WO2021235087A1 - 油井管用ステンレス継目無鋼管およびその製造方法 - Google Patents
油井管用ステンレス継目無鋼管およびその製造方法 Download PDFInfo
- Publication number
- WO2021235087A1 WO2021235087A1 PCT/JP2021/012700 JP2021012700W WO2021235087A1 WO 2021235087 A1 WO2021235087 A1 WO 2021235087A1 JP 2021012700 W JP2021012700 W JP 2021012700W WO 2021235087 A1 WO2021235087 A1 WO 2021235087A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- content
- steel pipe
- steel
- cao
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/25—Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/007—Heat treatment of ferrous alloys containing Co
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
- C21D9/085—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to stainless seamless steel pipes for oil well pipes used in oil wells of crude oil or natural gas, gas wells (hereinafter, simply referred to as oil wells), and methods for manufacturing the same, and in particular, when the yield stress YS is 655 MPa or more.
- Patent Document 1 describes a component-based 13% Cr-based martensitic stainless steel pipe containing an extremely low C amount of 0.015% or less and 0.03% or more of Ti in mass%. It is described that the steel pipe has a high strength with a yield stress of 95 ksi class and a low hardness of less than 27 in HRC, and has excellent SSC resistance.
- Patent Document 2 describes a martensitic stainless steel satisfying 6.0 ⁇ Ti / C ⁇ 10.1 because Ti / C has a correlation with the value obtained by subtracting the yield stress from the tensile stress. ing. According to the technique described in Patent Document 2, a steel in which the value obtained by subtracting the yield stress from the tensile stress is 20.7 MPa or more and the variation in hardness that lowers the SSC resistance is suppressed can be obtained.
- Patent Document 3 in mass%, C: 0.15 to 0.35%, Si: 0.1 to 1.5%, Mn: 0.1 to 2.5%, P: 0.025. % Or less, S: 0.004% or less, sol. Al: 0.001 to 0.1%, Ca: 0.0005 to 0.005%, Ca-based non-metal inclusion composition of steel, composite oxide of Ca and Al and hardness of steel by HRC The specified steels for oil wells with excellent sulfide stress corrosion cracking resistance are described.
- the amount of Mo in the steel is specified by Mo ⁇ 2.3-0.89Si + 32.2C, and the metal structure is mainly tempered martensite, charcoal precipitates during tempering, and fine precipitation during tempering. Described are martensitic stainless steels composed of intermetallic compounds such as the Raves phase and the ⁇ phase. According to the technique described in Patent Document 4, the 0.2% proof stress of the steel has a high strength of 860 MPa or more, and it is possible to have excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance. ..
- Patent Document 1 5% NaCl aqueous solution: In an atmosphere (H 2 S 0.10bar) was adjusted to pH 3.5, sulfide stress corrosion cracking resistance based on the condition that the load stress of 655MPa is to be able to hold ing.
- a 20% NaCl aqueous solution H 2 S: 0.03 bar, CO 2 bar.
- Patent Document 3 a 5% NaCl aqueous solution (H 2 S:: In 1 bar), it is said that the steel has sulfide stress corrosion crack resistance under the condition that a stress of 85% of the minimum yield stress is applied.
- Patent Document 4 25% NaCl aqueous solution (H 2 S:.
- Patent Documents 1 to 4 do not study sulfide stress corrosion cracking resistance in an atmosphere other than the above, and are said to have sulfide stress corrosion cracking resistance that can withstand the harsher corrosion environment of recent years. Is hard to say.
- An object of the present invention is to provide a stainless seamless steel pipe for an oil well pipe having a yield stress of 655 MPa (95 ksi) or more and having excellent sulfide stress corrosion cracking resistance and a method for manufacturing the same.
- excellent resistance to sulfide stress corrosion cracking resistance is, 0.1 bar of H 2 S (CO 2 bal. ) In 25 wt% NaCl + 0.5 mass% CH 3 COOH solution saturated with CH 3 Immerse the test piece in a test solution (25 ° C.) with COONa added to pH 4.0, set the immersion time to 720 hours, add 90% of the breakdown stress as load stress, and perform the test after the test. It shall mean the case where cracking does not occur in one piece.
- the present inventors have found that in order to achieve the above object, a basic composition of 13% Cr stainless steel, CO 2, Cl -, further sulfide stress corrosion cracking resistance in a corrosive environment containing H 2 S ( The factors influencing SSC resistance) were enthusiastically investigated. As a result, each component is contained in a predetermined content range, and by regulating inclusions that are the starting point of SSC, the desired strength is obtained and CO 2 , Cl ⁇ , and H 2 S are contained. It has been found that a stainless seamless steel pipe for an oil well pipe having excellent SSC resistance can be obtained in a corrosive atmosphere and in an environment where a stress near the yield stress is applied.
- the present invention has been completed by further studying based on the above findings. That is, the gist of the present invention is as follows.
- C 0.10% or less
- Si 0.5% or less
- Mn 0.05 to 0.50%
- P 0.030% or less
- S 0.005% or less
- O 0.0040% or less
- Cr 0.0.0 to 14.0%
- Mo 0.5-2.8%
- Al 0.1% or less
- V 0.005 to 0.2%
- N 0.10% or less
- Cu 0.01-1.0%
- Co 0.01-1.0%
- Ca A component composition containing 0.0005 to 0.0030% and the balance consisting of Fe and unavoidable impurities.
- Stainless steel seamless steel pipe for oil country tubular goods having a yield stress of 655 MPa or more.
- (CaO) and (Al 2 O 3 ) in the formula (1) are mass% of CaO and Al 2 O 3 in the non-metal inclusions in the steel, respectively.
- composition of the components is further increased by mass%.
- Ti 0.50% or less
- Nb 0.50% or less
- W 1.0% or less
- Ta 0.1% or less
- Zr The stainless seamless steel pipe for oil country tubular goods according to [1], which contains one or more selected from 0.20% or less.
- the composition of the components is further increased by mass%.
- REM 0.010% or less
- Mg 0.010% or less
- B 0.010% or less
- Sb 0.20% or less
- Sn The stainless seamless steel pipe for oil country tubular goods according to [1] or [2], which contains one or more selected from 0.20% or less.
- the present invention has excellent sulfide stress corrosion cracking resistance (SSC resistance) and yield stress (YS): 655 MPa (YS) in a corrosive environment containing CO 2 , Cl ⁇ , and H 2 S. It is possible to obtain a stainless seamless steel pipe for an oil well pipe having a high strength of 95 ksi) or more.
- C 0.10% or less C is an important element related to the strength of stainless steel and is effective for improving the strength, but if the content exceeds 0.10%, the hardness becomes too high, so that it is a sulfide. Increases stress corrosion cracking susceptibility. Therefore, the C content was limited to 0.10% or less.
- the C content is preferably 0.08% or less.
- Si 0.5% or less Since Si acts as a deoxidizing agent, it is desirable to contain 0.05% or more. On the other hand, a Si content of more than 0.5% lowers carbon dioxide corrosion resistance and hot workability. Therefore, the Si content was limited to 0.5% or less. From the viewpoint of ensuring the desired strength more stably, the Si content is more preferably 0.10% or more. The Si content is preferably 0.30% or less.
- Mn 0.05 to 0.50% Mn is an element that improves the strength, and the content of Mn of 0.05% or more is required to obtain the desired strength. On the other hand, even if Mn is contained in an amount of more than 0.50%, the effect is saturated and the cost rises. Therefore, the Mn content was limited to 0.05 to 0.50%.
- the Mn content is preferably 0.40% or less.
- P 0.030% or less
- P is an element that reduces all of carbon dioxide gas corrosion resistance, pitting corrosion resistance, and sulfide stress corrosion cracking resistance, and it is desirable to reduce it as much as possible in the present invention.
- extreme reductions increase manufacturing costs. Therefore, the P content is limited to 0.030% or less within a range that does not cause an extreme deterioration in characteristics and that can be carried out industrially at low cost.
- the P content is preferably 0.020% or less.
- the lower limit of the P content is not particularly limited, but since excessive de-P causes an increase in manufacturing cost, the lower limit of the P content is preferably about 0.010%.
- S 0.005% or less
- S is an element that significantly reduces hot workability, so it is desirable to reduce it as much as possible. By reducing the content to 0.005% or less, it is possible to manufacture the pipe in a normal process. Therefore, the S content in the present invention is limited to 0.005% or less.
- the S content is preferably 0.002% or less.
- the lower limit of the S content is not particularly limited, but since excessive de-S causes an increase in manufacturing cost, the lower limit of the S content is preferably about 0.001%.
- O 0.0040% or less
- O is present in steel as an oxide such as Al or Ca as an unavoidable impurity.
- the O content is limited to 0.0040% or less where the adverse effect is acceptable.
- the O content is preferably 0.0025% or less.
- the lower limit of the O content is not particularly limited, but excessive removal of O causes an increase in manufacturing cost, so the lower limit of the O content is preferably about 0.0005%.
- Ni 3.0-8.0%
- Ni is an element that strengthens the protective film, improves corrosion resistance, and further increases the strength of steel. In order to obtain such an effect, the content of Ni of 3.0% or more is required. On the other hand, when the Ni content exceeds 8.0%, the stability of the martensite phase is lowered and the strength is lowered. Therefore, the Ni content was limited to 3.0 to 8.0%.
- the Ni content is preferably 3.5% or more.
- the Ni content is preferably 7.5% or less.
- Cr 10.0 to 14.0% Cr is an element that forms a protective film to improve corrosion resistance, and a content of 10.0% or more of Cr can ensure the corrosion resistance required for oil country tubular goods.
- the Cr content exceeds 14.0%, the formation of ferrite becomes easy, so that the martensite phase cannot be stably secured. Therefore, the Cr content was limited to 10.0 to 14.0%.
- the Cr content is preferably 11.0% or more.
- the Cr content is preferably 13.5% or less.
- Mo 0.5-2.8%
- Mo is an element that improves resistance to pitting corrosion due to Cl ⁇ , and in order to obtain the corrosion resistance required for a severe corrosive environment, the content of Mo must be 0.5% or more.
- Mo is an expensive element, the content of Mo exceeding 2.8% causes an increase in manufacturing cost. Therefore, the Mo content was limited to 0.5 to 2.8%.
- the Mo content is preferably 1.0% or more.
- the Mo content is preferably 2.5% or less.
- Al acts as a deoxidizing agent, and therefore, in order to obtain such an effect, it is preferable to contain 0.01% or more of Al. However, since the content of Al exceeding 0.1% adversely affects the toughness, the Al content in the present invention is limited to 0.1% or less.
- the Al content is preferably 0.01% or more.
- the Al content is preferably 0.05% or less.
- V 0.005 to 0.2%
- V must be contained in an amount of 0.005% or more because the strength of the steel is improved by precipitation strengthening and the sulfide stress corrosion cracking resistance is also improved.
- the V content in the present invention is limited to 0.005 to 0.2%.
- the V content is preferably 0.008% or more.
- the V content is preferably 0.1% or less.
- N 0.10% or less N has an effect of improving pitting corrosion resistance and dissolving in steel to increase strength.
- the content of N exceeds 0.10%, a large amount of various nitride-based inclusions are generated, and the pitting corrosion resistance is lowered. Therefore, the N content was limited to 0.10% or less.
- the N content is preferably 0.070% or less.
- the lower limit is not particularly limited, but excessive de-N causes an increase in manufacturing cost, so the lower limit of the N content is preferably about 0.0030%.
- Cu 0.01-1.0%
- Cu is contained in an amount of 0.01% or more in order to strengthen the protective film and improve the sulfide stress corrosion cracking resistance. However, if the content of Cu exceeds 1.0%, CuS is precipitated and the hot workability is lowered. Therefore, the Cu content was limited to 0.01-1.0%.
