WO2021215241A1 - マグネシウム合金、マグネシウム合金板、マグネシウム合金棒およびこれらの製造方法、マグネシウム合金部材 - Google Patents
マグネシウム合金、マグネシウム合金板、マグネシウム合金棒およびこれらの製造方法、マグネシウム合金部材 Download PDFInfo
- Publication number
- WO2021215241A1 WO2021215241A1 PCT/JP2021/014666 JP2021014666W WO2021215241A1 WO 2021215241 A1 WO2021215241 A1 WO 2021215241A1 JP 2021014666 W JP2021014666 W JP 2021014666W WO 2021215241 A1 WO2021215241 A1 WO 2021215241A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnesium alloy
- mass
- content
- magnesium
- alloy
- Prior art date
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 208
- 238000000034 method Methods 0.000 title description 21
- 239000011777 magnesium Substances 0.000 claims abstract description 93
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 44
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000012535 impurity Substances 0.000 claims abstract description 10
- 239000011159 matrix material Substances 0.000 claims description 31
- 230000010354 integration Effects 0.000 claims description 28
- 238000004519 manufacturing process Methods 0.000 claims description 26
- 238000012360 testing method Methods 0.000 claims description 24
- 238000005096 rolling process Methods 0.000 claims description 21
- 238000005260 corrosion Methods 0.000 claims description 20
- 230000007797 corrosion Effects 0.000 claims description 20
- 229910052802 copper Inorganic materials 0.000 claims description 19
- 238000000137 annealing Methods 0.000 claims description 18
- 238000005266 casting Methods 0.000 claims description 14
- 230000032683 aging Effects 0.000 claims description 12
- 238000001125 extrusion Methods 0.000 claims description 12
- 229910052759 nickel Inorganic materials 0.000 claims description 12
- 239000013078 crystal Substances 0.000 claims description 8
- 238000007654 immersion Methods 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 239000011575 calcium Substances 0.000 description 72
- 229910045601 alloy Inorganic materials 0.000 description 60
- 239000000956 alloy Substances 0.000 description 60
- 239000010949 copper Substances 0.000 description 52
- 239000012071 phase Substances 0.000 description 46
- 230000000052 comparative effect Effects 0.000 description 41
- 239000000463 material Substances 0.000 description 39
- 238000005259 measurement Methods 0.000 description 38
- 229910052791 calcium Inorganic materials 0.000 description 19
- 229910000838 Al alloy Inorganic materials 0.000 description 17
- 229910052725 zinc Inorganic materials 0.000 description 14
- 229910000882 Ca alloy Inorganic materials 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 12
- 238000002441 X-ray diffraction Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 10
- 230000017525 heat dissipation Effects 0.000 description 10
- 229910018107 Ni—Ca Inorganic materials 0.000 description 9
- 229910052726 zirconium Inorganic materials 0.000 description 9
- 229910052748 manganese Inorganic materials 0.000 description 8
- 238000001953 recrystallisation Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 238000004881 precipitation hardening Methods 0.000 description 6
- 241001657081 Karos Species 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 238000005498 polishing Methods 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- 229910009378 Zn Ca Inorganic materials 0.000 description 4
- 229910001297 Zn alloy Inorganic materials 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000001028 reflection method Methods 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000857 drug effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000004451 qualitative analysis Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910019083 Mg-Ni Inorganic materials 0.000 description 1
- 229910019403 Mg—Ni Inorganic materials 0.000 description 1
- 238000007545 Vickers hardness test Methods 0.000 description 1
- 238000003483 aging Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- SFMJNHNUOVADRW-UHFFFAOYSA-N n-[5-[9-[4-(methanesulfonamido)phenyl]-2-oxobenzo[h][1,6]naphthyridin-1-yl]-2-methylphenyl]prop-2-enamide Chemical compound C1=C(NC(=O)C=C)C(C)=CC=C1N1C(=O)C=CC2=C1C1=CC(C=3C=CC(NS(C)(=O)=O)=CC=3)=CC=C1N=C2 SFMJNHNUOVADRW-UHFFFAOYSA-N 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 238000000304 warm extrusion Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/002—Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/005—Continuous extrusion starting from solid state material
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/02—Alloys based on magnesium with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/06—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
Definitions
- the present invention relates to magnesium alloys, magnesium alloy plates, magnesium alloy rods, manufacturing methods thereof, and magnesium alloy members having excellent room temperature moldability and thermal conductivity characteristics.
- Magnesium alloy has the lowest specific density among practical metals, and is expected to be applied as a weight-reducing material in the fields of aircraft, automobiles, and electronic equipment.
- its crystal structure has a dense hexagonal structure and is near room temperature. It is known that the number of slip systems is small and the moldability at room temperature is low. This is because the (0001) planes of the dense hexagonal structure are arranged parallel to the processing direction in the crystal texture of the magnesium alloy plate and the matrix phase (Mg phase). It is considered that the moldability is improved if the orientation of the (0001) plane is made as random as possible.
- Patent Document 1 describes a technique of performing shear deformation at room temperature with a roller leveler and then performing recrystallization heat treatment a plurality of times to randomize the orientation of the (0001) plane of the parent phase (Mg phase).
- Patent Document 2 describes a technique of randomizing the orientation of the (0001) plane by performing rolling processing in the vicinity of the solid phase line and then performing recrystallization heat treatment.
- Patent Document 3 describes a technique for randomizing the orientation of the (0001) plane by adding a small amount of a specific element such as a rare earth element or calcium to an Mg—Zn alloy.
- the thermal conductivity of aluminum alloy plates and rods used for structural applications at room temperature (25 ° C) is 150 (W / m ⁇ K) for 2000 alloys (2024 alloy-T6).
- the alloy-T6) is 170 (W / m ⁇ K)
- the 7000 series alloy (7075-T6) is 130 (W / m ⁇ K) (Non-Patent Document 1).
- Non-Patent Documents the thermal conductivity of a general-purpose magnesium alloy plate or magnesium alloy rod (AZ31 alloy: Mg-3 mass% Al-1 mass% Zn alloy) at room temperature (20 ° C.) is 75 (W / m ⁇ K) (Non-Patent Documents). 2), there is a problem that it is difficult to apply it to the housing for electronic parts of a transport device, which requires high heat dissipation characteristics, and the housing for small information devices such as notebook PCs and smartphones.
- Mg—Zn—Ca-based alloys have excellent thermal conductivity at room temperature (25 to 30 ° C.). Alloys (110 to 120 (W / m ⁇ K)) are attracting attention (Non-Patent Documents 3 and 4). However, the Mg—Zn—Ca alloy has a thermal conductivity (110 to 120 (W / m ⁇ K)) that is about 50% higher than that of the general-purpose magnesium alloy, but the room temperature of the structural aluminum alloy.
- the present invention has been made in view of the above circumstances, and is a magnesium alloy, a magnesium alloy plate, a magnesium alloy rod, which is easy to mold at room temperature and has high thermal conductivity (heat dissipation characteristics).
- An object of the present invention is to provide these manufacturing methods and magnesium alloy members.
- the magnesium alloy of the present invention is used.
- Cu content is 0-1.5% by mass
- Ni content is 0-0.5% by mass
- Ca content is 0.05-1.0% by mass
- Al content is 0-0.5% by mass
- Zn content is 0 to 0.3% by mass
- Mn content is 0 to 0.3% by mass
- Zr content is 0-0.3% by mass
- the total amount of the Cu and Ni is 0.005 to 2.0% by mass, and the balance is magnesium and unavoidable impurities.
- the magnesium alloy plate of the present invention is a magnesium alloy plate containing the above-mentioned magnesium alloy of the present invention, and the degree of integration of the (0001) plane of the dense hexagonal crystal in the matrix (Mg phase) is 3.8 or less. It is characterized by.
- the magnesium alloy rod of the present invention is a magnesium alloy rod containing the above-mentioned magnesium alloy of the present invention, and the degree of integration of the (0001) plane of the dense hexagonal crystal in the matrix (Mg phase) is 6.8 or less. It is characterized by.
- the method for producing a magnesium alloy of the present invention is characterized by including a casting step for producing the above-mentioned magnesium alloy.
- the method for producing a magnesium alloy plate of the present invention is a casting step for producing a magnesium alloy billet made of the above magnesium alloy; It is characterized by including a rolling step of rolling the magnesium alloy billet or a processed product thereof at 200 ° C. to 500 ° C.
- the method for producing a magnesium alloy rod of the present invention is a casting step for producing a magnesium alloy billet made of the above magnesium alloy; It is characterized by including an extrusion step of extruding the magnesium alloy or a processed product thereof at 200 ° C. to 500 ° C.
- the magnesium alloy member of the present invention is characterized by containing the above magnesium alloy.
- the magnesium alloy, magnesium alloy plate and magnesium alloy rod of the present invention are easy to mold at room temperature and have excellent thermal conductivity (heat dissipation characteristics). Therefore, for example, when it is used as a member for an electronic component housing (PCU case, etc.) for a transport device that requires heat dissipation characteristics, or an information device housing for a smartphone, a notebook PC, etc., it has excellent heat dissipation. Demonstrates room temperature moldability.
- a magnesium alloy, a magnesium alloy plate, and a magnesium alloy rod which are easy to mold at room temperature and have excellent heat dissipation characteristics, can be reliably obtained.
- the thermal conductivity of pure magnesium at room temperature (20 ° C.) is 167 (W / m ⁇ K), and it is known that it has almost the same thermal conductivity as a structural aluminum alloy (Non-Patent Document 2).
- the thermal conductivity of the magnesium alloy tends to decrease when an element that dissolves in magnesium is added, and the thermal conductivity decreases significantly when Al, which tends to dissolve most in magnesium, is added.
- the thermal conductivity of the AZ31 alloy (Mg-3 mass% Al-1 mass% Zn alloy) at room temperature (20 ° C.) is reduced to 75 (W / m ⁇ K) (Non-Patent Document 2).
- the thermal conductivity (110 to 120 (W / m ⁇ K)) of the Mg—Zn—Ca alloy at room temperature (25 to 30 ° C.) is AZ31. It exhibits higher thermal conductivity than alloys (Non-Patent Document 3 and Non-Patent Document 4).
- the maximum solid solubility in magnesium is less than that of Cu (Magnesium Technology Handbook, edited by Magnesium Technology Handbook Editorial Committee of Japan Magnesium Association, Karos Publishing (2000), pp. 84-84) with Ni. Focusing on Ca, it has been found that the same characteristics as those of the Mg—Cu—Ca alloy can be imparted to the Mg—Ni—Ca alloy, and the present invention has been completed.
- the magnesium alloy of the present invention Cu content is 0-1.5% by mass, Ni content is 0-0.5% by mass, Ca content is 0.05-1.0% by mass, Al content is 0-0.5% by mass, Zn content is 0 to 0.3% by mass, Mn content is 0 to 0.3% by mass, Zr content is 0-0.3% by mass, And The total amount of Cu and Ni is 0.005 to 2.0% by mass, and the balance is magnesium and unavoidable impurities.
- the magnesium alloy of the present invention has a Cu content of 0 to 1.5% by mass. Further, in the Mg—Cu—Ca alloy, the Cu content is preferably 0.005 to 1.5% by mass, more preferably 0.03% by mass to 1.0% by mass, and 0. It is more preferably 0.03% by mass to 0.3% by mass. When the Cu content is in this range, the amount of Cu that dissolves in the magnesium (matrix) is sufficient, and Cu segregates at the grain boundaries, effectively randomizing the orientation of the (0001) plane. can do. On the other hand, if the Cu content exceeds 1.5% by mass, an unacceptable amount of Mg 2 Cu crystallized product is produced, and high moldability cannot be obtained. Further, if the Cu content is less than 0.005% by mass, the degree of integration of the (0001) plane of the parent phase (Mg phase) cannot be sufficiently weakened.
- Mg and Cu based on saturated caromel (SCE) electrode
- SCE saturated caromel
- the magnesium alloy of the present invention has a Ni content of 0 to 0.5% by mass. Further, in the Mg—Ni—Ca alloy, the Ni content is preferably 0.01 to 0.5% by mass, more preferably 0.05% by mass to 0.3% by mass. When the Ni content is in this range, the amount of Ni that dissolves in the magnesium (matrix) is sufficient, and Ni segregates at the grain boundaries, effectively randomizing the orientation of the (0001) plane. can do. On the other hand, if the Ni content exceeds 0.5% by mass, an unacceptable amount of Mg 2 Ni crystals is produced, and high moldability cannot be obtained. Further, if the Ni content is less than 0.01% by mass, it is difficult to sufficiently weaken the degree of integration of the (0001) plane of the parent phase (Mg phase).
- Mg and Ni based on saturated caromel (SCE) electrode
- SCE saturated caromel
- the corrosion resistance (corrosion rate: 4 mg / cm 2) is about the same as that of the general-purpose magnesium alloy (AZ31 alloy). / Day or less) is expressed.
- the amount of Ca added is preferably 0.05% to 0.5%.
- the magnesium alloy of the present invention has a total amount of Cu and Ni of 0.005% by mass to 2.0% by mass, more preferably 0.01 to 1.0% by mass. In the magnesium alloy of the present invention, there is no adverse effect due to the coexistence of Cu and Ni.
- the magnesium alloy of the present invention has a Ca content of 0.05 to 1.0% by mass.
- the Ca content is preferably 0.1 to 0.5% by mass.
- the amount of Ca that dissolves in the Mg (matrix) is sufficient, Ca segregates at the grain boundaries, and the orientation of the (0001) plane is effectively randomized. can do.
- the Ca content exceeds 1.0% by mass, an unacceptable amount of Mg 2 Ca crystallization phase is generated, and high moldability cannot be obtained.
- the Ca content is less than 0.05% by mass, the degree of integration of the (0001) plane of the parent phase (Mg phase) cannot be sufficiently weakened.
- the magnesium alloy of the present invention can contain 0 to 0.5% by mass of Al due to the ease of casting when manufacturing an ingot. If Al is contained at a concentration of more than 0.5% by mass, the thermal conductivity ductility is lowered, so that the Al content is 0.5% or less.
- the magnesium alloy of the present invention can contain 0 to 0.3% by mass of Zn, Mn, and Zr in addition to the above alloy components.
- Zn and Zr are for increasing the strength of the material by solid solution strengthening and precipitation strengthening
- Mn is for forming a compound with a trace amount of iron which is an impurity to improve corrosion resistance. If each element is 0.3% by mass or less, the thermal conductivity is not significantly reduced.
- the rest other than the above-mentioned components are magnesium and unavoidable impurities.
- unavoidable impurities include Fe, C, and the like.
- the Cu content is 0.03 to 0.3% by mass
- the Ca content is 0.1 to 0.5% by mass
- the Al content is 0.1 to 0.5% by mass
- the Mn content is 0 to 0.3% by mass
- the balance is magnesium and an alloy composed of unavoidable impurities.
- the hardness and yield stress of the material can be increased with aging precipitation. This is because fine intermetallic compounds composed of Al and Ca are precipitated during the heat treatment.
- the magnesium alloy plate and magnesium alloy rod can be manufactured by using the magnesium alloy of the present invention described above. The method for manufacturing the magnesium alloy plate and the magnesium alloy rod will be described later.
- the magnesium alloy plate of the present invention has a density of dense hexagonal (0001) planes of 3.8 or less in the matrix (Mg phase). Further, in the magnesium alloy rod, the degree of integration of the (0001) plane of the dense hexagonal crystal in the matrix phase (Mg phase) is 6.8 or less. By suppressing the orientation of the (0001) plane, the magnesium alloy plate and the rod have excellent room temperature moldability.
- the degree of integration of the (0001) plane can be measured by the XRD method (Schultz reflection method) as described in the examples, and refers to a value obtained by normalizing the measurement data with random data (internal standard data, etc.). ..
- the magnesium alloy plate and the magnesium alloy rod of the present invention can be easily press-formed at room temperature.
- the magnesium alloy plate exhibits moldability equivalent to that of an aluminum alloy (Ericsen value of 6.5 or more) or formability comparable to that of an aluminum alloy (Ericsen value of 7.5 or more).
- the Eriksen test is a test based on JIS B7729 1995 and JIS Z2247 1998.
- Magnesium alloy rods exhibit formability equivalent to that of aluminum alloys (break elongation of 15% or more in room temperature tensile test) or formability comparable to aluminum alloys (break elongation of 20% in room temperature tensile test).
- the tensile test is a test conforming to JIS Z2241 2011. Twice
- the magnesium alloy plate and magnesium alloy rod of the present invention are corroded at the same level as or higher than the general-purpose magnesium alloy (AZ31 alloy: 2 to 5 (mg / cm 2 / day)) except for some alloys. Indicates speed.
- the salt water immersion test is a test according to JIS H0541 2003.
- the composition of a part of the magnesium alloy plate and the magnesium rod of the present invention has age hardening characteristics. Specifically, after performing a predetermined heat treatment, the Vickers hardness conforming to JIS Z2244 shows a characteristic that an increase in hardness is confirmed.
- the magnesium alloy plate and magnesium alloy rod of the present invention have a thermal conductivity (120 (W / m ⁇ K) or more) comparable to that of a structural aluminum alloy at room temperature (10 to 35 ° C.).
- the measured values of the thermal conductivity ( ⁇ : W / m ⁇ K) of the magnesium alloy plate and the magnesium alloy rod at room temperature are the thermal diffusivity ( ⁇ : m 2 / s), the specific heat (Cp: J / kg ⁇ K), and so on. It refers to the value obtained by measuring the density ( ⁇ : kg / m 3 ) and substituting it into the formula (1) below.
- the thermal diffusivity ( ⁇ ) is determined by cutting out a sample having a diameter of 10.0 mm and a thickness of 1.5 to 2.5 mm from a magnesium alloy plate and a magnesium alloy rod, and using a laser flash method (in vacuum, measurement temperature 10 to 35 ° C.).
- the specific heat (Cp) refers to the value measured by the DSC method (Ar gas flow (20 mL / min), heating rate 10 ° C / min, measurement temperature 10 to 35 ° C), and the density.
- ( ⁇ ) refers to a value measured by a dimensional measurement method (measurement temperature 10 to 35 ° C.).
- the above thermal conductivity measurement is based on JIS R1611 2010. Regarding the measurement temperature, no significant change is observed in the thermal conductivity in the range of 10 to 35 ° C. When the measurement is carried out more precisely, it is preferable to carry out the measurement in the range of 25 ° C. ⁇ 2 ° C.
- the electric conductivity of the magnesium alloy plate and magnesium alloy rod of the present invention shows a 1.3 ⁇ 10 7 (S / m ) or more values at room temperature (10 ⁇ 35 °C). Therefore, also exhibit 1.3 ⁇ 10 7 (S / m ) or more electrical conductivity, can be used as an index of a material exhibiting excellent thermal conductivity.
- the electrical conductivity ( ⁇ ) shown in the examples described later refers to a value measured by the 4-terminal (electrode) method at room temperature (10 to 35 ° C.).
- the above method for measuring electrical conductivity conforms to JIS K7194 1994.
- Regarding the measurement temperature no significant change is observed in the electrical conductivity in the range of 10 to 35 ° C.
- the magnesium alloy plate and the magnesium alloy rod of the present invention have excellent moldability at room temperature and excellent thermal conductivity, they are used when manufacturing electronic component housings and information device housings for automobiles. It has a balance of required moldability and high thermal conductivity required for heat dissipation characteristics. Twice
- the magnesium alloy member of the present invention is made of the magnesium alloy plate and magnesium alloy rod of the present invention described above.
- the form of the magnesium alloy member is not particularly limited, and examples thereof include an electronic component housing and an information device housing of an automobile.
- the method for producing a magnesium alloy (magnesium alloy plate and magnesium alloy rod) of the present invention includes a casting step of producing a billet made of the magnesium alloy of the present invention described above.
- Cu content is 0 to 1.5% by mass, or 0.005 to 1.5% by mass Ni content is 0 to 0.5% by mass, or 0.01 to 0.5% by mass
- Ca content is 0.05-1.0% by mass
- Al content is 0-0.5% by mass
- Zn content is 0 to 0.3% by mass
- Mn content is 0 to 0.3% by mass
- Zr content is 0-0.3% by mass
- a rolling step of rolling a magnesium alloy billet made of a magnesium alloy or a processed product thereof at 200 ° C to 500 ° C is included.
- warm extrusion and / or rough rolling is performed to produce, for example, a rolling material having a plate thickness of about 4 mm to 10 mm.
- warm (about 200 ° C. to 350 ° C.) or hot rolling (350 ° C. to 500 ° C.) can be performed to a desired plate thickness.
- it can be rolled from 0.5 mm to 2.0 mm, which is a plate thickness applicable to electronic devices, automobiles, and the like.
- the rolling step after the rolling step, it can be annealed at 200 ° C. to 500 ° C. (annealing (recrystallization heat treatment) step).
- annealing refcrystallization heat treatment
- the time of the annealing step can be set as appropriate, and for example, about 30 minutes to 6 hours can be exemplified. If the material is being recrystallized, the annealing step can be omitted.
- an extrusion step of extruding the magnesium alloy billet or its processed product at 200 ° C. to 500 ° C. is included. Specifically, the billet and the mold are preheated to 200 ° C. to 500 ° C. and then extruded to produce a bar.
- the extrusion step after the extrusion step, it can be annealed at 200 ° C. to 500 ° C. as needed (annealing (recrystallization heat treatment) step).
- annealing refcrystallization heat treatment
- the time of the annealing step can be set as appropriate, and for example, about 30 minutes to 24 hours can be exemplified. If the material is being recrystallized during the extrusion step, the annealing step can be omitted.
- the Cu content is 0.03 to 0.3% by mass
- the Ca content is 0.1 to 0.5% by mass
- the Al content is 0.1 to 0.5.
- Magnesium alloy plates and magnesium alloy rods produced using magnesium alloy billets having a mass% of Mn, a Mn content of 0 to 0.3% by mass, and a balance of magnesium and unavoidable impurities are 150 to 250.
- aging treatment step As the heat treatment time in the aging treatment step, for example, 0.5 to 100 hours can be exemplified. Since the performance of aging precipitation hardening is mainly determined by the composition of the alloy, the same effect is exhibited in both the magnesium alloy plate material and the magnesium alloy rod by setting the predetermined alloy composition.
- the method for producing a magnesium alloy plate and a magnesium alloy rod of the present invention may include, for example, known plastic working such as extrusion, forging, and drawing.
- the magnesium alloy rod of the present invention may be tubular with a hollow inside.
- the magnesium alloy plate and the magnesium alloy rod of the present invention are not particularly limited in thickness, and may be in the form of a foil material, a wire material, a strip material, or the like.
- the magnesium alloy, magnesium alloy plate, magnesium alloy rod, manufacturing method thereof, and magnesium alloy member of the present invention are not limited to the above embodiments.
- the magnesium alloy, magnesium alloy plate, magnesium alloy rod, manufacturing method, etc. of the present invention will be described in more detail together with examples, but the present invention is not limited to the following examples.
- a magnesium alloy billet having the chemical components shown in Table 1 was prepared by a melt casting method (casting step). Melting was carried out using a high-frequency induction melting furnace at a predetermined temperature (listed in Table 1 as the casting temperature) in an argon atmosphere. Then, it was cast into a die having a thickness of 30 mm or a die having a diameter of 40 mm to prepare a magnesium alloy billet (ingot) for extrusion processing.
- the magnesium alloy billet (ingot) having a thickness of 30 mm is extruded at a predetermined temperature (listed in Table 1 as the extrusion temperature) to obtain a plate having a plate thickness of 5 mm, and then rolling at a sample temperature of 350 ° C.
- a magnesium alloy plate having a plate thickness of 1.0 mm was obtained (rolling step).
- Some magnesium alloy plates were homogenized at a predetermined temperature and for a predetermined time before rolling (listed in Table 1 as pre-rolling homogenization treatment conditions). These magnesium alloy plates were annealed (annealed) at 300 ° C. for 2 hours after rolling according to a conventional manufacturing process (annealing process). Some magnesium alloy plates were annealed at 170 ° C. for 8 hours (aging treatment step).
- the magnesium alloy billet (ingot) having a diameter of 40 mm was extruded at a predetermined temperature (extruded temperature shown in Table 1) to produce a rod material having a diameter of 6 mm (extrusion step). ).
- a sample that was not subjected to annealing and a sample that was annealed at 450 ° C. for 24 hours were prepared (annealing step).
- the (0001) plane texture of the matrix (Mg phase) of the magnesium alloy rods of Examples 29 to 33 and Comparative Example 14 was measured by the XRD method (Schultz reflection method).
- XRD method Schotz reflection method
- the tube voltage at the time of measurement was 40 kV, and the current value was 40 mA (the tube used was a Cu tube).
- the measurement range of the ⁇ angle was 15 to 90 °, and the measurement step angle was 2.5 °.
- the ⁇ angle measurement range was 0 to 360 °, and the measurement step angle was 2.5 °.
- the background is not measured.
- Examples 1-5 and Comparative Examples 1, 2, 3 The measurement result of the (0001) surface texture by X-ray diffraction is shown in FIG. 1 (1) to 1 (8) show Comparative Examples 1, 2 and 3 and Example 1-5.
- the degree of integration indicates the maximum intensity of the pole figure.
- the contour lines shown in the pole figure shown in FIG. 1 are relative intensities, and the contour lines are drawn with the degree of integration as the maximum value.
- an alloy obtained by adding 0 to 3% Cu to an Mg-0.1% Ca alloy is rolled at a sample temperature of 350 ° C. to a thickness of 5 mm to 1 mm. , (0001) plane texture of the matrix (Mg phase) of the plate material produced by annealing.
- FIG. 1 (1) shows the (0001) plane texture of the matrix (Mg phase) of the Mg-0.1% Ca alloy
- FIG. 1 (2) shows the (0001) plane peculiar to the general-purpose magnesium alloy rolled material.
- An texture that is arranged parallel to the plate surface is observed. That is, the peak of the (0001) plane appears at a position parallel to the ND direction (vertical direction).
- the Mg-0.1% Ca alloy to which Ca was added as compared with pure Mg showed a relatively low degree of integration (4.1) as compared with pure Mg, and the (0001) plane due to the addition of Ca. It can be confirmed that the orientation is randomized to some extent.
- the degree of integration increases. Decreases, and when 0.005% or more of Cu is added, the degree of integration becomes 3.8 or less, and it can be confirmed that the orientation is randomized. Further, when 0.03% or more of Cu is added, a pole of the (0001) plane appears in the vicinity of an inclination of 30 ° or more in the TD or RD direction from the ND direction. As described above, the Mg—Cu—Ca based alloy in which the orientation of the (0001) plane is suppressed exhibits excellent room temperature moldability as a result.
- the magnesium alloy plates of Comparative Examples 2 and 3 and Example 1-5 were identified by X-ray diffraction.
- the tube voltage at the time of measurement was 40 kV, and the current value was 40 mA (the tube used was a Cu tube).
- the measurement was performed every 0.01 ° and the scan speed was 1 ° / min. The measurement was carried out at room temperature (25 ° C.).
- Figure 2 shows the results of identification of the crystallized material by X-ray diffraction.
- FIG. 2 shows Comparative Examples 2 and 3 and Example 1-5.
- the matrix phase (Mg phase) of the Mg-3% Cu-0.1% Ca alloy has an integration degree of 3.8 or less as shown in FIG. 1 (8).
- FIG. 2 (7) high room temperature moldability cannot be obtained due to the presence of crystallization such as Mg 2 Cu.
- FIGS. 3 (1) to 3 (7) show Comparative Examples 4, 5, and 7 and Examples 3, 6, 7, and 8.
- the measurement conditions are the same as those in FIG. 1 (Comparative Examples 1, 2, 3 and Examples 1-5) described above.
- FIG. 3 (1) shows the matrix of the Mg-0.03% Cu alloy (Comparative Example 3)
- FIG. 3 (2) shows the matrix phase of the Mg-0.03% Cu-0.01Ca alloy (Comparative Example 5). It is the (0001) plane texture of the Mg phase), and the texture in which the (0001) planes peculiar to the general-purpose magnesium alloy rolled material are arranged in parallel with the plate surface is observed. That is, the peak of the (0001) plane appears at a position parallel to the ND direction (vertical direction).
- the degree of integration decreases as the concentration of Ca added increases, and Ca
- the degree of integration becomes 3.8 or less, and it can be confirmed that the orientation is randomized (Examples 3, 6, 7, 8).
- Ca is added in an amount of 0.05% or more, a pole of the (0001) plane appears in the vicinity of an inclination of 30 ° or more in the TD or RD direction from the ND direction.
- the Mg—Cu—Ca based alloy in which the orientation of the (0001) plane is suppressed exhibits excellent room temperature moldability as a result.
- (1) to (4) of FIG. 4 show Comparative Example 7 and Examples 3, 7, and 8.
- An alloy in which 0.1% to 2% Ca was added to an Mg-0.03% Cu alloy was rolled to a thickness of 5 mm to 1 mm at a sample temperature of 350 ° C. and a rolling reduction ratio of 20% / pass per pass. It is a qualitative analysis result of the composition by XRD of the plate material produced by annealing the sample.
- the tube voltage at the time of measurement was 40 kV, and the current value was 40 mA (the tube used was a Cu tube). The measurement was performed every 0.01 ° and the scan speed was 1 ° / min.
- the matrix (Mg phase) of the Mg-0.03% Cu-2% Ca alloy (Comparative Example 7) is a (0001) plane set having an integration degree of 3.8 or less, as shown in FIG. 3 (7). Although it has a structure, as shown in (4) of FIG. 4, high room temperature moldability cannot be obtained due to the presence of crystallized substances such as Mg 2 Ca.
- Test method An Eriksen test was carried out to evaluate the room temperature moldability of the magnesium alloy plates of Examples 1-28 and Comparative Example 1-13.
- the Eriksen test complies with JIS B7729 1995 and JIS Z2247 1998.
- the blank shape was set to ⁇ 60 mm (thickness 1 mm) due to the shape of the plate material.
- the mold (sample) temperature was 30 ° C.
- the molding speed was 5 mm / min
- the wrinkle pressing force was 10 kN.
- Graphite grease was used as the lubricant.
- Tension test A tensile test was carried out to evaluate the room temperature moldability of the magnesium alloy rods of Examples 29 to 33 and Comparative Example 14.
- the tensile test conforms to JIS Z2241 2011.
- the length of the parallel portion of the test piece was 14 mm, and the diameter of the parallel portion was 2.5 mm.
- the test temperature was room temperature (20 ⁇ 10 ° C.), and the initial strain rate was 2.4 ⁇ 10 -3 s -1 .
- Salt water immersion test In order to evaluate the corrosion rate of the magnesium alloy plates of Examples 1 to 4, 6 to 8, 24, 26 and Comparative Examples 4 to 8, 11 to 13, a salt water immersion test conforming to JIS H0541 2003 was carried out.
- test piece having a thickness of 1.0 mm and a surface area of 13 to 14 mm 2 was cut out from a plate material, and the surface of the test piece was wet-polished to # 1000 using SiC polishing paper.
- the corrosive liquid used was a 5 wt% NaCl aqueous solution in which Mg (OH) 2 powder was added in advance and the pH was adjusted to 9 to 10, and the test piece was immersed in a test solution at 35 ° C. for 72 hours (Example 26). , Comparative Example 8, Comparative Example 11 and Comparative Example 12 were immersed for 6 hours). After the immersion test, corrosion products were removed using a 10 mass% CrO 3 aqueous solution, and the mass of the test piece was measured.
- the corrosion rate (mg / cm 2 / day) was calculated from the weight loss before and after the test.
- the thermal conductivity of a part of the magnesium alloy plate materials (Examples 3, 5, 9 to 23, 26, 27 and Comparative Examples 1, 3, 7, 8, 10, 12, 13) was measured. In the measurement, the thermal conductivity, the specific heat, and the density at room temperature were measured, respectively, and the measurement was performed by substituting into the above equation (1).
- a sample having a diameter of 10.0 mm and a thickness of 1.5 to 2.5 mm was cut out from a plate material and measured by a laser flash method (in vacuum, 25 ° C.).
- the specific heat was measured by the DSC method (Ar gas flow (20 mL / min), heating rate 10 ° C./min, measurement temperature 25 ° C.). In measuring the density, the measurement was carried out by the dimensional measurement method (23 ° C.). The above thermal conductivity measurement is based on JIS R1611 2010. (Measurement of electrical conductivity) The electric conductivity of the magnesium alloy plate and the magnesium alloy rod of Examples 1-33 and Comparative Example 1-14 was measured. In the measurement of the plate, the surface of the sample was surface-polished with # 4000 SiC abrasive paper, and then the measurement was carried out by the 4-terminal (electrode) method at room temperature (25 ° C.).
- Comparative Examples 1 and 13 are compared with Examples 3, 5, 9 to 23, Cu and Ca having predetermined concentrations as in Examples 3, 5, 9 to 23, and Al, Zn, Mn, and Zr are further added. By doing so, it exhibits a thermal conductivity higher than 120 (W / m ⁇ K), and has a thermal conductivity (120 to 170 (W / m ⁇ K)) at room temperature (25 ° C.) comparable to that of structural aluminum alloys. It can be seen that it shows.
- the magnesium alloy sheets of Examples 1 to 23 showed 1.3 ⁇ 10 7 (S / m ) or more high electrical resistivity.
- thermal conductivity and electrical conductivity are in a proportional relationship at the same temperature, 1.3 ⁇ 10 7 (S / m) Mg-Cu-Ca based alloy having a high electrical conductivity than the structural It can be said that it has a thermal conductivity comparable to that of aluminum alloys.
- the Cu content is 0.005 to 1.5% by mass
- the Ca content is 0.05 to 1.0% by mass
- Al In a magnesium alloy plate having a content of 0 to 0.5% by mass and Zn, Mn, and Zr of 0 to 0.3% by mass, the degree of integration of the (0001) plane texture of the matrix (Mg phase) is high. It can be seen that it is 3.8 or less.
- Mg 2 Cu Mg which becomes a starting point of fracture during molding. It can be seen that the amount of crystallization such as 2 Ca is increased and coarse crystallization is produced.
- the magnesium alloy plates of Examples 1 to 4 and Examples 6 to 8 show a corrosion rate of 3.0 or less, and in particular, in Examples 1 to 3 and 6 to 8, AZ31 It showed better corrosion resistance than the alloy (Comparative Example 13). As described above, it can be said that the Mg—Cu—Ca alloy also has excellent corrosion resistance required as a structural member.
- the thermal conductivity is higher than 120 (W / m ⁇ K), and the room temperature (25 ° C.) is comparable to that of the structural aluminum alloy. ) Is shown to show the thermal conductivity (120 to 170 (W / m ⁇ K)).
- the magnesium alloy plate of Example 24-28 showed 1.3 ⁇ 10 7 (S / m ) or more high electrical resistivity.
- thermal conductivity and electrical conductivity are in a proportional relationship at the same temperature, 1.3 ⁇ 10 7 (S / m) Mg-Ni-Ca system alloy having a high electrical conductivity than the structural It can be said that it has a thermal conductivity comparable to that of aluminum alloys.
- the Ni content is 0.01 to 0.5% by mass
- the Ca content is 0.05 to 1.0% by mass
- the Al content is 0 to 0.5% by mass. It can be seen that in the magnesium alloy plate in which Zn, Mn, and Zr are 0 to 0.3% by mass, the degree of integration of the (0001) plane texture of the matrix (Mg phase) is 3.8 or less.
- Comparative Example 9 Comparative Example 10, and Comparative Example 12, when Ni and / or Ca exceeding the above range is added, crystallized products such as Mg 2 Ni and Mg 2 Ca which are the starting points of fracture during molding. It can be seen that the amount of production increases and high moldability cannot be obtained.
- the magnesium alloy plate material of Example 26 showed a high corrosion rate, but in Example 24, it showed the same degree of corrosion resistance as the AZ31 alloy (Comparative Example 13).
- the Mg—Ni—Ca based alloy can also have the corrosion resistance required as a structural member if the composition of the alloy is optimized, as in the case of the Mg—Cu—Ca based alloy.
- the magnesium alloy rod of Examples 29-33 showed 1.3 ⁇ 10 7 (S / m ) or more high electrical resistivity.
- thermal conductivity and electrical conductivity are in a proportional relationship at the same temperature, Mg-Cu-Ca alloy and Mg-Ni having a high electrical conductivity than the 1.3 ⁇ 10 7 (S / m )
- the Ca-based alloy has a thermal conductivity comparable to that of the structural aluminum alloy.
- the Cu content is 0.005 to 1.5% by mass
- the Ca content is 0.05 to 1.0% by mass
- the Al content is 0 to 0.5% by mass.
- the degree of integration of the (0001) plane texture of the matrix (Mg phase) is high. It becomes 6.8 or less, and it can be seen that high moldability and thermal conductivity can be obtained at the same time.
- the Ni content is 0.01 to 0.5% by mass
- the Ca content is 0.05 to 1.0% by mass
- the Al content is 0 to 0.5% by mass.
- Mg—Ni—Ca based alloy rod in which Zn, Mn, and Zr are 0 to 0.3% by mass
- the degree of integration of the (0001) plane texture of the matrix (Mg phase) is 6. It becomes 8 or less, and it can be seen that high moldability and thermal conductivity can be obtained at the same time.
- the magnesium alloy plate and magnesium alloy rod of the present invention are intended for Mg—Cu—Ca alloys and Mg—Ni—Ca alloys having excellent thermal conductivity, and improve workability or moldability at room temperature. Is. In addition to having the corrosion resistance required for structural applications, it also improves the hardness of some alloys, solving the problem of conventional magnesium alloys that can be molded at room temperature, that is, the problem of low heat dissipation characteristics. do. As a result, it is possible to obtain parts that can be processed more complicatedly at room temperature and have excellent heat dissipation characteristics, and is a material that can contribute to weight reduction and high functionality of electronic devices and automobile parts.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
- Forging (AREA)
Abstract
Description
Cuの含有量が0~1.5質量%、
Niの含有量が0~0.5質量%、
Caの含有量が0.05~1.0質量%、
Alの含有量が0~0.5質量%、
Znの含有量が0~0.3質量%、
Mnの含有量が0~0.3質量%、
Zrの含有量が0~0.3質量%、
であり、
前記Cuと前記Niの総量が0.005~2.0質量%であり、残部がマグネシウムおよび不可避的不純物であることを特徴としている。
前記マグネシウム合金ビレットまたはその加工物を、200℃~500℃で圧延する圧延工程
を含むことを特徴としている。
前記マグネシウム合金またはその加工物を、200℃~500℃で押出し加工する押出し工程
を含むことを特徴としている。
(マグネシウム合金の成分)
本発明のマグネシウム合金は、
Cuの含有量が0~1.5質量%、
Niの含有量が0~0.5質量%、
Caの含有量が0.05~1.0質量%、
Alの含有量が0~0.5質量%、
Znの含有量が0~0.3質量%、
Mnの含有量が0~0.3質量%、
Zrの含有量が0~0.3質量%、
であり、
CuとNiの総量が0.005~2.0質量%であり、残部がマグネシウムおよび不可避的不純物である。
(マグネシウム合金板およびマグネシウム合金棒の特性)
上述した本発明のマグネシウム合金を使用して、マグネシウム合金板およびマグネシウム合金棒を製造することができる。マグネシウム合金板およびマグネシウム合金棒の製造方法については後述する。
なお、熱拡散率(α)は、直径10.0mm、厚み1.5~2.5mmの試料をマグネシウム合金板およびマグネシウム合金棒から切り出し、レーザフラッシュ法(真空中、測定温度10~35℃)により測定を行った値を指し、比熱(Cp)は、DSC法(Arガスフロー(20mL/分)、昇温速度10℃/分、測定温度10~35℃)により測定した値を指し、密度(ρ)は寸法測定法(測定温度10~35℃)で測定した値を指す。なお、上記の熱伝導率測定は、JIS R1611 2010に準拠するものである。測定温度に関しては、10~35℃の範囲であれば、熱伝導率には有意の変動は観察されない。より精密に測定を実施する場合は25℃±2℃の範囲で実施することが好ましい。
(マグネシウム合金、マグネシウム合金板およびマグネシウム合金棒の製造方法)
本発明のマグネシウム合金(マグネシウム合金板およびマグネシウム合金棒)の製造方法では、上述した本発明のマグネシウム合金からなるビレットを作製する鋳造工程を含む。
Cuの含有量が0~1.5質量%、または0.005~1.5質量%
Niの含有量が0~0.5質量%、または0.01~0.5質量%
Caの含有量が0.05~1.0質量%、
Alの含有量が0~0.5質量%、
Znの含有量が0~0.3質量%、
Mnの含有量が0~0.3質量%、
Zrの含有量が0~0.3質量%、
であり、CuとNiの総量が0.005~2.0質量%であり、残部がマグネシウムおよび不可避的不純物であるマグネシウム合金(マグネシウム合金ビレット)を作製する鋳造工程を含む。鋳造工程では、従来知られた方法、条件を適宜採用することができ、マグネシウム合金の形状などは特に限定されない。
溶解鋳造法により表1に示す化学成分を有するマグネシウム合金ビレットを作製した(鋳造工程)。溶解は高周波誘導溶解炉を用い、アルゴン雰囲気下で所定温度(鋳造温度として表1に記載)にて溶解を行った。その後、厚み30mmの金型、もしくは直径40mmの金型に鋳造し、押出し加工用のマグネシウム合金ビレット(インゴット)を作製した。次に、板材に関しては、上記厚み30mmのマグネシウム合金ビレット(インゴット)を、所定温度(押出し温度として表1に記載)で押出し加工を行い板厚5mmの板とし、ついで試料温度350℃の圧延を施し、板厚1.0mmのマグネシウム合金板を得た(圧延工程)。一部のマグネシウム合金板については、圧延を行う前に所定温度・所定時間の均質化処理を行った(圧延前均質化処理条件として表1に記載)。これらのマグネシウム合金板を用いて、従来の製造工程に従って圧延後300℃で2時間の焼鈍(再結晶熱処理)を施した(焼鈍工程)。一部のマグネシウム合金板については、170℃で8時間の焼鈍を実施した(時効処理工程)。
実施例1-28および比較例1-13のマグネシウム合金板の母相(Mg相)の(0001)面集合組織をXRD法(シュルツの反射法)により測定した。測定に際しては、圧延材よりφ33mm×1mmの円盤を切り出し、RD-TD面を、厚み0.5mmまで面削した上で、#4000のSiC研磨紙で表面研磨を実施した試料を利用した。
X線回折による(0001)面集合組織の測定結果を図1に示す。図1(1)~(8)は比較例1、2、3および実施例1-5について示している。集積度(m.r.d.:multiples of random density)は、極点図の最大強度を示す。図1に示す極点図に示される等高線は相対強度であり、集積度を最大値として、等高線を描いている。
X線回折による(0001)面集合組織の測定結果を図3に示す。図3(1)~(7)は比較例4、5、7および実施例3、6、7、8について示している。測定条件は、上述した図1(比較例1、2、3および実施例1-5)と同様である。
(1)試験方法
(エリクセン試験)
実施例1-28および比較例1-13のマグネシウム合金板の室温成形性を評価するために、エリクセン試験を実施した。エリクセン試験はJIS B7729 1995およびJIS Z2247 1998に準拠する。なお、ブランク形状は板材形状の都合上φ60mm(厚み1mm)とした。金型(試料)温度は30℃とし、成形速度は5mm/minとし、しわ押さえ力は10kNとした。潤滑剤にはグラファイトグリスを利用した。
(引張り試験)
実施例29~33および比較例14のマグネシウム合金棒の室温成形性を評価するために、引張り試験を実施した。引張り試験はJIS Z2241 2011に準拠する。なお、試験片の平行部長さは14mmであり、平行部直径は2.5mmとした。試験温度は室温(20±10℃)とし、初期歪み速度は2.4×10-3s-1とした。
(塩水浸漬試験)
実施例1~4、6~8、24、26および比較例4~8、11~13のマグネシウム合金板の腐食速度を評価するために、JIS H0541 2003に準拠した塩水浸漬試験を実施した。そこでは、厚み1.0mm、表面積13~14mm2の試験片を板材から切り出し、SiC研磨紙を用いて試験片の表面を#1000まで湿式研磨した試験片を用いた。利用した腐食液は、予めMg(OH)2粉末を添加して、pHを9~10に調整した5wt%NaCl水溶液であり、35℃の試験溶液に試験片を72時間浸漬した(実施例26,比較例8,比較例11、比較例12は6時間浸漬とした)。浸漬試験後、10mass%CrO3水溶液を用いて腐食生成物を除去し,試験片の質量測定を行った。そして、試験前後の重量損失から腐食速度(mg/cm2/day)を算出した。
(熱伝導率の測定)
上記マグネシウム合金板材の一部(実施例3、5、9~23、26、27および比較例1、3、7、8、10、12、13)を対象として、熱伝導率を測定した。測定に当たっては、室温における熱伝導率、比熱、密度をそれぞれ測定し、前述の(1)式に代入することにより測定した。熱拡散率の測定に当たっては、直径10.0mm、厚み1.5~2.5mmの試料を板材から切り出し、レーザフラッシュ法(真空中、25℃)により測定を行った。比熱の測定に当たっては、DSC法(Arガスフロー(20mL/分)、昇温速度10℃/分、測定温度25℃)により測定を行った。密度の測定に当たっては、寸法測定法(23℃)で測定を行った。なお、上記の熱伝導率測定は、JIS R1611 2010に準拠するものである。
(電気伝導率の測定)
実施例1-33および比較例1-14のマグネシウム合金板及びマグネシウム合金棒の電気伝導率を測定した。板の測定に当たっては、試料表面を#4000のSiC研磨紙で表面研磨した後、室温(25℃)において4端子(電極)法により測定を実施した。棒の測定に当たっては、押出材をED-TD断面で切断し、#4000のSiC研磨紙で表面研磨を実施した試料を利用した。なお、上記の電気伝導率の測定方法は、JIS K7194 1994に準拠するものである。
(時効析出硬化の有無の測定)
上記マグネシウム合金板の一部(実施例12、15~17)を対象として、時効析出硬化特性の有無を調査した。調査に当たっては、所定温度(170℃)に保持した電気炉中に、板材を8時間保持した後に、そのビッカース硬度を評価した。ビッカース硬度試験はJIS Z2244に準拠する。試験時の荷重は0.2kgf、保持時間は10秒とし、得られた10点の試験値から最大値と最小値を取り除き、8点の平均値をビッカース硬度とした。
結果を表2及び表3に示す。
表2において、所定量のCuもしくはCaを添加していない比較例1、比較例2、比較例4、比較例5の母相(Mg相)の(0001)面集合組織の集積度は3.8よりも高い値を示し、結果として、6.5未満の室温エリクセン値を示すことが確認された。
表2において、所定量のNiもしくはCaを添加していない比較例1、比較例2、比較例8~11の母相(Mg相)の(0001)面集合組織の集積度は3.8よりも高い値を示し、結果として、6.5未満の室温エリクセン値を示すことが確認された。
表3において、所定濃度のCu及びCa(Cu:0.005~1.5質量%、Ca:0.05~1.0質量%)、もしくは所定濃度のNi及びCa(Ni:0.01~0.5質量%、Ca:0.05~1.0質量%)を添加した実施例29~33の母相(Mg相)の(0001)面集合組織の集積度は6.8以下の値を示し、結果として、15%以上の破断伸びを示すことが確認された。さらに、実施例29、実施例30に関しては、20%以上の破断伸びを示し、アルミニウム合金に匹敵する成形性を示すことが確認された。
Claims (15)
- Cuの含有量が0~1.5質量%、
Niの含有量が0~0.5質量%、
Caの含有量が0.05~1.0質量%、
Alの含有量が0~0.5質量%、
Znの含有量が0~0.3質量%、
Mnの含有量が0~0.3質量%、
Zrの含有量が0~0.3質量%、
であり、
前記Cuと前記Niの総量が0.005~2.0質量%であり、残部がマグネシウムおよび不可避的不純物である
ことを特徴とするマグネシウム合金。 - 前記Cuの含有量が0.005~1.5質量%であることを特徴とする請求項1に記載のマグネシウム合金。
- 前記Niの含有量が0.01~0.5質量%であることを特徴とする請求項1または2に記載のマグネシウム合金。
- 前記Cuの含有量が0.03~0.3質量%であり、
前記Caの含有量が0.1~0.5質量%であり、
前記Alの含有量が0.1~0.5質量%である、
ことを特徴とする請求項1に記載のマグネシウム合金。 - JIS H0541(2003)による塩水浸漬試験によって測定される腐食速度が4mg/cm2/day以下であることを特徴とする請求項1から4のいずれかに記載のマグネシウム合金
- 請求項1から5のいずれかに記載のマグネシウム合金を含むマグネシウム合金板であって、母相(Mg相)における稠密六方晶の(0001)面の集積度が3.8以下であることを特徴とするマグネシウム合金板。
- 請求項1から5のいずれかに記載のマグネシウム合金を含むマグネシウム合金棒であって、母相(Mg相)における稠密六方晶の(0001)面の集積度が6.8以下であることを特徴とするマグネシウム合金棒。
- 請求項1から5のいずれかに記載のマグネシウム合金を作製する鋳造工程
を含むことを特徴とするマグネシウム合金の製造方法。 - 請求項1から5のいずれかに記載のマグネシウム合金からなるマグネシウム合金ビレットを作製する鋳造工程;
前記マグネシウム合金ビレットまたはその加工物を、200℃~500℃で圧延する圧延工程
を含むことを特徴とするマグネシウム合金板の製造方法。 - 前記圧延工程後に、200℃~500℃で行う焼鈍工程を含むことを特徴とする請求項9に記載のマグネシウム合金板の製造方法。
- 前記焼鈍工程後に、150~250℃で熱処理する時効処理工程を含むことを特徴とする請求項10に記載のマグネシウム合金板の製造方法。
- 請求項1から5のいずれかに記載のマグネシウム合金からなるマグネシウム合金ビレットを作製する鋳造工程;
前記マグネシウム合金またはその加工物を、200℃~500℃で押出し加工する押出し工程
を含むことを特徴とするマグネシウム合金棒の製造方法。 - 前記押出工程後に、200℃~500℃で行う焼鈍工程を含むことを特徴とする請求項12に記載のマグネシウム合金棒の製造方法。
- 前記焼鈍工程後に、150~250℃で熱処理する時効処理工程を含むことを特徴とする請求項13に記載のマグネシウム合金棒の製造方法。
- 請求項1から5のいずれかに記載のマグネシウム合金を含むことを特徴とするマグネシウム合金部材。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/919,597 US20230183843A1 (en) | 2020-04-21 | 2021-04-06 | Magnesium alloy, magnesium alloy plate, magnesium alloy bar, manufacturing methods thereof, and magnesium alloy member |
JP2022516942A JP7468931B2 (ja) | 2020-04-21 | 2021-04-06 | マグネシウム合金、マグネシウム合金板、マグネシウム合金棒およびこれらの製造方法、マグネシウム合金部材 |
CN202180029028.6A CN115427598B (zh) | 2020-04-21 | 2021-04-06 | 镁合金、镁合金板、镁合金棒及其制造方法、镁合金部件 |
KR1020227036337A KR20220162137A (ko) | 2020-04-21 | 2021-04-06 | 마그네슘 합금, 마그네슘 합금판, 마그네슘 합금봉 및 이들의 제조 방법, 마그네슘 합금 부재 |
EP21792999.1A EP4141136A4 (en) | 2020-04-21 | 2021-04-06 | MAGNESIUM ALLOY, MAGNESIUM ALLOY PLATE, MAGNESIUM ALLOY ROD, PRODUCTION METHODS THEREOF, AND MAGNESIUM ALLOY ELEMENT |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-075667 | 2020-04-21 | ||
JP2020075667 | 2020-04-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021215241A1 true WO2021215241A1 (ja) | 2021-10-28 |
Family
ID=78269144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/014666 WO2021215241A1 (ja) | 2020-04-21 | 2021-04-06 | マグネシウム合金、マグネシウム合金板、マグネシウム合金棒およびこれらの製造方法、マグネシウム合金部材 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230183843A1 (ja) |
EP (1) | EP4141136A4 (ja) |
JP (1) | JP7468931B2 (ja) |
KR (1) | KR20220162137A (ja) |
CN (1) | CN115427598B (ja) |
WO (1) | WO2021215241A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005298885A (ja) | 2004-04-09 | 2005-10-27 | Nippon Kinzoku Co Ltd | 塑性加工性に優れたマグネシウム又はマグネシウム合金の板及びその製造方法 |
WO2008072435A1 (ja) * | 2006-12-11 | 2008-06-19 | Kabushiki Kaisha Toyota Jidoshokki | 鋳造用マグネシウム合金およびマグネシウム合金鋳物の製造方法 |
JP2010013725A (ja) | 2008-06-05 | 2010-01-21 | National Institute Of Advanced Industrial & Technology | 易成形性マグネシウム合金板材及びその作製方法 |
JP2010133005A (ja) | 2008-10-28 | 2010-06-17 | National Institute Of Advanced Industrial Science & Technology | 常温成形性を改善した商用マグネシウム合金板材およびその作製方法 |
JP2011219820A (ja) * | 2010-04-09 | 2011-11-04 | Toyota Industries Corp | 耐熱マグネシウム合金 |
JP2013129914A (ja) * | 2011-11-22 | 2013-07-04 | National Institute Of Advanced Industrial Science & Technology | マグネシウム合金板材の製造方法並びにマグネシウム合金板材及びそれを用いたプレス成形体 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007070685A (ja) * | 2005-09-06 | 2007-03-22 | Daido Steel Co Ltd | 良加工性マグネシウム合金及びその製造方法 |
TWI391565B (zh) * | 2009-10-13 | 2013-04-01 | Sunonwealth Electr Mach Ind Co | 風扇構件及其製造方法 |
DE112013002971T5 (de) * | 2012-06-13 | 2015-04-16 | Sumitomo Electric Industries, Ltd. | Blech aus Magnesiumlegierung und Strukturelement aus Magnesiumlegierung |
CA2869459C (en) * | 2012-06-26 | 2023-01-03 | Biotronik Ag | Magnesium-zinc-calcium alloy, method for production thereof, and use thereof |
EP3530766A4 (en) * | 2016-10-21 | 2019-09-25 | Posco | HIGHLY MOLDED MAGNESIUM ALLOY SHEET AND PROCESS FOR PRODUCING THE SAME |
-
2021
- 2021-04-06 CN CN202180029028.6A patent/CN115427598B/zh active Active
- 2021-04-06 JP JP2022516942A patent/JP7468931B2/ja active Active
- 2021-04-06 KR KR1020227036337A patent/KR20220162137A/ko not_active Application Discontinuation
- 2021-04-06 EP EP21792999.1A patent/EP4141136A4/en active Pending
- 2021-04-06 US US17/919,597 patent/US20230183843A1/en active Pending
- 2021-04-06 WO PCT/JP2021/014666 patent/WO2021215241A1/ja unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005298885A (ja) | 2004-04-09 | 2005-10-27 | Nippon Kinzoku Co Ltd | 塑性加工性に優れたマグネシウム又はマグネシウム合金の板及びその製造方法 |
WO2008072435A1 (ja) * | 2006-12-11 | 2008-06-19 | Kabushiki Kaisha Toyota Jidoshokki | 鋳造用マグネシウム合金およびマグネシウム合金鋳物の製造方法 |
JP2010013725A (ja) | 2008-06-05 | 2010-01-21 | National Institute Of Advanced Industrial & Technology | 易成形性マグネシウム合金板材及びその作製方法 |
JP2010133005A (ja) | 2008-10-28 | 2010-06-17 | National Institute Of Advanced Industrial Science & Technology | 常温成形性を改善した商用マグネシウム合金板材およびその作製方法 |
JP2011219820A (ja) * | 2010-04-09 | 2011-11-04 | Toyota Industries Corp | 耐熱マグネシウム合金 |
JP2013129914A (ja) * | 2011-11-22 | 2013-07-04 | National Institute Of Advanced Industrial Science & Technology | マグネシウム合金板材の製造方法並びにマグネシウム合金板材及びそれを用いたプレス成形体 |
Non-Patent Citations (7)
Title |
---|
"Aluminum Handbook", 1990, JAPAN LIGHT METALS ASSOCIATION, pages: 25 |
"Magnesium Engineering Handbook", 2000, KALLOS PUBLISHING CO.LTD., pages: 63 - 84 |
D. GRIFFITHS, MATER. SCI. TECHNOL., vol. 31, 2015, pages 10 - 24 |
G. SONGA. ATRENS, ADV. ENG. MATER., vol. 5, 2003, pages 837 - 858 |
G. Y OHY. G. JUNGW. YANGS. K. KIMH. K. LIMY. J. KIM, MATER. TRANS., vol. 56, 2015, pages 1887 - 1892 |
See also references of EP4141136A4 |
Z. H. LIT. T. SASAKIT. SHIROYAMAA. MIURAK. UCHIDAK. HONO, MATERIALS RESEARCH LETTERS, vol. 8, 2020, pages 335 - 340 |
Also Published As
Publication number | Publication date |
---|---|
EP4141136A4 (en) | 2024-04-17 |
CN115427598B (zh) | 2023-10-10 |
JP7468931B2 (ja) | 2024-04-16 |
JPWO2021215241A1 (ja) | 2021-10-28 |
EP4141136A1 (en) | 2023-03-01 |
CN115427598A (zh) | 2022-12-02 |
US20230183843A1 (en) | 2023-06-15 |
KR20220162137A (ko) | 2022-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6339616B2 (ja) | 展伸用途のマグネシウム系合金 | |
KR101501295B1 (ko) | 고강도 알루미늄 합금재 및 그 제조 방법 | |
JP6794264B2 (ja) | マグネシウム−リチウム合金、圧延材及び成型品 | |
JP6022882B2 (ja) | 高強度アルミニウム合金押出材及びその製造方法 | |
JP2008057046A (ja) | 銀を含む銅合金 | |
WO2013115490A1 (ko) | 고연성 및 고인성의 마그네슘 합금 및 이의 제조방법 | |
WO2017043577A1 (ja) | 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバー | |
JP4189687B2 (ja) | マグネシウム合金材 | |
EP2915891B1 (en) | Cu-be alloy and method for producing same | |
JP2011017041A (ja) | マグネシウム合金板 | |
JP5215710B2 (ja) | 高温でのクリープ特性に優れたマグネシウム合金およびその製造方法 | |
JP5059505B2 (ja) | 高強度で成形が可能なアルミニウム合金冷延板 | |
KR101700419B1 (ko) | 저온 및 저속의 압출공정을 이용한 고강도 마그네슘 합금 압출재 제조방법 및 이에 의해 제조된 마그네슘 합금 압출재 | |
KR101680041B1 (ko) | 고연성 및 고인성의 마그네슘 합금 가공재 및 그 제조방법 | |
JP2010163677A (ja) | アルミニウム合金線材 | |
US11186899B2 (en) | Magnesium-zinc-manganese-tin-yttrium alloy and method for making the same | |
WO2021215241A1 (ja) | マグネシウム合金、マグネシウム合金板、マグネシウム合金棒およびこれらの製造方法、マグネシウム合金部材 | |
JPH11302764A (ja) | 高温特性に優れたアルミニウム合金 | |
JP7410542B2 (ja) | マグネシウム合金板 | |
JP2004124152A (ja) | マグネシウム基合金の圧延線材及びその製造方法 | |
JP2000104149A (ja) | 微細な再結晶粒組織を有するAl−Mn系合金圧延材の製造方法 | |
JP2004124154A (ja) | マグネシウム基合金の圧延線材及びその製造方法 | |
WO2021119804A1 (en) | High strength aluminum alloys | |
JP2001181774A (ja) | Mg合金製押出品およびその製造方法 | |
JPS627835A (ja) | 微細結晶粒組織を有するアルミニウム合金の製造法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21792999 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022516942 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20227036337 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021792999 Country of ref document: EP Effective date: 20221121 |