WO2021230362A1 - 軸ずれ推定装置 - Google Patents
軸ずれ推定装置 Download PDFInfo
- Publication number
- WO2021230362A1 WO2021230362A1 PCT/JP2021/018472 JP2021018472W WO2021230362A1 WO 2021230362 A1 WO2021230362 A1 WO 2021230362A1 JP 2021018472 W JP2021018472 W JP 2021018472W WO 2021230362 A1 WO2021230362 A1 WO 2021230362A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- average value
- angle
- axis deviation
- axis
- deviation angle
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/08—Systems for measuring distance only
- G01S13/10—Systems for measuring distance only using transmission of interrupted, pulse modulated waves
- G01S13/26—Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
- G01S13/28—Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
- G01S13/282—Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using a frequency modulated carrier wave
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
- G01S7/4004—Means for monitoring or calibrating of parts of a radar system
- G01S7/4026—Antenna boresight
- G01S7/403—Antenna boresight in azimuth, i.e. in the horizontal plane
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
- G01S7/4004—Means for monitoring or calibrating of parts of a radar system
- G01S7/4026—Antenna boresight
- G01S7/4034—Antenna boresight in elevation, i.e. in the vertical plane
Definitions
- the present disclosure relates to an axis deviation estimation device that estimates the axis deviation angle of a radar device.
- Patent Document 1 among the plurality of detected misalignment angles, the misalignment angles satisfying the preset exclusion conditions are excluded, and the average value of the plurality of misalignment angles not excluded is used as the final axis.
- An in-vehicle radar device having a deviation angle is described.
- This disclosure improves the estimation accuracy of the misalignment angle.
- One aspect of the present disclosure is an axis deviation estimation device that estimates the axis deviation angle of a radar device mounted on a moving body, and includes an angle calculation unit, an average value calculation unit, an adoption determination unit, and an adoption unit. Be prepared.
- the angle calculation unit is configured to repeatedly calculate the axis deviation angle based on the detection result by the radar device.
- the average value calculation unit extracts the axis deviation angle included in the preset extraction angle range from the plurality of axis deviation angles calculated by the angle calculation unit, and calculates the average value of the extracted plurality of axis deviation angles. It is configured to be calculated as the average value of the misalignment angle.
- the recruitment judgment unit is configured to determine whether or not the preset recruitment conditions are satisfied based on the axis deviation angle average value calculated by the average value calculation unit.
- the recruitment unit is configured to adopt the axis deviation angle average value calculated by the average value calculation unit as the estimation result of the axis deviation angle when the adoption determination unit determines that the adoption conditions are satisfied.
- the axis deviation estimation device of the present disclosure configured in this way considers that the estimation accuracy of the axis deviation angle is deteriorated when the adoption conditions set in advance based on the axis deviation angle average value are not satisfied. It is possible to prevent the average value of the deviation angle from being adopted as the estimation result of the axis deviation angle, and it is possible to improve the estimation accuracy of the axis deviation angle.
- the radar device 1 of the present embodiment is mounted on a vehicle such as a four-wheeled vehicle and detects various objects existing around the vehicle.
- a vehicle such as a four-wheeled vehicle and detects various objects existing around the vehicle.
- the vehicle equipped with the radar device 1 is referred to as an own vehicle.
- the radar device 1 transmits the radar wave to the front of the own vehicle and receives the reflected radar wave, so that the distance R to the object (hereinafter referred to as the target) reflecting the radar wave and the relative speed to the target. V and the direction ⁇ in which the target exists are observed, and as shown in FIG. 1, the observed values (R, V, ⁇ ) are output to the driving support ECU 3.
- the driving support ECU 3 executes various processes for assisting the driver in driving the vehicle based on the observed values (R, V, ⁇ ) of each target input from the radar device 1.
- the radar device 1 includes a transmission circuit 10, a distributor 20, a transmission antenna 30, a reception antenna 40, a reception circuit 50, a processing unit 60, and an output unit 70.
- the transmission circuit 10 is a circuit for supplying the transmission signal Ss to the transmission antenna 30.
- the transmission circuit 10 outputs a high frequency signal in the millimeter wave band to the distributor 20 located upstream of the transmission antenna 30.
- the transmission circuit 10 repeats a modulation period for generating a high-frequency signal (hereinafter, upper and lower chirps) frequency-modulated so that the frequency increases (upward chirp) and decreases (downward chirp) in the measurement cycle Tm.
- the generated high frequency signal is output to the distributor 20.
- the distributor 20 distributes the high frequency signal input from the transmission circuit 10 to the transmission signal Ss and the local signal L.
- the transmission antenna 30 irradiates the front of the own vehicle with a radar wave having a frequency corresponding to the transmission signal Ss based on the transmission signal Ss supplied from the distributor 20.
- the transmitting antenna 30 may be composed of a plurality of antennas.
- the receiving antenna 40 is an antenna for receiving a radar wave (hereinafter referred to as a reflected wave) reflected from a target.
- the receiving antenna 40 includes a plurality of antenna elements 41.
- the receiving antenna 40 is attached so that the central axis of the detection range of the receiving antenna 40 coincides with the traveling direction of the own vehicle.
- the received signal Sr of the reflected wave by each antenna element 41 is input to the receiving circuit 50.
- the receiving circuit 50 processes the received signal Sr input from each antenna element 41 constituting the receiving antenna 40, generates a beat signal BT for each antenna element 41, and outputs the beat signal BT. Specifically, the receiving circuit 50 uses a mixer 51 to mix the received signal Sr input from the antenna element 41 and the local signal L input from the distributor 20 for each antenna element 41 to obtain an antenna. A beat signal BT for each element 41 is generated and output.
- the process up to the output of the beat signal BT includes a process of amplifying the received signal Sr, a process of removing unnecessary signal components from the beat signal BT, and a process of converting the beat signal BT into digital data. ..
- the receiving circuit 50 converts the generated beat signal BT for each antenna element 41 into digital data and outputs it.
- the output beat signal BT for each antenna element 41 is input to the processing unit 60.
- the A / D conversion data of the beat signal BT is referred to as modulation data.
- the processing unit 60 is an electronic control device mainly composed of a microcomputer equipped with a coprocessor that executes high-speed Fourier transform processing and the like in addition to a CPU, ROM, and RAM.