- the Cu content is preferably 0.03% or more.
- the Cu content is preferably 0.6% or less.
- Co 0.01-1.0%
- Co is an element that reduces hardness and improves pitting corrosion resistance by increasing the Ms point and promoting ⁇ transformation. In order to obtain such an effect, the content of Co of 0.01% or more is required. On the other hand, the excessive content of Co may reduce the toughness and further increase the material cost. Therefore, the Co content was limited to 0.01-1.0%.
- the Co content is preferably 0.60% or less.
- Ca 0.0005 to 0.0030% Ca is effective in preventing nozzle clogging during continuous casting, and in order to obtain such an effect, it is necessary to contain 0.0005% or more of Ca. On the other hand, if the Ca content exceeds 0.0030%, a coarse oxide is formed and the sulfide stress corrosion cracking resistance is lowered. Therefore, the Ca content was limited to 0.0005 to 0.0030%.
- the Ca content is preferably 0.0020% or less.
- the steel pipe of the present invention contains the above components and has a composition in which the balance is composed of Fe and unavoidable impurities.
- the steel pipe of the present invention can further contain one or two selected from the following groups A and B in addition to the above-mentioned composition.
- Group A Ti: 0.50% or less, Nb: 0.50% or less, W: 1.0% or less, Ta: 0.1% or less, Zr: 0.20% or less 1 selected from Species or 2 or more
- Group B REM: 0.010% or less, Mg: 0.010% or less, B: 0.010% or less, Sb: 0.20% or less, Sn: 0.20% or less
- Ti and Nb can reduce the solidified carbon and reduce the hardness by forming carbides.
- TiN is generated, which deteriorates the sulfide stress corrosion cracking resistance. Therefore, when Ti is contained, the Ti content is set to 0.50% or less.
- the Ti content is preferably 0.001% or more, more preferably 0.010% or more.
- excessive content of Nb may reduce toughness. Therefore, when Nb is contained, the Nb content is set to 0.50% or less.
- the Nb content is preferably 0.002% or more.
- W is an element that improves pitting corrosion resistance, but excessive content may reduce toughness and further increase material costs. Therefore, when W is contained, the W content is set to 1.0% or less. When W is contained, the W content is preferably 0.050% or more.
- Ta is an element that increases strength and also has the effect of improving sulfide stress cracking resistance. Further, Ta is an element having the same effect as Nb, and a part of Nb can be replaced with Ta. On the other hand, if Ta is contained in an amount of more than 0.1%, the toughness is lowered. Therefore, when Ta is contained, the Ta content is 0.1% or less. When Ta is contained, the Ta content is preferably 0.01% or more.
- Zr is an element that contributes to an increase in strength and can be contained as needed, but even if Zr is contained in an amount of more than 0.20%, the effect is saturated. Therefore, when Zr is contained, the Zr content is 0.20% or less. When Zr is contained, the Zr content is preferably 0.01% or more.
- REM Reactive Equivalent Metals
- Mg, and B are all elements that improve corrosion resistance through morphological control of inclusions.
- REM, Mg and B are contained in excess of REM: 0.010%, Mg: 0.010% and B: 0.010%, respectively, the toughness and carbon dioxide corrosion resistance are lowered.
- REM, Mg, and B when REM, Mg, and B are contained, the contents of REM, Mg, and B are limited to REM: 0.010% or less, Mg: 0.010% or less, and B: 0.010% or less, respectively. bottom.
- Sb is an element that contributes to the improvement of corrosion resistance and can be contained as needed. However, even if Sb is contained in an amount of more than 0.20%, the effect is saturated and the effect commensurate with the content cannot be expected, which is economical. It becomes disadvantageous. Therefore, when Sb is contained, the Sb content is 0.20% or less. When Sb is contained, the Sb content is preferably 0.01% or more.
- Sn is an element that contributes to the improvement of corrosion resistance and can be contained as needed.
- the Sn content is 0.20% or less.
- the Sn content is preferably 0.01% or more.
- the composition ratio of the number in the steel nonmetallic inclusions 100 mm 2 per 20 or less Ca oxides (CaO) Al oxide and (Al 2 O 3) is found inclusions satisfying the following expression (1) In particular, it tends to be the starting point of pitting corrosion and deteriorates sulfide stress corrosion cracking resistance.
- the inclusions coarse inclusions having a major axis (maximum diameter) of 5 ⁇ m or more are more likely to be the starting points of sulfide stress corrosion cracking than fine inclusions. Therefore, it is an oxide-based non-metal inclusion in steel containing CaO which is a Ca oxide and Al 2 O 3 which is an Al oxide, and the composition ratio satisfies the following equation (1) and the major axis is large.
- the number of non-metal inclusions in the steel having a thickness of 5 ⁇ m or more was limited to 20 or less per 100 mm 2. Preferably, the number is 15 or less per 100 mm 2.
- the number of non-metal inclusions in the steel is determined by the method described in Examples.
- (CaO) and (Al 2 O 3 ) in the formula (1) are mass% of CaO and Al 2 O 3 in the non-metal inclusions in the steel, respectively.
- the steel pipe of the present invention is a martensitic stainless steel pipe and has a structure having a tempered martensitic phase as a main phase.
- the "main phase” here means a phase that occupies 70% or more in volume fraction.
- the structure of the steel pipe of the present invention may contain one or two types of a residual austenite phase having a volume fraction of 30% or less and a delta ferrite phase having a volume fraction of 5% or less, in addition to the tempered martensite phase.
- the delta ferrite phase causes cracks and scratches during pipe making, and the residual austenite phase causes an increase in hardness, so it is preferable to reduce it as much as possible.
- the steel pipe of the present invention has a yield stress of 655 MPa or more.
- the yield stress is preferably 665 MPa or more.
- the upper limit of the yield stress is not particularly limited, but is preferably 896 MPa or less from the viewpoint of ensuring sulfide stress corrosion cracking resistance.
