WO2021220912A1 - オーステナイト系耐熱鋼 - Google Patents
オーステナイト系耐熱鋼 Download PDFInfo
- Publication number
- WO2021220912A1 WO2021220912A1 PCT/JP2021/016188 JP2021016188W WO2021220912A1 WO 2021220912 A1 WO2021220912 A1 WO 2021220912A1 JP 2021016188 W JP2021016188 W JP 2021016188W WO 2021220912 A1 WO2021220912 A1 WO 2021220912A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- content
- less
- amount
- mass
- contained
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 66
- 239000010959 steel Substances 0.000 title claims abstract description 66
- 239000000203 mixture Substances 0.000 claims abstract description 15
- 239000000126 substance Substances 0.000 claims abstract description 15
- 239000012535 impurity Substances 0.000 claims abstract description 8
- 238000000605 extraction Methods 0.000 claims description 16
- 239000006104 solid solution Substances 0.000 description 49
- 238000010438 heat treatment Methods 0.000 description 37
- 230000000694 effects Effects 0.000 description 32
- 238000003466 welding Methods 0.000 description 30
- 238000012360 testing method Methods 0.000 description 29
- 238000001816 cooling Methods 0.000 description 24
- 239000002244 precipitate Substances 0.000 description 18
- 239000000463 material Substances 0.000 description 17
- 150000004767 nitrides Chemical class 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 14
- 229910001566 austenite Inorganic materials 0.000 description 12
- 229910052761 rare earth metal Inorganic materials 0.000 description 11
- 230000035945 sensitivity Effects 0.000 description 11
- 239000000243 solution Substances 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 9
- 150000001247 metal acetylides Chemical class 0.000 description 8
- 229910052758 niobium Inorganic materials 0.000 description 8
- 238000000465 moulding Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 230000003749 cleanliness Effects 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 238000009616 inductively coupled plasma Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000005204 segregation Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 238000005097 cold rolling Methods 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- YLRAQZINGDSCCK-UHFFFAOYSA-M methanol;tetramethylazanium;chloride Chemical compound [Cl-].OC.C[N+](C)(C)C YLRAQZINGDSCCK-UHFFFAOYSA-M 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 238000010273 cold forging Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000007778 shielded metal arc welding Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/56—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
- C21D1/60—Aqueous agents
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/84—Controlled slow cooling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/007—Heat treatment of ferrous alloys containing Co
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/02—Hardening by precipitation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention relates to austenitic heat resistant steel.
- Patent Documents 1 to 6 disclose austenitic steels containing Nb and N in predetermined amounts to improve high-temperature strength.
- Japanese Unexamined Patent Publication No. 62-133048 Japanese Unexamined Patent Publication No. 2000-256803 Japanese Unexamined Patent Publication No. 2003-268503 International Publication No. 2009/044796 International Publication No. 2013/073055 Japanese Unexamined Patent Publication No. 2014-1436
- the austenitic heat-resistant steels disclosed in Patent Documents 1 to 6 have a point that when used at a high temperature, the time until rupture may vary under a certain stress, and stable creep strength is obtained. There is room for improvement. Further, even if a stable creep strength can be obtained, since cracks are likely to occur during welding due to the inclusion of Nb, it is possible to achieve both stable creep strength and welding crack resistance. There is a problem that it is difficult.
- An object of the present invention is to solve the above-mentioned problems and to provide an austenitic heat-resistant steel which is stable and has good creep strength and excellent weld cracking resistance when used at a high temperature.
- the present invention has been made to solve the above problems, and the following austenitic heat-resistant steel is the gist of the present invention.
- the chemical composition is mass%. C: 0.04 to 0.12%, Si: 0.01-0.30%, Mn: 0.50 to 1.50%, P: 0.001 to 0.040%, S: less than 0.0050%, Cu: 2.2-3.8%, Ni: 8.0 to 11.0%, Cr: 17.7 to 19.3%, Mo: 0.01-0.55%, Nb: 0.400 to 0.650%, B: 0.0010 to 0.0060%, N: 0.050 to 0.160%, Al: 0.025% or less, O: 0.020% or less, Co: 0 to 1.00%, W: 0 to 1.00%, Ti: 0 to 0.40%, V: 0 to 0.40%, Ta: 0 to 0.40%, Sn: 0 to 0.0300%, Ca: 0-0.0100%, Mg: 0 to 0.0100%, REM: 0-0.0800%, Remaining: Fe and impurities, An austenitic heat-resistant steel in which the difference between the Nb content and the amount of Nb analyzed as the electro
- Nb in the above formula means the Nb content (mass%) contained in the steel
- Nb ER means the amount of Nb (mass%) analyzed as the electrolytic extraction residue.
- the chemical composition is mass%. Co: 0.01-1.00%, W: 0.01-1.00%, Ti: 0.01-0.40%, V: 0.01-0.40%, Ta: 0.01-0.40%, Sn: 0.0002 to 0.0300%, Ca: 0.0002 to 0.0100%, Mg: 0.0002 to 0.0100%, and REM: 0.0005 to 0.0800%,
- the chemical composition is mass%.
- P 0.010 to 0.040%, The austenitic heat-resistant steel according to any one of (1) to (4) above.
- an austenitic heat-resistant steel which is stable and has good creep strength and excellent weld cracking resistance when used at a high temperature.
- FIG. 1 is a diagram showing a groove shape in an embodiment.
- the present inventors have conducted various studies in order to improve the high temperature strength of the austenitic heat-resistant steel containing Nb and N, specifically, the creep strength and the weld crack resistance, and the following (a) The findings of (c) were obtained.
- solid solution Nb the amount of Nb dissolved in the matrix (hereinafter, simply referred to as “solid solution Nb”) according to the content thereof.
- the solid solution Nb Comparing the solid solution Nb with the Nb existing as a precipitate, the solid solution Nb has a greater effect on the weld crack susceptibility.
- the reason for this is that the solid solution Nb does not require time to dissolve in the matrix by the welding heat cycle, so that the Nb tends to be concentrated at the grain boundaries. As a result, welding cracks are likely to occur.
- the amount of solid solution Nb has a great influence on both the creep strength and the weld crack resistance. Therefore, in order to achieve both stable high creep strength and good weld crack resistance, it is necessary to control the amount of solid solution Nb within an appropriate range.
- B and P since it affects both creep strength and weld crack resistance, it is desirable to adjust the Nb solid solution amount according to the B content, and the B and P contents are adjusted. It is even more desirable to adjust accordingly.
- C 0.04 to 0.12% C stabilizes the austenite structure and forms fine carbides to improve creep strength during high temperature use. Therefore, the C content is set to 0.04% or more.
- the C content is preferably 0.06% or more, and more preferably 0.07% or more.
- the C content is set to 0.12% or less.
- the C content is preferably 0.10% or less, and more preferably 0.09% or less.
- Si 0.01-0.30% Si has a deoxidizing effect at the time of manufacture. Further, Si is an element effective for improving corrosion resistance and oxidation resistance at high temperatures. Therefore, the Si content is set to 0.01% or more.
- the Si content is preferably 0.03% or more, more preferably 0.05% or more, and further preferably 0.10% or more.
- excessive Si content reduces the stability of the austenite structure, leading to a decrease in toughness and creep strength. Therefore, the Si content is set to 0.30% or less.
- the Si content is preferably 0.28% or less, more preferably 0.25% or less, and even more preferably 0.20% or less.
- Mn 0.50 to 1.50% Mn has a deoxidizing effect like Si.
- Mn stabilizes the austenite structure and contributes to the improvement of creep strength. Therefore, the Mn content is set to 0.50% or more.
- the Mn content is preferably 0.60% or more, and more preferably 0.70% or more.
- excessive Mn content causes embrittlement and further reduces creep ductility. Therefore, the Mn content is set to 1.50% or less.
- the Mn content is preferably 1.30% or less, and more preferably 1.00% or less.
- P 0.001 to 0.040%
- P is an element contained in steel as an impurity, but has an effect of increasing creep strength. It is considered that this is because it affects the solid solution strengthening or precipitation state. Therefore, the P content is set to 0.001% or more.
- the P content is preferably 0.005% or more, more preferably 0.010% or more, and further preferably 0.020% or more.
- the P content is set to 0.040% or less.
- the P content is preferably 0.038% or less, and more preferably 0.035% or less.
- S Less than 0.0050% S is contained in steel as an impurity like P, and enhances the crack sensitivity of the weld heat affected zone during welding. Therefore, the S content is set to less than 0.0050%.
- the content of S is preferably less than 0.0020%, more preferably 0.0018% or less, and even more preferably 0.0015% or less. It is preferable to reduce the S content as much as possible, but the extreme reduction causes an increase in steelmaking cost. Therefore, the S content is preferably 0.0001% or more, and preferably 0.0002% or more.
- Cu 2.2-3.8% Cu enhances the stability of the austenite structure and finely precipitates during use, which contributes to the improvement of creep strength. Therefore, the Cu content is set to 2.2% or more.
- the Cu content is preferably 2.5% or more, and more preferably 2.7% or more. However, if Cu is contained in an excessive amount, the hot workability is lowered. Therefore, the Cu content is set to 3.8% or less.
- the Cu content is preferably 3.5% or less, and more preferably 3.3% or less.
- Ni 8.0 to 11.0% Ni stabilizes the austenite structure and contributes to the improvement of creep strength. Therefore, the Ni content is set to 8.0% or more.
- the Ni content is preferably 8.2% or more, and more preferably 8.5% or more.
- Ni is an expensive element, and its content in a large amount increases the cost, increases the stability of austenite, and lowers the weldability. Therefore, the Ni content is set to 11.0% or less.
- the Ni content is preferably 10.8% or less, and more preferably 10.5% or less.
- Cr 17.7 to 19.3% Cr contributes to the improvement of oxidation resistance and corrosion resistance at high temperatures. It also contributes to ensuring creep strength by forming fine carbides. Therefore, the Cr content is set to 17.7% or more.
- the Cr content is preferably 18.0% or more, and more preferably 18.2% or more.
- the Cr content is set to 19.3% or less.
- the Cr content is preferably 19.0% or less, more preferably 18.8% or less.
- Mo 0.01-0.55% Mo dissolves in the matrix and contributes to the improvement of creep strength and tensile strength at high temperature. Therefore, the Mo content is set to 0.01% or more.
- the Mo content is preferably 0.03% or more, and more preferably 0.05% or more. However, if Mo is contained in excess, the above effect is saturated. In addition, the stability of the austenite structure is impaired, and the creep strength is rather reduced. In addition, since Mo is an expensive element, it causes an increase in cost. Therefore, the Mo content is set to 0.55% or less.
- the Mo content is preferably 0.53% or less, more preferably 0.50% or less, and even more preferably 0.40% or less.
- Nb 0.400 to 0.650% Nb is precipitated as fine carbonitrides and nitrides, which contributes to the improvement of creep strength. Therefore, the Nb content is set to 0.400% or more.
- the Nb content is preferably 0.420% or more, and more preferably 0.450% or more.
- the Nb content is set to 0.650% or less.
- the Nb content is preferably 0.630% or less, and more preferably 0.600% or less.
- the above-mentioned Nb content means the total amount of Nb contained in the austenitic heat-resistant steel. That is, it means the sum of the amount of solid solution Nb and the amount of Nb existing as a precipitate.
- the difference between the solid solution Nb amount, that is, the Nb content and the Nb amount analyzed as the electrolytic extraction residue is determined.
- the range it is preferable that the amount of solid solution Nb is in a predetermined range depending on the B content or the B content and P.
- B 0.0010 to 0.0060% B has the effect of improving the creep strength by finely dispersing the intergranular carbides. Therefore, the B content is set to 0.0010% or more.
- the B content is preferably 0.0020% or more, and more preferably 0.0030% or more.
- the B content is set to 0.0060% or less.
- the B content is preferably 0.0055% or less, and more preferably 0.0050% or less.
- N 0.050 to 0.160% N stabilizes the austenite structure and precipitates as a solid solution or nitride, which contributes to the improvement of creep strength. Therefore, the N content is set to 0.050% or more.
- the N content is more preferably 0.070% or more, and more preferably 0.090% or more.
- the N content is set to 0.160% or less.
- the N content is preferably 0.140% or less, more preferably 0.120% or less.
- Al 0.025% or less
- Al has a deoxidizing effect. However, if Al is excessively contained, the cleanliness of the steel is deteriorated and the hot workability is lowered. Therefore, the Al content is set to 0.025% or less.
- the Al content is preferably 0.023% or less, and more preferably 0.020% or less.
- the Al content is preferably 0.001% or more, and more preferably 0.002% or more.
- O 0.020% or less O is contained in steel as an impurity, and if it is excessively contained, the hot workability is lowered. In addition, it impairs toughness and ductility. Therefore, the O content is set to 0.020% or less.
- the O content is preferably 0.018% or less, more preferably 0.015% or less. Although no lower limit is set for the O content, an extreme reduction in the content increases the manufacturing cost. Therefore, the O content is preferably 0.001% or more, and more preferably 0.002% or more.
- one or more selected from Co, W, Ti, V, Ta, Sn, Ca, Mg, and REM may be further contained in the range shown below. The reason for limiting each element will be described.
- Co 0 to 1.00% Like Ni, Co has the effect of stabilizing the austenite structure and improving the creep strength. Therefore, it may be contained as needed. However, Co is a very expensive element, and if it is contained in an excessive amount, the production cost increases. Therefore, the Co content is set to 1.00% or less.
- the Co content is preferably 0.90% or less, more preferably 0.80% or less.
- the Co content is preferably 0.01% or more, and more preferably 0.03% or more.
- W 0 to 1.00% W has the effect of improving creep strength at high temperatures by dissolving in the matrix or forming a fine intermetallic compound phase. Therefore, it may be contained as needed. However, even if W is contained in an excessive amount, the above effect is saturated, the stability of the austenite structure is impaired, and the creep strength is rather lowered. Moreover, since it is an expensive element, the manufacturing cost increases. Therefore, the W content is set to 1.00% or less. The W content is preferably 0.90% or less, and more preferably 0.80% or less. On the other hand, in order to obtain the above effect, the W content is preferably 0.01% or more, and more preferably 0.03% or more.
- Ti 0 to 0.40%
- Ti has the effect of combining with carbon and nitrogen to form fine carbides and carbonitrides to improve creep strength at high temperatures. Therefore, it may be contained as needed. However, if Ti is contained in an excessive amount, a large amount of precipitates are precipitated, resulting in a decrease in creep ductility and toughness. Therefore, the Ti content is set to 0.40% or less.
- the Ti content is preferably 0.35% or less, more preferably 0.30% or less.
- the Ti content is preferably 0.01% or more, and more preferably 0.02% or more.
- V 0 to 0.40%
- V has the effect of forming fine carbides and carbonitrides to improve creep strength at high temperatures. Therefore, it may be contained as needed. However, if V is contained in an excessive amount, a large amount of precipitates are precipitated, resulting in a decrease in creep ductility and toughness. Therefore, the V content is set to 0.40% or less.
- the V content is preferably 0.35% or less, and more preferably 0.30% or less.
- the V content is preferably 0.01% or more, and more preferably 0.02% or more.
- Ta 0 to 0.40%
- Ta has the effect of forming fine carbides and carbonitrides to improve creep strength at high temperatures. Therefore, it may be contained as needed. However, if Ta is contained in an excessive amount, a large amount of precipitates are precipitated, resulting in a decrease in creep ductility and toughness. Therefore, the Ta content is set to 0.40% or less.
- the Ta content is preferably 0.35% or less, and more preferably 0.30% or less.
- the Ta content is preferably 0.01% or more, and more preferably 0.02% or more.
- Sn 0 to 0.0300% Sn has the effect of improving the weldability to a considerable extent. Therefore, it may be contained as needed. However, if Sn is contained in an excessive amount, the crack sensitivity of the weld heat-affected zone is increased during welding, and the hot workability during manufacturing is impaired. Therefore, the Sn content is set to 0.0300% or less.
- the Sn content is preferably 0.0250% or less, and more preferably 0.0200% or less.
- the Sn content is preferably 0.0002% or more, and more preferably 0.0005% or more.
- Ca 0-0.0100% Ca has the effect of improving hot workability. Therefore, it may be contained as needed. However, if Ca is contained in an excessive amount, it binds to oxygen and significantly reduces the cleanliness, which in turn impairs the hot workability. Therefore, the Ca content is set to 0.0100% or less.
- the Ca content is preferably 0.0080% or less, and more preferably 0.0060% or less.
- the Ca content is preferably 0.0002% or more, and more preferably 0.0005% or more.
- Mg 0 to 0.0100% Like Ca, Mg has the effect of improving hot workability. Therefore, it may be contained as needed. However, if Mg is contained in an excessive amount, it will be combined with oxygen and the cleanliness will be significantly reduced. As a result, the hot workability is rather lowered. Therefore, the Mg content is set to 0.0100% or less.
- the Mg content is preferably 0.0080% or less, more preferably 0.0060% or less.
- the Mg content is preferably 0.0002% or more, more preferably 0.0005% or more.
- REM 0-0.0800% Like Ca and Mg, REM has the effect of improving hot workability during production. Therefore, it may be contained as needed. However, if REM is contained in excess, it will combine with oxygen and significantly reduce cleanliness. As a result, the hot workability is rather lowered. Therefore, the REM content is 0.0800% or less.
- the REM content is preferably 0.0600% or less, more preferably 0.0500% or less.
- the REM content is preferably 0.0005% or more, and more preferably 0.0010% or more.
- REM refers to a total of 17 elements of Sc, Y and lanthanoid, and the above REM content means the total content of these elements. REM is often added industrially in the form of misch metal.
- the balance is Fe and impurities.
- impurity is a component mixed with raw materials such as ore and scrap, and various factors in the manufacturing process when steel is industrially manufactured, and is allowed as long as it does not adversely affect the present invention. Means something.
- the solid solution Nb amount that is, the Nb amount contained in the steel (Nb content) and the Nb amount existing as a precipitate before use (that is, analyzed as a residue) are analyzed. It is effective to secure a sufficient difference from the amount of Nb).
- Nb contained in steel segregates at the grain boundaries of the weld heat affected zone due to the welding heat cycle during welding. Since Nb lowers the solidus temperature of the steel, the grain boundaries segregated by Nb are locally melted and weld cracks occur. Compared to Nb existing as a precipitate in steel, the solid solution Nb dissolved in the matrix does not require time to dissolve in the matrix due to the welding heat cycle, so that the degree of influence on the welding crack sensitivity is large. ..
- B contained in the steel dissolves in the grain boundary carbide containing Cr and is finely precipitated to increase the creep strength.
- B is an element that lowers the solidus line temperature like Nb, and segregates at the grain boundaries at the weld heat affected zone at the time of welding to increase the welding crack sensitivity. Based on the above, it is more preferable to adjust the amount of solid solution Nb to an appropriate range and adjust the amount of solid solution Nb according to the B content.
- P contained in steel is also an element that lowers the solidus line temperature like B and Nb, and segregates at the grain boundaries at the weld heat affected zone during welding to increase the welding crack sensitivity. From this, it is more preferable to adjust the amount of Nb to an appropriate range, and to adjust the amount of solid solution Nb according to the P content in addition to the B content.
- the difference between the Nb content corresponding to the solid solution Nb amount and the Nb amount analyzed as the electrolytic extraction residue needs to satisfy the following formula (i).
- Nb in the above formula means the Nb content (mass%) contained in the steel
- Nb ER means the amount of Nb (mass%) analyzed as the electrolytic extraction residue.
- the amount of solid solution Nb which is the middle value of the formula (i)
- the carbonitride and the nitride containing Nb are precipitated before being exposed to the usage environment. Therefore, when used at a high temperature, the carbonitride containing Nb and the nitride do not finely precipitate in the crystal grains. In addition, these precipitates are coarsened at an early stage. As a result, the creep strength cannot be improved. Therefore, the amount of solid solution Nb is 0.170% or more.
- the amount of solid solution Nb is preferably 0.180% or more, more preferably 0.185% or more, and further preferably 0.190% or more.
- the amount of solid solution Nb exceeds 0.480%, the welding crack sensitivity of the weld heat affected zone is further increased during welding. Therefore, the amount of solid solution Nb is set to 0.480% or less.
- the amount of solid solution Nb is preferably 0.460% or less, more preferably 0.440% or less, and further preferably 0.400% or less.
- the amount of solid solution Nb in combination with the effect of B which dissolves in Cr carbide and finely precipitates at the grain boundaries to increase the creep strength. Specifically, it is preferable that the amount of solid solution Nb satisfies the following equation (ii).
- each element symbol in the above formula means the content (mass%) of each element contained in the steel, and Nb ER means the amount of Nb (mass%) analyzed as the electrolytic extraction residue.
- the Cr carbide in which B is dissolved is finely precipitated at the grain boundaries after securing the amount of solid solution Nb, further improving the creep strength. Because. On the other hand, when the amount of solid solution Nb is equal to or less than the rvalue of Eq. (Ii), the weld crack resistance can be improved.
- P is considered to affect the solid solution strengthening or precipitation state to improve the creep strength, but on the other hand, it lowers the solidus line temperature like B and Nb, and is welded at the time of welding. Grain boundary segregation occurs at the heat-affected zone to increase weld crack sensitivity. From this, it is more preferable to adjust the solid solution Nb amount according to the P content in addition to the B content. Specifically, it is preferable that the amount of solid solution Nb satisfies the following equation (iii).
- each element symbol in the above formula means the content (mass%) of each element contained in the steel, and Nb ER means the amount of Nb (mass%) analyzed as the electrolytic extraction residue.
- the Cr carbide in which B is solid-solved is finely precipitated at the grain boundaries after securing the amount of solid-dissolved Nb, and is solid-solved by P. This is because the strengthening or precipitation state can be satisfactorily controlled. As a result, it is considered that the creep strength is further improved.
- the amount of solid solution Nb is equal to or less than the rvalue of Eq. (Iii)
- more stable weld crack resistance can be ensured.
- the amount of Nb analyzed as the electrolytic extraction residue in the above formula can be measured by the following procedure.
- a test piece of a predetermined size is collected from the steel. This test piece was anodic-dissolved at a current density of 20 mA / cm 2 by a constant current electrolysis method using a 10% by volume acetylacetone-1 mass% tetramethylammonium chloride methanol solution as an electrolytic solution, and carbon nitride and carbonitoxide and The nitride is extracted as a residue.
- ICP radio frequency inductively coupled plasma
- emission analysis is performed to measure the mass of Nb in the residue.
- the mass of Nb in the residue is divided by the amount of the test material dissolved to determine the amount of carbonitride and Nb present as the nitride.
- the determined amount of Nb is the amount of Nb analyzed as the electrolytic extraction residue.
- the steel according to the present invention can obtain the effect as long as it has the above-mentioned structure regardless of the manufacturing method.
- the steel can be stably manufactured by the following manufacturing method.
- the method for processing and molding is not particularly limited, and may be casting using a mold or plastic working.
- plastic working for example, hot rolling, hot forging, cold rolling, cold forging, cold drawing, etc. can be considered as an example, and the working temperature can be any of hot, cold, and warm. It may be in the temperature range.
- heat treatment and pickling may be performed as necessary.
- the shape of the product to be processed and molded is not particularly limited.
- the product shape for example, a plate shape, a tubular shape, a rod shape, a linear shape, an H shape, an I shape, or the like, or a special shape using a mold or the like can be considered as a shape.
- the heat treatment is performed with the heat treatment temperature in the temperature range of 1100 to 1230 ° C. and the heat treatment time in the heat treatment time of 1 to 12 minutes.
- the heat treatment temperature of the solution heat treatment is preferably 1100 ° C. or higher.
- the heat treatment temperature is more preferably 1120 ° C. or higher.
- the heat treatment temperature is preferably 1230 ° C. or lower.
- the heat treatment temperature is more preferably 1200 ° C. or lower.
- the heat treatment time of the solid solution heat treatment is less than 1 minute, the precipitate containing Nb formed by the molding step does not sufficiently dissolve in the matrix, and the amount of solid solution Nb cannot be sufficiently secured. In addition, the processing strain introduced in the molding process cannot be eliminated. As a result, it becomes difficult to obtain the desired creep strength. Therefore, the heat treatment time is preferably 1 minute or more. The heat treatment time is more preferably 2 minutes or more.
- the heat treatment time is preferably 12 minutes or less.
- the heat treatment time is more preferably 10 minutes or less.
- the cooling method is not particularly limited, but in any cooling method, the cooling rate in the temperature range of 1000 to 600 ° C. is preferably 0.4 ° C./s or more, and 1.0 ° C./s. It is more preferably s or more.
- a cooling method it is preferable to perform forced cooling by spraying a refrigerant such as water or air onto the steel to forcibly promote the cooling. Examples of forced cooling include water cooling and forced air cooling.
- cooling start temperature difference the difference between the heat treatment temperature and the steel temperature at the start of the forced cooling. It is more preferable to do so.
- the cooling start temperature difference is preferably 0 ° C. However, it is difficult to set the cooling start temperature difference to 0 ° C. in ordinary manufacturing equipment, for example, manufacturing using an actual machine. Therefore, the cooling start temperature difference is more preferably 1 ° C. or higher, and further preferably 2 ° C. or higher.
- the heat treatment temperature means the temperature of the steel at the time of heat treatment, and the temperature of the steel means the surface temperature of the steel.
- the amount of solid solution Nb can be adjusted within an appropriate range.
- the thickness is 25 mm by hot forging and 18 mm by hot rolling, and then the thickness is increased by cold rolling. It was molded to a size of 12 mm.
- a plate material having a thickness of 12 mm, a width of 100 mm, and a length of 100 mm was produced by machining from the material after cold rolling.
- the prepared plate material was subjected to solution heat treatment under the conditions shown in Tables 2 and 3.
- solution heat treatment under the conditions shown in Tables 2 and 3.
- water cooling was performed so that the cooling start temperature difference was within the range shown in Tables 2 and 3.
- Water cooling was carried out until the temperature of the steel reached at least 300 ° C. or lower to obtain a steel having an austenite structure, which was used as a test material.
- An example in which the cooling start temperature difference is 0 ° C. indicates that the cooling was performed immediately after the solution heat treatment.
- the cooling rate was 0.4 ° C./s or more in the temperature range of 1000 to 600 ° C.
- the amount of Nb analyzed as an electrolytic extraction residue of the obtained test material was measured by a constant current electrolysis method. Specifically, a test piece of 8 mm square and 40 mm in length was collected from the test material, and a current density of 20 mA was obtained by a constant current electrolysis method using a 10% by volume acetylacetone-1 mass% tetramethylammonium chloride methanol solution as an electrolytic solution. / cm 2 in the test piece was anodic dissolution was extracted carbonitrides and nitrides as a residue.
- a round bar creep test piece was collected from the obtained test material and a creep rupture test was conducted.
- a creep rupture test was conducted under the condition that the target rupture time of the base metal was 1000 hours at 650 ° C. ⁇ 216 MPa, and the rupture time exceeded the target rupture time or satisfied 95% or more of the target rupture time. Those with "excellent”, 90% or more and less than 95% were evaluated as “acceptable” and “passed”, and those with less than 90% were evaluated as "failed”.
- the creep rupture test was conducted even under the condition of 700 ° C. ⁇ 147 MPa, and those whose rupture time exceeded the target rupture time of 2000 hours or satisfied 95% or more of the target rupture time were “excellent”. , 90% or more and less than 95% were regarded as "acceptable” and “passed”, and those below 90% were evaluated as "failed”.
- the obtained test material was reduced to a thickness of 8 mm by machining, and then the groove processing shown in FIG. 1 was applied to the end face in the longitudinal direction.
- the groove surfaces of the test materials are butted, and on a commercially available steel plate (thickness 20 mm, width 150 mm, length 150 mm) equivalent to SM400B specified in JIS G 3106: 2008, specified in A5.11-2005 ENICrFe-3. After restraint welding the four circumferences using a shielded metal arc welding rod, laminated welding was performed in the groove by automatic gas tungsten arc welding.
- AWS A5.14-2009 ERNiCr-3 with an outer diameter of 1.2 mm was used as the filler material, and the heat input was about 9 to 12 kJ / cm.
- Ar was used as the shield gas and the back shield gas, and the flow rate was set to 10 L / min.
- the obtained test material was not reduced in thickness at 12 mm, and groove processing, restraint welding, and laminated welding were performed in the same manner as described above.
- the amount of solid solution Nb which is the middle value of the formula (i) is obtained by performing an appropriate solution heat treatment using steel types A to J satisfying the chemical composition specified in the present invention. It can be seen that a test piece satisfying the provisions of the present invention can obtain good creep strength and also has sufficient weld crack resistance. Further, from the comparison of the test bodies A to H and O, it can be seen that when the amount of the solid solution Nb satisfies the equation (ii), these performances can be stably obtained. In addition, it can be seen that these performances can be obtained more stably when the equation (iii) is satisfied.
- the target creep strength could not be obtained because the amount of solid solution Nb was less than the predetermined range.
- the target weldability could not be obtained because the amount of solid solution Nb exceeded a predetermined range.
- the solid solution Nb amount of the test piece K1 using the symbol K was below the predetermined range, the solid solution Nb amount did not satisfy the provisions of the present invention, and the target creep strength could not be obtained. Further, since the test piece K2 had a higher solid solution heat treatment temperature than K1, the solid solution Nb amount was higher than that of K1, but the Nb content did not satisfy the provisions of the present invention. The creep strength was not obtained.
- the P content was below or exceeded the range specified in the present invention, respectively, so that the target creep strength and weldability could not be obtained, respectively.
- the test specimens using the symbols R and S each did not satisfy the target in either creep strength or weldability because the Cr and Ni contents exceeded the range specified in the present invention, respectively. Since the test piece using the symbol T did not contain Mo, which defines the content range in the present invention, the creep strength did not satisfy the target.
- an austenitic heat-resistant steel which is stable and has good creep strength and excellent weld cracking resistance when used at a high temperature.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
C:0.04~0.12%、
Si:0.01~0.30%、
Mn:0.50~1.50%、
P:0.001~0.040%、
S:0.0050%未満、
Cu:2.2~3.8%、
Ni:8.0~11.0%、
Cr:17.7~19.3%、
Mo:0.01~0.55%、
Nb:0.400~0.650%、
B:0.0010~0.0060%、
N:0.050~0.160%、
Al:0.025%以下、
O:0.020%以下、
Co:0~1.00%、
W:0~1.00%、
Ti:0~0.40%、
V:0~0.40%、
Ta:0~0.40%、
Sn:0~0.0300%、
Ca:0~0.0100%、
Mg:0~0.0100%、
REM:0~0.0800%、
残部:Feおよび不純物であり、
Nb含有量と電解抽出残渣として分析されるNb量との差が、下記(i)式を満足する、オーステナイト系耐熱鋼。
0.170≦Nb-NbER≦0.480 ・・・(i)
但し、上記式中のNbは、鋼中に含まれるNb含有量(質量%)を、NbERは電解抽出残渣として分析されるNb量(質量%)をそれぞれ意味する。
-2B+0.185≦Nb-NbER≦-4B+0.480 ・・・(ii)
但し、上記式中の各元素記号は、鋼中に含まれる各元素の含有量(質量%)を、NbERは電解抽出残渣として分析されるNb量(質量%)をそれぞれ意味する。
Co:0.01~1.00%、
W:0.01~1.00%、
Ti:0.01~0.40%、
V:0.01~0.40%、
Ta:0.01~0.40%、
Sn:0.0002~0.0300%、
Ca:0.0002~0.0100%、
Mg:0.0002~0.0100%、および
REM:0.0005~0.0800%、
から選択される一種以上を含有する、上記(1)または(2)に記載のオーステナイト系耐熱鋼。
0.08P-2B+0.200≦Nb-NbER≦-0.4P-4B+0.450 ・・・(iii)
但し、上記式中の各元素記号は、鋼中に含まれる各元素の含有量(質量%)を、NbERは電解抽出残渣として分析されるNb量(質量%)をそれぞれ意味する。
P:0.010~0.040%、
を含有する、上記(1)~(4)のいずれかに記載のオーステナイト系耐熱鋼。
P:0.020~0.038%、
を含有する、上記(1)~(5)のいずれかに記載のオーステナイト系耐熱鋼。
各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
Cは、オーステナイト組織を安定にするとともに微細な炭化物を形成し、高温使用中のクリープ強度を向上させる。このため、C含有量は、0.04%以上とする。C含有量は、0.06%以上とするのが好ましく、0.07%以上とするのがより好ましい。しかしながら、Cを、過剰に含有させると、その効果が飽和するとともに、炭化物が多量に析出し、クリープ延性が低下する。このため、C含有量は、0.12%以下とする。C含有量は、0.10%以下とするのが好ましく、0.09%以下とするのがより好ましい。
Siは、製造時において、脱酸効果を有する。また、Siは、高温での耐食性および耐酸化性の向上に有効な元素である。このため、Si含有量は、0.01%以上とする。Si含有量は、0.03%以上とするのが好ましく、0.05%以上とするのがより好ましく、0.10%以上とするのがさらに好ましい。しかしながら、Siを過剰に含有させると、オーステナイト組織の安定性が低下して、靱性およびクリープ強度の低下を招く。このため、Si含有量は、0.30%以下とする。Si含有量は、0.28%以下とするのが好ましく、0.25%以下とするのがより好ましく、0.20%以下とするのがさらに好ましい。
Mnは、Siと同様、脱酸効果を有する。また、Mnは、オーステナイト組織を安定にし、クリープ強度の向上に寄与する。このため、Mn含有量は、0.50%以上とする。Mn含有量は、0.60%以上とするのが好ましく、0.70%以上とするのがより好ましい。しかしながら、Mnを過剰に含有させると、脆化を招き、さらに、クリープ延性の低下も生じる。このため、Mn含有量は、1.50%以下とする。Mn含有量は、1.30%以下とするのが好ましく、1.00%以下とするのがより好ましい。
Pは、不純物として鋼に含まれる元素であるが、クリープ強度を高める効果を有する。これは、固溶強化または析出状態に影響を与えるためと考えられる。このため、P含有量は、0.001%以上とする。P含有量は、0.005%以上とするのが好ましく、0.010%以上とするのがより好ましく、0.020%以上とするのがさらに好ましい。
Sは、Pと同様に不純物として鋼中に含まれ、溶接中に溶接熱影響部の割れ感受性を高める。このため、S含有量は、0.0050%未満とする。Sの含有量は、0.0020%未満とするのが好ましく、0.0018%以下とするのがより好ましく、0.0015%以下とするのがさらに好ましい。なお、S含有量は可能な限り低減することが好ましいが、極度の低減は製鋼コストの増大を招く。このため、S含有量は、0.0001%以上とするのが好ましく、0.0002%以上とするのが好ましい。
Cuは、オーステナイト組織の安定性を高めるとともに、使用中に微細に析出して、クリープ強度の向上に寄与する。このため、Cu含有量は、2.2%以上とする。Cu含有量は、2.5%以上とするのが好ましく、2.7%以上とするのがより好ましい。しかしながら、Cuを、過剰に含有させると、熱間加工性が低下する。このため、Cu含有量は、3.8%以下とする。Cu含有量は、3.5%以下とするのが好ましく、3.3%以下とするのがより好ましい。
Niは、オーステナイト組織を安定にし、クリープ強度の向上に寄与する。このため、Ni含有量は、8.0%以上とする。Ni含有量は、8.2%以上とするのが好ましく、8.5%以上とするのがより好ましい。しかしながら、Niは、高価な元素であり、多量の含有はコストの増大を招くとともに、オーステナイトの安定性が高まり、溶接性を低下させる。このため、Ni含有量は、11.0%以下とする。Ni含有量は、10.8%以下とするのが好ましく、10.5%以下とするのがより好ましい。
Crは、高温での耐酸化性および耐食性の向上に寄与する。また、微細な炭化物を形成させてクリープ強度の確保にも寄与する。このため、Cr含有量は、17.7%以上とする。Cr含有量は、18.0%以上とするのが好ましく、18.2%以上とするのがより好ましい。しかしながら、Crを、過剰に含有させると、オーステナイト組織の安定性を損ない、シグマ相を生成し、クリープ強度が低下する。このため、Cr含有量は、19.3%以下とする。Cr含有量は、19.0%以下とするのが好ましく、18.8%以下とするのがより好ましい。
Moは、マトリックスに固溶して高温でのクリープ強度および引張強さの向上に寄与する。このため、Mo含有量は、0.01%以上とする。Mo含有量は、0.03%以上とするのが好ましく、0.05%以上とするのがより好ましい。しかしながら、Moを過剰に含有させると、上記効果は飽和する。さらに、オーステナイト組織の安定性を損ない、却ってクリープ強度が低下する。加えて、Moは、高価な元素であるため、コストの増大を招く。このため、Mo含有量は、0.55%以下とする。Mo含有量は、0.53%以下とするのが好ましく、0.50%以下とするのがより好ましく、0.40%以下とするのがさらに好ましい。
Nbは、微細な炭窒化物、窒化物として析出し、クリープ強度の向上に寄与する。このため、Nb含有量は、0.400%以上とする。Nb含有量は、0.420%以上とするのが好ましく、0.450%以上とするのがより好ましい。しかしながら、Nbを過剰に含有させると、溶接中に溶接熱影響部の溶接割れを招く。加えて、炭窒化物および窒化物が多量に析出して、材料の延性が低下する。このため、Nb含有量は、0.650%以下とする。Nb含有量は、0.630%以下とするのが好ましく、0.600%以下とするのがより好ましい。
Bは、粒界炭化物を微細に分散させることにより、クリープ強度を向上させる効果を有する。このため、B含有量は、0.0010%以上とする。B含有量は、0.0020%以上とするのが好ましく、0.0030%以上とするのがより好ましい。しかしながら、Bを、過剰に含有させると、溶接中に溶接熱影響部の割れ感受性が高まる。このため、B含有量は、0.0060%以下とする。B含有量は、0.0055%以下とするのが好ましく、0.0050%以下とするのがより好ましい。
Nは、オーステナイト組織を安定にするとともに、固溶または窒化物として析出し、クリープ強度の向上に寄与する。このため、N含有量は、0.050%以上とする。N含有量は、0.070%以上とするのがより好ましく、0.090%以上とするのがより好ましい。しかしながら、Nを、過剰に含有させると、多量の微細窒化物が析出し、クリープ延性および靱性の低下を招く。このため、N含有量は、0.160%以下とする。N含有量は、0.140%以下とするのが好ましく、0.120%以下とするのがより好ましい。
Alは、脱酸効果を有する。しかしながら、Alを過剰に含有させると、鋼の清浄性が劣化し、熱間加工性が低下する。このため、Al含有量は、0.025%以下とする。Al含有量は、0.023%以下とするのが好ましく、0.020%以下とするのがより好ましい。一方、極端なAlの低減は、製鋼コストの増大を招く上、上記効果を得ることができない。このため、Al含有量は、0.001%以上とするのが好ましく、0.002%以上とするのがより好ましい。
Oは、不純物として鋼中に含まれ、過剰に含有された場合、熱間加工性が低下する。加えて、靱性および延性を損なう。このため、O含有量は、0.020%以下とする。O含有量は、0.018%以下とするのが好ましく、0.015%以下とするのがより好ましい。なお、O含有量について、特に下限を設けないが、極端な含有量の低減は製造コストを増加させる。このため、O含有量は、0.001%以上とするのが好ましく、0.002%以上とするのがより好ましい。
Coは、Niと同様、オーステナイト組織を安定にし、クリープ強度を向上させる効果を有する。このため、必要に応じて含有させてもよい。しかしながら、Coは、非常に高価な元素であり、過剰に含有させると、製造コストが増加する。そのため、Co含有量は、1.00%以下とする。Co含有量は、0.90%以下とするのが好ましく、0.80%以下とするのがより好ましい。一方、上記効果を得るためには、Co含有量は、0.01%以上とするのが好ましく、0.03%以上とするのがより好ましい。
Wは、マトリックスに固溶する、または微細な金属間化合物相を形成しすることで、高温においてクリープ強度を向上させる効果を有する。このため、必要に応じて含有させてもよい。しかしながら、Wを、過剰に含有させても、上記効果は飽和するとともに、オーステナイト組織の安定性を損ない、却ってクリープ強度が低下する。さらに、高価な元素であるため、製造コストが増加する。そのため、W含有量は、1.00%以下とする。W含有量は、0.90%以下とするのが好ましく、0.80%以下とするのがより好ましい。一方、上記効果を得るためには、W含有量は、0.01%以上とするのが好ましく、0.03%以上とするのがより好ましい。
Tiは、炭素および窒素と結合して、微細な炭化物および炭窒化物を形成して、高温でのクリープ強度を向上させる効果を有する。このため、必要に応じて含有させてもよい。しかしながら、Tiを、過剰に含有させると、析出物が多量に析出して、クリープ延性および靱性の低下を招く。そのため、Ti含有量は、0.40%以下とする。Ti含有量は、0.35%以下とするのが好ましく、0.30%以下とするのがより好ましい。一方、上記効果を得るためには、Ti含有量は、0.01%以上とするのが好ましく、0.02%以上とするのがより好ましい。
Vは、Tiと同様、微細な炭化物および炭窒化物を形成して、高温においてクリープ強度を向上させる効果を有する。このため、必要に応じて含有させてもよい。しかしながら、Vを、過剰に含有させると、析出物が多量に析出して、クリープ延性および靱性の低下を招く。そのため、V含有量は、0.40%以下とする。V含有量は、0.35%以下とするのが好ましく、0.30%以下とするのがより好ましい。一方、上記効果を得るためには、V含有量は、0.01%以上とするのが好ましく、0.02%以上とするのがより好ましい。
Taは、TiおよびVと同様、微細な炭化物および炭窒化物を形成して、高温においてクリープ強度を向上させる効果を有する。このため、必要に応じて含有させてもよい。しかしながら、Taを、過剰に含有させると、析出物が多量に析出して、クリープ延性および靱性の低下を招く。そのため、Ta含有量は、0.40%以下とする。Ta含有量は、0.35%以下とするのが好ましく、0.30%以下とするのがより好ましい。一方、上記効果を得るためには、Ta含有量は、0.01%以上とするのが好ましく、0.02%以上とするのがより好ましい。
Snは、溶接施工性を少なからず高める効果を有する。このため、必要に応じて含有させてもよい。しかしながら、Snを、過剰に含有させると、溶接中に溶接熱影響部の割れ感受性を高めるとともに、製造時の熱間加工性を損なう。そのため、Sn含有量は、0.0300%以下とする。Sn含有量は、0.0250%以下とするのが好ましく、0.0200%以下とするのがより好ましい。一方、上記効果を得るためには、Sn含有量は、0.0002%以上とするのが好ましく、0.0005%以上とするのがより好ましい。
Caは、熱間加工性を改善する効果を有する。このため、必要に応じて含有させてもよい。しかしながら、Caを、過剰に含有させると、酸素と結合し、清浄性を著しく低下させて、却って熱間加工性を損なう。そのため、Ca含有量は、0.0100%以下とする。Ca含有量は、0.0080%以下とするのが好ましく、0.0060%以下とするのがより好ましい。一方、上記効果を得るためには、Ca含有量は、0.0002%以上とするのが好ましく、0.0005%以上とするのがより好ましい。
Mgは、Caと同様、熱間加工性を改善する効果を有する。このため、必要に応じて含有させてもよい。しかしながら、Mgを、過剰に含有させると、酸素と結合し、清浄性を著しく低下させる。この結果、却って熱間加工性が低下する。そのため、Mg含有量は、0.0100%以下とする。Mg含有量は、0.0080%以下とするのが好ましく、0.0060%以下とするのがより好ましい。一方、上記効果を得るためには、Mg含有量は、0.0002%以上とするのが好ましく、0.0005%以上とするのがより好ましい。
REMは、CaおよびMgと同様、製造時の熱間加工性を改善する効果を有する。このため、必要に応じて含有させてもよい。しかしながら、REMを、過剰に含有させると、酸素と結合し、清浄性を著しく低下させる。この結果、却って熱間加工性が低下する。そのため、REM含有量は、0.0800%以下とする。REM含有量は、0.0600%以下とするのが好ましく、0.0500%以下とするのがより好ましい。一方、上記効果を得るためには、REM含有量は、0.0005%以上とするのが好ましく、0.0010%以上とするのがより好ましい。
オーステナイト系耐熱鋼に含有されるNbのうち、使用前に析出物として存在するNbはクリープ強度の向上に寄与するものの、その効果が小さい。それに対し、固溶Nbは高温での使用中に炭窒化物または窒化物として、長時間にわたり、微細かつ密に粒内に析出し、クリープ強度およびその安定化に大きく寄与する。
但し、上記式中のNbは、鋼中に含まれるNb含有量(質量%)を、NbERは電解抽出残渣として分析されるNb量(質量%)をそれぞれ意味する。
但し、上記式中の各元素記号は、鋼中に含まれる各元素の含有量(質量%)を、NbERは電解抽出残渣として分析されるNb量(質量%)をそれぞれ意味する。
但し、上記式中の各元素記号は、鋼中に含まれる各元素の含有量(質量%)を、NbERは電解抽出残渣として分析されるNb量(質量%)をそれぞれ意味する。
本発明に係る鋼の好ましい製造方法について説明する。本発明に係る鋼は、製造方法によらず、上述の構成を有していれば、その効果を得られるが、例えば、以下のような製造方法により、安定して製造することができる。
Claims (6)
- 化学組成が、質量%で、
C:0.04~0.12%、
Si:0.01~0.30%、
Mn:0.50~1.50%、
P:0.001~0.040%、
S:0.0050%未満、
Cu:2.2~3.8%、
Ni:8.0~11.0%、
Cr:17.7~19.3%、
Mo:0.01~0.55%、
Nb:0.400~0.650%、
B:0.0010~0.0060%、
N:0.050~0.160%、
Al:0.025%以下、
O:0.020%以下、
Co:0~1.00%、
W:0~1.00%、
Ti:0~0.40%、
V:0~0.40%、
Ta:0~0.40%、
Sn:0~0.0300%、
Ca:0~0.0100%、
Mg:0~0.0100%、
REM:0~0.0800%、
残部:Feおよび不純物であり、
Nb含有量と電解抽出残渣として分析されるNb量との差が、下記(i)式を満足する、オーステナイト系耐熱鋼。
0.170≦Nb-NbER≦0.480 ・・・(i)
但し、上記式中のNbは、鋼中に含まれるNb含有量(質量%)を、NbERは電解抽出残渣として分析されるNb量(質量%)をそれぞれ意味する。 - 下記(ii)式を満足する、請求項1に記載のオーステナイト系耐熱鋼。
-2B+0.185≦Nb-NbER≦-4B+0.480 ・・・(ii)
但し、上記式中の各元素記号は、鋼中に含まれる各元素の含有量(質量%)を、NbERは電解抽出残渣として分析されるNb量(質量%)をそれぞれ意味する。 - 前記化学組成が、質量%で、
Co:0.01~1.00%、
W:0.01~1.00%、
Ti:0.01~0.40%、
V:0.01~0.40%、
Ta:0.01~0.40%、
Sn:0.0002~0.0300%、
Ca:0.0002~0.0100%、
Mg:0.0002~0.0100%、および
REM:0.0005~0.0800%、
から選択される一種以上を含有する、請求項1または2に記載のオーステナイト系耐熱鋼。 - 下記(iii)式を満足する、請求項1~3のいずれかに記載のオーステナイト系耐熱鋼。
0.08P-2B+0.200≦Nb-NbER≦-0.4P-4B+0.450 ・・・(iii)
但し、上記式中の各元素記号は、鋼中に含まれる各元素の含有量(質量%)を、NbERは電解抽出残渣として分析されるNb量(質量%)をそれぞれ意味する。 - 前記化学組成が、質量%で、
P:0.010~0.040%、
を含有する、請求項1~4のいずれかに記載のオーステナイト系耐熱鋼。 - 前記化学組成が、質量%で、
P:0.020~0.038%、
を含有する、請求項1~5のいずれかに記載のオーステナイト系耐熱鋼。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022517670A JP7457262B2 (ja) | 2020-04-30 | 2021-04-21 | オーステナイト系耐熱鋼 |
CN202180031262.2A CN115461483B (zh) | 2020-04-30 | 2021-04-21 | 奥氏体系耐热钢 |
EP21796735.5A EP4144871A4 (en) | 2020-04-30 | 2021-04-21 | AUSTENITIC HEAT RESISTANT STEEL |
US17/996,543 US20230203629A1 (en) | 2020-04-30 | 2021-04-21 | Austenitic heat resistant steel |
KR1020227041020A KR20230002998A (ko) | 2020-04-30 | 2021-04-21 | 오스테나이트계 내열강 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020080197 | 2020-04-30 | ||
JP2020-080197 | 2020-04-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021220912A1 true WO2021220912A1 (ja) | 2021-11-04 |
Family
ID=78373577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/016188 WO2021220912A1 (ja) | 2020-04-30 | 2021-04-21 | オーステナイト系耐熱鋼 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230203629A1 (ja) |
EP (1) | EP4144871A4 (ja) |
JP (1) | JP7457262B2 (ja) |
KR (1) | KR20230002998A (ja) |
CN (1) | CN115461483B (ja) |
WO (1) | WO2021220912A1 (ja) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62133048A (ja) | 1985-12-04 | 1987-06-16 | Sumitomo Metal Ind Ltd | 高温強度の優れたオーステナイト鋼 |
JPH1121624A (ja) * | 1997-05-08 | 1999-01-26 | Nippon Steel Corp | 溶接性に優れた高強度オーステナイト系耐熱鋼およびその製造方法 |
JP2000256803A (ja) | 1999-03-04 | 2000-09-19 | Sumitomo Metal Ind Ltd | 高温強度と延性に優れたオーステナイト系ステンレス鋼 |
JP2001049400A (ja) * | 1999-08-06 | 2001-02-20 | Sumitomo Metal Ind Ltd | 熱間加工性に優れるオーステナイト系耐熱鋼 |
JP2003166039A (ja) * | 2001-04-25 | 2003-06-13 | Nippon Steel Corp | 鋭敏化特性、高温強度および耐食性に優れたオーステナイト系耐熱鋼とその製造方法 |
JP2003268503A (ja) | 2002-03-08 | 2003-09-25 | Sumitomo Metal Ind Ltd | 耐水蒸気酸化性に優れたオーステナイト系ステンレス鋼管およびその製造方法 |
WO2009044796A1 (ja) | 2007-10-03 | 2009-04-09 | Sumitomo Metal Industries, Ltd. | オーステナイト系ステンレス鋼 |
CN101633999A (zh) * | 2009-05-26 | 2010-01-27 | 山西太钢不锈钢股份有限公司 | 一种奥氏体不锈钢及其钢管和钢管的制造方法 |
WO2013073055A1 (ja) | 2011-11-18 | 2013-05-23 | 住友金属工業株式会社 | オーステナイト系ステンレス鋼 |
JP2014001436A (ja) | 2012-06-20 | 2014-01-09 | Nippon Steel & Sumitomo Metal | オーステナイト系耐熱鋼管 |
JP2017014575A (ja) * | 2015-07-01 | 2017-01-19 | 新日鐵住金株式会社 | オーステナイト系耐熱合金及び溶接構造物 |
JP2021049572A (ja) * | 2019-09-26 | 2021-04-01 | 日本製鉄株式会社 | オーステナイト系ステンレス鋼溶接継手 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3543366B2 (ja) * | 1994-06-28 | 2004-07-14 | 住友金属工業株式会社 | 高温強度の良好なオーステナイト系耐熱鋼 |
JP2006075853A (ja) * | 2004-09-08 | 2006-03-23 | Sumitomo Metal Ind Ltd | オーステナイト系合金鋼のレーザ溶接継手およびその製造方法 |
JP6289941B2 (ja) * | 2014-03-05 | 2018-03-07 | 株式会社神戸製鋼所 | オーステナイト系耐熱鋼 |
AU2016331133B2 (en) * | 2015-09-30 | 2019-01-17 | Nippon Steel Corporation | Austenitic stainless steel and method for producing austenitic stainless steel |
US20200238444A1 (en) * | 2017-10-03 | 2020-07-30 | Nippon Steel Corporation | Welding material for austenitic heat resistant steel, weld metal and welded structure, and method for producing weld metal and welded structure |
JP7106962B2 (ja) * | 2018-04-19 | 2022-07-27 | 日本製鉄株式会社 | オーステナイト系ステンレス鋼 |
-
2021
- 2021-04-21 WO PCT/JP2021/016188 patent/WO2021220912A1/ja active Application Filing
- 2021-04-21 KR KR1020227041020A patent/KR20230002998A/ko not_active Application Discontinuation
- 2021-04-21 US US17/996,543 patent/US20230203629A1/en active Pending
- 2021-04-21 JP JP2022517670A patent/JP7457262B2/ja active Active
- 2021-04-21 CN CN202180031262.2A patent/CN115461483B/zh active Active
- 2021-04-21 EP EP21796735.5A patent/EP4144871A4/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62133048A (ja) | 1985-12-04 | 1987-06-16 | Sumitomo Metal Ind Ltd | 高温強度の優れたオーステナイト鋼 |
JPH1121624A (ja) * | 1997-05-08 | 1999-01-26 | Nippon Steel Corp | 溶接性に優れた高強度オーステナイト系耐熱鋼およびその製造方法 |
JP2000256803A (ja) | 1999-03-04 | 2000-09-19 | Sumitomo Metal Ind Ltd | 高温強度と延性に優れたオーステナイト系ステンレス鋼 |
JP2001049400A (ja) * | 1999-08-06 | 2001-02-20 | Sumitomo Metal Ind Ltd | 熱間加工性に優れるオーステナイト系耐熱鋼 |
JP2003166039A (ja) * | 2001-04-25 | 2003-06-13 | Nippon Steel Corp | 鋭敏化特性、高温強度および耐食性に優れたオーステナイト系耐熱鋼とその製造方法 |
JP2003268503A (ja) | 2002-03-08 | 2003-09-25 | Sumitomo Metal Ind Ltd | 耐水蒸気酸化性に優れたオーステナイト系ステンレス鋼管およびその製造方法 |
WO2009044796A1 (ja) | 2007-10-03 | 2009-04-09 | Sumitomo Metal Industries, Ltd. | オーステナイト系ステンレス鋼 |
CN101633999A (zh) * | 2009-05-26 | 2010-01-27 | 山西太钢不锈钢股份有限公司 | 一种奥氏体不锈钢及其钢管和钢管的制造方法 |
WO2013073055A1 (ja) | 2011-11-18 | 2013-05-23 | 住友金属工業株式会社 | オーステナイト系ステンレス鋼 |
JP2014001436A (ja) | 2012-06-20 | 2014-01-09 | Nippon Steel & Sumitomo Metal | オーステナイト系耐熱鋼管 |
JP2017014575A (ja) * | 2015-07-01 | 2017-01-19 | 新日鐵住金株式会社 | オーステナイト系耐熱合金及び溶接構造物 |
JP2021049572A (ja) * | 2019-09-26 | 2021-04-01 | 日本製鉄株式会社 | オーステナイト系ステンレス鋼溶接継手 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4144871A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4144871A1 (en) | 2023-03-08 |
EP4144871A4 (en) | 2024-05-22 |
CN115461483B (zh) | 2024-08-06 |
JP7457262B2 (ja) | 2024-03-28 |
KR20230002998A (ko) | 2023-01-05 |
US20230203629A1 (en) | 2023-06-29 |
CN115461483A (zh) | 2022-12-09 |
JPWO2021220912A1 (ja) | 2021-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4803174B2 (ja) | オーステナイト系ステンレス鋼 | |
US8444778B2 (en) | Low-thermal-expansion Ni-based super-heat-resistant alloy for boiler and having excellent high-temperature strength, and boiler component and boiler component production method using the same | |
CN111344427B (zh) | 奥氏体系耐热钢焊接金属、焊接接头、奥氏体系耐热钢用焊接材料以及焊接接头的制造方法 | |
JP6384610B2 (ja) | オーステナイト系耐熱合金及び溶接構造物 | |
JP6384611B2 (ja) | オーステナイト系耐熱合金及び溶接構造物 | |
WO2017056619A1 (ja) | オーステナイト系ステンレス鋼及びオーステナイト系ステンレス鋼の製造方法 | |
WO2019070000A1 (ja) | オーステナイト系ステンレス鋼溶接金属および溶接構造物 | |
JP2017202494A (ja) | オーステナイト系耐熱鋼溶接金属およびそれを有する溶接継手 | |
JP6965938B2 (ja) | オーステナイト系ステンレス鋼溶接金属および溶接構造物 | |
JP7167707B2 (ja) | オーステナイト系耐熱鋼 | |
WO2019070002A1 (ja) | オーステナイト系耐熱鋼用溶接材料、溶接金属および溶接構造物ならびに溶接金属および溶接構造物の製造方法 | |
KR102506230B1 (ko) | 오스테나이트계 스테인리스강 | |
JP6795038B2 (ja) | オーステナイト系耐熱合金およびそれを用いた溶接継手 | |
WO2021220912A1 (ja) | オーステナイト系耐熱鋼 | |
JP6638552B2 (ja) | オーステナイト系耐熱鋼用溶接材料 | |
WO2021220913A1 (ja) | オーステナイト系耐熱鋼の製造方法 | |
JP7218573B2 (ja) | フェライト系耐熱鋼溶接金属およびそれを備えた溶接継手 | |
US20230257861A1 (en) | Austenitic stainless steel and hydrogen resistant member | |
JP2023118054A (ja) | オーステナイト系ステンレス鋼及び耐水素性部材 | |
KR20240034213A (ko) | 페라이트계 내열강 | |
JP2021080510A (ja) | オーステナイト系耐熱鋼溶接継手 | |
JP2021195602A (ja) | 低合金耐熱鋼 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21796735 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022517670 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202217064718 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20227041020 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021796735 Country of ref document: EP Effective date: 20221130 |