- Various functions of the microcomputer are realized by the CPU executing a program stored in a non-transitional substantive recording medium.
- the ROM corresponds to a non-transitional substantive recording medium in which a program is stored.
- the method corresponding to the program is executed.
- a part or all of the functions executed by the CPU may be configured in terms of hardware by one or a plurality of ICs or the like.
- the number of microcomputers constituting the processing unit 60 may be one or a plurality.
- the processing unit 60 executes target detection processing for calculating observation values (R, V, ⁇ ) for each target that reflects radar waves by analyzing the beat signal BT for each antenna element 41.
- the in-vehicle sensor group 2 is various sensors mounted on the vehicle for detecting the state of the vehicle and the like.
- the in-vehicle sensor group 2 includes a vehicle speed sensor that detects the vehicle speed and a yaw rate sensor that detects the yaw rate.
- the vehicle speed sensor outputs vehicle speed information indicating the detected vehicle speed Cm.
- the yaw rate sensor outputs yaw rate information indicating the detected yaw rate ⁇ .
- vehicle speed information and yaw rate information are also referred to as odometry information.
- the output unit 70 outputs the observed values (R, V, ⁇ ) calculated by the processing unit 60 to the operation support ECU 3.
- the target detection process is a process that is repeatedly executed during the operation of the process unit 60.
- the processing unit 60 first determines in S10 whether or not the acquisition of the modulation data (that is, the beat signal of the upper and lower chirps) is completed.
- the processing unit 60 waits until the acquisition of the modulation data is completed by repeating the processing of S10.
- the processing unit 60 executes FFT processing (that is, frequency analysis processing) for the modulation data for each antenna element 41 and for each upstream chirp and each downlink chirp in S20. Generate a power spectrum.
- the power spectrum represents the power of the reflected wave for each frequency.
- the processing unit 60 calculates an average power spectrum obtained by averaging the power spectra for each of the upstream and downstream chapters in S30, and extracts a peak whose power is equal to or higher than a preset peak detection threshold from the average power spectrum. do.
- the processing unit 60 executes a pair match process in which the peak in the ascending chirp and the peak in the descending chirp are combined with each other based on the reflected wave from the same target. Since there are various specific methods of pair match processing and they are well-known techniques, the description thereof is omitted here.
- the processing unit 60 generates observation values (R, V, ⁇ ) for each target by calculating the distance, relative velocity, and direction for each target in S50, and ends the target detection process.
- the processing unit 60 first calculates the distance and the relative velocity for each target, based on the frequencies of the two peaks combined by the pair match processing, using a well-known method in the upper and lower chirp radars. Further, the processing unit 60 is based on the phase difference information between the signal components of the same peak frequency acquired from the plurality of antenna elements 41 constituting the receiving antenna 40 for the two peaks combined by the pair match processing for each target. Then, the direction specified by the peak frequency is calculated.
- the axis misalignment correction process is a process that is repeatedly executed every measurement cycle Tm during the operation of the processing unit 60.
- the processing unit 60 When the axis misalignment correction process is executed, the processing unit 60 first determines in S210 whether or not the preset axis misalignment correction start condition is satisfied, as shown in FIG.
- the axis misalignment correction start condition is, for example, that the vehicle speed and yaw rate information detected by the vehicle-mounted sensor group 2 satisfies a preset condition.
- the processing unit 60 does not execute the axis misalignment correction process in the current cycle.
- the processing unit 60 executes the axis misalignment estimation process in S220.
- the process unit 60 first tracks the object in S410 based on the observed value generated in S50, as shown in FIG. As a result, for each of at least one stationary object in front of the own vehicle, the first measurement showing the position (s x , sy ) in the xy coordinate plane in front of the own vehicle and the relative velocity vector v z with respect to the own vehicle. Data is generated (see Figure 5).
- the y-axis in the above xy coordinate plane is the central axis of the receiving antenna 40.
- the x-axis in the above xy coordinate plane is an axis orthogonal to the central axis of the receiving antenna 40.
- the processing unit 60 first calculates the velocity vector (v x , v y ) and the displacement angle ⁇ y of the own vehicle based on the odometry information acquired from the in-vehicle sensor group 2 (FIG. 5). reference).
- the processing unit 60 determines in S430 whether or not a stationary object is included in the target whose object has been tracked in S410. Specifically, the processing unit 60, for example, the relative velocity vector v z with respect to the vehicle of the target object that has been measured at S410, the velocity vector of the vehicle is calculated from the odometry information (v x, v y) By comparing with, it is determined whether or not each target is a stationary object.
- the processing unit 60 ends the axis misalignment estimation process.
- the processing unit 60 calculates the first vector angle ⁇ b in S440.
- the first vector angle ⁇ b is the position of a stationary object (s x , sy ) in the xy coordinate plane in front of the own vehicle and the position detected before the measurement cycle Tm (s x-1 , s). y-1), the angle of the vector calculated from the relative velocity vector v z.
- the processing unit 60 calculates the first vector angle ⁇ b by the equation (1).
- the processing unit 60 calculates the second vector angle ⁇ e by performing an ego motion for predicting the behavior of the own vehicle based on the odometry information in S450. Specifically, the processing unit 60 first has a displacement angle ⁇ y , a velocity vector (v x , v y ) of the own vehicle, and a position (s x-1 , s) of a stationary object detected before the measurement cycle Tm. using y-1) and by the equation (2), the predicted position (s'x stationary object, calculates a s'y). The processing unit 60 includes a (s x-1, s y -1), by using the (s'x, s'y), calculates a second vector angle .theta.e.
- the second vector angle ⁇ e is measured period Tm position of stationary objects detected before (s x-1, s y -1) predicted position of the vehicle as a starting point (s'x, s' It is the angle of the vector whose end point is y). Therefore, the processing unit 60 calculates the second vector angle ⁇ e by the equation (3).
- the processing unit 60 calculates the axis deviation angle ⁇ gap by the equation (4) in S460, and shifts to S470.
- the axis deviation angle ⁇ gap is calculated based on the measurement results of all the stationary objects obtained in S410. That is, when the measurement result of m stationary objects is obtained in S410, the axis deviation angle ⁇ gap of m is calculated by the processing of S440 to 460.
- the processing unit 60 executes the extraction processing of the axis deviation angle. Specifically, the processing unit 60 extracts only ⁇ gaps within a preset angle range from the calculated m axis deviation angles ⁇ gaps. The M angles ⁇ 1 gap extracted in this way are held in the RAM of the processing unit 60.
- the processing unit 60 adds the number M of the extracted axis deviation angles and the value stored in the axis deviation angle detection number C provided in the RAM of the processing unit 60. The added value is stored in the axis deviation angle detection number C.
- the processing unit 60 determines in S230 whether or not the value stored in the calculation number C is equal to or greater than the preset correction determination number J, as shown in FIG. do.
- the processing unit 60 ends the axis deviation correction processing in the current cycle.
- the processing unit 60 calculates the average value of the axis deviation angle ⁇ gap in S240. Let the average value of the axis deviation angle ⁇ gap of the number of times C calculated most recently be the axis deviation angle average value ⁇ _ave.
- the processing unit 60 calculates the median value of the axis deviation angle ⁇ gap in S250.
- the median is the value located in the center when a plurality of data are arranged in ascending order.
- the median value of the axis deviation angle ⁇ gap of the most recently calculated number of calculations C is defined as the median axis deviation angle ⁇ _med.
- the processing unit 60 initializes the RAM area holding the axis deviation angle ⁇ gap of the calculation number C, and initializes the value stored in the calculation number C to 0.
- the processing unit 60 determines in S270 whether or not the preset error condition is satisfied.
- the error condition of the present embodiment is a condition for determining whether the axis deviation is not extremely large or the result of the axis deviation estimation is clearly wrong, and the absolute value of the axis deviation angle average value ⁇ _ave is It is equal to or larger than the preset error judgment angle.
- the processing unit 60 shifts to S300, and sets the average value calculated in S240, the median value calculated in S250, and the provisional axis deviation estimated angle ⁇ '_est described later. Initialize and end the axis misalignment correction process in this cycle.
- the processing unit 60 determines in S280 whether or not the preset retry condition is satisfied.
- the retry condition of the present embodiment is a condition for determining whether or not the error of the average value of the axis deviation angle ⁇ _ave with respect to the true value of the axis deviation is within the permissible range. At least one of the second retry determination conditions is satisfied.
- the first retry judgment condition is that the absolute value of the axis deviation angle average value ⁇ _ave is equal to or higher than the preset first retry judgment angle.
- the first retry determination angle is set to a value smaller than the error determination angle.
- the second retry judgment condition is that the absolute value of the difference between the mean axis deviation angle ⁇ _ave and the median axis deviation angle ⁇ _med is equal to or greater than the preset second retry determination angle.
- the subtraction value obtained by subtracting the median value of the axis deviation angle from the average value of the axis deviation angle is positive between the subtraction value obtained by subtracting the true value of the axis deviation angle from the average value of the axis deviation angle.
- the second retry determination condition is the difference between the average value of the axis deviation angle and the true value of the axis deviation angle when the difference between the average value of the axis deviation angle and the median value of the axis deviation angle is large. Is set based on the increase in.
- the true value TV3 of the axis deviation angle is ⁇ (that is, when the amount of axis deviation is large), it is within the extraction angle range set by ⁇ [°] to + ⁇ [°].
- the frequency distribution FD3 of the axis deviation angle extracted in is asymmetrical, and the difference between the average value AV3 of the plurality of axis deviation angles and the true value TV3 of the axis deviation angle becomes large.
- the average value of the misalignment angle has a negative correlation with the subtraction value obtained by subtracting the true value of the misalignment angle from the average value of the misalignment angle.
- the first retry determination condition is set based on the fact that when the average value of the axis deviation angle becomes large, the difference between the average value of the axis deviation angle and the true value of the axis deviation angle becomes large. There is.
- the processing unit 60 shifts to S310, holds the axis deviation angle average value ⁇ _ave in the RAM as the provisional axis deviation estimated angle ⁇ '_est, and determines the observed value in S50.
- the processing of S50 is set so that the calculation is performed on the assumption that the central axis of the receiving antenna 40 is deviated by the estimated axis misalignment angle ⁇ '_est.
- the provisional axis deviation estimated angle ⁇ '_est is calculated by adding the axis deviation angle average value ⁇ _ave to the provisional axis deviation estimated angle ⁇ '_est.
- the processing unit 60 performs axis correction in S290. Specifically, the processing unit 60 holds the axis deviation angle average value ⁇ _ave as the axis deviation estimated angle ⁇ _est in the RAM, and in the generation of the observed value in S50, the central axis of the receiving antenna 40 is displaced by the axis deviation estimated angle ⁇ _est.
- the processing of S50 is set so that the calculation is performed on the assumption that the operation is performed.
- the provisional axis deviation estimated angle ⁇ '_est is set in S310, the value obtained by adding the provisional axis deviation estimated angle ⁇ '_est to the axis deviation angle average value ⁇ _ave is held in the RAM as the axis deviation estimated angle ⁇ _est. do.
- the processing unit 60 initializes the average value calculated in S240, the median value calculated in S250, and ⁇ '_est calculated in S310 in S300 to correct the axis deviation. End the process.
- the processing unit 60 configured in this way repeatedly calculates the axis deviation angle based on the detection result by the radar device 1.
- the processing unit 60 determines whether or not the preset adoption conditions are satisfied based on the calculated axis deviation angle average value ⁇ _ave.
- the adoption condition is that the above error condition and retry condition are not satisfied.
- the processing unit 60 adopts the calculated axis deviation angle average value ⁇ _ave as the estimation result of the axis deviation angle.
- the processing unit 60 considers that the estimation accuracy of the axis deviation angle has deteriorated and determines the axis deviation angle average value ⁇ _ave. It can be prevented from being adopted as the estimation result of the misalignment angle, and the estimation accuracy of the misalignment angle can be improved.
- the processing unit 60 determines that the adoption condition is not satisfied because the retry condition is satisfied, the processing unit 60 holds the axis deviation angle estimation result in the RAM as a provisional axis deviation estimation angle, and the axis is only the calculated axis deviation estimated angle. Re-estimate the misalignment angle, assuming it is misaligned.
- the processing unit 60 can suppress the occurrence of a situation in which the axis deviation angle estimation result with low estimation accuracy is adopted, and can improve the estimation accuracy.
- the adoption condition is that the average value of the misalignment angle ⁇ _ave is less than the preset first retry determination angle. As a result, the processing unit 60 can easily determine whether or not the adoption condition is satisfied, and can reduce the processing load.
- the processing unit 60 corresponds to the axis deviation estimation device
- S220 corresponds to the processing as the angle calculation unit
- S240 corresponds to the processing as the average value calculation unit.
- S270 and S280 correspond to the processing as the adoption judgment unit and the non-adoption unit
- S290 corresponds to the processing as the adoption unit
- the first retry judgment angle corresponds to the adoption judgment value.
- the processing unit 60 and methods thereof described in the present disclosure are provided by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. It may be realized. Alternatively, the processing unit 60 and methods thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Alternatively, the processing unit 60 and methods thereof described in the present disclosure are a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may be realized by one or more dedicated computers configured by. The computer program may also be stored on a computer-readable non-transitional tangible recording medium as an instruction executed by the computer. The method for realizing the functions of each part included in the processing unit 60 does not necessarily include software, and all the functions may be realized by using one or a plurality of hardware.
- a plurality of functions possessed by one component in the above embodiment may be realized by a plurality of components, or one function possessed by one component may be realized by a plurality of components. Further, a plurality of functions possessed by the plurality of components may be realized by one component, or one function realized by the plurality of components may be realized by one component. Further, a part of the configuration of the above embodiment may be omitted. Further, at least a part of the configuration of the above embodiment may be added or replaced with the configuration of the other above embodiment.
- a system having the radar device 1 as a component, a program for operating a computer as the radar device 1, a non-transitional substantive recording medium such as a semiconductor memory in which this program is recorded, and an axis can also be realized in various forms such as a deviation estimation method.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
軸ずれ推定装置(60)は、レーダ装置(1)による検出結果に基づいて軸ずれ角度を繰り返し算出する。軸ずれ推定装置は、算出された複数の軸ずれ角度のうち、予め設定された抽出角度範囲に含まれる軸ずれ角度を抽出し、抽出された複数の軸ずれ角度の平均値を軸ずれ角度平均値として算出する。軸ずれ推定装置は、軸ずれ角度平均値に基づいて、予め設定された採用条件が成立したか否かを判断する。軸ずれ推定装置は、採用条件が成立したと判断した場合に、算出された軸ずれ角度平均値を、軸ずれ角度の推定結果として採用する。
Description
本国際出願は、2020年5月15日に日本国特許庁に出願された日本国特許出願第2020-85976号に基づく優先権を主張するものであり、日本国特許出願第2020-85976号の全内容を参照により本国際出願に援用する。
本開示は、レーダ装置の軸ずれ角度を推定する軸ずれ推定装置に関する。
特許文献1には、検出された複数の軸ずれ角度のうち、予め設定された除外条件を満たす軸ずれ角度を除外し、除外されなかった複数の軸ずれ角度の平均値を、最終的な軸ずれ角度とする車載レーダ装置が記載されている。
発明者の詳細な検討の結果、特許文献1に記載の車載レーダ装置では、軸ずれ角度の推定精度が悪化する場合があるという課題が見出された。
本開示は、軸ずれ角度の推定精度を向上させる。
本開示の一態様は、移動体に搭載されたレーダ装置の軸ずれ角度を推定する軸ずれ推定装置であって、角度算出部と、平均値算出部と、採用判断部と、採用部とを備える。
角度算出部は、レーダ装置による検出結果に基づいて、軸ずれ角度を繰り返し算出するように構成される。
平均値算出部は、角度算出部により算出された複数の軸ずれ角度のうち、予め設定された抽出角度範囲に含まれる軸ずれ角度を抽出し、抽出された複数の軸ずれ角度の平均値を軸ずれ角度平均値として算出するように構成される。
採用判断部は、平均値算出部により算出された軸ずれ角度平均値に基づいて、予め設定された採用条件が成立したか否かを判断するように構成される。
採用部は、採用条件が成立したと採用判断部が判断した場合に、平均値算出部により算出された軸ずれ角度平均値を、軸ずれ角度の推定結果として採用するように構成される。
このように構成された本開示の軸ずれ推定装置は、軸ずれ角度平均値に基づいて予め設定された採用条件が成立しない場合には、軸ずれ角度の推定精度が悪化しているとして、軸ずれ角度平均値を軸ずれ角度の推定結果として採用しないようにすることができ、軸ずれ角度の推定精度を向上させることができる。
以下に本開示の実施形態を図面とともに説明する。
本実施形態のレーダ装置1は、四輪自動車等の車両に搭載され、車両の周囲に存在する様々な物体を検出する。以下、レーダ装置1を搭載する車両を自車両という。
レーダ装置1は、レーダ波を自車両の前方へ送信し、反射したレーダ波を受信することにより、レーダ波を反射した物体(以下、物標)までの距離Rと、物標との相対速度Vと、物標が存在する方位θとを観測し、図1に示すように、観測値(R,V,θ)を運転支援ECU3へ出力する。
運転支援ECU3は、レーダ装置1から入力される各物標の観測値(R,V,θ)に基づいて、運転者による車両の運転を支援するための各種処理を実行する。
レーダ装置1は、送信回路10と、分配器20と、送信アンテナ30と、受信アンテナ40と、受信回路50と、処理ユニット60と、出力ユニット70とを備える。
送信回路10は、送信アンテナ30に送信信号Ssを供給するための回路である。送信回路10は、ミリ波帯の高周波信号を、送信アンテナ30の上流に位置する分配器20へ出力する。具体的には、送信回路10は、周波数が増加(上りチャープ)および減少(下りチャープ)するように周波数変調された高周波信号(以下、上下チャープ)を生成する変調期間を測定周期Tmで繰り返し、生成された高周波信号を分配器20へ出力する。
分配器20は、送信回路10から入力される高周波信号を、送信信号Ssとローカル信号Lとに電力分配する。
送信アンテナ30は、分配器20から供給される送信信号Ssに基づいて、送信信号Ssに対応する周波数のレーダ波を自車両前方に照射する。送信アンテナ30は複数のアンテナで構成しても良い。
受信アンテナ40は、物標から反射されたレーダ波(以下、反射波)を受信するためのアンテナである。受信アンテナ40は、複数のアンテナ素子41を備えている。受信アンテナ40は、受信アンテナ40の検知範囲の中心軸が、自車両の進行方向と一致するように取り付けられている。各アンテナ素子41による反射波の受信信号Srは、受信回路50に入力される。
受信回路50は、受信アンテナ40を構成する各アンテナ素子41から入力される受信信号Srを処理して、アンテナ素子41毎のビート信号BTを生成して出力する。具体的には、受信回路50は、アンテナ素子41毎に、アンテナ素子41から入力される受信信号Srと分配器20から入力されるローカル信号Lとをミキサ51を用いて混合することにより、アンテナ素子41毎のビート信号BTを生成して出力する。
但し、ビート信号BTを出力するまでの過程には、受信信号Srを増幅する過程、ビート信号BTから不要な信号成分を除去する過程、および、ビート信号BTをデジタルデータに変換する過程が含まれる。このように受信回路50は、生成したアンテナ素子41毎のビート信号BTをデジタルデータに変換して出力する。出力されたアンテナ素子41毎のビート信号BTは、処理ユニット60に入力される。以下では、ビート信号BTのA/D変換データを変調データという。
処理ユニット60は、CPU、ROMおよびRAMの他に、高速フーリエ変換処理等を実行するコプロセッサを備えたマイクロコンピュータを中心に構成された電子制御装置である。マイクロコンピュータの各種機能は、CPUが非遷移的実体的記録媒体に格納されたプログラムを実行することにより実現される。この例では、ROMが、プログラムを格納した非遷移的実体的記録媒体に該当する。また、このプログラムの実行により、プログラムに対応する方法が実行される。なお、CPUが実行する機能の一部または全部を、一つあるいは複数のIC等によりハードウェア的に構成してもよい。また、処理ユニット60を構成するマイクロコンピュータの数は1つでも複数でもよい。
処理ユニット60は、アンテナ素子41毎のビート信号BTを解析することにより、レーダ波を反射した物標毎の観測値(R,V,θ)を算出する物標検出処理を実行する。
処理ユニット60には、車載センサ群2から各種の検出信号が入力される。車載センサ群2は、車両の状態等を検出するために車両に搭載された各種センサである。車載センサ群2は、車速を検出する車速センサと、ヨーレートを検出するヨーレートセンサとを含んでいる。車速センサは、検出した車速Cmを示す車速情報を出力する。ヨーレートセンサは、検出したヨーレートωを示すヨーレート情報を出力する。以下、車速情報およびヨーレート情報をオドメトリ情報ともいう。
出力ユニット70は、処理ユニット60で算出された観測値(R,V,θ)を運転支援ECU3へ出力する。
次に、処理ユニット60が実行する物標検出処理の手順を説明する。物標検出処理は、処理ユニット60の動作中において繰り返し実行される処理である。
物標検出処理が実行されると、処理ユニット60は、図2に示すように、まずS10にて、変調データ(すなわち、上下チャープのビート信号)の取得を終了したか否かを判断する。ここで、変調データの取得が終了していない場合には、処理ユニット60は、S10の処理を繰り返すことにより、変調データの取得が終了するまで待機する。
そして、変調データの取得が終了すると、処理ユニット60は、S20にて、変調データに対してアンテナ素子41毎かつ上りチャープおよび下りチャープ毎にFFT処理(すなわち、周波数解析処理)を実行して、パワースペクトルを生成する。パワースペクトルは、反射波のパワーを周波数毎に表す。
さらに処理ユニット60は、S30にて、上りチャープおよび下りチャープ毎にパワースペクトルを平均した平均パワースペクトルを算出し、この平均パワースペクトルから、パワーが予め設定されたピーク検出閾値以上となるピークを抽出する。
そして処理ユニット60は、S40にて、上りチャープでのピークと、下りチャープでのピークとで、同じ物標からの反射波に基づくピーク同士を組み合わせるペアマッチ処理を実行する。ペアマッチ処理の具体的な手法は様々あり、周知の技術であるため、ここでは説明を省略する。
さらに処理ユニット60は、S50にて、物標毎に距離、相対速度および方位を算出することによって物標毎に観測値(R,V,θ)を生成し、物標検出処理を終了する。
具体的には、処理ユニット60は、まず、物標毎に、ペアマッチ処理によって組み合わされた二つのピークの周波数に基づき、上下チャープレーダにおける周知の手法を用いて、距離および相対速度を算出する。また処理ユニット60は、物標毎に、ペアマッチ処理によって組み合わされた二つのピークについて、受信アンテナ40を構成する複数のアンテナ素子41から取得した同一ピーク周波数の信号成分間の位相差情報などに基づいて、ピーク周波数で特定される方位を算出する。
次に、処理ユニット60が実行する軸ずれ補正処理の手順を説明する。軸ずれ補正処理は、処理ユニット60の動作中において測定周期Tm毎に繰り返し実行される処理である。
軸ずれ補正処理が実行されると、処理ユニット60は、図3に示すように、まずS210にて、予め設定された軸ずれ補正開始条件が成立したか否かを判断する。軸ずれ補正開始条件は、本実施形態では、例えば、車載センサ群2が検出する車速やヨーレートの情報が予め設定した条件を満たすことである。ここで、軸ずれ補正開始条件が成立していない場合には、処理ユニット60は、今周期の軸ずれ補正処理を実行しない。
一方、軸ずれ補正開始条件が成立した場合には、処理ユニット60は、S220にて、軸ずれ推定処理を実行する。
ここで、軸ずれ推定処理の手順を説明する。
軸ずれ推定処理が実行されると、処理ユニット60は、図4に示すように、まずS410にて、S50で生成した観測値に基づき物体追尾を行う。これにより、自車両の前方の少なくとも1つの静止物のそれぞれについて、自車両の前方のxy座標平面における位置(sx,sy)と、自車両に対する相対速度ベクトルvzとを示す第1測定データが生成される(図5を参照)。なお、上記のxy座標平面におけるy軸は受信アンテナ40の中心軸である。上記のxy座標平面におけるx軸は受信アンテナ40の中心軸に直交する軸である。
次に処理ユニット60は、S420にて、まず、車載センサ群2から取得したオドメトリ情報に基づいて、自車両の速度ベクトル(vx,vy)と変位角度θyを算出する(図5を参照)。
そして処理ユニット60は、S430にて、S410で物体追尾が行われた物標の中に、静止物が含まれているか否かを判断する。具体的には、処理ユニット60は、例えば、S410にて測定された各物標の自車両に対する相対速度ベクトルvzと、オドメトリ情報から算出される自車両の速度ベクトル(vx,vy)とを比較することで、各物標が静止物であるか否かを判断する。
ここで、静止物が含まれていない場合には、処理ユニット60は、軸ずれ推定処理を終了する。一方、静止物が含まれている場合には、処理ユニット60は、S440にて、第1ベクトル角θbを算出する。
図6に示すように、第1ベクトル角θbは、自車両の前方のxy座標平面における静止物の位置(sx,sy)と測定周期Tm前に検出した位置(sx-1,sy-1)、相対速度ベクトルvzから算出されるベクトルの角度である。処理ユニット60は、式(1)により、第1ベクトル角θbを算出する。
さらに処理ユニット60は、図4に示すように、S450にて、オドメトリ情報に基づき自車両の挙動を予測するエゴモーションを行うことで、第2ベクトル角θeを算出する。具体的には、処理ユニット60は、まず、変位角度θyと、自車の速度ベクトル(vx,vy)と、測定周期Tm前に検出した静止物の位置(sx-1,sy-1)とを用いて、式(2)により、静止物の予測位置(s´x,s´y)を算出する。そして処理ユニット60は、(sx-1,sy-1)と、(s´x、s´y)とを用いて、第2ベクトル角θeを算出する。
図7に示すように、第2ベクトル角θeは、測定周期Tm前に検出した静止物の位置(sx-1,sy-1)を始点として車両の予測位置(s´x、s´y)を終点とするベクトルの角度である。このため、処理ユニット60は、式(3)により、第2ベクトル角θeを算出する。
そして処理ユニット60は、図4に示すように、S460にて、式(4)により、軸ずれ角度θgapを算出し、S470に移行する。なお、軸ずれ角度θgapは、S410にて得られた全静止物の測定結果に基づき算出される。つまり、S410にてm個の静止物の測定結果が得られた場合には、S440~460の処理により、m個の軸ずれ角度θgapが算出される。
S470に移行すると、処理ユニット60は、軸ずれ角度の抽出処理を実行する。具体的には、処理ユニット60は、算出されたm個の軸ずれ角度θgapのうち、予め設定された角度範囲内のθgapのみを抽出する。このように抽出されたM個の角度θ1gapを処理ユニット60のRAMに保持する。
さらに処理ユニット60は、式(5)に示すように、抽出された軸ずれ角度の数Mと、処理ユニット60のRAMに設けられた軸ずれ角度検出回数Cに格納されている値とを加算した加算値を、軸ずれ角度検出回数Cに格納する。
軸ずれ推定処理が終了すると、処理ユニット60は、図3に示すように、S230にて、算出回数Cに格納されている値が予め設定された補正判断回数J以上であるか否かを判断する。ここで、算出回数Cに格納されている値が補正判断回数J未満である場合には、処理ユニット60は、今周期の軸ずれ補正処理を終了する。
一方、算出回数Cに格納されている値が補正判断回数J以上である場合には、処理ユニット60は、S240にて、軸ずれ角度θgapの平均値を算出する。直近に算出された算出回数C個の軸ずれ角度θgapの平均値を、軸ずれ角度平均値θ_aveとする。
次に処理ユニット60は、S250にて、軸ずれ角度θgapの中央値を算出する。中央値とは、複数のデータを小さい順に並べたときに中央に位置する値である。直近に算出された算出回数C個の軸ずれ角度θgapの中央値を、軸ずれ角度中央値θ_medとする。
さらに処理ユニット60は、S260にて、算出回数C個の軸ずれ角度θgapを保持しているRAM領域を初期化し、算出回数Cに格納されている値を0に初期化する。
そして処理ユニット60は、S270にて、予め設定されているエラー条件が成立しているか否かを判断する。本実施形態のエラー条件とは、軸ずれが極端に大きくないか、もしくは軸ずれ推定の結果が明らかにおかしくないかを判断するための条件であり、軸ずれ角度平均値θ_aveの絶対値が、予め設定されたエラー判断角度以上であることである。
ここで、エラー条件が成立している場合には、処理ユニット60は、S300に移行し、S240で算出した平均値とS250で算出した中央値と後述する暫定軸ずれ推定角度θ´_estとを初期化して今周期の軸ずれ補正処理を終了する。一方、エラー条件が成立していない場合には、処理ユニット60は、S280にて、予め設定されているリトライ条件が成立しているか否かを判断する。本実施形態のリトライ条件とは、軸ずれ角度平均値θ_aveの軸ずれ真値に対する誤差が、許容内に収まっているか否かを判断するための条件であり、以下に示す第1リトライ判断条件および第2リトライ判断条件の少なくとも一方が成立することである。
第1リトライ判断条件は、軸ずれ角度平均値θ_aveの絶対値が、予め設定された第1リトライ判断角度以上であることである。本実施形態では、第1リトライ判断角度はエラー判断角度よりも小さい値を設定する。
第2リトライ判断条件は、軸ずれ角度平均値θ_aveと軸ずれ角度中央値θ_medとの差分の絶対値が、予め設定された第2リトライ判断角度以上であることである。
図8に示すように、軸ずれ角度の真値TV1が小さい場合(すなわち、軸ずれ量が小さい場合)には、-φ[°]~+φ[°]で設定された抽出角度範囲内で抽出された軸ずれ角度の頻度分布FD1が左右対称となり、軸ずれ角度の平均値AV1が、軸ずれ角度の真値TV1にほぼ等しくなる。
図9に示すように、軸ずれ角度の真値TV2が大きい場合(すなわち、軸ずれ量が大きい場合)には、-φ[°]~+φ[°]で設定された抽出角度範囲内で抽出された軸ずれ角度の頻度分布FD2が左右非対称となり、軸ずれ角度の平均値AV2と複数の軸ずれ角度の中央値MD2との差が大きくなる。
図10に示すように、軸ずれ角度の平均値から軸ずれ角度の中央値を減算した減算値は、軸ずれ角度の平均値から軸ずれ角度の真値を減算した減算値との間で正の相関を有する。
第2リトライ判断条件は、図10に示すように、軸ずれ角度の平均値と軸ずれ角度の中央値との差が大きいと、軸ずれ角度の平均値から軸ずれ角度の真値との差が大きくなることに基づいて設定されている。
図11に示すように、軸ずれ角度の真値TV3がδである場合(すなわち、軸ずれ量が大きい場合)には、-φ[°]~+φ[°]で設定された抽出角度範囲内で抽出された軸ずれ角度の頻度分布FD3が左右非対称となり、複数の軸ずれ角度の平均値AV3と軸ずれ角度の真値TV3との差が大きくなる。
図12に示すように、軸ずれ角度の平均値は、軸ずれ角度の平均値から軸ずれ角度の真値を減算した減算値との間で負の相関を有する。
第1リトライ判断条件は、図12に示すように、軸ずれ角度の平均値が大きくなると、軸ずれ角度の平均値と軸ずれ角度の真値との差が大きくなることに基づいて設定されている。
ここで、リトライ条件が成立している場合には、処理ユニット60は、S310に移行し、軸ずれ角度平均値θ_aveを暫定軸ずれ推定角度θ´_estとしてRAMに保持し、S50における観測値の生成において、受信アンテナ40の中心軸が軸ずれ推定角度θ´_estだけずれていると仮定して演算を行うように、S50の処理を設定する。以後、再度リトライ条件が成立する場合は、暫定軸ずれ推定角度θ´_estに軸ずれ角度平均値θ_aveを加算して暫定軸ずれ推定角度θ´_estを算出する。一方、リトライ条件が成立していない場合には、処理ユニット60は、S290にて、軸補正を行う。具体的には、処理ユニット60は、軸ずれ角度平均値θ_aveを軸ずれ推定角度θ_estとしてRAMに保持し、S50における観測値の生成において、受信アンテナ40の中心軸が軸ずれ推定角度θ_estだけずれていると仮定して演算を行うように、S50の処理を設定する。ここでS310にて暫定軸ずれ推定角度θ´_estが設定されている場合は、軸ずれ角度平均値θ_aveに暫定軸ズレ推定角度θ´_estを加算した値を軸ずれ推定角度θ_estとしてRAMに保持する。
そして、S290の軸補正の処理が終了すると、処理ユニット60は、S300にて、S240で算出した平均値とS250で算出した中央値とS310で算出したθ´_estとを初期化して軸ずれ補正処理を終了する。
このように構成された処理ユニット60は、レーダ装置1による検出結果に基づいて、軸ずれ角度を繰り返し算出する。
処理ユニット60は、算出された軸ずれ角度平均値θ_aveに基づいて、予め設定された採用条件が成立したか否かを判断する。採用条件は、上記のエラー条件およびリトライ条件が不成立であることである。
そして処理ユニット60は、採用条件が成立したと判断した場合に、算出された軸ずれ角度平均値θ_aveを、軸ずれ角度の推定結果として採用する。
このように処理ユニット60は、軸ずれ角度平均値θ_aveに基づいて予め設定された採用条件が成立しない場合には、軸ずれ角度の推定精度が悪化しているとして、軸ずれ角度平均値θ_aveを軸ずれ角度の推定結果として採用しないようにすることができ、軸ずれ角度の推定精度を向上させることができる。
また処理ユニット60は、リトライ条件が成立することにより採用条件が成立しなかったと判断した場合に、軸ずれ角度推定結果を暫定軸ずれ推定角度としてRAMに保持し、算出した軸ズレ推定角度だけ軸がずれていると仮定して、軸ずれ角度の推定を再度実行する。
これにより、処理ユニット60は、推定精度が低い軸ずれ角度推定結果を採用してしまう事態の発生を抑制し、推定精度を向上させることができる。
また採用条件は、軸ずれ角度平均値θ_aveが、予め設定された第1リトライ判断角度未満であることである。これにより、処理ユニット60は、採用条件が成立するか否かを簡便に判断することができ、処理負荷を低減することができる。
以上説明した実施形態において、処理ユニット60は軸ずれ推定装置に相当し、S220は角度算出部としての処理に相当し、S240は平均値算出部としての処理に相当する。
また、S270とS280は採用判断部および不採用部としての処理に相当し、S290は採用部としての処理に相当し、第1リトライ判断角度は採用判断値に相当する。
以上、本開示の一実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、種々変形して実施することができる。
[変形例1]
上記実施形態では、リトライ条件が成立することにより採用条件が成立しなかったと判断した場合に、軸ずれ角度の推定を再度実行する形態を示したが、軸ずれ角度平均値θ_aveの算出を終了するようにしてもよい。
上記実施形態では、リトライ条件が成立することにより採用条件が成立しなかったと判断した場合に、軸ずれ角度の推定を再度実行する形態を示したが、軸ずれ角度平均値θ_aveの算出を終了するようにしてもよい。
本開示に記載の処理ユニット60およびその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサおよびメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の処理ユニット60およびその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の処理ユニット60およびその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサおよびメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されてもよい。処理ユニット60に含まれる各部の機能を実現する手法には、必ずしもソフトウェアが含まれている必要はなく、その全部の機能が、一つあるいは複数のハードウェアを用いて実現されてもよい。
上記実施形態における1つの構成要素が有する複数の機能を、複数の構成要素によって実現したり、1つの構成要素が有する1つの機能を、複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を、1つの構成要素によって実現したり、複数の構成要素によって実現される1つの機能を、1つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加または置換してもよい。
上述したレーダ装置1の他、当該レーダ装置1を構成要素とするシステム、当該レーダ装置1としてコンピュータを機能させるためのプログラム、このプログラムを記録した半導体メモリ等の非遷移的実体的記録媒体、軸ずれ推定方法など、種々の形態で本開示を実現することもできる。
Claims (3)
- 移動体に搭載されたレーダ装置(1)の軸ずれ角度を推定する軸ずれ推定装置(60)であって、
前記レーダ装置による検出結果に基づいて、前記軸ずれ角度を繰り返し算出するように構成された角度算出部(S220)と、
前記角度算出部により算出された複数の前記軸ずれ角度のうち、予め設定された抽出角度範囲に含まれる前記軸ずれ角度を抽出し、抽出された複数の前記軸ずれ角度の平均値を軸ずれ角度平均値として算出するように構成された平均値算出部(S240)と、
前記平均値算出部により算出された前記軸ずれ角度平均値に基づいて、予め設定された採用条件が成立したか否かを判断するように構成された採用判断部(S270,S280)と、
前記採用条件が成立したと前記採用判断部が判断した場合に、前記平均値算出部により算出された前記軸ずれ角度平均値を、前記軸ずれ角度の推定結果として採用するように構成された採用部(S290)と
を備える軸ずれ推定装置。 - 請求項1に記載の軸ずれ推定装置であって、
前記採用条件が成立しなかったと前記採用判断部が判断した場合に、前記平均値算出部による算出結果を採用せず、前記平均値算出部による前記軸ずれ角度平均値の算出を再度実行するか終了するように構成された不採用部(S270,S280)を備える軸ずれ推定装置。 - 請求項1または請求項2に記載の軸ずれ推定装置であって、
前記採用条件は、前記平均値算出部により算出された前記軸ずれ角度平均値の絶対値が、予め設定された採用判断値未満または以下であることである軸ずれ推定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/054,456 US20230073814A1 (en) | 2020-05-15 | 2022-11-10 | Axial displacement estimation device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020085976A JP7287345B2 (ja) | 2020-05-15 | 2020-05-15 | 軸ずれ推定装置 |
JP2020-085976 | 2020-05-15 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/054,456 Continuation US20230073814A1 (en) | 2020-05-15 | 2022-11-10 | Axial displacement estimation device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021230362A1 true WO2021230362A1 (ja) | 2021-11-18 |
Family
ID=78511275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/018472 WO2021230362A1 (ja) | 2020-05-15 | 2021-05-14 | 軸ずれ推定装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230073814A1 (ja) |
JP (1) | JP7287345B2 (ja) |
WO (1) | WO2021230362A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004184331A (ja) * | 2002-12-05 | 2004-07-02 | Denso Corp | 車両用物体認識装置 |
JP2007248056A (ja) * | 2006-03-13 | 2007-09-27 | Omron Corp | 車載用レーダ装置 |
JP2010210483A (ja) * | 2009-03-11 | 2010-09-24 | Toyota Motor Corp | レーダ装置 |
JP2012202703A (ja) * | 2011-03-23 | 2012-10-22 | Fujitsu Ten Ltd | レーダ装置用の演算装置、レーダ装置、レーダ装置用の演算方法およびプログラム |
US20160209211A1 (en) * | 2015-01-16 | 2016-07-21 | GM Global Technology Operations LLC | Method for determining misalignment of an object sensor |
-
2020
- 2020-05-15 JP JP2020085976A patent/JP7287345B2/ja active Active
-
2021
- 2021-05-14 WO PCT/JP2021/018472 patent/WO2021230362A1/ja active Application Filing
-
2022
- 2022-11-10 US US18/054,456 patent/US20230073814A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004184331A (ja) * | 2002-12-05 | 2004-07-02 | Denso Corp | 車両用物体認識装置 |
JP2007248056A (ja) * | 2006-03-13 | 2007-09-27 | Omron Corp | 車載用レーダ装置 |
JP2010210483A (ja) * | 2009-03-11 | 2010-09-24 | Toyota Motor Corp | レーダ装置 |
JP2012202703A (ja) * | 2011-03-23 | 2012-10-22 | Fujitsu Ten Ltd | レーダ装置用の演算装置、レーダ装置、レーダ装置用の演算方法およびプログラム |
US20160209211A1 (en) * | 2015-01-16 | 2016-07-21 | GM Global Technology Operations LLC | Method for determining misalignment of an object sensor |
Also Published As
Publication number | Publication date |
---|---|
JP2021179403A (ja) | 2021-11-18 |
JP7287345B2 (ja) | 2023-06-06 |
US20230073814A1 (en) | 2023-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4098318B2 (ja) | 電子走査型ミリ波レーダ装置およびコンピュータプログラム | |
JP4867200B2 (ja) | レーダ装置 | |
US20120293358A1 (en) | Radar apparatus | |
JP6598244B2 (ja) | レーダ装置、レーダ装置の信号処理装置、および信号処理方法 | |
US20190079179A1 (en) | Target detection device | |
JP2012103203A (ja) | Fmcwレーダ装置 | |
JP4098311B2 (ja) | 電子走査型ミリ波レーダ装置およびコンピュータプログラム | |
JP5628732B2 (ja) | レーダ装置用の演算装置、レーダ装置、レーダ装置用の演算方法およびプログラム | |
WO2016031918A1 (ja) | 軸ずれ診断装置 | |
WO2021230365A1 (ja) | 軸ずれ推定装置 | |
WO2021230368A1 (ja) | 軸ずれ推定装置 | |
JP4260831B2 (ja) | 車載用周波数変調レーダ装置 | |
JP4780240B2 (ja) | レーダ装置 | |
WO2021230362A1 (ja) | 軸ずれ推定装置 | |
WO2021230367A1 (ja) | 軸ずれ推定装置 | |
JP2016048228A (ja) | 検出装置 | |
JP3505441B2 (ja) | Fft信号処理でのピーク周波数算出方法 | |
JP2018115930A (ja) | レーダ装置および物標検出方法 | |
JP4763002B2 (ja) | 電子走査型ミリ波レーダ装置およびコンピュータプログラム | |
JP2009128016A (ja) | レーダ装置、レーダ制御装置およびレーダ装置の制御方法 | |
JP7140568B2 (ja) | 到来方向推定装置及び到来方向推定方法 | |
US20220187422A1 (en) | Aliasing determination device | |
JP5677152B2 (ja) | ホログラフィックレーダ装置 | |
WO2021131601A1 (ja) | レーダ装置 | |
KR20240135310A (ko) | 레이더 신호 처리 장치, 레이더 신호 처리 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21803459 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21803459 Country of ref document: EP Kind code of ref document: A1 |