- the yield stress is obtained by the method described in Examples.
- a steel pipe (seamless steel pipe) made of a steel pipe material having the above composition is used, but the method for manufacturing the seamless steel pipe is not particularly limited, and any known method for manufacturing a seamless steel pipe can be used. Can also be applied.
- a melting method such as a converter
- a steel pipe material such as a billet
- a method such as a continuous casting method or a ingot-bulk rolling method.
- these steel pipe materials are heated and hot-worked and pipe-made in a known pipe-making method such as a Mannesmann-plug mill method or a Mannesmann-mandrel mill method to have the above-mentioned composition.
- a known pipe-making method such as a Mannesmann-plug mill method or a Mannesmann-mandrel mill method to have the above-mentioned composition.
- the treatment after forming the steel pipe material into a seamless steel pipe in this way is not particularly limited, but preferably, the seamless steel pipe is heated to the Acc3 transformation point or higher, and then to a cooling stop temperature of 100 ° C. or lower.
- a quenching treatment for cooling and then a tempering treatment for tempering at a temperature equal to or lower than the Ac1 transformation point are performed.
- the seamless steel pipe is heated (reheated) to a temperature above the Ac3 transformation point, preferably held at the above temperature (heating temperature) for 5 minutes or more, and then cooled to a cooling stop temperature of 100 ° C. or lower. Perform the processing.
- the martensite phase can be made finer and more tough.
- the heating temperature in the quenching treatment is set to the Ac 3 transformation point or higher.
- the upper limit of the heating temperature is not particularly limited, but as an example, the heating temperature is 1000 ° C. or lower.
- the holding time at the heating temperature is not particularly limited, but as an example, the holding time is 30 min or less.
- the lower limit of the cooling stop temperature is not particularly limited, but as an example, the cooling stop temperature is 5 ° C. or higher.
- the cooling method and cooling rate are not limited, but cooling is performed by, for example, air cooling (cooling rate 0.05 ° C./s or more and 20 ° C./s or less) or water cooling (cooling rate 5 ° C./s or more and 100 ° C./s or less). Can be done.
- the tempering treatment is a treatment in which the seamless steel pipe is heated to the Acc1 transformation point or lower, preferably held at the above temperature (heating temperature) for 10 minutes or more, and air-cooled.
- the heating temperature in the tempering treatment becomes higher than the Ac1 transformation point, an austenite phase is formed, and the desired high toughness and excellent corrosion resistance cannot be ensured. Therefore, the heating temperature in the tempering treatment is set to be equal to or lower than the Ac1 transformation point.
- the heating temperature in the tempering treatment is preferably 550 ° C. or higher.
- the holding time at the heating temperature is not particularly limited, but is, for example, 200 min or less.
- the temperature history of heating and cooling is given to the test piece to be measured, and the transformation point is detected from the minute displacement of expansion and contraction. It can be measured by the master test.
- this billet After melting the molten steel with the composition shown in Table 1 in a converter, it is cast into a billet (steel pipe material) by a continuous casting method. Further, this billet was formed by hot working using a model seamless rolling mill and then cooled by air cooling or water cooling to obtain a seamless steel pipe having an outer diameter of 104 mm and a wall thickness of 17.6 mm.
- test material was cut out from the obtained seamless steel pipe, and the test material was quenched and tempered under the conditions shown in Table 2.
- a sample for SEM having a cross section perpendicular to the longitudinal direction of the pipe was taken from any one place in the circumferential direction of the test material that had been quenched and tempered.
- the stainless seamless steel pipe for oil country tubular goods of the present invention has a structure in which the number of non-metal inclusions in steel (pieces / 100 mm 2 ) is 20 or less at any of the above three locations.
- the number of inclusions in Table 2 below indicates the maximum number of non-metal inclusions in steel calculated at the above three locations.
- the SSC test was performed according to NACE TM0177 Method A.
- a test piece was added to a test solution (25 ° C.) having a pH of 4.0 by adding CH 3 COONa to a 25 mass% NaCl + 0.5 mass% CH 3 COOH aqueous solution saturated with 0.1 bar H 2 S (CO 2 bar.).
- H 2 S H 2 S
- the case where the test piece after the test did not crack was regarded as a pass, and the case where the crack occurred was regarded as a failure.
- the term "CO 2 bal.” As used herein means that the balance other than H 2 S is CO 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Articles (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Description
C:0.10%以下、
Si:0.5%以下、
Mn:0.05~0.50%、
P:0.030%以下、
S:0.005%以下、
O:0.0040%以下、
Ni:3.0~8.0%、
Cr:10.0~14.0%、
Mo:0.5~2.8%、
Al:0.1%以下、
V:0.005~0.2%、
N:0.10%以下、
Cu:0.01~1.0%、
Co:0.01~1.0%、
Ca:0.0005~0.0030%を含有し、残部がFeおよび不可避的不純物からなる成分組成と、
Ca酸化物であるCaOとAl酸化物であるAl2O3を含む酸化物系の鋼中非金属介在物であって、組成比が下記(1)式を満足し、かつ、長径が5μm以上である前記鋼中非金属介在物の個数が100mm2当り20個以下である組織を有し、
降伏応力が655MPa以上である、油井管用ステンレス継目無鋼管。
(CaO)/(Al2O3)≧4.0 ・・・(1)
ただし、(1)式中の(CaO)、(Al2O3)は、それぞれ上記鋼中非金属介在物中のCaO、Al2O3の質量%である。
[2]前記成分組成が、さらに、質量%で、
Ti:0.50%以下、
Nb:0.50%以下、
W:1.0%以下、
Ta:0.1%以下、
Zr:0.20%以下のうちから選ばれた1種または2種以上を含有する、[1]に記載の油井管用ステンレス継目無鋼管。
[3]前記成分組成が、さらに、質量%で、
REM:0.010%以下、
Mg:0.010%以下、
B:0.010%以下、
Sb:0.20%以下、
Sn:0.20%以下のうちから選ばれた1種または2種以上を含有する、[1]または[2]に記載の油井管用ステンレス継目無鋼管。
[4]前記[1]~[3]のいずれかに記載の油井管用ステンレス継目無鋼管の製造方法であって、
前記成分組成を有する鋼管素材を造管し鋼管としたのち、該鋼管をAc3変態点以上に加熱し、続いて100℃以下の冷却停止温度まで冷却する焼入れ処理と、ついでAc1変態点以下の温度で焼き戻しをする焼戻処理とを施す、油井管用ステンレス継目無鋼管の製造方法。
Cは、ステンレス鋼の強度に関係する重要な元素であり、強度向上に有効であるが、0.10%を超える含有量では、硬度が高くなりすぎるため、硫化物応力腐食割れ感受性が増大する。よって、C含有量は0.10%以下に限定した。C含有量は、好ましくは0.08%以下である。一方、所望の強度を確保するために0.003%以上Cを含有することが望ましい。
Siは、脱酸剤として作用するため、0.05%以上含有することが望ましい。一方で、0.5%を超えるSiの含有は、耐炭酸ガス腐食性および熱間加工性を低下させる。よって、Si含有量は0.5%以下に限定した。所望の強度をより安定して確保する点からは、Si含有量は、より好ましくは0.10%以上である。また、Si含有量は、好ましくは0.30%以下である。
Mnは、強度を向上させる元素であり、所望の強度を得るためには0.05%以上のMnの含有を必要とする。一方、0.50%を超えてMnを含有しても、その効果が飽和し、かえってコストの高騰を招く。よって、Mn含有量は0.05~0.50%に限定した。Mn含有量は、好ましくは0.40%以下である。
Pは、耐炭酸ガス腐食性、耐孔食性、耐硫化物応力腐食割れ性をともに低下させる元素であり、本発明ではできるだけ低減させることが望ましい。しかしながら、極端な低減は製造コストを高騰させる。よって、特性の極端な低下を招かない範囲で、かつ工業的に安価に実施可能な範囲として、P含有量は0.030%以下に限定した。なお、P含有量は、好ましくは0.020%以下である。P含有量の下限は、特に限定されないが、過度の脱Pは製造コストの増加を招くため、P含有量の下限は0.010%程度とすることが好ましい。
Sは、熱間加工性を著しく低下させる元素であるため、できるだけ低減させることが望ましい。0.005%以下に低減することで、通常工程でのパイプ製造が可能となるため、本発明におけるS含有量は0.005%以下に限定した。なお、S含有量は、好ましくは0.002%以下である。S含有量の下限は、特に限定されないが、過度の脱Sは製造コストの増加を招くため、S含有量の下限は0.001%程度とすることが好ましい。
Oは、不可避的不純物として、AlやCa等の酸化物として鋼中に存在する。これらの粗大酸化物が多数存在すると、孔食の起点となり、耐硫化物応力腐食割れ性が悪化する。このため、O含有量は、その悪影響が許容できる0.0040%以下に限定した。なお、O含有量は、好ましくは0.0025%以下である。O含有量の下限は、特に限定されないが、過度の脱Oは製造コストの増加を招くため、O含有量の下限は0.0005%程度とすることが好ましい。
Niは、保護被膜を強固にして耐食性を向上させ、さらに鋼の強度を増加させる元素である。このような効果を得るためには、3.0%以上のNiの含有を必要とする。一方、Ni含有量が8.0%を超えると、マルテンサイト相の安定性が低下して、強度が低下する。よって、Ni含有量は3.0~8.0%に限定した。Ni含有量は、好ましくは3.5%以上である。また、Ni含有量は、好ましくは7.5%以下である。
Crは、保護被膜を形成して耐食性を向上させる元素であり、10.0%以上のCrの含有で油井管用として必要な耐食性を確保できる。一方、Cr含有量が14.0%を超えるとフェライトの生成が容易となるため、マルテンサイト相の安定確保ができなくなる。よって、Cr含有量は10.0~14.0%に限定した。なお、Cr含有量は、好ましくは11.0%以上である。また、Cr含有量は、好ましくは13.5%以下である。
Moは、Cl-による孔食に対する抵抗性を向上させる元素であり、厳しい腐食環境に必要な耐食性を得るためには、0.5%以上のMoの含有が必要である。一方、Moは高価な元素であるため、2.8%を超えるMoの含有は製造コストの高騰を招く。よって、Mo含有量は0.5~2.8%に限定した。なお、Mo含有量は、好ましくは1.0%以上である。また、Mo含有量は、好ましくは2.5%以下である。
Alは、脱酸剤として作用するため、このような効果を得るためには、Alを0.01%以上含有することが好ましい。しかしながら、0.1%を超えるAlの含有は、靱性に悪影響を及ぼすため、本発明におけるAl含有量は0.1%以下に限定した。なお、Al含有量は、好ましくは0.01%以上である。また、Al含有量は、好ましくは0.05%以下である。
Vは、析出強化によって鋼の強度を向上させ、更に耐硫化物応力腐食割れ性も向上させるため、0.005%以上の含有が必要である。一方、0.2%を超えるVの含有は、靱性が低下するため、本発明におけるV含有量は0.005~0.2%に限定した。V含有量は、好ましくは0.008%以上である。また、V含有量は、好ましくは0.1%以下である。
Nは、耐孔食性を向上させると共に、鋼中に固溶し強度を増加させる作用を有する。しかしながら、Nの含有量が0.10%を超えると、種々の窒化物系介在物が多く生成し、耐孔食性が低下する。よって、N含有量は0.10%以下に限定した。なお、N含有量は、好ましくは0.070%以下である。下限については特に限定されるものではないが、過度の脱Nは製造コストの増加を招くので、N含有量の下限は0.0030%程度とすることが好ましい。
Cuは、保護被膜を強固にして耐硫化物応力腐食割れ性を向上させるため、0.01%以上含有させる。しかしながら、1.0%を超えるCuの含有は、CuSが析出して熱間加工性を低下させる。よって、Cu含有量は0.01~1.0%に限定した。Cu含有量は、好ましくは0.03%以上である。また、Cu含有量は、好ましくは0.6%以下である。
Coは、Ms点を上昇させα変態を促進することで、硬さを低減すると共に、耐孔食性を向上させる元素である。このような効果を得るためには、0.01%以上のCoの含有を必要とする。一方、過剰なCoの含有は靱性を低下させる場合があり、更に材料コストを高騰させる。よって、Co含有量は0.01~1.0%に限定した。なお、Co含有量は、好ましくは0.60%以下である。
Caは、連続鋳造時のノズル詰まり防止に有効であり、このような効果を得るためには、0.0005%以上のCaの含有が必要である。一方、0.0030%を超えるCaの含有は、粗大な酸化物を形成し、耐硫化物応力腐食割れ性を低下させる。よって、Ca含有量は0.0005~0.0030%に限定した。なお、Ca含有量は、好ましくは0.0020%以下である。
(A群)Ti:0.50%以下、Nb:0.50%以下、W:1.0%以下、Ta:0.1%以下、Zr:0.20%以下のうちから選ばれた1種または2種以上
(B群)REM:0.010%以下、Mg:0.010%以下、B:0.010%以下、Sb:0.20%以下、Sn:0.20%以下のうちから選ばれた1種または2種以上
TiおよびNbは、炭化物を形成することで、固溶炭素を減少させて、硬度を低減できる。一方、Tiの過剰な含有では、TiNが生成することで、耐硫化物応力腐食割れ性が悪化する。よって、Tiを含有する場合には、Ti含有量を0.50%以下とする。Tiを含有する場合、Ti含有量は、0.001%以上が好ましく、0.010%以上がより好ましい。また、Nbの過剰な含有は、靱性を低下させる場合がある。よって、Nbを含有する場合には、Nb含有量を0.50%以下とする。Nbを含有する場合、Nb含有量は0.002%以上が好ましい。Wは、耐孔食性を向上させる元素であるが、過剰な含有は靱性を低下させる場合があり、更に材料コストを高騰させる。よって、Wを含有する場合には、W含有量を1.0%以下とする。Wを含有する場合、W含有量は0.050%以上が好ましい。Taは、強度を増加させる元素であり、耐硫化物応力割れ性を改善する効果も有する。また、TaはNbと同様の効果をもたらす元素であり、Nbの一部をTaに置き換えることができる。一方、0.1%を超えてTaを含有すると、靭性が低下する。このため、Taを含有する場合には、Ta含有量は0.1%以下とする。Taを含有する場合、Ta含有量は0.01%以上が好ましい。Zrは、強度増加に寄与する元素であり、必要に応じて含有できるが、0.20%を超えてZrを含有しても、効果は飽和する。このため、Zrを含有する場合には、Zr含有量は0.20%以下とする。Zrを含有する場合、Zr含有量は0.01%以上が好ましい。
REM(Rare Earth Metals:希土類金属)、Mg、Bは、いずれも介在物の形態制御を介し、耐食性を向上させる元素である。このような効果を得るためには、REM、Mg、Bをそれぞれ、REM:0.0005%以上、Mg:0.0005%以上、B:0.0005%以上含有することが好ましい。一方、REM、Mg、Bをそれぞれ、REM:0.010%、Mg:0.010%、B:0.010%を超えて含有すると、靱性および耐炭酸ガス腐食性を低下させる。よって、REM、Mg、Bを含有する場合には、REM、Mg、Bの含有量をそれぞれ、REM:0.010%以下、Mg:0.010%以下、B:0.010%以下に限定した。Sbは、耐食性改善に寄与する元素であり、必要に応じて含有できるが、0.20%を超えてSbを含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利となる。このため、Sbを含有する場合には、Sb含有量は0.20%以下とする。Sbを含有する場合、Sb含有量は0.01%以上が好ましい。Snは、耐食性改善に寄与する元素であり、必要に応じて含有できるが、0.20%を超えてSnを含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利となる。このため、Snを含有する場合には、Sn含有量は0.20%以下とする。Snを含有する場合、Sn含有量は0.01%以上が好ましい。
Ca酸化物(CaO)とAl酸化物(Al2O3)との組成比が、下記(1)式を満足する介在物は特に孔食の起点になり易く、耐硫化物応力腐食割れ性を悪化させる。さらに前記介在物のうち、長径(最大径)が5μm以上の粗大介在物は微細な介在物と比較して、硫化物応力腐食割れの起点になり易い。よって、Ca酸化物であるCaOとAl酸化物であるAl2O3を含む酸化物系の鋼中非金属介在物であって、組成比が下記(1)式を満足し、かつ、長径が5μm以上である前記鋼中非金属介在物の個数を100mm2当り20個以下に限定した。好ましくは、100mm2当り15個以下である。なお、前記鋼中非金属介在物の個数は、実施例に記載の方法により求める。
(CaO)/(Al2O3)≧4.0 ・・・(1)
ただし、(1)式中の(CaO)、(Al2O3)は、それぞれ上記鋼中非金属介在物中のCaO、Al2O3の質量%である。
焼入れ処理では、継目無鋼管をAc3変態点以上の温度に加熱(再加熱)し、好ましくは前記温度(加熱温度)で5min以上保持し、続いて100℃以下の冷却停止温度まで冷却する処理を施す。これによって、マルテンサイト相の微細化と高靱化が得られる。焼入れ処理における加熱温度がAc3変態点未満では、組織がオーステナイト単相域とならないため、その後の冷却で十分なマルテンサイト組織が得られず、所望の高強度を達成できない。よって、焼入れ処理における加熱温度はAc3変態点以上とする。前記加熱温度の上限は、特に限定されないが、一例として、前記加熱温度は1000℃以下である。また、前記加熱温度での保持時間も特に限定されないが、一例として、前記保持時間は30min以下である。また、前記冷却停止温度の下限も特に限定されないが、一例として、前記冷却停止温度は5℃以上である。なお、冷却方法、冷却速度は限定されないが、例えば空冷(冷却速度0.05℃/s以上20℃/s以下)または水冷(冷却速度5℃/s以上100℃/s以下)により冷却することができる。
続いて、焼入れ処理を施した継目無鋼管に、焼戻処理を施す。焼戻処理は、継目無鋼管をAc1変態点以下に加熱し、好ましくは前記温度(加熱温度)で10min以上保持し、空冷する処理である。焼戻処理における加熱温度がAc1変態点より高温になると、オーステナイト相が生成し、所望の高靱性および優れた耐食性を確保できない。よって、焼戻処理における加熱温度はAc1変態点以下とする。なお、焼戻処理における加熱温度は550℃以上が好ましい。前記加熱温度での保持時間は、特に限定されないが、一例として、200min以下である。また、上記のAc3変態点(℃)、Ac1変態点(℃)については、測定対象の試験片に加熱および冷却の温度履歴を与え、膨張および収縮の微小変位から変態点を検出するフォーマスター試験により測定することができる。
(CaO)/(Al2O3)≧4.0 ・・・(1)
ただし、(1)式中の(CaO)、(Al2O3)は、それぞれ上記鋼中非金属介在物中のCaO、Al2O3の質量%である。
本発明の油井管用ステンレス継目無鋼管は、上記3箇所のいずれの箇所においても上記鋼中非金属介在物の個数(個/100mm2)が20以下である組織を有する。なお、後掲の表2中の介在物個数は、上記3箇所で算出した鋼中非金属介在物の個数のうち最大の個数を示す。
Claims (4)
- 質量%で、
C:0.10%以下、
Si:0.5%以下、
Mn:0.05~0.50%、
P:0.030%以下、
S:0.005%以下、
O:0.0040%以下、
Ni:3.0~8.0%、
Cr:10.0~14.0%、
Mo:0.5~2.8%、
Al:0.1%以下、
V:0.005~0.2%、
N:0.10%以下、
Cu:0.01~1.0%、
Co:0.01~1.0%、
Ca:0.0005~0.0030%を含有し、残部がFeおよび不可避的不純物からなる成分組成と、
Ca酸化物であるCaOとAl酸化物であるAl2O3を含む酸化物系の鋼中非金属介在物であって、組成比が下記(1)式を満足し、かつ、長径が5μm以上である前記鋼中非金属介在物の個数が100mm2当り20個以下である組織を有し、
降伏応力が655MPa以上である、油井管用ステンレス継目無鋼管。
(CaO)/(Al2O3)≧4.0 ・・・(1)
ただし、(1)式中の(CaO)、(Al2O3)は、それぞれ上記鋼中非金属介在物中のCaO、Al2O3の質量%である。 - 前記成分組成が、さらに、質量%で、
Ti:0.50%以下、
Nb:0.50%以下、
W:1.0%以下、
Ta:0.1%以下、
Zr:0.20%以下のうちから選ばれた1種または2種以上を含有する、請求項1に記載の油井管用ステンレス継目無鋼管。 - 前記成分組成が、さらに、質量%で、
REM:0.010%以下、
Mg:0.010%以下、
B:0.010%以下、
Sb:0.20%以下、
Sn:0.20%以下のうちから選ばれた1種または2種以上を含有する、請求項1または2に記載の油井管用ステンレス継目無鋼管。 - 請求項1~3のいずれかに記載の油井管用ステンレス継目無鋼管の製造方法であって、
前記成分組成を有する鋼管素材を造管し鋼管としたのち、該鋼管をAc3変態点以上に加熱し、続いて100℃以下の冷却停止温度まで冷却する焼入れ処理と、ついでAc1変態点以下の温度で焼き戻しをする焼戻処理とを施す、油井管用ステンレス継目無鋼管の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21808119.8A EP4079875A4 (en) | 2020-05-18 | 2021-03-25 | SEAMLESS STAINLESS STEEL OIL WELL TUBING AND METHOD OF MANUFACTURING THEREOF |
JP2021544278A JP7207557B2 (ja) | 2020-05-18 | 2021-03-25 | 油井管用ステンレス継目無鋼管およびその製造方法 |
MX2022010206A MX2022010206A (es) | 2020-05-18 | 2021-03-25 | Tubo de acero inoxidable sin soldadura para productos tubulares de uso petrolero y metodo para fabricar el mismo. |
BR112022016364A BR112022016364A2 (pt) | 2020-05-18 | 2021-03-25 | Tubo sem costura de aço inoxidável para produtos tubulares petrolíferos e método para a fabricação do mesmo |
US17/799,339 US20230107887A1 (en) | 2020-05-18 | 2021-03-25 | Stainless steel seamless pipe for oil country tubular goods and method for manufacturing the same |
CN202180015082.5A CN115135786A (zh) | 2020-05-18 | 2021-03-25 | 油井管用不锈钢无缝钢管及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020086402 | 2020-05-18 | ||
JP2020-086402 | 2020-05-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021235087A1 true WO2021235087A1 (ja) | 2021-11-25 |
Family
ID=78708892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/012700 WO2021235087A1 (ja) | 2020-05-18 | 2021-03-25 | 油井管用ステンレス継目無鋼管およびその製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20230107887A1 (ja) |
EP (1) | EP4079875A4 (ja) |
JP (1) | JP7207557B2 (ja) |
CN (1) | CN115135786A (ja) |
AR (1) | AR122099A1 (ja) |
BR (1) | BR112022016364A2 (ja) |
MX (1) | MX2022010206A (ja) |
WO (1) | WO2021235087A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024063108A1 (ja) * | 2022-09-21 | 2024-03-28 | 日本製鉄株式会社 | マルテンサイト系ステンレス鋼材 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017149572A1 (ja) * | 2016-02-29 | 2017-09-08 | Jfeスチール株式会社 | 油井用低合金高強度厚肉継目無鋼管 |
WO2017200083A1 (ja) * | 2016-05-20 | 2017-11-23 | 新日鐵住金株式会社 | ダウンホール部材用棒鋼、及び、ダウンホール部材 |
WO2019065115A1 (ja) * | 2017-09-29 | 2019-04-04 | Jfeスチール株式会社 | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
WO2019065116A1 (ja) * | 2017-09-29 | 2019-04-04 | Jfeスチール株式会社 | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2016015099A (es) * | 2014-05-21 | 2017-02-22 | Jfe Steel Corp | Tuberia de acero inoxidable sin costura de alta resistencia para productos tubulares de region petrolifera y metodo para la fabricacion de la misma. |
CA3026554C (en) * | 2016-07-27 | 2021-03-23 | Jfe Steel Corporation | High-strength seamless stainless steel pipe for oil country tubular goods, and method for producing the same |
MX2020002836A (es) * | 2017-09-29 | 2020-07-22 | Jfe Steel Corp | Tubo sin costura de acero inoxidable martensitico para productos tubulares de region petrolifera, y metodo para la fabricacion del mismo. |
MX2020012626A (es) * | 2018-05-25 | 2021-01-29 | Jfe Steel Corp | Tubo sin costura de acero inoxidable martensitico para productos tubulares de region petrolifera, y metodo para la fabricacion del mismo. |
MX2020012633A (es) * | 2018-05-25 | 2021-01-29 | Jfe Steel Corp | Tubo sin costura de acero inoxidable martensitico para productos tubulares de region petrolifera, y metodo para la fabricacion del mismo. |
BR112021008164B1 (pt) * | 2018-11-05 | 2024-02-20 | Jfe Steel Corporation | Tubo sem costura de aço inoxidável martensítico para produtos tubulares da indústria de petróleo e método para fabricar o mesmo |
-
2021
- 2021-03-25 EP EP21808119.8A patent/EP4079875A4/en active Pending
- 2021-03-25 CN CN202180015082.5A patent/CN115135786A/zh active Pending
- 2021-03-25 WO PCT/JP2021/012700 patent/WO2021235087A1/ja unknown
- 2021-03-25 JP JP2021544278A patent/JP7207557B2/ja active Active
- 2021-03-25 BR BR112022016364A patent/BR112022016364A2/pt unknown
- 2021-03-25 MX MX2022010206A patent/MX2022010206A/es unknown
- 2021-03-25 US US17/799,339 patent/US20230107887A1/en active Pending
- 2021-05-14 AR ARP210101334A patent/AR122099A1/es unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017149572A1 (ja) * | 2016-02-29 | 2017-09-08 | Jfeスチール株式会社 | 油井用低合金高強度厚肉継目無鋼管 |
WO2017200083A1 (ja) * | 2016-05-20 | 2017-11-23 | 新日鐵住金株式会社 | ダウンホール部材用棒鋼、及び、ダウンホール部材 |
WO2019065115A1 (ja) * | 2017-09-29 | 2019-04-04 | Jfeスチール株式会社 | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
WO2019065116A1 (ja) * | 2017-09-29 | 2019-04-04 | Jfeスチール株式会社 | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024063108A1 (ja) * | 2022-09-21 | 2024-03-28 | 日本製鉄株式会社 | マルテンサイト系ステンレス鋼材 |
JP7488503B1 (ja) | 2022-09-21 | 2024-05-22 | 日本製鉄株式会社 | マルテンサイト系ステンレス鋼材 |
Also Published As
Publication number | Publication date |
---|---|
JP7207557B2 (ja) | 2023-01-18 |
AR122099A1 (es) | 2022-08-10 |
MX2022010206A (es) | 2022-09-19 |
EP4079875A4 (en) | 2023-06-14 |
US20230107887A1 (en) | 2023-04-06 |
EP4079875A1 (en) | 2022-10-26 |
BR112022016364A2 (pt) | 2022-11-29 |
JPWO2021235087A1 (ja) | 2021-11-25 |
CN115135786A (zh) | 2022-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6226081B2 (ja) | 高強度ステンレス継目無鋼管およびその製造方法 | |
JP5487689B2 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管の製造方法 | |
JP6369662B1 (ja) | 二相ステンレス鋼およびその製造方法 | |
JP5861786B2 (ja) | 油井用ステンレス継目無鋼管およびその製造方法 | |
JP6315159B1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP6680409B1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
WO2013190834A1 (ja) | 耐食性に優れた油井用高強度ステンレス鋼継目無管およびその製造方法 | |
JP6237873B2 (ja) | 油井用高強度ステンレス継目無鋼管 | |
JPWO2019065116A1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP6743992B1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP7315097B2 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
JP5499575B2 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP7226675B1 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
JPWO2019065115A1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
CN114829647A (zh) | 油井用高强度不锈钢无缝钢管 | |
JP6680408B1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP7207557B2 (ja) | 油井管用ステンレス継目無鋼管およびその製造方法 | |
CN114450430A (zh) | 不锈钢无缝钢管及其制造方法 | |
WO2023053743A1 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
CN115917028A (zh) | 不锈钢无缝钢管及其制造方法 | |
JP7347714B1 (ja) | 油井用高強度ステンレス継目無鋼管 | |
JP7574975B1 (ja) | マルテンサイト系ステンレス継目無鋼管 | |
JP6747628B1 (ja) | 二相ステンレス鋼、継目無鋼管、および二相ステンレス鋼の製造方法 | |
JPH06299301A (ja) | 110Ksi グレードの高強度耐食性マルテンサイト系ステンレス鋼管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021544278 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21808119 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021808119 Country of ref document: EP Effective date: 20220719 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112022016364 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112022016364 Country of ref document: BR Kind code of ref document: A2 Effective date: 20220817 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |