[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021223654A1 - 一种正极片、制备方法及包含其的锂离子电池 - Google Patents

一种正极片、制备方法及包含其的锂离子电池 Download PDF

Info

Publication number
WO2021223654A1
WO2021223654A1 PCT/CN2021/091032 CN2021091032W WO2021223654A1 WO 2021223654 A1 WO2021223654 A1 WO 2021223654A1 CN 2021091032 W CN2021091032 W CN 2021091032W WO 2021223654 A1 WO2021223654 A1 WO 2021223654A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
material layer
electrode active
layer
Prior art date
Application number
PCT/CN2021/091032
Other languages
English (en)
French (fr)
Inventor
张保海
彭冲
贺伟
施超
李俊义
徐延铭
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Priority to EP21800697.1A priority Critical patent/EP4075540A4/en
Publication of WO2021223654A1 publication Critical patent/WO2021223654A1/zh
Priority to US17/810,843 priority patent/US20220367878A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application belongs to the technical field of lithium ion batteries, and specifically relates to a positive electrode sheet, a preparation method and a lithium ion battery containing the positive electrode sheet.
  • Lithium-ion batteries are widely used in portable mobile electronic equipment terminals because of their longer cycle life and higher power density.
  • people life rhythm becomes faster, people propose higher battery life and charging speeds.
  • fast-charging lithium-ion batteries have become the main development trend of consumer lithium-ion batteries.
  • the development of fast-charging lithium-ion battery technology brings convenience to people and also brings safety problems.
  • When lithium-ion batteries are cycled under high-rate fast charging conditions it is very easy to cause lithium-ion battery negative electrodes, especially on one side of the negative electrode.
  • the coating area is more serious, which brings about problems such as cyclic diving, swelling, and air swelling of the lithium-ion battery, which greatly reduces the service life of the lithium-ion battery.
  • the present application provides a positive electrode sheet, a preparation method and a lithium ion battery containing the positive electrode sheet.
  • the positive electrode sheet is mainly used to solve the problem of lithium precipitation in the single-sided coating area of the battery negative electrode of the winding structure during a long cycle under a high-rate fast charging system.
  • the inventor of the present application discovered that the basic cause of lithium precipitation in the single-sided coating area of the existing winding structure of the battery cell’s negative electrode is that the single-sided coating area is close to the tabs, resulting in high current density, low potential, and negative electrode dynamics. Insufficient performance.
  • the key to solving the problem of lithium precipitation in the single-sided coating area of the negative electrode under the premise of the same charging system is to improve the kinetics of the negative electrode and/or reduce the kinetic performance of the positive electrode.
  • the positive electrode sheet reduces the dynamic performance of the positive active material layer of the wound lithium-ion battery, so as to reduce the single-sided coating of the negative electrode without reducing the overall fast charging performance of the lithium-ion battery and the energy density of the lithium-ion battery.
  • the polarization of the coating area and the entire negative electrode surface can effectively improve the lithium-ion problem in the single-sided coating area of the conventional wound structure of the lithium-ion battery, and increase the lithium without reducing the overall fast charging performance of the lithium-ion battery and the energy density of the lithium-ion battery. Ion battery cycle life, improve cycle expansion.
  • the positive electrode sheet can solve the problem of lithium evolution in the single-sided coating area of the wound structure of the battery cell negative electrode during the long cycle process under the high-rate charging system without reducing the overall fast charging performance of the lithium ion battery and the energy density of the lithium ion battery.
  • a coiled positive electrode sheet specifically a coiled positive electrode sheet for a lithium ion battery, the positive electrode sheet includes a positive electrode current collector, and the positive electrode current collector includes a single-sided coating area and a double-sided coating area;
  • a first coating layer is provided on one side of the positive electrode current collector.
  • the first coating layer includes a first positive electrode active material layer and a second positive electrode active material layer.
  • the material layer is arranged on the surface of the positive electrode current collector, and the first positive electrode active material layer is arranged on the surface of the second positive electrode active material layer;
  • a second coating layer and a third coating layer are provided on one side of the positive electrode current collector, and the first coating layer, the second coating layer and the third coating layer are connected in sequence ;
  • a fourth coating layer is provided on the other side of the positive electrode current collector;
  • the second coating layer includes a first positive electrode active material layer and a second positive electrode active material layer, the second positive electrode active material layer is disposed on the surface of the positive electrode current collector, and the first positive electrode active material layer is disposed on the second positive electrode.
  • the third coating layer includes a first positive electrode active material layer, and the first positive electrode active material layer is disposed on the surface of the positive electrode current collector;
  • the fourth coating layer includes a first positive electrode active material layer and a second positive electrode active material layer, the second positive electrode active material layer is disposed on the surface of the positive electrode current collector, and the first positive electrode active material layer is disposed on the second positive electrode.
  • the content of the first conductive agent forming the first positive electrode active material layer is smaller than the content of the second conductive agent forming the second positive electrode active material layer.
  • the content of the first conductive agent forming the first positive electrode active material layer is smaller than the content of the second conductive agent forming the second positive electrode active material layer.
  • This selection can ensure that the electronic conductivity of the second positive electrode active material layer is better than that of the first positive electrode active material layer.
  • the reduction of the conductive agent can reduce the conductivity of the positive electrode active material and reduce the Li + in the positive electrode active material. Therefore, this selection can ensure that the dynamic performance of the second positive electrode active material layer is better than that of the first positive electrode active material layer.
  • the first positive electrode active material layer includes a first positive electrode active material
  • the second positive electrode active material layer includes a second positive electrode active material
  • the second positive electrode active material has a lithium ion extraction rate greater than that of the first positive electrode active material. The rate of lithium ion extraction from a positive electrode active material.
  • the dynamic performance of the second positive electrode active material layer is better than that of the first positive electrode active material layer.
  • the dynamic performance refers to the deintercalation speed of lithium ions, and the faster the deintercalation speed, the better the dynamic performance.
  • the factors that affect the de-intercalation speed of lithium ions include at least the following two: (1) The size of the charge current that can be supported by the active material. The larger the charge current that can be supported, the better the dynamic performance; (2) The release per unit time The amount of lithium ions, that is, the rate of lithium ion extraction, the faster the rate of lithium ion extraction, the better the kinetic performance.
  • the deintercalation rate of lithium ions from the second positive electrode active material layer is greater than the deintercalation rate of lithium ions from the first positive electrode active material layer.
  • the supportable charging current of the second positive electrode active material layer is greater than the supportable charging current of the first positive electrode active material layer.
  • the single-sided coating area, the double-sided coating area, and the tab area are arranged in sequence, that is, there is no blank area in the single-sided coating area, the double-sided coating area, and the tab area.
  • the length and width of the current collector are not specifically defined, and current collectors of different lengths and widths are selected according to different battery cells required.
  • the length of the current collector is 500-1000 mm, for example, 885 ⁇ 2 mm
  • the width of the current collector is 400-900 mm, for example, 773 ⁇ 2 mm.
  • the length of the first coating layer and the length of the third coating layer are not specifically defined.
  • the length of the first coating layer is longer than the length of the third coating layer. -10mm.
  • the length of the third coating layer is the same as the length of the single-sided coating area in the negative electrode sheet or is shorter by 1-2 mm.
  • the thickness of the first positive electrode active material layer in the second coating layer is 5-15 ⁇ m, for example, 5 ⁇ m, 10 ⁇ m, or 15 ⁇ m;
  • the thickness of the positive electrode active material layer is 55-75 ⁇ m, for example, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, or 75 ⁇ m; and the sum of the thickness of the first positive electrode active material layer and the thickness of the second positive electrode active material layer is 60- 80 ⁇ m.
  • the positive electrode current collector also includes a blank area, the blank area is arranged on the other side of the single-sided coating area connected to the double-sided coating area, and the blank area is, for example, in the production process of the positive electrode sheet. It is produced by medium cutting and is used to wrap the surface of the wound cell.
  • the length of the blank area may be, for example, 35 ⁇ 2 mm.
  • the mass percentage of each component in the second positive electrode active material layer is:
  • the first conductive agent and the second conductive agent are the same or different, and are independently selected from at least one of conductive carbon black, acetylene black, Ketjen black, conductive graphite, conductive carbon fiber, carbon nanotube, metal powder, and carbon fiber. A sort of.
  • step 1) the solid content of the slurry for forming the first positive electrode active material layer and the slurry for forming the second positive electrode active material layer is 70 wt% to 75 wt%.
  • step 2) on the other side surface of the positive electrode current collector, the slurry for forming the first positive electrode active material layer and the slurry for forming the second positive electrode active material layer are coated together from point E of the positive electrode current collector, And the slurry for forming the second positive electrode active material layer is close to the positive electrode current collector, and the slurry for forming the first positive electrode active material layer is far from the positive electrode current collector; the slurry for forming the second positive electrode active material layer is applied to point D, or, The slurry for forming the first positive electrode active material layer and the slurry for forming the second positive electrode active material layer are applied together from point D of the positive electrode current collector, and the slurry for forming the second positive electrode active material layer is close to the positive electrode current collector to form a first The slurry of the positive electrode active material layer is far away from the positive electrode current collector; the slurry forming the second positive electrode active material layer is coated to point E; and the line connecting point C and D is perpen
  • FIG. 1 is a positive electrode sheet structure according to a preferred solution of this application, in which 1 is a first positive electrode active material layer, and 2 is a second positive electrode active material layer.
  • Figure 2 shows the structure of a conventional positive electrode sheet.
  • the lithium-ion battery using the positive electrode sheet of the present application also includes a negative electrode sheet, the negative electrode sheet is a wound-type negative electrode sheet, specifically a wound-type negative electrode sheet for a lithium-ion battery, the negative electrode sheet includes The negative electrode current collector, the negative electrode current collector includes a single-sided coating area and a double-sided coating area;
  • a first coating layer is provided on one side of the negative electrode current collector, the first coating layer includes a negative electrode active material layer, and the negative electrode active material layer is provided on the surface of the negative electrode current collector;
  • the negative electrode current collector also includes a blank area, the blank area is arranged on the other side of the double-sided coating area connected to the single-sided coating area, and the blank area is for example used in the production process of the negative electrode sheet.
  • the length of the blank area may be 0.5-2 mm, such as 1 mm, for example.
  • the mass percentage of each component in the negative active material layer is:
  • the mass percentage of each component in the negative active material layer is:
  • the conductive agent is selected from at least one of conductive carbon black, acetylene black, Ketjen black, conductive graphite, conductive carbon fiber, carbon nanotube, metal powder, and carbon fiber.
  • the positive electrode plate prepared in the following examples is used for a battery of model 386283, wherein the distance between the positive electrode tab provided in the tab area and the single-sided coating area is 35.5 ⁇ 0.5mm, and the length of the single-sided coating area It is 113 ⁇ 2mm, the length of the current collector is 885 ⁇ 2mm, and the width of the current collector is 773 ⁇ 2mm.
  • the third step using a two-layer coater to coat the slurry for forming the first positive electrode active material layer and the slurry for forming the second positive electrode active material layer on the surface of the positive electrode current collector, specifically:
  • the negative electrode current collector from one end of the negative electrode current collector and along the length of the negative electrode current collector includes a tab area, a single-sided coating area and a double-sided coating in sequence. Covered area
  • Step 5 Assemble the battery cell: The positive electrode sheet prepared in the first to third steps above, the negative electrode sheet prepared in the fourth step and the separator are wound together to form a core, packaged with aluminum plastic film, baked to remove moisture, and then injected The electrolytic solution can be formed into the electric core by the hot-pressing forming process.
  • Example 2 The other operation steps are the same as in Example 1.
  • the only difference lies in the different mass percentages of the components in the first positive electrode active material layer and the second positive electrode active material layer, as shown in Table 1, and in the single-sided coating area and The thicknesses of the first positive electrode active material layer and the second positive electrode active material layer in the double-sided coating area are different, and only the first positive electrode active material layer is coated in Comparative Example 1 (the specific structure is shown in Figure 2). In 2, only the second positive electrode active material layer is coated (the specific structure is shown in Figure 2), as shown in Table 2.
  • the thickness before “/” represents the thickness of the first positive electrode active material layer
  • the thickness after “/” represents the thickness of the second positive electrode active material layer; taking 5 ⁇ m/75 ⁇ m as an example, the thickness in the second coating layer
  • the thickness of the first positive electrode active material layer was 5 ⁇ m
  • the thickness of the second positive electrode active material layer in the second coating layer was 75 ⁇ m.
  • the positive electrode plates prepared in each embodiment were compacted the same, and assembled into a soft-packed battery cell of model 386283.
  • the energy density was tested by 0.2C/0.2C charging and discharging at 25°C.
  • Each soft-packed battery was made The core is charged at 2.5C/0.7C at 25°C, and the battery is disassembled under different cycles to confirm the single-sided coating area of the negative electrode of the battery and the lithium deposit on the negative electrode surface.
  • the dismantling results, energy density, and charging speed are as follows 3 shows:
  • Table 3 The energy density of the battery of each embodiment and the lithium evolution on the surface of the negative electrode during the cycle, the capacity retention rate and the expansion data
  • the single-sided coating area has a slight lithium evolution: the single-sided coating area has a lithium evolution area less than 10% of the total area of the single-sided coating area; the single-sided coating area lithium evolution: the single-sided coating area lithium evolution The area occupies 10%-30% of the total area of the single-sided coating area; the single-sided coating area has serious lithium evolution: the lithium-evolving area of the single-sided coating area is greater than 50% of the total area of the single-sided coating area;
  • lithium deposition area occupies less than 10% of the entire negative electrode surface area; lithium deposition area on the negative electrode surface: lithium deposition area occupies 10%-30% of the entire negative electrode surface area; severe lithium deposition on the negative electrode surface: lithium deposition area occupies the entire negative electrode surface area More than 50%.
  • the battery cell prepared by the method in this patent can effectively improve the lithium precipitation problem in the single-sided coating area of the negative electrode of the conventional winding structure of the lithium battery without reducing the charging speed of the fast-charge lithium battery, and improve the lithium Ion battery cycle life, improve cycle expansion.
  • simply reducing the amount of conductive agent can reduce the overall conductivity of the positive electrode, reduce the dynamic performance of the positive electrode, slow down the delithiation rate of the positive electrode during the charging process, and alleviate the polarization of the negative electrode surface, although it can effectively improve the negative electrode during long cycles.
  • the problem of lithium precipitation in the single-sided coating area but greatly reduces its energy density and charging speed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了一种正极片、制备方法及包含其的锂离子电池。正极片包括正极集流体,正极集流体包括单面涂覆区域和双面涂覆区域;单面涂覆区域中,正极集流体一侧表面设置第一涂覆层,第一涂覆层包括第一正极活性物质层和第二正极活性物质层,第二正极活性物质层设置在正极集流体表面,第一正极活性物质层设置在第二正极活性物质层表面;形成第一正极活性物质层的第一导电剂的含量小于形成第二正极活性物质层的第二导电剂的含量。包含正极片的锂离子电池可以有效改善常规卷绕结构的锂离子电池负极单面涂覆区域的析锂问题,提高锂离子电池的循环寿命,降低锂离子电池的循环膨胀。不降低电池的快充性能的前提下,提高正极压实,增加电芯的能量密度。

Description

一种正极片、制备方法及包含其的锂离子电池
本申请要求于2020年5月8日提交中国专利局、申请号为202010390307.2、申请名称为“一种正极片、制备方法及包含其的锂离子电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于锂离子电池技术领域,具体涉及一种正极片、制备方法及包含其的锂离子电池。
背景技术
随着现代化社会的快速发展,便携式电子设备(手机、电脑等)的应用日益广泛。锂离子电池因其具有较长的循环寿命和较高的功率密度被广泛的应用在便携式移动电子设备终端,但随着人们生活节奏的变快,人们对其续航能力和充电速度提出更高的要求,目前看来快充锂离子电池成为消费类锂离子电池主要发展的趋势。快充锂离子电池技术的发展给人们带来便捷的同时也带来了安全问题,锂离子电池在大倍率快速充电条件下长循环时非常容易造成锂离子电池负极析锂,尤其是负极单面涂覆区域更为严重,由此带来锂离子电池循环跳水,膨胀,鼓气等问题,大大降低了锂离子电池的使用寿命。
发明内容
为了改善现有技术的不足,本申请提供了一种正极片、制备方法及包含其的锂离子电池。所述正极片主要用于解决大倍率快速充电制度下长循环过程中卷绕结构的电芯负极单面涂覆区域析锂问题。
本申请的发明人研究发现,现有的卷绕结构的电芯负极单面涂覆区域析锂的根本原因是单面涂覆区域靠近极耳,导致电流密度大,电势较低,负极动力学性能不足,在充电制度不变的前提下解决负极单面涂覆区域析锂的关键在于提高负极的动力学和/或降低正极的动力学性能。然而整个负极动力学 性能的提升必然会导致锂离子电池能量密度的降低,整个正极动力学性能的降低也必然导致锂离子电池快充能力的降低,而本申请通过提供一种具有特定结构的正极片,所述正极片是通过降低卷绕式锂离子电池正极活性物质层的动力学性能,实现在不降低锂离子电池整体快充性能和锂离子电池能量密度的条件下,降低负极单面涂覆区域及整个负极表面的极化,有效改善锂离子电池常规卷绕结构负极单面涂覆区域析锂问题,在不降低锂离子电池整体快充性能和锂离子电池能量密度的前提下提高锂离子电池循环寿命,改善循环膨胀。所述正极片可以在不降低锂离子电池整体快充性能和锂离子电池能量密度的情况下解决大倍率充电制度下长循环过程中卷绕结构的电芯负极单面涂覆区域析锂问题。
本申请目的是通过如下技术方案实现的:
一种卷绕式正极片,具体的为锂离子电池用卷绕式正极片,所述正极片包括正极集流体,正极集流体包括单面涂覆区域和双面涂覆区域;
所述单面涂覆区域中,正极集流体一侧表面设置第一涂覆层,所述第一涂覆层包括第一正极活性物质层和第二正极活性物质层,所述第二正极活性物质层设置在正极集流体表面,所述第一正极活性物质层设置在第二正极活性物质层表面;
所述双面涂覆区域中,正极集流体一侧表面设置第二涂覆层和第三涂覆层,且所述第一涂覆层、第二涂覆层和第三涂覆层依次连接;正极集流体另一侧表面设置第四涂覆层;
所述第二涂覆层包括第一正极活性物质层和第二正极活性物质层,所述第二正极活性物质层设置在正极集流体表面,所述第一正极活性物质层设置在第二正极活性物质层表面;
所述第三涂覆层包括第一正极活性物质层,所述第一正极活性物质层设置在正极集流体表面;
所述第四涂覆层包括第一正极活性物质层和第二正极活性物质层,所述第二正极活性物质层设置在正极集流体表面,所述第一正极活性物质层设置在第二正极活性物质层表面;
形成所述第一正极活性物质层的第一导电剂的含量小于形成所述第二正极活性物质层的第二导电剂的含量。
根据本申请,形成所述第一正极活性物质层的第一导电剂的含量小于形成所述第二正极活性物质层的第二导电剂的含量。这样选择可以保证所述第二正极活性物质层的电子导电能力优于第一正极活性物质层的电子导电能力,导电剂的减少可以降低正极活性物质的导电能力、降低Li +在正极活性物质内部的扩散能力,所以这样选择可以保证所述第二正极活性物质层的动力学性能优于第一正极活性物质层的动力学性能。
根据本申请,所述第一正极活性物质层包括第一正极活性物质,所述第二正极活性物质层包括第二正极活性物质,所述第二正极活性物质的脱出锂离子速度大于所述第一正极活性物质的脱出锂离子速度。
本申请中,所述第二正极活性物质层的动力学性能优于第一正极活性物质层的动力学性能。
根据本申请,所述动力学性能是指锂离子的脱嵌速度,脱嵌速度越快,动力学性能越好。影响锂离子的脱嵌速度的因素至少包括下述两种:(1)活性物质的可支持的充电电流大小,可支持的充电电流越大,动力学性能越好;(2)单位时间内脱出的锂离子的量、即脱出锂离子速度,脱出锂离子速度越快,动力学性能越好。
示例性地,所述第二正极活性物质层的锂离子的脱嵌速度大于第一正极活性物质层的锂离子的脱嵌速度。
示例性地,所述第二正极活性物质层的可支持的充电电流大于第一正极活性物质层的可支持的充电电流。
示例性地,所述第二正极活性物质层的脱出锂离子速度大于第一正极活性物质层的脱出锂离子速度。
本申请中,当在动力学性能好的正极片中,引入动力学性能相对差的第一正极活性物质层时,由于其动力学性能变差,导致锂离子的脱嵌速度变慢,即负极表面单位时间内聚集或接受的锂离子的数量变少,因此可以大幅减少负极表面、特别是单面涂覆区域部分的析锂问题。
根据本申请,所述正极集流体还包括极耳区域,即正极集流体包括依次设置的单面涂覆区域、双面涂覆区域和极耳区域;所述极耳区域中,正极集流体两侧不设置涂覆层。
根据本申请,所述单面涂覆区域、双面涂覆区域和极耳区域依次相连设 置,即所述单面涂覆区域、双面涂覆区域和极耳区域中没有空白区域。
根据本申请,所述单面涂覆区域中的第一涂覆层、所述双面涂覆区域中的第二涂覆层和第三涂覆层依次相连设置,即所述单面涂覆区域中的第一涂覆层、所述双面涂覆区域中的第二涂覆层和第三涂覆层中没有空白区域。
本申请中,所述的单面涂覆区域是指的在集流体的两侧中的一侧表面涂覆正极活性物质层。所述的双面涂覆区域是指的在集流体的两侧表面涂覆正极活性物质层。
根据本申请,所述集流体的长度和宽度没有特别的定义,根据需要的电芯的不同选取不同长度、不同宽度的集流体。示例性地,针对386283型号的电池,所述集流体的长度为500-1000mm,例如为885±2mm,所述集流体的宽度为400-900mm,例如为773±2mm。
根据本申请,所述极耳区域的长度、所述单面涂覆区域的长度、所述双面涂覆区域的长度均没有特别的定义,可以根据不同的要求进行设置,例如所述双面涂覆区域的长度大于所述单面涂覆区域的长度,所述双面涂覆区域的长度大于所述极耳区域的长度。还例如,针对386283型号的电池,所述单面涂覆区域的长度为123±2mm。
根据本申请,所述第一涂覆层的第一活性物质层与所述第二涂覆层的第一活性物质层、所述第三涂覆层的第一活性物质层相连;所述第一涂覆层的第二活性物质层与所述第二涂覆层的第二活性物质层相连。
根据本申请,所述第一涂覆层的长度和所述第三涂覆层的长度没有特别的定义,例如所述第一涂覆层的长度比所述第三涂覆层的长度长8-10mm。还例如所述第三涂覆层的长度与负极片中单面涂覆区域的长度相同或者短1-2mm。
根据本申请,所述极耳区域设置正极极耳,故在该区域内无需设置涂覆层。
根据本申请,所述极耳区域中设置的正极极耳与双面涂覆区域的距离也没有特别的限定,例如为10-100mm;还例如,针对386283型号的电池,所述极耳区域中设置的正极极耳与双面涂覆区域的距离为35.5±0.5mm。
根据本申请,所述单面涂覆区域中,第一涂覆层中的第一正极活性物质层的厚度为5-15μm,例如为5μm、10μm或15μm;第一涂覆层中的第二正 极活性物质层的厚度为55-75μm,例如为55μm、60μm、65μm、70μm或75μm;且所述第一正极活性物质层的厚度和所述第二正极活性物质层的厚度之和为60-80μm。
根据本申请,所述双面涂覆区域中,第二涂覆层中的第一正极活性物质层的厚度为5-15μm,例如为5μm、10μm或15μm;第一涂覆层中的第二正极活性物质层的厚度为55-75μm,例如为55μm、60μm、65μm、70μm或75μm;且所述第一正极活性物质层的厚度和所述第二正极活性物质层的厚度之和为60-80μm。
根据本申请,所述双面涂覆区域中,第三涂覆层中的第一正极活性物质层的厚度为60-80μm,例如为60μm、65μm、70μm、75μm或80μm。
根据本申请,所述双面涂覆区域中,第四涂覆层中的第一正极活性物质层的厚度为5-15μm,例如为5μm、10μm或15μm;第一涂覆层中的第二正极活性物质层的厚度为55-75μm,例如为55μm、60μm、65μm、70μm或75μm;且所述第一正极活性物质层的厚度和所述第二正极活性物质层的厚度之和为60-80μm。
根据本申请,所述双面涂覆区域中,第二涂覆层的厚度、第三涂覆层的厚度和第四涂覆层的厚度相同。
根据本申请,所述正极片中,第一涂覆层的厚度、第二涂覆层的厚度、第三涂覆层的厚度和第四涂覆层的厚度相同。
根据本申请,所述正极集流体还包括空白区域,所述空白区域设置在与双面涂覆区域相连的单面涂覆区域的另一侧,所述空白区域例如是在正极片的生产过程中剪裁而产生的,其用于包住卷绕式电芯的表面,所述空白区域的长度例如可以是35±2mm。
根据本申请,如图1所示,自正极集流体一端且沿正极集流体长度方向所述正极集流体包括依次设置的空白区域、单面涂覆区域、双面涂覆区域和极耳区域;
在正极集流体一侧表面(M面)依次涂覆包括第一正极活性物质层和第二正极活性物质层的第一涂覆层、包括第一正极活性物质层和第二正极活性物质层的第二涂覆层和包括第一正极活性物质层的第三涂覆层;其中,所述第一涂覆层和所述第二涂覆层中,所述第二正极活性物质层涂覆在正极集流 体表面,所述第一正极活性物质层涂覆在第二正极活性物质层表面;所述第三涂覆层中,所述第一正极活性物质层涂覆在正极集流体表面;
在正极集流体一侧表面(N面)涂覆包括第一正极活性物质层和第二正极活性物质层的第四涂覆层,且所述第二正极活性物质层涂覆在正极集流体表面,所述第一正极活性物质层涂覆在第二正极活性物质层表面;且所述第四涂覆层的长度等于所述第二涂覆层和所述第三涂覆层的长度之和,以保证在所述正极片中形成单面涂覆区域(第一涂覆层形成的区域)和双面涂覆区域(第二涂覆层、第三涂覆层和第四涂覆层形成的区域)。
具有上述结构的正极片在制备过程中,M面的制备例如可以是形成第一正极活性物质层的浆料和形成第二正极活性物质层的浆料从正极集流体A点一起涂覆,且形成第二正极活性物质层的浆料靠近正极集流体,形成第一正极活性物质层的浆料远离正极集流体;形成第二正极活性物质层的浆料涂覆到B点结束,形成第一正极活性物质层的浆料继续涂覆到C点,且确保单面涂覆区域中的第一涂覆层(AE之间)、双面涂覆区域中的第二涂覆层(EB之间)和第三涂覆层(BC之间)的厚度相同。
具有上述结构的正极片在制备过程中,N面的制备例如可以是形成第一正极活性物质层的浆料和形成第二正极活性物质层的浆料从正极集流体E点一起涂覆,且形成第二正极活性物质层的浆料靠近正极集流体,形成第一正极活性物质层的浆料远离正极集流体;形成第二正极活性物质层的浆料涂覆到D点结束,或者,形成第一正极活性物质层的浆料和形成第二正极活性物质层的浆料从正极集流体D点一起涂覆,且形成第二正极活性物质层的浆料靠近正极集流体,形成第一正极活性物质层的浆料远离正极集流体;形成第二正极活性物质层的浆料涂覆到E点结束;且C点和D点的连线垂直于正极集流体,在实际制备过程中,C点和D点之间存在0-1mm左右的错位,AC之间的距离大于DE之间的距离,以确保可以在正极片中形成单面涂覆区域和双面涂覆区域。
上述结构的正极片制备完成后,对正极集流体进行剪裁,在与双面涂覆区域相连的单面涂覆区域的另一侧留有空白区域。
根据本申请,所述第一正极活性物质层中包括第一正极活性物质、第一导电剂和第一粘结剂,所述第二正极活性物质层中包括第二正极活性物质、 第二导电剂和第二粘结剂。其中,形成所述第一正极活性物质层和第二正极活性物质层的第一正极活性物质和第二正极活性物质相同或不同、第一导电剂和第二导电剂相同或不同、第一粘结剂和第二粘结剂相同或不同。
根据本申请,所述第一正极活性物质层中各组分的质量百分含量为:
84-99.4wt%的第一正极活性物质、0.1-1wt%的第一导电剂、0.5-15wt%的第一粘结剂。
优选地,所述第一正极活性物质层中各组分的质量百分含量为:
94-98.6wt%的第一正极活性物质、0.5-1wt%的第一导电剂、0.9-5wt%的第一粘结剂。
根据本申请,所述第二正极活性物质层中各组分的质量百分含量为:
70-98wt%的第二正极活性物质、1.5-15wt%的第二导电剂、0.5-15wt%的第二粘结剂。
优选地,所述第二正极活性物质层中各组分的质量百分含量为:
92.5-97.6wt%的第二正极活性物质、1.5-2.5wt%的第二导电剂、0.9-5wt%的第二粘结剂。
其中,所述第一导电剂和第二导电剂相同或不同,彼此独立地选自导电炭黑、乙炔黑、科琴黑、导电石墨、导电碳纤维、碳纳米管、金属粉、碳纤维中的至少一种。
其中,所述第一粘结剂和第二粘结剂相同或不同,彼此独立地选自聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚丙烯酸锂(PAALi)中的至少一种。
其中,所述第一正极活性物质和第二正极活性物质相同或不同,彼此独立地选自钴酸锂、镍钴锰酸锂、锰酸锂、镍锰酸锂、镍钴铝酸锂、磷酸铁锂或富锂锰中的至少一种。
其中,所述第一正极活性物质和第二正极活性物质的粒径分布分别为:4μm<D 10<6μm,13μm<D 50<16μm,22μm<D 90<33μm。
本申请还提供上述正极片的制备方法,所述方法包括如下步骤:
1)分别配制形成第一正极活性物质层的浆料和形成第二正极活性物质层的浆料;
2)使用双层涂布机,将形成第一正极活性物质层的浆料和形成第二正极 活性物质层的浆料涂覆在正极集流体的两侧表面,制备得到所述正极片。
根据本申请,步骤1)中,所述形成第一正极活性物质层的浆料和形成第二正极活性物质层的浆料的固含量为70wt%~75wt%。
根据本申请,步骤2)中,在正极集流体一侧表面,形成第一正极活性物质层的浆料和形成第二正极活性物质层的浆料从正极集流体A点一起涂覆,且形成第二正极活性物质层的浆料靠近正极集流体,形成第一正极活性物质层的浆料远离正极集流体;形成第二正极活性物质层的浆料涂覆到B点结束,形成第一正极活性物质层的浆料继续涂覆到C点,且确保单面涂覆区域中的第一涂覆层(AE之间)、双面涂覆区域中的第二涂覆层(EB之间)和第三涂覆层(BC之间)的厚度相同。
根据本申请,步骤2)中,在正极集流体另一侧表面,将形成第一正极活性物质层的浆料和形成第二正极活性物质层的浆料从正极集流体E点一起涂覆,且形成第二正极活性物质层的浆料靠近正极集流体,形成第一正极活性物质层的浆料远离正极集流体;形成第二正极活性物质层的浆料涂覆到D点结束,或者,形成第一正极活性物质层的浆料和形成第二正极活性物质层的浆料从正极集流体D点一起涂覆,且形成第二正极活性物质层的浆料靠近正极集流体,形成第一正极活性物质层的浆料远离正极集流体;形成第二正极活性物质层的浆料涂覆到E点结束;且C点和D点的连线垂直于正极集流体,在实际制备过程中,C点和D点之间存在0-1mm左右的错位,AC之间的距离大于DE之间的距离,以确保可以在正极片中形成单面涂覆区域和双面涂覆区域。
本申请还提供一种锂离子电池,所述电池包括上述的正极片。
根据本申请,所述电池还包括负极片和隔膜。
本申请的有益效果:
本申请提供了一种正极片、制备方法及包含其的锂离子电池。包含所述正极片的锂离子电池具有如下效果:
(1)可以有效改善常规卷绕结构的锂离子电池负极单面涂覆区域的析锂问题,提高锂离子电池的循环寿命,降低锂离子电池的循环膨胀。
(2)不降低电池的快充性能的前提下,提高正极压实密度,增加电芯的能量密度。
附图说明
图1为本申请一个优选方案所述的正极片结构,其中1为第一正极活性物质层,2为第二正极活性物质层。
图2为常规正极片结构。
图3为本申请的一种负极片结构。
具体实施方式
如前所述,使用本申请的正极片的锂离子电池中还包括负极片,所述负极片为卷绕式负极片,具体的是锂离子电池用卷绕式负极片,所述负极片包括负极集流体,负极集流体包括单面涂覆区域和双面涂覆区域;
所述单面涂覆区域中,负极集流体一侧表面设置第一涂覆层,所述第一涂覆层包括负极活性物质层,所述负极活性物质层设置在负极集流体表面;
所述双面涂覆区域中,负极集流体两侧表面分别设置第二涂覆层,且所述第二涂覆层包括负极活性物质层,所述负极活性物质层设置在负极集流体表面。
具体的,负极片的结构如图3所示。
其中,所述单面涂覆区域和双面涂覆区域依次相连设置,即所述单面涂覆区域和双面涂覆区域中没有空白区域。
其中,所述负极集流体还包括极耳区域,所述极耳区域设置负极极耳,故在该区域内无需设置涂覆层。
其中,所述第一涂覆层的厚度和第二涂覆层的厚度相同,均为95-120μm。
其中,所述负极集流体还包括空白区域,所述空白区域设置在与单面涂覆区域相连的双面涂覆区域的另一侧,所述空白区域例如是在负极片的生产过程中为了避免剪裁到负极集流体表面的活性物质层而产生的,所述空白区域的长度例如可以是0.5-2mm,如1mm。
其中,所述负极活性物质层中各组分的质量百分含量为:
70-99wt%的负极活性物质、0.5-15wt%的导电剂、0.5-15wt%的粘结剂。
优选地,所述负极活性物质层中各组分的质量百分含量为:
80-98wt%的负极活性物质、1-10wt%的导电剂、1-10wt%的粘结剂。
其中,所述导电剂选自导电炭黑、乙炔黑、科琴黑、导电石墨、导电碳 纤维、碳纳米管、金属粉、碳纤维中的至少一种。
其中,所述粘结剂选自羧甲基纤维素钠、丁苯胶乳、聚四氟乙烯、聚氧化乙烯中的至少一种。
其中,所述负极活性物质选自人造石墨、天然石墨、中间相碳微球、钛酸锂中的至少一种。
上述负极片的制备方法,所述方法包括如下步骤:
1)分别配制形成负极活性物质层的浆料,所述形成负极活性物质层的浆料的固含量为40wt%~45wt%;
2)使用涂布机,将形成负极活性物质层的浆料涂覆在负极集流体的两侧表面,制备得到所述负极片。
下文将结合具体实施例对本申请做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本申请,而不应被解释为对本申请保护范围的限制。凡基于本申请上述内容所实现的技术均涵盖在本申请旨在保护的范围内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
在本申请的描述中,需要说明的是,术语“第一”、“第二”、“第三”、“第四”等仅用于描述目的,而并非指示或暗示相对重要性。
下述实施例中制备的正极片是用于386283型号的电池的,其中,极耳区域中设置的正极极耳与单面涂覆区域的距离为35.5±0.5mm,单面涂覆区域的长度为113±2mm,所述集流体的长度为885±2mm,所述集流体的宽度为773±2mm。
实施例1
第一步:制备形成第一正极活性物质层的浆料:将第一正极活性物质(钴酸锂)、第一导电剂(导电炭黑)和第一粘结剂(PVDF)按照98.6:0.5:0.9的质量比加入到搅拌罐中,加入NMP配制成形成第一正极活性物质层的浆料,正极浆料固含量为70wt%~75wt%;
第二步:制备形成第二正极活性物质层的浆料:将第二正极活性物质(钴 酸锂)、第二导电剂(导电炭黑)和第二粘结剂(PVDF)按照97.6:1.5:0.9的质量比加入到搅拌罐中,加入NMP配制成形成第二正极活性物质层的浆料,正极浆料固含量为70wt%~75wt%;
第三步:使用双层涂布机,将形成第一正极活性物质层的浆料和形成第二正极活性物质层的浆料涂覆在正极集流体表面,具体地:
在正极集流体一侧表面M,将形成第一正极活性物质层的浆料和形成第二正极活性物质层的浆料从正极集流体A点一起涂覆,且形成第二正极活性物质层的浆料靠近正极集流体,形成第一正极活性物质层的浆料远离正极集流体;形成第二正极活性物质层的浆料途径E点涂覆到B点结束,形成第一正极活性物质层的浆料途径E点和B点涂覆到C点,其中,AE之间为单面涂覆区域,EC之间为双面涂覆区域,且确保单面涂覆区域中的第一涂覆层(AE之间)、双面涂覆区域中的第二涂覆层(EB之间)和第三涂覆层(BC之间)的厚度相同;
在正极集流体另一侧表面N,将形成第一正极活性物质层的浆料和形成第二正极活性物质层的浆料从正极集流体E点一起涂覆,且形成第二正极活性物质层的浆料靠近正极集流体,形成第一正极活性物质层的浆料远离正极集流体;形成第二正极活性物质层的浆料涂覆到D点结束,或者,形成第一正极活性物质层的浆料和形成第二正极活性物质层的浆料从正极集流体D点一起涂覆,且形成第二正极活性物质层的浆料靠近正极集流体,形成第一正极活性物质层的浆料远离正极集流体;形成第二正极活性物质层的浆料涂覆到E点结束;且C点和D点的连线垂直于正极集流体,在实际制备过程中,C点和D点之间存在0-1mm左右的错位,BC之间的距离等于AE之间的距离,以确保可以在正极片中形成极耳区域、单面涂覆区域和双面涂覆区域;
将制备得到的正极片在120℃温度下烘干;
第四步:制备负极片:以人造石墨为负极活性材料,然后和导电剂(乙炔黑)和粘结剂(羧甲基纤维素钠)按照97:1.5:1.5的质量比加入到搅拌罐中,加入去离子水进行充分搅拌,过200目的筛网,配成负极浆料,负极浆料固含量为40wt%~45wt%,再利用涂布机将负极浆料涂覆到铝箔上,在100℃温度下烘干,即得到负极片,所得负极片中,自负极集流体一端且沿负极集流体长度方向所述负极集流体包括依次设置的极耳区域、单面涂覆区域和双 面涂覆区域;
所述极耳区域中,负极集流体两侧不设置涂覆层;所述单面涂覆区域中,负极集流体一侧设置第一涂覆层,所述第一涂覆层包括上述负极浆料形成的负极活性物质层,所述负极活性物质层设置在负极集流体表面;所述双面涂覆区域中,负极集流体两侧分别设置第二涂覆层,且所述第二涂覆层包括上述负极浆料形成的负极活性物质层,所述负极活性物质层设置在负极集流体表面;
第五步:组装电芯:将上述第一步至第三步制备的正极片与第四步制备的负极片及隔膜一起卷绕形成卷芯,用铝塑膜包装,烘烤去除水分后注入电解液,采用热压化成工艺化成即可得到电芯。
实施例2-4和对比例1-2
其他操作步骤同实施例1,区别仅在于第一正极活性物质层和第二正极活性物质层中各组分的质量百分含量不同,具体如表1所示,以及在单面涂覆区域和双面涂覆区域中的第一正极活性物质层和第二正极活性物质层的厚度不同,且对比例1中只涂覆第一正极活性物质层(具体结构如图2所示),对比例2中只涂覆第二正极活性物质层(具体结构如图2所示),具体如表2所示。
表1 实施例1-4和对比例1-2的正极片中活性物质层的质量百分含量
Figure PCTCN2021091032-appb-000001
表2 实施例1-4和对比例1-2的负极片的结构参数
Figure PCTCN2021091032-appb-000002
Figure PCTCN2021091032-appb-000003
表2中,“/”前面的厚度代表第一正极活性物质层的厚度,“/”后面的厚度代表第二正极活性物质层的厚度;以5μm/75μm为例,第二涂覆层中的第一正极活性物质层的厚度为5μm,第二涂覆层中的第二正极活性物质层的厚度为75μm。
各实施例制备的正极片压实相同,并将组装成型号为386283的软包电芯,在25℃下进行0.2C/0.2C充放电测试其能量密度,对制成每种的软包电芯在25℃条件下进行2.5C充电/0.7C放电,并在不同循环次数下拆解电池确认电池负极单面涂覆区域及负极表面析锂情况,拆解结果和能量密度、充电速度如下表3所示:
表3 各实施例的电池的能量密度及循环过程中负极表面析锂情况、容量保持率和膨胀数据
Figure PCTCN2021091032-appb-000004
Figure PCTCN2021091032-appb-000005
表3中,单面涂覆区域轻微析锂:单面涂覆区域的析锂面积小于单面涂覆区域总面积的10%;单面涂覆区域析锂:单面涂覆区域的析锂面积占单面涂覆区域总面积的10%~30%;单面涂覆区域严重析锂:单面涂覆区域的析锂面积大于单面涂覆区域总面积的50%;
负极表面轻微析锂:析锂面积占整个负极表面积的10%以内;负极表面析锂:析锂面积占整个负极表面积的10%~30%;负极表面严重析锂:析锂面积占整个负极表面积的50%以上。
从表3中可以看出,采用本专利中的方法制备的电芯在不降低快充锂电池充电速度的条件下有效改善锂电池常规卷绕结构负极单面涂覆区域析锂问题,提高锂离子电池循环寿命,改善循环膨胀。而单纯降低导电剂的量可以降低正极整体的导电性能,使正极的动力学性能降低,在充电过程中减慢正极的脱锂速度,缓解负极表面极化,虽然可以有效改善长循环过程中负极单面涂覆区域析锂的问题,但却大大降低了其能量密度和充电速度。
以上,对本申请的实施方式进行了说明。但是,本申请不限定于上述实施方式。凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种卷绕式正极片,其中,所述正极片包括正极集流体,正极集流体包括单面涂覆区域和双面涂覆区域;
    所述单面涂覆区域中,正极集流体一侧表面设置第一涂覆层,所述第一涂覆层包括第一正极活性物质层和第二正极活性物质层,所述第二正极活性物质层设置在正极集流体表面,所述第一正极活性物质层设置在第二正极活性物质层表面;
    所述双面涂覆区域中,正极集流体一侧表面设置第二涂覆层和第三涂覆层,且所述第一涂覆层、第二涂覆层和第三涂覆层依次连接;正极集流体另一侧表面设置第四涂覆层;
    所述第二涂覆层包括第一正极活性物质层和第二正极活性物质层,所述第二正极活性物质层设置在正极集流体表面,所述第一正极活性物质层设置在第二正极活性物质层表面;
    所述第三涂覆层包括第一正极活性物质层,所述第一正极活性物质层设置在正极集流体表面;
    所述第四涂覆层包括第一正极活性物质层和第二正极活性物质层,所述第二正极活性物质层设置在正极集流体表面,所述第一正极活性物质层设置在第二正极活性物质层表面;
    形成所述第一正极活性物质层的第一导电剂的含量小于形成所述第二正极活性物质层的第二导电剂的含量。
  2. 根据权利要求1所述的正极片,其中,所述第一正极活性物质层包括第一正极活性物质,所述第二正极活性物质层包括第二正极活性物质,所述第二正极活性物质的脱出锂离子速度大于所述第一正极活性物质的脱出锂离子速度。
  3. 根据权利要求1或2所述的正极片,其中,所述第一涂覆层的第一活性物质层与所述第二涂覆层的第一活性物质层、所述第三涂覆层的第一活性物质层相连,所述第一涂覆层的第二活性物质层与所述第二涂覆层的第二活性物质层相连。
  4. 根据权利要求1-3任一项所述的正极片,其中,所述单面涂覆区域中,第一涂覆层中的第一正极活性物质层的厚度为5-15μm,第一涂覆层中的第二 正极活性物质层的厚度为55-75μm,且所述第一正极活性物质层的厚度和所述第二正极活性物质层的厚度之和为60-80μm。
  5. 根据权利要求1-4任一项所述的正极片,其中,所述双面涂覆区域中,第二涂覆层中的第一正极活性物质层的厚度为5-15μm,第一涂覆层中的第二正极活性物质层的厚度为55-75μm,且所述第一正极活性物质层的厚度和所述第二正极活性物质层的厚度之和为60-80μm;
    第三涂覆层中的第一正极活性物质层的厚度为60-80μm;
    第四涂覆层中的第一正极活性物质层的厚度为5-15μm,第一涂覆层中的第二正极活性物质层的厚度为55-75μm,且所述第一正极活性物质层的厚度和所述第二正极活性物质层的厚度之和为60-80μm。
  6. 根据权利要求1-5任一项所述的正极片,其中,所述正极集流体还包括空白区域,所述空白区域设置在与双面区域相连的单面区域的另一侧。
  7. 根据权利要求6所述的正极片,其中,所述空白区域的长度是35±2mm。
  8. 根据权利要求1-7任一项所述的正极片,其中,所述第一正极活性物质层中还包括第一导电剂和第一粘结剂;
    所述第一正极活性物质层中各组分的质量百分含量为:84-99.4wt%的第一正极活性物质、0.1-1wt%的第一导电剂、0.5-15wt%的第一粘结剂。
  9. 根据权利要求8所述的正极片,其中,所述第一正极活性物质层中各组分的质量百分含量为:94-98.6wt%的第一正极活性物质、0.5-1wt%的第一导电剂、0.9-5wt%的第一粘结剂。
  10. 根据权利要求1-9任一项所述的正极片,其中,所述第二正极活性物质层中还包括第二导电剂和第二粘结剂;
    所述第二正极活性物质层中各组分的质量百分含量为:70-98wt%的第二正极活性物质、1.5-15wt%的第二导电剂、0.5-15wt%的第二粘结剂。
  11. 根据权利要求10所述的正极片,其中,所述第二正极活性物质层中各组分的质量百分含量为:92.5-97.6wt%的第二正极活性物质、1.5-2.5wt%的第二导电剂、0.9-5wt%的第二粘结剂。
  12. 一种锂离子电池,所述电池包括权利要求1-9任一项所述的正极片。
PCT/CN2021/091032 2020-05-08 2021-04-29 一种正极片、制备方法及包含其的锂离子电池 WO2021223654A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21800697.1A EP4075540A4 (en) 2020-05-08 2021-04-29 POSITIVE PLATE, MANUFACTURING PROCESS AND LITHIUM-ION BATTERY WITH THE POSITIVE PLATE
US17/810,843 US20220367878A1 (en) 2020-05-08 2022-07-06 Positive electrode sheet, preparation method thereof, and lithium-ion battery including the positive electrode sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010390307.2A CN111554878B (zh) 2020-05-08 2020-05-08 一种正极片、制备方法及包含其的锂离子电池
CN202010390307.2 2020-05-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/810,843 Continuation US20220367878A1 (en) 2020-05-08 2022-07-06 Positive electrode sheet, preparation method thereof, and lithium-ion battery including the positive electrode sheet

Publications (1)

Publication Number Publication Date
WO2021223654A1 true WO2021223654A1 (zh) 2021-11-11

Family

ID=72008069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091032 WO2021223654A1 (zh) 2020-05-08 2021-04-29 一种正极片、制备方法及包含其的锂离子电池

Country Status (4)

Country Link
US (1) US20220367878A1 (zh)
EP (1) EP4075540A4 (zh)
CN (1) CN111554878B (zh)
WO (1) WO2021223654A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4246625A1 (en) * 2022-03-16 2023-09-20 Ningde Amperex Technology Limited Electrochemical apparatus and electronic apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111540879B (zh) * 2020-05-08 2021-10-26 珠海冠宇电池股份有限公司 一种正极片、制备方法及包含其的锂离子电池
CN111554878B (zh) * 2020-05-08 2021-04-02 珠海冠宇电池股份有限公司 一种正极片、制备方法及包含其的锂离子电池
CN112750975B (zh) * 2020-12-29 2022-07-12 珠海冠宇电池股份有限公司 锂电池正极片及卷绕式电芯及锂离子电池
CN112750974B (zh) * 2020-12-29 2022-08-09 珠海冠宇电池股份有限公司 锂电池正极片及卷绕式电芯及锂离子电池
CN115172665A (zh) * 2020-12-30 2022-10-11 珠海冠宇电池股份有限公司 一种电极片、包括该电极片的二次电池以及装置
CN115719813A (zh) * 2021-08-26 2023-02-28 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池以及用电装置
EP4195331A4 (en) * 2021-10-13 2023-08-02 Contemporary Amperex Technology Co., Limited ELECTRODE ASSEMBLY, RECHARGEABLE BATTERY, BATTERY MODULE, BATTERY PACK AND ELECTRICAL APPARATUS
CN114447280B (zh) * 2022-02-09 2024-07-16 珠海冠宇电池股份有限公司 一种电芯
CN114744156B (zh) * 2022-03-30 2024-06-28 惠州市恒泰科技股份有限公司 正极极片结构及其制备方法
CN118696445A (zh) * 2023-03-31 2024-09-24 宁德新能源科技有限公司 一种二次电池及用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062105A (ja) * 2011-09-13 2013-04-04 Hitachi Ltd リチウムイオン二次電池
CN103165863A (zh) * 2012-12-07 2013-06-19 深圳市海太阳实业有限公司 一种正极极片及其制备方法、电池
CN106848325A (zh) * 2017-02-15 2017-06-13 宁德时代新能源科技股份有限公司 一种二次电池极片,其制备方法,及卷绕式电芯
CN109244362A (zh) * 2018-11-05 2019-01-18 宁德新能源科技有限公司 正极极片、电化学装置及包含其的电子装置
CN111540879A (zh) * 2020-05-08 2020-08-14 珠海冠宇电池股份有限公司 一种正极片、制备方法及包含其的锂离子电池
CN111554878A (zh) * 2020-05-08 2020-08-18 珠海冠宇电池股份有限公司 一种正极片、制备方法及包含其的锂离子电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011114641A1 (ja) * 2010-03-15 2013-06-27 パナソニック株式会社 非水電解質二次電池用電極およびこれを含む非水電解質二次電池
KR102354357B1 (ko) * 2016-12-09 2022-01-20 삼성에스디아이 주식회사 이차 전지
CN207651582U (zh) * 2017-03-09 2018-07-24 广东永邦新能源股份有限公司 一种双极耳的锂电池极片
JP2020009597A (ja) * 2018-07-05 2020-01-16 トヨタ自動車株式会社 リチウムイオン二次電池
KR102165952B1 (ko) * 2018-09-13 2020-10-14 한국기계연구원 이차전지용 음극 및 이의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062105A (ja) * 2011-09-13 2013-04-04 Hitachi Ltd リチウムイオン二次電池
CN103165863A (zh) * 2012-12-07 2013-06-19 深圳市海太阳实业有限公司 一种正极极片及其制备方法、电池
CN106848325A (zh) * 2017-02-15 2017-06-13 宁德时代新能源科技股份有限公司 一种二次电池极片,其制备方法,及卷绕式电芯
CN109244362A (zh) * 2018-11-05 2019-01-18 宁德新能源科技有限公司 正极极片、电化学装置及包含其的电子装置
CN111540879A (zh) * 2020-05-08 2020-08-14 珠海冠宇电池股份有限公司 一种正极片、制备方法及包含其的锂离子电池
CN111554878A (zh) * 2020-05-08 2020-08-18 珠海冠宇电池股份有限公司 一种正极片、制备方法及包含其的锂离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4075540A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4246625A1 (en) * 2022-03-16 2023-09-20 Ningde Amperex Technology Limited Electrochemical apparatus and electronic apparatus

Also Published As

Publication number Publication date
CN111554878A (zh) 2020-08-18
EP4075540A4 (en) 2024-06-12
EP4075540A1 (en) 2022-10-19
US20220367878A1 (en) 2022-11-17
CN111554878B (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
WO2021223655A1 (zh) 一种正极片、制备方法及包含其的锂离子电池
WO2021223654A1 (zh) 一种正极片、制备方法及包含其的锂离子电池
CN111540881B (zh) 一种负极片、制备方法及包含其的锂离子电池
CN111969214B (zh) 一种异型结构的正极片及包括该正极片的锂离子电池
CN111540880B (zh) 一种负极片、制备方法及包含其的锂离子电池
CN111916668B (zh) 一种负极片及其制备方法和包含该负极片的锂离子电池
CN111916666B (zh) 一种异型结构的负极片及包括该负极片的锂离子电池
WO2021228193A1 (zh) 高能量密度长寿命的快充锂离子电池及其制备方法
CN113839084A (zh) 电芯及电池
WO2021174689A1 (zh) 一种全固态电池及其制备方法
CN113871571B (zh) 负极片、电芯及电池
WO2024109530A1 (zh) 负极极片及包含其的二次电池
WO2024124969A1 (zh) 一种二次电池和用电装置
CN109428051A (zh) 锂离子电池及其正极片
CN112713266A (zh) 负极浆料及其应用
CN112349953A (zh) 一种锂离子电池
CN112825349B (zh) 复合正极极片、锂二次电池
CN114335419A (zh) 一种锂电池负极极片和锂电池
WO2023130926A1 (zh) 一种负极片及包括该负极片的电池
CN115036458B (zh) 一种锂离子电池
CN219642868U (zh) 一种电池集流体及锂电池
CN220731565U (zh) 一种锂离子电池
CN115020638B (zh) 一种锂离子电池
CN216435939U (zh) 一种电芯及电池
CN116960275A (zh) 正极极片及其制备方法和锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021800697

Country of ref document: EP

Effective date: 20220711

NENP Non-entry into the national phase

Ref country code: DE