JPS61231529A - Optical control type optical switch device - Google Patents
Optical control type optical switch deviceInfo
- Publication number
- JPS61231529A JPS61231529A JP7254885A JP7254885A JPS61231529A JP S61231529 A JPS61231529 A JP S61231529A JP 7254885 A JP7254885 A JP 7254885A JP 7254885 A JP7254885 A JP 7254885A JP S61231529 A JPS61231529 A JP S61231529A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- control light
- light
- optical fiber
- prism
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Optical Couplings Of Light Guides (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、光フアイバ通信、光フアイバ応用計測制御の
分野に関するものである。DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to the field of optical fiber communications and optical fiber applied measurement and control.
従来の技術
第3図に従来の技術を示す。同図において、制御光14
は光ファイバ13の一端から出射され、光起電力素子1
2を照射する構成をとっていた。Prior Art FIG. 3 shows the prior art. In the figure, control light 14
is emitted from one end of the optical fiber 13, and the photovoltaic element 1
It was configured to irradiate 2.
11は光スイッチ素子、12は光起電力素子である。11 is an optical switch element, and 12 is a photovoltaic element.
発明が解決しようとする問題点
従来の技術においては、光ファイバ13からの制御光1
4の出射パターンは光軸に対し同心円状分布を持ってお
り、制御光14の光パワーを有効に利用するために、光
起電力素子12は円形に近い素子表面を有する必要があ
った。しかし、光起電力素子12の表面を円形に近、い
構造にするには、短絡電流および開放電圧の点から技術
的に厳しい制約となっており、光スイッチ素子11を駆
動するには、相当な電圧を必要とするために、光起電力
素子12の表面形状が、一般に矩形(長方形)になる。Problems to be Solved by the Invention In the conventional technology, the control light 1 from the optical fiber 13
The emission pattern of No. 4 has a concentric distribution with respect to the optical axis, and in order to effectively utilize the optical power of the control light 14, the photovoltaic element 12 was required to have an element surface that was nearly circular. However, in order to make the surface of the photovoltaic element 12 have a nearly circular structure, there are strict technical restrictions in terms of short-circuit current and open circuit voltage, and it is difficult to drive the optical switch element 11. Since a certain voltage is required, the surface shape of the photovoltaic element 12 is generally rectangular (rectangular).
この場合、従来の技術では、光起電力素子12の表面形
状と、出射する制御光14の強度分布との間のミスマツ
チが大きく、制御光パワーを余分に必要としていた。本
発明は、制御光の光起電力素子を照射するのに余分な光
パワーを必要とするという問題を解決するものである。In this case, in the conventional technique, there is a large mismatch between the surface shape of the photovoltaic element 12 and the intensity distribution of the emitted control light 14, and extra control light power is required. The present invention solves the problem of requiring extra optical power to illuminate a photovoltaic element with control light.
また、第3図では制御光用の光ファイバと、光スイッチ
素子の表面とが平行でなく、実装上製作性が悪く小型化
しにくいという問題点を有していた。In addition, in FIG. 3, the optical fiber for control light and the surface of the optical switch element are not parallel, and there is a problem in that it is difficult to manufacture in terms of mounting and is difficult to miniaturize.
問題点を解決するための手段
本発明は、前記従来の問題点を解決するために、制御光
の光ファイバからの出射パターンを、透明体であるスペ
ーサとフレネルレンズを用いて、楕円状分布になる様な
構成にした。また、プリズムを用い、光路を曲げる構成
とした光制御型光スイッチ装置を提供するものである。Means for Solving the Problems In order to solve the above-mentioned conventional problems, the present invention changes the output pattern of the control light from the optical fiber into an elliptical distribution using a transparent spacer and a Fresnel lens. I configured it like this. The present invention also provides a light-controlled optical switch device configured to bend an optical path using a prism.
作 用
上記手段により、光ファイバの端部から出射した制御光
は、スペーサとフレネルレンズを透過した後、光強度分
布が楕円状分布となり、矩形(長方形)表面を有する光
起電力素子を有効に照射し無駄な制御光パワーが低減す
る。また、プリズムにより、フレネルレンズを透過した
制御光が光路を曲げられるため、制御光用光ファイバが
光スイッチ素子表面とほぼ平行にすることができ、実装
上製作性が向上し、小型化も可能となっている。Effect: With the above means, the control light emitted from the end of the optical fiber has an elliptical light intensity distribution after passing through the spacer and the Fresnel lens, which effectively activates the photovoltaic element having a rectangular (rectangular) surface. The unnecessary control light power is reduced. In addition, since the prism bends the optical path of the control light that has passed through the Fresnel lens, the optical fiber for control light can be made almost parallel to the surface of the optical switch element, improving manufacturing productivity and making it possible to downsize. It becomes.
実施例
第1図は本発明の一実施例を示す斜視図、第2図は同じ
く光軸にそった断面図を示す。第1図は、光スイッチ素
子1上に設けられた光起電力素子2を、光フアイバ3中
を伝搬する制御光4が照射する光源系とからなる光制御
型光スイッチの例を示している。光源系は、光ファイバ
3の端部に設けられた透明体からなるスペーサ6を介し
て、フレネルレンズ6および光路を曲げるためのプリズ
ム7とから構成されており、光源系は光スイッチ素子1
に固定されており、また光スィッチ1と光起電力素子2
とは、電線8により接続されている。Embodiment FIG. 1 is a perspective view showing an embodiment of the present invention, and FIG. 2 is a sectional view taken along the optical axis. FIG. 1 shows an example of an optically controlled optical switch consisting of a light source system in which control light 4 propagating through an optical fiber 3 irradiates a photovoltaic element 2 provided on an optical switch element 1. . The light source system is composed of a Fresnel lens 6 and a prism 7 for bending the optical path via a spacer 6 made of a transparent body provided at the end of the optical fiber 3.
is fixed to the optical switch 1 and the photovoltaic element 2.
and are connected by an electric wire 8.
本発明の作用を第2図に示す断面図において具体的に説
明する。同図において、コア径80μmの光フアイバ3
中を通った波長0.78μmの制御光4は、3m+長の
透明体のガラス材料のスペーサ5を通って放射状に広が
シ、同図の面内方向と垂直方向にそれぞれ約3fiと約
2.6闘の焦点距離をもつフレネルレンズ6を通過した
後、通過光9は直角プリズム7により全反射され、光路
を直角に曲げたあとガラスプリズム7を出射して制御光
10となり、光起電力素子2を照射する。プリズム7か
ら光起電力素子2までの光路長はガラス中で約16露で
あり、出射した制御光10のビームは、直径約3 wa
g (面内方向)と短径約400μm(垂直方向)の楕
円ガウスビームとなっていた。また光起電力素子12は
、受光部の幅400μm、長手方向に250μmのセル
が10個直列接続したGaAs太陽電池で構成されその
受光部面積は0.4■X3mとなっており、出射制御光
パワーの約60チは光起電力用として利用できた。従来
の構造では最高の場合でも約13チしか利用できなかっ
たのに比べて約4倍の利用効率が得られた。また、本発
明では光源系が光スイッチ素子とほぼ平行にできたため
、固定が樹脂ででき、製作性が向上し、また光制御型光
スイッチはPLZT系薄膜を用いた光スイッチ素子のサ
イズ5咽幅X10mm長と同程度か少し大きい程度にな
シ全体に従来にくらべ高さ方向が小さくでき小屋化が計
れた。フレネルレンズ6はアルミナ薄膜(屈折率的1.
7)をスパッタでガラススペーサ6の端部に形した後、
PMMAを電子ビーム描画してフレネルレンズ形状マス
クとした後、イオンビームエッチによりフレネルレンズ
に加工した。各部の接着には透明エポキシ樹脂を使用し
た。The operation of the present invention will be specifically explained with reference to the cross-sectional view shown in FIG. In the figure, an optical fiber 3 with a core diameter of 80 μm is shown.
The control light 4 with a wavelength of 0.78 μm that has passed through it spreads radially through a spacer 5 made of a transparent glass material with a length of 3 m+, and extends approximately 3 fi and approximately 2 fi in the in-plane direction and in the vertical direction in the figure, respectively. After passing through a Fresnel lens 6 with a focal length of .6 mm, the passing light 9 is totally reflected by a right angle prism 7, bends the optical path at right angles, and then exits the glass prism 7 to become a control light 10, which generates a photovoltaic force. Irradiate element 2. The optical path length from the prism 7 to the photovoltaic element 2 is approximately 16 exposures in glass, and the emitted beam of control light 10 has a diameter of approximately 3 wa.
It was an elliptical Gaussian beam with a short axis of about 400 μm (in the in-plane direction) and a short axis of about 400 μm (in the vertical direction). The photovoltaic element 12 is composed of a GaAs solar cell in which 10 cells each having a width of 400 μm and a length of 250 μm are connected in series, and the area of the light receiving portion is 0.4×3 m. Approximately 60 inches of power could be used for photovoltaic power. Compared to the conventional structure, where only about 13 chips could be used at best, about four times the efficiency was achieved. In addition, in the present invention, the light source system is made almost parallel to the optical switch element, so it can be fixed with resin, improving manufacturing efficiency. The height of the entire structure is smaller than that of the conventional model, which is about the same as or slightly larger than the width and length of 10 mm, making it possible to convert it into a hut. The Fresnel lens 6 is an alumina thin film (refractive index: 1.
7) into the end of the glass spacer 6 by sputtering,
PMMA was made into a Fresnel lens shape mask by electron beam drawing, and then processed into a Fresnel lens by ion beam etching. Transparent epoxy resin was used to adhere each part.
本発明の実施例において、光スィッチに、PLZT系薄
膜を用いた光スイッチ素子を用いたが、他の静電形の光
スィッチなら何でもかまわない。また、光ファイバ3の
種類も選ばず、スペーサおよびプリズムの材質もガラス
に限定するものでもなく、透明であれば一般の光学材料
なら何であってもかまわない。7レネルレンズの材質も
、アルミナ薄膜に限定するものでもなく、透明光学薄膜
、透明光学材料なら、無機、有機材料の別なく、レンズ
効果をもつ屈折率のくみあわせで使用することに何ら問
題はない。また、光起電力素子にGaAs太陽電池アレ
イの例を示したが、他の光起電力素子。In the embodiment of the present invention, an optical switch element using a PLZT thin film is used as an optical switch, but any other electrostatic type optical switch may be used. Further, the type of optical fiber 3 is not limited, nor is the material of the spacer and prism limited to glass, but any general optical material may be used as long as it is transparent. The material of the 7-Renel lens is not limited to alumina thin film; any transparent optical thin film or transparent optical material, whether inorganic or organic, can be used in combination with a refractive index that has a lens effect without any problems. . Further, although a GaAs solar cell array is shown as an example of a photovoltaic element, other photovoltaic elements may also be used.
CdTe光起電力素子、a−3L太陽電池、CdS/系
太陽電池等、光起電力作用を有するものならどんなもの
でもかまわない。Any device having a photovoltaic effect, such as a CdTe photovoltaic element, an a-3L solar cell, or a CdS/based solar cell, may be used.
発明の効果
本発明の実施により、制御光の光起電圧に利用できるパ
ワーが、従来では約13チであったのが約eso%とな
り、約4倍という飛躍的な効率アップが実現できた。ま
た実装面では、光制御型光スイッチ素子の高さ方向の寸
法が、制御用光ファイバの固定のため40 tmより小
さくできなかったのが、本発明の実施により、他の寸法
をかえることなく、高さを20mまで低くでき、約半分
の容積を実現することが可能となった。Effects of the Invention By implementing the present invention, the power that can be used for the photovoltaic voltage of the control light, which was conventionally about 13 cm, has been reduced to about eso%, which is a dramatic increase in efficiency of about 4 times. In addition, in terms of mounting, the height dimension of the optically controlled optical switch element could not be made smaller than 40 tm due to the fixation of the control optical fiber, but by implementing the present invention, the height dimension of the optically controlled optical switch element can be made smaller than 40 tm without changing other dimensions. It has become possible to reduce the height to 20m and reduce the volume by about half.
第1図は本発明の光制御型光スイッチの一実施例を示す
斜視図、第2図は同じく光軸にそった断面図、第3図は
従来の光スィッチの斜視図である。
1・・・・・・光スイッチ素子、2・・・・・・光起電
力素子、3・・・・・・光ファイバ、4,9,10・・
・・・・制御光、6・・・・・・スペーサ、6・・・・
・・フレネルレンズ、7・・・・・・プリズム。
特許出願人 工業技術院長 等々カ 達3−−−九
7アイノで ゛
4−一一別御光
5−−−スで一ブ
6−−−7し序ルレンス゛
7−−−フ″ソス゛A
8−一一電vk
13−−一光ファイハ゛
14−一一制卿光
、+4FIG. 1 is a perspective view showing an embodiment of the light-controlled optical switch of the present invention, FIG. 2 is a sectional view taken along the optical axis, and FIG. 3 is a perspective view of a conventional optical switch. 1... Optical switch element, 2... Photovoltaic element, 3... Optical fiber, 4, 9, 10...
...Control light, 6...Spacer, 6...
...Fresnel lens, 7...prism. Patent applicant: Director of the Agency of Industrial Science and Technology, etc., 3--97 Aino, 4-11 Betsugokou 5--S, 1-6-7, sequence reference 7--F'' Sosu A 8-11 electric light vk 13--1 optical fiber high 14-11 electric light, +4
Claims (1)
う光スイッチ素子と、光を照射することにより光起電圧
を発生し前記スイッチ素子と電気的に接続された光起電
力素子と、前記光起電力素子に制御光を照射する光源と
を具備し、前記光源が、前記制御光を伝搬させる光ファ
イバと、前記光ファイバの端部から出射する前記制御光
を透過させる透明体のスペーサと、前記スペーサの他端
に設けられるフレネルレンズと、前記フレネルレンズを
透過して出射する前記制御光の光路を曲げるプリズムと
を含むことを特徴とする光制御型光スイッチ装置。an optical switch element that switches the optical path by applying a voltage between electrodes; a photovoltaic element that generates a photovoltaic voltage by irradiation with light and is electrically connected to the switch element; a light source that irradiates a power element with control light; the light source includes an optical fiber that propagates the control light; a transparent spacer that transmits the control light emitted from an end of the optical fiber; A light-controlled optical switch device comprising: a Fresnel lens provided at the other end of a spacer; and a prism that bends the optical path of the control light transmitted through the Fresnel lens and emitted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7254885A JPS61231529A (en) | 1985-04-08 | 1985-04-08 | Optical control type optical switch device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7254885A JPS61231529A (en) | 1985-04-08 | 1985-04-08 | Optical control type optical switch device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61231529A true JPS61231529A (en) | 1986-10-15 |
JPH0565846B2 JPH0565846B2 (en) | 1993-09-20 |
Family
ID=13492522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7254885A Granted JPS61231529A (en) | 1985-04-08 | 1985-04-08 | Optical control type optical switch device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61231529A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10854946B2 (en) | 2017-12-15 | 2020-12-01 | 3D Glass Solutions, Inc. | Coupled transmission line resonate RF filter |
US10903545B2 (en) | 2018-05-29 | 2021-01-26 | 3D Glass Solutions, Inc. | Method of making a mechanically stabilized radio frequency transmission line device |
US11076489B2 (en) | 2018-04-10 | 2021-07-27 | 3D Glass Solutions, Inc. | RF integrated power condition capacitor |
US11101532B2 (en) | 2017-04-28 | 2021-08-24 | 3D Glass Solutions, Inc. | RF circulator |
US11139582B2 (en) | 2018-09-17 | 2021-10-05 | 3D Glass Solutions, Inc. | High efficiency compact slotted antenna with a ground plane |
US11161773B2 (en) * | 2016-04-08 | 2021-11-02 | 3D Glass Solutions, Inc. | Methods of fabricating photosensitive substrates suitable for optical coupler |
US11264167B2 (en) | 2016-02-25 | 2022-03-01 | 3D Glass Solutions, Inc. | 3D capacitor and capacitor array fabricating photoactive substrates |
US11270843B2 (en) | 2018-12-28 | 2022-03-08 | 3D Glass Solutions, Inc. | Annular capacitor RF, microwave and MM wave systems |
US11342896B2 (en) | 2017-07-07 | 2022-05-24 | 3D Glass Solutions, Inc. | 2D and 3D RF lumped element devices for RF system in a package photoactive glass substrates |
US11373908B2 (en) | 2019-04-18 | 2022-06-28 | 3D Glass Solutions, Inc. | High efficiency die dicing and release |
US11594457B2 (en) | 2018-12-28 | 2023-02-28 | 3D Glass Solutions, Inc. | Heterogenous integration for RF, microwave and MM wave systems in photoactive glass substrates |
US11677373B2 (en) | 2018-01-04 | 2023-06-13 | 3D Glass Solutions, Inc. | Impedence matching conductive structure for high efficiency RF circuits |
US11908617B2 (en) | 2020-04-17 | 2024-02-20 | 3D Glass Solutions, Inc. | Broadband induction |
US11929199B2 (en) | 2014-05-05 | 2024-03-12 | 3D Glass Solutions, Inc. | 2D and 3D inductors fabricating photoactive substrates |
US11962057B2 (en) | 2019-04-05 | 2024-04-16 | 3D Glass Solutions, Inc. | Glass based empty substrate integrated waveguide devices |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6033538A (en) * | 1983-08-04 | 1985-02-20 | Matsushita Electric Ind Co Ltd | Optical multiplexer demultiplexer device for wavelength multiplex light control |
-
1985
- 1985-04-08 JP JP7254885A patent/JPS61231529A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6033538A (en) * | 1983-08-04 | 1985-02-20 | Matsushita Electric Ind Co Ltd | Optical multiplexer demultiplexer device for wavelength multiplex light control |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11929199B2 (en) | 2014-05-05 | 2024-03-12 | 3D Glass Solutions, Inc. | 2D and 3D inductors fabricating photoactive substrates |
US11264167B2 (en) | 2016-02-25 | 2022-03-01 | 3D Glass Solutions, Inc. | 3D capacitor and capacitor array fabricating photoactive substrates |
US11161773B2 (en) * | 2016-04-08 | 2021-11-02 | 3D Glass Solutions, Inc. | Methods of fabricating photosensitive substrates suitable for optical coupler |
US11101532B2 (en) | 2017-04-28 | 2021-08-24 | 3D Glass Solutions, Inc. | RF circulator |
US11342896B2 (en) | 2017-07-07 | 2022-05-24 | 3D Glass Solutions, Inc. | 2D and 3D RF lumped element devices for RF system in a package photoactive glass substrates |
US11894594B2 (en) | 2017-12-15 | 2024-02-06 | 3D Glass Solutions, Inc. | Coupled transmission line resonate RF filter |
US10854946B2 (en) | 2017-12-15 | 2020-12-01 | 3D Glass Solutions, Inc. | Coupled transmission line resonate RF filter |
US11367939B2 (en) | 2017-12-15 | 2022-06-21 | 3D Glass Solutions, Inc. | Coupled transmission line resonate RF filter |
US11677373B2 (en) | 2018-01-04 | 2023-06-13 | 3D Glass Solutions, Inc. | Impedence matching conductive structure for high efficiency RF circuits |
US11076489B2 (en) | 2018-04-10 | 2021-07-27 | 3D Glass Solutions, Inc. | RF integrated power condition capacitor |
US10903545B2 (en) | 2018-05-29 | 2021-01-26 | 3D Glass Solutions, Inc. | Method of making a mechanically stabilized radio frequency transmission line device |
US11139582B2 (en) | 2018-09-17 | 2021-10-05 | 3D Glass Solutions, Inc. | High efficiency compact slotted antenna with a ground plane |
US11270843B2 (en) | 2018-12-28 | 2022-03-08 | 3D Glass Solutions, Inc. | Annular capacitor RF, microwave and MM wave systems |
US11594457B2 (en) | 2018-12-28 | 2023-02-28 | 3D Glass Solutions, Inc. | Heterogenous integration for RF, microwave and MM wave systems in photoactive glass substrates |
US11962057B2 (en) | 2019-04-05 | 2024-04-16 | 3D Glass Solutions, Inc. | Glass based empty substrate integrated waveguide devices |
US11373908B2 (en) | 2019-04-18 | 2022-06-28 | 3D Glass Solutions, Inc. | High efficiency die dicing and release |
US11908617B2 (en) | 2020-04-17 | 2024-02-20 | 3D Glass Solutions, Inc. | Broadband induction |
Also Published As
Publication number | Publication date |
---|---|
JPH0565846B2 (en) | 1993-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61231529A (en) | Optical control type optical switch device | |
US5409550A (en) | Solar cell module | |
JPH0133801B2 (en) | ||
US4577052A (en) | AC Solar cell | |
US5101297A (en) | Method for producing a diffraction grating in optical elements | |
JPS60188911A (en) | Optical coupler | |
JPH02224375A (en) | Solar cell module | |
US7206121B2 (en) | Optical path switching device | |
JP2002280595A (en) | Solar light condenser | |
JPS6186724A (en) | Grating type optical controlling element | |
CN201707515U (en) | Non-collinear Bragg diffraction waveguide acousto-optic device structure | |
JP2004258076A (en) | Optical fiber cable layer and its manufacturing method | |
JPS61226972A (en) | Photoelectric conversion device | |
JPS6256918A (en) | Variable power finder optical system | |
JPH02116809A (en) | Optical coupler | |
CN205507356U (en) | Ultraviolet laser light scribing device | |
JPS58171024A (en) | Optical control type optical switch | |
JPH0379691B2 (en) | ||
WO1996011501A1 (en) | Photovoltaic cell system and an optical structure therefore | |
CN100403605C (en) | Continuous light beam linear material photonic crystal frequency multiplier | |
JPS5814122A (en) | Optical switch | |
JP3324083B2 (en) | Optical element fabrication method | |
SU1492341A1 (en) | Thin-film electroptical lens | |
JPH0293521A (en) | Optical switch | |
JPS59126681A (en) | Solar battery device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |