1. Place 0.1 g of a slurry or liquid evaluation sample in a sterilized 50 mL vial and sterilize in an autoclave. 2. 2. 0.2 ml of the virus solution is inoculated into the evaluation sample and left at 25 ° C. for 2 hours. 3. 3. 3. 20 ml of SCDLP medium is added to the evaluation sample, and the virus is washed out from the sample. 4.
  • the virus infectious titer Vb (amount of infectious virus) of the evaluation sample after washing out the virus is measured by the plaque method.
  • the virus infectivity titer Vc of the control sample was measured by using a control sample (polyethylene sheet of AS ONE Co., Ltd.) instead of the evaluation sample.
  • evaluation of antiviral effect From the virus infectivity value V b of the sample obtained by the above method and the virus infectivity value V c of the control sample, the antiviral activity value Mv of the evaluation sample was calculated by the following formula 1.
  • ⁇ Antiviral activity persistence test> A 20 ml sample was measured in a glass petri dish having a diameter of 70 mm and placed in a constant temperature and humidity chamber having a temperature of 30 ° C., a humidity of 60%, and a carbon dioxide gas concentration of 2%. The slurry in the petri dish was stirred with a glass rod every hour. After 72 hours, the antiviral activity was evaluated by the above method.
  • the materials used in the test are "(III) antiviral properties of the present invention.
  • Example IV-1 An aqueous calcium hydroxide mixture was obtained by stirring 90 g of the calcium hydroxide slurry, 5 g of the polymer dispersant solution, and 5 g of the binder material at 25 ° C. for 2 hours. Next, 0.015 g of calcium hypochlorite was added as hypochlorite to the obtained aqueous calcium hydroxide mixture, and the mixture was stirred at 25 ° C. for 15 minutes to obtain an antiviral agent which is an aqueous slurry. rice field. The content of each component is shown in Table 8. The obtained antiviral agent was measured for calcium hydroxide concentration and effective chlorine concentration, viscosity was measured, antiviral activity was evaluated, and antiviral activity persistence test was performed. The results are shown in Table 9.
  • Example IV-2 An aqueous calcium hydroxide mixture was obtained by stirring 44 g of a calcium hydroxide slurry, 2.5 g of a polymer dispersant solution, 5 g of a binder material, and 48.5 g of water at 25 ° C. for 2 hours. Next, 0.015 g of calcium hypochlorite was added as hypochlorite to the obtained aqueous calcium hydroxide mixture, and the mixture was stirred at 25 ° C. for 15 minutes to obtain an antiviral agent which is an aqueous slurry. rice field. The content of each component is shown in Table 8. The obtained antiviral agent was measured for calcium hydroxide concentration and effective chlorine concentration, viscosity was measured, antiviral activity was evaluated, and antiviral activity persistence test was performed. The results are shown in Table 9.
  • Examples IV-3 to IV-5 An antiviral agent, which is an aqueous slurry, was obtained in the same manner as in Example IV-2, except that the content of each component was adjusted to be as shown in Table 8, and the calcium hydroxide concentration of the obtained antiviral agent was obtained. And the measurement of effective chlorine concentration, the measurement of viscosity, the evaluation of antiviral activity, and the antiviral activity persistence test were performed. The results are shown in Table 9.
  • Example IV-2 The antiviral activity of the aqueous calcium hydroxide mixture used in Example IV-3 was evaluated and the antiviral activity persistence test was performed. The results are shown in Table 9.
  • Examples IV-1 to IV-5 which are the antiviral agents of the present invention, are calcium hypochlorite aqueous solution (Comparative Example IV-1) containing no calcium hydroxide and hypochlorite. It was possible to retain higher antiviral properties for a longer period of time than the calcium-free aqueous calcium hydroxide mixture (Comparative Example IV-2).
  • the antiviral fiber base material of the present invention is industrially useful because it can be used as a virus infection control sheet or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

紙の支持体上に、水酸化カルシウム粒子及び樹脂バインダーを含む抗ウイルス層を有する抗ウイルス性シートであって、(a)前記水酸化カルシウム粒子の担持量が1.0~50.0g/m2、及び(b)湿度60%RH、温度30℃、炭酸ガス濃度2%の炭酸ガス養生装置内に5日間放置した際の水酸化カルシウム残存率が20%以上、の要件を満足する抗ウイルス性繊維基材である。

Description

抗ウイルス性繊維基材、及びその製造方法
 本発明は、抗ウイルス性繊維基材、及びその製造方法に関する。
 従来より、ウイルスや細菌の感染を抑制するために、種々の抗ウイルスグッズや抗菌グッズが販売されている。特に最近では、新型ウイルスの流行もあり、その需要は増加している。
 このような抗菌グッズとしては、例えば、樹脂フィルムと、樹脂フィルムの少なくとも片面に付着した銅粒子とを有し、波長380~780nmにおける全光線透過率が20%以上であり、銅粒子の平均円相当径は10~30nmであり、銅粒子の付着量が100~200mg/μmである抗菌シートが提案されている(特許文献1参照)。また、例えば、銀ゼオライトや銀アパタイト等を担持させたマスクが提案されている(例えば、特許文献2及び3参照)。
 近年、感染症対策は重要になってきているが、抗ウイルス性成分を含有させた生活用品は、高頻度で交換することが難しい場合もあり、高い抗ウイルス活性が長期間にわたって持続する抗ウイルス性繊維基材の開発が望まれている。
特開2020-066187号公報 特開2011-167226号公報 特開平2-88083号公報
 本発明の課題は、抗ウイルス性を長時間持続できる繊維基材、及びその製造方法を提供することにある。
 本発明者は、上記課題を解決すべく鋭意研究した結果、アルカリ土類金属水酸化物を含有する繊維基材が抗ウイルス性を長時間持続できることを見いだし、本発明を完成するに至った。具体的には、第1の観点として、水酸化カルシウムを担持し、特定の条件を満たすシートが抗ウイルス性を長時間持続できることを見いだした。第2の観点として、特定の条件を満たす不織布が抗ウイルス性マスクの材料として好適であることを見いだした。第3の観点として、次亜塩素酸塩と水酸化カルシウム等のアルカリ土類金属水酸化物との双方を、特定の有効塩素濃度となるように含有させた繊維成形体が抗ウイルス性を長時間持続できることを見いだした。
 すなわち、本発明は、以下の通りのものである。
[1]アルカリ土類金属水酸化物を含有することを特徴とする抗ウイルス性繊維基材。
[2]紙の支持体上に、水酸化カルシウム粒子及び樹脂バインダーを含む抗ウイルス層を有する抗ウイルス性シートであって、下記(Ia)及び(Ib)の要件を満足することを特徴とする抗ウイルス性繊維基材。
(Ia)前記水酸化カルシウム粒子の担持量が1.0~50.0g/m
(Ib)湿度60%RH、温度30℃、炭酸ガス濃度2%の炭酸ガス養生装置内に5日間放置した際の水酸化カルシウム残存率が20%以上
[3]クレム吸水度が5.0mm以下で目付が10~200g/mであるパルプ繊維紙の支持体に対して、メジアン径が0.5~10.0μmの水酸化カルシウム粒子及び樹脂バインダーを含み、前記水酸化カルシウムの濃度が1.0~50.0質量%の分散液を塗布する塗布工程と、前記分散液を塗布した支持体を乾燥する乾燥工程と、を有することを特徴とする抗ウイルス性繊維基材の製造方法。
[4]水酸化カルシウム粒子を担持した抗ウイルス性不織布であって、下記(IIa)~(IIc)の要件を満足することを特徴とする抗ウイルス性繊維基材。
(IIa)前記水酸化カルシウム粒子の担持量が0.3~5.0g/m
(IIb)通気度が30~150cc/cm/sec
(IIc)湿度60%RH、温度30℃、炭酸ガス濃度2%の炭酸ガス養生装置内に12時間放置した際の水酸化カルシウム残存率が30%以上
[5]単繊維径が0.05~1.0μmのポリオレフィン又はポリエステルからなり、目付が10~50g/mである不織布に対して、メジアン径が1.0~10.0μmの水酸化カルシウム粒子及びバインダー樹脂を含み、前記水酸化カルシウムの濃度が1.0~10.0質量%の分散液を塗布する塗布工程と、前記分散液を塗布した不織布を乾燥する乾燥工程と、を有することを特徴とする抗ウイルス性繊維基材の製造方法。
[6]次亜塩素酸塩とアルカリ土類金属水酸化物とを含有し、有効塩素濃度が0.01~5質量%であることを特徴とする抗ウイルス性繊維基材。
[7]次亜塩素酸塩と、アルカリ土類金属水酸化物と、バインダーと、水とを含むスラリーを準備する工程と、前記スラリーを繊維成形体に含浸させる工程、とを含む、抗ウイルス性繊維基材の製造方法。
 本発明の繊維基材は、抗ウイルス性を長時間持続できる。
本発明の一実施形態に係る抗ウイルス性シートの概略説明図である。
 本発明の抗ウイルス性繊維基材は、アルカリ土類金属水酸化物を含有することを特徴とする。繊維基材としては、紙、不織布、織布等を挙げることができる。アルカリ土類金属水酸化物としては、水酸化マグネシウム、水酸化カルシウム等を挙げることができる。また、次亜塩素酸塩等の他の抗ウイルス成分を併用してもよい。
 本発明の抗ウイルス性繊維基材としては、例えば、以下に具体的に説明する(I)本発明の抗ウイルス性シート、(II)本発明の抗ウイルス性不織布、(III)本発明の抗ウイルス性繊維成形体を好ましく例示することができる。
[(I)本発明の抗ウイルス性シート]
 本発明の抗ウイルス性シートは、紙の支持体上に、水酸化カルシウム粒子及び樹脂バインダーを含む抗ウイルス層を有し、下記(Ia)及び(Ib)の要件を満足することを特徴とする。
(Ia)前記水酸化カルシウム粒子の担持量が1.0~50.0g/m
(Ib)湿度60%RH、温度30℃、炭酸ガス濃度2%の炭酸ガス養生装置内に5日間放置した際の水酸化カルシウム残存率(以下、炭酸化後の水酸化カルシウム残存率(5日間)という)が20%以上
 本発明の抗ウイルス性シートは、水酸化カルシウムの炭酸化を抑制して、所望の抗ウイルス性を長時間持続できる。したがって、各種製品の人が手を触れる接触部位等に貼付することにより、ウイルス感染を抑制することができる。なお、本発明のシートは、通常、抗ウイルス性と共に、細菌に対する抗菌性も備える。
 本発明の抗ウイルス性シートを製品に貼付して使用する場合、適用可能な製品としては、人が手を触れる製品を好ましく例示することができ、具体的には、ドアノブ、電気スイッチ、文房具、消毒液ボトル等の衛生用品等を挙げることができる。すなわち、本発明の抗ウイルス性シートは、ドアのノブに貼付するドアノブ用シート、電気スイッチ類に貼付するスイッチ用シート、ペン等の文房具に貼付する文房具用シート、消毒液ボトル(ポンプ押圧部)等の衛生用品に貼付する衛生用品用シートなどとして用いることができる。また、消毒液ボトルやマスク箱等の衛生製品などを載置する載置シートとして用いることもできる。
 なお、本発明の抗ウイルス性シートは、上記のように、各種用途に用いることができることから、購入者が適宜使用方法を決定することができるよう、特に用途を特定しない抗ウイルス性シート(ウイルス感染対策シート)として販売することができる。
 以下、各要件について説明する。
[要件(Ia)]
 本発明の抗ウイルス性シートにおける水酸化カルシウム粒子の担持量としては、上記のように、1.0~50.0g/mであり、2.0~40.0g/mが好ましく、3.0~30.0g/mがより好ましく、5.0~30.0g/mがさらに好ましい。担持量が1.0g/m未満であると、所望の抗ウイルス性を長時間持続することができない。また、担持量が50.0g/mを超えると、水酸化カルシウム粒子の脱落が多くなり、経済的でない。
 水酸化カルシウムの担持量は、純水中に裁断した試験体を加えて十分撹拌した後、塩酸で滴定して、その滴定量より算出する。なお、ここで求められる水酸化カルシウムの担持量は、後述する要件(Ib)の炭酸化後の水酸化カルシウム残存率(5日間)を算出する上での基準量(CA0)でもある。
[要件(Ib)]
 本発明の抗ウイルス性シートの炭酸化後の水酸化カルシウム残存率(5日間)としては、上記のように、20%以上であり、30%以上が好ましく、40%以上がより好ましく、50%以上がさらに好ましい。炭酸化後の水酸化カルシウム残存率(5日間)が20%未満であると、所望のウイルス性を長時間持続することができない。なお、この炭酸化後の水酸化カルシウム残存率(5日間)は、耐二酸化炭素性(耐炭酸ガス性)を示すものであり、二酸化炭素による水酸化カルシウムの炭酸化の抑制効果を示すものである。通常の室内の二酸化炭素濃度は0.1%以下であることから、本条件(二酸化炭素2%、5日間)で水酸化カルシウムが20%以上残存する本発明のウイルス性シートは、数か月程度、抗ウイルス性を持続できる。
 炭酸化後の水酸化カルシウム残存率(5日間)は、以下のように算出する。
 湿度60%RH、温度30℃、炭酸ガス濃度2%の炭酸ガス養生装置内に5日間放置した試験体について、上記要件(Ia)と同様にして、水酸化カルシウムを定量して水酸化カルシウム量(CA1)を求める。続いて、以下の式より、炭酸化後の水酸化カルシウム残存率(5日間)を算出する。
 炭酸化後の水酸化カルシウム残存率(5日間)(%)=(CA1)/(CA0)×100
 また、本発明の抗ウイルス性シートは、所望の抗ウイルス性を長時間より確実に持続する点から、下記要件(Ic)を満たすことが好ましい。
(Ic)湿度60%RH、温度30℃、炭酸ガス濃度2%の炭酸ガス養生装置内に5日間放置した際の水酸化カルシウム残存量(以下、炭酸化後の水酸化カルシウム残存量(5日間)という)が、0.2g/m以上、好ましくは1.0g/m以上、より好ましくは2.0g/m以上、さらに好ましくは3.0g/m以上、特に好ましくは5.0g/m以上
 本発明の抗ウイルス性シートに用いる支持体としての紙としては、洋紙であっても、和紙であってもよいが、吸水性の観点から、洋紙が好ましい。適切な吸水性の紙を用いることにより、抗ウイルス層における水酸化カルシウムの担持状態が良好となり、抗ウイルス性を長時間持続することができる。
 紙の吸水性を示すクレム吸水度としては、5.0mm以下が好ましく、3.0mm以下がより好ましい。これにより、塗布分散液に含まれる水及びバインダー樹脂を必要以上に内部に吸収することを防止して、抗ウイルス層において水酸化カルシウムが良好な状態で担持される。クレム吸水度の測定は、クレム吸水試験(JIS-P-8141)に準拠して実施する。
 また、紙の目付量としては、10~200g/mが好ましく、20~120g/mがより好ましい。紙の目付量は、JIS L 1096(織物及び編物の生地試験方法)の単位面積当たりの質量の測定方法に準じて測定する。
 本発明の抗ウイルス性シートは、支持体の抗ウイルス層と反対側の面に、接着層を有することが好ましい。これにより、抗ウイルス性シートを各種製品に容易に貼付することができる。
 この接着層の構成としては、前記支持体側から、強粘着層、基材及び着脱可能な弱粘着層の順であることが好ましい。これにより、抗ウイルス性シートの製品への着脱(接着及び剥離)が容易となる。
 例えば、図1に示すように、本発明の一実施形態に係る抗ウイルス性シート1は、支持体としての紙2上に抗ウイルス層3が設けられ、紙2の抗ウイルス層3の反対側に接着層4が設けられる。接着層4は、紙2側から、強粘着層5、基材6及び着脱可能な弱粘着層7の順で設けられる。なお、各層(紙、基材を含む)の間には、各種機能を備えた中間層が設けられていてもよい。
 弱粘着層の接着力としては、接着力と剥離のバランスから、0.1~2.0N/20mmであることが好ましく、0.3~1.5N/20mmであることがより好ましい。なお、粘着力の測定は、JIS Z 0237の粘着テープ試験法に準じて実施する。例えば、0.1N/20mmとは、20mm幅のテープを長手方向に180°折り返して剥がすときに、0.1Nの重量が必要であることを意味する。
 本発明の抗ウイルス性シートの厚さとしては、0.05~3.0mm程度が好ましく、0.1~2.0mmがより好ましく、0.1~1.0mmがさらに好ましい。この範囲の厚さであると、シートが所定の柔軟性を有し、製品の曲線形状等にも合わせて貼付することが容易となる。なお、ここでいう厚さは、上記接着層を有する場合には、接着層を含む厚さである。
 続いて、上記本発明の抗ウイルス性シートを製造する方法について説明する。
 本発明の抗ウイルス性シートを製造する方法としては、例えば、支持体に対して、水酸化カルシウム粒子及びバインダー樹脂を含む分散液を塗布する塗布工程と、分散液を塗布した支持体を乾燥する乾燥工程とを有する方法を挙げることができ、以下の方法により製造することが好ましい。
 すなわち、クレム吸水度が5mm以下で目付が10~200g/mであるパルプ繊維紙の支持体に対して、メジアン径が0.5~10.0μmの水酸化カルシウム粒子及び樹脂バインダーを含み、水酸化カルシウムの濃度が1.0~50.0質量%の分散液を塗布する塗布工程と、分散液を塗布した支持体を乾燥する乾燥工程とを有する方法が好ましい。なお、分散液としては、水を主体とする水系分散液を用いることが好ましい。
 このようなパルプ繊維紙の支持体を用いることにより、水酸化カルシウムを良好な状態で担持することができ、抗ウイルス性を長時間持続することができる。また、このような水酸化カルシウム粒子を含む分散液を用いることにより、水酸化カルシウムの炭酸化を抑制して抗ウイルス性を長時間持続できる。
 水酸化カルシウム粒子のメジアン径(D50)としては、上記のように、0.5~10.0μmであり、0.8~8.0μmが好ましく、1.0~6.0μmがより好ましい。メジアン径が0.5μm未満であると、炭酸化が進みやすく、所望の抗ウイルス性を長時間持続することができないおそれがある。また、メジアン径が10.0μmを超えると、水酸化カルシウム粒子が支持体から取れやすく、安定してシートに担持することができないおそれがある。なお、シートへの担持前後で水酸化カルシウム粒子の粒径はほぼ変化しないことから、製造に用いる水酸化カルシウム粒子のメジアン径を、抗ウイルス性シートにおけるメジアン径と考えることができる。
 メジアン径(D50)の算出は、分散媒体としてエタノールを使用し、レーザー回折式粒度分析計を用いて体積基準の粒度分布を測定し、その測定結果から算出する。
 また、本発明で用いる水酸化カルシウム粒子(メジアン径0.5~10.0μm)は、通常の工業用水酸化カルシウムと比較して粒径が小さいものであり、工業用水酸化カルシウムを粉砕または分級して用いてもよい。
 分散液における水酸化カルシウム濃度としては、上記のように、1.0~50.0質量%であり、5.0~40.0質量%が好ましく、10.0~30.0質量%がより好ましい。水酸化カルシウム濃度が1.0質量%未満であると、十分な量の水酸化カルシウムを支持体に担持することが困難となる。また、水酸化カルシウム濃度が50.0質量%を超えると、塗布する際の取り扱い性が悪く、塗布ムラが生じるおそれがある。
 バインダー樹脂としては、水溶性樹脂、水分散性樹脂を挙げることができ、水溶性樹脂が好ましい。これにより、水分を含む飛沫がシートに付着した際、樹脂が溶解して飛沫(ウイルス)が水酸化カルシムに効果的に接触し、より有効にウイルスを死滅させることができる。
 水溶性樹脂としては、具体的に、例えば、ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルピロリドン、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、ポリ(N-ヒドロキシエチルアクリルアミド)、ポリ(N-ヒドロキシエチルメタクリルアミド)、ポリ(アクリロイルモルホリン)、ポリアクリル酸及びその塩、ポリスチレンスルホン酸及びその塩等を挙げることができる。なかでも、水酸化カルシウム粒子との反応性のない非イオン性の高分子からなる樹脂が好ましく、ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコールがさらに好ましい。溶解性の観点から、ポリビニルアルコールが特に好ましく、けん化度が70mol%以上100mol%以下であるポリビニルアルコールが最も好ましい。なお、後述する(III)本発明の抗ウイルス性繊維成形体の繊維処理用スラリーと同様に、界面活性剤、分散剤を配合してもよい。
 バインダー樹脂の配合量(分散液中の濃度)としては、5.0~40.0質量%が好ましく、5.0~20.0質量%がより好ましい。この範囲とすることにより、水酸化カルシウム粒子を支持体に適切に担持することができる。
 塗布工程における水酸化カルシウム分散液の塗布方法としては、シートに均一に塗布できる方法であれば特に制限されるものではなく、ディッピング法、スプレー法、ロールコート法、カーテンコート法、グラビア印刷法等、各種塗布方法を挙げることができる。
 乾燥工程における乾燥は、例えば、自然乾燥、温風乾燥等、各種乾燥方法を用いることができる。
 また、本発明の抗ウイルス性シートの製造方法においては、乾燥工程の後に、接着層形成工程を有していることが好ましい。接着層形成工程においては、例えば、基材の一方の面に強粘着層を形成すると共に他方の面に弱粘着層を形成した接着シートを製造し、かかる接着シートの強粘着層側を、支持体の抗ウイルス層が設けられていない面に貼付する。なお、接着シートは、市販のものを用いてもよい。
[(II)本発明の抗ウイルス性不織布]
 本発明の抗ウイルス性不織布は、水酸化カルシウム粒子を担持し、下記(IIa)~(IIc)の要件を満足することを特徴とする。
(IIa)前記水酸化カルシウム粒子の担持量が0.3~5.0g/m
(IIb)通気度が30~150cc/cm/sec
(IIc)湿度60%RH、温度30℃、炭酸ガス濃度2%の炭酸ガス養生装置内に12時間放置した際の水酸化カルシウム残存率(以下、炭酸化後の水酸化カルシウム残存率(12時間)という)が30%以上
 本発明の抗ウイルス性不織布は、水酸化カルシウムの炭酸化を抑制して、所望の抗ウイルス性を長時間持続できる。したがって、抗ウイルス性のマスクの材料として好適であり、この不織布を用いた抗ウイルス性マスクは、使用期間中、優れた抗ウイルス性を保持することができる。なお、本発明の不織布は、通常、抗ウイルス性と共に、細菌に対する抗菌性も備える。
 以下、各要件について説明する。
[要件(IIa)]
 本発明の抗ウイルス性不織布における水酸化カルシウム粒子の担持量としては、上記のように、0.3~5.0g/mであり、0.8~4.5g/mが好ましく、1.0~4.0g/mがより好ましい。担持量が0.3g/m未満であると、所望の抗ウイルス性を長時間持続することができない。また、担持量が5.0g/mを超えると、所望の通気性を得ることができない。
 水酸化カルシウムの担持量は、純水中に裁断した試験体を加えて十分撹拌した後、塩酸で滴定して、その滴定量より算出する。なお、ここで求められる水酸化カルシウムの担持量は、後述する炭酸化後の水酸化カルシウム残存率(12時間)を算出する上での基準量(CA0II)でもある。
[要件(IIb)]
 本発明の抗ウイルス性不織布の通気度としては、上記のように、30~150cc/cm/secであり、40~140cc/cm/secが好ましい。通気度が30cc/cm/sec未満であると、通気性が悪く、マスク等の通気性(空気の流動性)を必要とする用途に使用できない。また、通気度が150cc/cm/secを超えると、所望のフィルター(ろ過、捕捉)効果を得ることができず、マスク等のフィルター効果を必要とする用途に使用できない。
 通気度は、JIS L 1096(織物及び編物の生地試験方法)の通気性の測定方法に準じて測定する。
[要件(IIc)]
 本発明の抗ウイルス性不織布の炭酸化後の水酸化カルシウム残存率(12時間)としては、上記のように、30%以上であり、35%以上が好ましく、40%以上がより好ましい。炭酸化後の水酸化カルシウム残存率(12時間)が30%未満であると、所望のウイルス性を長時間持続することができない。なお、この炭酸化後の水酸化カルシウム残存率(12時間)は、耐二酸化炭素性(耐炭酸ガス性)を示すものであり、二酸化炭素による水酸化カルシウムの炭酸化の抑制効果を示すものである。例えば、マスクは、人間の呼気に含まれる二酸化炭素に頻繁に接触するものであるが、本発明の不織布は、このような二酸化炭素の影響の大きい環境下でも水酸化カルシウムの炭酸化を抑制し、抗ウイルス性を長時間持続することができる。
 炭酸化後の水酸化カルシウム残存率(12時間)は、以下のように算出する。
 湿度60%RH、温度30℃、炭酸ガス濃度2%の炭酸ガス養生装置内に12時間放置した試験体について、上記要件(IIa)と同様にして、水酸化カルシウムを定量して水酸化カルシウム量(CA1II)を求める。続いて、以下の式より、炭酸化後の水酸化カルシウム残存率(12時間)を算出する。
 炭酸化後の水酸化カルシウム残存率(12時間)(%)=(CA1II)/(CA0II)×100
 また、本発明の抗ウイルス性不織布は、所望のウイルス性を長時間より確実に持続する点から、下記要件(IId)を満たすことが好ましい。
(d)湿度60%RH、温度30℃、炭酸ガス濃度2%の炭酸ガス養生装置内に12時間放置した際の水酸化カルシウム残存量(以下、炭酸化後の水酸化カルシウム残存量(12時間)という)が0.09g/m以上、好ましくは0.3g/m以上、より好ましくは0.8g/m以上、さらに好ましくは1.0g/m以上
 本発明の抗ウイルス性不織布に用いる不織布の素材としては、ポリオレフィン、ポリエステル等の通常のマスクに用いられる合成樹脂を挙げることができる。ポリオレフィンとしては、ポリエチレン、ポリプロピレン等を挙げることができる。ポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等を挙げることができる。
 不織布を構成する合成樹脂(繊維)の単繊維径は、0.05~1.0μmが好ましく、0.1~0.8μmがより好ましい。また、不織布の目付量としては、10~50g/mが好ましく、15~40g/mがより好ましい。さらに、不織布の厚さとしては、50~150μmが好ましく、70~120μmがより好ましい。このような不織布を用いることにより、通気性を確保できると共に、微粒子、細菌、ウイルス等の透過を効果的に防止することができる。
 不織布の目付量は、JIS L 1096(織物及び編物の生地試験方法)の単位面積当たりの質量の測定方法に準じて測定する。
 続いて、上記本発明の抗ウイルス性不織布を製造する方法について説明する。
 本発明の抗ウイルス性不織布を製造する方法としては、例えば、不織布に対して、水酸化カルシウム粒子及びバインダー樹脂を含む分散液を塗布する塗布工程と、分散液を塗布した不織布を乾燥する乾燥工程とを有する方法を挙げることができ、マスク等の材料として使用する場合は、以下の方法により製造することが好ましい。
 すなわち、単繊維径が0.05~1.0μmのポリオレフィン又はポリエステルからなり、目付が10~50g/mである不織布に対して、メジアン径が1.0~10.0μmの水酸化カルシウム粒子及びバインダー樹脂を含み、前記水酸化カルシウムの濃度が1.0~10.0質量%の分散液を塗布する塗布工程と、分散液を塗布した不織布を乾燥する乾燥工程とを有する方法が好ましい。なお、分散液としては、水を主体とする水系分散液を用いることが好ましい。
 このような不織布を用いることにより、マスクとしての高い機能を担保することができる。また、メジアン径1.0~10.0μmの水酸化カルシウム粒子を用い、水酸化カルシウムの濃度1.0~10.0質量%の分散液を用いることにより、水酸化カルシウムの炭酸化を抑制して抗ウイルス性を長時間持続できると共に、マスクとしての通気性を確保することができる。
 水酸化カルシウム粒子のメジアン径(D50)としては、上記のように、1.0~10.0μmであり、1.5~8.0μmが好ましく、2.0~6.0μmがより好ましい。メジアン径が1.0μm未満であると、炭酸化が進みやすく、所望の抗ウイルス性を長時間持続することができないおそれがある。また、メジアン径が10.0μmを超えると、水酸化カルシウム粒子が不織布から取れやすく、安定して不織布に担持することができないおそれがある。なお、不織布への担持前後で水酸化カルシウム粒子の粒径はほぼ変化しないことから、製造に用いる水酸化カルシウム粒子のメジアン径を、抗ウイルス性不織布におけるメジアン径と考えることができる。
 メジアン径(D50)の算出は、分散媒体としてエタノールを使用し、レーザー回折式粒度分析計を用いて体積基準の粒度分布を測定し、その測定結果から算出する。
 また、本発明で用いる水酸化カルシウム粒子(メジアン径1.0~10.0μm)は、通常の工業用カルシウムと比較して粒径が小さいものであり、工業用水酸化カルシウムを粉砕して用いてもよい。
 また、分散液における水酸化カルシウム濃度としては、上記のように、1.0~10.0質量%であり、1.0~5.0質量%がより好ましい。水酸化カルシウム濃度が1.0質量%未満であると、十分な量の水酸化カルシウムを不織布に担持することが困難となる。また、水酸化カルシウム濃度が10.0質量%を超えると、水酸化カルシウムの担持量が過多となり、十分な通気性を確保できないおそれがある。
 バインダー樹脂としては、水溶性樹脂、水分散性樹脂を挙げることができ、水溶性樹脂が好ましい。水溶性樹脂としては、具体的に、例えば、ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルピロリドン、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、ポリ(N-ヒドロキシエチルアクリルアミド)、ポリ(N-ヒドロキシエチルメタクリルアミド)、ポリ(アクリロイルモルホリン)、ポリアクリル酸及びその塩、ポリスチレンスルホン酸及びその塩等を挙げることができる。なかでも、水酸化カルシウム粒子との反応性のない非イオン性の高分子からなる樹脂が好ましく、ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコールがさらに好ましい。溶解性の観点から、ポリビニルアルコールが特に好ましく、けん化度が70mol%以上100mol%以下であるポリビニルアルコールが最も好ましい。なお、後述する(III)本発明の抗ウイルス性繊維成形体の繊維処理用スラリーと同様に、界面活性剤、分散剤を配合してもよい。
 バインダー樹脂の配合量(分散液中の濃度)としては、1.0~10.0質量%が好ましく、1.0~5.0質量%がより好ましい。この範囲とすることにより、水酸化カルシウム粒子を不織布に適切に担持して、抗ウイルス性をより効果的に発揮することができる。
 塗布工程における水酸化カルシウム分散液の塗布方法としては、不織布に均一に塗布できる方法であれば特に制限されるものではなく、ディッピング法、スプレー法、ロールコート法、カーテンコート法、グラビア印刷法等、各種塗布方法を挙げることができる。
 また、乾燥工程における乾燥は、例えば、自然乾燥、温風乾燥等、各種乾燥方法を用いることができる。
 次に、本発明の抗ウイルス性マスクについて説明する。本発明の抗ウイルス性マスクは、マスク本体及び耳掛け部を備え、マスク本体が、上記本発明の抗ウイルス性不織布を具備していることを特徴とする。
 本発明の抗ウイルス性不織布は、上記のように、炭酸化後の水酸化カルシウム残存率(12時間)(要件(IIc))が高い。したがって、呼気に含まれる二酸化炭素に接触するマスクにおいても抗ウイルス性を長時間持続することができる。
 本発明の抗ウイルス性マスクは、家庭用マスク、医療用マスク(サージカルマスク)、産業用マスク(防塵マスク)を挙げることができ、家庭用マスク、医療用マスク(サージカルマスク)が好ましい。その形状は、プリーツ型、立体型等、特に制限されない。また、本発明の抗ウイルス性マスクは、通常、使い捨てマスクである。
 具体的に本発明の抗ウイルス性マスクは、マスク本体が、不織布が2層以上重畳されて構成されており、顔に接する側を第1層とした場合、第2層以降の層に、本発明の抗ウイルス性不織布が設けられていることが好ましい。また、不織布が3層以上に重畳されていることが好ましく、この層の中間層に、本発明の抗ウイルス性不織布が用いられることが好ましい。さらに、水酸化カルシウム粒子が担持されている面が顔側と反対側となるよう不織布を配置することが好ましい。また、重畳された不織布は、その周囲を熱溶着又は超音波溶着されて一体化されていることが好ましい。このような構成であることにより、水酸化カルシウムの肌への影響を防止して、抗ウイルス性を担保することができる。
[(III)本発明の抗ウイルス性繊維成形体]
 本発明の抗ウイルス性繊維成形体は、次亜塩素酸塩とアルカリ土類金属水酸化物とを含有し、有効塩素濃度が0.01~5質量%であることを特徴とする。
 本発明の抗ウイルス性繊維成形体は、次亜塩素酸塩と水酸化カルシウム等のアルカリ土類金属水酸化物との双方を、特定の有効塩素濃度となるように含有させることにより、長期間にわたって高い抗ウイルス活性を保持することが可能となる。これにより、抗ウイルス性繊維成形体を使用した製品は、高い抗ウイルス性を維持しながら長期間使用が可能であることより、その交換回数を少なくすることができる。
 また、高い抗ウイルス性を有しながら、次亜塩素酸独特の臭気を抑えて、不快感が少なく使用することが出来る。
 前記次亜塩素酸塩は、次亜塩素酸HClOの塩であり、次亜塩素酸イオンClOと、陽イオンがイオン結合により結合したものである。代表的な次亜塩素酸塩としては、次亜塩素酸ナトリウム、次亜塩素酸カルシウム等を挙げることが出来る。
 次亜塩素酸塩の配合量は、上記のように、抗ウイルス性繊維成形体の有効塩素濃度が、抗ウイルス性繊維成形体あたり0.01~5質量%となるように決定される。有効塩素濃度が0.01質量%以上であることにより、抗ウイルス性繊維成形体が高い抗ウイルス活性を長期間にわたって保持することができる。有効塩素濃度が5質量%以下であることにより、次亜塩素酸独特の臭気を抑えて、不快感が少なく使用することが出来ると共に、高い通気性を得ることが容易となる。本発明の抗ウイルス性繊維成形体の有効塩素濃度は、0.1~3質量%であることが好ましい。なお、低臭気の抗ウイルス性繊維成形体を目的とする場合は、有効塩素濃度は、0.1~1質量%程度とすることが好ましい。
 本発明の抗ウイルス性繊維成形体の有効塩素濃度は、抗ウイルス性繊維成形体質量あたりの有効塩素量を質量%単位で示したものである。前記有効塩素濃度は、ヨウ化カリウムを加え、デンプンを指示薬として、チオ硫酸ナトリウム溶液で滴定するヨウ素滴定法によって測定することが出来る。
 アルカリ土類金属水酸化物としては、例えば水酸化マグネシウム、水酸化カルシウムなどを挙げることが出来る。アルカリ土類金属水酸化物を配合することによって、アルカリ土類金属水酸化物自体の抗ウイルス活性による抗ウイルス作用に加えて、次亜塩素酸塩の分解が抑制されることにより、長期間にわたって高い抗ウイルス活性を保持することが可能になると推察される。
 アルカリ土類金属水酸化物によって次亜塩素酸塩の分解が抑制されるメカニズムは、本発明者らは以下のように考えている。すなわち、アルカリ土類金属水酸化物のアルカリ土類金属元素と次亜塩素酸塩が同時に存在することにより、アルカリ土類金属水酸化物の表面に保持された次亜塩素酸塩が適度に安定化され、次亜塩素酸塩が長期間分解されずに保持され、長期間にわたって高い抗ウイルス活性を保持することが可能となると推察される。
 本発明の抗ウイルス性繊維成形体におけるアルカリ土類金属水酸化物の含有量は、抗ウイルス性繊維成形体あたり0.5~20質量%であることが好ましく、1~10質量%であることがさらに好ましい。アルカリ土類金属水酸化物の含有量が0.5質量%以上であることにより、高い抗ウイルス性を長期間にわたって保持することが容易となる。アルカリ土類金属水酸化物の含有量が20質量%以下であることにより、高い通気性を得ることが容易となり、且つ該繊維成形体の風合いや取り扱い性を良好に保つことが容易になる。なお、前記抗ウイルス性繊維成形体のアルカリ土類金属水酸化物の含有量は、抗ウイルス性繊維成形体質量あたりのアルカリ土類金属水酸化物量を質量%単位で示したものであり、中和滴定によって求めることができる。
 本発明において、繊維成形体が次亜塩素酸塩とアルカリ土類金属水酸化物とを含有する態様として、繊維成形体にアルカリ土類金属水酸化物が担持されていることが好ましい。本発明において、繊維成形体にアルカリ土類金属水酸化物が担持されるとは、繊維成形体の繊維表面に、アルカリ土類金属水酸化物の粒子が付着していることを意味する。アルカリ土類金属水酸化物の粒子が繊維表面に付着していることは、顕微鏡による観察で、少なくとも1つ以上のアルカリ土類金属粒子が繊維と接触していることにより確認出来る。なお、アルカリ土類金属以外の粒子成分が繊維成形体中に存在し得る場合は、元素分析などにより付着した粒子がアルカリ土類金属水酸化物であることを確認すれば良い。最も好ましい態様としては、後述の製造方法により得ることができる、繊維成形体に担持されたアルカリ土類金属水酸化物の粒子の表面に次亜塩素酸塩を有する状態で、繊維間に存在する態様が挙げられる。前記態様において、表面に次亜塩素酸塩を有するアルカリ金属水酸化物の粒子は、例えば、バインダーの作用により繊維に付着することにより繊維間に存在している。
 本発明の抗ウイルス繊維成形体において、繊維成形体は、繊維により形成された成形体であれば特に制限されず、用途に応じで適宜選択することが可能である。例えば、前記のマスクや保護カバーなどの用途に対しては、シート状の成形体が好ましく、不織布、織布及び編布等が代表的なものとして挙げられる。また、繊維成形体を構成する繊維の種類は特に限定されず、例えば、ポリエステル、ナイロン、アクリル、ポリウレタン、ジアセテート、レーヨン等の化学繊維、綿、絹、麻などの植物性天然繊維、羊毛等の動物性天然繊維などが挙げられる。また、これらの繊維種は、単独で使用してもよいし、2種以上を混ぜて使用してもよい。また、シート状の繊維成形体の目付や厚さも目的に応じて適宜決定すればよいが、一般的には、目付量は10~200g/m程度、厚さは0.05~5.0mm程度の繊維成形体が使用される。
 本発明の抗ウイルス性繊維成形体の製造方法は、特に制限されるものではないが、代表的な製造方法として、次亜塩素酸塩と、アルカリ土類金属水酸化物と、バインダーと、水とを含むスラリー(以下、「繊維処理用スラリー」と称することがある)を準備する工程、前記スラリーを繊維成形体に含浸させる工程、を含む方法が挙げられる。
 前記繊維処理用スラリーに配合される次亜塩素酸塩の量は、得られる抗ウイルス性繊維成形体の有効塩素濃度が前記範囲となるように調整されるが、一般には繊維処理用スラリーの有効塩素濃度が0.001~20質量%程度となるように調整することが好ましい。
 前記繊維処理用スラリー中のアルカリ土類金属水酸化物の含有量は、得られる抗ウイルス性繊維成形体のアルカリ土類金属水酸化物の含有量が前記範囲内となるように適宜決定すればよいが、一般に、2~50質量%程度であることが好ましい。なお、本発明の繊維処理用スラリー中のアルカリ土類金属水酸化物の含有量は、中和滴定によって測定することが出来る。また、分散しているアルカリ土類金属水酸化物粒子の平均粒径は0.05~5μmであることが好ましく、0.1~1μmであることがより好ましい。平均粒径を5μm以下とすることで、長期間静置してもアルカリ土類金属水酸化物粒子の沈降が起こりにくく、取り扱いが容易になる。平均粒径を0.05μm以上とすることで、繊維処理用スラリーの粘度を抑えることができ、繊維成形体に含浸させることが容易になる。本発明におけるアルカリ土類金属水酸化物の平均粒径は、レーザ回折/散乱法によって測定された平均体積粒径d50である。
 前記繊維処理用スラリーに配合されるバインダーとしては、25℃での水100gへの溶解度が20g以上である水溶性樹脂を使用することが可能であり、例えば、ポリビニルアルコール、ポリアクリル酸ナトリウム、ポリエチレングリコール、ポリエチレンオキシド、ポリアクリルアミド、メラミンホルマリン樹脂、ポリエチレンイミン、ポリアミドポリアミンエピクロルヒドリン樹脂などが挙げられる。これらを単独で用いても構わないし、これらのうち複数種を併用することは何ら制限されるものではない。バインダーとしては、溶解性の観点からポリビニルアルコールが好ましく、けん化度が70mol%以上100mol%以下であるポリビニルアルコールが特に好ましい。繊維処理用スラリー中のバインダーの配合量は特に限定されないが、繊維に高い抗ウイルスを効率的に付与するために、2~20質量%であることが好ましい。このようなバインダーを使用することにより、アルカリ土類金属水酸化物を繊維成形体に担持されることが容易になる。
 前記繊維処理用スラリーに含まれる水の配合量は特に限定されず、アルカリ土類金属水酸化物粒子を分散しつつ、バインダーを溶解できる量を配合すれば良い。
 前記繊維処理用スラリーには界面活性剤を配合しても良い。界面活性剤を配合することにより、アルカリ土類金属水酸化物が繊維に付着しやすくなる。界面活性剤の配合量は0.2~5.0質量%であることが好ましい。界面活性剤としては、例えば以下のものが挙げられる。
イオン性界面活性剤:ドデシルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウム等。
両性界面活性剤:ラウリルベタイン、ラウリルジメチルアミンオキサイド等。
ノニオン性界面活性剤:ポリオキシエチレンアルキルエーテル、ポリエチレングリコール脂肪酸エステル等。
ヒドロキシメチルセルロース、ヒドロキシエチルセルロース。
 前記繊維処理用スラリーには、分散剤を配合しても良い。分散剤を配合することにより、繊維処理用スラリー中にアルカリ土類金属水酸化物が均一に分散しやすくなり、繊維成形体にアルカリ土類金属水酸化物を均一に担持させることが容易になる。分散剤としては、分子量が大きく、アルカリ土類金属水酸化物を分散し得るものであれば特に制限されず、従来公知のものを使用することができる。その代表的な例としては、リグニンスルホン酸塩、メラミンスルホン酸塩、ナフタレンスルホン酸塩、ポリカルボン酸塩等の高分子分散剤を挙げることができ、これらの中でもポリカルボン酸塩が好適である。繊維処理用スラリー中の分散剤の配合量は通常0.05~10質量%程度であり、0.1~5.0質量%であることが好ましい。
 前記繊維処理用スラリーは、粘度が50~3000mPa・sであることが好ましく、100~1000mPa・sであることがより好ましい。粘度が上記範囲にあることにより、繊維成形体に高い抗ウイルス性を効率的に付与することが容易になる。本発明における繊維処理用スラリーの粘度は、25℃で音叉振動式粘度計によって測定したものである。
 本発明の抗ウイルス性繊維成形体の製造方法において、繊維処理用スラリーを繊維成形体に含浸させることにより、繊維成形体に次亜塩素酸塩とアルカリ土類金属水酸化物とを含有させる。かかる含浸の手段としては、例えば、前記繊維処理用スラリーに繊維成形体を浸漬したり、前記繊維処理用スラリーを刷毛などで繊維成形体に塗工したりすることが挙げられる。
 本発明の抗ウイルス性繊維成形体の製造方法において、さらに、前記繊維処理用スラリーを含浸させた繊維成形体より水を除去する工程を含むことが好ましい。前記水を除去する工程は、繊維成形体に各添加物が所定量残存する方法により水を除去する方法であれば特に制限されない。具体的には、静置状態で、次亜塩素酸塩が過度に分解しない温度、例えば、40~80℃で乾燥させる態様が好ましい。また、繊維成形体の水の含有量を5質量%以下まで乾燥させることが好ましい。
 本発明の抗ウイルス性繊維成形体の用途としては、例えば、マスクやエアーコンディショナーのフィルタ、エプロンや白衣などの被服、カーテン、床マット、テーブルシート、シーツ、ドアノブや取手などの保護カバー、椅子のカバーなどを挙げることが出来る。特に、公共の場所のドアノブ、取手、椅子などの、不特定多数の人物が触ることを前提とした個所は、一般にウイルスの付着を高度に防止するための高頻度での清掃が必要となるが、これらの個所に本発明の抗ウイルス性繊維成形体により製造されたカバーを施せば、長期間にわたって高い抗ウイルス性の効果が持続することから、高頻度での清掃やカバーの交換をしなくとも良くなる。そのため、本発明のウイルス性繊維成形体は、ドアノブや取手の保護カバー等、椅子のカバーに使用することが特に好適である。
[(IV)本発明の抗ウイルス剤]
 本発明の抗ウイルス剤は、次亜塩素酸塩とアルカリ土類金属水酸化物とを含有し、有効塩素濃度が0.001~20質量%であることを特徴とする。
 本発明の抗ウイルス剤により、使用時に長期間にわたって高い抗ウイルス活性を得ることが出来るため、従来よりも抗ウイルス剤の使用回数を減らすことが出来る。
 次亜塩素酸塩の配合量は、上記のように、抗ウイルス剤の有効塩素濃度が0.001~20質量%となるように決定される。有効塩素濃度が0.001質量%以上であることにより、抗ウイルス剤が高い抗ウイルス活性を長期間にわたって保持することができる。有効塩素濃度が20質量%以下であることにより、次亜塩素酸独特の臭気を抑えて、不快感が少なく使用することが出来る。本発明の抗ウイルス剤の有効塩素濃度は、0.005~15質量%であることが好ましく、0.01~10質量%であることがさらに好ましい。有効塩素濃度は、実施例で示すように、測定試料にヨウ化カリウムを加え、デンプンを指示薬として、チオ硫酸ナトリウム溶液で滴定するヨウ素滴定法によって測定することが出来る。
 なお、次亜塩素酸塩及びアルカリ土類金属水酸化物の説明、アルカリ土類金属水酸化物によって次亜塩素酸塩の分解が抑制される推定メカニズムについては、上記(III)本発明の抗ウイルス性繊維成形体で述べたのと同様である。
 本発明の抗ウイルス剤には、抗ウイルス性を著しく低下させない範囲で、次亜塩素酸塩とアルカリ土類金属水酸化物以外のその他の成分を含有しても良い。その他の成分としては、例えば、溶媒、界面活性剤、分散剤、着色剤、増粘剤、水溶性樹脂等が挙げられる。
 本発明の抗ウイルス剤は、溶媒として水を含むことが好ましい。前記アルカリ土類金属水酸化物が水酸化カルシウムや水酸化マグネシウムの場合、水に対する溶解度が低いため、水を含む本発明の抗ウイルス剤は水系スラリーの形態となる。水系スラリーとすることで、固体表面等に均一に塗布して使用することが容易になり、使用しやすくなる。なお、水系スラリーの溶媒は、水のみでも良いし、水と、アルコールなどの有機溶媒との混合物であっても良い。溶媒が水と有機溶媒との混合物である場合、使用しやすさの観点から溶媒の70質量%以上が水であることが好ましく、90質量%以上が水であることがより好ましい。
 本発明の抗ウイルス剤が水系スラリーの場合、アルカリ土類金属水酸化物の含有量は特に限定されないが、2~50質量%であることが好ましく、5~30質量%であることがより好ましい。アルカリ土類金属水酸化物の含有量が2質量%以上であることにより、長期間にわたって高い抗ウイルス活性を保持することが容易となる。アルカリ土類金属水酸化物の含有量が50質量%以下であることにより、水系スラリーとした場合における有効塩素濃度を20質量%以下に保持することが容易となる。なお、本発明におけるアルカリ土類金属水酸化物の含有量は継時的に変化する場合があり、中和滴定によって算出する。
 本発明の抗ウイルス剤が水系スラリーの場合、固形分としてスラリー中に分散しているアルカリ土類金属水酸化物粒子の平均粒径は0.05~5μmであることが好ましく、0.1~1μmであることがより好ましい。平均粒径を5μm以下とすることで、長期間静置してもアルカリ土類金属水酸化物粒子の沈降が起こりにくく、長期間安定したスラリー性状を維持することが容易になる。平均粒径を0.05μm以上とすることで、スラリーの粘度を抑えることができ、塗布したり噴霧したりすることが容易になる。本発明におけるアルカリ土類金属水酸化物の平均粒径は、レーザ回折/散乱法によって測定された平均体積粒径d50である。
 本発明の抗ウイルス剤が水系スラリーの場合、粘度が50~3000mPa・sであることが好ましく、100~1000mPa・sであることがより好ましい。粘度が上記範囲にあることにより、部材に塗布したり、噴霧したり、浸漬したりしやすくなる。本発明における抗ウイルス剤の粘度は、25℃で音叉振動式粘度計によって測定したものである。
 本発明の抗ウイルス剤が水系スラリーの場合、前述の(III)本発明の抗ウイルス性繊維成形体の繊維処理用スラリーと同様に、界面活性剤、分散剤を配合してもよい。
 本発明の抗ウイルス剤が水系スラリーの場合、バインダー材を含有しても良い。バインダー材を含有することにより、部材に塗布したり浸漬したりした際に、より部材に抗ウイルス性を付与させやすくなる。バインダー材としては、例えばスラリーに溶解する樹脂を使用することが出来、例えば、ポリビニルアルコール、ポリアクリル酸ナトリウム、ポリエチレングリコール、ポリエチレンオキシド、ポリアクリルアミド、メラミンホルマリン樹脂、ポリエチレンイミン、ポリアミドポリアミンエピクロルヒドリン樹脂などが挙げられる。
 本発明の抗ウイルス剤の製造方法は、例えば水系スラリーの場合は、アルカリ金属水酸化物の水系スラリーに、有効塩素濃度が所望の値となるように調整しながら次亜塩素酸塩を投入する方法が挙げられる。
 本発明の抗ウイルス剤の使用方法は特に限定されず、例えば散布する方法が挙げられる。本発明の抗ウイルス剤が水系スラリーの場合は、噴霧することも可能である。また、水系スラリーの場合は、本発明の抗ウイルス剤を部材に塗布したり、本発明の抗ウイルス剤に部材を浸漬したりして、部材に抗ウイルス性を付与することも可能である。具体的に、本発明の抗ウイルス剤は、上記(III)本発明の抗ウイルス性繊維成形体の製造において用いることができる。また、噴霧や滴下等により対象物に抗ウイルス性を付与する抗ウイルス剤として用いることができる。
 以下に実施例及び比較例を示すが、本発明の技術的範囲はこれに限定されるものではない。
[(I)本発明の抗ウイルス性シートの評価]
 本発明の抗ウイルス性シートを制作し、抗ウイルス性について評価した。
(1)原材料
 1)コート液
 以下のコート液A~Eを調製した。
 コート液A:消石灰x30質量%+ポリビニルアルコール(PVA)10質量%+残部水
 コート液B:消石灰x20質量%+PVA10質量%+残部水
 コート液C:消石灰x10質量%+PVA10質量%+残部水
 コート液D:消石灰x2質量%+PVA10質量%+残部水
 コート液E:消石灰y10質量%+PVA10質量%+残部水
 なお、消石灰xのメジアン径(D50)は4.5μmであり、消石灰yのメジアン径(D50)は0.20μmである。メジアン径(D50)の算出は、分散媒体としてエタノールを使用し、レーザー回折式粒度分析計を用いて体積基準の粒度分布を測定した結果から算出した。
 また、ポリビニルアルコールは、和光純薬工業製「ポリビニルアルコール500」(重合度約500)を使用した。
 水は、イオン交換水を使用した。
 2)支持体
 支持体として以下の紙A~Cを用いた。クレム吸水度及び目付量の測定は、以下の方法により行った。
(クレム吸水度)
 クレム吸水試験(JIS-P-8141)に準拠して行った。測定器具として、ものさし、ストップウォッチ、プラスチック容器及び水道水(青色1号で着色)を用いた。幅25mm、長さ150mmの大きさに切り取った支持体をサンプル(N=3)とした。まず、水道水をプラスチック容器に深さが10mm以上となるまで入れた。次に、採取したサンプルを固定チャックで固定し、サンプル先端から5mmの深さで水道水に浸るようセットした。これをそのままの状態で120秒放置した(環境:温度20℃/湿度60%)。水道水がサンプルを伝い上昇し、サンプル上における吸い上げ距離を水道水の表面から測定した。吸い上げ距離の長い方が、クレム吸水度が高いことを示す。
(目付量)
 目付量については、JIS L 1096(織物及び編物の生地試験方法)の単位面積当たりの質量の測定方法に準じて測定した。
Figure JPOXMLDOC01-appb-T000001
(2)製造方法
 支持体をガラス板(縦300×横250×厚さ10mm)にテープで固定し、バーコーターを用いて、コート液をコートした。その後、支持体をガラス板から取り外し、60℃の恒温送風乾燥機中で20分間乾燥させて、水酸化カルシウム担持シート(試験体)を制作した。なお、下記定量や評価に用いる部分を除外したシートに、接着層となる市販の接着シートを貼付し、接着層を有するシートを制作した。
 制作した試験体について、水酸化カルシウム量(要件Ia)を求めた。具体的には、以下の方法にて行った。
(水酸化カルシウム量の定量)
 純水500ml中に裁断した試験体約2gを加え、12時間スターラーで撹拌した。フェノールフタレインを指示薬として、0.1mol/Lの塩酸で滴定した。その滴定量より、有効アルカリとしての水酸化カルシウムの付着量を算出した。
 また、制作した試験体について、湿度60%RH、温度30℃、炭酸ガス濃度2%の炭酸ガス養生装置内に5日間放置し、炭酸化後の水酸化カルシウム残存量及び残存率(要件Ib,Ic)を確認した。具体的には、以下の方法にて行った。
(炭酸化後の水酸化カルシウム残存量及び残存率(5日間))
 上記条件で炭酸ガス養生装置内に5日間放置した試験体について、上記要件(Ia)と同様の方法で水酸化カルシウム量(残存量)を定量した(CA1)。続いて、上記制作直後の試験体の水酸化カルシウム量をCA0として、以下の式により、炭酸化後の水酸化カルシウム残存率を求めた。
 炭酸化後の水酸化カルシウム残存率(5日間)(%)=(CA1)/(CA0)×100
(3)抗ウイルス特性の評価
 制作した試験体について、湿度60%RH、温度30℃、炭酸ガス濃度2%の炭酸ガス養生装置内に5日間放置した後の抗ウイルス性を確認した。繊維製品の抗ウイルス性試験(JIS L 1922)に準拠し、ウイルス感染価を「プラーク法」により測定した。使用ウイルスには、「A型インフルエンザウイルス」を用いた。具体的な方法を以下に示す。
1)測定方法
 1)試験体(質量0.4g)をバイアル瓶に入れた。
 2)ウイルス液0.2mlを接種し、25℃で2時間放置した。
 3)SCDLP培地20mlを加え、試験体からウイルスを洗い出した。
 4)洗い出した液のウイルス感染価(感染性ウイルス量)を、プラーク法で測定した。
2)抗ウイルス効果の確認
 抗ウイルス活性値により、以下のように判断した。
        抗ウイルス活性値<2.0・・・効果低い(×)
    3.0>抗ウイルス活性値≧2.0・・・効果あり(○)
        抗ウイルス活性値≧3.0・・・十分な効果あり(◎)
 以上の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例I-1~I-6は、炭酸ガス下に5日間放置後の水酸化カルシウムの残存量及び残存率も優れており、抗ウイルス性が長時間持続することがわかる。また、シート厚は薄く柔軟性も良好であり、円弧状のドアノブにも問題なく貼付することができた。
 一方、比較例I-1及びI-2のように、水酸化カルシウムの初期担持量が少なすぎると、初期に適正な粒径の水酸化カルシウムを坦持していても、炭酸化の進みが早く、所望の炭酸化後の水酸化カルシウム残存率を担保できず、十分な抗ウイルス性を持続できない。また、比較例I-3及びI-4のように、担持する水酸化カルシウム粒子の径が小さすぎると、初期に十分な量の水酸化カルシウムを坦持していても、炭酸化の進みが早く、所望の炭酸化後の水酸化カルシウム残存率を担保できず、抗ウイルス性を持続できない。さらに、比較例I-5のように、支持体の吸水性が高すぎると、初期に適正な粒径かつ十分な量の水酸化カルシウムを坦持していても、炭酸化の進みが早く、所望の炭酸化後の水酸化カルシウム残存率を担保できず、抗ウイルス性を持続できない。
[(II)本発明の抗ウイルス性不織布の評価]
 本発明の抗ウイルス性不織布を制作し、抗ウイルス性について評価した。
(1)原材料
 1)コート液
 以下のコート液AII~FIIを調製した。
 コート液AII:消石灰xII2質量%+ポリビニルアルコール(PVA)4質量%+残部水
 コート液BII:消石灰xII5質量%+PVA4質量%+残部水
 コート液CII:消石灰xII8質量%+PVA4質量%+残部水
 コート液DII:消石灰xII0.5質量%+PVA4質量%+残部水
 コート液EII:消石灰xII15質量%+PVA4質量%+残部水
 コート液FII:消石灰yII2質量%+PVA4質量%+残部水
 なお、消石灰xIIのメジアン径(D50)は5.0μmであり、消石灰yIIのメジアン径(D50)は0.5μmである。メジアン径(D50)の算出は、分散媒体としてエタノールを使用し、レーザー回折式粒度分析計を用いて体積基準の粒度分布を測定した結果から算出した。
 また、ポリビニルアルコールは、和光純薬工業製「ポリビニルアルコール500」(重合度約500)を使用した。
 水は、イオン交換水を使用した。
 2)不織布
 以下の不織布を用いた。なお、目付量については、JIS L 1096(織物及び編物の生地試験方法)の単位面積当たりの質量の測定方法に準じて測定した。
Figure JPOXMLDOC01-appb-T000003
(2)製造方法
 不織布をガラス板(縦300×横250×厚さ10mm)にテープで固定し、バーコーターを用いて、コート液をコートした。その後、不織布をガラス板から取り外し、60℃の恒温送風乾燥機中で20分間乾燥させて、水酸化カルシウム担持不織布(試験体)を制作した。
 制作した試験体について、水酸化カルシウム量(要件IIa)、通気度(要件IIb)を求めた。具体的には、以下の方法にて行った。
(水酸化カルシウム量の定量)
 純水500ml中に裁断した試験体約2gを加え、12時間スターラーで撹拌した。フェノールフタレインを指示薬として、0.1mol/Lの塩酸で滴定した。その滴定量より、有効アルカリとしての水酸化カルシウムの付着量を算出した。
(通気度)
 JIS L 1096(織物及び編物の生地試験方法)の通気性の測定方法に準じて測定した。
 また、制作した試験体について、湿度60%RH、温度30℃、炭酸ガス濃度2%の炭酸ガス養生装置内に12時間放置し、炭酸化後の水酸化カルシウム残存量及び残存率(要件IIc,IId)を確認した。具体的には、以下の方法にて行った。
(炭酸化後の水酸化カルシウム残存量及び残存率(12時間))
 上記条件で炭酸ガス養生装置内に12時間放置した試験体について、上記要件(IIa)と同様の方法で水酸化カルシウム量(残存量)を定量した(CA1II)。続いて、上記制作直後の試験体の水酸化カルシウム量をCA0IIとして、以下の式により、炭酸化後の水酸化カルシウム残存率を求めた。
 炭酸化後の水酸化カルシウム残存率(12時間)(%)=(CA1II)/(CA0II)×100
(3)抗ウイルス特性の評価
 制作した試験体について、湿度60%RH、温度30℃、炭酸ガス濃度2%の炭酸ガス養生装置内に12時間放置した後の抗ウイルス性を確認した。繊維製品の抗ウイルス性試験(JIS L 1922)に準拠し、ウイルス感染価を「プラーク法」により測定した。使用ウイルスには、「A型インフルエンザウイルス」を用いた。具体的な方法を以下に示す。
1)測定方法
 1)試験体(質量0.4g)をバイアル瓶に入れた。
 2)ウイルス液0.2mlを接種し、25℃で2時間放置した。
 3)SCDLP培地20mlを加え、試験体からウイルスを洗い出した。
 4)洗い出した液のウイルス感染価(感染性ウイルス量)を、プラーク法で測定した。
2)抗ウイルス効果の確認
 抗ウイルス活性値により、以下のように判断した。
        抗ウイルス活性値<2.0・・・効果低い(×)
    3.0>抗ウイルス活性値≧2.0・・・効果あり(○)
        抗ウイルス活性値≧3.0・・・十分な効果あり(◎)
 以上の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、実施例II-1~II-6は、通気性に優れると共に、炭酸ガス下に12時間放置後の水酸化カルシウムの残存量及び残存率も優れており、抗ウイルス性が長時間持続することがわかる。
 一方、比較例II-1及びII-2のように、水酸化カルシウムの初期担持量が少なすぎると、炭酸化の進みが早く、水酸化カルシウムの残存量及び残存率が低く、十分な抗ウイルス性を持続できない。また、比較例II-3及びII-4のように、水酸化カルシウムの初期担持量が多すぎると、通気性が悪く、マスクとしての基本的な性能を担保できない。さらに、比較例II-5及びII-6のように、担持する水酸化カルシウム粒子の径が小さすぎると、初期に十分な量の炭酸カルシウムを坦持していても、炭酸化の進みが早く、所望の炭酸化後の水酸化カルシウム残存率を担保できず、抗ウイルス性を持続できない。
[(III)本発明の抗ウイルス性繊維成形体の評価]
 <スラリーの有効塩素濃度の測定>
 スラリー1gを検水として使用した。検水に50%酢酸水溶液を添加して弱酸性(pH4~6)にした。次いで、10%ヨウ化カリウム10gを加え、ヨウ素を遊離させた(反応式1)。
Cl+KI→I+KCl・・・(反応式1)
 次いで、前記遊離させたヨウ素の量を、デンプンを指示薬として、還元剤であるチオ硫酸ナトリウム溶液で滴定して求めた(反応式2)。
+2Na→2NaI+Na・・・(反応式2)
 その後、求めたヨウ素量のモル量とスラリー中の塩素量が等モル量であることから、有効塩素濃度を算出した。
 <抗ウイルス性繊維成形体の有効塩素濃度の測定>
 純水500ml中に約10mm×10mmに裁断した繊維成形体5gを加え、20℃で5時間スターラーで撹拌したものを検水とした以外は、上記スラリーの有効塩素濃度の測定と同様にして検水中の有効塩素濃度を算出した。前記検水中の有効塩素濃度と、検水の製造に使用した純水と繊維成形体の質量から、抗ウイルス性繊維成形体の有効塩素濃度を算出した。
 <抗ウイルス活性の評価>
 繊維製品の抗ウイルス性試験(JIS L 1922)に準拠し、ウイルス感染価を「プラーク法」により測定することで行った。使用ウイルスは、「A型インフルエンザウイルス」とした。試験方法は以下のとおりである。
(評価試料のウイルス感染価の測定)
1.所定量の評価試料(繊維成形体の場合は0.4g、スラリーの場合は0.1g)を滅菌した50mLバイアル瓶に入れ、オートクレーブにて滅菌する。
2.ウイルス液0.2mlを前記評価試料に接種し、25℃で2時間放置する。
3.SCDLP培地20mlを前記評価試料に加え、試料からウイルスを洗い出す。
4.ウイルスを洗い出した後の評価試料のウイルス感染価V(感染性ウイルス量)を、プラーク法で測定する。
(対照試料のウイルス感染価の測定)
 前記評価試料のウイルス感染価の測定において、評価試料に代えて対照試料(アズワン株式会社ポリエチレンシート)を用いることで、対照試料のウイルス感染価Vを測定した。
(抗ウイルス効果の評価)
 上記方法により求めた試料のウイルス感染価Vと、対照試料のウイルス感染価Vから、以下の式1によって評価試料の抗ウイルス活性値Mvを算出した。
Mv=log(V)-log(V)・・・式1
算出された抗ウイルス活性値により、評価試料の抗ウイルス活性を以下のように判断した。
抗ウイルス活性値<2.0・・・効果低い(×)
3.0>抗ウイルス活性値≧2.0・・・高い効果あり(○)
抗ウイルス活性値≧3.0・・・非常に高い効果あり(◎)
 <スラリーの抗ウイルス活性持続性試験>
 スラリー試料を直径70mmのガラス製シャーレに20ml測りとり、温度30℃、湿度60%、炭酸ガス濃度2%の恒温恒湿器中に入れた。シャーレ中のスラリーは1時間毎にガラス棒で撹拌した。72時間後、前記の方法により抗ウイルス活性の評価を行った。
 <繊維成形体の抗ウイルス活性持続性試験>
 繊維成形体試料を温度30℃、湿度60%、炭酸ガス濃度2%の恒温恒湿器中に72時間放置した後、前記の方法により抗ウイルス活性の評価を行った。
 <繊維成形体中の水酸化カルシウム含有量の測定>
 純水500ml中に10mm×10mmに裁断した繊維成形体片5gを加え、5時間スターラーで撹拌して、測定試料とした。その後、測定試料中に繊維成形体片が存在する状態でフェノールフタレインを指示薬として、0.1mol/Lの塩酸で滴定し、その滴定量より、測定試料中の水酸化カルシウム量を算出し、これから繊維成形体に担持された水酸化カルシウム量を算出した。
 <スラリー中の水酸化カルシウム濃度の測定>
 スラリーを測定試料、フェノールフタレインを指示薬として、0.1mol/Lの塩酸で滴定し、その滴定量より、測定試料中の水酸化カルシウム量を算出した。
 <スラリー中の水酸化カルシウムの平均粒子径の測定>
 レーザ回折式粒度分布測定装置(株式会社島津製作所製SALD-2300型)を使用し、レーザ回折/散乱法によって平均体積粒径d50を測定した。
 <スラリーの粘度測定>
 音叉振動式粘度計(株式会社エー・アンド・デイ社製SV-10A型)を使用して、25℃での粘度を測定した。
 試験に使用した材料は以下のとおりである。
(A)水酸化カルシウムスラリー:
株式会社トクヤマ製、平均粒子径d50:0.50μm、水酸化カルシウム:45質量%、水:55質量%
(B)次亜塩素酸カルシウム:
富士フィルム和光純薬株式会社製高度さらし粉
(C)高分子分散剤溶液:
三洋化成工業株式会社製ポリカルボン酸型アニオン界面活性剤、品名:ST-491、固形分(高分子分散剤)濃度:40質量%、水:60質量%
(D)バインダー:
株式会社クラレ製ポリビニルアルコール、製品名:クラレポバール5-98、けん化度:98~99mol%
(E)繊維成形体:
三和製紙株式会社製不織布、材質:ポリエステル、厚さ:0.08mm、目付量:30g/m
 <実施例III-1>
 水酸化カルシウムスラリー45g、高分子分散剤溶液2.5g、バインダー5g、水47.5gを25℃で2時間撹拌することで水性水酸化カルシウム混合物を得た。次いで、得られた水性水酸化カルシウム混合物に対して、次亜塩素酸塩として次亜塩素酸カルシウムを0.05g添加し、25℃で15分撹拌することで繊維処理用スラリーを得た。各成分の配合量を表5に、繊維処理用スラリーの物性を表6に示す。次いで、得られた繊維処理用スラリーを繊維成形体に刷毛で塗工した後、60℃で20分間乾燥して水を除去し、抗ウイルス性繊維成形体を得た。得られた抗ウイルス性繊維成形体の、有効塩素濃度の測定、抗ウイルス活性の評価、抗ウイルス活性持続性試験、水酸化カルシウム含有量の測定を行った。結果を表7に示す。
 <実施例III-2>
 繊維処理用スラリーの各成分の配合量が表5に示す通りになるように調整した以外は、実施例1と同様に抗ウイルス性繊維成形体を得て、得られた抗ウイルス性繊維成形体の有効塩素濃度の測定、抗ウイルス活性の評価、抗ウイルス活性持続性試験、水酸化カルシウム含有量の測定を行った。結果を表7に示す。また、繊維処理用スラリーの物性を表6に示す。
 <比較例III-1>
 繊維処理用スラリーとして次亜塩素酸カルシウム水溶液(有効塩素濃度0.05質量%、バインダー5質量%)を使用した以外は、実施例1と同様に抗ウイルス性繊維成形体を得て、得られた抗ウイルス性繊維成形体の有効塩素濃度の測定、抗ウイルス活性の評価、抗ウイルス活性持続性試験、水酸化カルシウム含有量の測定を行った。結果を表7に示す。また、繊維処理用スラリーの物性を表6に示す。
 <比較例III-2>
 繊維処理用スラリーとして水性水酸化カルシウム混合物(水酸化カルシウム3質量%、高分子分散剤1質量%、バインダー5質量%)を使用した以外は、実施例1と同様に抗ウイルス性繊維成形体を得て、得られた抗ウイルス性繊維成形体の抗ウイルス活性の評価、抗ウイルス活性持続性試験、水酸化カルシウム含有量の測定を行った。結果を表7に示す。また、繊維処理用スラリーの物性を表6に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 実施例III-1、III-2の抗ウイルス性繊維成形体について、走査型電子顕微鏡/エネルギー分散型X線分光装置(日本電子株式会社社製JCM-7000型)により、アルカリ土類金属水酸化物が繊維に付着していることを確認した。
 試験結果について、本発明の抗ウイルス性繊維成形体である実施例1、2は、水酸化カルシウムを配合していない繊維成形体(比較例III-1)及び次亜塩素酸塩を配合していない繊維成形体(比較例III-2)よりも高い抗ウイルス活性を長期間にわたって保持していた。
[(IV)本発明の抗ウイルス剤の評価]
 抗ウイルス剤の有効塩素濃度の測定、水酸化カルシウム濃度の測定、水酸化カルシウムの平均粒子径の測定、粘度測定については、上記「(III)本発明の抗ウイルス性繊維成形体の評価」のスラリーについての測定と同様に行った。
 <抗ウイルス活性の評価>
 繊維製品の抗ウイルス性試験(JIS L 1922)に準拠し、ウイルス感染価を「プラーク法」により測定することで行った。使用ウイルスは、「A型インフルエンザウイルス」とした。試験方法は以下のとおりである。
(評価試料のウイルス感染価の測定)
1.スラリー状または液状の評価試料0.1gを滅菌した50mLバイアル瓶に入れ、オートクレーブにて滅菌する。
2.ウイルス液0.2mlを前記評価試料に接種し、25℃で2時間放置する。
3.SCDLP培地20mlを前記評価試料に加え、試料からウイルスを洗い出す。
4.ウイルスを洗い出した後の評価試料のウイルス感染価V(感染性ウイルス量)を、プラーク法で測定する。
(対照試料のウイルス感染価の測定)
 前記評価試料のウイルス感染価の測定において、評価試料に代えて対照試料(アズワン株式会社ポリエチレンシート)を用いることで、対照試料のウイルス感染価Vを測定した。
(抗ウイルス効果の評価)
 上記方法により求めた試料のウイルス感染価Vと、対照試料のウイルス感染価Vから、以下の式1によって評価試料の抗ウイルス活性値Mvを算出した。
Mv=log(V)-log(V)・・・式1
算出された抗ウイルス活性値により、評価試料の抗ウイルス活性を以下のように判断した。
抗ウイルス活性値<2.0・・・効果低い(×)
3.0>抗ウイルス活性値≧2.0・・・高い効果あり(○)
抗ウイルス活性値≧3.0・・・非常に高い効果あり(◎)
 <抗ウイルス活性持続性試験>
 試料を直径70mmのガラス製シャーレに20ml測りとり、温度30℃、湿度60%、炭酸ガス濃度2%の恒温恒湿器中に入れた。シャーレ中のスラリーは1時間毎にガラス棒で撹拌した。72時間後、前記の方法により抗ウイルス活性の評価を行った。
 試験に使用した材料((A)水酸化カルシウムスラリー、(B)次亜塩素酸カルシウム、(C)高分子分散剤溶液、(D)バインダー材)は、「(III)本発明の抗ウイルス性繊維成形体の評価」と同様のものを用いた。
 <実施例IV-1>
 水酸化カルシウムスラリー90g、高分子分散剤溶液5g、バインダー材5gを25℃で2時間撹拌することで水性水酸化カルシウム混合物を得た。次いで、得られた水性水酸化カルシウム混合物に対して、次亜塩素酸塩として次亜塩素酸カルシウムを0.015g添加し、25℃で15分撹拌することで水系スラリーである抗ウイルス剤を得た。各成分の含有量を表8に示す。得られた抗ウイルス剤の水酸化カルシウム濃度および有効塩素濃度の測定、粘度の測定、抗ウイルス活性の評価、抗ウイルス活性持続性試験を行った。結果を表9に示す。
 <実施例IV-2>
 水酸化カルシウムスラリー44g、高分子分散剤溶液2.5g、バインダー材5g、水48.5gを25℃で2時間撹拌することで水性水酸化カルシウム混合物を得た。次いで、得られた水性水酸化カルシウム混合物に対して、次亜塩素酸塩として次亜塩素酸カルシウムを0.015g添加し、25℃で15分撹拌することで水系スラリーである抗ウイルス剤を得た。各成分の含有量を表8に示す。得られた抗ウイルス剤の水酸化カルシウム濃度および有効塩素濃度の測定、粘度の測定、抗ウイルス活性の評価、抗ウイルス活性持続性試験を行った。結果を表9に示す。
 <実施例IV-3~IV-5>
 各成分の含有量を表8に示すとおりになるように調整した以外は、実施例IV-2と同様に水系スラリーである抗ウイルス剤を得て、得られた抗ウイルス剤の水酸化カルシウム濃度および有効塩素濃度の測定、粘度の測定、抗ウイルス活性の評価、抗ウイルス活性持続性試験を行った。結果を表9に示す。
 <比較例IV-1>
 次亜塩素酸カルシウムを、有効塩素濃度が実施例IV-1の抗ウイルス剤と同等となるように水に溶解させた次亜塩素酸カルシウム水溶液の抗ウイルス活性と抗ウイルス活性持続性試験を行った。結果を表9に示す。
 <比較例IV-2>
 実施例IV-3で使用した水性水酸化カルシウム混合物の抗ウイルス活性の評価と抗ウイルス活性持続性試験を行った。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 実施例IV-1~IV-5の抗ウイルス剤について、水酸化カルシウムの平均粒子径d50を測定したところ、全て0.1~1.0μmの範囲内であった。
 試験結果について、本発明の抗ウイルス剤である実施例IV-1~IV-5は、水酸化カルシウムを含有していない次亜塩素酸カルシウム水溶液(比較例IV-1)、および次亜塩素酸カルシウムを含有していない水性水酸化カルシウム混合物(比較例IV-2)よりも高い抗ウイルス性をより長期間保持することが可能であった。
 本発明の抗ウイルス性繊維基材は、ウイルス感染対策シート等に用いることができることから、産業上有用である。
 1  抗ウイルス性シート
 2  紙(支持体)
 3  抗ウイルス層
 4  接着層
 5  強粘着層
 6  基材
 7  弱粘着層

 

Claims (17)

  1.  アルカリ土類金属水酸化物を含有することを特徴とする抗ウイルス性繊維基材。
  2.  紙の支持体上に、水酸化カルシウム粒子及び樹脂バインダーを含む抗ウイルス層を有する抗ウイルス性シートであって、
     下記(Ia)及び(Ib)の要件を満足することを特徴とする請求項1記載の抗ウイルス性繊維基材。
    (Ia)前記水酸化カルシウム粒子の担持量が1.0~50.0g/m
    (Ib)湿度60%RH、温度30℃、炭酸ガス濃度2%の炭酸ガス養生装置内に5日間放置した際の水酸化カルシウム残存率が20%以上
  3.  さらに下記(Ic)の要件を満足することを特徴とする請求項2記載の抗ウイルス性繊維基材。
    (Ic)湿度60%RH、温度30℃、炭酸ガス濃度2%の炭酸ガス養生装置内に5日間放置した際の水酸化カルシウム残存量が0.2g/m以上
  4.  厚さが、0.05~3.0mmであることを特徴とする請求項2又は3記載の抗ウイルス性繊維基材。
  5.  前記支持体の抗ウイルス層と反対側の面に、接着層を有することを特徴とする請求項2~4のいずれか記載の抗ウイルス性繊維基材。
  6.  前記接着層が、前記支持体側から、強粘着層、基材及び着脱可能な弱粘着層の順に構成された層であることを特徴とする請求項5記載の抗ウイルス性繊維基材。
  7.  前記弱粘着層の接着力が、0.1~2.0N/20mmであることを特徴とする請求項6記載の抗ウイルス性繊維基材。
  8.  請求項1記載の抗ウイルス性繊維基材を製造する方法であって、
     クレム吸水度が5.0mm以下で目付が10~200g/mであるパルプ繊維紙の支持体に対して、メジアン径が0.5~10.0μmの水酸化カルシウム粒子及び樹脂バインダーを含み、前記水酸化カルシウムの濃度が1.0~50.0質量%の分散液を塗布する塗布工程と、
     前記分散液を塗布した支持体を乾燥する乾燥工程と、
    を有することを特徴とする抗ウイルス性繊維基材の製造方法。
  9.  水酸化カルシウム粒子を担持した抗ウイルス性不織布であって、
     下記(IIa)~(IIc)の要件を満足することを特徴とする請求項1記載の抗ウイルス性繊維基材。
    (IIa)前記水酸化カルシウム粒子の担持量が0.3~5.0g/m
    (IIb)通気度が30~150cc/cm/sec
    (IIc)湿度60%RH、温度30℃、炭酸ガス濃度2%の炭酸ガス養生装置内に12時間放置した際の水酸化カルシウム残存率が30%以上
  10.  さらに下記(IId)の要件を満足することを特徴とする請求項9記載の抗ウイルス性繊維基材。
    (IId)湿度60%RH、温度30℃、炭酸ガス濃度2%の炭酸ガス養生装置内に12時間放置した際の水酸化カルシウム残存量が0.09g/m以上
  11.  マスク本体及び耳掛け部を備えたマスクであって、
     前記マスク本体が、請求項9又は10記載の抗ウイルス性繊維基材を具備していることを特徴とする抗ウイルス性マスク。
  12.  前記マスク本体は、不織布からなる繊維基材が2層以上重畳されて構成されており、
     顔に接する側を第1層とした場合、第2層以降の層に、前記抗ウイルス性繊維基材が設けられていることを特徴とする請求項11記載の抗ウイルス性マスク。
  13.  前記重畳された不織布からなる繊維基材が、その周囲を熱溶着又は超音波溶着されて一体化されていることを特徴とする請求項12記載の抗ウイルス性マスク。
  14.  請求項1記載の抗ウイルス性繊維基材を製造する方法であって、
     単繊維径が0.05~1.0μmのポリオレフィン又はポリエステルからなり、目付が10~50g/mである不織布に対して、メジアン径が1.0~10.0μmの水酸化カルシウム粒子及びバインダー樹脂を含み、前記水酸化カルシウムの濃度が1.0~10.0質量%の分散液を塗布する塗布工程と、
     前記分散液を塗布した不織布を乾燥する乾燥工程と、
    を有することを特徴とする抗ウイルス性繊維基材の製造方法。
  15.  次亜塩素酸塩とアルカリ土類金属水酸化物とを含有し、有効塩素濃度が0.01~5質量%であることを特徴とする請求項1記載の抗ウイルス性繊維基材。
  16.  前記アルカリ土類金属水酸化物の含有量が0.5~20質量%であることを特徴とする請求項15記載の抗ウイルス性繊維基材。
  17.  請求項1記載の抗ウイルス性繊維基材を製造する方法であって、
     次亜塩素酸塩と、アルカリ土類金属水酸化物と、バインダーと、水とを含むスラリーを準備する工程と、前記スラリーを繊維成形体に含浸させる工程、とを含む、抗ウイルス性繊維基材の製造方法。
PCT/JP2021/032047 2020-09-11 2021-09-01 抗ウイルス性繊維基材、及びその製造方法 WO2022054653A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2020-152485 2020-09-11
JP2020152484A JP2022046874A (ja) 2020-09-11 2020-09-11 抗ウイルス剤
JP2020152485A JP2022046875A (ja) 2020-09-11 2020-09-11 抗ウイルス性繊維成形体
JP2020-152484 2020-09-11
JP2020-156922 2020-09-18
JP2020156922A JP2022050798A (ja) 2020-09-18 2020-09-18 抗ウイルス性不織布、及びこれを用いた抗ウイルス性マスク
JP2020-171259 2020-10-09
JP2020171259A JP2022062998A (ja) 2020-10-09 2020-10-09 抗ウイルス性シート、及びその製造方法

Publications (1)

Publication Number Publication Date
WO2022054653A1 true WO2022054653A1 (ja) 2022-03-17

Family

ID=80631672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032047 WO2022054653A1 (ja) 2020-09-11 2021-09-01 抗ウイルス性繊維基材、及びその製造方法

Country Status (2)

Country Link
TW (1) TW202218875A (ja)
WO (1) WO2022054653A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288676A (ja) * 2000-03-31 2001-10-19 Kao Corp 繊維製品用殺菌剤組成物
JP2010209490A (ja) * 2009-03-10 2010-09-24 Clear Office Kk 抗菌性繊維、抗菌性フィルタおよび製造方法
US20120141568A1 (en) * 2010-12-03 2012-06-07 The Clorox Company Fibrous substrate with a solid hypohalite precipitate formed therein and process of making
CN104396965A (zh) * 2014-11-11 2015-03-11 张家港互益染整有限公司 一种反应型卤胺抗菌剂及其制备方法和应用
JP2015093708A (ja) * 2013-11-13 2015-05-18 昭和電工パッケージング株式会社 食品容器用抗菌・低臭性蓋材
WO2016194284A1 (ja) * 2015-05-29 2016-12-08 王子ホールディングス株式会社 金属酸化物および/または金属水酸化物含有シート
JP2018029527A (ja) * 2016-08-25 2018-03-01 日清フーズ株式会社 天ぷら粉及び天ぷらバッター
JP3222512U (ja) * 2019-04-03 2019-08-08 茂明 丸尾 壁紙及び壁
JP2019137962A (ja) * 2018-02-09 2019-08-22 日本製紙株式会社 乾式不織布

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288676A (ja) * 2000-03-31 2001-10-19 Kao Corp 繊維製品用殺菌剤組成物
JP2010209490A (ja) * 2009-03-10 2010-09-24 Clear Office Kk 抗菌性繊維、抗菌性フィルタおよび製造方法
US20120141568A1 (en) * 2010-12-03 2012-06-07 The Clorox Company Fibrous substrate with a solid hypohalite precipitate formed therein and process of making
JP2015093708A (ja) * 2013-11-13 2015-05-18 昭和電工パッケージング株式会社 食品容器用抗菌・低臭性蓋材
CN104396965A (zh) * 2014-11-11 2015-03-11 张家港互益染整有限公司 一种反应型卤胺抗菌剂及其制备方法和应用
WO2016194284A1 (ja) * 2015-05-29 2016-12-08 王子ホールディングス株式会社 金属酸化物および/または金属水酸化物含有シート
JP2018029527A (ja) * 2016-08-25 2018-03-01 日清フーズ株式会社 天ぷら粉及び天ぷらバッター
JP2019137962A (ja) * 2018-02-09 2019-08-22 日本製紙株式会社 乾式不織布
JP3222512U (ja) * 2019-04-03 2019-08-08 茂明 丸尾 壁紙及び壁

Also Published As

Publication number Publication date
TW202218875A (zh) 2022-05-16

Similar Documents

Publication Publication Date Title
CN106455553B (zh) 表面长期消毒用抗微生物涂层
JP2011042642A (ja) 抗ウイルス効果を有した持続性繊維製品用抗菌剤
JP2005298507A (ja) 抗菌組成物ならびにその製造および使用方法
Feng et al. Ag/Zn galvanic couple cotton nonwovens with breath-activated electroactivity: a possible antibacterial layer for personal protective face masks
JP3218767U (ja) 抗菌性不織布
WO2006103960A1 (ja) アレルゲン失活剤
KR20110104273A (ko) 항바이러스 효과를 가진 지속성 섬유 제품용 항균제 및 그 사용 방법
US20240081442A1 (en) Antipathogenic face mask
BR112016021593A2 (pt) Composição redutora de alergênicos, agente pulverizador, agente de tratamento superficial, método redutor de alergênicos, estrutura têxtil, e material arquitetônico para interiores
JP4968899B2 (ja) 抗アレルゲン組成物
JP2008156329A (ja) 水性殺菌消毒剤
JP2007211238A (ja) 水分散体、表面被覆処理剤、木材処理剤、床ワックス、風路表面処理剤、繊維処理剤、および、塗料
Assis et al. Polypropylene modified with Ag-based semiconductors as a potential material against SARS-CoV-2 and other pathogens
WO2022054653A1 (ja) 抗ウイルス性繊維基材、及びその製造方法
JP2009263820A (ja) 繊維製品用防汚抗菌剤及びその使用方法
ES2321923T3 (es) Uso de sales metalicas del gluconato para la fabricacion de sustratos con actividad antimicrobiana.
JP2012529577A (ja) 新規製品
JP6739772B2 (ja) 抗菌・抗ウイルス組成物、水溶液、石鹸類、衛生用品、住居用洗剤、台所用洗剤、衣料用洗剤、住居用抗菌・抗ウイルス剤、台所用抗菌・抗ウイルス剤、衣料用抗菌・抗ウイルス剤、化粧品、ウエットティッシュおよびおしぼり
JP2023522184A (ja) 抗病原性フェイスマスク
JP2011050874A (ja) 光触媒セラミックス
JP2019033784A (ja) ウエットティッシュ
JP5968964B2 (ja) 抗菌及び/または抗ウイルス剤による物品の表面処理方法
JP2004041677A (ja) 湿潤性ワイパー
JP2002338481A (ja) 銀系抗菌剤
JP2022046875A (ja) 抗ウイルス性繊維成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866612

Country of ref document: EP

Kind code of ref document: A1