WO2021211855A1 - Broadband inductor - Google Patents
Broadband inductor Download PDFInfo
- Publication number
- WO2021211855A1 WO2021211855A1 PCT/US2021/027499 US2021027499W WO2021211855A1 WO 2021211855 A1 WO2021211855 A1 WO 2021211855A1 US 2021027499 W US2021027499 W US 2021027499W WO 2021211855 A1 WO2021211855 A1 WO 2021211855A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- trenches
- glass
- inductor
- broadband
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 49
- 239000003990 capacitor Substances 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims description 218
- 239000006089 photosensitive glass Substances 0.000 claims description 101
- 239000011521 glass Substances 0.000 claims description 57
- 239000004020 conductor Substances 0.000 claims description 40
- 238000010438 heat treatment Methods 0.000 claims description 29
- 239000002178 crystalline material Substances 0.000 claims description 27
- 230000003213 activating effect Effects 0.000 claims description 26
- 238000001816 cooling Methods 0.000 claims description 26
- 230000009477 glass transition Effects 0.000 claims description 26
- 239000004065 semiconductor Substances 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 239000000919 ceramic Substances 0.000 claims description 15
- 238000005530 etching Methods 0.000 claims description 14
- 229920002120 photoresistant polymer Polymers 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 10
- 150000002739 metals Chemical class 0.000 claims description 9
- 229910000859 α-Fe Inorganic materials 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 5
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical group [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229910000420 cerium oxide Inorganic materials 0.000 description 3
- 229910001947 lithium oxide Inorganic materials 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- -1 silver ions Chemical class 0.000 description 3
- 241001674808 Biastes Species 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- OUFSPJHSJZZGCE-UHFFFAOYSA-N aluminum lithium silicate Chemical compound [Li+].[Al+3].[O-][Si]([O-])([O-])[O-] OUFSPJHSJZZGCE-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000012256 powdered iron Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/04—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
- H01F41/041—Printed circuit coils
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C15/00—Surface treatment of glass, not in the form of fibres or filaments, by etching
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
- C03C23/007—Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
- H01F17/0033—Printed inductances with the coil helically wound around a magnetic core
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/0153—Electrical filters; Controlling thereof
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/06—Frequency selective two-port networks including resistors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/17—Structural details of sub-circuits of frequency selective networks
- H03H7/1741—Comprising typical LC combinations, irrespective of presence and location of additional resistors
- H03H7/1758—Series LC in shunt or branch path
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
- H01F2017/0073—Printed inductances with a special conductive pattern, e.g. flat spiral
Definitions
- the present invention relates to creating a broadband low loss insertion loss circuit comprising of a broadband inductor and shunt capacitor.
- the same circuit can also be used as a broadband filter.
- Broadband inductor is ideal for applications ranging from test instrumentation to microwave circuit design. Broadband inductor makes an excellent bias tee for use in communication platforms and RF micro-strips up to 100 GHz.
- FIG. 1 shows a traditional broadband inductor of the prior art.
- the broadband response of the tapered coil is directly related to precision of the winding and associated insulation stripping along with selective gold plating and powdered iron fill material.
- Broadband tapered conical inductors are available in SMT and flying lead versions along with various size, current handling and frequency ranges. Historically, it would take several narrow band inductors combined in series and or in parallel to address the broad frequency range of a single conical inductor. Conical inductors of this type are commercially available and made by, e.g., Piconics.
- the commercially available conical inductors are produced in machinery that has precision tolerance of ⁇ 150pm.
- the commercially available conical inductors have to better performance, low loss, improved reliability, reduced production times and a space saving on a printed circuit board compared to hand wound inductors.
- Inductors are an integral component in radiofrequency (RF) and microwave circuit design and are typically used as either impedance-matching elements or bias chokes.
- RF radiofrequency
- Inductors are an integral component in radiofrequency (RF) and microwave circuit design and are typically used as either impedance-matching elements or bias chokes.
- RF radiofrequency
- One of the main limitations of an inductor is its self-resonance frequency or first parallel-resonance frequency (PRF), which affects the usable bandwidth.
- PRF first parallel-resonance frequency
- the present invention includes a method of producing a broadband inductor comprising: forming first trenches on a first side of a substrate of a conical inductor and filling the trenches with a conductive material; forming first and second vias through the substrate that connect to a first end and a second end, respectively, of each of the first trenches and filling the first and second vias with a conductive material; and forming second trenches on a second side of the substrate opposite the first side, and filling the second trenches with a conductive material, wherein each of the second trenches connects a first and second via is a conical shape, wherein the first and second trenches are the broadband inductor.
- the substrate is a photosensitive glass substrate and the step of forming trenches on the first or second side comprises: forming a photoresist with a trench pattern on the substrate; exposing at least one portion of the photosensitive glass substrate to an activating energy source; heating the photosensitive glass substrate for at least ten minutes above its glass transition temperature; cooling the photosensitive glass substrate to transform at least part of the exposed glass to a crystalline material to form a glass-crystalline substrate; etching the glass-crystalline substrate trenches with an etchant; flood exposing the region outside of etched trenches of the photosensitive glass substrate to an activating energy source; heating the photosensitive glass substrate for at least ten minutes above its glass transition temperature; cooling the photosensitive glass/ceramic substrate to transform the exposed glass to a crystalline material to form a glass-crystalline substrate; selectively fill the trenches with a conductive material ground plane and input and output channels with one or more metals, wherein the metal is connected to a circuitry.
- the substrate is a photosensitive glass substrate and the step of forming vias from the first to the second side comprises: forming a photoresist with a via pattern on the substrate; exposing at least one portion of the photosensitive glass substrate to an activating energy source; heating the photosensitive glass substrate for at least ten minutes above its glass transition temperature; cooling the photosensitive glass substrate to transform at least part of the exposed glass to a crystalline material to form a glass-crystalline substrate; etching the glass-crystalline substrate vias with an etchant; flood exposing the region outside of etched vias of the photosensitive glass substrate to an activating energy source; heating the photosensitive glass substrate for at least ten minutes above its glass transition temperature; cooling the photosensitive glass/ceramic substrate to transform the exposed glass to a crystalline material to form a glass-crystalline substrate; selectively filling the vias with a conductive material.
- the substrate is a photodefmable glass.
- the via and trench spacing is from 10 pm to 250 pm, preferably 50pm.
- the via diameter is from 5 pm to 200 pm, preferably 25 pm.
- the via and trench height is from 25 pm to 1000 pm, preferably 300 pm.
- the broadband inductor comprises a high frequency and low frequency section.
- the broadband inductor is comprised of two semiconductor substrates.
- the broadband inductor consists of one semiconductor substrate.
- the broadband inductor is not rectangular.
- the broadband inductor comprises a cavity filled with a ferrite material.
- the broadband inductor further comprises one or more electrical components selected from resistors, connectors, or capacitors, that form a circuit.
- the broadband inductor is bonded to a circuit board.
- the present invention includes method of producing a broadband inductor comprising: forming first trenches on a first side of a photosensitive glass substrate of a conical inductor and filling the trenches with a conductive material, by: forming first and second vias through the photosensitive glass substrate that connect to a first end and a second end, respectively, of each of the first trenches and filling the first and second vias with a conductive material; and forming second trenches on a second side of the photosensitive glass substrate opposite the first side, and filling the second trenches with a conductive material, wherein each of the second trenches connects a first and second via is a conical shape, wherein the first and second trenches are the broadband inductor.
- the step of forming trenches on the first or second side comprises: forming a photoresist with a trench pattern on the substrate; exposing at least one portion of the photosensitive glass substrate to an activating energy source; heating the photosensitive glass substrate for at least ten minutes above its glass transition temperature; cooling the photosensitive glass substrate to transform at least part of the exposed glass to a crystalline material to form a glass-crystalline substrate; etching the glass-crystalline substrate trenches with an etchant; flood exposing the region outside of etched trenches of the photosensitive glass substrate to an activating energy source; heating the photosensitive glass substrate for at least ten minutes above its glass transition temperature; cooling the photosensitive glass/ceramic substrate to transform the exposed glass to a crystalline material to form a glass-crystalline substrate; selectively fill the trenches with a conductive material ground plane and input and output channels with one or more metals, wherein the metal is connected to a circuitry.
- the step of forming vias from the first to the second side comprises: forming a photoresist with a via pattern on the substrate; exposing at least one portion of the photosensitive glass substrate to an activating energy source; heating the photosensitive glass substrate for at least ten minutes above its glass transition temperature; cooling the photosensitive glass substrate to transform at least part of the exposed glass to a crystalline material to form a glass-crystalline substrate; etching the glass-crystalline substrate vias with an etchant; flood exposing the region outside of etched vias of the photosensitive glass substrate to an activating energy source; heating the photosensitive glass substrate for at least ten minutes above its glass transition temperature; cooling the photosensitive glass/ceramic substrate to transform the exposed glass to a crystalline material to form a glass-crystalline substrate; and selectively filling the vias with a conductive material.
- the via and trench spacing from 10 pm to 250 pm preferably 50pm.
- the via diameter is from 5 pm to 200 pm, preferably 25 pm.
- the via, the trench, or both have a height from 25 pm to 1000 pm, preferably 300 pm.
- the broadband inductor comprises a high frequency and low frequency section.
- the broadband inductor is comprised of two semiconductor substrates.
- the broadband inductor consists of one semiconductor substrate.
- the broadband inductor is not rectangular.
- the broadband inductor comprises a cavity filled with a ferrite material.
- the broadband inductor further comprises one or more electrical components selected from resistors, connectors, or capacitors, that form a circuit.
- the broadband inductor is bonded to a circuit board.
- the present invention includes broadband inductor comprising: first trenches on a first side of a substrate of a conical inductor and filling the trenches with a conductive material; first and second vias through the substrate that connect to a first end and a second end, respectively, of each of the first trenches and filling the first and second vias with a conductive material; and second trenches on a second side of the substrate opposite the first side, and filling the second trenches with a conductive material, wherein each of the second trenches connects a first and second via is a conical shape, wherein the first and second trenches are the broadband inductor.
- the substrate is a photosensitive glass substrate.
- the via and trench spacing is from 10 pm to 250 pm, preferably 50pm. In another aspect, the via diameter is from 5 pm to 200 pm, preferably 25 pm. In another aspect, the via, the trench, or both, have a height from 25 pm to 1000 pm, preferably 300 pm.
- the broadband inductor comprises a high frequency and low frequency section. In another aspect, the broadband inductor is comprised of two semiconductor substrates. In another aspect, the broadband inductor consists of one semiconductor substrate. In another aspect, the broadband inductor is not rectangular. In another aspect, the broadband inductor comprises a cavity filled with a ferrite material. In another aspect, the broadband inductor further comprises one or more electrical components selected from resistors, connectors, or capacitors, that form a circuit.
- FIG. 1 shows a traditional broadband inductor of the prior art.
- FIG. 2 shows a 3D rendering of a broadband inductor.
- FIG. 3 shows a schematic of the broadband filter of the present invention.
- FIG. 4 shows an electrical circuit for a Broadband filter using a novel Broadband inductor.
- FIG. 5 shows a simulation of the electrical circuit for a Broadband filter using a novel Broadband inductor.
- FIG. 6 shows the insertion loss of a broadband inductor made by Coilcraft in a biasT circuit.
- FIG. 7. Shows a single wafer implantation of a BBI.
- the present invention includes high-performance inductors, and methods of making the same, that are used for broadband UHF to millimeter-wave choking or bias feed applications.
- Conical inductors are capable of extremely broadband, resonance-free inductance in the microhenry range that can be used for low-loss RF choking and bias feeding.
- the conical shape combined with careful assembly to low capacitance attach pads allows usable bandwidth of these inductors from 10 MHz to 40 GHz.
- the conical inductor overcomes the limited bandwidth seen in standard SMT inductors by virtue of its conical design and careful assembly.
- FIG. 2 shows a 3D rendering of a completed, high precision tapered conical broadband inductor 10 of the present invention.
- FIG. 3 shows a cross section of the high precision tapered conical broadband inductor 10 and capacitor circuit 12 of the present invention.
- FIG. 3 shows a two-wafer implementation with a first substrate 14 and a second substrate 16 of the high precision tapered conical broadband inductor 10 of the present invention.
- the first part of the inductor starts, and is shown, on the right of the device and is the high value inductance for low frequency 18 of the inductor 10.
- a second part of the inductor starts, and is shown, on the left of the device and is the small value inductance for higher frequency 20 of the inductor 10.
- the high frequency inductor is on one wafer and is tapered from smaller (High Frequency Inductor) to wider (Lower Frequency Inductor).
- the broadband inductor’s unique structure is created using a photodefmable glass processing method taught herein.
- FIG. 3 is further described in Table 1, below.
- FIG. 4 shows an electric circuit diagram of the broadband inductor of the
- the present invention includes creating a broadband inductor that is made with integrated circuit precision and tolerance of ⁇ 0.5 pm in photo definable glass has significant performance enhancements, lower insertion loss, improved reliability, mass production, highest reliability and a space saving compared to the machine wound conical inductor. This is an enhancement in precision of over 30,000%.
- the mechanical precision enables the unexpected results shown in the graph of FIG. 5, in a side-by-side comparison with FIG. 6 (which shows the performance of a prior art conical inductor, such as the one shown in FIG. 1).
- the photodefmable processing substrate here in generally by: exposing at least one portion of the photosensitive glass substrate to an activating energy source; heating the photosensitive glass substrate for at least ten minutes above its glass transition temperature; cooling the photosensitive glass substrate to transform at least part of the exposed glass to a crystalline material to form a glass-crystalline substrate; etching the glass-crystalline substrate (trench(s) and via(s)) with an etchant; flood exposing the region outside of etched trenches and vias of the photosensitive glass substrate to an activating energy source; heating the photosensitive glass substrate for at least ten minutes above its glass transition temperature; cooling the photosensitive glass/ceramic substrate to transform the exposed glass to a crystalline material to form a glass-crystalline substrate; selectively fill the (trench(s) and via(s)) with a conductive material ground plane and input and output channels with one or more metals, wherein the metal is connected to a circuitry; and etch the ceramitized perimeter of the photodefmable glass to expose
- the photosensitive glass substrate is a glass substrate comprising a composition of: 60 - 76 weight % silica; at least 3 weight % K 2 0 with 6 weight % - 16 weight % of a combination of K 2 0 and Na 2 0; 0.003-1 weight % of at least one oxide selected from the group consisting of Ag 2 0 andAu 2 0; 0.003-2 weight % Cu 2 0; 0.75 weight % - 7 weight %B 2 0 3 , and 6 - 7 weight % A1 2 0 3 ; and the combination of B 2 0 3 ; and A1 2 0 3 not exceeding 13 weight %; 8-15 weight % Li 2 0; and 0.001 - 0.1 weight % Ce0 2 .
- the photosensitive glass substrate is a glass substrate comprising a composition of: 35 - 76 weight % silica, 3- 16 weight % K 2 0, 0.003-1 weight % Ag 2 0, 8-15 weight % Li 2 0, and 0.001 - 0.1 weight % CeC .
- the photosensitive glass substrate is at least one of: a photo-definable glass substrate comprises at least 0.1 weight % Sl ⁇ Cb or AS 2 O 3 ; a photo- definable glass substrate comprises 0.003-1 weight % A 3 ⁇ 4 0; a photo-definable glass substrate comprises 1-18 weight % of an oxide selected from the group consisting of CaO, ZnO, PbO, MgO, SrO and BaO; and optionally has an anisotropic- etch ratio of exposed portion to said unexposed portion is at least one of 10-20:1; 21-29:1; 30- 45:1; 20-40:1; 41-45:1; and SO SO:!.
- the photosensitive glass substrate is a photosensitive glass ceramic composite substrate comprising at least one of silica, lithium oxide, aluminum oxide, or cerium oxide.
- the electronic circuit further comprises forming the mechanically and thermally stabilized transmission line structure into a feature of at least one or more passive and active components to form bandpass, low pass, high pass, shunt or notch filter and other circuits.
- Microstructures have been produced relatively inexpensively with these glasses using conventional semiconductor processing equipment.
- glasses have high temperature stability, good mechanical a n d electrically properties, and have better chemical resistance than plastics and many metals.
- Photoetchable glass is comprised of lithium-aluminum-silicate glass containing traces of silver ions. When exposed to UV-light within the absorption band of cerium oxide, the cerium oxide acts as sensitizers, absorbing a photon and losing an electron that reduces neighboring silver oxide to form silver atoms, e.g.,
- This heat treatment must be performed at a temperature near the glass transformation temperature (e.g. Greater than 465°C. in air).
- the crystalline phase is more soluble in etchants, such as hydrofluoric acid (HF), than the unexposed vitreous, amorphous regions.
- etchants such as hydrofluoric acid (HF)
- HF hydrofluoric acid
- the crystalline regions etched greater than 20 times faster than the amorphous regions in 10%HF, enabling microstructures with wall slopes ratios of about 20:1 when the exposed regions are removed.
- the exposed portion may be transformed into a crystalline material by heating the glass substrate to a temperature near the glass transformation temperature.
- an etchant such as hydrofluoric (HF) acid
- the anisotropic-etch ratio of the exposed portion to the unexposed portion is at least 30: 1 when the glass is exposed to a broad spectrum mid-ultraviolet (about 308-312nm) flood lamp to provide a shaped glass structure that have an aspect ratio of at least 30:1, and to provide a lens shaped glass structure.
- the exposed glass is then baked typically in a two-step process.
- the glass plate is then etched.
- the glass substrate is etched in an etchant, of HF solution, typically
- etch ratio of exposed portion to that of the unexposed portion is at least 30:1.
- the final processing steps prior to the creation of the electric circuits and structures in photoetchable glass structure is to fully convert the remaining glass substrate to a ceramic phase.
- the ceramicization of the glass is accomplished by exposing all of the remaining photodefinable glass substrate to approximately 20J/cm 2 of 310 nm light.
- the substrate heats the substrate to a temperature to between 420°C-520°C for up to 2 hours, for the coalescing of silver ions into silver nanoparticles and temperature range heated between 520°C-620°C for between 10 minutes and 2 hours allowing the lithium oxide to form around the silver nanoparticles.
- the substrate is then cooled and then processed to metalized structures (interconnects, via and others). Finally, the active and passive devices are placed on to the ceramitized substrate.
- BBI Broadband Inductor
- FIG. 7 shows a single wafer Broadband Inductor 30 that includes a capacitor 32 on substrate 34, which is a PGD substrate.
- the first part of the inductor starts, and is shown, on the right of the device and is the high value inductance for low frequency 38 of the inductor 30.
- a second part of the inductor starts, and is shown, on the left of the device and is the small value inductance for higher frequency 40 of the inductor 10.
- An iron core 42 is disposed within the high value inductance for low frequency 38 of the inductor 30, in other words, the antenna surrounds and does not contact the iron core 42.
- a passivation layer 44 is disposed on the iron core and separates the coils of the small value inductance for higher frequency 40, which passivation layer 44 can be, e.g., a Si02 layer that can be formed or deposited by plasma enhanced chemical vapor deposition (PECVD).
- PECVD plasma enhanced chemical vapor deposition
- the Insertion loss of the BBI is no more than 0.01 dB at 50 MHz to 0.25dB at 40 GHz. Where the commercially available BBI has an insertion loss of 0.25 dB insertion loss at 40 MHz to 1.75dB at 40 GHz. This performance enhancement when combined with the size reduction and integrated circuit - based manufacturing process provides dramatic commercial advantage.
- FIG. 6 is a graph that shows the insertion loss of a broadband inductor made by Coilcraft in a biasT circuit.
- FIG. 7 shows a single wafer implementation of the BBI of the present invention.
- the present invention includes a method of producing a broadband inductor comprising, consisting essentially of, or consisting of: forming first trenches on a first side of a substrate of a conical inductor and filling the trenches with a conductive material; forming first and second vias through the substrate that connect to a first end and a second end, respectively, of each of the first trenches and filling the first and second vias with a conductive material; and forming second trenches on a second side of the substrate opposite the first side, and filling the second trenches with a conductive material, wherein each of the second trenches connects a first and second via is a conical shape, wherein the first and second trenches are the broadband inductor.
- the substrate is a photosensitive glass substrate and the step of forming trenches on the first or second side comprises: forming a photoresist with a trench pattern on the substrate; exposing at least one portion of the photosensitive glass substrate to an activating energy source; heating the photosensitive glass substrate for at least ten minutes above its glass transition temperature; cooling the photosensitive glass substrate to transform at least part of the exposed glass to a crystalline material to form a glass-crystalline substrate; etching the glass-crystalline substrate trenches with an etchant; flood exposing the region outside of etched trenches of the photosensitive glass substrate to an activating energy source; heating the photosensitive glass substrate for at least ten minutes above its glass transition temperature; cooling the photosensitive glass/ceramic substrate to transform the exposed glass to a crystalline material to form a glass-crystalline substrate; selectively fill the trenches with a conductive material ground plane and input and output channels with one or more metals, wherein the metal is connected to a circuitry.
- the substrate is a photosensitive glass substrate and the step of forming vias from the first to the second side comprises: forming a photoresist with a via pattern on the substrate; exposing at least one portion of the photosensitive glass substrate to an activating energy source; heating the photosensitive glass substrate for at least ten minutes above its glass transition temperature; cooling the photosensitive glass substrate to transform at least part of the exposed glass to a crystalline material to form a glass-crystalline substrate; etching the glass-crystalline substrate vias with an etchant; flood exposing the region outside of etched vias of the photosensitive glass substrate to an activating energy source; heating the photosensitive glass substrate for at least ten minutes above its glass transition temperature; cooling the photosensitive glass/ceramic substrate to transform the exposed glass to a crystalline material to form a glass-crystalline substrate; selectively filling the vias with a conductive material.
- the substrate is a photodefinable glass.
- the via and trench spacing is from 10 pm to 250 pm, preferably 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, or 225 pm.
- the via diameter is from 5 pm to 200 pm, preferably 10, 15, 20, 25, 30, 40, 50, 75, 100, 125, 150, or 175 pm.
- the via and trench height is from 25 pm to 1000 pm, preferably 100, 200, 250, 300, 350, 400, 500, 600, 700, 750, 800, or 900 pm.
- the broadband inductor comprises a high frequency and low frequency section.
- the broadband inductor is comprised of two semiconductor substrates.
- the broadband inductor consists of one semiconductor substrate. In another aspect, the broadband inductor is not rectangular. In another aspect, the broadband inductor comprises a cavity filled with a ferrite material. In another aspect, the broadband inductor further comprises one or more electrical components selected from resistors, connectors, or capacitors, that form a circuit. In another aspect, the broadband inductor is bonded to a circuit board.
- the present invention also includes method of producing a broadband inductor comprising, consisting essentially of, or consisting of:: forming first trenches on a first side of a photosensitive glass substrate of a conical inductor and filling the trenches with a conductive material, by: forming first and second vias through the photosensitive glass substrate that connect to a first end and a second end, respectively, of each of the first trenches and filling the first and second vias with a conductive material; and forming second trenches on a second side of the photosensitive glass substrate opposite the first side, and filling the second trenches with a conductive material, wherein each of the second trenches connects a first and second via is a conical shape, wherein the first and second trenches are the broadband inductor.
- the step of forming trenches on the first or second side comprises: forming a photoresist with a trench pattern on the substrate; exposing at least one portion of the photosensitive glass substrate to an activating energy source; heating the photosensitive glass substrate for at least ten minutes above its glass transition temperature; cooling the photosensitive glass substrate to transform at least part of the exposed glass to a crystalline material to form a glass-crystalline substrate; etching the glass-crystalline substrate trenches with an etchant; flood exposing the region outside of etched trenches of the photosensitive glass substrate to an activating energy source; heating the photosensitive glass substrate for at least ten minutes above its glass transition temperature; cooling the photosensitive glass/ceramic substrate to transform the exposed glass to a crystalline material to form a glass-crystalline substrate; selectively fill the trenches with a conductive material ground plane and input and output channels with one or more metals, wherein the metal is connected to a circuitry.
- the step of forming vias from the first to the second side comprises: forming a photoresist with a via pattern on the substrate; exposing at least one portion of the photosensitive glass substrate to an activating energy source; heating the photosensitive glass substrate for at least ten minutes above its glass transition temperature; cooling the photosensitive glass substrate to transform at least part of the exposed glass to a crystalline material to form a glass-crystalline substrate; etching the glass- crystalline substrate vias with an etchant; flood exposing the region outside of etched vias of the photosensitive glass substrate to an activating energy source; heating the photosensitive glass substrate for at least ten minutes above its glass transition temperature; cooling the photosensitive glass/ceramic substrate to transform the exposed glass to a crystalline material to form a glass-crystalline substrate; and selectively filling the vias with a conductive material.
- the via and trench spacing is from 10 pm to 250 pm, preferably 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, or 225 pm.
- the via diameter is from 5 pm to 200 pm, preferably 10, 15, 20, 25, 30, 40, 50, 75, 100, 125, 150, or 175 pm.
- the via and trench height is from 25 pm to 1000 pm, preferably 100, 200, 250, 300, 350, 400, 500, 600, 700, 750, 800, or 900 pm.
- the broadband inductor comprises a high frequency and low frequency section.
- the broadband inductor is comprised of two semiconductor substrates.
- the broadband inductor consists of one semiconductor substrate.
- the broadband inductor is not rectangular. In another aspect, the broadband inductor comprises a cavity filled with a ferrite material. In another aspect, the broadband inductor further comprises one or more electrical components selected from resistors, connectors, or capacitors, that form a circuit. In another aspect, the broadband inductor is bonded to a circuit board.
- the present invention includes a broadband inductor comprising, consisting essentially of, or consisting of:: first trenches on a first side of a substrate of a conical inductor and filling the trenches with a conductive material; first and second vias through the substrate that connect to a first end and a second end, respectively, of each of the first trenches and filling the first and second vias with a conductive material; and second trenches on a second side of the substrate opposite the first side, and filling the second trenches with a conductive material, wherein each of the second trenches connects a first and second via is a conical shape, wherein the first and second trenches are the broadband inductor.
- the substrate is a photosensitive glass substrate.
- the via and trench spacing is from 10 pm to 250 pm, preferably 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, or 225 pm.
- the via diameter is from 5 pm to 200 pm, preferably 10, 15, 20, 25, 30, 40, 50, 75, 100, 125, 150, or 175 pm.
- the via and trench height is from 25 pm to 1000 pm, preferably 100, 200, 250, 300, 350, 400, 500, 600, 700, 750, 800, or 900 pm.
- the broadband inductor comprises a high frequency and low frequency section.
- the broadband inductor is comprised of two semiconductor substrates.
- the broadband inductor consists of one semiconductor substrate. In another aspect, the broadband inductor is not rectangular. In another aspect, the broadband inductor comprises a cavity filled with a ferrite material. In another aspect, the broadband inductor further comprises one or more electrical components selected from resistors, connectors, or capacitors, that form a circuit.
- the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
- “comprising” may be replaced with “consisting essentially of’ or “consisting of’.
- the phrase “consisting essentially of’ requires the specified integer(s) or steps as well as those that do not materially affect the character or function of the claimed invention.
- the term “consisting” is used to indicate the presence of the recited integer (e.g., a feature, an element, a characteristic, a property, a method/process step or a limitation) or group of integers (e.g., feature(s), element(s), characteristic(s), property(ies), method/process steps or limitation(s)) only.
- words of approximation such as, without limitation, “about”, “substantial” or “substantially” refers to a condition that when so modified is understood to not necessarily be absolute or perfect but would be considered close enough to those of ordinary skill in the art to warrant designating the condition as being present.
- the extent to which the description may vary will depend on how great a change can be instituted and still have one of ordinary skill in the art recognize the modified feature as still having the required characteristics and capabilities of the unmodified feature.
- a numerical value herein that is modified by a word of approximation such as “about” may vary from the stated value by at least ⁇ 1, 2, 3, 4, 5, 6, 7, 10, 12 or 15%.
- compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.
- each dependent claim can depend both from the independent claim and from each of the prior dependent claims for each and every claim so long as the prior claim provides a proper antecedent basis for a claim term or element.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Coils Or Transformers For Communication (AREA)
- Semiconductor Integrated Circuits (AREA)
- Filters And Equalizers (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022562031A JP2023516817A (en) | 2020-04-17 | 2021-04-15 | broadband induction |
CA3177603A CA3177603C (en) | 2020-04-17 | 2021-04-15 | Broadband induction |
EP21787618.4A EP4121988A4 (en) | 2020-04-17 | 2021-04-15 | Broadband induction |
US17/917,877 US11908617B2 (en) | 2020-04-17 | 2021-04-15 | Broadband induction |
KR1020227040090A KR20220164800A (en) | 2020-04-17 | 2021-04-15 | broadband inductor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063011505P | 2020-04-17 | 2020-04-17 | |
US63/011,505 | 2020-04-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2021211855A1 true WO2021211855A1 (en) | 2021-10-21 |
WO2021211855A9 WO2021211855A9 (en) | 2021-12-09 |
Family
ID=78085203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2021/027499 WO2021211855A1 (en) | 2020-04-17 | 2021-04-15 | Broadband inductor |
Country Status (6)
Country | Link |
---|---|
US (1) | US11908617B2 (en) |
EP (1) | EP4121988A4 (en) |
JP (1) | JP2023516817A (en) |
KR (1) | KR20220164800A (en) |
CA (1) | CA3177603C (en) |
WO (1) | WO2021211855A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0685857B1 (en) * | 1994-06-03 | 1999-09-08 | Mitel Semiconductor Limited | Inductor chip device |
US20040027596A1 (en) * | 1999-05-25 | 2004-02-12 | Walmsley Simon Robert | Method for bayer mosaic image conversion |
US20060092079A1 (en) * | 2004-10-01 | 2006-05-04 | De Rochemont L P | Ceramic antenna module and methods of manufacture thereof |
US20080231402A1 (en) | 2007-03-22 | 2008-09-25 | Industrial Technology Research Institute | Inductor devices |
US20130105941A1 (en) | 2011-10-26 | 2013-05-02 | International Business Machines Corporation | Semiconductor device including in wafer inductors, related method and design structure |
WO2019010045A1 (en) | 2017-07-07 | 2019-01-10 | 3D Glass Solutions, Inc. | 2d and 3d rf lumped element devices for rf system in a package photoactive glass substrates |
US20190280079A1 (en) * | 2016-11-24 | 2019-09-12 | Murata Integrated Passive Solutions | Integrated electronic component suitable for broadband biasing |
CN210668058U (en) * | 2019-12-09 | 2020-06-02 | 梅州市成就电子科技有限公司 | Broadband conical inductor |
Family Cites Families (307)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR957663A (en) | 1943-12-08 | 1950-02-23 | ||
GB619779A (en) | 1946-01-18 | 1949-03-15 | Gen Aniline & Film Corp | Improvements in iron powder and cores produced therefrom |
FR958680A (en) | 1946-09-09 | 1950-03-17 | ||
US2515941A (en) | 1946-09-09 | 1950-07-18 | Corning Glass Works | Photosensitive opal glass |
BE493137A (en) | 1949-01-07 | |||
US2628160A (en) | 1951-08-30 | 1953-02-10 | Corning Glass Works | Sculpturing glass |
BE513836A (en) | 1951-08-30 | |||
US2971853A (en) | 1953-03-05 | 1961-02-14 | Corning Glass Works | Ceramic body and method of making it |
US3281264A (en) | 1963-01-31 | 1966-10-25 | Coast Metals Inc | Method of gold-plating aluminum |
US3292115A (en) | 1964-09-11 | 1966-12-13 | Hazeltine Research Inc | Easily fabricated waveguide structures |
JPS5321827B2 (en) | 1973-02-12 | 1978-07-05 | ||
GB1407151A (en) | 1973-02-13 | 1975-09-24 | Okikiolu G O | System assemblies of energized components having tapering form for developing progressively increasing electromagnetic energy fields |
US3993401A (en) | 1975-02-10 | 1976-11-23 | Minnesota Mining And Manufacturing Company | Retroreflective material including geometric fresnel zone plates |
US3985531A (en) | 1975-03-19 | 1976-10-12 | Corning Glass Works | Spontaneously-formed fluormica glass-ceramics |
US4029605A (en) | 1975-12-08 | 1977-06-14 | Hercules Incorporated | Metallizing compositions |
US4131516A (en) | 1977-07-21 | 1978-12-26 | International Business Machines Corporation | Method of making metal filled via holes in ceramic circuit boards |
US4413061A (en) | 1978-02-06 | 1983-11-01 | International Business Machines Corporation | Glass-ceramic structures and sintered multilayer substrates thereof with circuit patterns of gold, silver or copper |
JPS56155587A (en) | 1980-05-02 | 1981-12-01 | Fujitsu Ltd | Printed circuit board |
JPS57200042A (en) | 1981-06-02 | 1982-12-08 | Hoya Corp | Exposure method for chemically machinable photosensitive glass |
US4537612A (en) | 1982-04-01 | 1985-08-27 | Corning Glass Works | Colored photochromic glasses and method |
JPS5939949U (en) | 1982-09-08 | 1984-03-14 | アルプス電気株式会社 | High frequency circuit equipment |
US4647940A (en) | 1982-09-27 | 1987-03-03 | Rogers Corporation | Parallel plate waveguide antenna |
US5078771A (en) | 1989-02-07 | 1992-01-07 | Canyon Materials, Inc. | Method of making high energy beam sensitive glasses |
US4514053A (en) | 1983-08-04 | 1985-04-30 | Corning Glass Works | Integral photosensitive optical device and method |
JPS61149905A (en) | 1984-12-25 | 1986-07-08 | Fujitsu Ltd | Optical multiplexer and demultiplexer |
JPS61231529A (en) | 1985-04-08 | 1986-10-15 | Agency Of Ind Science & Technol | Optical control type optical switch device |
JPS62202840A (en) | 1986-03-03 | 1987-09-07 | Toshiba Corp | Working of photosensitive glass |
US4692015A (en) | 1986-03-14 | 1987-09-08 | Xerox Corporation | Short focal lens array with multi-magnification properties |
JPS63128699A (en) | 1986-11-19 | 1988-06-01 | 株式会社日立製作所 | Light-sensitive glass-ceramic multilayer interconnection board |
US4788165A (en) | 1987-10-07 | 1988-11-29 | Corning Glass Works | Copper-exuding, boroaluminosilicate glasses |
CA1320507C (en) | 1987-10-07 | 1993-07-20 | Elizabeth A. Boylan | Thermal writing on glass or glass-ceramic substrates and copper-exuding glasses |
US4942076A (en) | 1988-11-03 | 1990-07-17 | Micro Substrates, Inc. | Ceramic substrate with metal filled via holes for hybrid microcircuits and method of making the same |
JP2737292B2 (en) | 1989-09-01 | 1998-04-08 | 富士通株式会社 | Copper paste and metallizing method using the same |
US5147740A (en) | 1990-08-09 | 1992-09-15 | Rockwell International Corporation | Structure and process for fabricating conductive patterns having sub-half micron dimensions |
US5215610A (en) | 1991-04-04 | 1993-06-01 | International Business Machines Corporation | Method for fabricating superconductor packages |
BE1004844A7 (en) | 1991-04-12 | 1993-02-09 | Laude Lucien Diego | Metallisation methods surface using metal powder. |
US5212120A (en) | 1991-06-10 | 1993-05-18 | Corning Incorporated | Photosensitive glass |
US5395498A (en) | 1991-11-06 | 1995-03-07 | Gombinsky; Moshe | Method for separating biological macromolecules and means therfor |
JPH05139787A (en) | 1991-11-19 | 1993-06-08 | Seikosha Co Ltd | Working method for photosensitive glass |
US5374291A (en) | 1991-12-10 | 1994-12-20 | Director-General Of Agency Of Industrial Science And Technology | Method of processing photosensitive glass |
JPH05206706A (en) | 1992-01-30 | 1993-08-13 | Reader Denshi Kk | Interdigital type band pass filter |
US5371466A (en) | 1992-07-29 | 1994-12-06 | The Regents Of The University Of California | MRI RF ground breaker assembly |
US6258497B1 (en) | 1992-07-29 | 2001-07-10 | International Business Machines Corporation | Precise endpoint detection for etching processes |
US5312674A (en) | 1992-07-31 | 1994-05-17 | Hughes Aircraft Company | Low-temperature-cofired-ceramic (LTCC) tape structures including cofired ferromagnetic elements, drop-in components and multi-layer transformer |
US6017681A (en) | 1992-11-09 | 2000-01-25 | Fujitsu Limited | Method of coupling optical parts and method of forming a mirror |
JPH0826767A (en) | 1994-07-13 | 1996-01-30 | Nippon Glass Kk | Soda lime-silica photosensitive glass and its production |
JPH08179155A (en) | 1994-12-26 | 1996-07-12 | Ricoh Co Ltd | Method for coupling lens with optical fiber and production of lens substrate |
JP3438383B2 (en) | 1995-03-03 | 2003-08-18 | ソニー株式会社 | Polishing method and polishing apparatus used therefor |
CZ299135B6 (en) | 1995-03-10 | 2008-04-30 | Meso Scale Technologies, Llc. Corporation Servicecompany | Cassette for use in the detection of an analyte, method of conducting assay by making use of such cassette, kit for use when conducting a plurality of electrochemiluminescence assays and method of detection or measurement of an analyte |
US5919607A (en) | 1995-10-26 | 1999-07-06 | Brown University Research Foundation | Photo-encoded selective etching for glass based microtechnology applications |
US5733370A (en) | 1996-01-16 | 1998-03-31 | Seagate Technology, Inc. | Method of manufacturing a bicrystal cluster magnetic recording medium |
JPH107435A (en) | 1996-06-26 | 1998-01-13 | Ngk Spark Plug Co Ltd | Glass ceramic wiring substrate and its production |
EP2159814B1 (en) | 1996-09-26 | 2011-11-09 | Asahi Glass Company, Limited | Protective plate for a plasma display |
US6562523B1 (en) | 1996-10-31 | 2003-05-13 | Canyon Materials, Inc. | Direct write all-glass photomask blanks |
JPH10199728A (en) | 1997-01-07 | 1998-07-31 | Murata Mfg Co Ltd | Thin-film coil component and method of manufacturing the same |
US5850623A (en) | 1997-03-14 | 1998-12-15 | Eastman Chemical Company | Method for standardizing raman spectrometers to obtain stable and transferable calibrations |
EP0951724A2 (en) | 1997-04-25 | 1999-10-27 | Koninklijke Philips Electronics N.V. | Method of manufacturing an enveloped multilayer capacitor and an envelope multilayer capacitor |
US5998224A (en) | 1997-05-16 | 1999-12-07 | Abbott Laboratories | Magnetically assisted binding assays utilizing a magnetically responsive reagent |
US6287965B1 (en) | 1997-07-28 | 2001-09-11 | Samsung Electronics Co, Ltd. | Method of forming metal layer using atomic layer deposition and semiconductor device having the metal layer as barrier metal layer or upper or lower electrode of capacitor |
US6417754B1 (en) | 1997-12-08 | 2002-07-09 | The Regents Of The University Of California | Three-dimensional coil inductor |
JPH11176815A (en) | 1997-12-15 | 1999-07-02 | Ricoh Co Ltd | End point judging method of dry etching and dry etching equipment |
US6598291B2 (en) | 1998-03-20 | 2003-07-29 | Viasystems, Inc. | Via connector and method of making same |
US6115521A (en) | 1998-05-07 | 2000-09-05 | Trw Inc. | Fiber/waveguide-mirror-lens alignment device |
US6171886B1 (en) | 1998-06-30 | 2001-01-09 | Eastman Kodak Company | Method of making integrated hybrid silicon-based micro-actuator devices |
US6046641A (en) | 1998-07-22 | 2000-04-04 | Eni Technologies, Inc. | Parallel HV MOSFET high power stable amplifier |
JP2000114818A (en) | 1998-10-07 | 2000-04-21 | Hitachi Metals Ltd | Concentrated constant nonreversible circuit element |
JP2000199827A (en) | 1998-10-27 | 2000-07-18 | Sony Corp | Optical wave guide device and its manufacture |
US6136210A (en) | 1998-11-02 | 2000-10-24 | Xerox Corporation | Photoetching of acoustic lenses for acoustic ink printing |
JP2000228615A (en) | 1999-02-05 | 2000-08-15 | Tokin Corp | Lc bandpass filter |
JP3360065B2 (en) | 1999-03-24 | 2002-12-24 | エルジー電子株式会社 | Manufacturing method of microstructure using photosensitive glass substrate |
JP3756041B2 (en) | 1999-05-27 | 2006-03-15 | Hoya株式会社 | Manufacturing method of multilayer printed wiring board |
US6485690B1 (en) | 1999-05-27 | 2002-11-26 | Orchid Biosciences, Inc. | Multiple fluid sample processor and system |
FR2795745B1 (en) | 1999-06-30 | 2001-08-03 | Saint Gobain Vitrage | PROCESS FOR DEPOSITING A TUNGSTENE AND / OR MOLYBDENE LAYER ON A GLASS, CERAMIC OR VITROCERAMIC SUBSTRATE, AND SUBSTRATE THUS COATED |
JP2001033664A (en) | 1999-07-21 | 2001-02-09 | Hitachi Cable Ltd | Optical fiber block |
US6278352B1 (en) | 1999-07-26 | 2001-08-21 | Taiwan Semiconductor Manufacturing Company | High efficiency thin film inductor |
US7179638B2 (en) | 1999-07-30 | 2007-02-20 | Large Scale Biology Corporation | Microarrays and their manufacture by slicing |
US6538775B1 (en) | 1999-09-16 | 2003-03-25 | Reveo, Inc. | Holographically-formed polymer dispersed liquid crystals with multiple gratings |
US6403286B1 (en) | 1999-11-04 | 2002-06-11 | Corning Incorporated | High aspect ratio patterning of glass film |
US6689824B2 (en) | 2000-02-18 | 2004-02-10 | Rohm And Haas Company | Prepaints and method of preparing road-marking paints from prepaints |
JP4200631B2 (en) | 2000-03-29 | 2008-12-24 | 沖電気工業株式会社 | On-chip coil and its manufacturing method |
US6579817B2 (en) | 2000-04-26 | 2003-06-17 | Matsushita Electric Industrial Co., Ltd. | Dielectric ceramic composition and method for producing the same, and device for communication apparatus using the same |
US6329702B1 (en) | 2000-07-06 | 2001-12-11 | Tyco Electronics Corporation | High frequency carrier |
US6510264B2 (en) | 2000-07-31 | 2003-01-21 | Corning Incorporated | Bulk internal bragg gratings and optical devices |
US7829348B2 (en) | 2000-09-22 | 2010-11-09 | Iowa State University Research Foundation, Inc. | Raman-active reagents and the use thereof |
AU2001296809A1 (en) | 2000-10-10 | 2002-04-22 | Biotrove, Inc. | Apparatus for assay, synthesis and storage, and methods of manufacture, use, and manipulation thereof |
US7033821B2 (en) | 2000-11-08 | 2006-04-25 | Surface Logix, Inc. | Device for monitoring cell motility in real-time |
KR100392956B1 (en) | 2000-12-30 | 2003-07-28 | 엘지전자 주식회사 | Method of Fabricating the Barrier Rib on Plasma Display Panel |
KR100368930B1 (en) | 2001-03-29 | 2003-01-24 | 한국과학기술원 | Three-Dimensional Metal Devices Highly Suspended above Semiconductor Substrate, Their Circuit Model, and Method for Manufacturing the Same |
US6932933B2 (en) | 2001-03-30 | 2005-08-23 | The Aerospace Corporation | Ultraviolet method of embedding structures in photocerams |
US6824974B2 (en) | 2001-06-11 | 2004-11-30 | Genorx, Inc. | Electronic detection of biological molecules using thin layers |
US6771860B2 (en) | 2001-06-29 | 2004-08-03 | Xanoptix, Inc. | Module mounted aligning optical connector |
EP2423673B8 (en) | 2001-06-29 | 2020-10-28 | Meso Scale Technologies, LLC. | Apparatus for measuring luminescence from a multi-well assay plate having a plurality of wells, method of measuring luminescence using the apparatus and system comprising the apparatus |
US20040246692A1 (en) | 2001-07-12 | 2004-12-09 | Toshiya Satoh | Electronic circuit component |
US6843902B1 (en) | 2001-07-20 | 2005-01-18 | The Regents Of The University Of California | Methods for fabricating metal nanowires |
US20030025227A1 (en) | 2001-08-02 | 2003-02-06 | Zograph, Llc | Reproduction of relief patterns |
EP1469903A2 (en) | 2001-09-28 | 2004-10-27 | BioValve Technologies, Inc. | Microneedle with membrane |
KR100814806B1 (en) | 2001-10-15 | 2008-03-19 | 삼성에스디아이 주식회사 | Method for fabricating spacer and flat panel display with the spacer |
JP2003209411A (en) | 2001-10-30 | 2003-07-25 | Matsushita Electric Ind Co Ltd | High frequency module and production method for high frequency module |
US20040171076A1 (en) | 2001-12-20 | 2004-09-02 | Dejneka Matthew J. | Detectable micro to nano sized structures, methods of manufacture and use |
US7064103B2 (en) | 2002-01-04 | 2006-06-20 | Becton, Dickinson And Company | Binding protein as biosensors |
US6867089B2 (en) | 2002-01-28 | 2005-03-15 | Nanya Technology Corporation | Method of forming a bottle-shaped trench in a semiconductor substrate |
US7470518B2 (en) | 2002-02-12 | 2008-12-30 | Cellectricon Ab | Systems and method for rapidly changing the solution environment around sensors |
US20030156819A1 (en) | 2002-02-15 | 2003-08-21 | Mark Pruss | Optical waveguide |
WO2003079082A2 (en) | 2002-03-14 | 2003-09-25 | Corning Incorporated | Fiber array and methods of fabrication |
EP1499875A4 (en) | 2002-04-30 | 2007-10-03 | Univ Maryland | Fluorescence sensing |
JP2003329877A (en) | 2002-05-14 | 2003-11-19 | Nippon Sheet Glass Co Ltd | Optical module |
US20030231076A1 (en) | 2002-06-03 | 2003-12-18 | Matsushita Electric Industrial Co., Ltd. | Structure of non-reciprocal circuit element |
US6580054B1 (en) | 2002-06-10 | 2003-06-17 | New Wave Research | Scribing sapphire substrates with a solid state UV laser |
KR100846383B1 (en) | 2002-06-29 | 2008-07-15 | 주식회사 하이닉스반도체 | Method for fabricating capacitor |
ATE547701T1 (en) | 2002-09-11 | 2012-03-15 | Synamem Corp | MEMBRANE-BASED ASSAY |
US6911373B2 (en) | 2002-09-20 | 2005-06-28 | Intel Corporation | Ultra-high capacitance device based on nanostructures |
US6875544B1 (en) | 2002-10-03 | 2005-04-05 | Sandia Corporation | Method for the fabrication of three-dimensional microstructures by deep X-ray lithography |
US20040184705A1 (en) | 2003-01-08 | 2004-09-23 | Mikihiro Shimada | Optical waveguide component and method of manufacturing the same |
US6783920B2 (en) | 2003-01-15 | 2004-08-31 | The Aerospace Corporation | Photosensitive glass variable laser exposure patterning method |
DE10304606B3 (en) | 2003-02-05 | 2004-06-03 | Magnet-Physik Dr. Steingroever Gmbh | Transformer providing high electrical currents e.g. for magnetization of magnets or magnetic field deformation, has secondary provided by electrically-conductive plate divided by slit to providing current terminals |
US7601491B2 (en) | 2003-02-06 | 2009-10-13 | Becton, Dickinson And Company | Pretreatment method for extraction of nucleic acid from biological samples and kits therefor |
WO2004073039A2 (en) | 2003-02-11 | 2004-08-26 | Oplink Communications, Inc. | Ultra broadband inductor assembly |
US7150569B2 (en) | 2003-02-24 | 2006-12-19 | Nor Spark Plug Co., Ltd. | Optical device mounted substrate assembly |
ATE475999T1 (en) | 2003-03-04 | 2010-08-15 | Rohm & Haas Elect Mat | COAXIAL WAVEGUIDE MICROSTRUCTURES AND METHODS FOR FORMING THEM |
US20040198582A1 (en) | 2003-04-01 | 2004-10-07 | Borrelli Nicholas F. | Optical elements and methods of making optical elements |
US6909137B2 (en) | 2003-04-07 | 2005-06-21 | International Business Machines Corporation | Method of creating deep trench capacitor using a P+ metal electrode |
US7579077B2 (en) | 2003-05-05 | 2009-08-25 | Nanosys, Inc. | Nanofiber surfaces for use in enhanced surface area applications |
EP1487019A1 (en) | 2003-06-12 | 2004-12-15 | Koninklijke Philips Electronics N.V. | Electronic device and method of manufacturing thereof |
KR100495219B1 (en) | 2003-06-25 | 2005-06-14 | 삼성전기주식회사 | An ic chip internal type power amplifier module |
JPWO2005027605A1 (en) | 2003-09-09 | 2007-11-15 | Hoya株式会社 | Manufacturing method of double-sided wiring glass substrate |
JP4523299B2 (en) | 2003-10-31 | 2010-08-11 | 学校法人早稲田大学 | Thin film capacitor manufacturing method |
US7335972B2 (en) | 2003-11-13 | 2008-02-26 | Sandia Corporation | Heterogeneously integrated microsystem-on-a-chip |
US20050170670A1 (en) | 2003-11-17 | 2005-08-04 | King William P. | Patterning of sacrificial materials |
KR100780610B1 (en) | 2003-11-28 | 2007-11-29 | 주식회사 하이닉스반도체 | Method for fabrication of semiconductor device |
US6830221B1 (en) | 2003-12-19 | 2004-12-14 | The Aerospace Corporation | Integrated glass ceramic spacecraft |
US7316063B2 (en) | 2004-01-12 | 2008-01-08 | Micron Technology, Inc. | Methods of fabricating substrates including at least one conductive via |
JP4153442B2 (en) | 2004-02-02 | 2008-09-24 | シャープ株式会社 | Manufacturing method of optical module |
US7057881B2 (en) | 2004-03-18 | 2006-06-06 | Nanosys, Inc | Nanofiber surface based capacitors |
JP4394999B2 (en) | 2004-04-12 | 2010-01-06 | 大日本印刷株式会社 | Passive element built-in wiring board and manufacturing method thereof |
CN1262500C (en) | 2004-04-16 | 2006-07-05 | 武汉理工大学 | Method for preparing microcrystalline glass/glass carrier material having nano holes in high density |
DE102004059252A1 (en) | 2004-06-09 | 2006-01-19 | Schott Ag | Optically active structure application method for Fresnel lens manufacture, involves photographic structuring photosensitive resist layer, coating substrate with optically active layer and lifting-off resist layer |
US7176152B2 (en) | 2004-06-09 | 2007-02-13 | Ferro Corporation | Lead-free and cadmium-free conductive copper thick film pastes |
JP4622359B2 (en) | 2004-07-22 | 2011-02-02 | コニカミノルタホールディングス株式会社 | Inkjet head manufacturing method |
US7064045B2 (en) | 2004-08-30 | 2006-06-20 | Miradia Inc. | Laser based method and device for forming spacer structures for packaging optical reflection devices |
US7132054B1 (en) | 2004-09-08 | 2006-11-07 | Sandia Corporation | Method to fabricate hollow microneedle arrays |
US7259106B2 (en) | 2004-09-10 | 2007-08-21 | Versatilis Llc | Method of making a microelectronic and/or optoelectronic circuitry sheet |
US20060147344A1 (en) | 2004-09-30 | 2006-07-06 | The University Of Cincinnati | Fully packed capillary electrophoretic separation microchips with self-assembled silica colloidal particles in microchannels and their preparation methods |
JP4795677B2 (en) | 2004-12-02 | 2011-10-19 | ルネサスエレクトロニクス株式会社 | Semiconductor device, semiconductor module using the same, and manufacturing method of semiconductor device |
JP2006179564A (en) | 2004-12-21 | 2006-07-06 | Nec Corp | Semiconductor connection substrate, method of manufacturing the same semiconductor apparatus, semiconductor device, and semiconductor substrate |
DE102005003594B4 (en) | 2004-12-31 | 2016-02-18 | Schott Ag | Method for producing an optical component, component produced according to the method, and device comprising such components |
US7714688B2 (en) | 2005-01-20 | 2010-05-11 | Avx Corporation | High Q planar inductors and IPD applications |
KR100682919B1 (en) | 2005-01-20 | 2007-02-15 | 삼성전자주식회사 | Pattern forming method of fine metal thin layer, biomolecular fixing substrate and biochip using the same |
US7964380B2 (en) | 2005-01-21 | 2011-06-21 | Argylia Technologies | Nanoparticles for manipulation of biopolymers and methods of thereof |
KR20060092643A (en) | 2005-02-18 | 2006-08-23 | 주식회사 하이닉스반도체 | Semiconductor memory device and method for fabricating the same |
JP2006236516A (en) | 2005-02-28 | 2006-09-07 | Hitachi Ltd | Optical head, optical information reproducing apparatus, and its manufacturing method |
WO2006114928A1 (en) | 2005-04-18 | 2006-11-02 | Murata Manufacturing Co., Ltd. | High frequency module |
JP2006324489A (en) | 2005-05-19 | 2006-11-30 | Matsushita Electric Ind Co Ltd | Chip coil and manufacturing method thereof |
US7355704B2 (en) | 2005-06-13 | 2008-04-08 | Solaris Nanosciences, Inc. | Chemical and biological sensing using metallic particles in amplifying and absorbing media |
JP2006352750A (en) | 2005-06-20 | 2006-12-28 | Denso Corp | Antenna coil, resonant antenna and card type radio equipment using it |
US7755291B2 (en) | 2005-06-27 | 2010-07-13 | Osram Sylvania Inc. | Incandescent lamp that emits infrared light and a method of making the lamp |
US7247542B2 (en) | 2005-08-10 | 2007-07-24 | Integrated Crystal Technology, Inc. | Fabrication method of spiral inductor on porous glass substrate |
DE102005039323B4 (en) | 2005-08-19 | 2009-09-03 | Infineon Technologies Ag | Guideway arrangement and associated production method |
US7410763B2 (en) | 2005-09-01 | 2008-08-12 | Intel Corporation | Multiplex data collection and analysis in bioanalyte detection |
JP2006032982A (en) | 2005-09-02 | 2006-02-02 | Semiconductor Energy Lab Co Ltd | Heating processing method of thin film |
US20070080458A1 (en) | 2005-10-11 | 2007-04-12 | Tsuyoshi Ogawa | Hybrid module and method of manufacturing the same |
TW200721064A (en) | 2005-11-29 | 2007-06-01 | Novatek Microelectronics Corp | Timing controller chip |
US8003408B2 (en) | 2005-12-29 | 2011-08-23 | Intel Corporation | Modification of metal nanoparticles for improved analyte detection by surface enhanced Raman spectroscopy (SERS) |
GB2434913A (en) | 2006-02-02 | 2007-08-08 | Xsil Technology Ltd | Support for wafer singulation |
US7812416B2 (en) | 2006-05-22 | 2010-10-12 | Cardiomems, Inc. | Methods and apparatus having an integrated circuit attached to fused silica |
JP2007318002A (en) | 2006-05-29 | 2007-12-06 | Matsushita Electric Ind Co Ltd | Solid-state imaging apparatus and method of manufacturing the same |
JP2009542448A (en) | 2006-06-28 | 2009-12-03 | ノースウエスタン ユニバーシティ | Etching and hole array |
US7990679B2 (en) | 2006-07-14 | 2011-08-02 | Dais Analytic Corporation | Nanoparticle ultracapacitor |
JP4620643B2 (en) * | 2006-08-16 | 2011-01-26 | 富士通オプティカルコンポーネンツ株式会社 | Inductor wiring board, inductor wiring method, and bias T circuit |
US8061017B2 (en) | 2006-08-28 | 2011-11-22 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Methods of making coil transducers |
JP2008066671A (en) * | 2006-09-11 | 2008-03-21 | Fuji Electric Device Technology Co Ltd | Thin magnetic component, and its manufacturing process |
US7965180B2 (en) | 2006-09-28 | 2011-06-21 | Semiconductor Energy Laboratory Co., Ltd. | Wireless sensor device |
US7847669B2 (en) | 2006-12-06 | 2010-12-07 | Georgia Tech Research Corporation | Micro-electromechanical switched tunable inductor |
US7556440B2 (en) | 2006-12-22 | 2009-07-07 | Lightwire Inc. | Dual-lensed unitary optical receiver assembly |
CN101611461B (en) | 2007-02-14 | 2012-03-21 | 株式会社村田制作所 | Laminated ceramic capacitor and method for manufacturing the same |
WO2008105496A1 (en) | 2007-03-01 | 2008-09-04 | Nec Corporation | Interposer with capacitor mounted thereon and method for manufacturing the interposer |
KR100849791B1 (en) | 2007-03-12 | 2008-07-31 | 삼성전기주식회사 | Printed circuit board with embedded capacitor |
JP2008225339A (en) | 2007-03-15 | 2008-09-25 | Hitachi Cable Ltd | Optical system connection structure, optical member, and optical transmission module |
CN101641749B (en) | 2007-03-26 | 2011-05-04 | 株式会社村田制作所 | Photosensitive dielectric paste and electronic part made with the same |
US8096147B2 (en) | 2007-03-28 | 2012-01-17 | Life Bioscience, Inc. | Methods to fabricate a photoactive substrate suitable for shaped glass structures |
JP4458296B2 (en) | 2007-03-30 | 2010-04-28 | Tdk株式会社 | Dielectric resonator, dielectric filter, and characteristic adjustment method thereof |
US8143431B2 (en) | 2007-06-05 | 2012-03-27 | Air Products And Chemicals, Inc. | Low temperature thermal conductive inks |
WO2008154931A1 (en) | 2007-06-18 | 2008-12-24 | Danmarks Tekniske Universitet (Technical University Of Denmark) | Adsorbent beads suitable for use in separation of biological molecules |
TW200905703A (en) | 2007-07-27 | 2009-02-01 | Delta Electronics Inc | Magnetic device and manufacturing method thereof |
WO2009029733A2 (en) | 2007-08-28 | 2009-03-05 | Life Biosciences, Inc. | Method of providing a pattern of biological-binding areas for biological testing |
WO2009062011A1 (en) | 2007-11-07 | 2009-05-14 | Masachusetts Institute Of Technology | Method of forming a locally periodic 3d structure with larger-scale variation in periodic properties and applications thereof |
JP5133047B2 (en) | 2007-12-28 | 2013-01-30 | 太陽誘電株式会社 | Manufacturing method of electronic parts |
US7792823B2 (en) | 2008-01-15 | 2010-09-07 | International Business Machines Corporation | Maintained symbol table only index |
US8129763B2 (en) | 2008-02-07 | 2012-03-06 | International Business Machines Corporation | Metal-oxide-semiconductor device including a multiple-layer energy filter |
US8569678B2 (en) | 2008-03-04 | 2013-10-29 | The Regents Of The University Of California | Micron-scale lens array having diffracting structures |
WO2009113168A1 (en) | 2008-03-12 | 2009-09-17 | 大日本印刷株式会社 | Decorative sheet for three-dimensional work |
WO2009126649A2 (en) | 2008-04-07 | 2009-10-15 | Life Bioscience, Inc. | Method of providing particles having biological-binding areas for biological applications |
US20110114496A1 (en) | 2008-07-15 | 2011-05-19 | Dopp Robert B | Electrochemical Devices, Systems, and Methods |
US7948342B2 (en) | 2008-07-24 | 2011-05-24 | Cutt-A-Watt Enterprises, Llc | Electromotive rectification system |
US20100022416A1 (en) | 2008-07-25 | 2010-01-28 | Life Bioscience, Inc. | Assay plates, methods and systems having one or more etched features |
KR101031134B1 (en) | 2008-09-11 | 2011-04-27 | 주식회사 동부하이텍 | Contact of semiconductor device and manufacturing method thereof |
US20100237462A1 (en) | 2009-03-18 | 2010-09-23 | Benjamin Beker | Package Level Tuning Techniques for Propagation Channels of High-Speed Signals |
US8700134B2 (en) | 2009-04-03 | 2014-04-15 | Research Triangle Institute | Cantilever-based MEMS optical scanning apparatus, system and method |
KR100941691B1 (en) | 2009-04-10 | 2010-02-12 | (주)제이스 | Photosensitve glass wafer and method for manufacturing potosensitve glass wafer and semiconductor probe chip |
US7989248B2 (en) | 2009-07-02 | 2011-08-02 | Advanced Microfab, LLC | Method of forming monolithic CMOS-MEMS hybrid integrated, packaged structures |
NZ598290A (en) | 2009-07-24 | 2014-12-24 | Amazentis Sa | Compounds, compositions and methods for protecting brain health in neurodegenerative disorders |
US8140038B2 (en) | 2009-10-14 | 2012-03-20 | Issc Technologies Corp. | Adaptive receivers |
US8759965B2 (en) | 2009-10-14 | 2014-06-24 | Stmicroelectronics, Inc. | Modular low stress package technology |
TWI410380B (en) | 2009-11-11 | 2013-10-01 | Ind Tech Res Inst | Method and system of manufacturing photosensitive glass microstructure |
KR101616045B1 (en) | 2009-11-19 | 2016-04-28 | 삼성전자주식회사 | Method for fabricating semiconductor device |
US8479375B2 (en) | 2010-01-13 | 2013-07-09 | The Aerospace Corporation | Method of making an embedded electromagnetic device |
CN102869630A (en) | 2010-02-10 | 2013-01-09 | 生命生物科学有限公司 | Methods to fabricate a photoactive substrate suitable for microfabrication |
US20110217657A1 (en) | 2010-02-10 | 2011-09-08 | Life Bioscience, Inc. | Methods to fabricate a photoactive substrate suitable for microfabrication |
JP5904556B2 (en) | 2010-03-03 | 2016-04-13 | ジョージア テック リサーチ コーポレイション | Through-package via (TPV) structure on inorganic interposer and manufacturing method thereof |
JP5868574B2 (en) | 2010-03-15 | 2016-02-24 | 富士通株式会社 | Semiconductor device and manufacturing method thereof |
US8411459B2 (en) | 2010-06-10 | 2013-04-02 | Taiwan Semiconductor Manufacturing Company, Ltd | Interposer-on-glass package structures |
US9564320B2 (en) | 2010-06-18 | 2017-02-07 | Soraa, Inc. | Large area nitride crystal and method for making it |
JPWO2012017857A1 (en) | 2010-08-05 | 2013-10-03 | 株式会社フジクラ | Electronic circuit chip and method for manufacturing electronic circuit chip |
US8492818B2 (en) | 2010-09-14 | 2013-07-23 | International Business Machines Corporation | High capacitance trench capacitor |
JP5644340B2 (en) | 2010-10-04 | 2014-12-24 | 株式会社デンソー | Capacitor structure and manufacturing method thereof |
JP2014502052A (en) | 2010-12-03 | 2014-01-23 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Inks and methods for producing sulfided / copper indium gallium selenide coatings and films |
US8502340B2 (en) | 2010-12-09 | 2013-08-06 | Tessera, Inc. | High density three-dimensional integrated capacitors |
US8835217B2 (en) | 2010-12-22 | 2014-09-16 | Intel Corporation | Device packaging with substrates having embedded lines and metal defined pads |
US8802545B2 (en) | 2011-03-14 | 2014-08-12 | Plasma-Therm Llc | Method and apparatus for plasma dicing a semi-conductor wafer |
JP2012194455A (en) | 2011-03-17 | 2012-10-11 | Enplas Corp | Lens array |
US8247269B1 (en) | 2011-06-29 | 2012-08-21 | Fairchild Semiconductor Corporation | Wafer level embedded and stacked die power system-in-package packages |
US8772920B2 (en) | 2011-07-13 | 2014-07-08 | Oracle International Corporation | Interconnection and assembly of three-dimensional chip packages |
US8497558B2 (en) | 2011-07-14 | 2013-07-30 | Infineon Technologies Ag | System and method for wafer level packaging |
KR101167691B1 (en) | 2011-08-09 | 2012-07-20 | 주식회사 비티엔아이티솔루션스 | Multilayer capacitor having photosensitive glass, fabrication method thereof, and the use the same |
GB201114686D0 (en) | 2011-08-25 | 2011-10-12 | Crown Packaging Technology Inc | Package for containing food |
US9287614B2 (en) | 2011-08-31 | 2016-03-15 | The Regents Of The University Of Michigan | Micromachined millimeter-wave frequency scanning array |
JP2013062473A (en) | 2011-09-15 | 2013-04-04 | Toppan Printing Co Ltd | Wiring board and manufacturing method therefor |
JP5541425B2 (en) | 2012-01-16 | 2014-07-09 | 株式会社村田製作所 | RF signal blocking device |
US9293269B2 (en) | 2012-02-08 | 2016-03-22 | Dais Analytic Corporation | Ultracapacitor tolerating electric field of sufficient strength |
US9285554B2 (en) | 2012-02-10 | 2016-03-15 | International Business Machines Corporation | Through-substrate optical coupling to photonics chips |
US20130207745A1 (en) | 2012-02-13 | 2013-08-15 | Qualcomm Incorporated | 3d rf l-c filters using through glass vias |
JP6011958B2 (en) | 2012-03-28 | 2016-10-25 | 株式会社エンプラス | Optical receptacle and optical module having the same |
JP2013217989A (en) | 2012-04-04 | 2013-10-24 | Hitachi Chemical Co Ltd | Optical fiber connector |
US8896521B2 (en) | 2012-04-24 | 2014-11-25 | Qualcomm Mems Technologies, Inc. | Metal-insulator-metal capacitors on glass substrates |
US20130308906A1 (en) | 2012-05-21 | 2013-11-21 | LaXense, Inc. | System and method for dense coupling between optical devices and an optical fiber array |
US8815638B2 (en) | 2012-06-19 | 2014-08-26 | E I Du Pont De Nemours And Company | Method of manufacturing thick-film electrode |
US20140035935A1 (en) | 2012-08-03 | 2014-02-06 | Qualcomm Mems Technologies, Inc. | Passives via bar |
US10115671B2 (en) | 2012-08-03 | 2018-10-30 | Snaptrack, Inc. | Incorporation of passives and fine pitch through via for package on package |
US9755305B2 (en) | 2012-08-16 | 2017-09-05 | Ethertronics, Inc. | Active antenna adapted for impedance matching and band switching using a shared component |
WO2014028022A1 (en) | 2012-08-16 | 2014-02-20 | Hewlett-Packard Development Company, L.P. | Diagonal openings in photodefinable glass |
US8872349B2 (en) | 2012-09-11 | 2014-10-28 | Intel Corporation | Bridge interconnect with air gap in package assembly |
WO2014043267A1 (en) | 2012-09-12 | 2014-03-20 | Life Bioscience, Inc. | Methods of fabricating photoactive substrates suitable for electromagnetic transmission and filtering applications |
US20140097913A1 (en) | 2012-10-09 | 2014-04-10 | Mesaplexx Pty Ltd | Multi-mode filter |
US20140104284A1 (en) | 2012-10-16 | 2014-04-17 | Qualcomm Mems Technologies, Inc. | Through substrate via inductors |
CA2888865C (en) | 2012-10-19 | 2020-05-12 | Rutgers, The State University Of New Jersey | In situ exfoliation method to fabricate a graphene-reinforced polymer matrix composite |
US20140144681A1 (en) | 2012-11-27 | 2014-05-29 | Qualcomm Mems Technologies, Inc. | Adhesive metal nitride on glass and related methods |
US9035457B2 (en) | 2012-11-29 | 2015-05-19 | United Microelectronics Corp. | Substrate with integrated passive devices and method of manufacturing the same |
TWI565989B (en) | 2012-12-14 | 2017-01-11 | 鴻海精密工業股份有限公司 | Optical fiber connector |
US20140247269A1 (en) * | 2013-03-04 | 2014-09-04 | Qualcomm Mems Technologies, Inc. | High density, low loss 3-d through-glass inductor with magnetic core |
US20140272688A1 (en) | 2013-03-15 | 2014-09-18 | Photronics, Inc. | Grayscale lithography of photo definable glass |
US9425761B2 (en) | 2013-05-31 | 2016-08-23 | Qualcomm Incorporated | High pass filters and low pass filters using through glass via technology |
JP6015567B2 (en) | 2013-06-12 | 2016-10-26 | 株式会社デンソー | Feedthrough capacitor |
US20150079738A1 (en) | 2013-06-18 | 2015-03-19 | Stephen P. Barlow | Method for producing trench high electron mobility devices |
US9293245B2 (en) | 2013-08-05 | 2016-03-22 | Qualcomm Mems Technologies, Inc. | Integration of a coil and a discontinuous magnetic core |
WO2015019989A1 (en) | 2013-08-07 | 2015-02-12 | Hoya株式会社 | Photosensitive glass molded article and method for manufacturing same |
US9093975B2 (en) | 2013-08-19 | 2015-07-28 | Harris Corporation | Microelectromechanical systems comprising differential inductors and methods for making the same |
US9449753B2 (en) | 2013-08-30 | 2016-09-20 | Qualcomm Incorporated | Varying thickness inductor |
JPWO2015033826A1 (en) | 2013-09-04 | 2017-03-02 | Hoya株式会社 | Silicate ceramics, plate substrate and method for manufacturing plate substrate |
EP3050098B1 (en) | 2013-09-27 | 2021-05-19 | Intel Corporation | Die package with superposer substrate for passive components |
EP3055871A1 (en) | 2013-10-07 | 2016-08-17 | Koninklijke Philips N.V. | Precision batch production method for manufacturing ferrite rods |
JP2017504828A (en) | 2013-12-19 | 2017-02-09 | スリーエム イノベイティブ プロパティズ カンパニー | Multimode optical connector |
KR101519760B1 (en) | 2013-12-27 | 2015-05-12 | 전자부품연구원 | Method of forming metal line and metal line substrate fabricated thereby |
US20150201495A1 (en) | 2014-01-14 | 2015-07-16 | Qualcomm Incorporated | Stacked conductive interconnect inductor |
US20170003421A1 (en) | 2014-01-24 | 2017-01-05 | 3D Glass Solutions, Inc | Methods of Fabricating Photoactive Substrates for Micro-lenses and Arrays |
US9548350B2 (en) | 2014-02-10 | 2017-01-17 | Qualcomm Incorporated | High quality factor capacitors and methods for fabricating high quality factor capacitors |
WO2015171597A1 (en) * | 2014-05-05 | 2015-11-12 | 3D Glass Solutions, Inc. | 2d and 3d inductors antenna and transformers fabricating photoactive substrates |
KR102233579B1 (en) | 2014-08-12 | 2021-03-30 | 삼성전자주식회사 | Pellicle for an extreme ultraviolet(euv) lithography |
US10201901B2 (en) | 2015-01-29 | 2019-02-12 | Canon Kabushiki Kaisha | Robot apparatus, method for controlling robot, program, and recording medium |
US9647306B2 (en) | 2015-03-04 | 2017-05-09 | Skyworks Solutions, Inc. | RF filter comprising N coaxial resonators arranged in a specified interdigitation pattern |
US20160265974A1 (en) | 2015-03-09 | 2016-09-15 | Corning Incorporated | Glass waveguide spectrophotometer |
US9385083B1 (en) | 2015-05-22 | 2016-07-05 | Hrl Laboratories, Llc | Wafer-level die to package and die to die interconnects suspended over integrated heat sinks |
US9853624B2 (en) | 2015-06-26 | 2017-12-26 | Qorvo Us, Inc. | SAW resonator with resonant cavities |
US9712131B2 (en) | 2015-09-15 | 2017-07-18 | Karl L. Thorup | High isolation power combiner/splitter and coupler |
US10070533B2 (en) | 2015-09-30 | 2018-09-04 | 3D Glass Solutions, Inc. | Photo-definable glass with integrated electronics and ground plane |
WO2017111917A1 (en) | 2015-12-21 | 2017-06-29 | Intel Corporation | Microelectronic devices with embedded substrate cavities for device to device communications |
JP6903061B2 (en) | 2016-01-21 | 2021-07-14 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Plating process and chemistry of through silicon vias |
WO2017132280A2 (en) | 2016-01-31 | 2017-08-03 | 3D Glass Solutions, Inc. | Multi-layer photo definable glass with integrated devices |
KR20200010598A (en) | 2016-02-25 | 2020-01-30 | 3디 글래스 솔루션즈 인코포레이티드 | 3d capacitor and capacitor array fabricating photoactive substrates |
US9819991B1 (en) | 2016-02-29 | 2017-11-14 | Amazon Technologies, Inc. | Adaptive impedance matching interface |
WO2017177171A1 (en) | 2016-04-08 | 2017-10-12 | 3D Glass Solutions, Inc. | Methods of fabricating photosensitive substrates suitable for optical coupler |
US10655377B2 (en) | 2016-04-21 | 2020-05-19 | Westinghouse Air Brake Technologies Corporation | Method and system for detecting an obstruction of a passenger door |
US10281424B2 (en) | 2016-06-27 | 2019-05-07 | Robert Bosch Gmbh | Electrode arrangement with improved electron transfer rates for redox of molecules |
US11043627B2 (en) | 2016-07-01 | 2021-06-22 | Intel Corporation | Techniques for monolithic co-integration of thin-film bulk acoustic resonator devices and III-N semiconductor transistor devices |
US9635757B1 (en) | 2016-08-11 | 2017-04-25 | Unimicron Technology Corp. | Circuit board and manufacturing method thereof |
CA3058793C (en) | 2017-04-28 | 2021-12-28 | 3D Glass Solutions, Inc. | Rf circulator |
US10367243B2 (en) | 2017-05-02 | 2019-07-30 | Bae Systems Information And Electronic Systems Integration Inc. | Miniature LTCC coupled stripline resonator filters for digital receivers |
JP6503408B2 (en) | 2017-05-02 | 2019-04-17 | オリンパス株式会社 | Waveguide, image transmission device with a waveguide, endoscope with a waveguide and endoscope system |
US20200076037A1 (en) | 2017-05-15 | 2020-03-05 | Valorbec Societe En Commandite | Contactless air-filled substrate integrated waveguide devices and methods |
JP7083600B2 (en) | 2017-05-25 | 2022-06-13 | 凸版印刷株式会社 | Glass circuit board with built-in capacitor and its manufacturing method |
CN111132943A (en) | 2017-07-24 | 2020-05-08 | 康宁股份有限公司 | Precision structured glass articles, integrated circuit packages, optical devices, microfluidic devices, and methods of making the same |
US20190093233A1 (en) | 2017-09-27 | 2019-03-28 | 3D Glass Solutions, Inc | Non-Seed Layer Electroless Plating of Ceramic |
JP2019106429A (en) | 2017-12-11 | 2019-06-27 | 凸版印刷株式会社 | Glass wiring substrate, method for manufacturing the same, and semiconductor device |
WO2019118761A1 (en) | 2017-12-15 | 2019-06-20 | 3D Glass Solutions, Inc. | Coupled transmission line resonate rf filter |
WO2019155582A1 (en) | 2018-02-08 | 2019-08-15 | 株式会社ソシオネクスト | Amplification circuit, addition circuit, reception circuit and integrated circuit |
WO2019199470A1 (en) | 2018-04-10 | 2019-10-17 | 3D Glass Solutions, Inc. | Rf integrated power condition capacitor |
KR102475010B1 (en) | 2018-05-29 | 2022-12-07 | 3디 글래스 솔루션즈 인코포레이티드 | Low insertion loss rf transmission line |
CN111095450A (en) | 2018-08-21 | 2020-05-01 | 深圳市为通博科技有限责任公司 | Capacitor and processing method thereof |
CA3112608C (en) | 2018-09-17 | 2021-12-28 | 3D Glass Solutions, Inc. | High efficiency compact slotted antenna with a ground plane |
US11552008B2 (en) | 2018-11-28 | 2023-01-10 | Intel Corporation | Asymmetric cored integrated circuit package supports |
US10680633B1 (en) | 2018-12-21 | 2020-06-09 | Analog Devices International Unlimited Compnay | Data acquisition system-in-package |
WO2020139951A1 (en) | 2018-12-28 | 2020-07-02 | 3D Glass Solutions, Inc. | Heterogenous integration for rf, microwave and mm wave systems in photoactive glass substrates |
CA3107812C (en) | 2018-12-28 | 2023-06-27 | 3D Glass Solutions, Inc. | Annular capacitor rf, microwave and mm wave systems |
US10714434B1 (en) | 2018-12-29 | 2020-07-14 | Intel Corporation | Integrated magnetic inductors for embedded-multi-die interconnect bridge substrates |
US11502124B2 (en) | 2019-01-16 | 2022-11-15 | Intel Coropration | Filter-centric III-N films enabling RF filter integration with III-N transistors |
CA3135975C (en) | 2019-04-05 | 2022-11-22 | 3D Glass Solutions, Inc. | Glass based empty substrate integrated waveguide devices |
WO2020214788A1 (en) | 2019-04-18 | 2020-10-22 | 3D Glass Solutions, Inc. | High efficiency die dicing and release |
WO2021003635A1 (en) | 2019-07-08 | 2021-01-14 | Yangtze Memory Technologies Co., Ltd. | Structure and method for forming capacitors for three-dimensional nand |
US11320847B2 (en) * | 2020-02-28 | 2022-05-03 | Qualcomm Incorporated | Voltage regulation integrated circuit (IC) with circuit components in an integrated three-dimensional (3D) inductor core and related methods of fabrication |
-
2021
- 2021-04-15 US US17/917,877 patent/US11908617B2/en active Active
- 2021-04-15 WO PCT/US2021/027499 patent/WO2021211855A1/en unknown
- 2021-04-15 KR KR1020227040090A patent/KR20220164800A/en not_active Application Discontinuation
- 2021-04-15 EP EP21787618.4A patent/EP4121988A4/en active Pending
- 2021-04-15 JP JP2022562031A patent/JP2023516817A/en active Pending
- 2021-04-15 CA CA3177603A patent/CA3177603C/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0685857B1 (en) * | 1994-06-03 | 1999-09-08 | Mitel Semiconductor Limited | Inductor chip device |
US20040027596A1 (en) * | 1999-05-25 | 2004-02-12 | Walmsley Simon Robert | Method for bayer mosaic image conversion |
US20060092079A1 (en) * | 2004-10-01 | 2006-05-04 | De Rochemont L P | Ceramic antenna module and methods of manufacture thereof |
US20080231402A1 (en) | 2007-03-22 | 2008-09-25 | Industrial Technology Research Institute | Inductor devices |
US20130105941A1 (en) | 2011-10-26 | 2013-05-02 | International Business Machines Corporation | Semiconductor device including in wafer inductors, related method and design structure |
US20190280079A1 (en) * | 2016-11-24 | 2019-09-12 | Murata Integrated Passive Solutions | Integrated electronic component suitable for broadband biasing |
WO2019010045A1 (en) | 2017-07-07 | 2019-01-10 | 3D Glass Solutions, Inc. | 2d and 3d rf lumped element devices for rf system in a package photoactive glass substrates |
CN210668058U (en) * | 2019-12-09 | 2020-06-02 | 梅州市成就电子科技有限公司 | Broadband conical inductor |
Non-Patent Citations (2)
Title |
---|
See also references of EP4121988A4 |
T.R. DIETRICH ET AL.: "Fabrication Technologies for Microsystems utilizing Photoetchable Glass", MICROELECTRONIC ENGINEERING, vol. 30, no. 497, 1996 |
Also Published As
Publication number | Publication date |
---|---|
CA3177603A1 (en) | 2021-10-21 |
US11908617B2 (en) | 2024-02-20 |
CA3177603C (en) | 2024-01-09 |
US20230352238A9 (en) | 2023-11-02 |
US20230122085A1 (en) | 2023-04-20 |
WO2021211855A9 (en) | 2021-12-09 |
EP4121988A1 (en) | 2023-01-25 |
EP4121988A4 (en) | 2023-08-30 |
JP2023516817A (en) | 2023-04-20 |
KR20220164800A (en) | 2022-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7249690B2 (en) | Low insertion loss RF transmission line | |
AU2018399638B2 (en) | Impedance matching conductive structure for high efficiency RF circuits | |
AU2019344542B2 (en) | High efficiency compact slotted antenna with a ground plane | |
AU2018383659B2 (en) | Coupled transmission line resonate RF filter | |
AU2019416325A1 (en) | Heterogenous integration for RF, microwave and mm wave systems in photoactive glass substrates | |
US11908617B2 (en) | Broadband induction | |
JP2022553186A (en) | High temperature printed circuit board substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21787618 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3177603 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2022562031 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2021787618 Country of ref document: EP Effective date: 20221020 |
|
ENP | Entry into the national phase |
Ref document number: 20227040090 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |