[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021261555A1 - 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置 - Google Patents

三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置 Download PDF

Info

Publication number
WO2021261555A1
WO2021261555A1 PCT/JP2021/023939 JP2021023939W WO2021261555A1 WO 2021261555 A1 WO2021261555 A1 WO 2021261555A1 JP 2021023939 W JP2021023939 W JP 2021023939W WO 2021261555 A1 WO2021261555 A1 WO 2021261555A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
coding
information
unit
dimensional
Prior art date
Application number
PCT/JP2021/023939
Other languages
English (en)
French (fr)
Inventor
賀敬 井口
敏康 杉尾
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to CN202180043574.5A priority Critical patent/CN115943434A/zh
Publication of WO2021261555A1 publication Critical patent/WO2021261555A1/ja
Priority to US18/081,029 priority patent/US20230145001A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/597Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/40Tree coding, e.g. quadtree, octree
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • H04N19/423Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation characterised by memory arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/96Tree coding, e.g. quad-tree coding

Definitions

  • the present disclosure relates to a three-dimensional data coding method, a three-dimensional data decoding method, a three-dimensional data coding device, and a three-dimensional data decoding device.
  • 3D data In the future, devices or services that utilize 3D data are expected to become widespread in a wide range of fields such as computer vision for autonomous operation of automobiles or robots, map information, monitoring, infrastructure inspection, or video distribution.
  • the three-dimensional data is acquired by various methods such as a distance sensor such as a range finder, a stereo camera, or a combination of a plurality of monocular cameras.
  • point cloud As one of the expression methods of 3D data, there is an expression method called point cloud that expresses the shape of a 3D structure by a point cloud in a 3D space. In the point cloud, the position and color of the point cloud are stored. Point clouds are expected to become the mainstream method for expressing 3D data, but point clouds have a very large amount of data. Therefore, in the storage or transmission of 3D data, it is essential to compress the amount of data by encoding, as in the case of 2D moving images (for example, MPEG-4 AVC or HEVC standardized by MPEG). Become.
  • 2D moving images for example, MPEG-4 AVC or HEVC standardized by MPEG.
  • the compression of the point cloud is partially supported by a public library (Point Cloud Library) that performs processing related to the point cloud.
  • a public library Point Cloud Library
  • Patent Document 1 a technique for searching and displaying facilities located around a vehicle using three-dimensional map data is known (see, for example, Patent Document 1).
  • the 3D data decoder properly decodes the bitstream.
  • the present disclosure provides a three-dimensional data coding method, a three-dimensional data decoding method, a three-dimensional data coding device, or a three-dimensional data decoding device capable of appropriately decoding a bit stream by a three-dimensional data decoding device. The purpose.
  • a plurality of data units each including a plurality of three-dimensional points are acquired, and a plurality of three-dimensional points included in each of the plurality of data units are encoded.
  • the bit stream containing the coded data in which the plurality of three-dimensional points are encoded is generated, and in the coding, the plurality of position information of the plurality of three-dimensional points included in the data unit to be encoded is divided into N minutes.
  • a tree (N is an integer of 2 or more) is converted into a plurality of occupancy maps, and each of the plurality of occupancy maps is converted into an index using a table showing the correspondence between the occupancy map and the index.
  • the coded data is generated by encoding the index, the table is updated according to the converted index and stored in the memory, and the head of the next data unit of the data unit to be encoded is used.
  • the head of the next data unit of the data unit to be encoded is used.
  • the three-dimensional data decoding method includes encoded data in which a data unit including a plurality of three-dimensional points is encoded, and coding of the data unit of a data unit in front of the data unit.
  • a bit stream including a first identification information indicating whether or not to initialize and use the table used for coding is acquired, and the coded data is decoded using the table corresponding to the first identification information.
  • the table shows the correspondence between the index and the occupancy map in which the position information of the three-dimensional points is represented by using an N-division tree (N is an integer of 2 or more), and the coded data is encoded.
  • N is an integer of 2 or more
  • the present disclosure can provide a three-dimensional data coding method, a three-dimensional data decoding method, a three-dimensional data coding device, or a three-dimensional data decoding device capable of appropriately decoding a bitstream by a three-dimensional data decoding device.
  • FIG. 1 is a diagram showing a configuration of a three-dimensional data coding / decoding system according to the first embodiment.
  • FIG. 2 is a diagram showing a configuration example of point cloud data according to the first embodiment.
  • FIG. 3 is a diagram showing a configuration example of a data file in which the point cloud data information according to the first embodiment is described.
  • FIG. 4 is a diagram showing the types of point cloud data according to the first embodiment.
  • FIG. 5 is a diagram showing a configuration of a first coding unit according to the first embodiment.
  • FIG. 6 is a block diagram of the first coding unit according to the first embodiment.
  • FIG. 7 is a diagram showing a configuration of a first decoding unit according to the first embodiment.
  • FIG. 1 is a diagram showing a configuration of a three-dimensional data coding / decoding system according to the first embodiment.
  • FIG. 2 is a diagram showing a configuration example of point cloud data according to the first embodiment.
  • FIG. 3 is a diagram showing a
  • FIG. 8 is a block diagram of the first decoding unit according to the first embodiment.
  • FIG. 9 is a block diagram of the three-dimensional data coding apparatus according to the first embodiment.
  • FIG. 10 is a diagram showing an example of position information according to the first embodiment.
  • FIG. 11 is a diagram showing an example of an ocree representation of position information according to the first embodiment.
  • FIG. 12 is a block diagram of the three-dimensional data decoding device according to the first embodiment.
  • FIG. 13 is a block diagram of the attribute information coding unit according to the first embodiment.
  • FIG. 14 is a block diagram of the attribute information decoding unit according to the first embodiment.
  • FIG. 15 is a block diagram showing a configuration of an attribute information coding unit according to the first embodiment.
  • FIG. 16 is a block diagram of the attribute information coding unit according to the first embodiment.
  • FIG. 17 is a block diagram showing a configuration of an attribute information decoding unit according to the first embodiment.
  • FIG. 18 is a block diagram of the attribute information decoding unit according to the first embodiment.
  • FIG. 19 is a diagram showing a configuration of a second coding unit according to the first embodiment.
  • FIG. 20 is a block diagram of a second coding unit according to the first embodiment.
  • FIG. 21 is a diagram showing a configuration of a second decoding unit according to the first embodiment.
  • FIG. 22 is a block diagram of a second decoding unit according to the first embodiment.
  • FIG. 23 is a diagram showing a protocol stack related to PCC coded data according to the first embodiment.
  • FIG. 24 is a diagram showing a configuration of a coding unit and a multiplexing unit according to the second embodiment.
  • FIG. 25 is a diagram showing a configuration example of coded data according to the second embodiment.
  • FIG. 26 is a diagram showing a configuration example of the coded data and the NAL unit according to the second embodiment.
  • FIG. 27 is a diagram showing an example of semantics of pcc_nal_unit_type according to the second embodiment.
  • FIG. 28 is a diagram showing an example of the delivery order of the NAL unit according to the second embodiment.
  • FIG. 29 is a block diagram of the first coding unit according to the third embodiment.
  • FIG. 30 is a block diagram of the first decoding unit according to the third embodiment.
  • FIG. 31 is a block diagram of the divided portion according to the third embodiment.
  • FIG. 32 is a diagram showing an example of division of slices and tiles according to the third embodiment.
  • FIG. 33 is a diagram showing an example of a slice and tile division pattern according to the third embodiment.
  • FIG. 34 is a diagram showing an example of the dependency relationship according to the third embodiment.
  • FIG. 35 is a diagram showing an example of the decoding order of the data according to the third embodiment.
  • FIG. 36 is a flowchart of the coding process according to the third embodiment.
  • FIG. 37 is a block diagram of the joint portion according to the third embodiment.
  • FIG. 38 is a diagram showing a configuration example of the coded data and the NAL unit according to the third embodiment.
  • FIG. 39 is a flowchart of the coding process according to the third embodiment.
  • FIG. 39 is a flowchart of the coding process according to the third embodiment.
  • FIG. 40 is a flowchart of the decoding process according to the third embodiment.
  • FIG. 41 is a flowchart of the coding process according to the third embodiment.
  • FIG. 42 is a flowchart of the decoding process according to the third embodiment.
  • FIG. 43 is a diagram showing an example of a prediction tree used in the three-dimensional data coding method according to the fourth embodiment.
  • FIG. 44 is a flowchart showing an example of the three-dimensional data coding method according to the fourth embodiment.
  • FIG. 45 is a flowchart showing an example of the three-dimensional data decoding method according to the fourth embodiment.
  • FIG. 46 is a diagram for explaining a method of generating a predicted tree according to the fourth embodiment.
  • FIG. 47 is a diagram for explaining a first example of the prediction mode according to the fourth embodiment.
  • FIG. 48 is a diagram showing an example of the syntax of the header of the position information according to the fourth embodiment.
  • FIG. 49 is a diagram showing an example of the syntax of position information according to the fourth embodiment.
  • FIG. 50 is a diagram showing another example of the syntax of position information according to the fourth embodiment.
  • FIG. 51 is a flowchart of processing of the three-dimensional data coding apparatus according to the fourth embodiment.
  • FIG. 52 is a flowchart of processing of the three-dimensional data decoding device according to the fourth embodiment.
  • FIG. 53 is a flowchart showing a process of reinitializing the CABAC coding / decoding engine according to the CABAC initialization flag at the time of coding or decoding according to the fifth embodiment.
  • FIG. 54 is a block diagram showing a configuration of a first coding unit included in the three-dimensional data coding device according to the fifth embodiment.
  • FIG. 55 is a block diagram showing the configuration of the divided portion according to the fifth embodiment.
  • FIG. 56 is a block diagram showing a configuration of a position information coding unit and an attribute information coding unit according to the fifth embodiment.
  • FIG. 57 is a block diagram showing the configuration of the first decoding unit according to the fifth embodiment.
  • FIG. 58 is a block diagram showing a configuration of a position information decoding unit and an attribute information decoding unit according to the fifth embodiment.
  • FIG. 59 is a flowchart showing an example of the process related to the initialization of CABAC in the coding of the position information or the coding of the attribute information according to the fifth embodiment.
  • FIG. 60 is a diagram showing an example of the timing of CABAC initialization in the point cloud data as the bitstream according to the fifth embodiment.
  • FIG. 61 is a diagram showing the configuration of the coded data according to the fifth embodiment and the method of storing the coded data in the NAL unit.
  • FIG. 62 is a flowchart showing an example of a process related to CABAC initialization in decoding position information or decoding attribute information according to the fifth embodiment.
  • FIG. 63 is a flowchart of the point cloud data coding process according to the fifth embodiment.
  • FIG. 64 is a flowchart showing an example of the process of updating the additional information according to the fifth embodiment.
  • FIG. 65 is a flowchart showing an example of the CABAC initialization process according to the fifth embodiment.
  • FIG. 66 is a flowchart of the point cloud data decoding process according to the fifth embodiment.
  • FIG. 67 is a flowchart showing an example of the process of initializing the CABAC decoding unit according to the fifth embodiment.
  • FIG. 68 is a diagram showing an example of tiles and slices according to the fifth embodiment.
  • FIG. 69 is a flowchart showing an example of a method of initializing the CABAC and determining the initial context value according to the fifth embodiment.
  • FIG. 70 is a diagram showing an example in which a map in which the point cloud data obtained by LiDAR according to the fifth embodiment is viewed from above is divided into tiles.
  • FIG. 71 is a flowchart showing another example of the method of initializing the CABAC and determining the initial value of the context according to the fifth embodiment.
  • FIG. 72 is a diagram showing an example of the data structure of the position information included in each of the divided data units according to the sixth embodiment and the syntax of the header of the position information.
  • FIG. 73 is a flowchart showing an example of the three-dimensional data coding method according to the sixth embodiment.
  • FIG. 74 is a flowchart showing an example of the three-dimensional data decoding method according to the sixth embodiment.
  • FIG. 75 is a diagram for explaining initialization of the context when the coding method according to the sixth embodiment is switched.
  • FIG. 76 is a flowchart of processing of the three-dimensional data coding apparatus according to the sixth embodiment.
  • FIG. 77 is a flowchart of processing of the three-dimensional data decoding apparatus according to the sixth embodiment.
  • FIG. 78 is a diagram showing an example of the syntax of SPS according to the seventh embodiment.
  • FIG. 79 is a diagram showing an example of the syntax of the header (Devided Geometry Header) of the divided position information according to the seventh embodiment.
  • FIG. 80 is a diagram showing an example of the syntax of the header (DevidedAttributeHeader) of the divided attribute information according to the seventh embodiment.
  • FIG. 81 is a diagram showing another example of the syntax of the header (DevidedAttributeHeader) of the divided attribute information according to the seventh embodiment.
  • FIG. 82 is a diagram showing another example of the syntax of the header (Devided Geometry Header) of the divided position information according to the seventh embodiment.
  • FIG. 82 is a diagram showing another example of the syntax of the header (Devided Geometry Header) of the divided position information according to the seventh embodiment.
  • FIG. 83 is a flowchart showing an example of a first determination for determining whether or not to initialize the entropy coding in the three-dimensional data coding apparatus according to the seventh embodiment.
  • FIG. 84 is a flowchart showing an example of a process of determining whether the entropy coding flag conforms to the conformance (whether it conforms to the specifications) in the three-dimensional data decoding apparatus according to the seventh embodiment.
  • FIG. 85 is a flowchart of processing of the three-dimensional data coding apparatus according to the seventh embodiment.
  • FIG. 86 is a flowchart of processing of the three-dimensional data decoding device according to the seventh embodiment.
  • FIG. 87 is a diagram showing an example of the syntax of SPS according to the eighth embodiment.
  • FIG. 88 is a diagram showing an example of the syntax of APS according to the eighth embodiment.
  • FIG. 89 is a diagram showing an example of the syntax of the header (DevidedGeometryHeader) of the divided position information according to the eighth embodiment.
  • FIG. 90 is a diagram showing an example of the syntax of the header (DevidedAttributeHeader) of the divided attribute information according to the eighth embodiment.
  • FIG. 91 is a flowchart showing an example of a process of determining whether or not to continue the context used for entropy coding in the three-dimensional data coding apparatus according to the eighth embodiment.
  • FIG. 92 is a diagram for explaining the update of the table according to the eighth embodiment.
  • FIG. 93 is a flowchart of coding an occupancy map by the three-dimensional data coding apparatus according to the eighth embodiment.
  • FIG. 94 is a flowchart of decoding the occupancy map by the three-dimensional data decoding apparatus according to the eighth embodiment.
  • FIG. 95 is a flowchart of a process for switching the entropy coding method in the three-dimensional data coding apparatus according to the eighth embodiment.
  • FIG. 96 is a flowchart of a method for continuing entropy coding in byte units in the three-dimensional data coding apparatus according to the eighth embodiment.
  • FIG. 97 is a flowchart of the process of switching the entropy decoding method in the three-dimensional data decoding apparatus according to the eighth embodiment.
  • FIG. 98 is a flowchart of a method for continuing entropy decoding in byte units in the three-dimensional data decoding apparatus according to the eighth embodiment.
  • FIG. 99 is a flowchart of processing of the three-dimensional data coding apparatus according to the eighth embodiment.
  • FIG. 100 is a flowchart of processing of the three-dimensional data decoding device according to the eighth embodiment.
  • FIG. 101 is a diagram showing an example of a three-dimensional point cloud in the case where slices are divided and coded for each group according to the ninth embodiment.
  • FIG. 102 is a diagram showing examples of various configurations of the bitstream according to the ninth embodiment.
  • FIG. 103 is an example in which a slice flag indicates whether or not to initialize the CABAC in slice units according to the ninth embodiment, and a tree flag indicates whether or not to initialize the CABAC in tree units in the slice.
  • FIG. 104 is a diagram for explaining a method of decoding a plurality of predicted trees according to the ninth embodiment by parallel processing.
  • FIG. 105 is a diagram showing an example of a three-dimensional data coding method according to the ninth embodiment.
  • FIG. 106 is a diagram showing an example of a three-dimensional data decoding method according to the ninth embodiment.
  • FIG. 107 is a diagram showing an example of a case of parallel decoding in the three-dimensional data decoding method according to the ninth embodiment.
  • FIG. 108 is a diagram showing an example of the syntax of the position information data unit when the initialization flag is stored in the position information data according to the ninth embodiment.
  • FIG. 109 is a diagram showing an example of the header syntax when the initialization flag and the offset information are stored in the header of the position information according to the ninth embodiment.
  • FIG. 110 is a diagram showing an example of the header syntax when the initialization flag and the offset information are stored in the header of the position information according to the ninth embodiment in random access units.
  • FIG. 111 is a block diagram of the three-dimensional data creation device according to the tenth embodiment.
  • FIG. 112 is a flowchart of the three-dimensional data creation method according to the tenth embodiment.
  • FIG. 113 is a diagram showing a configuration of the system according to the tenth embodiment.
  • FIG. 114 is a block diagram of the client device according to the tenth embodiment.
  • FIG. 115 is a block diagram of the server according to the tenth embodiment.
  • FIG. 116 is a flowchart of the three-dimensional data creation process by the client device according to the tenth embodiment.
  • FIG. 117 is a flowchart of sensor information transmission processing by the client device according to the tenth embodiment.
  • FIG. 118 is a flowchart of the three-dimensional data creation process by the server according to the tenth embodiment.
  • FIG. 119 is a flowchart of the three-dimensional map transmission process by the server according to the tenth embodiment.
  • FIG. 120 is a diagram showing a configuration of a modified example of the system according to the tenth embodiment.
  • FIG. 120 is a diagram showing a configuration of a modified example of the system according to the tenth embodiment.
  • FIG. 121 is a diagram showing a configuration of a server and a client device according to the tenth embodiment.
  • FIG. 122 is a diagram showing a configuration of a server and a client device according to the tenth embodiment.
  • FIG. 123 is a flowchart of processing by the client device according to the tenth embodiment.
  • FIG. 124 is a diagram showing the configuration of the sensor information collection system according to the tenth embodiment.
  • FIG. 125 is a diagram showing an example of the system according to the tenth embodiment.
  • FIG. 126 is a diagram showing a modified example of the system according to the tenth embodiment.
  • FIG. 127 is a flowchart showing an example of application processing according to the tenth embodiment.
  • FIG. 128 is a diagram showing a sensor range of various sensors according to the tenth embodiment.
  • FIG. 129 is a diagram showing a configuration example of the automated driving system according to the tenth embodiment.
  • FIG. 130 is a diagram showing a configuration example of a bit stream according to the tenth embodiment.
  • FIG. 131 is a flowchart of the point group selection process according to the tenth embodiment.
  • FIG. 132 is a diagram showing a screen example of the point group selection process according to the tenth embodiment.
  • FIG. 133 is a diagram showing a screen example of the point group selection process according to the tenth embodiment.
  • FIG. 134 is a diagram showing a screen example of the point group selection process according to the tenth embodiment.
  • a plurality of data units each including a plurality of three-dimensional points are acquired, and a plurality of three-dimensional points included in each of the plurality of data units are encoded.
  • the bit stream containing the coded data in which the plurality of three-dimensional points are encoded is generated, and in the coding, the plurality of position information of the plurality of three-dimensional points included in the data unit to be encoded is divided into N minutes.
  • a tree (N is an integer of 2 or more) is converted into a plurality of occupancy maps, and each of the plurality of occupancy maps is converted into an index using a table showing the correspondence between the occupancy map and the index.
  • the coded data is generated by encoding the index, the table is updated according to the converted index and stored in the memory, and the head of the next data unit of the data unit to be encoded is used.
  • the head of the next data unit of the data unit to be encoded is used.
  • the index obtained by using the table is encoded, and the first identification indicating whether or not to initialize the table used for encoding is performed.
  • a three-dimensional data decoder can appropriately decode the bitstream.
  • the index may indicate either the number of occurrences of the occupancy map or the frequency of occurrence of the occupancy map.
  • the first identification information indicates that the table is to be initialized, it indicates that the context of the previous data unit is initialized to encode a plurality of attribute information of the plurality of three-dimensional points.
  • the plurality of attribute information is encoded by continuing to use the context of the previous data unit.
  • bit stream further includes a second identification information indicating whether or not to use the function of continuing entropy among the plurality of data units, and the first identification information includes the plurality of the second identification information. It may be indicated when indicating that the function of continuing entropy between data units is used.
  • the three-dimensional data decoding method includes encoded data in which a data unit including a plurality of three-dimensional points is encoded, and coding of the data unit of a data unit in front of the data unit.
  • a bit stream including a first identification information indicating whether or not to initialize and use the table used for coding is acquired, and the coded data is decoded using the table corresponding to the first identification information.
  • the table shows the correspondence between the index and the occupancy map in which the position information of the three-dimensional points is represented by using an N-division tree (N is an integer of 2 or more), and the coded data is encoded.
  • N is an integer of 2 or more
  • the bitstream can be appropriately decoded, for example, by continuing decoding. Further, when the three-dimensional data decoding device determines that the conformance is not met, it is possible to suppress inappropriate decoding of the bitstream by, for example, stopping decoding or executing a specific avoidance process. can.
  • the index may indicate either the number of occurrences of the occupancy map or the frequency of occurrence of the occupancy map.
  • the first identification information indicates that the table is to be initialized, it indicates that the context of the previous data unit is initialized to decode the plurality of attribute information of the plurality of three-dimensional points, and the table.
  • the first identification information indicates that the table is to be initialized, it indicates that the context of the previous data unit is initialized to decode the plurality of attribute information of the plurality of three-dimensional points, and the table.
  • the plurality of attribute information is decoded by continuously using the context of the previous data unit.
  • the bit stream further includes a second identification information indicating whether or not to use the function of continuing entropy among a plurality of data units, and the first identification information includes the data in which the second identification information is the plurality of data. It may be indicated when indicating that the function of continuing entropy between units is used.
  • the three-dimensional data coding apparatus includes a processor and a memory, and the processor uses the memory to form a plurality of data units each including a plurality of three-dimensional points. Acquired, the plurality of three-dimensional points contained in each of the plurality of data units are encoded, and a bit stream containing the encoded data in which the plurality of three-dimensional points are encoded is generated. Multiple position information of a plurality of three-dimensional points included in the data unit to be converted is converted into a plurality of occupancy maps using an N-division tree (N is an integer of 2 or more), and each of the plurality of occupancy maps.
  • N is an integer of 2 or more
  • the coded data is generated by encoding the index, and the table is updated according to the converted index. It is stored in the memory, and it is determined whether or not to initialize the table stored in the memory when coding the first three-dimensional point of the next data unit of the data unit to be encoded. If it is determined not to initialize, the table stored in the memory is used to start encoding the next data unit, and the bit stream provides first identification information indicating the result of the determination. Further included.
  • the index obtained by using the table is encoded, and the first identification indicating whether or not to initialize the table used for encoding is performed.
  • a three-dimensional data decoder can appropriately decode the bitstream.
  • the three-dimensional data decoding device includes a processor and a memory, and the processor uses the memory to encode a data unit including a plurality of three-dimensional points. Acquires a bit stream including the data and the first identification information indicating whether or not the table used for encoding the previous data unit of the data unit is initialized and used for the coding of the data unit. , The coded data is decoded using the table corresponding to the first identification information, and in the table, the position information of the three-dimensional point is expressed by using the N branch tree (N is an integer of 2 or more).
  • the coded data includes the coded index
  • the index obtained by decoding the coded data corresponds to the table.
  • the position information of the three-dimensional point is calculated by deriving the occupancy map.
  • the bitstream can be appropriately decoded, for example, by continuing decoding. Further, when the three-dimensional data decoding device determines that the conformance is not met, it is possible to suppress inappropriate decoding of the bitstream by, for example, stopping decoding or executing a specific avoidance process. can.
  • a recording medium such as a system, an integrated circuit, a computer program or a computer-readable CD-ROM, and the system, method, integrated circuit, computer program and recording may be realized. It may be realized by any combination of media.
  • a three-dimensional data coding method and a three-dimensional data coding device for providing a function of transmitting and receiving necessary information according to an application in the coded data of a three-dimensional point cloud, and the code thereof.
  • a three-dimensional data decoding method and a three-dimensional data decoding device for decoding the encoded data, a three-dimensional data multiplexing method for multiplexing the encoded data, and a three-dimensional data transmission method for transmitting the encoded data will be described. do.
  • a first coding method and a second coding method are being studied as a coding method (coding method) for point group data, but the composition of the coded data and the coded data are used as a system.
  • the method of storing in the format is not defined, and there is a problem that the MUX processing (multiplexing), transmission or storage in the coding unit cannot be performed as it is.
  • PCC Point Cloud Compression
  • FIG. 1 is a diagram showing a configuration example of a three-dimensional data coding / decoding system according to the present embodiment.
  • the three-dimensional data coding / decoding system includes a three-dimensional data coding / decoding system 4601, a three-dimensional data decoding system 4602, a sensor terminal 4603, and an external connection unit 4604.
  • the three-dimensional data coding system 4601 generates coded data or multiplexed data by encoding point cloud data which is three-dimensional data.
  • the three-dimensional data coding system 4601 may be a three-dimensional data coding device realized by a single device, or may be a system realized by a plurality of devices. Further, the three-dimensional data coding apparatus may include a part of a plurality of processing units included in the three-dimensional data coding system 4601.
  • the three-dimensional data coding system 4601 includes a point cloud data generation system 4611, a presentation unit 4612, a coding unit 4613, a multiplexing unit 4614, an input / output unit 4615, and a control unit 4616.
  • the point cloud data generation system 4611 includes a sensor information acquisition unit 4617 and a point cloud data generation unit 4618.
  • the sensor information acquisition unit 4617 acquires sensor information from the sensor terminal 4603 and outputs the sensor information to the point cloud data generation unit 4618.
  • the point cloud data generation unit 4618 generates point cloud data from the sensor information and outputs the point cloud data to the coding unit 4613.
  • the presentation unit 4612 presents sensor information or point cloud data to the user. For example, the presentation unit 4612 displays information or an image based on sensor information or point cloud data.
  • the coding unit 4613 encodes (compresses) the point cloud data, and outputs the obtained coded data, the control information obtained in the coding process, and other additional information to the multiplexing unit 4614.
  • the additional information includes, for example, sensor information.
  • the multiplexing unit 4614 generates multiplexed data by multiplexing the coded data input from the coding unit 4613, the control information, and the additional information.
  • the format of the multiplexed data is, for example, a file format for storage or a packet format for transmission.
  • the input / output unit 4615 (for example, the communication unit or the interface) outputs the multiplexed data to the outside.
  • the multiplexed data is stored in a storage unit such as an internal memory.
  • the control unit 4616 (or application execution unit) controls each processing unit. That is, the control unit 4616 controls coding, multiplexing, and the like.
  • the sensor information may be input to the coding unit 4613 or the multiplexing unit 4614. Further, the input / output unit 4615 may output the point cloud data or the coded data as it is to the outside.
  • the transmission signal (multiplexed data) output from the three-dimensional data coding system 4601 is input to the three-dimensional data decoding system 4602 via the external connection unit 4604.
  • the three-dimensional data decoding system 4602 generates point cloud data, which is three-dimensional data, by decoding encoded data or multiplexed data.
  • the three-dimensional data decoding system 4602 may be a three-dimensional data decoding device realized by a single device, or may be a system realized by a plurality of devices. Further, the three-dimensional data decoding device may include a part of a plurality of processing units included in the three-dimensional data decoding system 4602.
  • the three-dimensional data decoding system 4602 includes a sensor information acquisition unit 4621, an input / output unit 4622, a demultiplexing unit 4623, a decoding unit 4624, a presentation unit 4625, a user interface 4626, and a control unit 4627.
  • the sensor information acquisition unit 4621 acquires sensor information from the sensor terminal 4603.
  • the input / output unit 4622 acquires the transmission signal, decodes the multiplexed data (file format or packet) from the transmitted signal, and outputs the multiplexed data to the demultiplexed unit 4623.
  • the demultiplexing unit 4623 acquires encoded data, control information and additional information from the multiplexing data, and outputs the encoded data, control information and additional information to the decoding unit 4624.
  • the decoding unit 4624 reconstructs the point cloud data by decoding the coded data.
  • the presentation unit 4625 presents the point cloud data to the user. For example, the presentation unit 4625 displays information or an image based on the point cloud data.
  • the user interface 4626 acquires instructions based on user operations.
  • the control unit 4627 (or application execution unit) controls each processing unit. That is, the control unit 4627 controls demultiplexing, decoding, presentation, and the like.
  • the input / output unit 4622 may acquire the point cloud data or the coded data as it is from the outside. Further, the presentation unit 4625 may acquire additional information such as sensor information and present information based on the additional information. Further, the presentation unit 4625 may make a presentation based on the user's instruction acquired by the user interface 4626.
  • the sensor terminal 4603 generates sensor information, which is information obtained by the sensor.
  • the sensor terminal 4603 is a terminal equipped with a sensor or a camera, and includes, for example, a moving object such as an automobile, a flying object such as an airplane, a mobile terminal, or a camera.
  • the sensor information that can be acquired by the sensor terminal 4603 is, for example, (1) the distance between the sensor terminal 4603 and the object obtained from the LIDAR, the millimeter-wave radar, or the infrared sensor, or the reflectance of the object, and (2) a plurality.
  • the sensor information may include the attitude, orientation, gyro (angular velocity), position (GPS information or altitude), speed, acceleration, and the like of the sensor.
  • the sensor information may include temperature, atmospheric pressure, humidity, magnetism, and the like.
  • the external connection unit 4604 is realized by communication with an integrated circuit (LSI or IC), an external storage unit, a cloud server via the Internet, broadcasting, or the like.
  • LSI integrated circuit
  • IC integrated circuit
  • cloud server via the Internet, broadcasting, or the like.
  • FIG. 2 is a diagram showing the structure of point cloud data.
  • FIG. 3 is a diagram showing a configuration example of a data file in which information on point cloud data is described.
  • the point cloud data includes data of a plurality of points.
  • the data at each point includes position information (three-dimensional coordinates) and attribute information for the position information.
  • a point cloud is a collection of multiple points. For example, a point cloud indicates a three-dimensional shape of an object.
  • Position information such as three-dimensional coordinates may be called geometry.
  • the data at each point may include attribute information (attribute) of a plurality of attribute types.
  • the attribute type is, for example, color or reflectance.
  • One attribute information may be associated with one position information, or attribute information having a plurality of different attribute types may be associated with one position information. Further, a plurality of attribute information of the same attribute type may be associated with one position information.
  • the configuration example of the data file shown in FIG. 3 is an example in which the position information and the attribute information have a one-to-one correspondence, and shows the position information and the attribute information of N points constituting the point cloud data. There is.
  • the position information is, for example, information on three axes of x, y, and z.
  • the attribute information is, for example, RGB color information.
  • a typical data file is a ply file or the like.
  • FIG. 4 is a diagram showing the types of point cloud data.
  • the point cloud data includes a static object and a dynamic object.
  • the static object is 3D point cloud data at an arbitrary time (certain time).
  • a dynamic object is three-dimensional point cloud data that changes over time.
  • the three-dimensional point cloud data at a certain time is referred to as a PCC frame or a frame.
  • the object may be a point cloud whose area is limited to some extent like ordinary video data, or a large-scale point cloud whose area is not limited such as map information.
  • the sensor information is acquired by various methods such as a distance sensor such as LIDAR or a range finder, a stereo camera, or a combination of a plurality of monocular cameras.
  • the point cloud data generation unit 4618 generates point cloud data based on the sensor information obtained by the sensor information acquisition unit 4617.
  • the point cloud data generation unit 4618 generates position information as point cloud data, and adds attribute information for the position information to the position information.
  • the point cloud data generation unit 4618 may process the point cloud data when generating position information or adding attribute information. For example, the point cloud data generation unit 4618 may reduce the amount of data by deleting the point clouds whose positions overlap. Further, the point cloud data generation unit 4618 may convert the position information (position shift, rotation, normalization, etc.), or may render the attribute information.
  • point cloud data generation system 4611 is included in the three-dimensional data coding system 4601 in FIG. 1, it may be independently provided outside the three-dimensional data coding system 4601.
  • the coding unit 4613 generates coded data by coding the point cloud data based on a predetermined coding method.
  • a predetermined coding method There are roughly the following two types of coding methods.
  • the first is a coding method using position information, and this coding method will be hereinafter referred to as a first coding method.
  • the second is a coding method using a video codec, and this coding method will be hereinafter referred to as a second coding method.
  • the decoding unit 4624 decodes the point cloud data by decoding the coded data based on a predetermined coding method.
  • the multiplexing unit 4614 generates multiplexed data by multiplexing the coded data using an existing multiplexing method.
  • the generated multiplexed data is transmitted or accumulated.
  • the multiplexing unit 4614 multiplexes other media such as video, audio, subtitles, applications, and files, or reference time information. Further, the multiplexing unit 4614 may further multiplex the attribute information related to the sensor information or the point cloud data.
  • the multiplexing method or file format includes ISOBMFF, MPEG-DASH, MMT, MPEG-2 TS Systems, RMP, etc., which are ISOBMFF-based transmission methods.
  • the demultiplexing unit 4623 extracts PCC coded data, other media, time information, etc. from the multiplexing data.
  • the input / output unit 4615 transmits the multiplexed data by using a method suitable for the medium to be transmitted or the medium to be stored, such as broadcasting or communication.
  • the input / output unit 4615 may communicate with other devices via the Internet, or may communicate with a storage unit such as a cloud server.
  • http http, ftp, TCP, UDP, etc. are used.
  • a PULL type communication method may be used, or a PUSH type communication method may be used.
  • Either wired transmission or wireless transmission may be used.
  • Ethernet registered trademark
  • USB registered trademark
  • RS-232C USB-232C
  • HDMI registered trademark
  • coaxial cable or the like
  • wireless transmission a wireless LAN, Wi-Fi (registered trademark), Bluetooth (registered trademark), millimeter wave, or the like is used.
  • DVB-T2 DVB-S2, DVB-C2, ATSC3.0, ISDB-S3 and the like are used.
  • FIG. 5 is a diagram showing the configuration of the first coding unit 4630, which is an example of the coding unit 4613 that encodes the first coding method.
  • FIG. 6 is a block diagram of the first coding unit 4630.
  • the first coding unit 4630 generates coded data (coded stream) by coding the point cloud data by the first coding method.
  • the first coding unit 4630 includes a position information coding unit 4631, an attribute information coding unit 4632, an additional information coding unit 4633, and a multiplexing unit 4634.
  • the first coding unit 4630 has a feature of performing coding while being aware of the three-dimensional structure. Further, the first coding unit 4630 has a feature that the attribute information coding unit 4632 performs coding using the information obtained from the position information coding unit 4631.
  • the first coding method is also called GPCC (Geometry based PCC).
  • the point cloud data is PCC point cloud data such as a PLY file, or PCC point cloud data generated from sensor information, and is position information (Position), attribute information (Attribute), and other additional information (MetaData). including.
  • the position information is input to the position information coding unit 4631, the attribute information is input to the attribute information coding unit 4632, and the additional information is input to the additional information coding unit 4633.
  • the position information coding unit 4631 generates coded position information (Compressed Geometry) which is coded data by encoding the position information.
  • the position information coding unit 4631 encodes the position information by using an N-branch structure such as an octa-tree. Specifically, in the octane tree, the target space is divided into eight nodes (subspaces), and 8-bit information (occupancy code) indicating whether or not each node contains a point cloud is generated. .. Further, the node including the point cloud is further divided into eight nodes, and 8-bit information indicating whether or not each of the eight nodes includes the point cloud is generated. This process is repeated until it becomes equal to or less than the threshold value of the number of point clouds included in the predetermined hierarchy or node.
  • the attribute information coding unit 4632 generates coded attribute information (Compressed Attribute) which is coded data by encoding using the configuration information generated by the position information coding unit 4631. For example, the attribute information coding unit 4632 determines a reference point (reference node) to be referred to in coding the target point (target node) to be processed based on the octal tree structure generated by the position information coding unit 4631. do. For example, the attribute information coding unit 4632 refers to a node whose parent node in the octal tree is the same as the target node among the peripheral nodes or adjacent nodes. The method of determining the reference relationship is not limited to this.
  • the attribute information coding process may include at least one of a quantization process, a prediction process, and an arithmetic coding process.
  • the reference means that the reference node is used to calculate the predicted value of the attribute information, or the state of the reference node (for example, occupancy indicating whether or not the reference node contains a point group) is used to determine the encoding parameter. Information) is used.
  • the coding parameter is a quantization parameter in the quantization process, a context in arithmetic coding, or the like.
  • the additional information coding unit 4633 generates coded additional information (Compressed Metadata Data) which is encoded data by encoding the compressible data among the additional information.
  • coded additional information Compressed Metadata Data
  • the multiplexing unit 4634 generates a coded stream (Compressed Stream) which is coded data by multiplexing the coded position information, the coded attribute information, the coded additional information, and other additional information.
  • the generated coded stream is output to a processing unit of a system layer (not shown).
  • FIG. 7 is a diagram showing the configuration of the first decoding unit 4640.
  • FIG. 8 is a block diagram of the first decoding unit 4640.
  • the first decoding unit 4640 generates point cloud data by decoding the coded data (coded stream) encoded by the first coding method by the first coding method.
  • the first decoding unit 4640 includes a demultiplexing unit 4641, a position information decoding unit 4642, an attribute information decoding unit 4643, and an additional information decoding unit 4644.
  • a coded stream (Compressed Stream), which is coded data, is input to the first decoding unit 4640 from a processing unit of a system layer (not shown).
  • the demultiplexing unit 4641 separates the coded position information (Compressed Geometry), the coded attribute information (Compressed Attribute), the coded additional information (Compressed Metadata), and other additional information from the coded data.
  • the position information decoding unit 4642 generates position information by decoding the coded position information. For example, the position information decoding unit 4642 restores the position information of the point cloud represented by the three-dimensional coordinates from the coded position information represented by the N-branch structure such as the octal tree.
  • the attribute information decoding unit 4643 decodes the coded attribute information based on the configuration information generated by the position information decoding unit 4642. For example, the attribute information decoding unit 4643 determines a reference point (reference node) to be referred to in decoding the target point (target node) to be processed, based on the octave tree structure obtained by the position information decoding unit 4642. For example, the attribute information decoding unit 4643 refers to a node in which the parent node in the octal tree is the same as the target node among the peripheral nodes or adjacent nodes. The method of determining the reference relationship is not limited to this.
  • the attribute information decoding process may include at least one of an inverse quantization process, a prediction process, and an arithmetic decoding process.
  • the reference means that the reference node is used to calculate the predicted value of the attribute information, or the state of the reference node (for example, the occupancy information indicating whether or not the reference node contains a point cloud) is used to determine the decoding parameter. ) Is used.
  • the decoding parameter is a quantization parameter in the inverse quantization process, a context in arithmetic decoding, or the like.
  • the additional information decoding unit 4644 generates additional information by decoding the coded additional information. Further, the first decoding unit 4640 uses the additional information necessary for the decoding process of the position information and the attribute information at the time of decoding, and outputs the additional information necessary for the application to the outside.
  • FIG. 9 is a block diagram of the position information coding unit 2700 according to the present embodiment.
  • the position information coding unit 2700 includes an ocree generation unit 2701, a geometric information calculation unit 2702, a coding table selection unit 2703, and an entropy coding unit 2704.
  • the ocree generation unit 2701 generates, for example, an ocree from the input position information, and generates an occupancy code for each node of the ocree.
  • the geometric information calculation unit 2702 acquires information indicating whether or not the node adjacent to the target node is an occupied node. For example, the geometric information calculation unit 2702 calculates the occupancy information of the adjacent node (information indicating whether or not the adjacent node is the occupancy node) from the occupancy code of the parent node to which the target node belongs. Further, the geometric information calculation unit 2702 may save the encoded nodes in a list and search for adjacent nodes from the list. The geometric information calculation unit 2702 may switch the adjacent node according to the position in the parent node of the target node.
  • the coding table selection unit 2703 selects a coding table to be used for entropy coding of the target node using the occupancy information of the adjacent node calculated by the geometric information calculation unit 2702. For example, the coded table selection unit 2703 may generate a bit string using the occupancy information of the adjacent node, and may select the coded table of the index number generated from the bit string.
  • the entropy coding unit 2704 generates coded position information and metadata by performing entropy coding on the occupancy code of the target node using the coding table of the selected index number.
  • the entropy coding unit 2704 may add information indicating the selected coding table to the coding position information.
  • the position information (position data) is converted into an octal tree structure (octree tree formation) and then encoded.
  • the ocree tree structure consists of nodes and leaves. Each node has eight nodes or leaves, and each leaf has voxel (VXL) information.
  • FIG. 10 is a diagram showing a structural example of position information including a plurality of voxels.
  • FIG. 11 is a diagram showing an example in which the position information shown in FIG. 10 is converted into an octal tree structure.
  • the leaves 1, 2 and 3 represent the voxels VXL1, VXL2 and VXL3 shown in FIG. 10, respectively, and represent the VXL (hereinafter, effective VXL) including the point cloud.
  • the node 1 corresponds to the entire space including the position information of FIG.
  • the entire space corresponding to node 1 is divided into eight nodes, and among the eight nodes, the node containing the valid VXL is further divided into eight nodes or leaves, and this process is repeated for the hierarchy of the tree structure.
  • each node corresponds to a subspace, and has information (occupancy code) indicating at which position the next node or leaf is held after division as node information.
  • the lowest block is set in the leaf, and the number of point clouds included in the leaf is held as leaf information.
  • FIG. 12 is a block diagram of the position information decoding unit 2710 according to the present embodiment.
  • the position information decoding unit 2710 includes an octane tree generation unit 2711, a geometric information calculation unit 2712, a coding table selection unit 2713, and an entropy decoding unit 2714.
  • the ocree generation unit 2711 generates an ocree in a certain space (node) by using the header information or metadata of the bitstream. For example, the 8-branch tree generation unit 2711 creates a large space (root node) using the x-axis, y-axis, and z-axis directions of a certain space added to the header information, and uses that space as the x-axis. Eight small spaces A (nodes A0 to A7) are generated by dividing into two in the y-axis and z-axis directions, respectively, to generate an eight-quarter tree. Further, nodes A0 to A7 are sequentially set as target nodes.
  • the geometric information calculation unit 2712 acquires occupancy information indicating whether or not the node adjacent to the target node is an occupancy node. For example, the geometric information calculation unit 2712 calculates the occupancy information of the adjacent node from the occupancy code of the parent node to which the target node belongs. Further, the geometric information calculation unit 2712 may save the decoded nodes in a list and search for adjacent nodes from the list. The geometric information calculation unit 2712 may switch the adjacent node according to the position in the parent node of the target node.
  • the coding table selection unit 2713 selects a coding table (decoding table) used for entropy decoding of the target node using the occupancy information of the adjacent node calculated by the geometric information calculation unit 2712. For example, the coded table selection unit 2713 may generate a bit string using the occupancy information of the adjacent node and select the coded table of the index number generated from the bit string.
  • a coding table decoding table
  • the entropy decoding unit 2714 generates position information by entropy decoding the occupancy code of the target node using the selected coding table.
  • the entropy decoding unit 2714 may decode and acquire the information of the selected coding table from the bitstream, and may entropy-decode the occupancy code of the target node using the coding table indicated by the information. ..
  • FIG. 13 is a block diagram showing a configuration example of the attribute information coding unit A100.
  • the attribute information coding unit may include a plurality of coding units that execute different coding methods. For example, the attribute information coding unit may switch between the following two methods according to the use case.
  • the attribute information coding unit A100 includes a LoD attribute information coding unit A101 and a conversion attribute information coding unit A102.
  • the LoD attribute information coding unit A101 classifies each 3D point into a plurality of layers using the position information of the 3D points, predicts the attribute information of the 3D points belonging to each layer, and encodes the predicted residual. To become.
  • each classified layer is referred to as LoD (Level of Detail).
  • the conversion attribute information coding unit A102 encodes the attribute information using RAHT (Region Adaptive Hierarchical Transfer Form). Specifically, the conversion attribute information coding unit A102 generates high-frequency components and low-frequency components of each layer by applying RAHT or Har conversion to each attribute information based on the position information of the three-dimensional point. Then, those values are encoded by using quantization, entropy coding, or the like.
  • RAHT Registered Adaptive Hierarchical Transfer Form
  • FIG. 14 is a block diagram showing a configuration example of the attribute information decoding unit A110.
  • the attribute information decoding unit may include a plurality of decoding units that execute different decoding methods. For example, the attribute information decoding unit may switch and decode the following two methods based on the information included in the header and the metadata.
  • the attribute information decoding unit A110 includes a LoD attribute information decoding unit A111 and a conversion attribute information decoding unit A112.
  • the LoD attribute information decoding unit A111 classifies each three-dimensional point into a plurality of layers using the position information of the three-dimensional points, and decodes the attribute value while predicting the attribute information of the three-dimensional points belonging to each layer.
  • the conversion attribute information decoding unit A112 decodes the attribute information using RAHT (Region Adaptive Hierarchical Transfer Form). Specifically, the conversion attribute information decoding unit A112 applies the invoke RAHT or invoke Haar conversion to the high frequency component and the low frequency component of each attribute value based on the position information of the three-dimensional point to obtain the attribute value. Decrypt.
  • RAHT Restion Adaptive Hierarchical Transfer Form
  • FIG. 15 is a block diagram showing the configuration of the attribute information coding unit 3140, which is an example of the LoD attribute information coding unit A101.
  • the attribute information coding unit 3140 includes a LoD generation unit 3141, a peripheral search unit 3142, a prediction unit 3143, a prediction residual calculation unit 3144, a quantization unit 3145, an arithmetic coding unit 3146, and an inverse quantization unit. It includes 3147, a decoding value generation unit 3148, and a memory 3149.
  • LoD generation unit 3141 generates LoD using the position information of the three-dimensional point.
  • the surrounding search unit 3142 searches for neighboring three-dimensional points adjacent to each three-dimensional point by using the LoD generation result by the LoD generation unit 3141 and the distance information indicating the distance between each three-dimensional point.
  • the prediction unit 3143 generates a prediction value of the attribute information of the target three-dimensional point to be encoded.
  • the predicted residual calculation unit 3144 calculates (generates) the predicted residual of the predicted value of the attribute information generated by the predicted unit 3143.
  • the quantization unit 3145 quantizes the predicted residual of the attribute information calculated by the predicted residual calculation unit 3144.
  • the arithmetic coding unit 3146 arithmetically encodes the predicted residual after being quantized by the quantization unit 3145.
  • the arithmetic coding unit 3146 outputs a bit stream including an arithmetically coded predicted residual to, for example, a three-dimensional data decoding device.
  • the predicted residual may be binarized by, for example, the quantization unit 3145 before being arithmetically coded by the arithmetic coding unit 3146.
  • the arithmetic coding unit 3146 may initialize the coding table used for arithmetic coding before arithmetic coding.
  • the arithmetic coding unit 3146 may initialize the coding table used for arithmetic coding for each layer.
  • the arithmetic coding unit 3146 may include information indicating the position of the layer in which the coding table is initialized in the bit stream and output the information.
  • the inverse quantization unit 3147 dequantizes the predicted residual after being quantized by the quantization unit 3145.
  • the decoded value generation unit 3148 generates a decoded value by adding the predicted value of the attribute information generated by the prediction unit 3143 and the predicted residual after dequantization by the inverse quantization unit 3147.
  • the memory 3149 is a memory that stores the decoded value of the attribute information of each three-dimensional point decoded by the decoded value generation unit 3148. For example, when the prediction unit 3143 generates a predicted value of an unencoded three-dimensional point, the prediction unit 3143 generates the predicted value by using the decoded value of the attribute information of each three-dimensional point stored in the memory 3149. ..
  • FIG. 16 is a block diagram of the attribute information coding unit 6600, which is an example of the conversion attribute information coding unit A102.
  • the attribute information coding unit 6600 includes a sorting unit 6601, a Har conversion unit 6602, a quantization unit 6603, an inverse quantization unit 6604, an inverse Haar conversion unit 6605, a memory 6606, and an arithmetic coding unit 6607. Be prepared.
  • the sort unit 6601 generates a Morton code using the position information of the three-dimensional points, and sorts a plurality of three-dimensional points in the order of the Morton code.
  • the Haar conversion unit 6602 generates a coding coefficient by applying the Haar conversion to the attribute information.
  • the quantization unit 6603 quantizes the coding coefficient of the attribute information.
  • the dequantization unit 6604 dequantizes the coding coefficient after quantization.
  • the inverse Haar conversion unit 6605 applies the inverse Har conversion to the coding coefficient.
  • the memory 6606 stores the values of the attribute information of the plurality of decoded three-dimensional points. For example, the attribute information of the decoded three-dimensional point stored in the memory 6606 may be used for prediction of the unencoded three-dimensional point and the like.
  • the arithmetic coding unit 6607 calculates ZeroCnt from the coding coefficient after quantization, and arithmetically encodes ZeroCnt. In addition, the arithmetic coding unit 6607 arithmetically encodes the non-zero coding coefficient after quantization. The arithmetic coding unit 6607 may binarize the coding coefficient before arithmetic coding. Further, the arithmetic coding unit 6607 may generate and encode various header information.
  • FIG. 17 is a block diagram showing the configuration of the attribute information decoding unit 3150, which is an example of the LoD attribute information decoding unit A111.
  • the attribute information decoding unit 3150 includes a LoD generation unit 3151, a surrounding search unit 3152, a prediction unit 3153, an arithmetic decoding unit 3154, an inverse quantization unit 3155, a decoding value generation unit 3156, and a memory 3157. ..
  • the LoD generation unit 3151 generates LoD using the position information of the three-dimensional point decoded by the position information decoding unit (not shown in FIG. 17).
  • the surrounding search unit 3152 searches for neighboring 3D points adjacent to each 3D point by using the LoD generation result by the LoD generation unit 3151 and the distance information indicating the distance between each 3D point.
  • the prediction unit 3153 generates a prediction value of the attribute information of the target three-dimensional point to be decoded.
  • the arithmetic decoding unit 3154 arithmetically decodes the predicted residual in the bit stream acquired from the attribute information coding unit 3140 shown in FIG.
  • the arithmetic decoding unit 3154 may initialize the decoding table used for arithmetic decoding.
  • the arithmetic decoding unit 3154 initializes the decoding table used for arithmetic decoding for the layer to which the arithmetic coding unit 3146 shown in FIG. 15 has been encoded.
  • the arithmetic decoding unit 3154 may initialize the decoding table used for arithmetic decoding for each layer. Further, the arithmetic decoding unit 3154 may initialize the decoding table based on the information included in the bitstream indicating the position of the layer in which the coding table is initialized.
  • the dequantization unit 3155 dequantizes the predicted residual that is arithmetically decoded by the arithmetic decoding unit 3154.
  • the decoded value generation unit 3156 generates a decoded value by adding the predicted value generated by the prediction unit 3153 and the predicted residual after dequantization by the inverse quantization unit 3155.
  • the decoded value generation unit 3156 outputs the decoded attribute information data to another device.
  • the memory 3157 is a memory that stores the decoded value of the attribute information of each three-dimensional point decoded by the decoded value generation unit 3156. For example, when the prediction unit 3153 generates a predicted value of a three-dimensional point that has not been decoded yet, the prediction unit 3153 generates a predicted value by using the decoded value of the attribute information of each three-dimensional point stored in the memory 3157. ..
  • FIG. 18 is a block diagram of the attribute information decoding unit 6610, which is an example of the conversion attribute information decoding unit A112.
  • the attribute information decoding unit 6610 includes an arithmetic decoding unit 6611, an inverse quantization unit 6612, an inverse Har conversion unit 6613, and a memory 6614.
  • the arithmetic decoding unit 6611 arithmetically decodes ZeroCnt and the coding coefficient included in the bit stream.
  • the arithmetic decoding unit 6611 may decode various header information.
  • the dequantization unit 6612 dequantizes the arithmetically decoded coding coefficient.
  • the inverse Haar conversion unit 6613 applies the inverse Har conversion to the coding coefficient after the inverse quantization.
  • the memory 6614 stores the values of the attribute information of the plurality of decoded three-dimensional points. For example, the attribute information of the decoded three-dimensional point stored in the memory 6614 may be used for predicting the undecoded three-dimensional point.
  • FIG. 19 is a diagram showing the configuration of the second coding unit 4650.
  • FIG. 20 is a block diagram of the second coding unit 4650.
  • the second coding unit 4650 generates coded data (coded stream) by coding the point cloud data by the second coding method.
  • the second coding unit 4650 includes an additional information generation unit 4651, a position image generation unit 4652, an attribute image generation unit 4653, a video coding unit 4654, an additional information coding unit 4655, and a multiplexing unit 4656. And include.
  • the second coding unit 4650 generates a position image and an attribute image by projecting the three-dimensional structure onto the two-dimensional image, and encodes the generated position image and the attribute image using an existing video coding method. It has the feature.
  • the second coding method is also called VPCC (Video based PCC).
  • the point cloud data is PCC point cloud data such as a PLY file, or PCC point cloud data generated from sensor information, and includes position information (Position), attribute information (Attribute), and other additional information (MetaData).
  • Position information Position
  • attribute information Attribute
  • MetaData Other additional information
  • the additional information generation unit 4651 generates map information of a plurality of two-dimensional images by projecting the three-dimensional structure onto the two-dimensional image.
  • the position image generation unit 4652 generates a position image (Geometry Image) based on the position information and the map information generated by the additional information generation unit 4651.
  • This position image is, for example, a distance image in which a distance (Dept) is shown as a pixel value.
  • this distance image may be an image in which a plurality of point groups are viewed from one viewpoint (an image in which a plurality of point groups are projected on one two-dimensional plane), or a plurality of point groups from a plurality of viewpoints. It may be a plurality of images that have been viewed, or it may be a single image that is a combination of these plurality of images.
  • the attribute image generation unit 4653 generates an attribute image based on the attribute information and the map information generated by the additional information generation unit 4651.
  • This attribute image is, for example, an image in which attribute information (for example, color (RGB)) is shown as a pixel value.
  • RGB color
  • this image may be an image in which a plurality of point groups are viewed from one viewpoint (an image in which a plurality of point groups are projected onto one two-dimensional plane), or a plurality of point groups are viewed from a plurality of viewpoints. It may be a plurality of images seen, or it may be a single image in which these plurality of images are integrated.
  • the video coding unit 4654 encodes the position image and the attribute image by using the video coding method, so that the coded position image (Compressed Geometry Image) and the coded attribute image (Compressed Attribute Image), which are coded data, are encoded. ) Is generated.
  • the video coding method any known coding method may be used.
  • the video coding method is AVC, HEVC, or the like.
  • the additional information coding unit 4655 generates encoded additional information (Compressed Metadata Data) by encoding the additional information included in the point cloud data, the map information, and the like.
  • the multiplexing unit 4656 generates a coded stream (Compressed Stream) which is coded data by multiplexing the coded position image, the coded attribute image, the coded additional information, and other additional information.
  • the generated coded stream is output to a processing unit of a system layer (not shown).
  • FIG. 21 is a diagram showing the configuration of the second decoding unit 4660.
  • FIG. 22 is a block diagram of the second decoding unit 4660.
  • the second decoding unit 4660 generates point cloud data by decoding the coded data (coded stream) encoded by the second coding method by the second coding method.
  • the second decoding unit 4660 includes a demultiplexing unit 4661, a video decoding unit 4662, an additional information decoding unit 4663, a position information generation unit 4664, and an attribute information generation unit 4665.
  • a coded stream (Compressed Stream), which is coded data, is input to the second decoding unit 4660 from a processing unit of a system layer (not shown).
  • the demultiplexing unit 4661 separates the coded position image (Compressed Geometry Image), the coded attribute image (Compressed Attribute Image), the coded additional information (Compressed Metadata Image), and other additional information from the coded data. ..
  • the video decoding unit 4662 generates a position image and an attribute image by decoding the coded position image and the coded attribute image using a video coding method.
  • a video coding method any known coding method may be used.
  • the video coding method is AVC, HEVC, or the like.
  • the additional information decoding unit 4663 generates additional information including map information by decoding the coded additional information.
  • the position information generation unit 4664 generates position information using the position image and the map information.
  • the attribute information generation unit 4665 generates attribute information using the attribute image and the map information.
  • the second decoding unit 4660 uses the additional information necessary for decoding at the time of decoding, and outputs the additional information necessary for the application to the outside.
  • FIG. 23 is a diagram showing a protocol stack related to PCC coded data.
  • FIG. 23 shows an example in which data of another medium such as video (for example, HEVC) or audio is multiplexed with PCC coded data and transmitted or stored.
  • video for example, HEVC
  • audio is multiplexed with PCC coded data and transmitted or stored.
  • the multiplexing method and file format have a function for multiplexing, transmitting or accumulating various coded data.
  • the coded data In order to transmit or store the coded data, the coded data must be converted to a multiplexing format.
  • HEVC defines a technique for storing coded data in a data structure called a NAL unit and storing the NAL unit in ISOBMFF.
  • a first coding method (Codec1) and a second coding method (Codec2) are being studied as a method for coding point group data.
  • the method of storing in the system format is not defined, and there is a problem that MUX processing (multiplexing), transmission and storage in the coding unit cannot be performed as it is.
  • the coded data (position information (Geometry), attribute information (Attribute), additional information (Metatatta)) generated by the first coding unit 4630 or the second coding unit 4650 described above.
  • the type of the data, the method of generating additional information (metadata), and the multiplexing process in the multiplexing unit will be described.
  • the additional information (metadata) may be referred to as a parameter set or control information.
  • the dynamic object (three-dimensional point cloud data that changes with time) described with reference to FIG. 4 will be described as an example, but even in the case of a static object (three-dimensional point cloud data at an arbitrary time). A similar method may be used.
  • FIG. 24 is a diagram showing a configuration of a coding unit 4801 and a multiplexing unit 4802 included in the three-dimensional data coding apparatus according to the present embodiment.
  • the coding unit 4801 corresponds to, for example, the first coding unit 4630 or the second coding unit 4650 described above.
  • the multiplexing unit 4802 corresponds to the multiplexing unit 4634 or 4656 described above.
  • the coding unit 4801 encodes the point cloud data of a plurality of PCC (Point Cloud Compression) frames and generates the coded data (Multiple Compressed Data) of a plurality of position information, attribute information and additional information.
  • PCC Point Cloud Compression
  • the multiplexing unit 4802 converts the data into a data configuration in consideration of data access in the decoding device by converting the data of a plurality of data types (position information, attribute information and additional information) into NAL units.
  • FIG. 25 is a diagram showing a configuration example of coded data generated by the coding unit 4801.
  • the arrow in the figure shows the dependency related to the decoding of the coded data, and the source of the arrow depends on the data at the tip of the arrow. That is, the decoding device decodes the data at the tip of the arrow, and uses the decoded data to decode the original data of the arrow.
  • dependence means that the dependent data is referenced (used) in the processing (encoding or decoding, etc.) of the dependent data.
  • the coding unit 4801 encodes the position information of each frame to generate coded position data (Compressed Geometry Data) for each frame. Further, the coded position data is represented by G (i). i indicates a frame number, a frame time, or the like.
  • the coding unit 4801 generates a position parameter set (GPS (i)) corresponding to each frame.
  • the position parameter set contains parameters that can be used to decode the coded position data. Also, the coded position data for each frame depends on the corresponding position parameter set.
  • the coded position data consisting of a plurality of frames is defined as a position sequence (Geometry Sequence).
  • the coding unit 4801 generates a position sequence parameter set (Geometry Sequence PS: also referred to as position SPS) that stores parameters commonly used for decoding processing for a plurality of frames in the position sequence.
  • the position sequence depends on the position SPS.
  • the coding unit 4801 encodes the attribute information of each frame to generate the coded attribute data (Compressed Attribute Data) for each frame. Further, the coded attribute data is represented by A (i). Further, FIG. 25 shows an example in which the attribute X and the attribute Y exist, the coded attribute data of the attribute X is represented by AX (i), and the coded attribute data of the attribute Y is represented by AY (i). ..
  • the coding unit 4801 generates an attribute parameter set (APS (i)) corresponding to each frame.
  • the attribute parameter set of the attribute X is represented by AXPS (i)
  • the attribute parameter set of the attribute Y is represented by AYPS (i).
  • the attribute parameter set contains parameters that can be used to decode the coded attribute information.
  • the coded attribute data depends on the corresponding set of attribute parameters.
  • the coded attribute data consisting of a plurality of frames is defined as an attribute sequence (Attribute Sequence).
  • the coding unit 4801 generates an attribute sequence parameter set (attribute Sequence PS: also referred to as attribute SPS) that stores parameters commonly used for decoding processing for a plurality of frames in the attribute sequence.
  • attribute sequence PS also referred to as attribute SPS
  • the attribute sequence depends on the attribute SPS.
  • the coding attribute data depends on the coding position data.
  • FIG. 25 shows an example in which two types of attribute information (attribute X and attribute Y) exist.
  • attribute information for example, the respective data and metadata are generated by the two coding units.
  • an attribute sequence is defined for each type of attribute information, and an attribute SPS is generated for each type of attribute information.
  • FIG. 25 shows an example in which there is one type of position information and two types of attribute information, but the present invention is not limited to this, and the attribute information may be one type or three or more types. good.
  • the coded data can be generated by the same method.
  • the attribute information may not be present. In that case, the coding unit 4801 does not have to generate the parameter set related to the attribute information.
  • the coding unit 4801 generates a PCC stream PS (PCC Stream PS: also referred to as a stream PS), which is a parameter set for the entire PCC stream.
  • the coding unit 4801 stores in the stream PS a parameter that can be commonly used in the decoding process for one or more position sequences and one or more attribute sequences.
  • the stream PS includes identification information indicating a codec of point cloud data, information indicating an algorithm used for encoding, and the like.
  • the position sequence and attribute sequence depend on the stream PS.
  • An access unit is a basic unit for accessing data at the time of decryption, and is composed of one or more data and one or more metadata.
  • the access unit is composed of position information at the same time and one or more attribute information.
  • a GOF is a random access unit and is composed of one or more access units.
  • the coding unit 4801 generates an access unit header (AU Header) as identification information indicating the head of the access unit.
  • the coding unit 4801 stores the parameters related to the access unit in the access unit header.
  • the access unit header contains the structure or information of the coded data contained in the access unit.
  • the access unit header includes parameters commonly used for data included in the access unit, for example, parameters related to decoding of coded data.
  • the coding unit 4801 may generate an access unit delimiter that does not include parameters related to the access unit instead of the access unit header.
  • This access unit delimiter is used as identification information indicating the head of the access unit.
  • the decryption device identifies the head of the access unit by detecting the access unit header or the access unit delimiter.
  • the coding unit 4801 generates a GOF header (GOF Header) as identification information indicating the head of the GOF.
  • the coding unit 4801 stores the parameters related to the GOF in the GOF header.
  • the GOF header contains the structure or information of the coded data contained in the GOF.
  • the GOF header includes parameters commonly used for the data included in the GOF, for example, parameters related to decoding of the coded data.
  • the coding unit 4801 may generate a GOF delimiter that does not include the parameters related to the GOF instead of the GOF header.
  • This GOF delimiter is used as identification information indicating the head of the GOF.
  • the decoding device identifies the head of the GOF by detecting the GOF header or the GOF delimiter.
  • the access unit is defined as a PCC frame unit.
  • the decoding device accesses the PCC frame based on the identification information at the head of the access unit.
  • GOF is defined as one random access unit.
  • the decoding device accesses the random access unit based on the identification information at the head of the GOF. For example, if the PCC frames are not dependent on each other and can be decoded independently, the PCC frame may be defined as a random access unit.
  • one access unit may be assigned two or more PCC frames, or one GOF may be assigned a plurality of random access units.
  • the coding unit 4801 may define and generate a parameter set or metadata other than the above.
  • the coding unit 4801 may generate an SEI (Supplemental Enhancement Information) that stores parameters (optional parameters) that may not necessarily be used at the time of decoding.
  • SEI Supplemental Enhancement Information
  • FIG. 26 is a diagram showing an example of coded data and a NAL unit.
  • the coded data includes a header and a payload.
  • the coded data may include length information indicating the length (data amount) of the coded data, the header or the payload. Further, the coded data does not have to include a header.
  • the header contains, for example, identification information for identifying data.
  • This identification information indicates, for example, a data type or a frame number.
  • the header contains, for example, identification information indicating a reference relationship. This identification information is stored in the header when there is a dependency between the data, and is information for referencing the reference destination from the reference source. For example, the referenced header contains identification information for identifying the data. The header of the reference source contains identification information indicating the reference destination.
  • the identification information for specifying the data or the identification information indicating the reference relationship may be omitted.
  • the multiplexing unit 4802 stores the coded data in the payload of the NAL unit.
  • the NAL unit header includes pcc_nal_unit_type which is identification information of the coded data.
  • FIG. 27 is a diagram showing an example of the semantics of pcc_nal_unit_type.
  • pcc_codec_type is codec 1 (Codec 1: first coding method)
  • the values 0 to 10 of pcc_nal_unit_type are codec position data (Geometry) and coding attribute X data in codec 1.
  • HeaderX Codec Attribute Y Data (HeaderY), Position PS (Geom.PS), Attribute XPS (AttrX.PS), Attribute YPS (AttrX.PS), Position SPS (Geometry Sequence PS), Attribute XSPS (HeaderX) It is assigned to PS), attribute YSPS (AttributeY Position PS), AU header (AU Header), and GOF header (GOF Header). Further, the value 11 or later is assigned to the reserve of the codec 1.
  • pcc_codec_type is codec 2 (Codec 2: second coding method)
  • the values 0 to 2 of pcc_nal_unit_type are assigned to codec data A (DataA), metadata A (MetaDataA), and metadata B (MetaDataB). .. Further, the value 3 or later is assigned to the reserve of the codec 2.
  • the multiplexing unit 4802 collectively sends out the NAL unit in units of GOF or AU.
  • the multiplexing unit 4802 arranges the GOF header at the head of the GOF and the AU header at the head of the AU.
  • the multiplexing unit 4802 may arrange a sequence parameter set (SPS) for each AU so that the decoding device can decode from the next AU.
  • SPS sequence parameter set
  • the decoding device decodes the referenced data and then decodes the reference source data.
  • the multiplexing unit 4802 sends out the referenced data first so that the data can be decoded in the order in which they are received without rearranging the data.
  • FIG. 28 is a diagram showing an example of the sending order of NAL units.
  • FIG. 28 shows three examples of location information priority, parameter priority, and data integration.
  • the location information priority transmission order is an example of transmitting information related to position information and information related to attribute information together. In the case of this transmission order, the transmission of the information regarding the position information is completed earlier than the transmission of the information regarding the attribute information.
  • a decoding device that does not decode the attribute information may be able to set a time for not processing by ignoring the decoding of the attribute information. Further, for example, in the case of a decoding device that wants to decode the position information quickly, there is a possibility that the position information can be decoded earlier by obtaining the coded data of the position information earlier.
  • attribute XSPS and the attribute YSPS are integrated and described as the attribute SPS in FIG. 28, the attribute XSPS and the attribute YSPS may be arranged separately.
  • the parameter set is transmitted first and the data is transmitted later.
  • the multiplexing unit 4802 may transmit the NAL units in any order.
  • the order identification information is defined, and the multiplexing unit 4802 may have a function of transmitting NAL units in the order of a plurality of patterns.
  • the order identification information of the NAL unit is stored in the stream PS.
  • the three-dimensional data decoding device may perform decoding based on the order identification information.
  • the three-dimensional data decoding device may instruct the three-dimensional data coding device of a desired transmission order, and the three-dimensional data coding device (multiplexing unit 4802) may control the transmission order according to the instructed transmission order.
  • the multiplexing unit 4802 may generate coded data in which a plurality of functions are merged as long as it is within the range that is subject to the restrictions of the transmission order, such as the transmission order of data integration.
  • the GOF header and the AU header may be integrated, or the AXIS and the AYPS may be integrated.
  • an identifier indicating that the data has a plurality of functions is defined in pcc_nal_unit_type.
  • the parameter storage method is The following method may be used.
  • the default PS value is indicated by the higher PS.
  • the lower PS value indicates the PS value.
  • the PS value is not described in the upper PS, and the PS value is described in the lower PS.
  • information on whether the value of PS is indicated by a lower PS, a higher PS, or both is shown in one or both of the lower PS and the upper PS.
  • the lower PS may be merged with the upper PS.
  • the multiplexing unit 4802 may omit the transmission of either one.
  • the coding unit 4801 or the multiplexing unit 4802 may divide the data into slices, tiles, or the like, and send out the divided data.
  • the divided data contains information for identifying the divided data, and the parameters used for decoding the divided data are included in the parameter set.
  • pcc_nal_unit_type an identifier indicating that the data stores data or parameters related to tiles or slices is defined.
  • FIG. 29 is a block diagram showing the configuration of the first coding unit 4910 included in the three-dimensional data coding device according to the present embodiment.
  • the first coding unit 4910 generates coded data (coded stream) by coding the point cloud data by the first coding method (GPC (Geometry based PCC)).
  • the first coding unit 4910 includes a division unit 4911, a plurality of position information coding units 4912, a plurality of attribute information coding units 4913, an additional information coding unit 4914, and a multiplexing unit 4915. ..
  • the division unit 4911 generates a plurality of division data by dividing the point cloud data. Specifically, the division unit 4911 generates a plurality of division data by dividing the space of the point cloud data into a plurality of subspaces.
  • the subspace is one of tiles and slices, or a combination of tiles and slices.
  • the point cloud data includes position information, attribute information, and additional information.
  • the division unit 4911 divides the position information into a plurality of division position information, and divides the attribute information into a plurality of division attribute information. Further, the division unit 4911 generates additional information regarding the division.
  • the plurality of position information coding units 4912 generate a plurality of coded position information by encoding the plurality of divided position information. For example, the plurality of position information coding units 4912 process a plurality of divided position information in parallel.
  • the plurality of attribute information coding units 4913 generate a plurality of coded attribute information by encoding the plurality of divided attribute information. For example, the plurality of attribute information coding units 4913 process a plurality of divided attribute information in parallel.
  • the additional information coding unit 4914 generates coded additional information by encoding the additional information included in the point cloud data and the additional information related to the data division generated at the time of division by the division unit 4911.
  • the multiplexing unit 4915 generates coded data (coded stream) by multiplexing a plurality of coded position information, a plurality of coded attribute information, and coded additional information, and sends out the generated coded data. ..
  • the coded additional information is used at the time of decoding.
  • the numbers of the position information coding unit 4912 and the attribute information coding unit 4913 show two examples, respectively, but the numbers of the position information coding unit 4912 and the attribute information coding unit 4913 are respectively. It may be one or three or more. Further, the plurality of divided data may be processed in parallel in the same chip like a plurality of cores in a CPU, may be processed in parallel by the cores of a plurality of chips, or may be processed in parallel by a plurality of cores of a plurality of chips. May be done.
  • FIG. 30 is a block diagram showing the configuration of the first decoding unit 4920.
  • the first decoding unit 4920 restores the point cloud data by decoding the coded data (coded stream) generated by encoding the point cloud data by the first coding method (GPCC). ..
  • the first decoding unit 4920 includes a demultiplexing unit 4921, a plurality of position information decoding units 4922, a plurality of attribute information decoding units 4923, an additional information decoding unit 4924, and a coupling unit 4925.
  • the demultiplexing unit 4921 generates a plurality of coded position information, a plurality of coded attribute information, and coded additional information by demultiplexing the coded data (coded stream).
  • the plurality of position information decoding units 4922 generate a plurality of divided position information by decoding the plurality of coded position information. For example, the plurality of position information decoding units 4922 process a plurality of coded position information in parallel.
  • the plurality of attribute information decoding units 4923 generates a plurality of divided attribute information by decoding a plurality of coded attribute information. For example, the plurality of attribute information decoding units 4923 processes a plurality of coded attribute information in parallel.
  • the plurality of additional information decoding units 4924 generate additional information by decoding the coded additional information.
  • the joining unit 4925 generates position information by combining a plurality of divided position information using additional information.
  • the coupling unit 4925 generates attribute information by combining a plurality of division attribute information using additional information.
  • the number of the position information decoding unit 4922 and the number of the attribute information decoding unit 4923 are two, respectively, but the number of the position information decoding unit 4922 and the attribute information decoding unit 4923 is one, respectively. It may be 3 or more. Further, the plurality of divided data may be processed in parallel in the same chip as in the case of the plurality of cores in the CPU, or may be processed in parallel by the cores of the plurality of chips, or may be processed in parallel by the plurality of cores of the plurality of chips. You may.
  • FIG. 31 is a block diagram of the divided portion 4911.
  • the division unit 4911 includes a slice division unit 4931 (Slice Divider), a position information tile division unit 4932 (Geometry Tile Divider), and an attribute information tile division unit 4933 (Attribute Tile Divider).
  • the slice division unit 4931 generates a plurality of slice position information by dividing the position information (Position (Geometry)) into slices. Further, the slice division unit 4931 generates a plurality of slice attribute information by dividing the attribute information (Attribute) into slices. Further, the slice division unit 4931 outputs the information related to the slice division and the slice addition information (SliceMetaData) including the information generated in the slice division.
  • the position information tile division unit 4932 generates a plurality of division position information (a plurality of tile position information) by dividing a plurality of slice position information into tiles. Further, the position information tile division unit 4932 outputs the information related to the tile division of the position information and the position tile addition information (Geometry Tile Metadata Data) including the information generated in the tile division of the position information.
  • the attribute information tile division unit 4933 generates a plurality of division attribute information (multiple tile attribute information) by dividing a plurality of slice attribute information into tiles. Further, the attribute information tile division unit 4933 outputs the attribute tile addition information (Attribute Tile MetaData) including the information related to the tile division of the attribute information and the information generated in the tile division of the attribute information.
  • attribute tile addition information Attribute Tile MetaData
  • the number of slices or tiles to be divided is 1 or more. That is, it is not necessary to divide slices or tiles.
  • the slice division may be performed after the tile division.
  • a new division type may be defined, and division may be performed by three or more division types.
  • FIG. 32 is a diagram showing an example of slicing and tile division.
  • the division unit 4911 divides the three-dimensional point cloud data into arbitrary point clouds in slice units.
  • the division unit 4911 does not divide the position information and the attribute information constituting the points, but divides the position information and the attribute information at once. That is, the division unit 4911 performs slice division so that the position information and the attribute information at an arbitrary point belong to the same slice.
  • the number of divisions and the division method may be any method.
  • the smallest unit of division is a point.
  • the number of divisions between the position information and the attribute information is the same.
  • the three-dimensional point corresponding to the position information after the slice division and the three-dimensional point corresponding to the attribute information are included in the same slice.
  • the division unit 4911 generates slice addition information which is additional information related to the number of divisions and the division method at the time of slice division.
  • the slice addition information is the same for the position information and the attribute information.
  • the slice addition information includes information indicating the reference coordinate position, size, or side length of the bounding box after division. Further, the slice addition information includes information indicating the number of divisions, the division type, and the like.
  • the division unit 4911 divides the slice-divided data into slice position information (G slice) and slice attribute information (A slice), and divides the slice position information and slice attribute information into tile units, respectively.
  • FIG. 32 shows an example of dividing by an octa-tree structure
  • the number of divisions and the division method may be any method.
  • the division unit 4911 may divide the position information and the attribute information by different division methods or may divide by the same division method. Further, the division unit 4911 may divide a plurality of slices into tiles by different division methods, or may divide them into tiles by the same division method.
  • the division unit 4911 generates tile addition information related to the number of divisions and the division method at the time of tile division.
  • the tile addition information (position tile addition information and attribute tile addition information) is independent of the position information and the attribute information.
  • the tile addition information includes information indicating the reference coordinate position, size, or side length of the bounding box after division. Further, the tile addition information includes information indicating the number of divisions, the division type, and the like.
  • the division unit 4911 may use a predetermined method as the method of slicing or tile division, or may adaptively switch the method to be used according to the point cloud data.
  • the division unit 4911 collectively divides the three-dimensional space for the position information and the attribute information. For example, the division unit 4911 determines the shape of the object and divides the three-dimensional space into slices according to the shape of the object. For example, the division unit 4911 extracts an object such as a tree or a building and divides the object into units. For example, the division unit 4911 performs slice division so that the entire one or a plurality of objects are included in one slice. Alternatively, the division unit 4911 divides one object into a plurality of slices.
  • the coding device may change the coding method for each slice, for example.
  • the coding device may use a high quality compression method for a particular object or a particular portion of the object.
  • the coding apparatus may store information indicating the coding method for each slice in additional information (metadata).
  • the division unit 4911 may perform slice division so that each slice corresponds to a predetermined coordinate space based on the map information or the position information.
  • the division unit 4911 independently divides the position information and the attribute information. For example, the division unit 4911 divides the slice into tiles according to the amount of data or the amount of processing. For example, the division unit 4911 determines whether the amount of data in the slice (for example, the number of three-dimensional points contained in the slice) is larger than a predetermined threshold value. The division unit 4911 divides the slice into tiles when the amount of data of the slice is larger than the threshold value. The dividing unit 4911 does not divide the slice into tiles when the amount of data in the slice is less than the threshold value.
  • the division unit 4911 divides the slice into tiles so that the processing amount or processing time in the decoding device is within a certain range (less than or equal to a predetermined value). As a result, the amount of processing per tile in the decoding device becomes constant, and distributed processing in the decoding device becomes easy.
  • the division unit 4911 sets the number of divisions of the position information from the number of divisions of the attribute information. Do more.
  • the division unit 4911 determines the number of divisions of the position information. It may be larger than the number of divisions of the attribute information. As a result, the decoding device can increase the number of parallel positions of the position information, so that the processing of the position information can be made faster than the processing of the attribute information.
  • the decoding device does not necessarily have to process the sliced or tiled data in parallel, and may determine whether or not to process these in parallel according to the number or capacity of the decoding processing units.
  • adaptive coding according to the content or object can be realized.
  • parallel processing in decoding processing can be realized. This increases the flexibility of the point cloud coding system or the point cloud decoding system.
  • FIG. 33 is a diagram showing an example of a pattern of slicing and dividing tiles.
  • the DU in the figure is a data unit (DataUnit) and indicates tile or slice data.
  • each DU includes a slice index (SliceIndex) and a tile index (TileIndex).
  • sliceIndex slice index
  • TileIndex tile index
  • the number of divisions and the division method are the same for G slices and A slices.
  • the number of divisions and the division method for the G slice and the division number and the division method for the A slice are different. Further, the same number of divisions and division methods are used among a plurality of G slices. The same number of divisions and division method are used among a plurality of A slices.
  • the number of divisions and the division method are the same for G slice and A slice.
  • the number of divisions and the division method for the G slice and the division number and the division method for the A slice are different. Further, the number of divisions and the division method are different among the plurality of G slices. The number of divisions and the division method differ among a plurality of A slices.
  • the three-dimensional data coding device (first coding unit 4910) encodes each of the divided data.
  • the three-dimensional data coding device When encoding the attribute information, the three-dimensional data coding device generates dependency information as additional information indicating which configuration information (position information, additional information, or other attribute information) was used for encoding. .. That is, the dependency information indicates, for example, the configuration information of the reference destination (dependency destination).
  • the three-dimensional data encoding device generates dependency information based on the configuration information corresponding to the divided shape of the attribute information.
  • the three-dimensional data coding device may generate dependency information based on the configuration information corresponding to the plurality of divided shapes.
  • Dependency information may be generated by a 3D data encoding device, and the generated dependency information may be sent to a 3D data decoding device.
  • the 3D data decoding device may generate the dependency information, and the 3D data coding device may not send the dependency information.
  • the dependency relationship used by the three-dimensional data coding device is predetermined, and the three-dimensional data coding device does not have to send out the dependency relationship information.
  • FIG. 34 is a diagram showing an example of the dependency relationship of each data.
  • the tip of the arrow in the figure indicates the dependency destination, and the source of the arrow indicates the dependency source.
  • the three-dimensional data decoding device decodes data in the order of the dependency source from the dependency destination. Further, the data indicated by the solid line in the figure is the data actually transmitted, and the data indicated by the dotted line is the data not transmitted.
  • G indicates position information and A indicates attribute information.
  • G s1 indicates the position information of the slice number 1
  • G s2 indicates the position information of the slice number 2.
  • G s1t1 indicates the position information of slice number 1 and tile number 1
  • G s1t2 indicates the position information of slice number 1 and tile number 2
  • G s2t1 indicates the position information of slice number 2 and tile number 1.
  • G s2t2 indicate the position information of the slice number 2 and the tile number 2.
  • a s1 indicates the attribute information of the slice number 1
  • a s2 indicates the attribute information of the slice number 2.
  • As1t1 indicates the attribute information of slice number 1 and tile number 1
  • As1t2 indicates the attribute information of slice number 1 and tile number 2
  • As2t1 indicates the attribute information of slice number 2 and tile number 1.
  • As2t2 indicate the attribute information of the slice number 2 and the tile number 2.
  • Mslice indicates slice addition information
  • MGtile indicates position tile addition information
  • MAtile indicates attribute tile addition information
  • D s1t1 shows the dependency information of the attribute information A s1t1
  • D s2t1 shows the dependency information of the attribute information A s2t1 .
  • the three-dimensional data coding device may sort the data in the order of decoding so that the data does not need to be sorted in the three-dimensional data decoding device.
  • the data may be rearranged in the three-dimensional data decoding device, or the data may be rearranged in both the three-dimensional data coding device and the three-dimensional data decoding device.
  • FIG. 35 is a diagram showing an example of the order of decoding data.
  • decoding is performed in order from the data on the left.
  • the three-dimensional data decoding device decodes the dependent data first among the dependent data.
  • the three-dimensional data coding apparatus sorts the data in advance so as to send the data in this order. It should be noted that any order may be used as long as the dependent data comes first. Further, the three-dimensional data coding apparatus may send additional information and dependency information before the data.
  • FIG. 36 is a flowchart showing the flow of processing by the three-dimensional data coding device.
  • the three-dimensional data coding device encodes the data of a plurality of slices or tiles as described above (S4901).
  • the three-dimensional data coding apparatus rearranges the data so that the dependent data comes first (S4902).
  • the three-dimensional data coding device multiplexes (NAL unitizes) the sorted data (S4903).
  • FIG. 37 is a block diagram showing the configuration of the joint portion 4925.
  • the joint portion 4925 includes a position information tile joint portion 4941 (Geometry Tile Combiner), an attribute information tile joint portion 4942 (Attribute Tile Combiner), and a slice joint portion (Slice Comminer).
  • the position information tile connecting unit 4941 generates a plurality of slice position information by combining a plurality of divided position information using the position tile additional information.
  • the attribute information tile combination unit 4942 generates a plurality of slice attribute information by combining a plurality of division attribute information using the attribute tile addition information.
  • the slice joining unit 4943 generates position information by joining a plurality of slice position information using the slice addition information. Further, the slice joining unit 4943 generates attribute information by joining a plurality of slice attribute information using the slice addition information.
  • the number of slices or tiles to be divided is 1 or more. That is, the slices or tiles may not be divided.
  • the slice division may be performed after the tile division.
  • a new division type may be defined, and division may be performed by three or more division types.
  • FIG. 38 is a diagram showing the structure of the coded data and the method of storing the coded data in the NAL unit.
  • the coded data (division position information and division attribute information) is stored in the payload of the NAL unit.
  • the coded data includes a header and a payload.
  • the header contains identification information for identifying the data contained in the payload.
  • This identification information is, for example, a slice division or tile division type (slice_type, tile_type), index information (slice_idx, tile_idx) for identifying a slice or tile, position information of data (slice or tile), or data address. (Addless) and the like are included.
  • the index information for identifying the slice is also referred to as a slice index (SliceIndex).
  • the index information for identifying the tile is also referred to as a tile index (TileIndex).
  • the type of division is, for example, a method based on an object shape as described above, a method based on map information or position information, a method based on a data amount or a processing amount, and the like.
  • the above information is stored in one of the header of the division position information and the header of the division attribute information, and may not be stored in the other.
  • the division type (slice_type, tile_type) and the index information (slice_idx, tile_idx) are the same for the position information and the attribute information. Therefore, these information may be included in one of the headers of the position information and the attribute information.
  • the attribute information depends on the position information
  • the position information is processed first. Therefore, the header of the position information may include such information, and the header of the attribute information may not include such information.
  • the three-dimensional data decoding device determines that the attribute information of the dependency source belongs to the same slice or tile as the slice or tile of the position information of the dependency destination, for example.
  • the additional information (slice addition information, position tile addition information or attribute tile addition information) related to the slice division or tile division, the dependency information indicating the dependency relationship, etc. are the existing parameter set (GPS, APS, position SPS or It may be stored in the attribute SPS (etc.) and sent out.
  • information indicating the division method may be stored in a parameter set (GPS, APS, etc.) for each frame. If the division method does not change within the sequence, information indicating the division method may be stored in the parameter set (position SPS or attribute SPS) for each sequence. Further, when the same division method is used for the position information and the attribute information, the information indicating the division method may be stored in the parameter set (stream PS) of the PCC stream.
  • the above information may be stored in any one of the above parameter sets, or may be stored in a plurality of parameter sets. Further, a parameter set for tile division or slice division may be defined, and the above information may be stored in the parameter set. Further, these pieces of information may be stored in the header of the coded data.
  • the header of the coded data contains identification information indicating the dependency. That is, the header contains identification information for referencing the dependency destination from the dependency source when there is a dependency relationship between the data.
  • the header of the dependent data contains identification information for identifying the data.
  • the header of the dependent data contains identification information indicating the dependent destination. If the identification information for specifying the data, the additional information related to the slice division or the tile division, and the identification information indicating the dependency can be identified or derived from other information, these information are omitted. You may.
  • FIG. 39 is a flowchart of the point cloud data coding process according to the present embodiment.
  • the three-dimensional data coding device determines the division method to be used (S4911).
  • This division method includes whether or not to perform slice division and whether or not to perform tile division. Further, the division method may include the number of divisions in the case of performing slice division or tile division, the type of division, and the like.
  • the type of division is a method based on the object shape as described above, a method based on map information or position information, a method based on a data amount or a processing amount, and the like.
  • the division method may be predetermined.
  • the three-dimensional data encoding device When slice division is performed (Yes in S4912), the three-dimensional data encoding device generates a plurality of slice position information and a plurality of slice attribute information by collectively dividing the position information and the attribute information (S4913). .. Further, the three-dimensional data coding device generates slice addition information related to slice division. The three-dimensional data coding device may independently divide the position information and the attribute information.
  • the three-dimensional data encoding device When tile division is performed (Yes in S4914), the three-dimensional data encoding device independently divides a plurality of slice position information and a plurality of slice attribute information (or position information and attribute information) into a plurality of division positions. Information and a plurality of division attribute information are generated (S4915). Further, the three-dimensional data encoding device generates position tile addition information and attribute tile addition information related to tile division. The three-dimensional data coding device may collectively divide the slice position information and the slice attribute information.
  • the three-dimensional data coding apparatus generates a plurality of coded position information and a plurality of coded attribute information by encoding each of the plurality of divided position information and the plurality of divided attribute information (S4916). ..
  • the three-dimensional data coding device generates dependency information.
  • the three-dimensional data coding device generates coded data (coded stream) by NAL unitizing (multiplexing) a plurality of coded position information, a plurality of coded attribute information, and additional information (multiplexing). S4917). Further, the three-dimensional data coding device sends out the generated coded data.
  • FIG. 40 is a flowchart of the point cloud data decoding process according to the present embodiment.
  • the three-dimensional data decoding device analyzes the additional information (slice additional information, position tile additional information, and attribute tile additional information) related to the division method included in the coded data (encoded stream), thereby performing the division method. Is determined (S4921).
  • This division method includes whether or not to perform slice division and whether or not to perform tile division. Further, the division method may include the number of divisions in the case of performing slice division or tile division, the type of division, and the like.
  • the three-dimensional data decoding device decodes a plurality of coded position information and a plurality of coded attribute information included in the coded data by using the dependency information included in the coded data to obtain the divided position information. And the division attribute information is generated (S4922).
  • the three-dimensional data decoding device When the additional information indicates that the tile division is performed (Yes in S4923), the three-dimensional data decoding device has a plurality of division position information and a plurality of divisions based on the position tile addition information and the attribute tile addition information. By combining the attribute information with each method, a plurality of slice position information and a plurality of slice attribute information are generated (S4924). The three-dimensional data decoding device may combine the plurality of division position information and the plurality of division attribute information by the same method.
  • the three-dimensional data decoder When the additional information indicates that the slice division is performed (Yes in S4925), the three-dimensional data decoder has a plurality of slice position information and a plurality of slice attribute information (multiple division positions) based on the slice addition information. Information and a plurality of divided attribute information) are combined in the same way to generate position information and attribute information (S4926).
  • the three-dimensional data decoding device may combine the plurality of slice position information and the plurality of slice attribute information by different methods.
  • the three-dimensional data encoding device includes a plurality of divided data in which a target space containing a plurality of three-dimensional points is divided into a plurality of subspaces (for example, slices), each containing one or more three-dimensional points. It is divided into (for example, tiles) (S4932).
  • the divided data is included in the subspace and is one or more data aggregates including one or more three-dimensional points.
  • the divided data is also a space, and may include a space that does not include three-dimensional points.
  • one subspace may contain a plurality of divided data, or one subspace may contain one divided data.
  • a plurality of subspaces may be set in the target space, or one subspace may be set in the target space.
  • the three-dimensional data coding device encodes each of the plurality of divided data to generate a plurality of coded data corresponding to each of the plurality of divided data (S4931).
  • the three-dimensional data coding apparatus generates a bit stream including a plurality of coded data and a plurality of control information (for example, a header shown in FIG. 38) for each of the plurality of coded data (S4932).
  • Each of the plurality of control information shows a first identifier (for example, slice_idx) indicating a subspace corresponding to the coded data corresponding to the control information, and divided data corresponding to the coded data corresponding to the control information.
  • a second identifier for example, tile_idx is stored.
  • the three-dimensional data decoding device that decodes the bit stream generated by the three-dimensional data coding device uses the first identifier and the second identifier to combine the data of a plurality of divided data into the target space. Can be easily restored. Therefore, the amount of processing in the three-dimensional data decoding device can be reduced.
  • the three-dimensional data coding device encodes the position information and the attribute information of the three-dimensional points included in each of the plurality of divided data.
  • Each of the plurality of coded data includes coded data of position information and coded data of attribute information.
  • Each of the plurality of control information includes the control information of the coded data of the position information and the control information of the coded data of the attribute information.
  • the first identifier and the second identifier are stored in the control information of the coded data of the position information.
  • each of a plurality of control information is arranged before the coded data corresponding to the control information.
  • a target space including a plurality of three-dimensional points is set in one or more subspaces, and the subspace includes one or more divided data including one or more three-dimensional points.
  • a plurality of coded data corresponding to each of the plurality of divided data is generated, and the plurality of coded data and a plurality of coded data for each of the plurality of coded data are generated.
  • a bit stream including the control information of the above is generated, and each of the plurality of control information includes a first identifier indicating a subspace corresponding to the coded data corresponding to the control information and a code corresponding to the control information.
  • a second identifier indicating the divided data corresponding to the converted data may be stored.
  • the three-dimensional data encoding device includes a processor and a memory, and the processor uses the memory to perform the above processing.
  • the three-dimensional data decoding device performs the process shown in FIG. 42.
  • the three-dimensional data decoding device is included in a plurality of subspaces (for example, slices) in which a target space containing a plurality of three-dimensional points is divided, and a plurality of divided data (each containing one or more three-dimensional points).
  • a plurality of subspaces for example, slices
  • a plurality of divided data each containing one or more three-dimensional points.
  • the first identifier (for example, slice_idx) indicating the subspace corresponding to the coded data corresponding to the control information and the divided data corresponding to the coded data corresponding to the control information are stored in a plurality of control information.
  • the second identifier (for example, tile_idx) to be indicated is acquired (S4941).
  • the three-dimensional data decoding device restores the plurality of divided data by decoding the plurality of coded data (S4942).
  • the three-dimensional data decoding device restores the target space by combining a plurality of divided data using the first identifier and the second identifier (S4943).
  • a three-dimensional data encoding device restores a plurality of subspaces by combining a plurality of divided data using a second identifier, and a target space by combining a plurality of subspaces using the first identifier.
  • Restore multiple 3D points.
  • the three-dimensional data decoding device acquires the coded data of the desired subspace or divided data from the bit stream by using at least one of the first identifier and the second identifier, and selectively selects the acquired coded data. Decoding or preferentially decoding may be performed.
  • the three-dimensional data decoding device can easily restore the target space by combining the data of a plurality of divided data by using the first identifier and the second identifier. Therefore, the amount of processing in the three-dimensional data decoding device can be reduced.
  • each of the plurality of coded data is generated by encoding the position information and the attribute information of the three-dimensional points included in the corresponding divided data, and the coded data of the position information and the code of the attribute information. Includes data.
  • Each of the plurality of control information includes the control information of the coded data of the position information and the control information of the coded data of the attribute information.
  • the first identifier and the second identifier are stored in the control information of the coded data of the position information.
  • control information is placed before the corresponding coded data.
  • the three-dimensional data decoding device includes a processor and a memory, and the processor uses the memory to perform the above processing.
  • the position information of a plurality of three-dimensional points is encoded by using the prediction tree generated based on the position information.
  • FIG. 43 is a diagram showing an example of a prediction tree used in the three-dimensional data coding method according to the fourth embodiment.
  • FIG. 44 is a flowchart showing an example of the three-dimensional data coding method according to the fourth embodiment.
  • FIG. 45 is a flowchart showing an example of the three-dimensional data decoding method according to the fourth embodiment.
  • a prediction tree is generated using a plurality of three-dimensional points, and then the node information included in each node of the prediction tree is encoded. This gives a bitstream containing the coded node information.
  • Each node information is, for example, information about one node of the prediction tree.
  • Each node information is, for example, the position information of one node, the index of the one node, the number of child nodes of the one node, the prediction mode used for encoding the position information of the one node, and the like.
  • the predicted residual is included.
  • each coded node information included in the bit stream is decoded, and then the position information is decoded while generating a prediction tree. ..
  • FIG. 46 is a diagram for explaining a method of generating a predicted tree according to the fourth embodiment.
  • the three-dimensional data encoding device first adds a point 0 as the initial point of the prediction tree.
  • the position information of the point 0 is indicated by the coordinates including the three elements (x0, y0, z0).
  • the position information of the point 0 may be indicated by the coordinates of the three-axis Cartesian coordinate system or may be indicated by the coordinates of the polar coordinate system.
  • the child_count is incremented by 1 each time one child node is added to the node for which the child_count is set.
  • the child_count of each node after the generation of the predicted tree is completed indicates the number of child nodes possessed by each node, and is added to the bitstream.
  • the pred_mode indicates a prediction mode for predicting the value of the position information of each node. The details of the prediction mode will be described later.
  • the three-dimensional data coding device adds point 1 to the prediction tree.
  • the three-dimensional data encoding device may search for the nearest point of the point 1 from the point cloud already added to the prediction tree, and add the point 1 as a child node of the nearest point.
  • the position information of the point 1 is indicated by the coordinates including the three elements (x1, y1, z1).
  • the position information of the point 1 may be indicated by the coordinates of the three-axis Cartesian coordinate system or may be indicated by the coordinates of the polar coordinate system.
  • point 0 is the nearest point to point 1
  • point 1 is added as a child node of point 0.
  • the three-dimensional data coding device increments the value indicated by the child_count at point 0 by 1.
  • the predicted value of the position information of each node may be calculated when the node is added to the prediction tree.
  • the three-dimensional data coding apparatus may add point 1 as a child node of point 0 and calculate the position information of point 0 as a predicted value.
  • pred_mode 1 may be set.
  • the pred_mode is prediction mode information (prediction mode value) indicating the prediction mode.
  • the three-dimensional data coding device may calculate the error_value (predicted residual) of point 1 after calculating the predicted value.
  • residual_value is a difference value obtained by subtracting the predicted value calculated in the predicted mode indicated by pred_mode from the position information of each node.
  • the coding efficiency can be improved by coding the difference value from the predicted value instead of the position information itself.
  • the three-dimensional data coding device adds the point 2 to the prediction tree.
  • the three-dimensional data encoding device may search for the nearest point of the point 2 from the point cloud already added to the prediction tree, and add the point 2 as a child node of the nearest point.
  • the position information of the point 2 is indicated by the coordinates including the three elements (x2, y2, z2).
  • the position information of the point 2 may be indicated by the coordinates of the three-axis Cartesian coordinate system or may be indicated by the coordinates of the polar coordinate system.
  • the point 1 becomes the nearest point of the point 2, and the point 2 is added as a child node of the point 1.
  • the three-dimensional data coding device increments the value indicated by the child_count of point 1 by 1.
  • the three-dimensional data coding device adds the point 3 to the prediction tree.
  • the three-dimensional data encoding device may search for the nearest point of the point 3 from the point cloud already added to the prediction tree, and add the point 3 as a child node of the nearest point.
  • the position information of the point 3 is indicated by the coordinates including the three elements (x3, y3, z3).
  • the position information of the point 3 may be indicated by the coordinates of the three-axis Cartesian coordinate system or may be indicated by the coordinates of the polar coordinate system.
  • point 0 is the nearest point to point 3
  • point 3 is added as a child node of point 0.
  • the three-dimensional data coding device increments the value indicated by the child_count at point 0 by 1.
  • the 3D data coding device adds all the points to the prediction tree and completes the generation of the prediction tree.
  • the three-dimensional data coding device encodes the children_count, pred_mode, and residual_value of each node selected from the nodes of the root in the order of depth priority. That is, when selecting nodes in the order of depth priority, the three-dimensional data encoding device selects a child node that has not yet been selected from one or more child nodes of the selected node as the node next to the selected node. .. If the selected node does not have a child node, the 3D data encoding device selects another unselected child node of the parent node of the selected node.
  • the coding order is not limited to the depth priority order, but may be, for example, a breadth first order.
  • the three-dimensional data encoding device selects a node that has not yet been selected from one or more nodes in the same depth (hierarchy) as the selected node as the node next to the selected node. select. If the node of the same depth as the selected node does not exist, the three-dimensional data coding device selects a node of one or more of the next depth that has not been selected yet.
  • points 0 to 3 are examples of a plurality of three-dimensional points.
  • child_count, pred_mode, and residual_value are calculated when each point is added to the prediction tree, but the present invention is not limited to this, and for example, after the generation of the prediction tree is completed. , They may be calculated.
  • the input order of the plurality of three-dimensional points to the three-dimensional data encoding device may be such that the input three-dimensional points are sorted in ascending or descending order of the Morton orderer and processed in order from the first three-dimensional point.
  • the three-dimensional data coding apparatus can efficiently search for the nearest point of the three-dimensional point to be processed, and can improve the coding efficiency.
  • the three-dimensional data coding apparatus may process the three-dimensional points in the input order without rearranging them.
  • the 3D data coding device may generate a predictive tree without branches in the input order of a plurality of 3D points.
  • the three-dimensional data encoding device adds the input three-dimensional point next to the input three-dimensional point as a child node of a predetermined three-dimensional point in the input order of a plurality of three-dimensional points. You may.
  • FIG. 47 is a diagram for explaining a first example of the prediction mode according to the fourth embodiment.
  • FIG. 47 is a diagram showing a part of the predicted tree.
  • Eight prediction modes may be set as shown below. For example, as shown in FIG. 47, the case of calculating the predicted value of the point c will be described as an example.
  • the prediction tree shows that the parent node at point c is point p0, the grandfather node at point c is point p1, and the great-grandfather node at point c is point p2.
  • the point c, the point p0, the point p1, and the point p2 are examples of a plurality of three-dimensional points.
  • the prediction mode in which the prediction mode value is 0 (hereinafter referred to as prediction mode 0) may be set without prediction. That is, the three-dimensional data coding device may calculate the input position information of the point c as the predicted value of the point c in the prediction mode 0.
  • prediction mode 1 the prediction mode in which the prediction mode value is 1 (hereinafter referred to as prediction mode 1) may be set to the difference prediction with the point p0. That is, the three-dimensional data coding device may calculate the position information of the point p0, which is the parent node of the point c, as the predicted value of the point c.
  • the prediction mode in which the prediction mode value is 2 (hereinafter referred to as prediction mode 2) may be set to linear prediction by points p0 and points p1. That is, the three-dimensional data encoding device obtains the prediction result of the point c by linear prediction using the position information of the point p0 which is the parent node of the point c and the position information of the point p1 which is the grandfather node of the point c. It may be calculated as a predicted value. Specifically, the three-dimensional data coding device calculates the predicted value of the point c in the prediction mode 2 using the following equation T1.
  • p0 indicates the position information of the point p0
  • p1 indicates the position information of the point p1.
  • the prediction mode in which the prediction mode value is 3 may be set to Parallelogram prediction using points p0, point p1 and point p2. That is, the three-dimensional data encoding device has the position information of the point p0 which is the parent node of the point c, the position information of the point p1 which is the grandfather node of the point c, and the position information of the point p2 which is the great-grandfather node of the point c.
  • the prediction result by the Parallelogram prediction using and may be calculated as the prediction value of the point c.
  • the three-dimensional data coding device calculates the predicted value of the point c in the prediction mode 3 using the following equation T2.
  • p0 indicates the position information of the point p0
  • p1 indicates the position information of the point p1
  • p2 indicates the position information of the point p2.
  • prediction mode 4 may be set to the difference prediction with the point p1. That is, the three-dimensional data coding device may calculate the position information of the point p1, which is the grandfather node of the point c, as the predicted value of the point c.
  • prediction mode 5 may be set to the difference prediction with the point p2. That is, the three-dimensional data coding device may calculate the position information of the point p2, which is the great-grandfather node of the point c, as the predicted value of the point c.
  • the prediction mode in which the prediction mode value is 6 may be set to the average of any two or more position information of points p0, point p1, and points p2. That is, the three-dimensional data coding device has the position information of the point p0 which is the parent node of the point c, the position information of the point p1 which is the grandfather node of the point c, and the position information of the point p2 which is the great-grandfather node of the point c.
  • the average value of two or more position information of the above may be calculated as the predicted value of the point c.
  • the following equation T3 is used to calculate the predicted value of the point c in the prediction mode 6. do.
  • p0 indicates the position information of the point p0
  • p1 indicates the position information of the point p1.
  • prediction mode 7 the prediction mode in which the prediction mode value is 7 (hereinafter referred to as prediction mode 7) is used for non-linear prediction using the distance d0 between the points p0 and p1 and the distance d1 between the points p2 and p1. It may be set. That is, the three-dimensional data coding apparatus may calculate the prediction result by the non-linear prediction using the distance d0 and the distance d1 as the prediction value of the point c.
  • the prediction method assigned to each prediction mode is not limited to the above example. Further, the above eight prediction modes and the above eight prediction methods do not have to be the above combinations, and may be any combination. For example, when the prediction mode is encoded by using entropy coding such as arithmetic coding, the prediction mode 0 may be assigned a frequently used prediction method. Thereby, the coding efficiency can be improved. Further, the three-dimensional data coding apparatus may improve the coding efficiency by dynamically changing the allocation of the prediction mode according to the frequency of use of the prediction mode while advancing the coding process.
  • the three-dimensional data coding apparatus may count, for example, the frequency of use of each prediction mode at the time of coding, and may assign a prediction mode indicated by a smaller value to a prediction method having a higher frequency of use. This can improve the coding efficiency.
  • the three-dimensional data coding device uses the predicted value (px, py, pz) of the position information (x, y, z) of the three-dimensional point as a code among the three-dimensional points around the three-dimensional point to be encoded.
  • the predicted value used for calculating the position information of the three-dimensional point to be encoded may be calculated by using the position information of the three-dimensional point whose distance is close to the three-dimensional point to be encoded. Further, the three-dimensional data coding device may add prediction mode information (pred_mode) for each three-dimensional point so that the predicted value calculated according to the prediction mode can be selected.
  • the position information of the three-dimensional point p0 of the nearest neighbor point is assigned to the prediction mode 0, ...
  • the position information of the three-dimensional point p2 is assigned to the prediction mode M-1 and used for prediction. It is conceivable to add the predicted mode to the bitstream for each three-dimensional point.
  • FIG. 48 is a diagram showing an example of the syntax of the header of the position information.
  • the NuMNeightborPoint, NuPredMode, Thfix, QP, and unique_point_per_leaf in the syntax of FIG. 48 will be described in order.
  • NuMeightborPoint indicates the upper limit of the number of surrounding points used to generate the predicted value of the position information of the three-dimensional point.
  • the peripheral points M are less than the NuMNeightborPoint (M ⁇ NumNeightborPoint), in the calculation process of the predicted value, the predicted value may be calculated using the M surrounding points.
  • NuMRedMode indicates the total number M of prediction modes used for predicting position information.
  • the maximum value MaxM that can be taken by the number of prediction modes may be specified by a standard or the like.
  • the number of prediction modes NuMRedMode does not have to be added to the bit stream, and the value may be specified by a profile or level such as a standard. Further, the number of prediction modes may be defined by NumNeightborPoint + NumPredMode.
  • the prediction mode is fixed at ⁇ .
  • is a prediction mode for calculating a prediction value using linear prediction, and is “2” in the above embodiment. It should be noted that Thfix does not have to be added to the bitstream, and the value may be specified by a profile or level such as a standard.
  • the three-dimensional data coding apparatus may calculate the quantization step from the quantization parameter and quantize the position information using the calculated quantization step.
  • the determination of whether or not to fix the prediction mode is performed using the absolute difference value between the distance d0 and the distance d1, but the determination is not necessarily limited to this, and any method is used. You can judge. For example, this judgment calculates the distance d0 between the points p1 and p0, and if the distance d0 is larger than the threshold value, it is determined that the point p1 cannot be used for prediction, and the prediction mode value is set to "1" (prediction value). It may be fixed to p0), and if not, the prediction mode may be set. As a result, the coding efficiency can be improved while suppressing the overhead.
  • the NumNeigborPoint, NumPredMode, Thfix, and unique_point_per_leaf may be entropy-coded and added to the header. For example, each value may be binarized and calculated and coded. Further, each value may be encoded with a fixed length in order to reduce the amount of processing.
  • FIG. 49 is a diagram showing an example of the syntax of position information. NumofPoint, child_count, pred_mode, and residual_value [j] in the syntax of FIG. 49 will be described in order.
  • NuMofPoint indicates the total number of 3D points included in the bitstream.
  • Child_count indicates the number of child nodes possessed by the i-th three-dimensional point (node [i]).
  • Pred_mode indicates a prediction mode for encoding or decoding the position information of the i-th three-dimensional point.
  • is a prediction mode for calculating a prediction value using linear prediction, and is “2” in the above embodiment. In addition, ⁇ is not limited to “2”, and any value from 0 to M-1 may be set as an estimated value.
  • the estimated value when pred_mode is not in the bitstream may be added to the header or the like separately.
  • the pred_mode may be binary-coded by a truncated unary code using the number of prediction modes assigned by the prediction value and may be arithmetically coded.
  • the specific prediction mode is a predetermined prediction mode.
  • Residual_value [j] indicates the coded data of the predicted residual between the predicted value and the predicted value of the position information.
  • the residual_value [0] may indicate the element x of the position information
  • the residual_value [1] may indicate the element y of the position information
  • the residual_value [2] may indicate the element z of the position information.
  • FIG. 50 is a diagram showing another example of the syntax of position information.
  • the example of FIG. 50 is a modification of the example of FIG. 49.
  • the pred_mode may indicate the prediction mode for each of the three elements of the position information (x, y, z). That is, pred_mode [0] indicates the prediction mode of the element x, pred_mode [1] indicates the prediction mode of the element y, and pred_mode [2] indicates the prediction mode of the element z.
  • the pred_mode [0], pred_mode [1], and pred_mode [2] may be added to the bitstream.
  • the three-dimensional data coding apparatus performs the processing shown in FIG. 51.
  • the three-dimensional data coding apparatus executes a three-dimensional data coding method for encoding a plurality of three-dimensional points having a hierarchical structure.
  • the three-dimensional data encoding device calculates a predicted value of the first position information of the first three-dimensional point by using the second position information of one or more second three-dimensional points around the first three-dimensional point.
  • One of the two or more prediction modes for the purpose is set (S9781).
  • the three-dimensional data coding device calculates the predicted value of the set prediction mode (S9782).
  • the three-dimensional data coding apparatus calculates a predicted residual, which is a difference between the first position information and the calculated predicted value (S9783).
  • the three-dimensional data encoding device generates a first bit stream including the set prediction mode and the prediction residual (S9784).
  • the prediction mode is set based on the depth of the hierarchical structure of the first three-dimensional point.
  • the position information can be encoded using the predicted value of one prediction mode set based on the depth of the hierarchical structure among the two or more prediction modes, so that the coding efficiency of the position information can be improved. Can be improved.
  • the three-dimensional data coding device sets a prediction mode value that is equal to or less than the depth value of the hierarchical structure of the first three-dimensional point.
  • the prediction mode value indicates the prediction mode.
  • the first bit stream further includes a number of prediction modes indicating the number of the two or more prediction modes.
  • the three-dimensional data coding apparatus encodes the predicted mode value indicating the set predicted mode by using the number of predicted modes.
  • the first bitstream includes the encoded prediction mode value as the set prediction mode.
  • the prediction mode value is encoded by a truncated unary code having the number of prediction modes as the maximum value. Therefore, the code amount of the prediction mode value can be reduced.
  • each of the first position information and the second position information includes three elements.
  • the three-dimensional data coding device is common to the three elements as the one prediction mode for calculating the predicted value of each element of the three elements included in the first position information. Set the prediction mode. Therefore, the code amount of the prediction mode value can be reduced.
  • each of the first position information and the second position information includes three elements.
  • the three-dimensional data coding device has an independent prediction mode for each of the three elements as the one prediction mode for calculating the predicted value of each element of the three elements included in the first position information. To set. Therefore, the three-dimensional data decoding device can independently decode each element.
  • each of the first position information and the second position information includes three elements.
  • the three-dimensional data coding device has two elements of the three elements as the one prediction mode for calculating the predicted value of each element of the three elements included in the first position information.
  • a common prediction mode is set for, and a prediction mode independent of the two elements is set for the remaining one element. Therefore, the sign amount of the prediction mode value for the two elements can be reduced.
  • the three-dimensional data decoding device can independently decode the remaining one element.
  • the three-dimensional data coding apparatus when the number of prediction modes is 1, the three-dimensional data coding apparatus does not encode the prediction mode value indicating the prediction mode, and does not include the prediction mode value. To generate. Therefore, the code amount of the bit stream can be reduced.
  • the three-dimensional data coding apparatus indicates whether the prediction residual is positive or negative in the generation when the prediction mode in which the predicted value calculated in the calculation is 0 is set.
  • a third bit stream that does not include the positive / negative information is generated without encoding the positive / negative information. Therefore, the code amount of the bit stream can be reduced.
  • the three-dimensional data encoding device includes a processor and a memory, and the processor uses the memory to perform the above processing.
  • the three-dimensional data decoding device performs the process shown in FIG. 52.
  • the three-dimensional data decoding device executes a three-dimensional data decoding method for decoding a plurality of three-dimensional points having a hierarchical structure.
  • the three-dimensional data decoding apparatus acquires a prediction mode of the first three-dimensional point among the plurality of encoded three-dimensional points and a first bit stream including the encoded predicted residual (S9791). ..
  • the three-dimensional data decoding device decodes the prediction mode value indicating the coded prediction mode and the coded prediction residual (S9792).
  • the three-dimensional data decoding device calculates the predicted value of the predicted mode indicated by the predicted mode value obtained by decoding (S9793).
  • the three-dimensional data decoding device calculates the first position information of the first three-dimensional point by adding the predicted value and the predicted residual obtained by decoding (S9794).
  • the coded prediction mode included in the first bitstream is a prediction mode set based on the depth of the hierarchical structure of the first three-dimensional point.
  • the position information encoded by using the prediction value of one prediction mode set based on the depth of the hierarchical structure can be appropriately decoded.
  • the prediction mode value including the coded prediction mode included in the first bit stream is equal to or less than the value of the depth of the hierarchical structure of the first three-dimensional point.
  • the first bit stream includes a number of prediction modes indicating the number of the two or more prediction modes.
  • the three-dimensional data decoding device decodes the encoded prediction mode value by the truncated number code having the number of prediction modes as the maximum value.
  • each of the first position information and the second position information of one or more second three-dimensional points around the first three-dimensional point includes three elements.
  • the prediction mode is used for calculating the predicted value of each element of the three elements included in the first position information, and is set in common for the three elements.
  • each of the first position information and the second position information of one or more second three-dimensional points around the first three-dimensional point includes three elements.
  • the prediction mode is used to calculate the predicted value of each element of the three elements included in the first position information, and is set independently for each of the three elements.
  • each of the first position information and the second position information of one or more second three-dimensional points around the first three-dimensional point includes three elements.
  • the prediction mode is used to calculate the predicted value of each element of the three elements included in the first position information, is set in common for two of the three elements, and is set in common. The remaining one element is set independently of the two elements.
  • the prediction value is calculated by calculating the prediction value of the specific prediction mode.
  • the three-dimensional data decoding device acquires a third bit stream that does not include positive / negative information indicating whether the predicted residual is positive or negative in the acquisition (S9791), the first position information.
  • the predicted residual is treated as 0 or a positive number.
  • the three-dimensional data decoding device includes a processor and a memory, and the processor uses the memory to perform the above processing.
  • the method for dividing the point cloud data into tiles and slices For example, the method for dividing the point cloud data based on the attributes of the object of the point cloud data such as the road surface and the color information such as green of the point cloud data. There is.
  • CABAC is an abbreviation for Compress-Based Adaptive Binary Axismetic Coding, which improves the accuracy of probability by sequentially updating the context (a model that estimates the probability of occurrence of input binary symbols) based on encoded information. It is a coding method that realizes arithmetic coding (entropy coding) of the compression rate.
  • the CABACABAC initialization flag is used to initialize CABAC in CABAC coding and decoding.
  • FIG. 53 is a flowchart showing the process of initializing the CABACCABAC according to the CABAC initialization flag in the coding or the decoding.
  • the three-dimensional data encoding device or the three-dimensional data decoding device determines whether or not the CABAC initialization flag is 1 in the coding or decoding (S5201).
  • the 3D data encoding device or the 3D data decoding device initializes the CABAC coding unit / decoding unit to the default state (S5202), and encodes or decodes the data. To continue.
  • the 3D data encoding device or the 3D data decoding device continues encoding or decoding without initialization.
  • CABAC_init_flag 1 is set, and the coding unit of CABAC or the decoding unit of CABAC is initialized or reinitialized.
  • the initial value (default state) of the context used for CABAC processing is set.
  • FIG. 54 is a block diagram showing a configuration of a first coding unit 5200 included in the three-dimensional data coding device according to the present embodiment.
  • FIG. 55 is a block diagram showing the configuration of the divided portion 5201 according to the present embodiment.
  • FIG. 56 is a block diagram showing the configuration of the position information coding unit 5202 and the attribute information coding unit 5203 according to the present embodiment.
  • the first coding unit 5200 generates coded data (coded stream) by coding the point cloud data by the first coding method (GPCC ((Geomery based PCC))).
  • the coding unit 5200 includes a division unit 5201, a plurality of position information coding units 5202, a plurality of attribute information coding units 5203, an additional information coding unit 5204, and a multiplexing unit 5205.
  • the division unit 5201 generates a plurality of division data by dividing the point cloud data. Specifically, the division unit 5201 generates a plurality of division data by dividing the space of the point cloud data into a plurality of subspaces. Here, the subspace is one of tiles and slices, or a combination of tiles and slices. More specifically, the point cloud data includes position information, attribute information, and additional information. The division unit 5201 divides the position information into a plurality of division position information, and divides the attribute information into a plurality of division attribute information. Further, the division unit 5201 generates additional information regarding the division.
  • the division portion 5201 includes a tile division portion 5211 and a slice division portion 5212.
  • the tile dividing unit 5211 divides the point cloud into tiles.
  • the tile division unit 5211 may determine the quantization value used for each divided tile as tile addition information.
  • the slice division unit 5212 further divides the tile obtained by the tile division unit 5211 into slices.
  • the slice division unit 5212 may determine the quantization value used for each divided slice as slice addition information.
  • the plurality of position information coding units 5202 generate a plurality of coded position information by encoding the plurality of divided position information. For example, the plurality of position information coding units 5202 process a plurality of divided position information in parallel.
  • the position information coding unit 5202 includes a CABAC initialization unit 5221 and an entropy coding unit 5222.
  • the CABAC initialization unit 5221 initializes or reinitializes the CABAC according to the CABAC initialization flag.
  • the entropy coding unit 5222 encodes the division position information by CABAC.
  • the plurality of attribute information coding unit 5203 generates a plurality of coded attribute information by encoding the plurality of divided attribute information. For example, the plurality of attribute information coding units 5203 process a plurality of divided attribute information in parallel.
  • the attribute information coding unit 5203 includes a CABAC initialization unit 5231 and an entropy coding unit 5232.
  • the CABAC initialization unit 5221 initializes or reinitializes the CABAC according to the CABAC initialization flag.
  • the entropy coding unit 5232 encodes the division attribute information by CABAC.
  • the additional information coding unit 5204 generates coded additional information by encoding the additional information included in the point cloud data and the additional information related to the data division generated at the time of division by the division unit 5201.
  • the multiplexing unit 5205 generates coded data (coded stream) by multiplexing a plurality of coded position information, a plurality of coded attribute information, and coded additional information, and transmits the generated coded data. ..
  • the coded additional information is used at the time of decoding.
  • the numbers of the position information coding unit 5202 and the attribute information coding unit 5203 each show two examples, but the numbers of the position information coding unit 5202 and the attribute information coding unit 5203 are respectively. It may be one or three or more. Further, the plurality of divided data may be processed in parallel in the same chip like a plurality of cores in a CPU, may be processed in parallel by the cores of a plurality of chips, or may be processed in parallel by a plurality of cores of a plurality of chips. May be done.
  • FIG. 57 is a block diagram showing the configuration of the first decoding unit 5240.
  • FIG. 58 is a block diagram showing the configuration of the position information decoding unit 5242 and the attribute information decoding unit 5243.
  • the first decoding unit 5240 restores the point cloud data by decoding the coded data (coded stream) generated by encoding the point cloud data by the first coding method (GPCC). ..
  • the first decoding unit 5240 includes a demultiplexing unit 5241, a plurality of position information decoding units 5242, a plurality of attribute information decoding units 5243, an additional information decoding unit 5244, and a coupling unit 5245.
  • the demultiplexing unit 5241 generates a plurality of coded position information, a plurality of coded attribute information, and coded additional information by demultiplexing the coded data (coded stream).
  • the plurality of position information decoding units 5242 generate a plurality of quantized position information by decoding the plurality of coded position information. For example, the plurality of position information decoding units 5242 process a plurality of coded position information in parallel.
  • the position information decoding unit 5242 includes a CABAC initialization unit 5251 and an entropy decoding unit 5252.
  • the CABAC initialization unit 5251 initializes or reinitializes the CABAC according to the CABAC initialization flag.
  • the entropy decoding unit 5252 decodes the position information by CABAC.
  • the plurality of attribute information decoding units 5243 generate a plurality of divided attribute information by decoding the plurality of coded attribute information. For example, the plurality of attribute information decoding units 5243 process a plurality of coded attribute information in parallel.
  • the attribute information decoding unit 5243 includes a CABAC initialization unit 5261 and an entropy decoding unit 5262.
  • the CABAC initialization unit 5261 initializes or reinitializes the CABAC according to the CABAC initialization flag.
  • the entropy decoding unit 5262 decodes the attribute information by CABAC.
  • the plurality of additional information decoding units 5244 generate additional information by decoding the coded additional information.
  • the coupling unit 5245 generates location information by combining a plurality of division position information using additional information.
  • the coupling unit 5245 generates attribute information by combining a plurality of division attribute information using additional information. For example, the joining unit 5245 first generates the point cloud data corresponding to the tile by joining the decoded point cloud data for the slice using the slice addition information. Next, the joining unit 5245 restores the original point cloud data by joining the point cloud data corresponding to the tile using the tile addition information.
  • FIG. 57 shows an example in which the number of the position information decoding unit 5242 and the number of the attribute information decoding unit 5243 are two, respectively, but the number of the position information decoding unit 5242 and the attribute information decoding unit 5243 is one. It may be 3 or more. Further, the plurality of divided data may be processed in parallel in the same chip as in the case of the plurality of cores in the CPU, or may be processed in parallel by the cores of the plurality of chips, or may be processed in parallel by the plurality of cores of the plurality of chips. You may.
  • FIG. 59 is a flowchart showing an example of the process related to the initialization of CABAC in the coding of position information or the coding of attribute information.
  • the three-dimensional data coding device determines, for each slice, whether or not to perform CABAC initialization by coding the position information of the slice based on a predetermined condition (S5201).
  • the three-dimensional data coding device determines the context initial value used for coding the position information (S5203).
  • the initial context value is set to an initial value that takes into account the coding characteristics.
  • the initial value may be a predetermined value or may be adaptively determined according to the characteristics of the data in the slice.
  • the three-dimensional data coding device sets the CABAC initialization flag of the position information to 1, and sets the context initial value (S5204).
  • CABAC initialization the initialization process is executed using the context initial value in the coding of the position information.
  • the CABAC initialization flag of the position information is set to 0 (S5205).
  • the three-dimensional data encoding device determines, for each slice, whether or not to perform CABAC initialization by encoding the attribute information of the slice based on a predetermined condition (S5206).
  • the three-dimensional data coding device determines the context initial value used for encoding the attribute information (S5208).
  • the initial context value is set to an initial value that takes into account the coding characteristics.
  • the initial value may be a predetermined value or may be adaptively determined according to the characteristics of the data in the slice.
  • the three-dimensional data coding device sets the CABAC initialization flag of the attribute information to 1, and sets the context initial value (S5209).
  • the initialization process is executed using the context initial value in the coding of the attribute information.
  • the CABAC initialization flag of the attribute information is set to 0 (S5210).
  • the processing order of the processing related to the position information and the processing related to the attribute information may be opposite or may be parallel.
  • processing in slice units is taken as an example, but in the case of processing in tile units or other data units, processing can be performed in the same manner as in slice units. That is, the slices in the flowchart of FIG. 59 can be read as tiles or other data units.
  • the predetermined condition may be the same condition for the position information and the attribute information, or may be different conditions.
  • FIG. 60 is a diagram showing an example of the timing of CABAC initialization in the point cloud data as a bit stream.
  • the point cloud data includes position information and attribute information of 0 or more. That is, the point cloud data may not have attribute information or may have a plurality of attribute information.
  • one three-dimensional point has color information as attribute information, color information and reflection information, and one or more color information associated with one or more viewpoint information. be.
  • CABAC in encoding location information or attribute information may be initialized.
  • CABAC may be initialized with the start data of position information or attribute information (if there are a plurality of attribute information, each attribute information).
  • the CABAC may be initialized at the beginning of the data constituting the PCC frame that can be decoded independently. That is, as shown in FIG. 60 (a), if the PCC frame can be decoded in frame units, CABAC may be initialized with the head data of the PCC frame.
  • the CABAC is initially initialized with the head data of the random access unit (for example, GOF). It may be changed to.
  • CABAC is initialized at the beginning of slice data divided into one or more, the beginning of tile data divided into one or more, and the beginning of other divided data. May be good.
  • FIG. 60 (c) shows tiles as an example, but the same applies to slices. At the beginning of a tile or slice, it may or may not always be initialized.
  • FIG. 61 is a diagram showing a configuration of coded data and a method of storing the coded data in the NAL unit.
  • the initialization information may be stored in the header of the coded data or may be stored in the metadata. Also, the initialization information may be stored in both the header and the metadata.
  • the initialization information is, for example, a caba_init_flag, a CABAC initial value, or an index of a table in which the initial value can be specified.
  • the part explained to be stored in the metadata in the present embodiment may be read as being stored in the header of the coded data, and vice versa.
  • the initialization information When the initialization information is stored in the header of the coded data, for example, it may be stored in the first NAL unit in the coded data.
  • the position information stores the initialization information of the coding of the position information
  • the attribute information stores the initialization information of the coding of the attribute information.
  • the cabac_init_flag for coding the attribute information and the cabac_init_flag for coding the position information may have the same value or different values.
  • the cabac_init_flag of the position information and the attribute information may be shared. Further, when different values are used, the cabac_init_flag of the position information and the attribute information indicates different values.
  • the initialization information may be stored in the metadata common to the position information and the attribute information, or may be stored in at least one of the individual metadata of the position information and the individual metadata of the attribute information. However, it may be stored in both common metadata and individual metadata. Further, a flag indicating whether or not the data is described in any of the individual metadata of the position information, the individual metadata of the attribute information, and the common metadata may be used.
  • FIG. 62 is a flowchart showing an example of a process related to CABAC initialization in decoding position information or decoding attribute information.
  • the three-dimensional data decoding device analyzes the coded data and acquires the CABAC initialization flag of the position information, the CABAC initialization flag of the attribute information, and the context initial value (S5211).
  • the three-dimensional data decoding device determines whether or not the CABAC initialization flag of the position information is 1 (S5212).
  • the 3D data decoding device initializes the CABAC decoding of the position information coding by using the context initial value of the position information coding (S5213). ).
  • the three-dimensional data decoding device does not initialize the CABAC decoding in the position information coding (S5214).
  • the three-dimensional data decoding device determines whether or not the CABAC initialization flag of the attribute information is 1 (S5215).
  • the 3D data decoding device initializes the CABAC decoding of the attribute information coding by using the context initial value of the attribute information coding (S5216). ).
  • the three-dimensional data decoding device does not initialize the CABAC decoding in the attribute information coding when the CABAC initialization flag of the attribute information is 0 (No in S5215).
  • the processing order of the processing related to the position information and the processing related to the attribute information may be reversed or may be parallel.
  • FIG. 63 is a flowchart of the point cloud data coding process according to the present embodiment.
  • the three-dimensional data coding device determines the division method to be used (S5221).
  • This division method includes whether or not to perform tile division and whether or not to perform slice division. Further, the division method may include the number of divisions in the case of performing tile division or slice division, the type of division, and the like.
  • the type of division is a method based on the object shape as described above, a method based on map information or position information, a method based on a data amount or a processing amount, and the like.
  • the division method may be predetermined.
  • the three-dimensional data encoding device When tile division is performed (Yes in S5222), the three-dimensional data encoding device generates a plurality of tile position information and a plurality of tile attribute information by dividing the position information and the attribute information in tile units (S5223). Further, the three-dimensional data coding device generates tile additional information related to tile division.
  • the three-dimensional data encoding device divides a plurality of tile position information and a plurality of tile attribute information (or position information and attribute information) into a plurality of division position information and a plurality of division position information. Generate a plurality of division attribute information (S5225). Further, the three-dimensional data coding apparatus generates position slice addition information and attribute slice addition information related to slice division.
  • the three-dimensional data coding apparatus generates a plurality of coded position information and a plurality of coded attribute information by encoding each of the plurality of divided position information and the plurality of divided attribute information (S5226). ..
  • the three-dimensional data coding device generates dependency information.
  • the three-dimensional data coding device generates coded data (coded stream) by NAL unitizing (multiplexing) a plurality of coded position information, a plurality of coded attribute information, and additional information (multiplexing). S5227). Further, the three-dimensional data coding device sends out the generated coded data.
  • FIG. 64 is a flowchart showing an example of a process of determining the value of the CABAC initialization flag and updating the additional information in the tile division (S5222) or the slice division (S5225).
  • the tile and / or slice position information and attribute information may be divided individually or collectively by each method. As a result, additional information divided for each tile and / or for each slice is generated.
  • the three-dimensional data coding device determines whether to set the CABAC initialization flag to 1 or 0 (S5231).
  • the three-dimensional data encoding device updates the additional information so that the determined CABAC initialization flag is included (S5232).
  • FIG. 65 is a flowchart showing an example of the CABAC initialization process in the coding (S5226) process.
  • the three-dimensional data coding device determines whether or not the CABAC initialization flag is 1 (S5241).
  • the 3D data coding apparatus reinitializes the CABAC coding unit to the default state (S5422).
  • the three-dimensional data coding apparatus continues the coding process until the stop condition of the coding process is satisfied, for example, until there is no data to be coded (S5243).
  • FIG. 66 is a flowchart of the point cloud data decoding process according to the present embodiment.
  • the three-dimensional data decoding device analyzes the additional information (tile additional information, position slice additional information, and attribute slice additional information) related to the division method included in the coded data (encoded stream), thereby performing the division method. Is determined (S5251).
  • This division method includes whether or not to perform tile division and whether or not to perform slice division. Further, the division method may include the number of divisions in the case of performing tile division or slice division, the type of division, and the like.
  • the three-dimensional data decoding device decodes a plurality of coded position information and a plurality of coded attribute information included in the coded data by using the dependency information included in the coded data to obtain the divided position information. And the division attribute information is generated (S5252).
  • the three-dimensional data decoding apparatus has a plurality of division position information and a plurality of divisions based on the position slice addition information and the attribute slice addition information. By combining with the attribute information, a plurality of tile position information and a plurality of tile attribute information are generated (S5254).
  • the three-dimensional data decoding device When the additional information indicates that the tile division is performed (Yes in S5255), the three-dimensional data decoding device has a plurality of tile position information and a plurality of tile attribute information (a plurality of division positions) based on the tile additional information. Information and a plurality of divided attribute information) are combined to generate position information and attribute information (S5256).
  • FIG. 67 is a flowchart showing an example of a process of initializing the CABAC decoding unit in the combination of information divided for each slice (S5254) or the combination of information divided for each tile (S5256).
  • the position information and attribute information of slices or tiles may be combined by each method or may be combined by the same method.
  • the three-dimensional data decoding device decodes the CABAC initialization flag from the additional information of the coded stream (S5261).
  • the three-dimensional data decoding device determines whether or not the CABAC initialization flag is 1 (S5262).
  • the 3D data decoding device reinitializes the CABAC decoding unit to the default state (S5263).
  • the three-dimensional data decoding device proceeds to step S5264 without reinitializing the CABAC decoding unit.
  • the three-dimensional data decoding device continues the decoding process until the stop condition of the decoding process is satisfied, for example, until the data to be decoded is exhausted (S5264).
  • CABAC may be initialized in the head data of the tile or slice that satisfies a predetermined condition.
  • the three-dimensional data encoding device determines, for example, the density of point cloud data for each slice, that is, the number of points per unit region belonging to the slice, and determines the data density of other slices and the data density of the slice. By comparison, if the change in data density does not exceed a predetermined condition, it may be determined that the coding efficiency is better without the CABAC initialization, and it may be determined that the CABAC initialization is not performed. On the other hand, when the change in the data density does not satisfy a predetermined condition, the three-dimensional data coding apparatus may determine that the coding efficiency is better and that the CABAC initialization is performed.
  • the other slices may be, for example, the slice immediately before in the decoding processing order, or the slices that are spatially adjacent to each other. Further, the three-dimensional data coding device determines whether or not to initialize CABAC depending on whether or not the data density of the slice is a predetermined data density without comparing with the data density of other slices. You may judge.
  • the three-dimensional data coding device determines the context initial value used for coding the position information.
  • the initial context value is set to a value having good coding characteristics according to the data density.
  • the three-dimensional data coding apparatus may hold an initial value table for the data density in advance and select the optimum initial value from the table.
  • the three-dimensional data coding device is not limited to the example of slice density, and may determine whether or not to initialize CABAC based on the number of points, the distribution of points, the bias of points, and the like. Alternatively, the three-dimensional data encoding device may determine whether or not to initialize CABAC based on the feature amount obtained from the point information, the number of feature points, or the recognized object. In that case, even if the criterion is previously stored in the memory as a feature amount or the number of feature points obtained from the point information, or a table associated with an object recognized based on the point information. good.
  • the three-dimensional data encoding device may, for example, determine an object in the position information of the map information and determine whether or not to initialize the CABAC based on the object based on the position information, or the three-dimensional data may be two-dimensional. It may be determined whether or not to initialize the CABAC based on the information projected on the data or the feature amount.
  • the three-dimensional data encoding device compares the color characteristics of the previous slice with the color characteristics of the slice, and if the change in the color characteristics satisfies a predetermined condition, it is better not to initialize CABAC. It may be determined that the coding efficiency is good and that CABAC initialization is not performed. On the other hand, when the change in the color characteristics does not satisfy a predetermined condition, the three-dimensional data coding apparatus may determine that the CABAC initialization is better in coding efficiency and initialize it.
  • Color characteristics include, for example, luminance, chromaticity, saturation, histograms of these, color continuity, and the like.
  • the other slices may be, for example, the slice immediately before in the decoding processing order, or the slices that are spatially adjacent to each other. Further, the three-dimensional data coding device determines whether or not to initialize CABAC depending on whether or not the data density of the slice is a predetermined data density without comparing with the data density of other slices. You may judge.
  • the three-dimensional data coding device determines the context initial value used for coding the attribute information.
  • the initial context value is set to a value having good coding characteristics according to the data density.
  • the three-dimensional data coding apparatus may hold an initial value table for the data density in advance and select the optimum initial value from the table.
  • the three-dimensional data encoding device may determine whether or not to initialize CABAC according to the information based on the reflectance.
  • the three-dimensional data encoding device may independently determine the initialization information based on each attribute information for each attribute information, or one of them.
  • the initialization information of a plurality of attribute information may be determined based on the attribute information, or the initialization information of the plurality of attribute information may be determined using the plurality of attribute information.
  • the initialization information of the position information is determined based on the position information and the initialization information of the attribute information is determined based on the attribute information.
  • the initialization information of the position information and the attribute information is determined based on the position information.
  • the initialization information of the position information and the attribute information may be determined based on the attribute information, or the initialization information of the position information and the attribute information may be determined based on both information.
  • the three-dimensional data coding device is based on the result of simulating the coding efficiency in advance by, for example, setting cabac_init_flag to on or off, or using an initial value of 1 or more from the initial value table. Initialization information may be determined.
  • the initialization information may be determined based on the same information as the information based on the determination of the division method. good.
  • FIG. 68 is a diagram showing an example of tiles and slices.
  • the CABAC initialization flag can be used to determine if context reinitialization is required for consecutive slices. For example, in FIG. 68, when one tile contains slice data divided into objects (moving objects, sidewalks, buildings, trees, and other objects), CABAC of moving objects, sidewalks, and tree slices. The initialization flag is set to 1 and the CABAC initialization flag for buildings and other slices is set to 0. This is because, for example, if the sidewalk and the building are both dense permanent structures and may have similar coding efficiencies, the coding efficiency is not reinitialized between the sidewalk and the building slice. May be improved. On the other hand, if the density and coding efficiency can be significantly different between the building and the tree, it may be possible to improve the coding efficiency by initializing the CABAC between the building and the slice of the tree.
  • FIG. 69 is a flowchart showing an example of a method of initializing the CABAC and determining the initial context value.
  • the three-dimensional data coding device divides the point cloud data into slices based on the object determined from the position information (S5271).
  • the three-dimensional data encoding device determines, for each slice, whether or not to initialize the CABAC of the coding of the position information and the coding of the attribute information based on the data density of the object of the slice (S5272). .. That is, the three-dimensional data coding device determines the CABAC initialization information (CABAC initialization flag) for encoding the position information and the attribute information based on the position information.
  • CABAC initialization flag CABAC initialization flag
  • the three-dimensional data coding apparatus determines, for example, the initialization with good coding efficiency based on the point cloud data density.
  • the CABAC initialization information may be shown in the common cabac_init_flag for the position information and the attribute information.
  • the three-dimensional data coding device determines that the CABAC initialization is to be performed (Yes in S5273)
  • the three-dimensional data coding device determines the context initial value for coding the position information (S5274).
  • the three-dimensional data coding device determines the context initial value for coding the attribute information (S5275).
  • the three-dimensional data encoding device sets the CABAC initialization flag of the position information to 1, sets the context initial value of the position information, sets the CABAC initialization flag of the attribute information to 1, and sets the attribute information.
  • the initial context value of is set (S5276).
  • CABAC initialization the three-dimensional data coding apparatus performs initialization processing using context initial values in each of the coding of position information and the coding of attribute information.
  • the CABAC initialization flag of the position information is set to 0, and the CABAC initialization flag of the attribute information is set to 0. (S5277).
  • FIG. 70 is a diagram showing an example in which a map in which the point cloud data obtained by LiDAR is viewed from above is divided into tiles.
  • FIG. 71 is a flowchart showing another example of the method of initializing the CABAC and determining the initial value of the context.
  • the three-dimensional data encoding device divides the point cloud data into one or more tiles in the large-scale map data by the two-dimensional division method in the top view based on the position information (S5281).
  • the three-dimensional data coding device may be divided into, for example, square regions as shown in FIG. 70. Further, the three-dimensional data coding device may divide the point cloud data into tiles having various shapes and sizes. The tile division may be performed by one or more predetermined methods, or may be performed adaptively.
  • the three-dimensional data encoding device determines an object in the tile for each tile, and determines whether or not to initialize CABAC by encoding the position information or the attribute information of the tile (). S5282).
  • the three-dimensional data encoding device recognizes an object (tree, person, moving object, building), and performs slice division and determination of an initial value according to the object.
  • the three-dimensional data coding device determines that the CABAC initialization is performed (Yes in S5283), the three-dimensional data coding device determines the context initial value for coding the position information (S5284).
  • the three-dimensional data coding device determines the context initial value for coding the attribute information (S5285).
  • the initial value of the tile having a specific coding characteristic may be stored as the initial value and used as the initial value of the tile having the same coding characteristic.
  • the three-dimensional data encoding device sets the CABAC initialization flag of the position information to 1, sets the context initial value of the position information, sets the CABAC initialization flag of the attribute information to 1, and sets the attribute information.
  • the initial context value of is set (S5286).
  • CABAC initialization the three-dimensional data coding apparatus performs initialization processing using context initial values in each of the coding of position information and the coding of attribute information.
  • the CABAC initialization flag of the position information is set to 0, and the CABAC initialization flag of the attribute information is set to 0. (S5287).
  • the three-dimensional data coding device encodes a plurality of three-dimensional points included in a data unit while using a plurality of coding methods different from each other. It may be converted. That is, the three-dimensional data coding device uses a coding method for coding a plurality of three-dimensional points included in the data unit for each data unit, which is a code suitable for the data unit among the plurality of coding methods. Decide on the conversion method.
  • the plurality of coding methods are, for example, in the coding of the position information of a three-dimensional point, an ocree coding which is a coding method using an ocree tree and a prediction method which is a coding method using a prediction tree. Includes with tree coding.
  • CABAC initialization flag (hereinafter, also referred to as initialization information and identification information) in such CABAC coding will be described.
  • the initialization information is stored in the header of the coded data.
  • the initialization information is, for example, caba_init_flag, CABAC initial value, index of a table in which the initial value can be specified, and the like.
  • the initialization information is used to initialize CABAC in CABAC coding and decoding.
  • the initialization information (identification information) is information indicating whether or not the context used for coding is continuously used for coding.
  • the three-dimensional data encoding device may store the initialization information in the metadata, or may describe it in both the header and the metadata.
  • storing in the metadata may be read as storing in the header of the coded data, and conversely, storing in the header of the coded data means storing in the metadata. It may be read as storing.
  • the three-dimensional data coding device may apply the initialization information to either the coding of the position information or the coding of the attribute information.
  • the position information stores the initialization information of the coding of the position information
  • the attribute information stores the initialization information of the attribute information. May be stored.
  • CABAC is an abbreviation for Conduct-Based Adaptive Binary Axismetic Coding, which improves the accuracy of probability by sequentially updating the context (a model that estimates the probability of occurrence of input binary symbols) based on encoded information. It is a coding method that realizes arithmetic coding (entropy coding) of the compression rate.
  • entropy coding arithmetic coding
  • each data unit In order to process multiple data units (multiple divided data) obtained by dividing point cloud data, such as tiles or slices, in parallel, each data unit must be able to be coded or decoded independently. .. However, in order to make the CABAC independent between the data units, it is necessary to initialize the CABAC at the beginning of the data unit in coding and decoding.
  • the CABAC initialization flag is used to initialize CABAC in CABAC coding and decoding.
  • FIG. 72 is a diagram showing an example of the data structure of the position information included in each data unit after division and the syntax of the header of the position information.
  • the three-dimensional data coding apparatus may apply the initialization information to any one of the coding methods (coding methods) such as octree coding and predictive tree coding in the coding of the position information. However, it may be applied to both. Octree coding and predictive tree coding are coding methods using different tree structures.
  • the three-dimensional data coding device stores the context used in the ocree coding (that is, the context for the ocree coding) in the case of the ocree coding using the octree structure. Further, in the case of predictive tree coding using the predictive tree structure, the three-dimensional data coding device stores the context used in the predictive tree coding (that is, the context for predictive tree coding).
  • the three-dimensional data coding device initializes the context used for coding for each divided data unit by storing the initialization information in the header of each data unit of the divided position information. Can be switched.
  • the three-dimensional data encoding device encodes the context used for encoding for each divided data unit by storing the identification information in the header of each data unit of the divided position information. It is possible to switch whether or not to continue using it.
  • SPS_ID indicates the identifier of the SPS (parameter set) referred to by the data unit.
  • GPS_ID indicates an identifier of GPS (position information parameter set) referred to by the data unit.
  • tile_id indicates the identifier of the tile to which the data unit belongs (identifier 1 of the divided data).
  • slice_id indicates the identifier of the slice to which the data unit belongs (identifier 2 of the divided data).
  • Tree_mode indicates a tree structure used for position information coding of the data unit.
  • tree_mode may be a flag.
  • the tree_mode may indicate an ocree when the flag is 0, and may indicate a predicted tree when the flag is 1. Note that tree_mode does not have to be shown in the slice header when it is shown in GPS.
  • the three-dimensional data coding device may switch and signal the structure of the metadata used for each coding based on tree_mode.
  • the three-dimensional data encoding device signals a parameter (octree_information) used for ocree coding. Further, a flag (cabac_init_flag) indicating whether or not to initialize the context in ocree coding may be shown, in other words, identification information indicating whether or not to continue to use the context may be shown.
  • the three-dimensional data coding device signals a parameter (predtree_information) used for the predicted tree coding.
  • a flag cabac_init_flag indicating whether or not to initialize the context, in other words, identification information indicating whether or not to continue to use the context may be shown.
  • the three-dimensional data coding apparatus may set cabac_init_flag as a flag common to a plurality of coding methods and signal it before the conditional branch of stream_mode.
  • the 3D data coding device may apply the initialization of the context to some tree structures and not to some other tree structures.
  • the three-dimensional data encoder does not include initialization information in the case of a tree structure to which context initialization is not applied, and contains initialization information in the case of a tree structure to which context initialization is applied. You may generate a header.
  • the three-dimensional data encoding device shows the initialization information in common to a higher parameter set such as SPS and GPS, and the initialization information for each data unit. May not be shown.
  • FIG. 73 is a flowchart showing an example of a three-dimensional data coding method. Here, the coding of the position information of a plurality of three-dimensional points included in the data unit will be described.
  • the three-dimensional data coding device determines the coding method of the data unit to be processed, and determines whether to continue CABAC in coding the position information of the first three-dimensional point of the data unit to be processed. (S11401). In other words, the three-dimensional data coding device determines the coding method of the data unit to be either octree coding or predictive tree coding, and encodes using the context used for coding continuously. Decide whether or not to make it.
  • the 3D data coding device decides to continue using the context (Yes in S11402), it sets the cabac_init_flag to false (S11403). That is, the three-dimensional data coding device sets the identification information to indicate that the context used for coding is to be used continuously.
  • the three-dimensional data coding apparatus sets the identification information so that the identification information indicates the determination result of step S11402.
  • the 3D data coding device decides the coding method to be ocree coding (octree in S11404), the ocree continues to use the context used in ocree coding. It is encoded with (S11405).
  • the context used in the octree coding is the context used in the octree coding of the data unit immediately preceding the data unit to be processed. This context is temporarily stored in the memory of the three-dimensional data coding device, for example, and the three-dimensional data coding device reads the context stored in the memory and encodes the data unit to be processed. Used for.
  • the three-dimensional data coding device continuously uses the context used in the predicted tree coding to encode with the predicted tree. (S11406).
  • the context used in the predictive tree coding is the context used in the predictive tree coding of the data unit immediately preceding the data unit to be processed. This context is temporarily stored in the memory of the three-dimensional data coding device, for example, and the three-dimensional data coding device reads the context stored in the memory and encodes the data unit to be processed. Used for.
  • the three-dimensional data coding apparatus performs coding by continuously using the context used in the coding method determined in step S11401 among the plurality of coding methods. ..
  • the three-dimensional data coding device changes the value of the continuing context according to the coding method (octree or prediction tree) of the position information.
  • the context for 8-minute tree coding is a context for entropy-coding the Occupancy code, the quantization value, the overlap point in the leaf node, etc.
  • the context for predictive tree coding is the number of nodes. It is a context for entropy coding such as and prediction mode.
  • the cabac_init_flag is set to true (S11407). .. That is, the three-dimensional data coding device sets the identification information to indicate that the context used for coding is not continuously used.
  • the three-dimensional data coding apparatus sets the identification information so that the identification information indicates the determination result of step S11402.
  • the three-dimensional data coding apparatus encodes the position information of the first three-dimensional point of the data unit using the initialized context for the coding method determined in step S11401 (S11408).
  • the three-dimensional data coding device performs coding using the context for ocree coding when performing octree coding, and when performing predictive tree coding, the three-dimensional data coding device performs coding. Coding is performed using the context for predictive tree coding. That is, the three-dimensional data coding method changes the context continuously used for coding according to the coding method of the position information.
  • FIG. 74 is a flowchart showing an example of a three-dimensional data decoding method. Here, decoding of the position information of a plurality of three-dimensional points included in the data unit will be described.
  • the three-dimensional data decoding device analyzes the header of the coded data unit (encoded data) to be processed, and analyzes the cabac_init_flag (S11411).
  • the three-dimensional data decoding device determines whether or not the cabac_init_flag indicates that the context is continuously used (S11412).
  • the 3D data decoder determines the coding method of the coded data to be processed when the cabac_init_flag indicates that the context is to be used continuously (Yes in S11412), that is, when the cabac_init_flag is set to false. (S11413).
  • the three-dimensional data decoding device continuously uses the context used in ocree coding. Entropy decoding is performed as the initial value of the context used for ocree coding, and the ocree is reconstructed and decoded (S11414).
  • the three-dimensional data decoding device continuously uses the context used in the predicted tree coding to obtain the predicted tree code. Entropy decoding is performed as the initial value of the context used for conversion, and the predicted tree is reconstructed and decoded (S11415).
  • the three-dimensional data decoding device when the three-dimensional data decoding device indicates that the cabac_init_flag (identification information) continuously uses the context used for the coding, the three-dimensional data decoding device continues the context used in the coding method of the coded data. Is used to decode the coded data.
  • the 3D data decoding device indicates that the cabac_init_flag does not continue to use the context (No in S11412), that is, when the cabac_init_flag is set to true, the context for the specified encoding method is set. It is initialized, entropy-decoded, and decoded by the decoding method corresponding to the specified coding method (S11416).
  • the attribute information coding method includes, for example, a LoD-based coding method and a Transferform-based coding method.
  • the three-dimensional data coding device may change the continuing context according to the coding method of the attribute information. That is, the 3D data coding device performs coding using the context for LoD-based coding when performing LoD-based coding, and Transform-based when performing Transform-based coding. Coding is performed using the context for coding.
  • the LoD-based coding method and the Transform-based coding method may be used independently or may be signaled in common. That is, the three-dimensional data coding apparatus may store the cabac_init_flag for each coding method in the header, or may store the cabac_init_flag common to the plurality of coding methods in the header. When the three-dimensional data coding apparatus uses one of a plurality of coding methods, the amount of information to be signaled can be reduced by sharing (that is, making one) the cabac_init_flag.
  • cabac_init_flag for coding the attribute information and the cabac_init_flag for coding the position information may be the same value or may be different values.
  • the cabac_init_flag for coding the attribute information and the cabac_init_flag for coding the position information have the same value
  • the cabac_init_flag for coding the attribute information and the cabac_init_flag for coding the position information are shared, such as SPS. It may be stored in the metadata common to the sequence of. In this case, if the three-dimensional data coding apparatus decides to continue to use the context used for coding in coding, (i) the coding method of a plurality of three-dimensional points among the plurality of coding methods.
  • the context used in (ii) is continuously used to encode the position information of the plurality of three-dimensional points
  • the context used in the coding method of the attribute information is continuously used to encode the position information of the plurality of three-dimensional points. Encode the attribute information of.
  • a 3D data encoder decides not to continue to use the context used for coding in coding, (i) coding multiple 3D points out of multiple coding schemes.
  • the position information of a plurality of 3D points is encoded using the initialized context for the method, and (ii) the attribute information of the plurality of 3D points is encoded using the initialized context for the coding method of the attribute information. Is encoded.
  • the 3D data decoder indicates that the identification information continues to use the context used for coding, (i) the position of the coded 3D points of the coded methods. By continuously using and decoding the context used for encoding the information, the position information of a plurality of three-dimensional points is calculated, and (ii) the context used in the attribute information coding method is continuously used. By decoding using it, the attribute information of a plurality of three-dimensional points is calculated. Conversely, if the 3D data decoder indicates that the identification information does not continue to use the context used for coding, then (i) the coded 3D points of the coding scheme.
  • the position information of a plurality of encoded three-dimensional points is calculated, and (ii) for the coding method of the attribute information.
  • the attribute information of multiple 3D points is decoded.
  • the three-dimensional data coding device sets the cabac_init_flag for coding the attribute information and the cabac_init_flag for coding the position information.
  • the three-dimensional data coding device may store the cabac_init_flag for encoding the attribute information and the cabac_init_flag for encoding the position information in the common metadata for the position information and the attribute information, or individual metadata. It may be stored in one or both of the above, or it may be stored in both common metadata and individual metadata. Further, the three-dimensional data coding apparatus may use a flag indicating whether or not it is described in either the cabac_init_flag for coding the attribute information or the cabac_init_flag for coding the position information.
  • the three-dimensional data coding device When switching the coding method between data units in the coding of position information, the three-dimensional data coding device continues the context of the data unit to be coded first after the coding method is switched. Instead, it may be decided to initialize.
  • FIG. 75 is a diagram for explaining initialization of the context when the coding method is switched.
  • FIG. 75 is an example in which the data unit of slice # 1 is encoded by octree coding (Ocree), and the data units of slice # 2 and slice # 3 are encoded by predictive tree coding (predtree). be.
  • Ocree octree coding
  • predtree predictive tree coding
  • the three-dimensional data coding device sets the initialization flag (cabac_init_flag) used for coding the position information of the data unit (slice # 1) at the head of the octaree coding to ON (true). Then, the three-dimensional data coding apparatus sets the initialization flag (cabac_init_flag) used for coding the position information of the data unit (slice # 2) at the head of the predicted tree coding to ON (true).
  • the initialization flag of slice # 3 may be set to ON or OFF.
  • the three-dimensional data coding device is used for coding. Decided not to continue to use the context used, and using the initialized context for the second data unit's coding method out of multiple coding methods, multiple three-dimensional points of the second data unit. Encode.
  • the identification information (second identification information) corresponding to the second data unit is set to indicate that the context used for coding is not continuously used.
  • the three-dimensional data coding apparatus performs the process shown in FIG. 76.
  • the three-dimensional data coding apparatus acquires a first data unit including a plurality of first three-dimensional points (S11421).
  • the three-dimensional data coding apparatus encodes the plurality of first three-dimensional points included in the acquired first data unit while one of the plurality of coding methods having different methods (S11422).
  • the three-dimensional data coding device generates a bit stream including the first coded data in which the plurality of first three-dimensional points are encoded and the first identification information (S11423).
  • the coding it is determined whether or not to continuously use the context used for coding to encode, and the context used in the coding method used for the coding among the plurality of coding methods.
  • the plurality of first three-dimensional points are encoded using the context corresponding to the decision result in the decision.
  • the first identification information includes a decision result in the decision.
  • the coding efficiency can be improved, and in order to generate a bit stream containing the first identification information, three-dimensional data decoding is performed. It can be properly decoded by the device.
  • the plurality of first three dimensions among the plurality of coding methods are encoded by continuously using the context used in the point coding method, and the first identification information is encoded by continuously using the context used for encoding. Show that you do.
  • the plurality of first-order ones among the plurality of coding methods are encoded using the initialized context for the coding method of the original point, and the first identification information indicates that the context used for encoding is not continuously used. ..
  • each of the plurality of first three-dimensional points includes position information of each first three-dimensional point and attribute information of each first three-dimensional point.
  • the plurality of coding methods are position information coding methods.
  • the attribute information of the plurality of first three-dimensional points is coded by another coding method.
  • the coding (S11422) when it is decided to continue to use the context used for the coding in the coding, (i) the coding of the plurality of first three-dimensional points among the plurality of coding methods.
  • the context used in the conversion method is continuously used to encode the position information of the plurality of first three-dimensional points, and (ii) the context used in the other coding methods is continuously used.
  • the attribute information of the plurality of first three-dimensional points is encoded.
  • the coding (S11422) when it is decided not to continue to use the context used for the coding in the coding (S11422), (i) the plurality of coding methods among the plurality of coding methods.
  • the initialized context for the three-dimensional point coding method the position information of the plurality of first three-dimensional points is encoded, and (ii) the initialized context for the other coding method is used.
  • the attribute information of the plurality of first three-dimensional points is encoded.
  • the three-dimensional data encoding device includes a processor and a memory, and the processor uses the memory to perform the above processing.
  • the three-dimensional data decoding device performs the process shown in FIG. 77.
  • the three-dimensional data decoder contains a bit including first coded data in which a plurality of first three-dimensional points are encoded and first identification information indicating whether or not the context used for encoding is continuously used. Acquire a stream (S11431).
  • the three-dimensional data decoding device decodes the first coded data by a decoding method corresponding to the coding method used for coding the first coded data among a plurality of coding methods having different methods. (S11432). In the decoding (S11432), the first coded data is decoded using the context corresponding to the first identification information.
  • the decoding when the first identification information indicates that the context used for coding is continuously used, the context used in the coding method corresponding to the decoding method is continuously used.
  • the first coded data is decoded.
  • the first coding data is encoded among the plurality of coding methods.
  • the first coded data is decoded using the initialized context for the coding method used.
  • the first coded data includes coded position information of the plurality of first three-dimensional points and attribute information of the plurality of encoded first three-dimensional points.
  • the plurality of coding methods are coding methods for the position information of the plurality of encoded first three-dimensional points.
  • the coded attribute information of the plurality of first three-dimensional points is coded by another coding method.
  • the decoding when the first identification information indicates that the context used for coding is continuously used, (i) the plurality of encoded firsts of the plurality of coding methods.
  • the position information of a plurality of first three-dimensional points is calculated, and (ii) used in the other coding method.
  • the attribute information of a plurality of first three-dimensional points is calculated.
  • the decoding when the first identification information indicates that the context used for coding is not continuously used, (i) the plurality of the coded ones among the plurality of coding methods.
  • the position information of the plurality of encoded first three-dimensional points is calculated.
  • the bitstream further includes second coded data in which a plurality of second three-dimensional points are encoded, and second identification information indicating whether or not the context used for coding is continuously used.
  • second coded data in which a plurality of second three-dimensional points are encoded
  • second identification information indicating whether or not the context used for coding is continuously used.
  • the three-dimensional data decoding device includes a processor and a memory, and the processor uses the memory to perform the above processing.
  • the number of tree structures may be changed, for example, when the octa-tree is switched to a quadtree or a binary tree.
  • the context for the occupation code may be switched, such as when switching between.
  • it may be switched whether to refer to the same node or to the adjacent node.
  • a flag indicating whether or not to switch these coding parameters is shown in the SPS (sequence parameter set), GPS (position information parameter set), data unit header, and the like.
  • the three-dimensional data encoding device may reset the context first in the entropy coding used in the data unit. That is, the three-dimensional data coding device may perform coding using a reset (initialized) context without using a saved context.
  • the three-dimensional data coding apparatus may reset the context in the entropy coding of the data unit when the context to be used is switched in the coding of the attribute information as well as the coding of the position information. ..
  • the coding parameter may be restricted not to be switched.
  • the parameter set (eg GPS1) referenced by the "previous data unit DU_prev” that stores the context and the "current data unit DU_cur” that initiates entropy coding using the context of DU_prev are referenced.
  • the parameters related to coding may be specified to be the same.
  • the geometry parameter sets of GPS1 and GPS2 may be specified to be the same and the same contents may be described. That is, it may be specified that the identifier GPS_id in the parameter set is the same.
  • APS it may be specified in the same manner.
  • the parameter set referenced by the "previous data unit DU_prev” that stores the context (eg APS1) and the "current data unit DU_cur” that initiates entropy coding using the context of DU_prev are referenced.
  • the parameters related to coding may be specified to be the same.
  • the geometry parameter sets of APS1 and APS2 may be specified to be the same and the same contents may be described. That is, it may be specified that the identifier APS_id in the parameter set is the same.
  • the ID of the slice to which DU_cur belongs and the ID of the slice to which DU_prev belongs may be stored in the data unit header of DU_cur in the data unit header.
  • the restrictions of the three-dimensional data decoding device may be set as follows.
  • the three-dimensional data decoding device may determine that the conformance violation (or specification nonconformity) does not match if these slices do not match as a result of the confirmation.
  • the bitstream conformance specification is a specification that defines the necessary conditions for the bitstream created by the encoder in order for the bitstream to be normally decoded by the decoder, that is, the restrictions on the coding method in the encoder. It can also be said that it is a specification for checking with a decoder. Therefore, whether or not the bitstream can be correctly decoded by defining the coding method for normal decoding by the decoder as the conforming specification of the bitstream and determining whether or not the bitstream conforms to the specification in the decoder. It is possible to determine whether or not.
  • the 3D data decoder determines that it is a conformance violation (or specification nonconformity). May be good.
  • the decoding may be stopped or a specific avoidance process may be performed.
  • the 3D data decoder may determine that the GPS_id or APS_id of the parameter set referred to by DU_cur and the parameter set referred to by DU_prev are different from each other as a conformance violation (or specification nonconformity).
  • FIGS. 78 to 82 are diagrams showing an example of syntax.
  • FIG. 78 is a diagram showing an example of SPS syntax.
  • FIG. 79 is a diagram showing an example of the syntax of the header (Devided Geometry Header) of the division position information.
  • FIG. 80 is a diagram showing an example of the syntax of the header (DevidedAttributeHeader) of the divided attribute information.
  • FIG. 81 is a diagram showing another example of the syntax of the header (DevidedAttributeHeader) of the divided attribute information.
  • FIG. 82 is a diagram showing another example of the syntax of the header (Devided Geometry Header) of the division position information.
  • the flag indicating whether to initialize the context used for coding was expressed as cabac_init_flag, but here it is expressed as entropy_continue_flag.
  • entropy_continue_flag the definition of the flag is reversed. That is, the initialization flag (entropy_continue_flag) is a flag that indicates whether to continue entropy coding without initialization, that is, saves the context used to encode the previous data unit and moves to the next data unit. It is a flag indicating that it is applied.
  • the SPS shows a flag (entropy_continue_enable) as to whether or not it has (uses) the function of continuing the context between data units.
  • the flag (entropy_continue_enable) is an example of the third identification information.
  • the header (DevidedGeometryHeader) of the division position information includes a GPS identifier (gps_id), a tile identifier (tile_id), and a frame identifier (frame_id) referred to by the data unit including the division position information. )including.
  • the header of the split position information (DevidedGeometryHeader) is the data unit containing the split position information.
  • the encoding indicates a flag (geom_du_entropy_continue_flag) indicating whether or not the context used for encoding the previous data unit of the data unit is continuously used. That is, in this case, the header (DevidedGeometryHeader) of the division position information includes the flag (geom_du_entropy_continue_flag).
  • the header (DevidedGeometryHeader) of the split position information indicates the slice ID (slice2_id) to which the previous data unit belongs. That is, the header (DevidedGeometryHeader) of the division position information includes the slice ID (slice2_id).
  • the flag (geom_du_entropy_continue_flag) is an example of the first identification information.
  • the header (DevidedAttributeHeader) of the divided attribute information is an identifier (aps_id) of the APS (attribute information parameter set) referred to by the data unit including the divided attribute information, and the attribute information described in the SPS.
  • the number (attr_index) in which the attribute information is indicated and the slice ID (geom_slice_id) of the position information corresponding to the attribute information are included.
  • the header of the split attribute information (DevidedAttributeHeader) is the data unit containing the split attribute information.
  • the encoding indicates a flag (attr_du_entropy_continue_flag) indicating whether or not the context used for encoding the previous data unit of the data unit is continuously used. That is, in this case, the header (DevidedAttributeHeader) of the split attribute information includes the flag (attr_du_entropy_continue_flag).
  • the header (DevidedAttributeHeader) of the split attribute information indicates the slice ID (slice2_id) to which the previous data unit belongs. That is, the header (DevidedAttributeHeader) of the split attribute information includes the slice ID (slice2_id).
  • the flag (geom_du_entropy_continue_flag) is an example of the first identification information.
  • the split location header (DevidedGeometryHeader) will include a flag (geom_du_entropy_continue_flag).
  • the header (DevidedAttributeHeader) of the split attribute information includes a flag (attr_du_entropy_continue_flag). That is, the three-dimensional data coding device determines whether or not to perform coding using a context (second decision), and when it is determined to perform coding using a context, the data unit to be processed is processed.
  • the three-dimensional data encoding device may be determined whether or not to continue to use the context used for coding the data unit before the data unit to be processed for coding (first decision).
  • the three-dimensional data encoding device generates a bitstream including entropy_continue_enable (third identification information) indicating whether or not to perform coding using the context.
  • geom_du_entropy_continue_flag (first identification information) or attr_du_entropy_continue_flag (first identification information) is shown in the header of the data unit when entropy_continue_enable (third identification information) indicates that the encoding is performed using the context.
  • the header of the division position information and the header of the division attribute information include geom_du_entropy_continue_flag and attr_du_entropy_continue_flag, it is possible to control whether or not the context is continued individually by the position information and the attribute information. Therefore, flexible control is possible.
  • the flag (attr_du_entropy_continue_flag) indicating whether or not to continue the context used for encoding the attribute information is determined to be valid when the entropy coding of the position information is continued, and is valid.
  • whether or not the entropy coding of the data unit of the attribute information is valid may be indicated in the header (DevidedAttributeHeader) of the divided attribute information.
  • the three-dimensional data encoding device decides to continue to use the context used to encode the previous data unit, it was (i) used to encode the position information of the previous data unit.
  • the context is continuously used to encode the position information of the data unit to be processed, and (ii) the context used to encode the attribute information of the previous data unit is continuously used to encode the processing target.
  • the attribute information of the data unit may be encoded.
  • the three-dimensional data decoder indicates that the first identification information continues to use the context used to encode the previous data unit, (i) the coding of the position information of the previous data unit.
  • the position information of multiple three-dimensional points contained in the data unit was calculated, and (ii) was used to encode the attribute information of the previous data unit.
  • the attribute information of a plurality of three-dimensional points included in the data unit is calculated.
  • Attr_du_entropy_continue_flag may be set in the header (DevidedAttributeHeader) of the split attribute information, and if geom_du_entropy_continue_flag is false, attr_du_entropy_continue_flag may be set to any value attr_du_entrop.
  • geom_du_entropy_continue_flag if geom_du_entropy_continue_flag is false and attr_du_entrpy_continue_flag is true, it may be defined as a conformance violation (or specification nonconformity).
  • geom_du_entropy_continue_flag and attr_du_entropy_continue_flag may be merged.
  • attr_du_entropy_continue_flag may not be shown in the header of the split attribute information.
  • the parameter set ID (GPS_id or APS_id) does not have to be shown in DU_cur.
  • the 3D data decoder refers to the DU_prev shown in the header of DU_cur and the parameter set having the parameter set ID shown in the DU_prev header.
  • tile_id does not have to be shown. That is, the header of the division position information does not have to include the tile_id. This can reduce the process of determining whether DU_cur and DU_prev are the same. It is also possible to prevent confusion that indicates that entropy coding is continuing even though the context has been switched.
  • du_entropy_continue_flag when du_entropy_continue_flag is false, at least one of gps_id and tile_id may be indicated, and when du_entropy_continue_flag is true, gps_id and tile_id may not be indicated.
  • geom_entropy_continue_enable_flag is a flag indicating whether or not to continue the context of entropy coding. It may be specified that the following condition 1 or condition 2 must be satisfied in order for geom_entropy_continue_enable_flag to be set to true.
  • Condition 1 is to allow coding dependencies between slices (data units).
  • Condition 2 is that the order of slices (data units) is not allowed to be changed.
  • the order of slices (data units) may be indicated by, for example, the ID (slice ID) of the data unit.
  • the ID of the data unit may be an ID (number) for identifying the data unit in frame units, or may be an ID (number) for identifying in random access units.
  • the first data unit of the random access unit is a data unit to which a predetermined ID (predetermined number) is assigned. In this way, each data unit is given the order of the data units in the random access unit. That is, when the three-dimensional data coding device decides to continue to use the context used for coding the previous data unit in order to satisfy the condition 2, the order of the plurality of data units is changed. It may not be.
  • the three-dimensional data encoding device may further generate a bitstream including a second identification information indicating whether or not the order of the plurality of data units of the random access unit is allowed to be changed.
  • the three-dimensional data decoder indicates that the du_entropy_continue_flag (first identification information) does not continue to use the context, and the second identification information does not allow the order to be changed, the acquired bitstream. May be determined to fit the conformance.
  • the three-dimensional data decoder indicates that the du_entropy_continue_flag (first identification information) does not continue to use the context, or the second identification information allows the order to be changed. It may be determined that the stream is incompatible with conformance.
  • condition 1 or condition 2 it may be indicated whether or not geom_entropy_continue_enable_flag is valid.
  • condition 1 or condition 2 it may be not satisfied when geom_entropy_continue_enable_flag is true, it may be a conformance violation (or specification nonconformity).
  • the geom_entropy_continue_enable_flag and the flag indicating the condition 1 or the condition 2 may be merged and replaced with any of the flags.
  • the 3D data coding device may decide not to continue to use the context used to encode the previous data unit. Further, if the data unit to be processed is not the first data unit of the random access unit, the 3D data encoding device may decide to continue to use the context used for encoding the previous data unit. good.
  • the three-dimensional data decoder also indicates that du_entropy_continue_flag (first identification information) does not continue to use the context used to encode the previous data unit, and the data unit is at the beginning of the random access unit. If it is a data unit, it may be determined that the bitstream conforms to the conformance. That is, the three-dimensional data decoder does not continue to use the context in which the first identification information was used to encode the previous data unit when the data unit is the first data unit of the random access unit. It is determined that what is shown is the conformity condition of the bit stream (that is, the conformity condition of the bit stream is satisfied).
  • the three-dimensional data decoder indicates that du_entropy_continue_flag (first identification information) continues to use the context used to encode the previous data unit, or the data unit is at the beginning of a random access unit. If it is not a data unit, the bitstream may be determined to be conforming.
  • the random access unit may be one frame unit.
  • the 3D data coding device decides not to continue to use the context used to code the previous data unit for coding the first slice (data unit) of one frame. good.
  • the three-dimensional data decoder indicates that du_entropy_continue_flag (first identification information) does not continue to use the context used to encode the previous data unit, and the data unit is the data at the beginning of one frame. If it is a unit, it may be determined that the bitstream is conforming.
  • the random access unit may be a plurality of frame units (GOF: Group Of Flame).
  • the 3D data coding device may decide not to continue to use the context used to code the previous data unit for coding the first slice (data unit) of the GOF. ..
  • the three-dimensional data decoder also indicates that du_entropy_continue_flag (first identification information) does not continue to use the context used to encode the previous data unit, and the data unit is the first data unit in the GOF. If, it may be determined that the bitstream conforms to the conformance.
  • the random access unit may be one tile unit.
  • the 3D data encoder decides not to continue to use the context used to encode the previous data unit to encode the first slice (data unit) of one tile. May be good.
  • the three-dimensional data decoder indicates that du_entropy_continue_flag (first identification information) does not continue to use the context used to encode the previous data unit, and the data unit is at the beginning of one tile. If it is a data unit, it may be determined that the bitstream conforms to the conformance.
  • a random access point flag indicating whether or not the data unit is the first data unit may be set in the parameter set or header referred to by the data unit.
  • du_entropy_continue_flag may be enabled in the header (ie, may be included in the header) if the random access point flag indicates that the data unit is the first data unit.
  • the du_entropy_continue_flag and the random access point flag may be merged.
  • FIG. 83 is a flowchart showing an example of a first decision for determining whether or not to initialize entropy coding in a three-dimensional data coding apparatus.
  • the three-dimensional data coding apparatus determines whether or not to carry out continuation of entropy coding (S11901).
  • the three-dimensional data coding device executes processing for each slice (data unit) (S11902).
  • the three-dimensional data encoding device determines whether or not the slice to be processed is a random access point (S11903).
  • the random access point is the slice at the beginning of the frame when it is randomly accessible in frame units, the slice at the beginning of GOF when it is randomly accessible in multiple frame units (GOF), and it is the slice at the beginning of GOF when it is randomly accessible in tile units. Is the slice at the beginning of the tile.
  • the 3D data coding device determines that the slice to be processed is not a random access point (No in S11903), the context used for coding the slice to be processed is the same as the context used for coding the previous slice. It is determined whether or not it is (S11904).
  • the three-dimensional data coding device sets a flag indicating whether the tree structure is an octatree or a predicted tree, a flag indicating whether the tree structure is an octatree or a predicted tree, when the context used for coding changes (that is, when the context is different). The determination may be made based on the flag of whether or not to use and the flag of whether or not to use the context for each bit.
  • the 3D data coding device determines that the context used for coding the slice to be processed is the same as the context used for coding the previous slice (Yes in S11904), whether or not to initialize the context. (S11905).
  • the three-dimensional data coding device determines that the context is not initialized (No in S11905), it determines that the context is continuously used without being initialized (S11906).
  • the three-dimensional data coding device determines that the slice to be processed is a random access point (Yes in S11903)
  • the context used for coding the slice to be processed is used for coding the previous slice. It is determined to initialize the context (that is, not to continue) when it is determined that the context is not the same as the existing one (No in S11904) or when it is determined to initialize the context (Yes in S11905). (S11907).
  • FIG. 84 is a flowchart showing an example of a process of determining whether the entropy coding flag conforms to the conformance (whether it conforms to the specifications) in the three-dimensional data decoding device.
  • the three-dimensional data decoding device analyzes the header for each slice (data unit) (S11911).
  • the three-dimensional data decoding device determines whether or not the du_entropy_continue_flag (first identification information) is true (S11912).
  • the GPS identifier (gps_id) referenced by the slice to be processed is the GPS referenced by the previous slice. It is determined whether or not it is the same as the identifier (gps_id) (S11913).
  • the slice to be processed Is determined to be the beginning of a random access unit (S11914).
  • the three-dimensional data decoding device may detect the case where the frame unit is random access, the case where the existence of the data unit indicating the frame boundary is detected, or the case where the switching of the frame index is detected as the frame boundary.
  • the 3D data decoding device determines that the slice to be processed is not the beginning of the random access unit (No in S11914), it determines that the conformance is violated (specification nonconformity) (S11915).
  • du_entropy_continue_flag first identification information
  • the GPS identifier (gps_id) referenced by the slice to be processed is the previous one. If it is determined that the slice is the same as the GPS identifier (gps_id) referred to (Yes in S11913), and if it is determined that the slice to be processed is the head of the random access unit (Yes in S11914), the conformance is met. (Specification conformity) is determined (S11916).
  • the three-dimensional data coding apparatus performs the process shown in FIG. 85.
  • the three-dimensional data coding device acquires a data unit including a plurality of three-dimensional points (S11921).
  • the three-dimensional data coding device encodes the plurality of three-dimensional points included in the data unit for each of the data units (S11922).
  • the three-dimensional data encoding device generates a bitstream containing encoded data in which the data unit is encoded (S11925).
  • the three-dimensional data coding apparatus determines whether or not the context used for coding the data unit before the data unit is continuously used for coding the data unit. The first decision is made (S11923).
  • the three-dimensional data coding apparatus encodes the data unit using the context corresponding to the determination result of the first determination after S11923 (S11924).
  • the first determination if the data unit is the first data unit of a random access unit, the three-dimensional data coding device continues the context used for encoding the previous data unit. Decide not to use.
  • the decoding device can properly decode the bitstream.
  • the random access unit is one frame unit.
  • the random access unit is a plurality of frame units.
  • the random access unit is one tile unit.
  • the data unit is given the order of the data unit in the random access unit.
  • the first determination if the three-dimensional data coding apparatus decides to continue to use the context used for encoding the previous data unit, the plurality of data units of the random access unit. The above order is not changed.
  • the three-dimensional data coding device further makes a second decision to determine whether or not to perform coding using the context.
  • the three-dimensional data coding apparatus makes the first determination (S11923).
  • each of the plurality of three-dimensional points includes position information of each three-dimensional point and attribute information of each three-dimensional point.
  • the three-dimensional data coding device decides to continue to use the context used to encode the previous data unit in the first determination (S11923), (i). )
  • the context used to encode the position information of the previous data unit is continuously used to encode the position information of the data unit, and (ii) the attribute information of the previous data unit is encoded.
  • the attribute information of the data unit is encoded by continuing to use the context used in.
  • the three-dimensional data encoding device includes a processor and a memory, and the processor uses the memory to perform the above processing.
  • the three-dimensional data decoding device performs the processing shown in FIG.
  • the three-dimensional data decoder is a coded data in which a data unit containing a plurality of three-dimensional points is encoded, and a context used for encoding the data unit and encoding a data unit before the data unit. Acquires a bit stream including a first identification information indicating whether or not to continue to use (S11931). The three-dimensional data decoding device decodes the coded data using the context corresponding to the first identification information (S11932).
  • the three-dimensional data decoding device determines the context in which the first identification information is used for encoding the previous data unit. It is determined that the indication that the data is not used continuously is the conforming condition of the bit stream (that is, the conforming condition of the bit stream is satisfied).
  • the bitstream can be appropriately decoded, for example, by continuing decoding. Further, when the three-dimensional data decoding device determines that the conformance is not met, it is possible to suppress inappropriate decoding of the bitstream by, for example, stopping decoding or executing a specific avoidance process. can.
  • the random access unit is one frame unit.
  • the random access unit is a plurality of frame units.
  • the random access unit is one tile unit.
  • the data unit is given the order of the data unit in the random access unit.
  • the bitstream further includes second identification information indicating whether or not the order of the plurality of data units of the random access unit is allowed to be changed.
  • the three-dimensional data decoding device indicates that the first identification information does not continue to use the context, and that the second identification information does not allow the change of order. If so, it is determined that the bitstream conforms to the conformance.
  • the bitstream further includes a third identification information indicating whether or not to perform coding using the context.
  • the first identification information is shown in the header of the data unit when the third identification information indicates that the encoding is performed using the context.
  • the coded data includes the position information of the plurality of encoded three-dimensional points and the attribute information of the plurality of encoded three-dimensional points.
  • the decoding if the three-dimensional data decoder indicates that the first identification information continues to use the context used to encode the previous data unit, (i) the previous data.
  • the position information of a plurality of three-dimensional points included in the data unit is calculated, and (ii) of the previous data unit.
  • the attribute information of a plurality of three-dimensional points included in the data unit is calculated.
  • the three-dimensional data decoding device includes a processor and a memory, and the processor uses the memory to perform the above processing.
  • FIG. 87 is a diagram showing an example of SPS syntax.
  • FIG. 88 is a diagram showing an example of APS syntax.
  • FIG. 89 is a diagram showing an example of the syntax of the header (DevidedGeometryHeader) of the division position information.
  • FIG. 90 is a diagram showing an example of the syntax of the header (DevidedAttributeHeader) of the divided attribute information.
  • a switching flag (identification information) for switching whether or not to enable the continuation function of the context used for entropy coding may be provided for each data unit of attribute information.
  • the switching flag may be provided in the parameter set (SPS or APS) referred to by the attribute information.
  • the switching flag (entropy_continue_attr_enable_flag) may be shown in the SPS as shown in FIG. 87 or in the APS as shown in FIG. 88.
  • entropy_continue_attr_enable_flag is a flag indicating whether to enable the continuation function of the context used for coding the attribute information.
  • entropy_continue_attr_enable_flag may be shown when entropy_continue_enable_flag shown in SPS is true.
  • entropy_continue_enable_flag is a flag indicating whether or not to enable the continuation function of the context.
  • Sps.entropy_continue_enable_flag shown in FIG. 88 means entropy_continue_enable_flag signaled in SPS.
  • the header (DevidedGeometryHeader) of the division position information may indicate a flag (geom_du_entropy_continue_flag) indicating whether or not to continue the context for each data unit. Further, as shown in FIG. 90, the header (DevidedAttributeHeader) of the split attribute information does not have to show the information regarding the continuation of the context.
  • FIG. 91 is a flowchart showing an example of a process of determining whether or not to continue the context used for entropy coding in the three-dimensional data coding apparatus.
  • the three-dimensional data encoding device determines whether or not the entropy_continue_enable_flag of the SPS indicates true (S12101).
  • the 3D data encoding device determines whether or not the geom_du_entropy_continue_flag of the header (DevidedGeometryHeader) of the division position information is true (S12102).
  • the three-dimensional data encoding device stores the data unit of the previous position information at the start of coding of the data unit of the position information. It is determined to use the context stored (stored or stored) in (memory) (S12103). That is, in this case, the 3D data coding device decides to continue to use the context used to encode the data unit of the previous location information.
  • the three-dimensional data encoding device determines whether or not the entropy_continue_attr_enable_flag of SPS or APS is true (S12104).
  • the three-dimensional data encoding device stores the data unit of the attribute information in the storage device (memory) at the start of coding of the data unit of the attribute information. It is decided to use the given context (S12105). That is, in this case, the 3D data coding device decides to continue to use the context used to encode the data unit of the previous attribute information.
  • the data unit of the position information when the entropy_continue_enable_flag of SPS indicates false (No in S12101), or when the geom_du_entropy_continue_flag of the header of the split position information (DevidedGeometryHeader) indicates false (No in S12102), the data unit of the position information.
  • it is determined to initialize the context (S12106). That is, in this case, the 3D data coding device decides to initialize without continuing to use the context used to encode the data unit of the previous location information.
  • the three-dimensional data encoding device initializes the context when the entropy_continue_attr_enable_flag of SPS or APS indicates false (No in S12104) or after step S12106 when the coding of the data unit of the attribute information is started. Is determined (S12107). That is, in this case, the 3D data coding device decides to initialize without continuing to use the context used to encode the data unit of the previous attribute information.
  • the 3D data encoder can be controlled in common by all attribute components such as all colors and reflectances. Also, when entropy_cotinue_attr_enable_flag is shown in the APS, the 3D data encoder can be individually controlled by all attribute components such as color and reflectance.
  • the judgment as to whether or not to continue the context of the data unit of the attribute information may depend on the judgment result of whether or not to continue the context of each data unit of the position information.
  • a combination (Gometry DU, Attribute DU) of whether to continue the context of the data unit of the position information (ON / OFF) and whether to continue the context of the data unit of the attribute information (ON / OFF).
  • entropy coding In entropy coding, the context used to encode the previous data unit or data unit is stored in the storage device (memory), and the context stored in the storage device (memory) is applied to the coding of the next data unit. You can improve the coding performance. If the entropy coding is done bit by bit and a bitwise context is used, then there is an entropy context to continue in the bitwise entropy coding. However, when the entropy coding is in bytes, there is no byte-by-byte context, so there is no entropy context to continue in the byte-by-byte entropy coding. Therefore, in the methods described so far, there is no method for continuing entropy coding in bytes.
  • the entropy code in the case of encoding the occupancy code in byte units in the coding of the position information using the N-branch tree (N is an integer of 2 or more, for example, the octa-branch tree).
  • N is an integer of 2 or more, for example, the octa-branch tree.
  • the three-dimensional data coding device converts the occupancy code into the index information of the table using the reference table, and encodes the converted index information.
  • the occupancy code indicates whether or not the next node or leaf is held at which position after division in a certain node when the three-dimensional point cloud is represented by an octree as described in the above embodiment. It is 8-bit information.
  • the occupancy code may also be referred to as an occupancy map.
  • the occupancy code is expressed as an occupancy map.
  • FIG. 92 is a diagram for explaining the update of the table.
  • the three-dimensional data encoding device uses the table 12101 shown in FIG. 92 to convert the occupancy map into a table showing the relationship between the histogram showing the number of occurrences of the occupancy map and the dictionary index showing the order of the number of occurrences. Convert.
  • the occupancy map is indicated by m
  • the dictionary index is indicated by d
  • the histogram is indicated by h.
  • the occupancy map shows an example of three types of tables of 15, 25, and 35, but the table is not limited to this, and the table has four or more types of occupancy maps. You may.
  • the 3D data coding device updates the table every time it encodes one occupancy map.
  • the three-dimensional data encoding device adds 1 to the value of the histogram of the corresponding occupancy map. For example, as shown in FIG. 92 (a), the 3D data coding device adds 1 to the value of the histogram corresponding to the 25 occupancy maps when the input occupancy map indicates 25. ..
  • the 3D data encoder updates the dictionary index based on the updated histogram. That is, the three-dimensional data coding device assigns (sets) the order of the number of occurrences as a dictionary index based on the number of occurrences of the updated occupancy map.
  • the dictionary index may indicate either the number of occurrences of the occupancy map or the frequency of occurrence of the occupancy map.
  • the three-dimensional data encoding device indexes the updated histogram values in descending order, so that the occupancy of 15
  • the index corresponding to the map is 2
  • the index corresponding to the 25 histogram maps is 1
  • the index corresponding to the 35 histogram maps is 3.
  • the histogram of the occupancy map of 15 and the histogram of the occupancy map of 35 have the same value, but in this case, the index having the smaller occupancy map may be set as the smaller value. Not limited to this, the index with the smaller occupancy map may be set as the larger value.
  • FIG. 92 (b) 25 occupancy maps are input, in each of FIGS. 92 (c) to (f), 35 occupancy maps are input, and in FIG. 92 (g), 15 The Occupancy map is entered.
  • the three-dimensional data encoding device adds 1 to the histogram value corresponding to the input occupancy map, and assigns a dictionary index in descending order of the calculated histogram value. .. Therefore, a smaller dictionary index value means a higher frequency of occurrence (input frequency) of the occupancy map.
  • the three-dimensional data coding device encodes the index information indicating the set dictionary index.
  • the three-dimensional data coding device can reduce the amount of coding by converting the occupancy map into index information in byte-by-byte coding.
  • the 3D data encoding device derives the index information for the occupancy map using the table and encodes the derived index information. After that, the three-dimensional data encoding device updates the table stored in the storage device (memory) to a table showing the relationship between the updated histogram and the set index.
  • the three-dimensional data decoding device decodes the index information contained in the coded bit stream from the coded bit stream, and uses the same method as the three-dimensional data coding device to store the table in the storage device (memory). Use to derive an occupancy map. After that, the table is updated using the same method as the three-dimensional data coding device.
  • the histogram and index information in the table may be updated until the coding of the occupancy map in the slice (data unit) is completed, and may be initialized at the beginning of the next slice. Further, the table used at the end of the slice may be stored, and the table stored in the coding of the next slice may be continuously used. In byte-based entropy coding, improvement in coding can be expected by using the table learned in the previous slice for coding in the next slice. In this way, bit-wise coding is different from bit-wise coding and byte-by-byte coding in that the context is inherited in the bit-wise coding, whereas the table is inherited in the byte-by-byte coding.
  • FIG. 93 is a flowchart of coding the occupancy map by the three-dimensional data coding device.
  • the 3D data coding device converts the 3D points into N-division tree representation for each data unit, and starts coding the occupancy map for each node (S12111).
  • the three-dimensional data encoding device converts the position information of the three-dimensional points into an N-segment representation (for example, an octa-tree representation) for each of the plurality of three-dimensional points included in the data unit to be processed. , Generate an occupancy map. That is, the three-dimensional data coding device converts the plurality of position information of the plurality of three-dimensional points included in the data unit to be encoded into a plurality of occupancy maps using an octree.
  • the three-dimensional data encoding device generates index information corresponding to the occupancy map using the table, and encodes the generated index information (S12112).
  • the three-dimensional data encoding device converts each of a plurality of occupancy maps into an index using a table showing the correspondence between the occupancy map and the index, and generates encoded data by encoding the index. ..
  • the three-dimensional data encoding device updates the table stored in the storage device (memory) by updating the histogram and the index using the occupancy map (S12113).
  • the three-dimensional data coding device updates the table according to the converted index and stores it in the memory.
  • FIG. 94 is a flowchart of decoding the occupancy map by the three-dimensional data decoding device.
  • the three-dimensional data decoding device starts the decoding process for each data unit in the bit stream (S12121).
  • the bit stream is, for example, the coded data in which the data unit containing a plurality of three-dimensional points is encoded, and the table used for encoding the data unit before the data unit is initially used for encoding the data unit. It includes the first identification information indicating whether or not the data is converted and used.
  • the three-dimensional data decoding device decodes the encoded index information contained in the bit stream, and uses the decoded index information and the table stored in the storage device (memory) to obtain the index information.
  • An occupancy map for the indicated index is derived (S12122). That is, the three-dimensional data decoding device calculates the position information of the three-dimensional point by deriving the corresponding occupancy map in the table from the index obtained by decoding the coded data.
  • the three-dimensional data decoding device updates the table stored in the storage device (memory) by updating the histogram and the index using the occupancy map (S12123).
  • FIG. 95 is a flowchart of the process of switching the entropy coding method in the three-dimensional data coding device.
  • the three-dimensional data coding device determines whether or not the coding method is in bit units or byte units (S12131).
  • the three-dimensional data coding apparatus determines that the coding method is bit-wise (“bit-wise” in S12131), the three-dimensional data coding apparatus executes coding by a continuation method of bit-wise entropy coding (S12132).
  • the three-dimensional data encoding device sets a flag (bit-wise_flag) indicating whether or not the coding method is in bit units (byte units) to true (S12133).
  • the three-dimensional data encoding device generates a bit stream containing the flag and transmits it to the three-dimensional data decoding device.
  • the three-dimensional data coding apparatus determines that the coding method is in byte units (“byte unit” in S12131), the three-dimensional data coding device executes coding by a continuation method of entropy coding in byte units (S12134).
  • the three-dimensional data encoding device sets a flag (bit-wise_flag) indicating whether or not the coding method is in bit units (byte units) to false (S12133).
  • the three-dimensional data encoding device generates a bit stream containing the flag and transmits it to the three-dimensional data decoding device.
  • FIG. 96 is a flowchart of a method for continuing entropy coding in byte units in a three-dimensional data coding device.
  • the three-dimensional data coding device determines whether or not to initialize the entropy coding (S12141).
  • the three-dimensional data encoding device determines whether or not to initialize the table used for byte-based entropy coding, that is, whether or not to continuously use the table.
  • the storage device is used when coding the previous data unit. Coding is executed by continuously using the table saved in (memory) (S12142).
  • the 3D data encoding device sets cabac_init_flag to false (S12143). That is, the three-dimensional data coding device sets a flag (identification information) indicating whether or not the table has been continued to a value indicating that the table has been continued.
  • the storage device When the three-dimensional data coding device determines that the entropy coding is initialized (Yes in S12142), that is, when it is determined that the table is not continuously used, the storage device is used when coding the previous data unit. Initialize the table saved in (memory) and execute encoding (S12144).
  • the 3D data encoding device sets cabac_init_flag to true (S12145). That is, the three-dimensional data coding device sets a flag (identification information) indicating whether or not the table has been continued to a value indicating that the table has not been continued.
  • the three-dimensional data coding device updates the table according to the entropy coding, and saves the updated table in the storage device (memory) (S12146).
  • FIG. 97 is a flowchart of the process of switching the entropy decoding method in the three-dimensional data decoding device.
  • the three-dimensional data decoding device analyzes the bit-wise_flag corresponding to the data unit to be decoded included in the bit stream (S12151).
  • the three-dimensional data decoding device determines, as a result of the analysis, whether or not the coding method of the data unit to be decoded is in bit units or byte units (S12152). That is, the three-dimensional data decoding device determines whether or not the bit-wise_flag corresponding to the data unit to be decoded indicates true.
  • the three-dimensional data decoding device executes decoding by a continuation method of bit-wise entropy coding when the coding method of the data unit to be decoded is bit-wise, that is, when bit-wise_flag indicates true (S12153). ).
  • the three-dimensional data decoding device executes decoding by the continuation method of entropy coding in byte unit (S12154). ).
  • FIG. 98 is a flowchart of a method of continuing entropy decoding in byte units in a three-dimensional data decoding device.
  • the 3D data decoder analyzes the cabac_init_flag included in the bitstream (S12161).
  • the three-dimensional data decoder determines whether or not cabac_init_flag indicates true (S12162).
  • the three-dimensional data decoding device continuously uses the table saved in the storage device (memory) in the decoding of the previous data unit to execute the decoding (S12163).
  • the 3D data decoding device initializes the table saved in the storage device (memory) in the decoding of the previous data unit and executes the decoding (S12164).
  • the three-dimensional data decoding device updates the table according to the entropy decoding, and saves the updated table in the storage device (memory) (S12165).
  • the three-dimensional data coding apparatus performs the processing shown in FIG. 99.
  • the three-dimensional data coding apparatus acquires a plurality of data units each including a plurality of three-dimensional points (S12171).
  • the three-dimensional data coding device encodes a plurality of three-dimensional points included in each of the plurality of data units (S12172).
  • the three-dimensional data coding device generates a bit stream including the coded data in which the plurality of three-dimensional points are encoded (S12173).
  • the three-dimensional data coding apparatus converts a plurality of position information of a plurality of three-dimensional points included in the data unit to be coded into a plurality of occupancy maps using an N-branch.
  • Each of the plurality of occupancy maps was converted into an index using a table showing the correspondence between the occupancy map and the index, and the index was encoded to generate the encoded data and converted.
  • the table is updated according to the index and stored in the memory, and when the first three-dimensional point of the data unit next to the data unit to be encoded is encoded, the table stored in the memory is stored. It is determined whether or not to initialize, and if it is determined not to initialize, the coding of the next data unit is started using the table stored in the memory.
  • the bitstream further includes first identification information indicating the result of the determination.
  • the index obtained by using the table is encoded, and the first identification indicating whether or not to initialize the table used for encoding is performed.
  • a three-dimensional data decoder can appropriately decode the bitstream.
  • the index indicates either the number of occurrences of the occupancy map or the frequency of occurrence of the occupancy map. Therefore, for example, the coding efficiency can be improved by setting the index to a smaller value as the number of occurrences and the frequency of occurrence increase.
  • the first identification information indicates that the table is to be initialized
  • it indicates that the plurality of attribute information is encoded by continuously using the context of the previous data unit.
  • the bitstream further includes second identification information indicating whether or not to use the function of continuing entropy among the plurality of data units.
  • the first identification information is shown when the second identification information indicates that it uses the function of continuing entropy among the plurality of data units.
  • the three-dimensional data encoding device includes a processor and a memory, and the processor uses the memory to perform the above processing.
  • the three-dimensional data decoding device performs the process shown in FIG. 100.
  • the three-dimensional data decoder is a coded data in which a data unit containing a plurality of three-dimensional points is encoded, and a table used for encoding the data unit and for encoding the data unit before the data unit. Acquires a bit stream including a first identification information indicating whether or not to initialize and use (S12181).
  • the three-dimensional data coding apparatus decodes the coded data using the table corresponding to the first identification information (S12182).
  • the table shows the correspondence between the index and the occupancy map in which the position information of the three-dimensional points is expressed by using the N-branch tree.
  • the coded data includes the coded index.
  • the three-dimensional data decoding device calculates the position information of the three-dimensional point by deriving the corresponding occupancy map in the table from the index obtained by decoding the coded data. do.
  • the occupancy map can be derived using the index obtained by decoding the coded data and the table corresponding to the first identification information
  • the bitstream can be appropriately decoded by the three-dimensional data decoding device. Can be made to.
  • the index indicates either the number of occurrences of the occupancy map or the frequency of occurrence of the occupancy map.
  • the first identification information indicates that the table is to be initialized
  • it indicates that the plurality of attribute information is encoded by continuously using the context of the previous data unit.
  • the bitstream further includes second identification information indicating whether or not to use the function of continuing entropy among the plurality of data units.
  • the first identification information is shown when the second identification information indicates that it uses the function of continuing entropy among the plurality of data units.
  • the three-dimensional data decoding device includes a processor and a memory, and the processor uses the memory to perform the above processing.
  • each data unit has no dependency and can be coded or decoded independently. It is possible.
  • the data structure of the current data unit (slice) does not support the function of processing data in parallel.
  • the data unit (slice) by adding the function to initialize the context in the prediction tree unit and the information to access the prediction tree unit in the data for each data unit (slice). It provides a function that can process multiple data units in parallel.
  • FIG. 101 is a diagram showing an example of a three-dimensional point cloud in the case where slices are divided and coded for each group.
  • FIG. 102 is a diagram showing examples of various configurations of a bitstream.
  • the three-dimensional point cloud may be divided into a plurality of data units 11401 to 11404 and 11411 to 11413. Further, the plurality of data units 11401 to 11404 among the plurality of data units 11401 to 11404 and 11411 to 11413 may be classified into group 1, and the plurality of data units 11411 to 11413 may be classified into group 2.
  • the three-dimensional data encoding device may encode a data unit of one slice with one prediction tree like bit stream 1, or may encode a data unit of one slice with a plurality of prediction trees like bit stream 2. It may be encoded with. Further, for example, when the point cloud can be clustered and grouped based on the characteristics of the point cloud, the three-dimensional data encoding device divides the point cloud into slices and encodes them as in the bitstream 4. Alternatively, it may be encoded without being divided into slices as in the bitstream 3. When encoding without dividing into bitstream slices, the 3D data encoding device may rearrange the point clouds so that the order is for each group, and encode each group with a prediction tree.
  • FIG. 103 is an example in which whether or not to initialize the CABAC of each slice is indicated by a slice flag (slice_cabac_init_flag), and whether or not to initialize the CABAC of the tree unit in the slice is indicated by a tree flag (tree_cabac_init_flag).
  • the bitstreams 1 to 4 in FIG. 103 are the same as the bitstreams 1 to 4 shown in FIG. 102, respectively.
  • slice_cabac_init_flag or tree_cabac_init_flag sets slice_cabac_init_flag or tree_cabac_init_flag to 1, and transmits slice_cabac_init_flag or tree_cabac_init_flag set to 1.
  • slice_cabac_init_flag or tree_cabac_init_flag set to 1 indicate that CABAC is initialized at the beginning of each processing unit.
  • slice_cabac_init_flag is an initialization flag for controlling the initialization of CABAC in slice units.
  • tree_cabac_init_flag is an initialization flag for controlling the initialization of CABAC in a tree structure unit.
  • the 3D data decoder analyzes the metadata and initializes CABAC when slice_cabac_init_flag or tree_cabac_init_flag is 1.
  • slice_cabac_init_flag indicates 1, or when slice_cabac_init_flag indicates 1, it indicates that CABAC is initialized
  • stream_cabac_init_flag indicates 0, or when slime_cabac_init_frag indicates 0, slice_cabac_init_ It does not change and indicates that the context is continuous (that is, the context is continuously used).
  • tree_cabac_init_flag By setting tree_cabac_init_flag, it is possible to initialize CABAC in units of predicted trees. By setting tree_cabac_init_flag, it is possible to reset at the beginning of any predicted tree. For example, tree_cabac_init_flag may be set so as to initialize CABAC at the beginning of each group. Alternatively, tree_cabac_init_flag may be set to initialize CABAC at the boundary where the coding parameter of the predicted tree changes. When the initialization flag is shown for each slice, the initialization flag of the tree structure unit at the head of the slice may not be shown.
  • the initialization flag may be set so that the CABAC is initialized at the beginning of each group so that the CABAC continues in the same group.
  • FIG. 104 is a diagram for explaining a method of decoding a plurality of predicted trees by parallel processing.
  • FIG. 104 shows a bitstream that initializes the CABAC at the beginning of the predicted trees 1, 2, 5, and 7 in one slice.
  • the three-dimensional data decoding device has a decoding process of the prediction tree 1, a decoding process of the prediction trees 2 to 4, a decoding process of the prediction trees 5 and 6, and a decoding process of the prediction trees 7 and 8. And can be processed independently.
  • the 3D data decoder In order for the 3D data decoder to perform parallel processing, the 3D data decoder needs to directly access the storage location of the memory of the independently decodable data unit. Therefore, the three-dimensional data coding apparatus includes the offset information (information indicating the storage location) at the beginning of the coded data in the coded data.
  • the offset information is, for example, byte information from the beginning of the slice.
  • the offset information indicated by the offset 2 is the number of bytes from the slice head to the coded data of the prediction tree 2.
  • the offset information may be shown for each predicted tree, or may be shown for each unit of one or more predicted trees that can be processed independently. Further, it may be indicated by the number of bytes of the difference from the beginning of the predicted tree 5 immediately before the predicted tree 6, such as offset D_56.
  • FIG. 105 is a diagram showing an example of a three-dimensional data coding method.
  • the three-dimensional data coding device executes predictive tree coding for each slice (S11441).
  • the three-dimensional data coding device generates a prediction tree and executes entropy coding for each prediction tree (S11442).
  • the three-dimensional data coding device determines whether or not to continue the context at the beginning of the tree structure (predicted tree) (S11443).
  • the three-dimensional data coding device determines that the context is not continued at the beginning of the tree structure (predicted tree) (No in S11443), it initializes the context and sets tree_cabac_init_flag to 1 (S11444).
  • the three-dimensional data encoding device stores the offset information (information indicating the storage location) at the beginning of the tree structure (S11445).
  • the three-dimensional data encoding device signals the tree_cabac_init_flag and at least the tree_cabac_init_flag of the offset information by a predetermined method (S11447).
  • FIG. 106 is a diagram showing an example of a three-dimensional data decoding method.
  • the three-dimensional data decoding device analyzes tree_cabac_init_flag (S11451).
  • the three-dimensional data decoding device determines whether or not tree_cabac_init_flag indicates whether or not the context is continued at the beginning of the tree structure (predicted tree) (S11452).
  • the three-dimensional data decoding device When the three-dimensional data decoding device indicates that tree_cabac_init_flag does not continue the context at the beginning of the tree structure (predicted tree) (No in S11452), it initializes the context and executes entropy decoding (S11453).
  • the three-dimensional data decoding device When the three-dimensional data decoding device indicates that tree_cabac_init_flag continues the context at the beginning of the tree structure (predicted tree) (Yes in S11452), the three-dimensional data decoding device continuously uses the context to perform entropy decoding (S11454).
  • FIG. 107 is a diagram showing an example of a case of parallel decoding in a three-dimensional data decoding method.
  • the three-dimensional data decoding device determines whether or not to perform parallel decoding (S11461).
  • the three-dimensional data decoding device determines that parallel decoding is to be performed (Yes in S11461), it accesses the parallel coding unit based on the offset information and decodes a plurality of coding units in parallel (S11462).
  • the 3D data coding device can process independently by initializing the CABAC and eliminating the dependency in the tree structure.
  • the three-dimensional data decoding device can randomly access a plurality of coded data encoded by a plurality of prediction trees, and therefore the decoding process is performed independently. It can be decrypted in parallel.
  • the three-dimensional data encoding device and the three-dimensional data decoding device initialize the CABAC based on the tree_cabac_init_flag, the initialization timings at the time of coding and the timing of decoding can be the same.
  • FIG. 108 is a diagram showing an example of the syntax of the position information data unit when the initialization flag is stored in the position information data.
  • the coded data of the prediction tree coding may show node information, for example, prediction mode (pred_mode) in a loop for each three-dimensional point.
  • pred_mode 0 (direct mode)
  • pred_mode 0 (direct mode)
  • pred_mode 0 (direct mode)
  • pred_mode 0 (direct mode)
  • pred_mode 0 (direct mode)
  • pred_mode 0 (direct mode)
  • the root node is the first node (three-dimensional point) of the prediction tree
  • an initialization flag (tree_cabac_init_flag) indicating whether or not CABAC is initialized in the root node is displayed.
  • the random access flag is ON, CABAC may be considered to be initialized.
  • FIG. 109 is a diagram showing an example of the header syntax when the initialization flag and the offset information are stored in the header of the position information.
  • the initialization flag and offset information may be collectively shown in the data unit header of the position information.
  • the position information data unit header may indicate the number of predicted trees (num_predtree_minus2) included in the position information data unit, or may indicate tree_cabac_init_flag for each predicted tree. Further, when tree_cabac_init_flag is set to 1, offset information is shown in the data unit header.
  • the offset information may be an offset from the beginning of the data unit (difference information) or an offset from the beginning of the previous prediction tree (difference information). It should be noted that num_predtree_minus2 may be set so as not to include the information of the leading predicted tree in the header, and num_predtree_minus1 may be set to include the information of the leading predicted tree in the header.
  • FIG. 110 is a diagram showing an example of the header syntax when the initialization flag and the offset information are stored in the header of the position information in random access units.
  • Num_rap indicates the number of units that can be decoded in parallel (random access).
  • the offset information may be indicated by each of the units that can be decoded in parallel.
  • tree_cabac_init_flag may not be indicated, and CABAC may be initialized at the beginning of the predicted tree indicated by the offset information.
  • an identifier may be indicated for each predicted tree in the position information data, and a randomly accessible predicted tree identifier (tree_id) may be indicated in the header. In this way, the order of the predicted tree can be determined (identified) by clearly indicating the number of the predicted tree.
  • Offset information needs to be shown in the header, and tree_cabac_init_flag may be shown in either the data or the header. Offset information may be shown in the header and tree_cabac_init_flag may be shown in the data.
  • the initial value of CABAC may be set to a predetermined value, or may be signaled in the same manner as cabac_init_flag or offset.
  • the attribute information can be processed in parallel by using the same method as the position information.
  • Initialization flags or offset information may be indicated using similar signaling methods.
  • the initialization flag may be included in the header or data of the attribute information.
  • the unit that can be decoded in parallel may be common to the position information and the attribute information.
  • the information of the unit that can be decoded in parallel of the attribute information and the initialization flag are shown in the header of the position information because they are common to the position information, and the offset information in the attribute information is shown in the header of the attribute information. You may.
  • FIG. 111 is a block diagram showing a configuration example of the three-dimensional data creation device 810 according to the present embodiment.
  • the three-dimensional data creation device 810 is mounted on a vehicle, for example.
  • the three-dimensional data creation device 810 transmits and receives three-dimensional data to and from an external traffic monitoring cloud, a vehicle in front or a following vehicle, and creates and stores three-dimensional data.
  • the three-dimensional data creation device 810 includes a data reception unit 811, a communication unit 812, a reception control unit 813, a format conversion unit 814, a plurality of sensors 815, a three-dimensional data creation unit 816, and a three-dimensional data synthesis unit. It includes an 817, a three-dimensional data storage unit 818, a communication unit 819, a transmission control unit 820, a format conversion unit 821, and a data transmission unit 822.
  • the data receiving unit 811 receives the three-dimensional data 831 from the traffic monitoring cloud or the vehicle in front.
  • the three-dimensional data 831 includes, for example, information such as a point cloud, a visible light image, depth information, sensor position information, or speed information, which includes a region that cannot be detected by the sensor 815 of the own vehicle.
  • the communication unit 812 communicates with the traffic monitoring cloud or the vehicle in front, and transmits a data transmission request or the like to the traffic monitoring cloud or the vehicle in front.
  • the reception control unit 813 exchanges information such as the corresponding format with the communication destination via the communication unit 812, and establishes communication with the communication destination.
  • the format conversion unit 814 generates the three-dimensional data 832 by performing format conversion or the like on the three-dimensional data 831 received by the data reception unit 811. Further, the format conversion unit 814 performs decompression or decoding processing when the three-dimensional data 831 is compressed or encoded.
  • the plurality of sensors 815 are a group of sensors that acquire information outside the vehicle, such as a LiDAR, a visible light camera, or an infrared camera, and generate sensor information 833.
  • the sensor information 833 is three-dimensional data such as a point cloud (point cloud data) when the sensor 815 is a laser sensor such as LiDAR.
  • the number of sensors 815 does not have to be plural.
  • the 3D data creation unit 816 generates 3D data 834 from the sensor information 833.
  • the three-dimensional data 834 includes information such as point cloud, visible light image, depth information, sensor position information, speed information, and the like.
  • the three-dimensional data synthesizing unit 817 synthesizes the three-dimensional data 834 created based on the sensor information 833 of the own vehicle with the three-dimensional data 832 created by the traffic monitoring cloud or the vehicle in front of the vehicle, thereby synthesizing the three-dimensional data 832 of the own vehicle.
  • the three-dimensional data storage unit 818 stores the generated three-dimensional data 835 and the like.
  • the communication unit 819 communicates with the traffic monitoring cloud or the following vehicle, and transmits a data transmission request or the like to the traffic monitoring cloud or the following vehicle.
  • the transmission control unit 820 exchanges information such as compatible formats with the communication destination via the communication unit 819, and establishes communication with the communication destination. Further, the transmission control unit 820 is in the space of the three-dimensional data to be transmitted based on the three-dimensional data construction information of the three-dimensional data 832 generated by the three-dimensional data synthesis unit 817 and the data transmission request from the communication destination. Determine a transmission area.
  • the transmission control unit 820 determines a transmission area including a space in front of the own vehicle that cannot be detected by the sensor of the following vehicle in response to a data transmission request from the traffic monitoring cloud or the following vehicle. Further, the transmission control unit 820 determines the transmission area by determining whether or not the space that can be transmitted or the transmitted space has been updated based on the three-dimensional data construction information. For example, the transmission control unit 820 determines an area designated by the data transmission request and in which the corresponding three-dimensional data 835 exists as the transmission area. Then, the transmission control unit 820 notifies the format conversion unit 821 of the format corresponding to the communication destination and the transmission area.
  • the format conversion unit 821 converts the 3D data 836 in the transmission area out of the 3D data 835 stored in the 3D data storage unit 818 into a format supported by the receiving side to convert the 3D data 837. Generate.
  • the format conversion unit 821 may reduce the amount of data by compressing or encoding the three-dimensional data 837.
  • the data transmission unit 822 transmits the three-dimensional data 837 to the traffic monitoring cloud or the following vehicle.
  • the three-dimensional data 837 includes information such as a point cloud in front of the own vehicle, a visible light image, depth information, or sensor position information, including a region that becomes a blind spot of the following vehicle, for example.
  • the format conversion may not be performed.
  • the three-dimensional data creation device 810 acquires the three-dimensional data 831 in the area that cannot be detected by the sensor 815 of the own vehicle from the outside, and the sensor information 833 detected by the three-dimensional data 831 and the sensor 815 of the own vehicle.
  • the three-dimensional data 835 is generated by synthesizing the three-dimensional data 834 based on the above.
  • the three-dimensional data creation device 810 can generate three-dimensional data in a range that cannot be detected by the sensor 815 of the own vehicle.
  • the three-dimensional data creation device 810 obtains three-dimensional data including the space in front of the own vehicle, which cannot be detected by the sensor of the following vehicle, in the traffic monitoring cloud or the following in response to the data transmission request from the traffic monitoring cloud or the following vehicle. Can be sent to vehicles, etc.
  • FIG. 112 is a flowchart showing an example of a procedure for transmitting three-dimensional data to a traffic monitoring cloud or a following vehicle by the three-dimensional data creation device 810.
  • the three-dimensional data creation device 810 generates and updates three-dimensional data 835 of the space including the space on the road ahead of the own vehicle (S801). Specifically, the three-dimensional data creation device 810 synthesizes the three-dimensional data 834 created based on the sensor information 833 of the own vehicle with the three-dimensional data 831 created by the traffic monitoring cloud or the vehicle in front. Therefore, the three-dimensional data 835 including the space in front of the vehicle in front, which cannot be detected by the sensor 815 of the own vehicle, is constructed.
  • the three-dimensional data creation device 810 determines whether the three-dimensional data 835 included in the transmitted space has changed (S802).
  • the 3D data creation device 810 changes.
  • the three-dimensional data including the three-dimensional data 835 of the generated space is transmitted to the traffic monitoring cloud or the following vehicle (S803).
  • the three-dimensional data creation device 810 may transmit the three-dimensional data in the space where the change has occurred at the transmission timing of the three-dimensional data to be transmitted at predetermined intervals, but transmit immediately after detecting the change. You may. That is, the three-dimensional data creation device 810 may transmit the three-dimensional data in the space where the change has occurred with priority over the three-dimensional data transmitted at predetermined intervals.
  • the three-dimensional data creation device 810 may transmit all the three-dimensional data of the changed space as the three-dimensional data of the changed space, or the difference (for example, appearance or disappearance) of the three-dimensional data. Only the information of the three-dimensional point, the displacement information of the three-dimensional point, etc.) may be transmitted.
  • the three-dimensional data creation device 810 may transmit metadata related to the danger avoidance operation of the own vehicle such as a sudden braking warning to the following vehicle prior to the three-dimensional data of the space where the change has occurred.
  • the following vehicle can recognize the sudden braking of the preceding vehicle at an early stage, and can start the danger avoidance operation such as deceleration at an earlier stage.
  • the three-dimensional data creation device 810 When the three-dimensional data 835 included in the transmitted space has not changed (No in S802), or after step S803, the three-dimensional data creation device 810 has a predetermined shape at a distance L in front of the own vehicle.
  • the three-dimensional data contained in the space of is transmitted to the traffic monitoring cloud or the following vehicle (S804).
  • steps S801 to S804 are repeatedly performed at predetermined time intervals.
  • the three-dimensional data creation device 810 does not have to transmit the three-dimensional data 837 of the space if there is no difference between the three-dimensional data 835 of the space currently to be transmitted and the three-dimensional map.
  • the client device transmits the sensor information obtained by the sensor to the server or another client device.
  • FIG. 113 is a diagram showing a configuration of a three-dimensional map and a sensor information transmission / reception system according to the present embodiment.
  • the system includes a server 901 and client devices 902A and 902B.
  • client devices 902A and 902B are not particularly distinguished, they are also referred to as the client devices 902.
  • the client device 902 is, for example, an in-vehicle device mounted on a moving body such as a vehicle.
  • the server 901 is, for example, a traffic monitoring cloud or the like, and can communicate with a plurality of client devices 902.
  • the server 901 transmits a three-dimensional map composed of a point cloud to the client device 902.
  • the configuration of the three-dimensional map is not limited to the point cloud, and may represent other three-dimensional data such as a mesh structure.
  • the client device 902 transmits the sensor information acquired by the client device 902 to the server 901.
  • the sensor information includes, for example, at least one of LiDAR acquisition information, visible light image, infrared image, depth image, sensor position information, and speed information.
  • the data sent and received between the server 901 and the client device 902 may be compressed to reduce the data, or may remain uncompressed to maintain the accuracy of the data.
  • a three-dimensional compression method based on an octa-tree structure can be used for the point cloud.
  • a two-dimensional image compression method can be used for visible light images, infrared images, and depth images.
  • the two-dimensional image compression method is, for example, MPEG-4 AVC or HEVC standardized by MPEG.
  • the server 901 transmits the three-dimensional map managed by the server 901 to the client device 902 in response to the transmission request of the three-dimensional map from the client device 902.
  • the server 901 may transmit the three-dimensional map without waiting for the transmission request of the three-dimensional map from the client device 902.
  • the server 901 may broadcast a three-dimensional map to one or more client devices 902 in a predetermined space.
  • the server 901 may transmit a three-dimensional map suitable for the position of the client device 902 to the client device 902 once receiving the transmission request at regular intervals.
  • the server 901 may transmit the three-dimensional map to the client device 902 every time the three-dimensional map managed by the server 901 is updated.
  • the client device 902 issues a three-dimensional map transmission request to the server 901. For example, when the client device 902 wants to perform self-position estimation during traveling, the client device 902 transmits a transmission request for a three-dimensional map to the server 901.
  • the client device 902 may issue a three-dimensional map transmission request to the server 901.
  • the client device 902 may issue a transmission request for the three-dimensional map to the server 901.
  • the client device 902 may issue a three-dimensional map transmission request to the server 901.
  • the client device 902 may issue a three-dimensional map transmission request to the server 901 before a certain time when the client device 902 goes out. For example, when the client device 902 exists within a predetermined distance from the boundary of the space indicated by the three-dimensional map held by the client device 902, the client device 902 issues a three-dimensional map transmission request to the server 901. You may. If the movement route and movement speed of the client device 902 are known, the time when the client device 902 goes out is predicted from the space shown by the three-dimensional map held by the client device 902. You may.
  • the client device 902 may issue a three-dimensional map transmission request to the server 901.
  • the client device 902 transmits the sensor information to the server 901 in response to the transmission request for the sensor information transmitted from the server 901.
  • the client device 902 may send the sensor information to the server 901 without waiting for the sensor information transmission request from the server 901. For example, once the client device 902 receives the sensor information transmission request from the server 901, the client device 902 may periodically transmit the sensor information to the server 901 for a certain period of time. Further, when the error at the time of alignment between the three-dimensional data created by the client device 902 based on the sensor information and the three-dimensional map obtained from the server 901 is equal to or more than a certain value, the client device 902 is located around the client device 902. It may be determined that the three-dimensional map may have changed, and that fact and the sensor information may be transmitted to the server 901.
  • the server 901 issues a sensor information transmission request to the client device 902.
  • the server 901 receives the position information of the client device 902 such as GPS from the client device 902.
  • the server 901 determines that the client device 902 is approaching a space with little information in the three-dimensional map managed by the server 901 based on the position information of the client device 902
  • the server 901 determines that the client device 902 is approaching a space with little information, and the client is required to generate a new three-dimensional map.
  • a request for transmission of sensor information is sent to the device 902.
  • the server 901 issues a sensor information transmission request when it wants to update the three-dimensional map, when it wants to check the road condition such as when it snows or when there is a disaster, when it wants to check the traffic jam situation, or when it wants to check the incident accident situation. May be good.
  • the client device 902 may set the data amount of the sensor information to be transmitted to the server 901 according to the communication state or the band at the time of receiving the transmission request of the sensor information received from the server 901. Setting the amount of sensor information to be transmitted to the server 901 means, for example, increasing or decreasing the data itself, or appropriately selecting a compression method.
  • FIG. 114 is a block diagram showing a configuration example of the client device 902.
  • the client device 902 receives a three-dimensional map composed of a point cloud or the like from the server 901, and estimates the self-position of the client device 902 from the three-dimensional data created based on the sensor information of the client device 902. Further, the client device 902 transmits the acquired sensor information to the server 901.
  • the client device 902 includes a data reception unit 1011, a communication unit 1012, a reception control unit 1013, a format conversion unit 1014, a plurality of sensors 1015, a three-dimensional data creation unit 1016, and a three-dimensional image processing unit 1017. It includes a three-dimensional data storage unit 1018, a format conversion unit 1019, a communication unit 1020, a transmission control unit 1021, and a data transmission unit 1022.
  • the data receiving unit 1011 receives the three-dimensional map 1031 from the server 901.
  • the three-dimensional map 1031 is data including a point cloud such as WLD or SWLD.
  • the three-dimensional map 1031 may include either compressed data or uncompressed data.
  • the communication unit 1012 communicates with the server 901 and transmits a data transmission request (for example, a three-dimensional map transmission request) or the like to the server 901.
  • a data transmission request for example, a three-dimensional map transmission request
  • the reception control unit 1013 exchanges information such as the corresponding format with the communication destination via the communication unit 1012, and establishes communication with the communication destination.
  • the format conversion unit 1014 generates the three-dimensional map 1032 by performing format conversion or the like on the three-dimensional map 1031 received by the data receiving unit 1011. Further, the format conversion unit 1014 performs decompression or decoding processing when the three-dimensional map 1031 is compressed or encoded. If the three-dimensional map 1031 is uncompressed data, the format conversion unit 1014 does not perform decompression or decoding processing.
  • the plurality of sensors 1015 are a group of sensors that acquire information outside the vehicle on which the client device 902 is mounted, such as a LiDAR, a visible light camera, an infrared camera, or a depth sensor, and generate sensor information 1033.
  • the sensor information 1033 is three-dimensional data such as a point cloud (point cloud data) when the sensor 1015 is a laser sensor such as LiDAR.
  • the number of sensors 1015 does not have to be plural.
  • the three-dimensional data creation unit 1016 creates three-dimensional data 1034 around the own vehicle based on the sensor information 1033. For example, the three-dimensional data creation unit 1016 creates point cloud data with color information around the own vehicle using the information acquired by LiDAR and the visible light image obtained by the visible light camera.
  • the three-dimensional image processing unit 1017 performs self-position estimation processing of the own vehicle using the received three-dimensional map 1032 such as a point cloud and the three-dimensional data 1034 around the own vehicle generated from the sensor information 1033. ..
  • the three-dimensional image processing unit 1017 creates three-dimensional data 1035 around the own vehicle by synthesizing the three-dimensional map 1032 and the three-dimensional data 1034, and estimates the self-position using the created three-dimensional data 1035. Processing may be performed.
  • the three-dimensional data storage unit 1018 stores the three-dimensional map 1032, the three-dimensional data 1034, the three-dimensional data 1035, and the like.
  • the format conversion unit 1019 generates the sensor information 1037 by converting the sensor information 1033 into a format supported by the receiving side.
  • the format conversion unit 1019 may reduce the amount of data by compressing or encoding the sensor information 1037. Further, the format conversion unit 1019 may omit the process when it is not necessary to perform the format conversion. Further, the format conversion unit 1019 may control the amount of data to be transmitted according to the designation of the transmission range.
  • the communication unit 1020 communicates with the server 901 and receives a data transmission request (sensor information transmission request) or the like from the server 901.
  • the transmission control unit 1021 exchanges information such as the corresponding format with the communication destination via the communication unit 1020 to establish communication.
  • the data transmission unit 1022 transmits the sensor information 1037 to the server 901.
  • the sensor information 1037 includes a plurality of sensors such as information acquired by LiDAR, a brightness image acquired by a visible light camera, an infrared image acquired by an infrared camera, a depth image acquired by a depth sensor, sensor position information, and speed information. Contains information acquired by 1015.
  • FIG. 115 is a block diagram showing a configuration example of the server 901.
  • the server 901 receives the sensor information transmitted from the client device 902, and creates three-dimensional data based on the received sensor information.
  • the server 901 updates the three-dimensional map managed by the server 901 by using the created three-dimensional data. Further, the server 901 transmits the updated three-dimensional map to the client device 902 in response to the transmission request of the three-dimensional map from the client device 902.
  • the server 901 includes a data reception unit 1111, a communication unit 1112, a reception control unit 1113, a format conversion unit 1114, a three-dimensional data creation unit 1116, a three-dimensional data synthesis unit 1117, and a three-dimensional data storage unit 1118. , A format conversion unit 1119, a communication unit 1120, a transmission control unit 1121, and a data transmission unit 1122.
  • the data receiving unit 1111 receives the sensor information 1037 from the client device 902.
  • the sensor information 1037 includes, for example, information acquired by LiDAR, a brightness image acquired by a visible light camera, an infrared image acquired by an infrared camera, a depth image acquired by a depth sensor, sensor position information, speed information, and the like.
  • the communication unit 1112 communicates with the client device 902 and transmits a data transmission request (for example, a sensor information transmission request) or the like to the client device 902.
  • a data transmission request for example, a sensor information transmission request
  • the reception control unit 1113 exchanges information such as the corresponding format with the communication destination via the communication unit 1112 to establish communication.
  • the format conversion unit 1114 When the received sensor information 1037 is compressed or encoded, the format conversion unit 1114 generates sensor information 1132 by performing decompression or decoding processing. If the sensor information 1037 is uncompressed data, the format conversion unit 1114 does not perform decompression or decoding processing.
  • the three-dimensional data creation unit 1116 creates three-dimensional data 1134 around the client device 902 based on the sensor information 1132. For example, the three-dimensional data creation unit 1116 creates point cloud data with color information around the client device 902 using the information acquired by LiDAR and the visible light image obtained by the visible light camera.
  • the 3D data synthesis unit 1117 updates the 3D map 1135 by synthesizing the 3D data 1134 created based on the sensor information 1132 with the 3D map 1135 managed by the server 901.
  • the 3D data storage unit 1118 stores the 3D map 1135 and the like.
  • the format conversion unit 1119 generates the 3D map 1031 by converting the 3D map 1135 into a format supported by the receiving side.
  • the format conversion unit 1119 may reduce the amount of data by compressing or encoding the three-dimensional map 1135. Further, the format conversion unit 1119 may omit the process when it is not necessary to perform the format conversion. Further, the format conversion unit 1119 may control the amount of data to be transmitted according to the designation of the transmission range.
  • the communication unit 1120 communicates with the client device 902 and receives a data transmission request (three-dimensional map transmission request) or the like from the client device 902.
  • the transmission control unit 1121 exchanges information such as the corresponding format with the communication destination via the communication unit 1120 to establish communication.
  • the data transmission unit 1122 transmits the three-dimensional map 1031 to the client device 902.
  • the three-dimensional map 1031 is data including a point cloud such as WLD or SWLD.
  • the three-dimensional map 1031 may include either compressed data or uncompressed data.
  • FIG. 116 is a flowchart showing an operation when the client device 902 acquires a three-dimensional map.
  • the client device 902 requests the server 901 to transmit a three-dimensional map (point cloud, etc.) (S1001). At this time, the client device 902 may request the server 901 to transmit a three-dimensional map related to the position information by transmitting the position information of the client device 902 obtained by GPS or the like together.
  • a three-dimensional map point cloud, etc.
  • the client device 902 receives the three-dimensional map from the server 901 (S1002). If the received 3D map is compressed data, the client device 902 decodes the received 3D map to generate an uncompressed 3D map (S1003).
  • the client device 902 creates three-dimensional data 1034 around the client device 902 from the sensor information 1033 obtained by the plurality of sensors 1015 (S1004).
  • the client device 902 estimates the self-position of the client device 902 using the three-dimensional map 1032 received from the server 901 and the three-dimensional data 1034 created from the sensor information 1033 (S1005).
  • FIG. 117 is a flowchart showing an operation at the time of transmission of sensor information by the client device 902.
  • the client device 902 receives the sensor information transmission request from the server 901 (S1011).
  • the client device 902 transmits the sensor information 1037 to the server 901 (S1012).
  • the sensor information 1033 includes a plurality of information obtained by the plurality of sensors 1015
  • the client device 902 may generate the sensor information 1037 by compressing each information by a compression method suitable for each information. good.
  • FIG. 118 is a flowchart showing the operation when the server 901 acquires the sensor information.
  • the server 901 requests the client device 902 to transmit the sensor information (S1021).
  • the server 901 receives the sensor information 1037 transmitted from the client device 902 in response to the request (S1022).
  • the server 901 creates three-dimensional data 1134 using the received sensor information 1037 (S1023).
  • the server 901 reflects the created three-dimensional data 1134 in the three-dimensional map 1135 (S1024).
  • FIG. 119 is a flowchart showing the operation at the time of transmission of the three-dimensional map by the server 901.
  • the server 901 receives the transmission request of the three-dimensional map from the client device 902 (S1031).
  • the server 901 that has received the three-dimensional map transmission request transmits the three-dimensional map 1031 to the client device 902 (S1032).
  • the server 901 may extract a three-dimensional map in the vicinity thereof according to the position information of the client device 902 and transmit the extracted three-dimensional map.
  • the server 901 may compress the three-dimensional map configured by the point cloud by using, for example, a compression method based on an octane structure, and transmit the compressed three-dimensional map.
  • the server 901 creates three-dimensional data 1134 near the position of the client device 902 using the sensor information 1037 received from the client device 902. Next, the server 901 calculates the difference between the three-dimensional data 1134 and the three-dimensional map 1135 by matching the created three-dimensional data 1134 with the three-dimensional map 1135 in the same area managed by the server 901. .. When the difference is equal to or greater than a predetermined threshold value, the server 901 determines that some abnormality has occurred in the vicinity of the client device 902. For example, when land subsidence occurs due to a natural disaster such as an earthquake, a large difference occurs between the three-dimensional map 1135 managed by the server 901 and the three-dimensional data 1134 created based on the sensor information 1037. Is possible.
  • the sensor information 1037 may include information indicating at least one of the sensor type, the sensor performance, and the sensor model number. Further, a class ID or the like corresponding to the performance of the sensor may be added to the sensor information 1037. For example, when the sensor information 1037 is the information acquired by LiDAR, the sensor that can acquire the information with the accuracy of several mm is the class 1, the sensor that can acquire the information with the accuracy of several cm is the class 2, and the sensor is the unit of several m. As in class 3, it is conceivable to assign an identifier to the performance of a sensor that can acquire information with accuracy. Further, the server 901 may estimate the performance information of the sensor or the like from the model number of the client device 902.
  • the server 901 may determine the sensor spec information from the vehicle model of the vehicle. In this case, the server 901 may acquire information on the vehicle type of the vehicle in advance, or the sensor information may include the information. Further, the server 901 may switch the degree of correction for the three-dimensional data 1134 created by using the sensor information 1037 by using the acquired sensor information 1037. For example, if the sensor performance is high accuracy (class 1), the server 901 does not make corrections to the 3D data 1134. When the sensor performance is low accuracy (class 3), the server 901 applies a correction to the three-dimensional data 1134 according to the accuracy of the sensor. For example, in the server 901, the lower the accuracy of the sensor, the stronger the degree (strength) of the correction.
  • the server 901 may issue a sensor information transmission request to a plurality of client devices 902 in a certain space at the same time.
  • the server 901 receives a plurality of sensor information from the plurality of client devices 902, it is not necessary to use all the sensor information for creating the three-dimensional data 1134.
  • the sensor to be used depends on the performance of the sensor. You may select the information.
  • the server 901 selects highly accurate sensor information (class 1) from a plurality of received sensor information, and creates three-dimensional data 1134 using the selected sensor information. You may.
  • the server 901 is not limited to a server such as a traffic monitoring cloud, and may be another client device (vehicle-mounted).
  • FIG. 120 is a diagram showing a system configuration in this case.
  • the client device 902C issues a sensor information transmission request to the nearby client device 902A, and acquires the sensor information from the client device 902A. Then, the client device 902C creates three-dimensional data using the acquired sensor information of the client device 902A, and updates the three-dimensional map of the client device 902C. As a result, the client device 902C can generate a three-dimensional map of the space that can be acquired from the client device 902A by taking advantage of the performance of the client device 902C. For example, it is considered that such a case occurs when the performance of the client device 902C is high.
  • the client device 902A that provided the sensor information is given the right to acquire the highly accurate three-dimensional map generated by the client device 902C.
  • the client device 902A receives a highly accurate 3D map from the client device 902C in accordance with its rights.
  • the client device 902C may issue a request for transmission of sensor information to a plurality of nearby client devices 902 (client device 902A and client device 902B).
  • client device 902A and client device 902B client devices 902
  • the client device 902C can create three-dimensional data using the sensor information obtained by this high-performance sensor.
  • FIG. 121 is a block diagram showing a functional configuration of the server 901 and the client device 902.
  • the server 901 includes, for example, a three-dimensional map compression / decoding processing unit 1201 that compresses and decodes a three-dimensional map, and a sensor information compression / decoding processing unit 1202 that compresses and decodes sensor information.
  • the client device 902 includes a three-dimensional map decoding processing unit 1211 and a sensor information compression processing unit 1212.
  • the three-dimensional map decoding processing unit 1211 receives the encoded data of the compressed three-dimensional map, decodes the encoded data, and acquires the three-dimensional map.
  • the sensor information compression processing unit 1212 compresses the sensor information itself instead of the three-dimensional data created from the acquired sensor information, and transmits the compressed sensor information encoded data to the server 901.
  • the client device 902 may internally hold a processing unit (device or LSI) that performs a process of decoding a three-dimensional map (point cloud, etc.), and the three-dimensional data of the three-dimensional map (point cloud, etc.). It is not necessary to hold a processing unit that performs processing for compressing. As a result, the cost and power consumption of the client device 902 can be suppressed.
  • the client device 902 is mounted on the moving body, and is obtained from the sensor information 1033 indicating the surrounding condition of the moving body obtained by the sensor 1015 mounted on the moving body. Create peripheral three-dimensional data 1034.
  • the client device 902 estimates the self-position of the moving object using the created three-dimensional data 1034.
  • the client device 902 transmits the acquired sensor information 1033 to the server 901 or another client device 902.
  • the client device 902 transmits the sensor information 1033 to the server 901 and the like.
  • the amount of transmitted data can be reduced as compared with the case of transmitting three-dimensional data.
  • the processing amount of the client device 902 can be reduced. Therefore, the client device 902 can reduce the amount of data to be transmitted or simplify the configuration of the device.
  • the client device 902 further transmits a transmission request for the three-dimensional map to the server 901, and receives the three-dimensional map 1031 from the server 901.
  • the client device 902 estimates the self-position using the three-dimensional data 1034 and the three-dimensional map 1032 in the estimation of the self-position.
  • the sensor information 1033 includes at least one of information obtained by the laser sensor, a luminance image, an infrared image, a depth image, a sensor position information, and a sensor speed information.
  • the sensor information 1033 includes information indicating the performance of the sensor.
  • the client device 902 encodes or compresses the sensor information 1033, and in transmitting the sensor information, the encoded or compressed sensor information 1037 is transmitted to the server 901 or another client device 902. According to this, the client device 902 can reduce the amount of data to be transmitted.
  • the client device 902 includes a processor and a memory, and the processor uses the memory to perform the above processing.
  • the server 901 can communicate with the client device 902 mounted on the mobile body, and the sensor information 1037 indicating the peripheral situation of the mobile body obtained by the sensor 1015 mounted on the mobile body is obtained. Is received from the client device 902. The server 901 creates three-dimensional data 1134 around the moving object from the received sensor information 1037.
  • the server 901 creates the three-dimensional data 1134 using the sensor information 1037 transmitted from the client device 902. As a result, there is a possibility that the amount of data to be transmitted can be reduced as compared with the case where the client device 902 transmits three-dimensional data. Further, since it is not necessary to perform processing such as compression or coding of three-dimensional data on the client device 902, the processing amount of the client device 902 can be reduced. Therefore, the server 901 can reduce the amount of data to be transmitted or simplify the configuration of the device.
  • the server 901 further transmits a transmission request for sensor information to the client device 902.
  • the server 901 updates the three-dimensional map 1135 using the created three-dimensional data 1134, and sends the three-dimensional map 1135 to the client device 902 in response to the transmission request of the three-dimensional map 1135 from the client device 902. Send.
  • the sensor information 1037 includes at least one of information obtained by the laser sensor, a luminance image, an infrared image, a depth image, a sensor position information, and a sensor speed information.
  • the sensor information 1037 includes information indicating the performance of the sensor.
  • the server 901 further corrects the three-dimensional data according to the performance of the sensor. According to this, the three-dimensional data creation method can improve the quality of the three-dimensional data.
  • the server 901 when receiving sensor information, receives a plurality of sensor information 1037 from a plurality of client devices 902, and based on a plurality of information indicating the performance of the sensor included in the plurality of sensor information 1037, the server 901 receives three-dimensional data 1134. Select the sensor information 1037 used to create. According to this, the server 901 can improve the quality of the three-dimensional data 1134.
  • the server 901 decodes or decompresses the received sensor information 1037, and creates three-dimensional data 1134 from the decoded or decompressed sensor information 1132. According to this, the server 901 can reduce the amount of data to be transmitted.
  • the server 901 includes a processor and a memory, and the processor uses the memory to perform the above processing.
  • FIG. 122 is a diagram showing a configuration of a system according to the present embodiment.
  • the system shown in FIG. 122 includes a server 2001, a client device 2002A, and a client device 2002B.
  • the client device 2002A and the client device 2002B are mounted on a moving body such as a vehicle and transmit sensor information to the server 2001.
  • the server 2001 transmits a three-dimensional map (point cloud) to the client device 2002A and the client device 2002B.
  • the client device 2002A includes a sensor information acquisition unit 2011, a storage unit 2012, and a data transmission availability determination unit 2013.
  • the configuration of the client device 2002B is also the same. Further, in the following, when the client device 2002A and the client device 2002B are not particularly distinguished, they are also described as the client device 2002.
  • FIG. 123 is a flowchart showing the operation of the client device 2002 according to the present embodiment.
  • the sensor information acquisition unit 2011 acquires various sensor information using a sensor (sensor group) mounted on the moving body. That is, the sensor information acquisition unit 2011 acquires sensor information indicating the surrounding condition of the moving body, which is obtained by the sensor (sensor group) mounted on the moving body. Further, the sensor information acquisition unit 2011 stores the acquired sensor information in the storage unit 2012.
  • This sensor information includes at least one of LiDAR acquisition information, visible light image, infrared image and depth image. Further, the sensor information may include at least one of sensor position information, speed information, acquisition time information, and acquisition location information.
  • the sensor position information indicates the position of the sensor from which the sensor information has been acquired.
  • the velocity information indicates the velocity of the moving object when the sensor acquires the sensor information.
  • the acquisition time information indicates the time when the sensor information is acquired by the sensor.
  • the acquisition location information indicates the position of the moving object or the sensor when the sensor information is acquired by the sensor.
  • the data transmission availability determination unit 2013 determines whether the mobile body (client device 2002) exists in an environment in which the sensor information can be transmitted to the server 2001 (S2002). For example, the data transmission availability determination unit 2013 may specify the location and time of the client device 2002 using information such as GPS, and determine whether or not the data can be transmitted. Further, the data transmission availability determination unit 2013 may determine whether or not data can be transmitted depending on whether or not it can be connected to a specific access point.
  • the client device 2002 determines that the mobile body exists in an environment where the sensor information can be transmitted to the server 2001 (Yes in S2002), the client device 2002 transmits the sensor information to the server 2001 (S2003). That is, when the client device 2002 is in a situation where the sensor information can be transmitted to the server 2001, the client device 2002 transmits the held sensor information to the server 2001.
  • a millimeter-wave access point capable of high-speed communication is installed at an intersection or the like.
  • the sensor information held by the client device 2002 is transmitted to the server 2001 at high speed by using millimeter wave communication.
  • the client device 2002 deletes the sensor information transmitted to the server 2001 from the storage unit 2012 (S2004).
  • the client device 2002 may delete the sensor information when the sensor information not transmitted to the server 2001 satisfies a predetermined condition.
  • the client device 2002 may delete the sensor information from the storage unit 2012 when the acquisition time of the sensor information to be held becomes older than a certain time before the current time. That is, the client device 2002 may delete the sensor information from the storage unit 2012 when the difference between the time when the sensor information is acquired by the sensor and the current time exceeds a predetermined time. Further, the client device 2002 may delete the sensor information from the storage unit 2012 when the acquisition location of the sensor information to be held is more than a certain distance from the current position.
  • the sensor information is obtained when the difference between the position of the moving body or the sensor when the sensor information is acquired by the sensor and the position of the current moving body or the sensor exceeds a predetermined distance. May be deleted from the storage unit 2012. As a result, the capacity of the storage unit 2012 of the client device 2002 can be suppressed.
  • the client device 2002 performs the processing after step S2001 again. Further, when the acquisition of the sensor information by the client device 2002 is completed (Yes in S2005), the client device 2002 ends the process.
  • the client device 2002 may select the sensor information to be transmitted to the server 2001 according to the communication status. For example, when high-speed communication is possible, the client device 2002 preferentially transmits sensor information (for example, LiDAR acquisition information) having a large size held in the storage unit 2012. Further, when high-speed communication is difficult, the client device 2002 transmits sensor information (for example, a visible light image) having a small size and a high priority held in the storage unit 2012. As a result, the client device 2002 can efficiently transmit the sensor information held in the storage unit 2012 to the server 2001 according to the network conditions.
  • sensor information for example, LiDAR acquisition information
  • sensor information for example, a visible light image
  • the client device 2002 may acquire the time information indicating the current time and the location information indicating the current location from the server 2001. Further, the client device 2002 may determine the acquisition time and acquisition location of the sensor information based on the acquired time information and location information. That is, the client device 2002 may acquire the time information from the server 2001 and generate the acquired time information using the acquired time information. Further, the client device 2002 may acquire the location information from the server 2001 and generate the acquisition location information using the acquired location information.
  • the server 2001 and the client device 2002 synchronize the time using a mechanism such as NTP (Network Time Protocol) or PTP (Precision Time Protocol).
  • NTP Network Time Protocol
  • PTP Precision Time Protocol
  • the client device 2002 can acquire accurate time information.
  • the server 2001 can handle the sensor information indicating the synchronized time.
  • the time synchronization mechanism may be any method other than NTP or PTP.
  • GPS information may be used as the time information and location information.
  • the server 2001 may acquire sensor information from a plurality of client devices 2002 by designating a time or place. For example, in the event of an accident, the server 2001 broadcasts a sensor information transmission request to a plurality of client devices 2002 by designating the time and place of the accident in order to search for a client in the vicinity thereof. Then, the client device 2002 having the sensor information of the corresponding time and place transmits the sensor information to the server 2001. That is, the client device 2002 receives the sensor information transmission request including the designated information for designating the place and time from the server 2001. The client device 2002 has determined that the storage unit 2012 stores the sensor information obtained at the place and time indicated by the designated information, and that the mobile body exists in an environment in which the sensor information can be transmitted to the server 2001.
  • the sensor information obtained at the place and time indicated by the designated information is transmitted to the server 2001.
  • the server 2001 can acquire sensor information related to the occurrence of an accident from a plurality of client devices 2002 and use it for accident analysis and the like.
  • the client device 2002 may refuse to transmit the sensor information when it receives the sensor information transmission request from the server 2001. Further, the client device 2002 may set in advance which sensor information among the plurality of sensor information can be transmitted. Alternatively, the server 2001 may inquire of the client device 2002 whether or not the sensor information can be transmitted each time.
  • points may be given to the client device 2002 that has transmitted the sensor information to the server 2001.
  • This point can be used, for example, to pay for gasoline purchase costs, EV (Electric Vehicle) charging costs, highway tolls, car rental costs, and the like.
  • the server 2001 may delete the information for identifying the client device 2002 from which the sensor information is transmitted after the sensor information is acquired.
  • this information is information such as the network address of the client device 2002.
  • the sensor information can be anonymized, so that the user of the client device 2002 can safely transmit the sensor information from the client device 2002 to the server 2001.
  • the server 2001 may be composed of a plurality of servers. For example, by sharing sensor information among a plurality of servers, even if one server fails, another server can communicate with the client device 2002. This makes it possible to avoid stopping the service due to a server failure.
  • the designated place specified in the sensor information transmission request indicates the position where the accident occurred, and may differ from the position of the client device 2002 at the designated time specified in the sensor information transmission request. Therefore, the server 2001 can request the client device 2002 existing in the range to acquire information by designating a range such as within XX m in the vicinity as the designated place. Similarly, for the designated time, the server 2001 may specify a range such as within N seconds before and after a certain time. As a result, the server 2001 can acquire the sensor information from the client device 2002 that exists at "time: t-N to t + N, location: within XXm from the absolute position S". When transmitting three-dimensional data such as LiDAR, the client device 2002 may transmit the data generated immediately after the time t.
  • the server 2001 may transmit the data generated immediately after the time t.
  • the server 2001 may separately specify, as the designated location, the information indicating the location of the client device 2002 for which the sensor information is to be acquired and the location where the sensor information is desired. For example, the server 2001 specifies that the sensor information including at least the range from the absolute position S to YYm is acquired from the client device 2002 existing within XXm from the absolute position S.
  • the client device 2002 selects the 3D data in one or more randomly accessible units so as to include at least the sensor information in the specified range.
  • the client device 2002 may transmit a plurality of temporally continuous image data including at least a frame immediately before or after time t.
  • the client device 2002 uses the network according to the priority notified from the server 2001. You may choose. Alternatively, the client device 2002 itself may select a network that can secure an appropriate bandwidth based on the size of the transmitted data. Alternatively, the client device 2002 may select a network to be used based on the cost for data transmission and the like. Further, the transmission request from the server 2001 may include information indicating a transmission deadline, such as transmission when the client device 2002 can start transmission by time T. The server 2001 may issue a transmission request again if sufficient sensor information cannot be acquired within the deadline.
  • a transmission deadline such as transmission when the client device 2002 can start transmission by time T.
  • the sensor information may include header information indicating the characteristics of the sensor data together with the compressed or uncompressed sensor data.
  • the client device 2002 may transmit the header information to the server 2001 via a physical network or communication protocol different from the sensor data. For example, the client device 2002 transmits the header information to the server 2001 prior to the transmission of the sensor data.
  • the server 2001 determines whether or not to acquire the sensor data of the client device 2002 based on the analysis result of the header information.
  • the header information may include information indicating the point cloud acquisition density, elevation angle, or frame rate of LiDAR, or the resolution, signal-to-noise ratio, or frame rate of the visible light image. As a result, the server 2001 can acquire the sensor information from the client device 2002 having the sensor data of the determined quality.
  • the client device 2002 acquires the sensor information indicating the peripheral condition of the moving body, which is mounted on the moving body and obtained by the sensor mounted on the moving body, and stores the sensor information in the storage unit 2012. ..
  • the client device 2002 determines whether the mobile body exists in an environment capable of transmitting sensor information to the server 2001, and if it determines that the mobile body exists in an environment capable of transmitting sensor information to the server, the client device 2002 transmits the sensor information to the server 2001. Send to.
  • the client device 2002 further creates three-dimensional data around the moving body from the sensor information, and estimates the self-position of the moving body using the created three-dimensional data.
  • the client device 2002 further transmits a transmission request for the three-dimensional map to the server 2001, and receives the three-dimensional map from the server 2001.
  • the client device 2002 estimates the self-position using the three-dimensional data and the three-dimensional map.
  • processing by the client device 2002 may be realized as an information transmission method in the client device 2002.
  • the client device 2002 includes a processor and a memory, and the processor may perform the above processing using the memory.
  • FIG. 124 is a diagram showing a configuration of a sensor information collection system according to the present embodiment.
  • the sensor information collection system according to the present embodiment includes a terminal 2021A, a terminal 2021B, a communication device 2022A, a communication device 2022B, a network 2023, a data collection server 2024, and a map server 2025.
  • the client device 2026 and the like.
  • the terminal 2021A and the terminal 2021B are not particularly distinguished, they are also described as the terminal 2021.
  • the communication device 2022A and the communication device 2022B are not particularly distinguished, they are also described as the communication device 2022.
  • the data collection server 2024 collects data such as sensor data obtained by the sensor included in the terminal 2021 as position-related data associated with the position in the three-dimensional space.
  • the sensor data is, for example, data acquired by using a sensor included in the terminal 2021 such as a state around the terminal 2021 or an internal state of the terminal 2021.
  • the terminal 2021 transmits sensor data collected from one or more sensor devices at a position capable of directly communicating with the terminal 2021 or relaying one or a plurality of relay devices by the same communication method to the data collection server 2024. Send.
  • the data included in the position-related data may include, for example, information indicating the operating state of the terminal itself or the device included in the terminal, the operation log, the usage status of the service, and the like. Further, the data included in the position-related data may include information in which the identifier of the terminal 2021 is associated with the position or the movement route of the terminal 2021.
  • the information indicating the position included in the position-related data is associated with the information indicating the position in the three-dimensional data such as the three-dimensional map data.
  • the details of the information indicating the position will be described later.
  • the position-related data includes, in addition to the position information which is information indicating the position, the time information described above, the attributes of the data included in the position-related data, or the information indicating the type of the sensor (for example, model number) that generated the data. And at least one of them may be included.
  • the position information and the time information may be stored in the header area of the position-related data or the header area of the frame for storing the position-related data. Further, the position information and the time information may be transmitted and / or stored separately from the position-related data as metadata associated with the position-related data.
  • the map server 2025 is connected to the network 2023, for example, and transmits three-dimensional data such as three-dimensional map data in response to a request from another device such as the terminal 2021. Further, as described in each of the above-described embodiments, the map server 2025 may have a function of updating three-dimensional data by using the sensor information transmitted from the terminal 2021.
  • the data collection server 2024 is connected to the network 2023, for example, collects position-related data from other devices such as the terminal 2021, and stores the collected position-related data in a storage device inside or in another server. Further, the data collection server 2024 transmits the collected position-related data or the metadata of the three-dimensional map data generated based on the position-related data to the terminal 2021 in response to the request from the terminal 2021.
  • Network 2023 is a communication network such as the Internet.
  • the terminal 2021 is connected to the network 2023 via the communication device 2022.
  • the communication device 2022 communicates with the terminal 2021 while switching between one communication method or a plurality of communication methods.
  • the communication device 2022 is, for example, (1) a base station such as LTE (Long Term Evolution), (2) an access point (AP) such as WiFi or millimeter wave communication, and (3) LPWA such as SIGFOX, LoRaWAN or Wi-SUN. (Low Power Wide Area)
  • a communication satellite that communicates using a Gateway of Network or (4) a satellite communication method such as DVB-S2.
  • the base station may communicate with the terminal 2021 by a method classified into LPWA such as NB-IoT (Narrow Band-IoT) or LTE-M, and may communicate with the terminal 2021 while switching between these methods. Communication may be performed.
  • LPWA Low Band-IoT
  • LTE-M Long Term Evolution
  • the terminal 2021 has a function of communicating with a communication device 2022 using two types of communication methods, and a communication device using any of these communication methods or a plurality of these communication methods and a direct communication partner.
  • a communication device 2022 using two types of communication methods, and a communication device using any of these communication methods or a plurality of these communication methods and a direct communication partner.
  • An example is given in the case of communicating with the map server 2025 or the data collection server 2024 while switching 2022, but the configuration of the sensor information collection system and the terminal 2021 is not limited to this.
  • the terminal 2021 may not have a communication function in a plurality of communication methods, but may have a function of communicating in any one communication method.
  • the terminal 2021 may support three or more communication methods. Further, the corresponding communication method may be different for each terminal 2021.
  • the terminal 2021 includes, for example, the configuration of the client device 902 shown in FIG. 114.
  • the terminal 2021 estimates a position such as a self-position using the received three-dimensional data. Further, the terminal 2021 generates position-related data by associating the sensor data acquired from the sensor with the position information obtained by the position estimation process.
  • the position information added to the position-related data indicates, for example, the position in the coordinate system used in the three-dimensional data.
  • the position information is a coordinate value represented by a latitude and longitude value.
  • the terminal 2021 may include the coordinate value as well as the information indicating the coordinate system that is the reference of the coordinate value and the three-dimensional data used for the position estimation in the position information.
  • the coordinate values may include altitude information.
  • the position information may be associated with a unit of data or a unit of space that can be used for encoding the above-mentioned three-dimensional data.
  • This unit is, for example, WLD, GOS, SPC, VLM, VXL, or the like.
  • the position information is represented by an identifier for specifying a data unit such as an SPC corresponding to the position-related data.
  • the position information is information indicating three-dimensional data in which the three-dimensional space including the data unit such as SPC is encoded, or the details in the SPC. It may contain information indicating a different position.
  • the information indicating the three-dimensional data is, for example, the file name of the three-dimensional data.
  • the system generates position-related data associated with position information based on position estimation using three-dimensional data, so that the self-position of the client device (terminal 2021) acquired by GPS can be used. It is possible to add position information to the sensor information with higher accuracy than when the based position information is added to the sensor information. As a result, even when the position-related data is used by other devices in other services, the position corresponding to the position-related data can be specified more accurately in the real space by performing the position estimation based on the same three-dimensional data. There is a possibility that it can be done.
  • the data transmitted from the terminal 2021 is position-related data
  • the data transmitted from the terminal 2021 may be data not associated with the position information. good. That is, the transmission / reception of the three-dimensional data or the sensor data described in the other embodiment may be performed via the network 2023 described in the present embodiment.
  • the position information added to the position-related data may be information indicating a position relative to a feature point in the three-dimensional data.
  • the feature point that serves as a reference for the position information is, for example, a feature point encoded as SWLD and notified to the terminal 2021 as three-dimensional data.
  • the information indicating the relative position with respect to the feature point is represented by, for example, a vector from the feature point to the point indicated by the position information, and may be information indicating the direction and distance from the feature point to the point indicated by the position information.
  • the information indicating the relative position with respect to the feature point may be information indicating the displacement amount of each of the X-axis, the Y-axis, and the Z-axis from the feature point to the point indicated by the position information.
  • the information indicating the relative position with respect to the feature point may be information indicating the distance from each of the three or more feature points to the point indicated by the position information.
  • the relative position may not be the relative position of the point indicated by the position information expressed with respect to each feature point, but may be the relative position of each feature point expressed with reference to the point indicated by the position information.
  • An example of position information based on a relative position with respect to a feature point includes information for specifying a reference feature point and information indicating a relative position of a point indicated by the position information with respect to the feature point.
  • the information indicating the relative position with respect to the feature point is provided separately from the three-dimensional data
  • the information indicating the relative position with respect to the feature point is the coordinate axis used for deriving the relative position, the information indicating the type of the three-dimensional data, and the information indicating the type of the three-dimensional data.
  • it may include information indicating the magnitude (scale, etc.) of the value of the information indicating the relative position per unit amount.
  • the position information may include information indicating a relative position with respect to each feature point for a plurality of feature points.
  • the terminal 2021 that tries to specify the position indicated by the position information in the real space has the position information from the position of the feature point estimated from the sensor data for each feature point.
  • the candidate points of the positions indicated by may be calculated, and the points obtained by averaging the calculated plurality of candidate points may be determined to be the points indicated by the position information. According to this configuration, the influence of an error in estimating the position of the feature point from the sensor data can be reduced, so that the estimation accuracy of the point indicated by the position information in the real space can be improved.
  • the position information includes information indicating a relative position with respect to a plurality of feature points, even if there is a feature point that cannot be detected due to restrictions such as the type or performance of the sensor included in the terminal 2021, any of the plurality of feature points. If even one of them can be detected, it is possible to estimate the value of the point indicated by the position information.
  • a point that can be identified from the sensor data can be used.
  • the points that can be identified from the sensor data are, for example, points within a region or points that satisfy predetermined conditions for feature point detection, such as the above-mentioned three-dimensional feature amount or feature amount of visible light data being equal to or greater than a threshold value.
  • a marker installed in a real space may be used as a feature point.
  • the marker may be detected and its position can be specified from the data acquired by using a sensor such as LiDER or a camera.
  • the marker is represented by a change in color or luminance value (reflectance), or a three-dimensional shape (unevenness, etc.).
  • a coordinate value indicating the position of the marker, a two-dimensional code or a barcode generated from the identifier of the marker, or the like may be used.
  • a light source that transmits an optical signal may be used as a marker.
  • a light source of an optical signal When a light source of an optical signal is used as a marker, not only information for acquiring a position such as a coordinate value or an identifier but also other data may be transmitted by the optical signal.
  • the optical signal connects to the wireless communication device with the content of the service according to the position of the marker, the address such as ur for acquiring the content, or the identifier of the wireless communication device for receiving the provision of the service. It may include information indicating a wireless communication method for the purpose.
  • the terminal 2021 grasps the correspondence between the feature points between different data by using, for example, an identifier commonly used between the data, or information or a table showing the correspondence between the feature points between the data. Further, when there is no information indicating the correspondence between the feature points, the terminal 2021 is the feature at the closest distance when the coordinates of the feature points in one three-dimensional data are converted to the positions in the other three-dimensional data space. A point may be determined to be a corresponding feature point.
  • the position information based on the relative position described above is used, it is included in each 3D data or associated with each 3D data even between terminals 2021 or services that use different 3D data.
  • the position indicated by the position information can be specified or estimated based on the common feature point. As a result, it becomes possible to identify or estimate the same position with higher accuracy between terminals 2021 or services that use different three-dimensional data.
  • the data collection server 2024 may transfer the received position-related data to another data server.
  • the data collection server 2024 determines to which data server the received position-related data is to be transferred, and transfers the position-related data to the data server determined as the transfer destination.
  • the data collection server 2024 determines the transfer destination based on, for example, the determination rule of the transfer destination server preset in the data collection server 2024.
  • the determination rule of the transfer destination server is set, for example, in the transfer destination table in which the identifier associated with each terminal 2021 and the data server of the transfer destination are associated with each other.
  • the terminal 2021 adds an identifier associated with the terminal 2021 to the position-related data to be transmitted and transmits the data to the data collection server 2024.
  • the data collection server 2024 specified the transfer destination data server corresponding to the identifier attached to the position-related data based on the determination rule of the transfer destination server using the transfer destination table or the like, and specified the position-related data. Send to the data server. Further, the determination rule of the transfer destination server may be specified by the determination condition using the time or place where the position-related data is acquired.
  • the identifier associated with the above-mentioned transmission source terminal 2021 is, for example, an identifier unique to each terminal 2021 or an identifier indicating a group to which the terminal 2021 belongs.
  • the transfer destination table does not have to be a direct association between the identifier associated with the source terminal and the transfer destination data server.
  • the data collection server 2024 holds a management table that stores tag information assigned to each terminal 2021 for each unique identifier, and a transfer destination table that associates the tag information with the transfer destination data server.
  • the data collection server 2024 may determine the transfer destination data server based on the tag information by using the management table and the transfer destination table.
  • the tag information is, for example, management control information or service provision control information given to the type, model number, owner, group to which the terminal 2021 corresponds to the identifier, or other identifier.
  • an identifier unique to each sensor may be used instead of the identifier associated with the transmission source terminal 2021.
  • the determination rule of the transfer destination server may be set from the client device 2026.
  • the data collection server 2024 may determine a plurality of data servers as transfer destinations and transfer the received position-related data to the plurality of data servers. According to this configuration, for example, when backing up location-related data automatically, or in order to share location-related data with different services, location-related data is sent to the data server for providing each service. If it is necessary to do so, the data can be transferred as intended by changing the setting for the data collection server 2024. As a result, the man-hours required for constructing and changing the system can be reduced as compared with the case where the transmission destination of the position-related data is set in the individual terminal 2021.
  • the data collection server 2024 registers the data server specified by the transfer request signal as a new transfer destination in response to the transfer request signal received from the data server, and transfers the position-related data received thereafter to the data server. You may.
  • the data collection server 2024 stores the position-related data received from the terminal 2021 in the recording device, and requests the position-related data specified by the transmission request signal according to the transmission request signal received from the terminal 2021 or the data server. It may be transmitted to the terminal 2021 or the data server of.
  • the data collection server 2024 determines whether or not the location-related data can be provided to the requesting data server or terminal 2021, and if it is determined that the location-related data can be provided, the data collection server 2024 transfers or transmits the location-related data to the requesting data server or terminal 2021. May be done.
  • the data collection server 2024 When the request for the current position-related data is received from the client device 2026, the data collection server 2024 requests the terminal 2021 to transmit the position-related data even if the terminal 2021 does not send the position-related data. 2021 may transmit position-related data in response to the transmission request.
  • the terminal 2021 transmits the position information data to the data collection server 2024, but the data collection server 2024 collects the position-related data from the terminal 2021, such as a function for managing the terminal 2021. It may be provided with a function necessary for the above or a function used when collecting position-related data from the terminal 2021.
  • the data collection server 2024 may have a function of transmitting a data request signal requesting the transmission of position information data to the terminal 2021 and collecting position-related data.
  • Management information such as an address for communicating with the terminal 2021 to be collected data or an identifier unique to the terminal 2021 is registered in the data collection server 2024 in advance.
  • the data collection server 2024 collects location-related data from the terminal 2021 based on the registered management information.
  • the management information may include information such as the type of sensor included in the terminal 2021, the number of sensors included in the terminal 2021, and the communication method supported by the terminal 2021.
  • the data collection server 2024 may collect information such as the operating status or the current position of the terminal 2021 from the terminal 2021.
  • the registration of the management information may be performed from the client device 2026, or the process for registration may be started by the terminal 2021 transmitting the registration request to the data collection server 2024.
  • the data acquisition server 2024 may have a function of controlling communication with the terminal 2021.
  • the communication connecting the data collection server 2024 and the terminal 2021 is configured by a dedicated line provided by a service provider such as an MNO (Mobile Network Operator) or a MVNO (Mobile Virtual Network Operator), or a VPN (Virtual Private Network). It may be a virtual dedicated line or the like. According to this configuration, communication between the terminal 2021 and the data collection server 2024 can be performed safely.
  • a service provider such as an MNO (Mobile Network Operator) or a MVNO (Mobile Virtual Network Operator), or a VPN (Virtual Private Network). It may be a virtual dedicated line or the like. According to this configuration, communication between the terminal 2021 and the data collection server 2024 can be performed safely.
  • the data collection server 2024 may have a function of authenticating the terminal 2021 or a function of encrypting data transmitted to and received from the terminal 2021.
  • the authentication process of the terminal 2021 or the data encryption process is a terminal group including an identifier unique to the terminal 2021 or a plurality of terminals 2021 shared in advance between the data collection server 2024 and the terminal 2021. It is done using a unique identifier or the like.
  • This identifier is, for example, an IMSI (International Mobile Subscriber Identity), which is a unique number stored in a SIM (Subscriber Identity Module) card.
  • IMSI International Mobile Subscriber Identity
  • SIM Subscriber Identity Module
  • the process of authentication or data encryption between the data collection server 2024 and the terminal 2021 can be provided as long as both the data collection server 2024 and the terminal 2021 have a function to perform the process, and can be relayed. It does not depend on the communication method used by the communication device 2022. Therefore, since the common authentication or encryption process can be used without considering whether the terminal 2021 uses the communication method, the convenience of the user's system construction is improved. However, the fact that the communication device 2022 for relaying does not depend on the communication method means that it is not essential to change the communication method according to the communication method. That is, for the purpose of improving transmission efficiency or ensuring security, the authentication or data encryption process between the data collection server 2024 and the terminal 2021 may be switched according to the communication method used by the relay device.
  • the data collection server 2024 may provide the client device 2026 with a UI that manages data collection rules such as the type of location-related data collected from the terminal 2021 and the data collection schedule. As a result, the user can specify the terminal 2021 for collecting data using the client device 2026, the data collection time and frequency, and the like. Further, the data collection server 2024 may specify an area on the map on which data is to be collected and collect position-related data from the terminal 2021 included in the area.
  • the client device 2026 When the data collection rule is managed for each terminal 2021, the client device 2026 presents, for example, a list of terminals 2021 or sensors to be managed on the screen. The user sets the necessity of data collection or the collection schedule for each item in the list.
  • the client device 2026 When designating an area on a map for which data is to be collected, the client device 2026 presents, for example, a two-dimensional or three-dimensional map of the area to be managed on the screen. The user selects an area on the displayed map to collect data.
  • the area selected on the map may be a circular or rectangular area centered on a point specified on the map, or may be a circular or rectangular area that can be specified by a drag operation. Further, the client device 2026 may select an area in a preset unit such as a city, an area in the city, a block, or a main road.
  • the area may be set by inputting the numerical values of latitude and longitude, or the area is selected from the list of candidate areas derived based on the input text information. May be done.
  • Textual information may be, for example, the name of a region, city, or landmark.
  • an area on the map may be designated based on the position of the client device 2026 in real space obtained from the sensor data. For example, the client device 2026 estimates its own position using sensor data, and data a region within a predetermined distance from a point on the map corresponding to the estimated position or a distance specified by the user. May be specified as the area to collect. Further, the client device 2026 may designate the sensing area of the sensor, that is, the area corresponding to the acquired sensor data as the area for collecting the data. Alternatively, the client device 2026 may designate an area based on the position corresponding to the sensor data specified by the user as an area for collecting data. The estimation of the area or position on the map corresponding to the sensor data may be performed by the client device 2026 or may be performed by the data collection server 2024.
  • the data collection server 2024 When specifying in the area on the map, the data collection server 2024 identifies the terminal 2021 in the specified area by collecting the current position information of each terminal 2021, and positions the terminal 2021 with respect to the specified terminal 2021. You may request the transmission of relevant data. Further, the data collection server 2024 does not specify the terminal 2021 in the area, but the data collection server 2024 transmits information indicating the designated area to the terminal 2021, and the terminal 2021 itself is in the designated area. It may be determined whether or not it is, and if it is determined that it is within the specified area, the position-related data may be transmitted.
  • the data collection server 2024 transmits data such as a list or a map for providing the above-mentioned UI (User Interface) in the application executed by the client device 2026 to the client device 2026.
  • the data collection server 2024 may transmit the application program to the client device 2026 as well as data such as a list or a map.
  • the above-mentioned UI may be provided as content created by HTML or the like that can be displayed by a browser.
  • Some data such as map data may be provided from a server other than the data collection server 2024 such as the map server 2025.
  • the client device 2026 transmits the input information to the data collection server 2024 as the setting information when the input for notifying the completion of the input is performed, such as the user pressing the setting button.
  • the data collection server 2024 transmits a signal notifying the position-related data request or the position-related data collection rule to each terminal 2021 based on the setting information received from the client device 2026, and collects the position-related data. conduct.
  • object information indicating the position of a power feeding unit such as a wireless power feeding antenna or a power feeding coil embedded in a road or a parking lot is included in the three-dimensional data or associated with the three-dimensional data.
  • a power feeding unit such as a wireless power feeding antenna or a power feeding coil embedded in a road or a parking lot is included in the three-dimensional data or associated with the three-dimensional data.
  • terminal 2021 such as a car or drone.
  • the vehicle or drone that has acquired the object information for charging automatically drives the vehicle itself so that the position of the charging part such as the charging antenna or charging coil of the vehicle faces the area indicated by the object information. Move the position of and start charging.
  • the direction to move or the operation to be performed is presented to the driver or operator using the image or sound displayed on the screen.
  • the operation or maneuvering is stopped.
  • the image or sound presented to is switched, and charging is started.
  • the object information may not be information indicating the position of the feeding unit, but may be information indicating an area where charging efficiency equal to or higher than a predetermined threshold value can be obtained by arranging the charging unit in the area.
  • the position of the object information may be represented by a point at the center of the region indicated by the object information, a region or line in a two-dimensional plane, or a region, line or plane in a three-dimensional space. good.
  • the antenna for wireless charging provided in the terminal 2021 such as a car and the wireless embedded in the road etc.
  • the alignment with the feeding antenna can be performed with higher accuracy. As a result, the charging speed at the time of wireless charging can be shortened and the charging efficiency can be improved.
  • the object information may be an object other than the feeding antenna.
  • the three-dimensional data includes the position of the AP of millimeter-wave wireless communication as object information.
  • the terminal 2021 can grasp the position of the AP in advance, so that the directivity of the beam can be directed in the direction of the object information and the communication can be started.
  • the communication quality such as improving the transmission speed, shortening the time until the start of communication, and extending the communicable period.
  • the object information may include information indicating the type of the object corresponding to the object information. Further, the object information should be executed by the terminal 2021 when the terminal 2021 is included in the area in the real space corresponding to the position of the object information on the three-dimensional data or within a range of a predetermined distance from the area. Information indicating the process may be included.
  • the object information may be provided from a server different from the server that provides the three-dimensional data.
  • the object group in which the object information used in the same service is stored may be provided as different data depending on the type of the target service or the target device. ..
  • the three-dimensional data used in combination with the object information may be WLD point cloud data or SWLD feature point data.
  • the three-dimensional data decoding device when the attribute information of the target three-dimensional point, which is the three-dimensional point to be coded, is hierarchically coded using LoD (Level of Datail), the three-dimensional data decoding device is the three-dimensional. It is not necessary to decode the attribute information up to the required LoD hierarchy in the data decoding device and not to decode the attribute information of the unnecessary hierarchy. For example, when the total number of LoDs of the attribute information in the bit stream encoded by the three-dimensional data encoding device is N, the three-dimensional data decoding device is M from LoD0 to LoD (M-1) of the uppermost layer. It is not necessary to decode the LoDs (M ⁇ N) and the remaining LoDs (N-1). As a result, the three-dimensional data decoding device can decode the attribute information from LoD0 to LoD (M-1) required by the three-dimensional data decoding device while suppressing the processing load.
  • LoD Level of Datail
  • FIG. 125 is a diagram showing the above use case.
  • the server holds a three-dimensional map obtained by encoding the three-dimensional position information and the attribute information.
  • the server (three-dimensional data coding device) broadcasts a three-dimensional map to a client device (three-dimensional data decoding device: for example, a vehicle or a drone) in an area managed by the server, and the client device receives from the server.
  • a process of specifying the self-position of the client device using a three-dimensional map, or a process of displaying map information to a user or the like who operates the client device is performed.
  • the server encodes the position information of the three-dimensional map by using an octree configuration or the like. Then, the server hierarchically encodes the attribute information of the three-dimensional map using N LoDs constructed based on the position information. The server stores a bitstream of the 3D map obtained by hierarchical coding.
  • the server transmits a bitstream of the encoded three-dimensional map to the client device in response to a transmission request for map information transmitted from the client device in the area managed by the server.
  • the client device receives the bitstream of the 3D map transmitted from the server, and decodes the position information and attribute information of the 3D map according to the usage of the client device. For example, when the client device performs highly accurate self-position estimation using the position information and the attribute information of N LoDs, the client device determines that the decoding result up to a dense three-dimensional point is required as the attribute information. And decode all the information in the bitstream.
  • the client device determines that the decoding result up to the sparse 3D point is necessary as the attribute information, and the position information and the upper layer of LoD are used.
  • Decoding attribute information of LoD from a certain LoD0 to M (M ⁇ N).
  • the three-dimensional point map includes position information and attribute information.
  • the position information is coded by an octree.
  • the attribute information is encoded by N LoDs.
  • Client device A performs highly accurate self-position estimation. In this case, the client device A determines that all the position information and the attribute information are necessary, and decodes all the position information in the bit stream and the attribute information composed of N LoDs.
  • the client device B displays a three-dimensional map to the user. In this case, the client device B determines that the position information and the attribute information of M LoDs (M ⁇ N) are necessary, and decodes the position information in the bitstream and the attribute information composed of M LoDs. do.
  • the server may broadcast the three-dimensional map to the client device, multicast transmission, or unicast transmission.
  • the three-dimensional data coding device when the attribute information of the target three-dimensional point, which is the target three-dimensional point to be coded, is hierarchically coded using LoD, the three-dimensional data coding device is the three-dimensional data decoding device. It is not necessary to encode the attribute information up to the required LoD hierarchy and not to encode the attribute information of the unnecessary hierarchy. For example, when the total number of LoDs is N, the three-dimensional data coding device encodes M (M ⁇ N) LoDs from the uppermost layer LoD0 to LoD (M-1), and the remaining LoD (N). A bit stream may be generated by not encoding LoD up to -1).
  • the 3D data encoding device obtains a bit stream in which the attribute information from LoD0 to LoD (M-1) required by the 3D data decoding device is encoded in response to the request from the 3D data decoding device. Can be provided.
  • FIG. 126 is a diagram showing the above use case.
  • the server holds a three-dimensional map obtained by encoding the three-dimensional position information and the attribute information.
  • the server (three-dimensional data coding device) unicasts a three-dimensional map to the client device (three-dimensional data decoding device: for example, a vehicle or a drone) in the area managed by the server according to the request of the client device.
  • the client device performs a process of specifying the self-position of the client device using a three-dimensional map received from the server, or a process of displaying map information to a user or the like who operates the client device.
  • the server encodes the position information of the three-dimensional map by using an octree configuration or the like. Then, the server generates a bitstream of the three-dimensional map A by hierarchically encoding the attribute information of the three-dimensional map using N LoDs constructed based on the position information, and generates the generated bitstream. Save to the server. Further, the server generates a bitstream of the three-dimensional map B by hierarchically coding the attribute information of the three-dimensional map using M (M ⁇ N) LoDs constructed based on the position information. Save the generated bitstream on the server.
  • the client device requests the server to send a three-dimensional map according to the purpose of the client device. For example, when the client device performs highly accurate self-position estimation using the position information and the attribute information of N LoDs, the client device determines that the decoding result up to a dense three-dimensional point is necessary as the attribute information, and is tertiary. Requests the server to send the bitstream of the original map A. Further, when displaying the information of the 3D map to the user or the like, the client device determines that the decoding result up to the sparse 3D point is necessary as the attribute information, and M pieces from the position information and the upper layer LoD0 of LoD.
  • the server Requests the server to transmit a bitstream of the three-dimensional map B including LoD attribute information up to (M ⁇ N). Then, the server transmits the encoded bitstream of the three-dimensional map A or the three-dimensional map B to the client device in response to the request for transmission of the map information from the client device.
  • the client device receives the bitstream of the three-dimensional map A or the three-dimensional map B transmitted from the server according to the use of the client device, and decodes the bitstream. In this way, the server switches the bit stream to be transmitted according to the usage of the client device. As a result, the processing load of the client device can be reduced.
  • the server holds the three-dimensional map A and the three-dimensional map B.
  • the server encodes the position information of the three-dimensional map with, for example, an ocree, and encodes the attribute information of the three-dimensional map with N LoDs to generate the three-dimensional map A. That is, NumLoD included in the bitstream of the three-dimensional map A indicates N.
  • the server encodes the position information of the three-dimensional map with, for example, an ocree, and encodes the attribute information of the three-dimensional map with M LoDs to generate the three-dimensional map B. That is, NumLoD included in the bitstream of the three-dimensional map B indicates M.
  • Client device A performs highly accurate self-position estimation.
  • the client device A determines that all the position information and the attribute information are necessary, and sends a transmission request of the three-dimensional map A including all the position information and the attribute information composed of N LoDs to the server. ..
  • the client device A receives the three-dimensional map A and decodes all the position information and the attribute information composed of N LoDs.
  • the client device B displays a three-dimensional map to the user.
  • the client device B determines that the position information and the attribute information of M (M ⁇ N) LoDs are necessary, and includes all the position information and the attribute information composed of M LoDs in three dimensions.
  • the client device B receives the three-dimensional map B and decodes all the position information and the attribute information composed of M LoDs.
  • the server (three-dimensional data coding device) encodes the three-dimensional map C in which the remaining NM attribute information of LoD is encoded in addition to the three-dimensional map B, and the request of the client device B.
  • the three-dimensional map C may be transmitted to the client device B according to the above. Further, the client device B may obtain decoding results of N LoDs by using the bitstream of the three-dimensional map B and the three-dimensional map C.
  • FIG. 127 is a flowchart showing an example of application processing.
  • the three-dimensional data demultiplexing device acquires an ISOBMFF file including point cloud data and a plurality of coded data (S7301).
  • the three-dimensional data demultiplexing device may acquire the ISOBMFF file by communication or may read it from the stored data.
  • the three-dimensional data demultiplexing device analyzes the entire configuration information in the ISOBMFF file and identifies the data to be used for the application (S7302). For example, the three-dimensional data demultiplexing device acquires data used for processing and does not acquire data not used for processing.
  • the three-dimensional data demultiplexing device extracts one or more data used for the application and analyzes the configuration information of the data (S7303).
  • the three-dimensional data demultiplexing device converts the ISOBMFF into a coded stream and extracts a time stamp (S7305). Further, the three-dimensional data demultiplexing device determines whether or not the data are synchronized, for example, by referring to a flag indicating whether or not the data are synchronized, and if they are not synchronized, the synchronization is performed. Processing may be performed.
  • the three-dimensional data demultiplexing device decodes the data by a predetermined method according to the time stamp and other instructions, and processes the decoded data (S7306).
  • the three-dimensional data demultiplexing device extracts the data and the time stamp (S7307). Further, the three-dimensional data demultiplexing device determines whether or not the data are synchronized, for example, by referring to a flag indicating whether or not the data are synchronized, and if they are not synchronized, the synchronization is performed. Processing may be performed. The three-dimensional data demultiplexing device then processes the data according to the time stamp and other instructions (S7308).
  • FIG. 128 is a diagram showing an example of the sensor range of the beam LiDAR, FLASH LiDAR, and the camera.
  • the beam LiDAR detects all directions around the vehicle (sensor), and the FLASH LiDAR and the camera detect a range in one direction (for example, forward) of the vehicle.
  • the three-dimensional data demultiplexing device extracts and decodes the coded data of the beam LiDAR and FLASH LiDAR with reference to the overall configuration information. Further, the three-dimensional data demultiplexing device does not extract the camera image.
  • the three-dimensional data demultiplexing device simultaneously processes the coded data of the time of the same time stamp according to the time stamps of LiDAR and FLASH LiDAR.
  • the three-dimensional data demultiplexing device may present the processed data on the presenting device, synthesize the point cloud data of the beam LiDAR and the FLASH LiDAR, perform processing such as rendering.
  • the three-dimensional data demultiplexing device may extract sensor position information and use it in the application.
  • the three-dimensional data demultiplexing device may select whether to use beam LiDAR information or FLASH LiDAR in the application, and switch the processing according to the selection result.
  • FIG. 129 is a diagram showing a configuration example of an automated driving system.
  • This automated driving system includes a cloud server 7350 and an edge 7360 such as an in-vehicle device or a mobile device.
  • the cloud server 7350 includes a demultiplexing unit 7351, a decoding unit 7352A, 7352B and 7355, a point cloud data synthesis unit 7353, a large-scale data storage unit 7354, a comparison unit 7356, and a coding unit 7357.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

三次元データ符号化方法は、データユニット毎に含まれる複数の三次元点を符号化し(S12172)、複数の三次元点が符号化された符号化データを含むビットストリームを生成し(S12173)、符号化(S12172)では、符号化対象のデータユニットに含まれる複数の三次元点の複数の位置情報をN分木を用いて複数のオキュパンシーマップに変換し、複数のオキュパンシーマップのそれぞれを、オキュパンシーマップとインデックスとの対応関係を示すテーブルを用いて得られたインデックスを符号化し、変換されたインデックスに応じてテーブルを更新してメモリに記憶し、次のデータユニットの先頭の三次元点の符号化の際に、記憶されているテーブルを初期化するか否かを決定し、初期化しないと決定された場合、メモリに記憶されているテーブルを用いて次のデータユニットの符号化を開始し、ビットストリームは、決定の結果を示す第1識別情報をさらに含む。

Description

三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
 本開示は、三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置に関する。
 自動車或いはロボットが自律的に動作するためのコンピュータビジョン、マップ情報、監視、インフラ点検、又は、映像配信など、幅広い分野において、今後、三次元データを活用した装置又はサービスの普及が見込まれる。三次元データは、レンジファインダなどの距離センサ、ステレオカメラ、又は複数の単眼カメラの組み合わせなど様々な方法で取得される。
 三次元データの表現方法の1つとして、三次元空間内の点群によって三次元構造の形状を表すポイントクラウドと呼ばれる表現方法がある。ポイントクラウドでは、点群の位置と色とが格納される。ポイントクラウドは三次元データの表現方法として主流になると予想されるが、点群はデータ量が非常に大きい。よって、三次元データの蓄積又は伝送においては二次元の動画像(一例として、MPEGで規格化されたMPEG-4 AVC又はHEVCなどがある)と同様に、符号化によるデータ量の圧縮が必須となる。
 また、ポイントクラウドの圧縮については、ポイントクラウド関連の処理を行う公開のライブラリ(Point Cloud Library)などによって一部サポートされている。
 また、三次元の地図データを用いて、車両周辺に位置する施設を検索し、表示する技術が知られている(例えば、特許文献1参照)。
国際公開第2014/020663号
 三次元データ復号装置にビットストリームを適切に復号させることが望まれている。
 本開示は、三次元データ復号装置にビットストリームを適切に復号させることができる三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置又は三次元データ復号装置を提供することを目的とする。
 本開示の一態様に係る三次元データ符号化方法は、それぞれが複数の三次元点を含む複数のデータユニットを取得し、前記複数のデータユニットのそれぞれに含まれる複数の三次元点を符号化し、前記複数の三次元点が符号化された符号化データを含むビットストリームを生成し、前記符号化では、符号化対象のデータユニットに含まれる複数の三次元点の複数の位置情報をN分木(Nは2以上の整数)を用いて複数のオキュパンシーマップに変換し、前記複数のオキュパンシーマップのそれぞれを、オキュパンシーマップとインデックスとの対応関係を示すテーブルを用いてインデックスに変換し、前記インデックスを符号化することで前記符号化データを生成し、変換されたインデックスに応じて前記テーブルを更新してメモリに記憶し、前記符号化対象のデータユニットの次のデータユニットの先頭の三次元点の符号化の際に、前記メモリに記憶されている前記テーブルを初期化するか否かを決定し、初期化しないと決定された場合、前記メモリに記憶されている前記テーブルを用いて前記次のデータユニットの符号化を開始し、前記ビットストリームは、前記決定の結果を示す第1識別情報をさらに含む。
 本開示の一態様に係る三次元データ復号方法は、複数の三次元点を含むデータユニットが符号化された符号化データと、前記データユニットの符号化に、当該データユニットの前のデータユニットの符号化に用いられたテーブルを初期化して用いるか否かを示す第1識別情報とを含むビットストリームを取得し、前記第1識別情報に応じたテーブルを用いて前記符号化データを復号し、前記テーブルは、三次元点の位置情報がN分木(Nは2以上の整数)を用いて表現されたオキュパンシーマップと、インデックスとの対応関係を示し、前記符号化データは、符号化された前記インデックスを含み、前記復号では、前記符号化データを復号することで得られた前記インデックスが前記テーブルにおいて対応するオキュパンシーマップを導出することで三次元点の位置情報を算出する。
 本開示は、三次元データ復号装置にビットストリームを適切に復号させることができる三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置又は三次元データ復号装置を提供できる。
図1は、実施の形態1に係る三次元データ符号化復号システムの構成を示す図である。 図2は、実施の形態1に係る点群データの構成例を示す図である。 図3は、実施の形態1に係る点群データ情報が記述されたデータファイルの構成例を示す図である。 図4は、実施の形態1に係る点群データの種類を示す図である。 図5は、実施の形態1に係る第1の符号化部の構成を示す図である。 図6は、実施の形態1に係る第1の符号化部のブロック図である。 図7は、実施の形態1に係る第1の復号部の構成を示す図である。 図8は、実施の形態1に係る第1の復号部のブロック図である。 図9は、実施の形態1に係る三次元データ符号化装置のブロック図である。 図10は、実施の形態1に係る位置情報の例を示す図である。 図11は、実施の形態1に係る位置情報の8分木表現の例を示す図である。 図12は、実施の形態1に係る三次元データ復号装置のブロック図である。 図13は、実施の形態1に係る属性情報符号化部のブロック図である。 図14は、実施の形態1に係る属性情報復号部のブロック図である。 図15は、実施の形態1に係る属性情報符号化部の構成を示すブロック図である。 図16は、実施の形態1に係る属性情報符号化部のブロック図である。 図17は、実施の形態1に係る属性情報復号部の構成を示すブロック図である。 図18は、実施の形態1に係る属性情報復号部のブロック図である。 図19は、実施の形態1に係る第2の符号化部の構成を示す図である。 図20は、実施の形態1に係る第2の符号化部のブロック図である。 図21は、実施の形態1に係る第2の復号部の構成を示す図である。 図22は、実施の形態1に係る第2の復号部のブロック図である。 図23は、実施の形態1に係るPCC符号化データに関わるプロトコルスタックを示す図である。 図24は、実施の形態2に係る符号化部及び多重化部の構成を示す図である。 図25は、実施の形態2に係る符号化データの構成例を示す図である。 図26は、実施の形態2に係る符号化データ及びNALユニットの構成例を示す図である。 図27は、実施の形態2に係るpcc_nal_unit_typeのセマンティクス例を示す図である。 図28は、実施の形態2に係るNALユニットの送出順序の例を示す図である。 図29は、実施の形態3に係る第1の符号化部のブロック図である。 図30は、実施の形態3に係る第1の復号部のブロック図である。 図31は、実施の形態3に係る分割部のブロック図である。 図32は、実施の形態3に係るスライス及びタイルの分割例を示す図である。 図33は、実施の形態3に係るスライス及びタイルの分割パターンの例を示す図である。 図34は、実施の形態3に係る依存関係の例を示す図である。 図35は、実施の形態3に係るデータの復号順の例を示す図である。 図36は、実施の形態3に係る符号化処理のフローチャートである。 図37は、実施の形態3に係る結合部のブロック図である。 図38は、実施の形態3に係る符号化データ及びNALユニットの構成例を示す図である。 図39は、実施の形態3に係る符号化処理のフローチャートである。 図40は、実施の形態3に係る復号処理のフローチャートである。 図41は、実施の形態3に係る符号化処理のフローチャートである。 図42は、実施の形態3に係る復号処理のフローチャートである。 図43は、実施の形態4に係る、三次元データ符号化方法に用いられる予測木の一例を示す図である。 図44は、実施の形態4に係る三次元データ符号化方法の一例を示すフローチャートである。 図45は、実施の形態4に係る三次元データ復号方法の一例を示すフローチャートである。 図46は、実施の形態4に係る予測木の生成方法を説明するための図である。 図47は、実施の形態4に係る予測モードの第1の例を説明するための図である。 図48は、実施の形態4に係る位置情報のヘッダのシンタックスの一例を示す図である。 図49は、実施の形態4に係る位置情報のシンタックスの一例を示す図である。 図50は、実施の形態4に係る位置情報のシンタックスの他の一例を示す図である。 図51は、実施の形態4に係る三次元データ符号化装置の処理のフローチャートである。 図52は、実施の形態4に係る三次元データ復号装置の処理のフローチャートである。 図53は、実施の形態5に係る符号化時または復号時において、CABAC初期化フラグに応じて、CABAC符号化/復号エンジンの再初期化の処理を示すフローチャートである。 図54は、実施の形態5に係る三次元データ符号化装置に含まれる第1の符号化部の構成を示すブロック図である。 図55は、実施の形態5に係る分割部の構成を示すブロック図である。 図56は、実施の形態5に係る位置情報符号化部および属性情報符号化部の構成を示すブロック図である。 図57は、実施の形態5に係る第1の復号部の構成を示すブロック図である。 図58は、実施の形態5に係る位置情報復号部および属性情報復号部の構成を示すブロック図である。 図59は、実施の形態5に係る位置情報の符号化あるいは属性情報の符号化におけるCABACの初期化に関する処理の一例を示すフローチャートである。 図60は、実施の形態5に係るビットストリームとした点群データにおいてCABAC初期化のタイミングの一例を示す図である。 図61は、実施の形態5に係る符号化データの構成及び符号化データのNALユニットへの格納方法を示す図である。 図62は、実施の形態5に係る位置情報の復号あるいは属性情報の復号におけるCABACの初期化に関する処理の一例を示すフローチャートである。 図63は、実施の形態5に係る点群データの符号化処理のフローチャートである。 図64は、実施の形態5に係る付加情報を更新する処理の一例を示すフローチャートである。 図65は、実施の形態5に係るCABAC初期化する処理の一例を示すフローチャートである。 図66は、実施の形態5に係る点群データの復号処理のフローチャートである。 図67は、実施の形態5に係るCABAC復号部を初期化する処理の一例を示すフローチャートである。 図68は、実施の形態5に係るタイルおよびスライスの例を示す図である。 図69は、実施の形態5に係るCABACの初期化およびコンテキスト初期値の決定方法の一例を示すフローチャートである。 図70は、実施の形態5に係るLiDARで得られた点群データを上面視した地図をタイルに分割した場合の例を示す図である。 図71は、実施の形態5に係るCABAC初期化およびコンテキスト初期値の決定方法の他の一例を示すフローチャートである。 図72は、実施の形態6に係る分割後の各データユニットに含まれる位置情報のデータ構造と、位置情報のヘッダのシンタックスの一例を示す図である。 図73は、実施の形態6に係る三次元データ符号化方法の一例を示すフローチャートである。 図74は、実施の形態6に係る三次元データ復号方法の一例を示すフローチャートである。 図75は、実施の形態6に係る符号化方式が切り替わる場合のコンテキストの初期化について説明するための図である。 図76は、実施の形態6に係る三次元データ符号化装置の処理のフローチャートである。 図77は、実施の形態6に係る三次元データ復号装置の処理のフローチャートである。 図78は、実施の形態7に係るSPSのシンタックスの一例を示す図である。 図79は、実施の形態7に係る分割位置情報のヘッダ(DevidedGeometryHeader)のシンタックスの一例を示す図である。 図80は、実施の形態7に係る分割属性情報のヘッダ(DevidedAttributeHeader)のシンタックスの一例を示す図である。 図81は、実施の形態7に係る分割属性情報のヘッダ(DevidedAttributeHeader)のシンタックスの他の一例を示す図である。 図82は、実施の形態7に係る分割位置情報のヘッダ(DevidedGeometryHeader)のシンタックスの他の一例を示す図である。 図83は、実施の形態7に係る三次元データ符号化装置においてエントロピー符号化を初期化するか否かを決定する第1決定の一例を示すフローチャートである。 図84は、実施の形態7に係る三次元データ復号装置においてエントロピー符号化のフラグがコンフォーマンスに適合するか(仕様に適合するか)を決定する処理の一例を示すフローチャートである。 図85は、実施の形態7に係る三次元データ符号化装置の処理のフローチャートである。 図86は、実施の形態7に係る三次元データ復号装置の処理のフローチャートである。 図87は、実施の形態8に係るSPSのシンタックスの一例を示す図である。 図88は、実施の形態8に係るAPSのシンタックスの一例を示す図である。 図89は、実施の形態8に係る分割位置情報のヘッダ(DevidedGeometryHeader)のシンタックスの一例を示す図である。 図90は、実施の形態8に係る分割属性情報のヘッダ(DevidedAttributeHeader)のシンタックスの一例を示す図である。 図91は、実施の形態8に係る三次元データ符号化装置においてエントロピー符号化に用いるコンテキストを継続するか否かを決定する処理の一例を示すフローチャートである。 図92は、実施の形態8に係るテーブルの更新について説明するための図である。 図93は、実施の形態8に係る三次元データ符号化装置によるオキュパンシーマップの符号化のフローチャートである。 図94は、実施の形態8に係る三次元データ復号装置によるオキュパンシーマップの復号のフローチャートである。 図95は、実施の形態8に係る三次元データ符号化装置におけるエントロピー符号化方式を切り替える処理のフローチャートである。 図96は、実施の形態8に係る三次元データ符号化装置におけるバイト単位のエントロピー符号化の継続方法のフローチャートである。 図97は、実施の形態8に係る三次元データ復号装置におけるエントロピー復号方式を切り替える処理のフローチャートである。 図98は、実施の形態8に係る三次元データ復号装置におけるバイト単位のエントロピー復号の継続方法のフローチャートである。 図99は、実施の形態8に係る三次元データ符号化装置の処理のフローチャートである。 図100は、実施の形態8に係る三次元データ復号装置の処理のフローチャートである。 図101は、実施の形態9に係るグループ毎にスライスを分けて符号化する場合の三次元点群の一例を示す図である。 図102は、実施の形態9に係るビットストリームの様々な構成の例を示す図である。 図103は、実施の形態9に係るスライス単位のCABACを初期化するか否かをスライスフラグで示し、スライス内のtree単位のCABACを初期化するか否かをツリーフラグで示す例である。 図104は、実施の形態9に係る複数の予測木を並列処理で復号する方法について説明するための図である。 図105は、実施の形態9に係る三次元データ符号化方法の一例を示す図である。 図106は、実施の形態9に係る三次元データ復号方法の一例を示す図である。 図107は、実施の形態9に係る三次元データ復号方法において並列復号する場合の一例を示す図である。 図108は、実施の形態9に係る位置情報のデータに初期化フラグを格納する場合の位置情報のデータユニットのシンタックスの一例を示す図である。 図109は、実施の形態9に係る位置情報のヘッダに初期化フラグ及びオフセット情報を格納する場合のヘッダのシンタックスの一例を示す図である。 図110は、実施の形態9に係る位置情報のヘッダに初期化フラグ及びオフセット情報をランダムアクセス単位で格納する場合のヘッダのシンタックスの一例を示す図である。 図111は、実施の形態10に係る三次元データ作成装置のブロック図である。 図112は、実施の形態10に係る三次元データ作成方法のフローチャートである。 図113は、実施の形態10に係るシステムの構成を示す図である。 図114は、実施の形態10に係るクライアント装置のブロック図である。 図115は、実施の形態10に係るサーバのブロック図である。 図116は、実施の形態10に係るクライアント装置による三次元データ作成処理のフローチャートである。 図117は、実施の形態10に係るクライアント装置によるセンサ情報送信処理のフローチャートである。 図118は、実施の形態10に係るサーバによる三次元データ作成処理のフローチャートである。 図119は、実施の形態10に係るサーバによる三次元マップ送信処理のフローチャートである。 図120は、実施の形態10に係るシステムの変形例の構成を示す図である。 図121は、実施の形態10に係るサーバ及びクライアント装置の構成を示す図である。 図122は、実施の形態10に係るサーバ及びクライアント装置の構成を示す図である。 図123は、実施の形態10に係るクライアント装置による処理のフローチャートである。 図124は、実施の形態10に係るセンサ情報収集システムの構成を示す図である。 図125は、実施の形態10に係るシステムの例を示す図である。 図126は、実施の形態10に係るシステムの変形例を示す図である。 図127は、実施の形態10に係るアプリケーション処理の例を示すフローチャートである。 図128は、実施の形態10に係る各種センサのセンサ範囲を示す図である。 図129は、実施の形態10に係る自動運転システムの構成例を示す図である。 図130は、実施の形態10に係るビットストリームの構成例を示す図である。 図131は、実施の形態10に係る点群選択処理のフローチャートである。 図132は、実施の形態10に係る点群選択処理の画面例を示す図である。 図133は、実施の形態10に係る点群選択処理の画面例を示す図である。 図134は、実施の形態10に係る点群選択処理の画面例を示す図である。
 本開示の一態様に係る三次元データ符号化方法は、それぞれが複数の三次元点を含む複数のデータユニットを取得し、前記複数のデータユニットのそれぞれに含まれる複数の三次元点を符号化し、前記複数の三次元点が符号化された符号化データを含むビットストリームを生成し、前記符号化では、符号化対象のデータユニットに含まれる複数の三次元点の複数の位置情報をN分木(Nは2以上の整数)を用いて複数のオキュパンシーマップに変換し、前記複数のオキュパンシーマップのそれぞれを、オキュパンシーマップとインデックスとの対応関係を示すテーブルを用いてインデックスに変換し、前記インデックスを符号化することで前記符号化データを生成し、変換されたインデックスに応じて前記テーブルを更新してメモリに記憶し、前記符号化対象のデータユニットの次のデータユニットの先頭の三次元点の符号化の際に、前記メモリに記憶されている前記テーブルを初期化するか否かを決定し、初期化しないと決定された場合、前記メモリに記憶されている前記テーブルを用いて前記次のデータユニットの符号化を開始し、前記ビットストリームは、前記決定の結果を示す第1識別情報をさらに含む。
 これによれば、位置情報が変換されたオキュパンシーマップの符号化の際に、テーブルを用いて得られたインデックスを符号化し、符号化に用いるテーブルを初期化するか否かを示す第1識別情報を含むビットストリームを生成するため、三次元データ復号装置にビットストリームを適切に復号させることができる。
 また、前記インデックスは、オキュパンシーマップの発生回数、及び、オキュパンシーマップの発生頻度のいずれかを示してもよい。
 このため、例えば、発生回数及び発生頻度が大きいほどインデックスを小さい値に設定することで、符号化効率を向上させうる。
 また、前記第1識別情報は、前記テーブルを初期化することを示す場合、前のデータユニットのコンテキストを初期化して前記複数の三次元点の複数の属性情報を符号化することを示し、前記テーブルを初期化しないことを示す場合、前記前のデータユニットのコンテキストを継続して用いて前記複数の属性情報を符号化することを示してもよい。
 また、前記ビットストリームは、前記複数のデータユニット間でエントロピーを継続する機能を用いるか否かを示す第2識別情報をさらに含み、前記第1識別情報は、前記第2識別情報が前記複数のデータユニット間でエントロピーを継続する機能を用いることを示す場合に、示されてもよい。
 本開示の一態様に係る三次元データ復号方法は、複数の三次元点を含むデータユニットが符号化された符号化データと、前記データユニットの符号化に、当該データユニットの前のデータユニットの符号化に用いられたテーブルを初期化して用いるか否かを示す第1識別情報とを含むビットストリームを取得し、前記第1識別情報に応じたテーブルを用いて前記符号化データを復号し、前記テーブルは、三次元点の位置情報がN分木(Nは2以上の整数)を用いて表現されたオキュパンシーマップと、インデックスとの対応関係を示し、前記符号化データは、符号化された前記インデックスを含み、前記復号では、前記符号化データを復号することで得られた前記インデックスが前記テーブルにおいて対応するオキュパンシーマップを導出することで三次元点の位置情報を算出する。
 このため、三次元データ復号装置は、コンフォーマンスに適合すると判定した場合、例えば復号を継続することでビットストリームを適切に復号できる。また、三次元データ復号装置は、コンフォーマンスに適合しないと判定した場合、例えば復号を停止したり、特定の回避処理を実行することで、ビットストリームを不適切に復号することを抑制することができる。
 また、前記インデックスは、オキュパンシーマップの発生回数、及び、オキュパンシーマップの発生頻度のいずれかを示してもよい。
 また、前記第1識別情報は、前記テーブルを初期化することを示す場合、前のデータユニットのコンテキストを初期化して前記複数の三次元点の複数の属性情報を復号することを示し、前記テーブルを初期化しないことを示す場合、前記前のデータユニットのコンテキストを継続して用いて前記複数の属性情報を復号することを示してもよい。
 また、前記ビットストリームは、複数のデータユニット間でエントロピーを継続する機能を用いるか否かを示す第2識別情報をさらに含み、前記第1識別情報は、前記第2識別情報が前記複数のデータユニット間でエントロピーを継続する機能を用いることを示す場合に、示されてもよい。
 また、本開示の一態様に係る三次元データ符号化装置は、プロセッサと、メモリと、を備え、前記プロセッサは、前記メモリを用いて、それぞれが複数の三次元点を含む複数のデータユニットを取得し、前記複数のデータユニットのそれぞれに含まれる複数の三次元点を符号化し、前記複数の三次元点が符号化された符号化データを含むビットストリームを生成し、前記符号化では、符号化対象のデータユニットに含まれる複数の三次元点の複数の位置情報をN分木(Nは2以上の整数)を用いて複数のオキュパンシーマップに変換し、前記複数のオキュパンシーマップのそれぞれを、オキュパンシーマップとインデックスとの対応関係を示すテーブルを用いてインデックスに変換し、前記インデックスを符号化することで前記符号化データを生成し、変換されたインデックスに応じて前記テーブルを更新してメモリに記憶し、前記符号化対象のデータユニットの次のデータユニットの先頭の三次元点の符号化の際に、前記メモリに記憶されている前記テーブルを初期化するか否かを決定し、初期化しないと決定された場合、前記メモリに記憶されている前記テーブルを用いて前記次のデータユニットの符号化を開始し、前記ビットストリームは、前記決定の結果を示す第1識別情報をさらに含む。
 これによれば、位置情報が変換されたオキュパンシーマップの符号化の際に、テーブルを用いて得られたインデックスを符号化し、符号化に用いるテーブルを初期化するか否かを示す第1識別情報を含むビットストリームを生成するため、三次元データ復号装置にビットストリームを適切に復号させることができる。
 また、本開示の一態様に係る三次元データ復号装置は、プロセッサと、メモリと、を備え、前記プロセッサは、前記メモリを用いて、複数の三次元点を含むデータユニットが符号化された符号化データと、前記データユニットの符号化に、当該データユニットの前のデータユニットの符号化に用いられたテーブルを初期化して用いるか否かを示す第1識別情報とを含むビットストリームを取得し、前記第1識別情報に応じたテーブルを用いて前記符号化データを復号し、前記テーブルは、三次元点の位置情報がN分木(Nは2以上の整数)を用いて表現されたオキュパンシーマップと、インデックスとの対応関係を示し、前記符号化データは、符号化された前記インデックスを含み、前記復号では、前記符号化データを復号することで得られた前記インデックスが前記テーブルにおいて対応するオキュパンシーマップを導出することで三次元点の位置情報を算出する。
 このため、三次元データ復号装置は、コンフォーマンスに適合すると判定した場合、例えば復号を継続することでビットストリームを適切に復号できる。また、三次元データ復号装置は、コンフォーマンスに適合しないと判定した場合、例えば復号を停止したり、特定の回避処理を実行することで、ビットストリームを不適切に復号することを抑制することができる。
 なお、これらの包括的または具体的な態様は、システム、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
 以下、実施の形態について、図面を参照しながら具体的に説明する。なお、以下で説明する実施の形態は、いずれも本開示の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態1)
 ポイントクラウドの符号化データを実際の装置又はサービスにおいて使用する際には、ネットワーク帯域を抑制するために用途に応じて必要な情報を送受信することが望ましい。しかしながら、これまで、三次元データの符号化構造にはそのような機能が存在せず、そのための符号化方法も存在しなかった。
 本実施の形態では、三次元のポイントクラウドの符号化データにおいて用途に応じて必要な情報を送受信する機能を提供するための三次元データ符号化方法及び三次元データ符号化装置、並びに、当該符号化データを復号する三次元データ復号方法及び三次元データ復号装置、並びに、当該符号化データを多重化する三次元データ多重化方法、並びに、当該符号化データを伝送する三次元データ伝送方法について説明する。
 特に、現在、点群データの符号化方法(符号化方式)として第1の符号化方法、及び第2の符号化方法が検討されているが、符号化データの構成、及び符号化データをシステムフォーマットへ格納する方法が定義されておらず、このままでは符号化部におけるMUX処理(多重化)、又は、伝送或いは蓄積ができないという課題がある。
 また、PCC(Point Cloud Compression)のように、第1の符号化方法と第2の符号化方法の2つのコーデックが混在するフォーマットをサポートする方法はこれまで存在しない。
 本実施の形態では、第1の符号化方法と第2の符号化方法の2つのコーデックが混在するPCC符号化データの構成、及び符号化データをシステムフォーマットへ格納する方法について説明する。
 まず、本実施の形態に係る三次元データ(点群データ)符号化復号システムの構成を説明する。図1は、本実施の形態に係る三次元データ符号化復号システムの構成例を示す図である。図1に示すように、三次元データ符号化復号システムは、三次元データ符号化システム4601と、三次元データ復号システム4602と、センサ端末4603と、外部接続部4604とを含む。
 三次元データ符号化システム4601は、三次元データである点群データを符号化することで符号化データ又は多重化データを生成する。なお、三次元データ符号化システム4601は、単一の装置により実現される三次元データ符号化装置であってもよいし、複数の装置により実現されるシステムであってもよい。また、三次元データ符号化装置は、三次元データ符号化システム4601に含まれる複数の処理部のうち一部を含んでもよい。
 三次元データ符号化システム4601は、点群データ生成システム4611と、提示部4612と、符号化部4613と、多重化部4614と、入出力部4615と、制御部4616とを含む。点群データ生成システム4611は、センサ情報取得部4617と、点群データ生成部4618とを含む。
 センサ情報取得部4617は、センサ端末4603からセンサ情報を取得し、センサ情報を点群データ生成部4618に出力する。点群データ生成部4618は、センサ情報から点群データを生成し、点群データを符号化部4613へ出力する。
 提示部4612は、センサ情報又は点群データをユーザに提示する。例えば、提示部4612は、センサ情報又は点群データに基づく情報又は画像を表示する。
 符号化部4613は、点群データを符号化(圧縮)し、得られた符号化データと、符号化過程において得られた制御情報と、その他の付加情報とを多重化部4614へ出力する。付加情報は、例えば、センサ情報を含む。
 多重化部4614は、符号化部4613から入力された符号化データと、制御情報と、付加情報とを多重することで多重化データを生成する。多重化データのフォーマットは、例えば蓄積のためのファイルフォーマット、又は伝送のためのパケットフォーマットである。
 入出力部4615(例えば、通信部又はインタフェース)は、多重化データを外部へ出力する。または、多重化データは、内部メモリ等の蓄積部に蓄積される。制御部4616(またはアプリ実行部)は、各処理部を制御する。つまり、制御部4616は、符号化及び多重化等の制御を行う。
 なお、センサ情報が符号化部4613又は多重化部4614へ入力されてもよい。また、入出力部4615は、点群データ又は符号化データをそのまま外部へ出力してもよい。
 三次元データ符号化システム4601から出力された伝送信号(多重化データ)は、外部接続部4604を介して、三次元データ復号システム4602に入力される。
 三次元データ復号システム4602は、符号化データ又は多重化データを復号することで三次元データである点群データを生成する。なお、三次元データ復号システム4602は、単一の装置により実現される三次元データ復号装置であってもよいし、複数の装置により実現されるシステムであってもよい。また、三次元データ復号装置は、三次元データ復号システム4602に含まれる複数の処理部のうち一部を含んでもよい。
 三次元データ復号システム4602は、センサ情報取得部4621と、入出力部4622と、逆多重化部4623と、復号部4624と、提示部4625と、ユーザインタフェース4626と、制御部4627とを含む。
 センサ情報取得部4621は、センサ端末4603からセンサ情報を取得する。
 入出力部4622は、伝送信号を取得し、伝送信号から多重化データ(ファイルフォーマット又はパケット)を復号し、多重化データを逆多重化部4623へ出力する。
 逆多重化部4623は、多重化データから符号化データ、制御情報及び付加情報を取得し、符号化データ、制御情報及び付加情報を復号部4624へ出力する。
 復号部4624は、符号化データを復号することで点群データを再構成する。
 提示部4625は、点群データをユーザに提示する。例えば、提示部4625は、点群データに基づく情報又は画像を表示する。ユーザインタフェース4626は、ユーザの操作に基づく指示を取得する。制御部4627(またはアプリ実行部)は、各処理部を制御する。つまり、制御部4627は、逆多重化、復号及び提示等の制御を行う。
 なお、入出力部4622は、点群データ又は符号化データをそのまま外部から取得してもよい。また、提示部4625は、センサ情報などの付加情報を取得し、付加情報に基づいた情報を提示してもよい。また、提示部4625は、ユーザインタフェース4626で取得されたユーザの指示に基づき、提示を行ってもよい。
 センサ端末4603は、センサで得られた情報であるセンサ情報を生成する。センサ端末4603は、センサ又はカメラを搭載した端末であり、例えば、自動車などの移動体、飛行機などの飛行物体、携帯端末、又はカメラなどがある。
 センサ端末4603で取得可能なセンサ情報は、例えば、(1)LIDAR、ミリ波レーダ、又は赤外線センサから得られる、センサ端末4603と対象物との距離、又は対象物の反射率、(2)複数の単眼カメラ画像又はステレオカメラ画像から得られるカメラと対象物との距離又は対象物の反射率等である。また、センサ情報は、センサの姿勢、向き、ジャイロ(角速度)、位置(GPS情報又は高度)、速度、又は加速度等を含んでもよい。また、センサ情報は、気温、気圧、湿度、又は磁気等を含んでもよい。
 外部接続部4604は、集積回路(LSI又はIC)、外部蓄積部、インターネットを介したクラウドサーバとの通信、又は、放送等により実現される。
 次に、点群データについて説明する。図2は、点群データの構成を示す図である。図3は、点群データの情報が記述されたデータファイルの構成例を示す図である。
 点群データは、複数の点のデータを含む。各点のデータは、位置情報(三次元座標)、及びその位置情報に対する属性情報とを含む。この点が複数集まったものを点群と呼ぶ。例えば、点群は対象物(オブジェクト)の三次元形状を示す。
 三次元座標等の位置情報(Position)をジオメトリ(geometry)と呼ぶこともある。また、各点のデータは、複数の属性種別の属性情報(attribute)を含んでもよい。属性種別は、例えば色又は反射率などである。
 1つの位置情報に対して1つの属性情報が対応付けられてもよいし、1つの位置情報に対して複数の異なる属性種別を持つ属性情報が対応付けられてもよい。また、1つの位置情報に対して同じ属性種別の属性情報が複数対応付けられてもよい。
 図3に示すデータファイルの構成例は、位置情報と属性情報とが1対1に対応する場合の例であり、点群データを構成するN個の点の位置情報と属性情報とを示している。
 位置情報は、例えば、x、y、zの3軸の情報である。属性情報は、例えば、RGBの色情報である。代表的なデータファイルとしてplyファイルなどがある。
 次に、点群データの種類について説明する。図4は、点群データの種類を示す図である。図4に示すように、点群データには、静的オブジェクトと、動的オブジェクトとがある。
 静的オブジェクトは、任意の時間(ある時刻)の三次元点群データである。動的オブジェクトは、時間的に変化する三次元点群データである。以降、ある時刻の三次元点群データをPCCフレーム、又はフレームと呼ぶ。
 オブジェクトは、通常の映像データのように、ある程度領域が制限されている点群であってもよいし、地図情報のように領域が制限されていない大規模点群であってもよい。
 また、様々な密度の点群データがあり、疎な点群データと、密な点群データとが存在してもよい。
 以下、各処理部の詳細について説明する。センサ情報は、LIDAR或いはレンジファインダなどの距離センサ、ステレオカメラ、又は、複数の単眼カメラの組合せなど様々な方法で取得される。点群データ生成部4618は、センサ情報取得部4617で得られたセンサ情報に基づき点群データを生成する。点群データ生成部4618は、点群データとして、位置情報を生成し、位置情報に、当該位置情報に対する属性情報を付加する。
 点群データ生成部4618は、位置情報の生成又は属性情報の付加の際に、点群データを加工してもよい。例えば、点群データ生成部4618は、位置が重複する点群を削除することでデータ量を減らしてもよい。また、点群データ生成部4618は、位置情報を変換(位置シフト、回転又は正規化など)してもよいし、属性情報をレンダリングしてもよい。
 なお、図1では、点群データ生成システム4611は、三次元データ符号化システム4601に含まれるが、三次元データ符号化システム4601の外部に独立して設けられてもよい。
 符号化部4613は、点群データを予め規定された符号化方法に基づき符号化することで符号化データを生成する。符号化方法には大きく以下の2種類がある。一つ目は、位置情報を用いた符号化方法であり、この符号化方法を、以降、第1の符号化方法と記載する。二つ目は、ビデオコーデックを用いた符号化方法であり、この符号化方法を、以降、第2の符号化方法と記載する。
 復号部4624は、符号化データを予め規定された符号化方法に基づき復号することで点群データを復号する。
 多重化部4614は、符号化データを、既存の多重化方式を用いて多重化することで多重化データを生成する。生成された多重化データは、伝送又は蓄積される。多重化部4614は、PCC符号化データの他に、映像、音声、字幕、アプリケーション、ファイルなどの他のメディア、又は基準時刻情報を多重化する。また、多重化部4614は、さらに、センサ情報又は点群データに関連する属性情報を多重してもよい。
 多重化方式又はファイルフォーマットとしては、ISOBMFF、ISOBMFFベースの伝送方式であるMPEG-DASH、MMT、MPEG-2 TS Systems、RMPなどがある。
 逆多重化部4623は、多重化データからPCC符号化データ、その他のメディア、及び時刻情報などを抽出する。
 入出力部4615は、多重化データを、放送又は通信など、伝送する媒体又は蓄積する媒体にあわせた方法を用いて伝送する。入出力部4615は、インターネット経由で他のデバイスと通信してもよいし、クラウドサーバなどの蓄積部と通信してもよい。
 通信プロトコルとしては、http、ftp、TCP又はUDPなどが用いられる。PULL型の通信方式が用いられてもよいし、PUSH型の通信方式が用いられてもよい。
 有線伝送及び無線伝送のいずれが用いられてもよい。有線伝送としては、Ethernet(登録商標)、USB、RS-232C、HDMI(登録商標)、又は同軸ケーブルなどが用いられる。無線伝送としては、無線LAN、Wi-Fi(登録商標)、Bluetooth(登録商標)又はミリ波などが用いられる。
 また、放送方式としては、例えばDVB-T2、DVB-S2、DVB-C2、ATSC3.0、又はISDB-S3などが用いられる。
 図5は、第1の符号化方法の符号化を行う符号化部4613の例である第1の符号化部4630の構成を示す図である。図6は、第1の符号化部4630のブロック図である。第1の符号化部4630は、点群データを第1の符号化方法で符号化することで符号化データ(符号化ストリーム)を生成する。この第1の符号化部4630は、位置情報符号化部4631と、属性情報符号化部4632と、付加情報符号化部4633と、多重化部4634とを含む。
 第1の符号化部4630は、三次元構造を意識して符号化を行うという特徴を有する。また、第1の符号化部4630は、属性情報符号化部4632が、位置情報符号化部4631から得られる情報を用いて符号を行うという特徴を有する。第1の符号化方法は、GPCC(Geometry based PCC)とも呼ばれる。
 点群データは、PLYファイルのようなPCC点群データ、又は、センサ情報から生成されたPCC点群データであり、位置情報(Position)、属性情報(Attribute)、及びその他の付加情報(MetaData)を含む。位置情報は位置情報符号化部4631に入力され、属性情報は属性情報符号化部4632に入力され、付加情報は付加情報符号化部4633に入力される。
 位置情報符号化部4631は、位置情報を符号化することで符号化データである符号化位置情報(Compressed Geometry)を生成する。例えば、位置情報符号化部4631は、8分木等のN分木構造を用いて位置情報を符号化する。具体的には、8分木では、対象空間が8個のノード(サブ空間)に分割され、各ノードに点群が含まれるか否かを示す8ビットの情報(オキュパンシー符号)が生成される。また、点群が含まれるノードは、さらに、8個のノードに分割され、当該8個のノードの各々に点群が含まれるか否かを示す8ビットの情報が生成される。この処理が、予め定められた階層又はノードに含まれる点群の数の閾値以下になるまで繰り返される。
 属性情報符号化部4632は、位置情報符号化部4631で生成された構成情報を用いて符号化することで符号化データである符号化属性情報(Compressed Attribute)を生成する。例えば、属性情報符号化部4632は、位置情報符号化部4631で生成された8分木構造に基づき、処理対象の対象点(対象ノード)の符号化において参照する参照点(参照ノード)を決定する。例えば、属性情報符号化部4632は、周辺ノード又は隣接ノードのうち、8分木における親ノードが対象ノードと同一のノードを参照する。なお、参照関係の決定方法はこれに限らない。
 また、属性情報の符号化処理は、量子化処理、予測処理、及び算術符号化処理のうち少なくとも一つを含んでもよい。この場合、参照とは、属性情報の予測値の算出に参照ノードを用いること、又は、符号化のパラメータの決定に参照ノードの状態(例えば、参照ノードに点群が含まれる否かを示す占有情報)を用いること、である。例えば、符号化のパラメータとは、量子化処理における量子化パラメータ、又は算術符号化におけるコンテキスト等である。
 付加情報符号化部4633は、付加情報のうち、圧縮可能なデータを符号化することで符号化データである符号化付加情報(Compressed MetaData)を生成する。
 多重化部4634は、符号化位置情報、符号化属性情報、符号化付加情報及びその他の付加情報を多重化することで符号化データである符号化ストリーム(Compressed Stream)を生成する。生成された符号化ストリームは、図示しないシステムレイヤの処理部へ出力される。
 次に、第1の符号化方法の復号を行う復号部4624の例である第1の復号部4640について説明する。図7は、第1の復号部4640の構成を示す図である。図8は、第1の復号部4640のブロック図である。第1の復号部4640は、第1の符号化方法で符号化された符号化データ(符号化ストリーム)を、第1の符号化方法で復号することで点群データを生成する。この第1の復号部4640は、逆多重化部4641と、位置情報復号部4642と、属性情報復号部4643と、付加情報復号部4644とを含む。
 図示しないシステムレイヤの処理部から符号化データである符号化ストリーム(Compressed Stream)が第1の復号部4640に入力される。
 逆多重化部4641は、符号化データから、符号化位置情報(Compressed Geometry)、符号化属性情報(Compressed Attribute)、符号化付加情報(Compressed MetaData)、及び、その他の付加情報を分離する。
 位置情報復号部4642は、符号化位置情報を復号することで位置情報を生成する。例えば、位置情報復号部4642は、8分木等のN分木構造で表される符号化位置情報から三次元座標で表される点群の位置情報を復元する。
 属性情報復号部4643は、位置情報復号部4642で生成された構成情報に基づき、符号化属性情報を復号する。例えば、属性情報復号部4643は、位置情報復号部4642で得られた8分木構造に基づき、処理対象の対象点(対象ノード)の復号において参照する参照点(参照ノード)を決定する。例えば、属性情報復号部4643は、周辺ノード又は隣接ノードのうち、8分木における親ノードが対象ノードと同一のノードを参照する。なお、参照関係の決定方法はこれに限らない。
 また、属性情報の復号処理は、逆量子化処理、予測処理、及び算術復号処理のうち少なくとも一つを含んでもよい。この場合、参照とは、属性情報の予測値の算出に参照ノードを用いること、又は、復号のパラメータの決定に参照ノードの状態(例えば、参照ノードに点群が含まれる否かを示す占有情報)を用いること、である。例えば、復号のパラメータとは、逆量子化処理における量子化パラメータ、又は算術復号におけるコンテキスト等である。
 付加情報復号部4644は、符号化付加情報を復号することで付加情報を生成する。また、第1の復号部4640は、位置情報及び属性情報の復号処理に必要な付加情報を復号時に使用し、アプリケーションに必要な付加情報を外部に出力する。
 次に、位置情報符号化部の構成例を説明する。図9は、本実施の形態に係る位置情報符号化部2700のブロック図である。位置情報符号化部2700は、8分木生成部2701と、幾何情報算出部2702と、符号化テーブル選択部2703と、エントロピー符号化部2704とを備える。
 8分木生成部2701は、入力された位置情報から、例えば8分木を生成し、8分木の各ノードのオキュパンシー符号を生成する。幾何情報算出部2702は、対象ノードの隣接ノードが占有ノードか否かを示す情報を取得する。例えば、幾何情報算出部2702は、対象ノードが所属する親ノードのオキュパンシー符号から隣接ノードの占有情報(隣接ノードが占有ノードであるか否かを示す情報)を算出する。また、幾何情報算出部2702は、符号化済みのノードをリストに保存しておき、そのリスト内から隣接ノードを探索してもよい。なお、幾何情報算出部2702は、対象ノードの親ノード内の位置に応じて隣接ノードを切替えてもよい。
 符号化テーブル選択部2703は、幾何情報算出部2702で算出された隣接ノードの占有情報を用いて対象ノードのエントロピー符号化に用いる符号化テーブルを選択する。例えば、符号化テーブル選択部2703は、隣接ノードの占有情報を用いてビット列を生成し、そのビット列から生成されるインデックス番号の符号化テーブルを選択してもよい。
 エントロピー符号化部2704は、選択されたインデックス番号の符号化テーブルを用いて対象ノードのオキュパンシー符号にエントロピー符号化を行うことで符号化位置情報及びメタデータを生成する。エントロピー符号化部2704は、選択された符号化テーブルを示す情報を符号化位置情報に付加してもよい。
 以下、8分木表現と位置情報のスキャン順について説明する。位置情報(位置データ)は8分木構造に変換(8分木化)された後、符号化される。8分木構造はノードとリーフとで構成される。各ノードは8つのノード又はリーフを持ち、各リーフはボクセル(VXL)情報を持つ。図10は、複数のボクセルを含む位置情報の構造例を示す図である。図11は、図10に示す位置情報を8分木構造に変換した例を示す図である。ここで、図11に示すリーフのうち、リーフ1、2、3はそれぞれ図10に示すボクセルVXL1、VXL2、VXL3を表し、点群を含むVXL(以下、有効VXL)を表現している。
 具体的には、ノード1は、図10の位置情報を包含する全体空間に対応する。ノード1に対応する全体空間は8つのノードに分割され、8つのノードのうち、有効VXLを含むノードが、さらに8つのノードまたはリーフに分割され、この処理が木構造の階層分繰り返される。ここで、各ノードはサブ空間に対応し、ノード情報として分割後のどの位置に次のノードまたはリーフを持つかを示す情報(オキュパンシー符号)を持つ。また、最下層のブロックはリーフに設定され、リーフ情報としてリーフ内に含まれる点群数などが保持される。
 次に、位置情報復号部の構成例を説明する。図12は、本実施の形態に係る位置情報復号部2710のブロック図である。位置情報復号部2710は、8分木生成部2711と、幾何情報算出部2712と、符号化テーブル選択部2713と、エントロピー復号部2714とを備える。
 8分木生成部2711は、ビットストリームのヘッダ情報又はメタデータ等を用いて、ある空間(ノード)の8分木を生成する。例えば、8分木生成部2711は、ヘッダ情報に付加されたある空間のx軸、y軸、z軸方向の大きさを用いて大空間(ルートノード)を生成し、その空間をx軸、y軸、z軸方向にそれぞれ2分割することで8個の小空間A(ノードA0~A7)を生成することで8分木を生成する。また、対象ノードとしてノードA0~A7が順に設定される。
 幾何情報算出部2712は、対象ノードの隣接ノードが占有ノードであるか否かを示す占有情報を取得する。例えば、幾何情報算出部2712は、対象ノードが所属する親ノードのオキュパンシー符号から隣接ノードの占有情報を算出する。また、幾何情報算出部2712は、復号済みのノードをリストに保存しておき、そのリスト内から隣接ノードを探索してもよい。なお、幾何情報算出部2712は、対象ノードの親ノード内の位置に応じて隣接ノードを切替えてもよい。
 符号化テーブル選択部2713は、幾何情報算出部2712で算出された隣接ノードの占有情報を用いて対象ノードのエントロピー復号に用いる符号化テーブル(復号テーブル)を選択する。例えば、符号化テーブル選択部2713は、隣接ノードの占有情報を用いてビット列を生成し、そのビット列から生成されるインデックス番号の符号化テーブルを選択してもよい。
 エントロピー復号部2714は、選択された符号化テーブルを用いて対象ノードのオキュパンシー符号をエントロピー復号することで、位置情報を生成する。なお、エントロピー復号部2714は、選択された符号化テーブルの情報をビットストリームから復号して取得し、当該情報で示される符号化テーブルを用いて、対象ノードのオキュパンシー符号をエントロピー復号してもよい。
 以下、属性情報符号化部及び属性情報復号部の構成を説明する。図13は属性情報符号化部A100の構成例を示すブロック図である。属性情報符号化部は異なる符号化方法を実行する複数の符号化部を含んでもよい。例えば、属性情報符号化部は、下記の2方式をユースケースに応じて切替えて用いてもよい。
 属性情報符号化部A100は、LoD属性情報符号化部A101と、変換属性情報符号化部A102とを含む。LoD属性情報符号化部A101は、三次元点の位置情報を用いて各三次元点を複数階層に分類し、各階層に属する三次元点の属性情報を予測して、その予測残差を符号化する。ここで、分類した各階層をLoD(Level of Detail)と呼ぶ。
 変換属性情報符号化部A102は、RAHT(Region Adaptive Hierarchical Transform)を用いて属性情報を符号化する。具体的には、変換属性情報符号化部A102は、三次元点の位置情報を元に各属性情報に対してRAHTまたはHaar変換を適用することで、各階層の高周波成分および低周波数成分を生成し、それらの値を量子化及びエントロピー符号化等を用いて符号化する。
 図14は属性情報復号部A110の構成例を示すブロック図である。属性情報復号部は異なる復号方法を実行する複数の復号部を含んでもよい。例えば、属性情報復号部は、下記の2方式をヘッダやメタデータに含まれる情報を元に切替えて復号してもよい。
 属性情報復号部A110は、LoD属性情報復号部A111と、変換属性情報復号部A112とを含む。LoD属性情報復号部A111は、三次元点の位置情報を用いて各三次元点を複数階層に分類し、各階層に属する三次元点の属性情報を予測しながら属性値を復号する。
 変換属性情報復号部A112は、RAHT(Region Adaptive Hierarchical Transform)を用いて属性情報を復号する。具体的には、変換属性情報復号部A112は、三次元点の位置情報を元に各属性値の高周波成分および低周波成分に対して、inverse RAHTまたはinverse Haar変換を適用することで属性値を復号する。
 図15は、LoD属性情報符号化部A101の一例である属性情報符号化部3140の構成を示すブロック図である。
 属性情報符号化部3140は、LoD生成部3141と、周囲探索部3142と、予測部3143と、予測残差算出部3144と、量子化部3145と、算術符号化部3146と、逆量子化部3147と、復号値生成部3148と、メモリ3149と、を含む。
 LoD生成部3141は、三次元点の位置情報を用いてLoDを生成する。
 周囲探索部3142は、LoD生成部3141によるLoDの生成結果と各三次元点間の距離を示す距離情報とを用いて、各三次元点に隣接する近隣三次元点を探索する。
 予測部3143は、符号化対象の対象三次元点の属性情報の予測値を生成する。
 予測残差算出部3144は、予測部3143により生成された属性情報の予測値の予測残差を算出(生成)する。
 量子化部3145は、予測残差算出部3144により算出された属性情報の予測残差を量子化する。
 算術符号化部3146は、量子化部3145により量子化された後の予測残差を算術符号化する。算術符号化部3146は、算術符号化した予測残差を含むビットストリームを、例えば、三次元データ復号装置に出力する。
 なお、予測残差は、算術符号化部3146によって算術符号化される前に、例えば量子化部3145によって二値化されてもよい。
 また、例えば、算術符号化部3146は、算術符号化に用いる符号化テーブルを算術符号化前に初期化してもよい。算術符号化部3146は、算術符号化に用いる符号化テーブルを、層毎に初期化してもよい。また、算術符号化部3146は、符号化テーブルを初期化した層の位置を示す情報をビットストリームに含めて出力してもよい。
 逆量子化部3147は、量子化部3145によって量子化された後の予測残差を逆量子化する。
 復号値生成部3148は、予測部3143により生成された属性情報の予測値と、逆量子化部3147により逆量子化された後の予測残差とを加算することで復号値を生成する。
 メモリ3149は、復号値生成部3148により復号された各三次元点の属性情報の復号値を記憶するメモリである。例えば、予測部3143は、まだ符号化していない三次元点の予測値を生成する場合に、メモリ3149に記憶されている各三次元点の属性情報の復号値を利用して予測値を生成する。
 図16は、変換属性情報符号化部A102の一例である属性情報符号化部6600のブロック図である。属性情報符号化部6600は、ソート部6601と、Haar変換部6602と、量子化部6603と、逆量子化部6604と、逆Haar変換部6605と、メモリ6606と、算術符号化部6607とを備える。
 ソート部6601は、三次元点の位置情報を用いてモートン符号を生成し、複数の三次元点をモートン符号順にソートする。Haar変換部6602は、属性情報にHaar変換を適用することで符号化係数を生成する。量子化部6603は、属性情報の符号化係数を量子化する。
 逆量子化部6604は、量子化後の符号化係数を逆量子化する。逆Haar変換部6605は、符号化係数に逆Haar変換を適用する。メモリ6606は、復号済みの複数の三次元点の属性情報の値を記憶する。例えば、メモリ6606に記憶される復号済みの三次元点の属性情報は、符号化されていない三次元点の予測等に利用されてもよい。
 算術符号化部6607は、量子化後の符号化係数からZeroCntを算出し、ZeroCntを算術符号化する。また、算術符号化部6607は、量子化後の非ゼロの符号化係数を算術符号化する。算術符号化部6607は、符号化係数を算術符号化前に二値化してもよい。また、算術符号化部6607は、各種ヘッダ情報を生成及び符号化してもよい。
 図17は、LoD属性情報復号部A111の一例である属性情報復号部3150の構成を示すブロック図である。
 属性情報復号部3150は、LoD生成部3151と、周囲探索部3152と、予測部3153と、算術復号部3154と、逆量子化部3155と、復号値生成部3156と、メモリ3157と、を含む。
 LoD生成部3151は、位置情報復号部(図17には不図示)により復号された三次元点の位置情報を用いてLoDを生成する。
 周囲探索部3152は、LoD生成部3151によるLoDの生成結果と各三次元点間の距離を示す距離情報とを用いて、各三次元点に隣接する近隣三次元点を探索する。
 予測部3153は、復号対象の対象三次元点の属性情報の予測値を生成する。
 算術復号部3154は、図15に示す属性情報符号化部3140より取得したビットストリーム内の予測残差を算術復号する。なお、算術復号部3154は、算術復号に用いる復号テーブルを初期化してもよい。算術復号部3154は、図15に示す算術符号化部3146が符号化処理を行った層について、算術復号に用いる復号テーブルを初期化する。算術復号部3154は、算術復号に用いる復号テーブルを層毎に初期化してもよい。また、算術復号部3154は、ビットストリームに含まれる、符号化テーブルを初期化した層の位置を示す情報に基づいて、復号テーブルを初期化してもよい。
 逆量子化部3155は、算術復号部3154が算術復号した予測残差を逆量子化する。
 復号値生成部3156は、予測部3153により生成された予測値と逆量子化部3155により逆量子化された後の予測残差とを加算して復号値を生成する。復号値生成部3156は、復号された属性情報データを他の装置へ出力する。
 メモリ3157は、復号値生成部3156により復号された各三次元点の属性情報の復号値を記憶するメモリである。例えば、予測部3153は、まだ復号していない三次元点の予測値を生成する場合に、メモリ3157に記憶されている各三次元点の属性情報の復号値を利用して予測値を生成する。
 図18は、変換属性情報復号部A112の一例である属性情報復号部6610のブロック図である。属性情報復号部6610は、算術復号部6611と、逆量子化部6612と、逆Haar変換部6613と、メモリ6614とを備える。
 算術復号部6611は、ビットストリームに含まれるZeroCntと符号化係数を算術復号する。なお、算術復号部6611は、各種ヘッダ情報を復号してもよい。
 逆量子化部6612は、算術復号した符号化係数を逆量子化する。逆Haar変換部6613は、逆量子化後の符号化係数に逆Haar変換を適用する。メモリ6614は、復号済みの複数の三次元点の属性情報の値を記憶する。例えば、メモリ6614に記憶される復号済みの三次元点の属性情報は、復号されていない三次元点の予測に利用されてもよい。
 次に、第2の符号化方法の符号化を行う符号化部4613の例である第2の符号化部4650について説明する。図19は、第2の符号化部4650の構成を示す図である。図20は、第2の符号化部4650のブロック図である。
 第2の符号化部4650は、点群データを第2の符号化方法で符号化することで符号化データ(符号化ストリーム)を生成する。この第2の符号化部4650は、付加情報生成部4651と、位置画像生成部4652と、属性画像生成部4653と、映像符号化部4654と、付加情報符号化部4655と、多重化部4656とを含む。
 第2の符号化部4650は、三次元構造を二次元画像に投影することで位置画像及び属性画像を生成し、生成した位置画像及び属性画像を既存の映像符号化方式を用いて符号化するという特徴を有する。第2の符号化方法は、VPCC(Video based PCC)とも呼ばれる。
 点群データは、PLYファイルのようなPCC点群データ、又は、センサ情報から生成されたPCC点群データであり、位置情報(Position)、属性情報(Attribute)、及びその他の付加情報MetaData)を含む。
 付加情報生成部4651は、三次元構造を二次元画像に投影することで、複数の二次元画像のマップ情報を生成する。
 位置画像生成部4652は、位置情報と、付加情報生成部4651で生成されたマップ情報とに基づき、位置画像(Geometry Image)を生成する。この位置画像は、例えば、画素値として距離(Depth)が示される距離画像である。なお、この距離画像は、一つの視点から複数の点群を見た画像(一つの二次元平面に複数の点群を投影した画像)であってもよいし、複数の視点から複数の点群を見た複数の画像であってもよいし、これらの複数の画像を統合した一つの画像であってもよい。
 属性画像生成部4653は、属性情報と、付加情報生成部4651で生成されたマップ情報とに基づき、属性画像を生成する。この属性画像は、例えば、画素値として属性情報(例えば色(RGB))が示される画像である。なお、この画像は、一つの視点から複数の点群を見た画像(一つの二次元平面に複数の点群を投影した画像)であってもよいし、複数の視点から複数の点群を見た複数の画像であってもよいし、これらの複数の画像を統合した一つの画像であってもよい。
 映像符号化部4654は、位置画像及び属性画像を、映像符号化方式を用いて符号化することで、符号化データである符号化位置画像(Compressed Geometry Image)及び符号化属性画像(Compressed Attribute Image)を生成する。なお、映像符号化方式として、公知の任意の符号化方法が用いられてよい。例えば、映像符号化方式は、AVC又はHEVC等である。
 付加情報符号化部4655は、点群データに含まれる付加情報、及びマップ情報等を符号化することで符号化付加情報(Compressed MetaData)を生成する。
 多重化部4656は、符号化位置画像、符号化属性画像、符号化付加情報、及び、その他の付加情報を多重化することで符号化データである符号化ストリーム(Compressed Stream)を生成する。生成された符号化ストリームは、図示しないシステムレイヤの処理部へ出力される。
 次に、第2の符号化方法の復号を行う復号部4624の例である第2の復号部4660について説明する。図21は、第2の復号部4660の構成を示す図である。図22は、第2の復号部4660のブロック図である。第2の復号部4660は、第2の符号化方法で符号化された符号化データ(符号化ストリーム)を、第2の符号化方法で復号することで点群データを生成する。この第2の復号部4660は、逆多重化部4661と、映像復号部4662と、付加情報復号部4663と、位置情報生成部4664と、属性情報生成部4665とを含む。
 図示しないシステムレイヤの処理部から符号化データである符号化ストリーム(Compressed Stream)が第2の復号部4660に入力される。
 逆多重化部4661は、符号化データから、符号化位置画像(Compressed Geometry Image)、符号化属性画像(Compressed Attribute Image)、符号化付加情報(Compressed MetaData)、及び、その他の付加情報を分離する。
 映像復号部4662は、符号化位置画像及び符号化属性画像を、映像符号化方式を用いて復号することで、位置画像及び属性画像を生成する。なお、映像符号化方式として、公知の任意の符号化方式が用いられてよい。例えば、映像符号化方式は、AVC又はHEVC等である。
 付加情報復号部4663は、符号化付加情報を復号することで、マップ情報等を含む付加情報を生成する。
 位置情報生成部4664は、位置画像とマップ情報とを用いて位置情報を生成する。属性情報生成部4665は、属性画像とマップ情報とを用いて属性情報を生成する。
 第2の復号部4660は、復号に必要な付加情報を復号時に使用し、アプリケーションに必要な付加情報を外部に出力する。
 以下、PCC符号化方式における課題を説明する。図23は、PCC符号化データに関わるプロトコルスタックを示す図である。図23には、PCC符号化データに、映像(例えばHEVC)又は音声などの他のメディアのデータを多重し、伝送又は蓄積する例を示す。
 多重化方式及びファイルフォーマットは、様々な符号化データを多重し、伝送又は蓄積するための機能を有している。符号化データを伝送又は蓄積するためには、符号化データを多重化方式のフォーマットに変換しなければならない。例えば、HEVCでは、NALユニットと呼ばれるデータ構造に符号化データを格納し、NALユニットをISOBMFFに格納する技術が規定されている。
 一方、現在、点群データの符号化方法として第1の符号化方法(Codec1)、及び第2の符号化方法(Codec2)が検討されているが、符号化データの構成、及び符号化データをシステムフォーマットへ格納する方法が定義されておらず、このままでは符号化部におけるMUX処理(多重化)、伝送及び蓄積ができないという課題がある。
 なお、以降において、特定の符号化方法の記載がなければ、第1の符号化方法、及び第2の符号化方法のいずれかを示すものとする。
 (実施の形態2)
 本実施の形態では、上述した第1の符号化部4630、又は第2の符号化部4650で生成される符号化データ(位置情報(Geometry)、属性情報(Attribute)、付加情報(Metadata))の種別、及び付加情報(メタデータ)の生成方法、及び多重化部における多重処理について説明する。なお、付加情報(メタデータ)は、パラメータセット、又は制御情報と表記することもある。
 本実施の形態では、図4で説明した動的オブジェクト(時間的に変化する三次元点群データ)を例に説明するが、静的オブジェクト(任意の時刻の三次元点群データ)の場合でも同様の方法を用いてもよい。
 図24は、本実施の形態に係る三次元データ符号化装置に含まれる符号化部4801及び多重化部4802の構成を示す図である。符号化部4801は、例えば、上述した第1の符号化部4630又は第2の符号化部4650に対応する。多重化部4802は、上述した多重化部4634又は4656に対応する。
 符号化部4801は、複数のPCC(Point Cloud Compression)フレームの点群データを符号化し、複数の位置情報、属性情報及び付加情報の符号化データ(Multiple Compressed Data)を生成する。
 多重化部4802は、複数のデータ種別(位置情報、属性情報及び付加情報)のデータをNALユニット化することで、データを復号装置におけるデータアクセスを考慮したデータ構成に変換する。
 図25は、符号化部4801で生成される符号化データの構成例を示す図である。図中の矢印は符号化データの復号に係る依存関係を示しており、矢印の元は矢印の先のデータに依存している。つまり、復号装置は、矢印の先のデータを復号し、その復号したデータを用いて矢印の元のデータを復号する。言い換えると、依存するとは、依存元のデータの処理(符号化又は復号等)において依存先のデータが参照(使用)されることを意味する。
 まず、位置情報の符号化データの生成処理について説明する。符号化部4801は、各フレームの位置情報を符号化することで、フレーム毎の符号化位置データ(Compressed Geometry Data)を生成する。また、符号化位置データをG(i)で表す。iはフレーム番号、又はフレームの時刻等を示す。
 また、符号化部4801は、各フレームに対応する位置パラメータセット(GPS(i))を生成する。位置パラメータセットは、符号化位置データの復号に使用することが可能なパラメータを含む。また、フレーム毎の符号化位置データは、対応する位置パラメータセットに依存する。
 また、複数フレームから成る符号化位置データを位置シーケンス(Geometry Sequence)と定義する。符号化部4801は、位置シーケンス内の複数のフレームに対する復号処理に共通に使用するパラメータを格納する位置シーケンスパラメータセット(Geometry Sequence PS:位置SPSとも記す)を生成する。位置シーケンスは、位置SPSに依存する。
 次に、属性情報の符号化データの生成処理について説明する。符号化部4801は、各フレームの属性情報を符号化することで、フレーム毎の符号化属性データ(Compressed Attribute Data)を生成する。また、符号化属性データをA(i)で表す。また、図25では、属性Xと属性Yとが存在する例を示しており、属性Xの符号化属性データをAX(i)で表し、属性Yの符号化属性データをAY(i)で表す。
 また、符号化部4801は、各フレームに対応する属性パラメータセット(APS(i))を生成する。また、属性Xの属性パラメータセットをAXPS(i)で表し、属性Yの属性パラメータセットをAYPS(i)で表す。属性パラメータセットは、符号化属性情報の復号に使用することが可能なパラメータを含む。符号化属性データは、対応する属性パラメータセットに依存する。
 また、複数フレームから成る符号化属性データを属性シーケンス(Attribute Sequence)と定義する。符号化部4801は、属性シーケンス内の複数のフレームに対する復号処理に共通に使用するパラメータを格納する属性シーケンスパラメータセット(Attribute Sequence PS:属性SPSとも記す)を生成する。属性シーケンスは、属性SPSに依存する。
 また、第1の符号化方法では、符号化属性データは符号化位置データに依存する。
 また、図25では2種類の属性情報(属性Xと属性Y)が存在する場合の例を示している。2種類の属性情報がある場合は、例えば、2つの符号化部により、それぞれのデータ及びメタデータが生成される。また、例えば、属性情報の種類毎に属性シーケンスが定義され、属性情報の種類毎に属性SPSが生成される。
 なお、図25では、位置情報が1種類、属性情報が2種類である例を示しているが、これに限らず、属性情報は1種類であってもよいし、3種類以上であってもよい。この場合も、同様の方法で符号化データを生成できる。また、属性情報を持たない点群データの場合は、属性情報はなくてもよい。その場合は、符号化部4801は、属性情報に関連するパラメータセットを生成しなくてもよい。
 次に、付加情報(メタデータ)の生成処理について説明する。符号化部4801は、PCCストリーム全体のパラメータセットであるPCCストリームPS(PCC Stream PS:ストリームPSとも記す)を生成する。符号化部4801は、ストリームPSに、1又は複数の位置シーケンス及び1又は複数の属性シーケンスに対する復号処理に共通に使用することができるパラメータを格納する。例えば、ストリームPSには、点群データのコーデックを示す識別情報、及び符号化に使用されたアルゴリズムを示す情報等が含まれる。位置シーケンス及び属性シーケンスはストリームPSに依存する。
 次に、アクセスユニット及びGOFについて説明する。本実施の形態では、新たにアクセスユニット(Access Unit:AU)、及びGOF(Group of Frame)の考え方を導入する。
 アクセスユニットは、復号時にデータにアクセスするため基本単位であり、1つ以上のデータ及び1つ以上のメタデータで構成される。例えば、アクセスユニットは、同一時刻の位置情報と1又は複数の属性情報とで構成される。GOFは、ランダムアクセス単位であり、1つ以上のアクセスユニットで構成される。
 符号化部4801は、アクセスユニットの先頭を示す識別情報として、アクセスユニットヘッダ(AU Header)を生成する。符号化部4801は、アクセスユニットヘッダに、アクセスユニットに係るパラメータを格納する。例えば、アクセスユニットヘッダは、アクセスユニットに含まれる符号化データの構成又は情報を含む。また、アクセスユニットヘッダは、アクセスユニットに含まれるデータに共通に用いられるパラメータ、例えば、符号化データの復号に係るパラメータなどを含む。
 なお、符号化部4801は、アクセスユニットヘッダの代わりに、アクセスユニットに係るパラメータを含まないアクセスユニットデリミタを生成してもよい。このアクセスユニットデリミタは、アクセスユニットの先頭を示す識別情報として用いられる。復号装置は、アクセスユニットヘッダ又はアクセスユニットデリミタを検出することにより、アクセスユニットの先頭を識別する。
 次に、GOF先頭の識別情報の生成について説明する。符号化部4801は、GOFの先頭を示す識別情報として、GOFヘッダ(GOF Header)を生成する。符号化部4801は、GOFヘッダに、GOFに係るパラメータを格納する。例えば、GOFヘッダは、GOFに含まれる符号化データの構成又は情報を含む。また、GOFヘッダは、GOFに含まれるデータに共通に用いられるパラメータ、例えば、符号化データの復号に係るパラメータなどを含む。
 なお、符号化部4801は、GOFヘッダの代わりに、GOFに係るパラメータを含まないGOFデリミタを生成してもよい。このGOFデリミタは、GOFの先頭を示す識別情報として用いられる。復号装置は、GOFヘッダ又はGOFデリミタを検出することにより、GOFの先頭を識別する。
 PCC符号化データにおいて、例えば、アクセスユニットはPCCフレーム単位であると定義される。復号装置は、アクセスユニット先頭の識別情報に基づき、PCCフレームにアクセスする。
 また、例えば、GOFは1つのランダムアクセス単位であると定義される。復号装置は、GOF先頭の識別情報に基づき、ランダムアクセス単位にアクセスする。例えば、PCCフレームが互いに依存関係がなく、単独で復号可能であれば、PCCフレームをランダムアクセス単位と定義してもよい。
 なお、1つのアクセスユニットに2つ以上のPCCフレームが割り当てられてもよいし、1つのGOFに複数のランダムアクセス単位が割り当てられてもよい。
 また、符号化部4801は、上記以外のパラメータセット又はメタデータを定義し、生成してもよい。例えば、符号化部4801は、復号時に必ずしも用いない可能性のあるパラメータ(オプションのパラメータ)を格納するSEI(Supplemental Enhancement Information)を生成してもよい。
 次に、符号化データの構成、及び符号化データのNALユニットへの格納方法を説明する。
 例えば、符号化データの種類毎にデータフォーマットが規定される。図26は、符号化データ及びNALユニットの例を示す図である。
 例えば、図26に示すように符号化データは、ヘッダとペイロードとを含む。なお、符号化データは、符号化データ、ヘッダ又はペイロードの長さ(データ量)を示す長さ情報を含んでもよい。また、符号化データは、ヘッダを含まなくてもよい。
 ヘッダは、例えば、データを特定するための識別情報を含む。この識別情報は、例えば、データ種別又はフレーム番号を示す。
 ヘッダは、例えば、参照関係を示す識別情報を含む。この識別情報は、例えば、データ間に依存関係がある場合にヘッダに格納され、参照元から参照先を参照するための情報である。例えば、参照先のヘッダには、当該データを特定するための識別情報が含まれる。参照元のヘッダには、参照先を示す識別情報が含まれる。
 なお、他の情報から参照先又は参照元を識別可能又は導出可能である場合は、データを特定するための識別情報、又は参照関係を示す識別情報を省略してもよい。
 多重化部4802は、符号化データを、NALユニットのペイロードに格納する。NALユニットヘッダには、符号化データの識別情報であるpcc_nal_unit_typeが含まれる。図27は、pcc_nal_unit_typeのセマンティクスの例を示す図である。
 図27に示すように、pcc_codec_typeがコーデック1(Codec1:第1の符号化方法)である場合、pcc_nal_unit_typeの値0~10は、コーデック1における、符号化位置データ(Geometry)、符号化属性Xデータ(AttributeX)、符号化属性Yデータ(AttributeY)、位置PS(Geom.PS)、属性XPS(AttrX.PS)、属性YPS(AttrX.PS)、位置SPS(Geometry Sequence PS)、属性XSPS(AttributeX Sequence PS)、属性YSPS(AttributeY Sequence PS)、AUヘッダ(AU Header)、GOFヘッダ(GOF Header)に割り当てられる。また、値11以降は、コーデック1の予備に割り当てられる。
 pcc_codec_typeがコーデック2(Codec2:第2の符号化方法)である場合、pcc_nal_unit_typeの値0~2は、コーデックのデータA(DataA)、メタデータA(MetaDataA)、メタデータB(MetaDataB)に割り当てられる。また、値3以降は、コーデック2の予備に割り当てられる。
 次に、データの送出順序について説明する。以下、NALユニットの送出順序の制約について説明する。
 多重化部4802は、NALユニットをGOF又はAU単位でまとめて送出する。多重化部4802は、GOFの先頭にGOFヘッダを配置し、AUの先頭にAUヘッダを配置する。
 パケットロスなどでデータが失われた場合でも、復号装置が次のAUから復号できるように、多重化部4802は、シーケンスパラメータセット(SPS)を、AU毎に配置してもよい。
 符号化データに復号に係る依存関係がある場合には、復号装置は、参照先のデータを復号した後に、参照元のデータを復号する。復号装置において、データを並び替ることなく、受信した順番に復号できるようにするために、多重化部4802は、参照先のデータを先に送出する。
 図28は、NALユニットの送出順の例を示す図である。図28は、位置情報優先と、パラメータ優先と、データ統合との3つの例を示す。
 位置情報優先の送出順序は、位置情報に関する情報と、属性情報に関する情報との各々をまとめて送出する例である。この送出順序の場合、位置情報に関する情報の送出が属性情報に関する情報の送出よりも早く完了する。
 例えば、この送出順序を用いることで、属性情報を復号しない復号装置は、属性情報の復号を無視することで、処理しない時間を設けることができる可能性がある。また、例えば、位置情報を早く復号したい復号装置の場合、位置情報の符号化データを早く得ることにより、より早く位置情報を復号することができる可能性がある。
 なお、図28では、属性XSPSと属性YSPSを統合し、属性SPSと記載しているが、属性XSPSと属性YSPSとを個別に配置してもよい。
 パラメータセット優先の送出順序では、パラメータセットが先に送出され、データが後で送出される。
 以上のようにNALユニット送出順序の制約に従えば、多重化部4802は、NALユニットをどのような順序で送出してもよい。例えば、順序識別情報が定義され、多重化部4802は、複数パターンの順序でNALユニットを送出する機能を有してもよい。例えばストリームPSにNALユニットの順序識別情報が格納される。
 三次元データ復号装置は、順序識別情報に基づき復号を行ってもよい。三次元データ復号装置から三次元データ符号化装置に所望の送出順序が指示され、三次元データ符号化装置(多重化部4802)は、指示された送出順序に従って送出順序を制御してもよい。
 なお、多重化部4802は、データ統合の送出順序のように、送出順序の制約に従う範囲であれば、複数の機能をマージした符号化データを生成してもよい。例えば、図28に示すように、GOFヘッダとAUヘッダとを統合してもよいし、AXPSとAYPSとを統合してもよい。この場合、pcc_nal_unit_typeには、複数の機能を有するデータであることを示す識別子が定義される。
 以下、本実施の形態の変形例について説明する。フレームレベルのPS、シーケンスレベルのPS、PCCシーケンスレベルのPSのように、PSにはレベルがあり、PCCシーケンスレベルを上位のレベルとし、フレームレベルを下位のレベルとすると、パラメータの格納方法には下記の方法を用いてもよい。
 デフォルトのPSの値をより上位のPSで示す。また、下位のPSの値が上位のPSの値と異なる場合には、下位のPSでPSの値が示される。または、上位ではPSの値を記載せず、下位のPSにPSの値を記載する。または、PSの値を、下位のPSで示すか、上位のPSで示すか、両方で示すかの情報を、下位のPSと上位のPSのいずれか一方又は両方に示す。または、下位のPSを上位のPSにマージしてもよい。または、下位のPSと上位のPSとが重複する場合には、多重化部4802は、いずれか一方の送出を省略してもよい。
 なお、符号化部4801又は多重化部4802は、データをスライス又はタイルなどに分割し、分割したデータを送出してもよい。分割したデータには、分割したデータを識別するための情報が含まれ、分割データの復号に使用するパラメータがパラメータセットに含まれる。この場合、pcc_nal_unit_typeには、タイル又はスライスに係るデータ又はパラメータを格納するデータであることを示す識別子が定義される。
 (実施の形態3)
 HEVC符号化では復号装置における並列処理を可能とするために、スライス又はタイルといったデータ分割のツールがあるが、PCC(Point Cloud Compression)符号化ではまだない。
 PCCでは、並列処理、圧縮効率、及び圧縮アルゴリズムによって、様々なデータ分割方法が考えられる。ここでは、スライス及びタイルの定義、データ構造及び送受信方法について説明する。
 図29は、本実施の形態に係る三次元データ符号化装置に含まれる第1の符号化部4910の構成を示すブロック図である。第1の符号化部4910は、点群データを第1の符号化方法(GPCC(Geometry based PCC))で符号化することで符号化データ(符号化ストリーム)を生成する。この第1の符号化部4910は、分割部4911と、複数の位置情報符号化部4912と、複数の属性情報符号化部4913と、付加情報符号化部4914と、多重化部4915とを含む。
 分割部4911は、点群データを分割することで複数の分割データを生成する。具体的には、分割部4911は、点群データの空間を複数のサブ空間に分割することで複数の分割データを生成する。ここでサブ空間とは、タイル及びスライスの一方、又はタイル及びスライスの組み合わせである。より具体的には、点群データは、位置情報、属性情報、及び付加情報を含む。分割部4911は、位置情報を複数の分割位置情報に分割し、属性情報を複数の分割属性情報に分割する。また、分割部4911は、分割に関する付加情報を生成する。
 複数の位置情報符号化部4912は、複数の分割位置情報を符号化することで複数の符号化位置情報を生成する。例えば、複数の位置情報符号化部4912は、複数の分割位置情報を並列処理する。
 複数の属性情報符号化部4913は、複数の分割属性情報を符号化することで複数の符号化属性情報を生成する。例えば、複数の属性情報符号化部4913は、複数の分割属性情報を並列処理する。
 付加情報符号化部4914は、点群データに含まれる付加情報と、分割部4911で分割時に生成された、データ分割に関する付加情報とを符号化することで符号化付加情報を生成する。
 多重化部4915は、複数の符号化位置情報、複数の符号化属性情報及び符号化付加情報を多重化することで符号化データ(符号化ストリーム)を生成し、生成した符号化データを送出する。また、符号化付加情報は復号時に使用される。
 なお、図29では、位置情報符号化部4912及び属性情報符号化部4913の数がそれぞれ2つの例を示しているが、位置情報符号化部4912及び属性情報符号化部4913の数は、それぞれ1つであってもよいし、3つ以上であってもよい。また、複数の分割データは、CPU内の複数コアのように同一チップ内で並列処理されてもよいし、複数のチップのコアで並列処理されてもよいし、複数チップの複数コアで並列処理されてもよい。
 図30は、第1の復号部4920の構成を示すブロック図である。第1の復号部4920は、点群データが第1の符号化方法(GPCC)で符号化されることで生成された符号化データ(符号化ストリーム)を復号することで点群データを復元する。この第1の復号部4920は、逆多重化部4921と、複数の位置情報復号部4922と、複数の属性情報復号部4923と、付加情報復号部4924と、結合部4925とを含む。
 逆多重化部4921は、符号化データ(符号化ストリーム)を逆多重化することで複数の符号化位置情報、複数の符号化属性情報及び符号化付加情報を生成する。
 複数の位置情報復号部4922は、複数の符号化位置情報を復号することで複数の分割位置情報を生成する。例えば、複数の位置情報復号部4922は、複数の符号化位置情報を並列処理する。
 複数の属性情報復号部4923は、複数の符号化属性情報を復号することで複数の分割属性情報を生成する。例えば、複数の属性情報復号部4923は、複数の符号化属性情報を並列処理する。
 複数の付加情報復号部4924は、符号化付加情報を復号することで付加情報を生成する。
 結合部4925は、付加情報を用いて複数の分割位置情報を結合することで位置情報を生成する。結合部4925は、付加情報を用いて複数の分割属性情報を結合することで属性情報を生成する。
 なお、図30では、位置情報復号部4922及び属性情報復号部4923の数がそれぞれ2つの例を示しているが、位置情報復号部4922及び属性情報復号部4923の数は、それぞれ1つであってもよし、3つ以上であってもよい。また、複数の分割データは、CPU内の複数コアのように同一チップ内で並列処理されてもよいし、複数のチップのコアで並列処理されてもよい、複数チップの複数コアで並列処理されてもよい。
 次に、分割部4911の構成を説明する。図31は、分割部4911のブロック図である。分割部4911は、スライス分割部4931(Slice Divider)と、位置情報タイル分割部4932(Geometry Tile Divider)と、属性情報タイル分割部4933(Attribute Tile Divider)とを含む。
 スライス分割部4931は、位置情報(Position(Geometry))をスライスに分割することで複数のスライス位置情報を生成する。また、スライス分割部4931は、属性情報(Attribute)をスライスに分割することで複数のスライス属性情報を生成する。また、スライス分割部4931は、スライス分割に係る情報、及びスライス分割において生成された情報を含むスライス付加情報(SliceMetaData)を出力する。
 位置情報タイル分割部4932は、複数のスライス位置情報をタイルに分割することで複数の分割位置情報(複数のタイル位置情報)を生成する。また、位置情報タイル分割部4932は、位置情報のタイル分割に係る情報、及び位置情報のタイル分割において生成された情報を含む位置タイル付加情報(Geometry Tile MetaData)を出力する。
 属性情報タイル分割部4933は、複数のスライス属性情報をタイルに分割することで複数の分割属性情報(複数のタイル属性情報)を生成する。また、属性情報タイル分割部4933は、属性情報のタイル分割に係る情報、及び属性情報のタイル分割において生成された情報を含む属性タイル付加情報(Attribute Tile MetaData)を出力する。
 なお、分割されるスライス又はタイルの数は1以上である。つまり、スライス又はタイルの分割を行わなくてもよい。
 また、ここでは、スライス分割後にタイル分割が行われる例を示したが、タイル分割後にスライス分割が行われてもよい。また、スライス及びタイルに加え新たな分割種別を定義し、3つ以上の分割種別で分割が行われてもよい。
 以下、点群データの分割方法について説明する。図32は、スライス及びタイル分割の例を示す図である。
 まず、スライス分割の方法について説明する。分割部4911は、三次元点群データを、スライス単位で、任意の点群に分割する。分割部4911は、スライス分割において、点を構成する位置情報と属性情報とを分割せず、位置情報と属性情報とを一括で分割する。すなわち、分割部4911は、任意の点における位置情報と属性情報とが同じスライスに属するようにスライス分割を行う。なお、これらに従えば、分割数、及び分割方法はどのような方法でもよい。また、分割の最小単位は点である。例えば、位置情報と属性情報との分割数は同一である。例えば、スライス分割後の位置情報に対応する三次元点と、属性情報に対応する三次元点とは同一のスライスに含まれる。
 また、分割部4911は、スライス分割時に分割数及び分割方法に係る付加情報であるスライス付加情報を生成する。スライス付加情報は、位置情報と属性情報とで同一である。例えば、スライス付加情報は、分割後のバウンディングボックスの基準座標位置、大きさ、又は辺の長さを示す情報を含む。また、スライス付加情報は、分割数、及び分割タイプなどを示す情報を含む。
 次に、タイル分割の方法について説明する。分割部4911は、スライス分割されたデータを、スライス位置情報(Gスライス)とスライス属性情報(Aスライス)とに分割し、スライス位置情報とスライス属性情報をそれぞれタイル単位に分割する。
 なお、図32では8分木構造で分割する例を示しているが、分割数及び分割方法はどのような方法でもよい。
 また、分割部4911は、位置情報と属性情報とを異なる分割方法で分割してもよいし、同一の分割方法で分割してもよい。また、分割部4911は、複数のスライスを異なる分割方法でタイルに分割してもよいし、同一の分割方法でタイルに分割してもよい。
 また、分割部4911は、タイル分割時に分割数及び分割方法に係るタイル付加情報を生成する。タイル付加情報(位置タイル付加情報及び属性タイル付加情報)は、位置情報と属性情報とで独立している。例えば、タイル付加情報は、分割後のバウンディングボックスの基準座標位置、大きさ、又は辺の長さを示す情報を含む。また、タイル付加情報は、分割数、及び分割タイプなど示す情報を含む。
 次に、点群データをスライス又はタイルに分割する方法の例を説明する。分割部4911は、スライス又はタイル分割の方法として、予め定められた方法を用いてもよいし、点群データに応じて使用する方法を適応的に切り替えてもよい。
 スライス分割時には、分割部4911は、位置情報と属性情報とに対して一括で三次元空間を分割する。例えば、分割部4911は、オブジェクトの形状を判定し、オブジェクトの形状に応じて三次元空間をスライスに分割する。例えば、分割部4911は、木又は建物などのオブジェクトを抽出し、オブジェクト単位で分割を行う。例えば、分割部4911は、1又は複数のオブジェクトの全体が1つのスライスに含まれるようにスライス分割を行う。または、分割部4911は、一つのオブジェクトを複数のスライスに分割する。
 この場合、符号化装置は、例えば、スライス毎に符号化方法を変えてもよい。例えば、符号化装置は、特定のオブジェクト、又はオブジェクトの特定の一部に対して、高品質な圧縮方法を用いてもよい。この場合、符号化装置は、スライス毎の符号化方法を示す情報を付加情報(メタデータ)に格納してもよい。
 また、分割部4911は、地図情報又は位置情報に基づき、各スライスが予め定められた座標空間に対応するようにスライス分割を行ってもよい。
 タイル分割時には、分割部4911は、位置情報と属性情報とを独立に分割する。例えば、分割部4911は、データ量又は処理量に応じてスライスをタイルに分割する。例えば、分割部4911は、スライスのデータ量(例えばスライスに含まれる三次元点の数)が予め定められた閾値より多いかを判定する。分割部4911は、スライスのデータ量が閾値より多い場合にはスライスをタイルに分割する。分割部4911は、スライスのデータ量が閾値より少ないときにはスライスをタイルに分割しない。
 例えば、分割部4911は、復号装置での処理量又は処理時間が一定の範囲(予め定められた値以下)となるよう、スライスをタイルに分割する。これにより、復号装置におけるタイル当たりの処理量が一定となり、復号装置における分散処理が容易となる。
 また、分割部4911は、位置情報と属性情報とで処理量が異なる場合、例えば、位置情報の処理量が属性情報の処理量より多い場合、位置情報の分割数を、属性情報の分割数より多くする。
 また、例えば、コンテンツによって、復号装置で、位置情報を早く復号して表示し、属性情報を後でゆっくり復号して表示してもよい場合に、分割部4911は、位置情報の分割数を、属性情報の分割数より多くしてもよい。これにより、復号装置は、位置情報の並列数を多くできるので、位置情報の処理を属性情報の処理より高速化できる。
 なお、復号装置は、スライス化又はタイル化されているデータを必ずしも並列処理する必要はなく、復号処理部の数又は能力に応じて、これらを並列処理するかどうかを判定してもよい。
 以上のような方法で分割することにより、コンテンツ又はオブジェクトに応じた、適応的な符号化を実現できる。また、復号処理における並列処理を実現できる。これにより、点群符号化システム又は点群復号システムの柔軟性が向上する。
 図33は、スライス及びタイルの分割のパターンの例を示す図である。図中のDUはデータ単位(DataUnit)であり、タイル又はスライスのデータを示す。また、各DUは、スライスインデックス(SliceIndex)とタイルインデックス(TileIndex)を含む。図中のDUの右上の数値がスライスインデックスを示し、DUの左下の数値がタイルインデックスを示す。
 パターン1では、スライス分割において、GスライスとAスライスとで分割数及び分割方法は同じである。タイル分割において、Gスライスに対する分割数及び分割方法とAスライスに対する分割数及び分割方法とは異なる。また、複数のGスライス間では同一の分割数及び分割方法が用いられる。複数のAスライス間では同一の分割数及び分割方法が用いられる。
 パターン2では、スライス分割において、GスライスとAスライスとで分割数及び分割方法は同じである。タイル分割において、Gスライスに対する分割数及び分割方法とAスライスに対する分割数及び分割方法とは異なる。また、複数のGスライス間で分割数及び分割方法が異なる。複数のAスライス間で分割数及び分割方法が異なる。
 次に、分割データの符号化方法について説明する。三次元データ符号化装置(第1の符号化部4910)は、分割されたデータを、それぞれ符号化する。三次元データ符号化装置は、属性情報を符号化する際に、どの構成情報(位置情報、付加情報又は他の属性情報)に基づき符号化を行ったかを示す依存関係情報を付加情報として生成する。つまり、依存関係情報は、例えば、参照先(依存先)の構成情報を示す。この場合、三次元データ符号化装置は、属性情報の分割形状に対応する構成情報に基づき依存関係情報を生成する。なお、三次元データ符号化装置は、複数の分割形状に対応する構成情報に基づき依存関係情報を生成してもよい。
 依存関係情報は三次元データ符号化装置で生成され、生成された依存関係情報が三次元データ復号装置に送出されてもよい。または、三次元データ復号装置が依存関係情報を生成し、三次元データ符号化装置は依存関係情報を送出しなくてもよい。また、三次元データ符号化装置が使用する依存関係を、予め定めておき、三次元データ符号化装置は、依存関係情報を送出しなくてもよい。
 図34は、各データの依存関係の一例を示す図である。図中の矢印の先は依存先を示し、矢印の元は依存元を示している。三次元データ復号装置は、依存先から依存元の順でデータを復号する。また、図中に実線で示すデータは実際に送出されるデータであり、点線で示すデータは送出されないデータである。
 また、同図において、Gは位置情報を示し、Aは属性情報を示す。Gs1は、スライス番号1の位置情報を示し、Gs2は、スライス番号2の位置情報を示す。Gs1t1は、スライス番号1かつタイル番号1の位置情報を示し、Gs1t2は、スライス番号1かつタイル番号2の位置情報を示し、Gs2t1は、スライス番号2かつタイル番号1の位置情報を示し、Gs2t2は、スライス番号2かつタイル番号2の位置情報を示す。同様に、As1は、スライス番号1の属性情報を示し、As2は、スライス番号2の属性情報を示す。As1t1は、スライス番号1かつタイル番号1の属性情報を示し、As1t2は、スライス番号1かつタイル番号2の属性情報を示し、As2t1は、スライス番号2かつタイル番号1の属性情報を示し、As2t2は、スライス番号2かつタイル番号2の属性情報を示す。
 Msliceは、スライス付加情報を示し、MGtileは、位置タイル付加情報を示し、MAtileは、属性タイル付加情報を示す。Ds1t1は属性情報As1t1の依存関係情報を示し、Ds2t1は属性情報As2t1の依存関係情報を示す。
 また、三次元データ符号化装置は、三次元データ復号装置においてデータを並び替える必要がないように、データを復号順に並び替えてもよい。なお、三次元データ復号装置においてデータを並び替えてもよいし、三次元データ符号化装置と三次元データ復号装置との両方でデータを並び替えてもよい。
 図35は、データの復号順の例を示す図である。図35の例では、左のデータから順に復号が行われる。三次元データ復号装置は、依存関係にあるデータ間では、依存先のデータから先に復号する。例えば、三次元データ符号化装置は、この順序となるようにデータを予め並び替えて送出する。なお、依存先のデータが先になる順序であれば、どのような順序でもよい。また、三次元データ符号化装置は、付加情報及び依存関係情報をデータより先に送出してもよい。
 図36は、三次元データ符号装置による処理の流れを示すフローチャートである。まず、三次元データ符号化装置は、上記のように複数のスライス又はタイルのデータを符号化する(S4901)。次に、三次元データ符号化装置は、図35に示すように、依存先のデータが先になるようにデータを並び替える(S4902)。次に、三次元データ符号化装置は、並び替え後のデータを多重化(NALユニット化)する(S4903)。
 次に、第1の復号部4920に含まれる結合部4925の構成を説明する。図37は、結合部4925の構成を示すブロック図である。結合部4925は、位置情報タイル結合部4941(Geometry Tile Combiner)と、属性情報タイル結合部4942(Attribute Tile Combiner)と、スライス結合部(Slice Combiner)とを含む。
 位置情報タイル結合部4941は、位置タイル付加情報を用いて複数の分割位置情報を結合することで複数のスライス位置情報を生成する。属性情報タイル結合部4942は、属性タイル付加情報を用いて複数の分割属性情報を結合することで複数のスライス属性情報を生成する。
 スライス結合部4943は、スライス付加情報を用いて複数のスライス位置情報を結合することで位置情報を生成する。また、スライス結合部4943は、スライス付加情報を用いて複数のスライス属性情報を結合することで属性情報を生成する。
 なお、分割されるスライス又はタイルの数は1以上である。つまり、スライス又はタイルの分割が行われていなくてもよい。
 また、ここでは、スライス分割後にタイル分割が行われる例を示したが、タイル分割後にスライス分割が行われてもよい。また、スライス及びタイルに加え新たな分割種別を定義し、3つ以上の分割種別で分割が行われてもよい。
 次に、スライス分割又はタイル分割された符号化データの構成、及び符号化データのNALユニットへの格納方法(多重化方法)を説明する。図38は、符号化データの構成及び符号化データのNALユニットへの格納方法を示す図である。
 符号化データ(分割位置情報及び分割属性情報)は、NALユニットのペイロードに格納される。
 符号化データは、ヘッダとペイロードとを含む。ヘッダは、ペイロードに含まれるデータを特定するための識別情報を含む。この識別情報は、例えば、スライス分割或いはタイル分割の種別(slice_type、tile_type)、スライス或いはタイルを特定するためのインデックス情報(slice_idx、tile_idx)、データ(スライス或いはタイル)の位置情報、又はデータのアドレス(address)などを含む。スライスを特定するためのインデックス情報は、スライスインデックス(SliceIndex)とも記す。タイルを特定するためのインデックス情報は、タイルインデックス(TileIndex)とも記す。また、分割の種別とは、例えば、上述したようなオブジェクト形状に基づく手法、地図情報或いは位置情報に基づく手法、又は、データ量或いは処理量に基づく手法等である。
 なお、上記の情報の全て又は一部は、分割位置情報のヘッダ及び分割属性情報のヘッダの一方に格納され、他方に格納されてなくてもよい。例えば、位置情報と属性情報とで同一の分割方法が用いられる場合には、位置情報と属性情報とで分割の種別(slice_type、tile_type)及びインデックス情報(slice_idx、tile_idx)は同一である。よって、位置情報と属性情報の一方のヘッダにこれらの情報が含まれてもよい。例えば、位置情報に属性情報が依存する場合には、位置情報が先に処理される。よって、位置情報のヘッダにこれらの情報が含まれ、属性情報のヘッダにはこれらの情報が含まれなくてもよい。この場合、三次元データ復号装置は、例えば、依存先の位置情報のスライス又はタイルと同一のスライス又はタイルに依存元の属性情報が属すると判断する。
 また、スライス分割又はタイル分割に係る付加情報(スライス付加情報、位置タイル付加情報又は属性タイル付加情報)、及び依存関係を示す依存関係情報等は、既存のパラメータセット(GPS、APS、位置SPS又は属性SPSなど)に格納されて送出されてもよい。分割方法がフレーム毎に変化する場合は、フレーム毎のパラメータセット(GPS又はAPS等)に分割方法を示す情報が格納されてもよい。シーケンス内で分割方法が変化しない場合は、シーケンス毎のパラメータセット(位置SPS又は属性SPS)に分割方法を示す情報が格納されてもよい。さらに、位置情報と属性情報とで同じ分割方法が用いられる場合は、PCCストリームのパラメータセット(ストリームPS)に分割方法を示す情報が格納されてもよい。
 また、上記の情報は、上記のいずれかのパラメータセットに格納されてもよいし、複数のパラメータセットに格納されてもよい。また、タイル分割又はスライス分割用のパラメータセットを定義し、当該パラメータセットに上記の情報を格納してもよい。また、これらの情報は、符号化データのヘッダに格納されてもよい。
 また、符号化データのヘッダは、依存関係を示す識別情報を含む。つまり、当該ヘッダは、データ間に依存関係がある場合は、依存元から依存先を参照するための識別情報を含む。例えば、依存先のデータのヘッダには、当該データを特定するための識別情報が含まれる。依存元のデータのヘッダには、依存先を示す識別情報が含まれる。なお、データを特定するための識別情報、スライス分割又はタイル分割に係る付加情報、及び依存関係を示す識別情報を、他の情報から識別可能又は導出可能である場合は、これらの情報を省略してもよい。
 次に、本実施の形態に係る点群データの符号化処理及び復号処理の流れについて説明する。図39は、本実施の形態に係る点群データの符号化処理のフローチャートである。
 まず、三次元データ符号化装置は、使用する分割方法を決定する(S4911)。この分割方法は、スライス分割を行うか否か、タイル分割を行うか否かを含む。また、分割方法は、スライス分割又はタイル分割を行う場合の分割数、及び、分割の種別等を含んでもよい。分割の種別とは、上述したようなオブジェクト形状に基づく手法、地図情報或いは位置情報に基づく手法、又は、データ量或いは処理量に基づく手法等である。なお、分割方法は、予め定められていてもよい。
 スライス分割が行われる場合(S4912でYes)、三次元データ符号化装置は、位置情報と属性情報とを一括で分割することで複数のスライス位置情報及び複数のスライス属性情報を生成する(S4913)。また、三次元データ符号化装置は、スライス分割に係るスライス付加情報を生成する。なお、三次元データ符号化装置は、位置情報と属性情報とを独立に分割してもよい。
 タイル分割が行われる場合(S4914でYes)、三次元データ符号化装置は、複数のスライス位置情報及び複数のスライス属性情報(又は位置情報及び属性情報)を独立に分割することで複数の分割位置情報及び複数の分割属性情報を生成する(S4915)。また、三次元データ符号化装置は、タイル分割に係る位置タイル付加情報及び属性タイル付加情報を生成する。なお、三次元データ符号化装置は、スライス位置情報とスライス属性情報とを一括で分割してもよい。
 次に、三次元データ符号化装置は、複数の分割位置情報及び複数の分割属性情報の各々を符号化することで、複数の符号化位置情報及び複数の符号化属性情報を生成する(S4916)。また、三次元データ符号化装置は、依存関係情報を生成する。
 次に、三次元データ符号化装置は、複数の符号化位置情報、複数の符号化属性情報及び付加情報をNALユニット化(多重化)することで符号化データ(符号化ストリーム)を生成する(S4917)。また、三次元データ符号化装置は、生成した符号化データを送出する。
 図40は、本実施の形態に係る点群データの復号処理のフローチャートである。まず、三次元データ復号装置は、符号化データ(符号化ストリーム)に含まれる、分割方法に係る付加情報(スライス付加情報、位置タイル付加情報及び属性タイル付加情報)を解析することで、分割方法を判定する(S4921)。この分割方法は、スライス分割を行うか否か、タイル分割を行うか否かを含む。また、分割方法は、スライス分割又はタイル分割を行う場合の分割数、及び、分割の種別等を含んでもよい。
 次に、三次元データ復号装置は、符号化データに含まれる複数の符号化位置情報及び複数の符号化属性情報を、符号化データに含まれる依存関係情報を用いて復号することで分割位置情報及び分割属性情報を生成する(S4922)。
 付加情報によりタイル分割が行われていることが示される場合(S4923でYes)、三次元データ復号装置は、位置タイル付加情報及び属性タイル付加情報に基づき、複数の分割位置情報と、複数の分割属性情報とを、それぞれの方法で結合することで、複数のスライス位置情報及び複数のスライス属性情報を生成する(S4924)。なお、三次元データ復号装置は、複数の分割位置情報と、複数の分割属性情報とを同一の方法で結合してもよい。
 付加情報によりスライス分割が行われていることが示される場合(S4925でYes)、三次元データ復号装置は、スライス付加情報に基づき、複数のスライス位置情報及び複数のスライス属性情報(複数の分割位置情報及び複数の分割属性情報)を同一の方法で結合することで位置情報及び属性情報を生成する(S4926)。なお、三次元データ復号装置は、複数のスライス位置情報と複数のスライス属性情報とを、それぞれ異なる方法で結合してもよい。
 以上のように、本実施の形態に係る三次元データ符号化装置は、図42に示す処理を行う。まず、三次元データ符号化装置は、複数の三次元点が含まれる対象空間が分割された複数のサブ空間(例えばスライス)に含まれ、各々が1以上の三次元点を含む複数の分割データ(例えばタイル)に分割する(S4932)。ここで、分割データは、サブ空間に含まれ、1以上の三次元点を含む1以上のデータ集合体である。また、分割データは空間でもあり、三次元点を含まない空間を含んでいてもよい。また、1つのサブ空間に複数の分割データが含まれてもよいし、1つのサブ空間に1つの分割データが含まれてもよい。なお、対象空間に複数のサブ空間が設定されてもよいし、対象空間に1つのサブ空間が設定されてもよい。
 次に、三次元データ符号化装置は、複数の分割データの各々を符号化することで、複数の分割データの各々に対応する複数の符号化データを生成する(S4931)。三次元データ符号化装置は、複数の符号化データと、複数の符号化データの各々に対する複数の制御情報(例えば図38に示すヘッダ)とを含むビットストリームを生成する(S4932)。複数の制御情報の各々には、当該制御情報に対応する符号化データに対応するサブ空間を示す第1識別子(例えばslice_idx)と、当該制御情報に対応する符号化データに対応する分割データを示す第2識別子(例えばtile_idx)とが格納される。
 これによれば、三次元データ符号化装置で生成されたビットストリームを復号する三次元データ復号装置は、第1識別子及び第2識別子を用いて、複数の分割データのデータを結合して対象空間を容易に復元できる。よって、三次元データ復号装置における処理量を低減できる。
 例えば、三次元データ符号化装置は、前記符号化では、複数の分割データの各々に含まれる三次元点の位置情報と属性情報とを符号化する。複数の符号化データの各々は、位置情報の符号化データと、属性情報の符号化データとを含む。複数の制御情報の各々は、位置情報の符号化データの制御情報と、属性情報の符号化データの制御情報とを含む。第1識別子及び第2識別子は、位置情報の符号化データの制御情報に格納される。
 例えば、ビットストリームにおいて、複数の制御情報の各々は、当該制御情報に対応する符号化データの前に配置されている。
 また、三次元データ符号化装置は、複数の三次元点が含まれる対象空間が1以上のサブ空間に設定され、前記サブ空間に1以上の三次元点を含む1以上の分割データが含まれ、前記分割データの各々を符号化することで、前記複数の分割データの各々に対応する複数の符号化データを生成し、前記複数の符号化データと、前記複数の符号化データの各々に対する複数の制御情報とを含むビットストリームを生成し、前記複数の制御情報の各々には、当該制御情報に対応する符号化データに対応するサブ空間を示す第1識別子と、当該制御情報に対応する符号化データに対応する分割データを示す第2識別子とが格納されてもよい。
 例えば、三次元データ符号化装置は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 また、本実施の形態に係る三次元データ復号装置は、図42に示す処理を行う。まず、三次元データ復号装置は、複数の三次元点が含まれる対象空間が分割された複数のサブ空間(例えばスライス)に含まれ、各々が1以上の三次元点を含む複数の分割データ(例えばタイル)の各々が符号化されることで生成された複数の符号化データと、複数の符号化データの各々に対する複数の制御情報(例えば図38に示すヘッダ)とを含むビットストリームから、前記複数の制御情報に格納されている、当該制御情報に対応する符号化データに対応するサブ空間を示す第1識別子(例えばslice_idx)と、当該制御情報に対応する符号化データに対応する分割データを示す第2識別子(例えばtile_idx)とを取得する(S4941)。次に、三次元データ復号装置は、複数の符号化データを復号することで複数の分割データを復元する(S4942)。次に、三次元データ復号装置は、第1識別子及び第2識別子を用いて、複数の分割データを結合することで対象空間を復元する(S4943)。例えば、三次元データ符号化装置は、第2識別子を用いて複数の分割データを結合することで複数のサブ空間を復元し、第1識別子を用いて複数のサブ空間を結合することで対象空間(複数の三次元点)を復元する。なお、三次元データ復号装置は、第1識別子及び第2識別子の少なくとも一方を用いて、所望のサブ空間又は分割データの符号化データをビットストリームから取得し、取得した符号化データを選択的に復号、又は優先的に復号してもよい。
 これによれば、三次元データ復号装置は、第1識別子及び第2識別子を用いて、複数の分割データのデータを結合して対象空間を容易に復元できる。よって、三次元データ復号装置における処理量を低減できる。
 例えば、複数の符号化データの各々は、対応する分割データに含まれる三次元点の位置情報と属性情報とが符号化されることで生成され、位置情報の符号化データと、属性情報の符号化データとを含む。複数の制御情報の各々は、位置情報の符号化データの制御情報と、属性情報の符号化データの制御情報とを含む。第1識別子及び第2識別子は、位置情報の符号化データの制御情報に格納されている。
 例えば、ビットストリームにおいて、制御情報は、対応する符号化データの前に配置されている。
 例えば、三次元データ復号装置は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 (実施の形態4)
 実施の形態4に係る三次元データ符号化方法では、複数の三次元点の位置情報を、当該位置情報に基づいて生成した予測木を用いて符号化する。
 図43は、実施の形態4に係る、三次元データ符号化方法に用いられる予測木の一例を示す図である。図44は、実施の形態4に係る三次元データ符号化方法の一例を示すフローチャートである。図45は、実施の形態4に係る三次元データ復号方法の一例を示すフローチャートである。
 図43及び図44に示されるように、三次元データ符号化方法においては、複数の三次元点を用いて予測木を生成し、その後、予測木の各ノードが含むノード情報を符号化する。これにより、符号化されたノード情報を含むビットストリームが得られる。各ノード情報は、例えば、予測木の1つのノードに関する情報である。各ノード情報は、例えば、1つのノードの位置情報、当該1つのノードのインデックス、当該1つのノードが有する子ノードの数、当該1つのノードの位置情報を符号化するために用いられる予測モード、及び、予測残差を含む。
 また、図43及び図45に示される様に、三次元データ復号方法においては、ビットストリームに含まれる符号化された各ノード情報を復号し、その後、予測木を生成しながら位置情報を復号する。
 次に、予測木の生成方法について、図46を用いて説明する。
 図46は、実施の形態4に係る予測木の生成方法を説明するための図である。
 予測木の生成方法では、図46の(a)に示すように、三次元データ符号化装置は、まず、予測木の初期点として点0を追加する。点0の位置情報は、(x0、y0、z0)の3つの要素を含む座標で示される。点0の位置情報は、三軸直交座標系の座標で示されてもよいし、極座標系の座標で示されてもよい。
 child_countは、当該child_countが設定されているノードに1つの子ノードが追加される度に+1される。予測木の生成完了後の各ノードのchild_countは、各ノードが有する子ノードの数を示すこととなり、ビットストリームに付加される。pred_modeは、各ノードの位置情報の値を予測するための予測モードを示す。予測モードの詳細は、後述する。
 次に、図46の(b)に示すように、三次元データ符号化装置は、点1を予測木に追加する。この際、三次元データ符号化装置は、既に予測木に追加されている点群から点1の最近傍点を探索し、その最近傍点の子ノードとして点1を追加してもよい。点1の位置情報は、(x1、y1、z1)の3つの要素を含む座標で示される。点1の位置情報は、三軸直交座標系の座標で示されてもよいし、極座標系の座標で示されてもよい。図46の場合、点0が点1の最近傍点となり、点0の子ノードとして点1が追加される。そして、三次元データ符号化装置は、点0のchild_countで示される値を1増加させる。
 なお、各ノードの位置情報の予測値は、予測木にノードを追加した際に算出されてもよい。例えば、図46の(b)の場合、三次元データ符号化装置は、点1を点0の子ノードとして追加し、点0の位置情報を予測値として算出してもよい。その場合、pred_mode=1と設定されてもよい。pred_modeは、予測モードを示す予測モード情報(予測モード値)である。また、三次元データ符号化装置は、予測値の算出後、点1のresidual_value(予測残差)を算出してもよい。ここで、residual_valueは、各ノードの位置情報からpred_modeで示される予測モードで算出された予測値を引いた差分値である。このように、三次元データ符号化方法では、位置情報そのものではなく、予測値からの差分値を符号化することで符号化効率を向上できる。
 次に、図46の(c)に示すように、三次元データ符号化装置は、点2を予測木に追加する。この際、三次元データ符号化装置は、既に予測木に追加されている点群から点2の最近傍点を探索し、その最近傍点の子ノードとして点2を追加してもよい。点2の位置情報は、(x2、y2、z2)の3つの要素を含む座標で示される。点2の位置情報は、三軸直交座標系の座標で示されてもよいし、極座標系の座標で示されてもよい。図46の場合、点1が点2の最近傍点となり、点1の子ノードとして点2が追加される。そして、三次元データ符号化装置は、点1のchild_countで示される値を1増加させる。
 次に、図46の(d)に示すように、三次元データ符号化装置は、点3を予測木に追加する。この際、三次元データ符号化装置は、既に予測木に追加されている点群から点3の最近傍点を探索し、その最近傍点の子ノードとして点3を追加してもよい。点3の位置情報は、(x3、y3、z3)の3つの要素を含む座標で示される。点3の位置情報は、三軸直交座標系の座標で示されてもよいし、極座標系の座標で示されてもよい。図46の場合、点0が点3の最近傍点となり、点0の子ノードとして点3が追加される。そして、三次元データ符号化装置は、点0のchild_countで示される値を1増加させる。
 このように、三次元データ符号化装置は、全ての点を予測木に追加し、予測木の生成を完了する。予測木の生成が完了すると、最終的にchild_count=0を有するノードが予測木のleafとなる。三次元データ符号化装置は、予測木の生成が完了後、rootのノードからdepth優先順に選択した各ノードのchild_count、pred_mode、及び、residual_valueを符号化する。つまり、三次元データ符号化装置は、depth優先順にノードを選択する場合、選択したノードの次のノードとして、当該選択したノードの1以上の子ノードのうちまだ選択されていない子ノードを選択する。三次元データ符号化装置は、選択したノードに子ノードがない場合、選択したノードの親ノードの未選択の他の子ノードを選択する。
 なお、符号化順は、depth優先順に限らずに、例えば幅優先(width first)順でも構わない。三次元データ符号化装置は、幅優先順にノードを選択する場合、選択したノードの次のノードとして、当該選択したノードと同一のdepth(階層)の1以上のノードのうちまだ選択されていないノードを選択する。三次元データ符号化装置は、選択したノードと同一のdepthのノードがない場合、次のdepthの1以上のノードのうちまだ選択されていないノードを選択する。
 なお、点0~3は、複数の三次元点の一例である。
 なお、上記の三次元データ符号化方法では、child_count、pred_mode、及び、residual_valueを、各点を予測木に追加した際に算出するとしたが、必ずしもこれに限らず、例えば、予測木の生成完了後に、それらを算出してもよい。
 複数の三次元点の三次元データ符号化装置への入力順は、入力された三次元点をMorton orderの昇順または降順に並べ替えて、その先頭の三次元点から順に処理してもよい。これにより、三次元データ符号化装置は、処理対象の三次元点の最近傍点を効率よく探索でき、符号化効率を向上できる。また、三次元データ符号化装置は、三次元点を並べ替えずに入力された順に処理してもよい。例えば、三次元データ符号化装置は、複数の三次元点の入力順に分岐の無い予測木を生成してもよい。具体的には、三次元データ符号化装置は、複数の三次元点の入力順において、入力されたの三次元点の次に入力された三次元点を所定の三次元点の子ノードとして追加してもよい。
 次に、予測モードの第1の例について、図47を用いて説明する。図47は、実施の形態4に係る予測モードの第1の例を説明するための図である。図47は、予測木の一部を示す図である。
 予測モードは、以下に示すとおり、8つ設定されてもよい。例えば、図47に示すように、点cの予測値を算出する場合を例に説明する。予測木では、点cの親ノードは点p0であり、点cの祖父ノードは点p1であり、点cの曾祖父ノードは点p2であることが示されている。なお、点c、点p0、点p1、及び、点p2は、複数の三次元点の一例である。
 予測モード値が0である予測モード(以下、予測モード0という)は、予測なしに設定されてもよい。つまり、三次元データ符号化装置は、予測モード0において、入力された点cの位置情報を、当該点cの予測値として算出してもよい。
 また、予測モード値が1である予測モード(以下、予測モード1という)は、点p0との差分予測に設定されてもよい。つまり、三次元データ符号化装置は、点cの親ノードである点p0の位置情報を、当該点cの予測値として算出してもよい。
 また、予測モード値が2である予測モード(以下、予測モード2という)は、点p0と、点p1とによる線形予測に設定されてもよい。つまり、三次元データ符号化装置は、点cの親ノードである点p0の位置情報と、点cの祖父ノードである点p1の位置情報とを用いた線形予測による予測結果を、点cの予測値として算出してもよい。具体的には、三次元データ符号化装置は、下記の式T1を用いて予測モード2における点cの予測値を算出する。
 予測値=2×p0-p1   (式T1)
 式T1において、p0は点p0の位置情報を示し、p1は点p1の位置情報を示す。
 また、予測モード値が3である予測モード(以下、予測モード3という)は、点p0、点p1及び点p2を用いたParallelogram予測に設定されてもよい。つまり、三次元データ符号化装置は、点cの親ノードである点p0の位置情報と、点cの祖父ノードである点p1の位置情報と、点cの曾祖父ノードである点p2の位置情報とを用いたParallelogram予測による予測結果を、点cの予測値として算出してもよい。具体的には、三次元データ符号化装置は、下記の式T2を用いて予測モード3における点cの予測値を算出する。
 予測値=p0+p1-p2   (式T2)
 式T2において、p0は点p0の位置情報を示し、p1は点p1の位置情報を示し、p2は点p2の位置情報を示す。
 また、予測モード値が4である予測モード(以下、予測モード4という)は、点p1との差分予測に設定されてもよい。つまり、三次元データ符号化装置は、点cの祖父ノードである点p1の位置情報を、当該点cの予測値として算出してもよい。
 また、予測モード値が5である予測モード(以下、予測モード5という)は、点p2との差分予測に設定されてもよい。つまり、三次元データ符号化装置は、点cの曾祖父ノードである点p2の位置情報を、当該点cの予測値として算出してもよい。
 また、予測モード値が6である予測モード(以下、予測モード6という)は、点p0、点p1、及び、点p2のいずれか2個以上の位置情報の平均に設定されてもよい。つまり、三次元データ符号化装置は、点cの親ノードである点p0の位置情報と、点cの祖父ノードである点p1の位置情報と、点cの曾祖父ノードである点p2の位置情報とのうちの2以上の位置情報の平均値を、点cの予測値として算出してもよい。例えば、三次元データ符号化装置は、点p0の位置情報と、点p1の位置情報とを予測値の算出に用いる場合、次の式T3を用いて予測モード6における点cの予測値を算出する。
 予測値=(p0+p1)/2   (式T3)
 式T3において、p0は点p0の位置情報を示し、p1は点p1の位置情報を示す。
 また、予測モード値が7である予測モード(以下、予測モード7という)は、点p0及び点p1の間の距離d0と、点p2及び点p1の間の距離d1とを用いた非線形予測に設定されてもよい。つまり、三次元データ符号化装置は、距離d0と、距離d1とを用いた非線形予測による予測結果を、点cの予測値として算出してもよい。
 なお、各予測モードに割当てる予測方法は、上記例に限らない。また、上記の8つの予測モードと、上記の8つの予測方法とは、上記の組み合わせでなくてもよく、どのような組み合わせであってもよい。例えば、予測モードを算術符号化などのエントロピー符号化を用いて符号化する場合、予測モード0に使用頻度が高い予測方法が割り当てられてもよい。これにより、符号化効率を向上できる。また、三次元データ符号化装置は、符号化処理を進めながら、予測モードの使用頻度に合わせて動的に予測モードの割り当てを変更することで符号化効率を向上させてもよい。三次元データ符号化装置は、例えば、符号化時の各予測モードの使用頻度をカウントし、使用頻度が高い予測方法ほどより小さい値で示される予測モードを割り当ててもよい。これにより符号化効率を向上できる。なお、Mは、予測モードの数を示す予測モード数であり、上記例の場合、予測モードは、予測モード0~7の8つあるため、M=8となる。
 三次元データ符号化装置は、三次元点の位置情報(x,y,z)の予測値(px,py,pz)として、符号化対象の三次元点の周囲の三次元点のうち、符号化対象の三次元点に距離が近い三次元点の位置情報を用いて、符号化対象の三次元点の位置情報の算出に用いる予測値を算出してもよい。また、三次元データ符号化装置は、予測モード情報(pred_mode)を三次元点毎に付加し、予測モードに応じて算出される予測値を選択できるようにしてもよい。
 例えば、総数がMの予測モードにおいて、予測モード0に最近傍点の三次元点p0の位置情報を割り当て、・・・、予測モードM-1に三次元点p2の位置情報を割り当て、予測に使用した予測モードを三次元点毎にビットストリームに付加することが考えられる。
 なお、予測モード数Mは、ビットストリームに付加されても構わない。また、予測モード数Mは、ビットストリームに付加されずに規格のprofile、level等で値が規定されても構わない。また、予測モード数Mは、予測に用いる三次元点数Nから算出された値が用いられても構わない。例えば予測モード数Mは、M=N+1により算出されても構わない。
 図48は、位置情報のヘッダのシンタックスの一例を示す図である。図48のシンタックスにおけるNumNeighborPoint、NumPredMode、Thfix、QP、及び、unique_point_per_leafについて順に説明する。
 NumNeighborPointは、三次元点の位置情報の予測値の生成に用いる周囲の点数の上限値を示す。周囲の点数MがNumNeighborPointに満たない場合(M<NumNeighborPoint)、予測値の算出処理では、M個の周囲の点数を用いて予測値が算出されてもよい。
 NumPredModeは、位置情報の予測に用いる予測モードの総数Mを示す。なお、予測モード数の取りうる値の最大値MaxMは、規格等で値が規定されてもよい。三次元データ符号化装置は、(MaxM-M)の値(0<M<=MaxM)をNumPredModeとしてヘッダに付加し、(MaxM-1)をtruncated unary codeで二値化して符号化しても構わない。また、予測モード数NumPredModeは、ビットストリームに付加されなくてもよく、規格等のprofileまたはlevelで値が規定されても構わない。また、予測モード数は、NumNeighborPoint+NumPredModeで規定されても構わない。
 Thfixは、予測モードを固定するか否かを判定するための閾値である。予測に用いる点p1及び点p0の間の距離d0と、点p2及び点p1の間の距離d1とを算出し、その差分絶対値distdiff=|d0-d1|が閾値Thfix[i]より小さければ予測モードがαに固定される。αは、予測モードが線形予測を用いた予測値を算出するための予測モードであり、上記実施の形態では「2」である。なお、Thfixはビットストリームに付加されなくてもよく、規格等のprofileまたはlevelで値が規定されても構わない。
 QPは、位置情報を量子化する際に用いる量子化パラメータを示す。三次元データ符号化装置は、量子化パラメータから量子化ステップを算出し、算出した量子化ステップを用いて位置情報を量子化してもよい。
 unique_point_per_leafは、ビットストリーム内にduplicated point(位置情報が同じ点)が含まれるか否かを示す情報である。unique_point_per_leaf=1であることは、ビットストリーム内にduplicated pointがないことを示す。unique_point_per_leaf=0であることは、ビットストリーム内にduplicated pointが1つ以上存在することを示す。
 なお、本実施の形態では、予測モードを固定するか否かの判断は、距離d0と距離d1との差分絶対値を用いて行われるとしたが、必ずしもこれに限らず、どのような方法で判断しても構わない。例えば、この判断は、点p1及び点p0の間の距離d0を算出し、距離d0が閾値よりも大きい場合、点p1は予測に使えないと判定し、予測モード値を「1」(予測値p0)に固定し、そうでなければ、予測モードを設定するようにしても構わない。これにより、オーバーヘッドを抑えつつ、符号化効率を向上できる。
 上記NumNeighborPoint、NumPredMode、Thfix、unique_point_per_leafは、エントロピー符号化されてヘッダに付加されてもよい。例えば各値は、二値化されて算出符号化されてもよい。また、各値は、処理量を抑えるために固定長で符号化されても構わない。
 図49は、位置情報のシンタックスの一例を示す図である。図49のシンタックスにおけるNumOfPoint、child_count、pred_mode、及び、residual_value[j]について順に説明する。
 NumOfPointは、ビットストリームに含まれる三次元点の総数を示す。
 child_countは、i番目の三次元点(node[i])が持つ子ノードの数を示す。
 pred_modeは、i番目の三次元点の位置情報を符号化又は復号するための予測モードを示す。pred_modeは、値0からM-1(Mは予測モードの総数)までの値をとる。pred_modeがビットストリームにない場合(条件であるdistdiff >= Thfix[i] &&NumPredMode > 1を満たさない場合)、pred_modeは、固定値αと推定されてもよい。αは、予測モードが線形予測を用いた予測値を算出するための予測モードであり、上記実施の形態では「2」である。なお、αは、「2」に限らずに0からM-1までのいずれかの値が推定値として設定されてもよい。また、pred_modeがビットストリームにない場合の推定値は、別途ヘッダ等に付加されても構わない。また、pred_modeは予測値が割当たった予測モード数を用いてtruncated unary codeで二値化して算術符号化されてもよい。
 なお、NumPredMode=1である場合、つまり、予測モード数が1である場合、三次元データ符号化装置は、予測モードを示す予測モード値を符号化せずに、予測モード値を含まないビットストリームを生成してもよい。また、三次元データ復号装置は、予測モード値を含まないビットストリームを取得した場合、予測値の算出において、特定の予測モードの予測値を算出してもよい。特定の予測モードは、予め定められた予測モードである。
 residual_value[j]は、位置情報の予測値との間の予測残差の符号化データを示す。residual_value[0]は、位置情報の要素xを示し、residual_value[1]が位置情報の要素yを示し、residual_value[2]が位置情報の要素zを示してもよい。
 図50は、位置情報のシンタックスの他の一例を示す図である。図50の例は、図49の例の変形例である。
 pred_modeは、図50に示すように、位置情報(x、y、z)の3つの要素毎の予測モードを示していてもよい。つまり、pred_mode[0]は、要素xの予測モードを示し、pred_mode[1]は要素yの予測モードを示し、pred_mode[2]は要素zの予測モードを示す。pred_mode[0]、pred_mode[1]、及び、pred_mode[2]は、ビットストリームに付加されてもよい。
 以上のように、本実施の形態の一態様に係る三次元データ符号化装置は、図51に示す処理を行う。三次元データ符号化装置は、階層構造を有する複数の三次元点を符号化する三次元データ符号化方法を実行する。三次元データ符号化装置は、第1三次元点の周囲の1以上の第2三次元点の第2位置情報を用いて、前記第1三次元点の第1位置情報の予測値を算出するための2以上の予測モードのうちの1つの予測モードを設定する(S9781)。次に、三次元データ符号化装置は、設定された前記予測モードの予測値を算出する(S9782)。次に、三次元データ符号化装置は、前記第1位置情報と、算出された前記予測値との差分である予測残差を算出する(S9783)。次に、三次元データ符号化装置は、前記設定された予測モードと前記予測残差とを含む第1ビットストリームを生成する(S9784)。前記設定(S9781)では、前記第1三次元点の前記階層構造の深さに基づいて、前記予測モードを設定する。
 これによれば、2以上の予測モードのうちで、階層構造の深さに基づいて設定された1つの予測モードの予測値を用いて位置情報を符号化できるため、位置情報の符号化効率を向上させることができる。
 例えば、三次元データ符号化装置は、前記設定(S9784)では、前記第1三次元点の前記階層構造の深さの値以下の、予測モード値を設定する。前記予測モード値は、前記予測モードを示す。
 例えば、前記第1ビットストリームは、さらに、前記2以上の予測モードの数を示す予測モード数を含む。
 例えば、三次元データ符号化装置は、前記生成(S9784)では、設定された前記予測モードを示す予測モード値を、前記予測モード数を用いて符号化する。前記第1ビットストリームは、符号化された前記予測モード値を、前記設定された予測モードとして含む。
 例えば、前記生成(S9784)では、前記予測モード数を最大値としたtruncated unary codeで前記予測モード値を符号化する。このため、予測モード値の符号量を低減することができる。
 例えば、前記第1位置情報、及び、前記第2位置情報のそれぞれは、3つの要素を含む。三次元データ符号化装置は、前記設定(S9781)では、前記第1位置情報が含む3つの要素の各要素の予測値を算出するための前記1つの予測モードとして、前記3つの要素について共通した予測モードを設定する。このため、予測モード値の符号量を低減することができる。
 例えば、前記第1位置情報、及び、前記第2位置情報のそれぞれは、3つの要素を含む。三次元データ符号化装置は、前記設定では、前記第1位置情報が含む3つの要素の各要素の予測値を算出するための前記1つの予測モードとして、前記3つの要素それぞれについて独立した予測モードを設定する。このため、三次元データ復号装置は、各要素を独立して復号することができる。
 例えば、前記第1位置情報、及び、前記第2位置情報のそれぞれは、3つの要素を含む。三次元データ符号化装置は、前記設定では、前記第1位置情報が含む3つの要素の各要素の予測値を算出するための前記1つの予測モードとして、前記3つの要素のうちの2つの要素について共通した予測モードを設定し、残りの1つの要素について前記2つの要素とは独立した予測モードを設定する。このため、2つの要素についての予測モード値の符号量を低減することができる。また、三次元データ復号装置は、残りの1つの要素を独立して復号することができる。
 例えば、三次元データ符号化装置は、前記生成では、前記予測モード数が1である場合、前記予測モードを示す予測モード値を符号化せずに、前記予測モード値を含まない第2ビットストリームを生成する。このため、ビットストリームの符号量を低減することができる。
 例えば、三次元データ符号化装置は、前記生成では、前記算出において算出される予測値が0となる予測モードが設定されている場合、前記予測残差が正であるか負であるかを示す正負情報を符号化せずに、前記正負情報を含まない第3ビットストリームを生成する。このため、ビットストリームの符号量を低減することができる。
 例えば、三次元データ符号化装置は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 また、本実施の形態の一態様に係る三次元データ復号装置は、図52に示す処理を行う。三次元データ復号装置は、階層構造を有する複数の三次元点を復号する三次元データ復号方法を実行する。三次元データ復号装置は、符号化された前記複数の三次元点のうちの第1三次元点の予測モード、及び、符号化された予測残差を含む第1ビットストリームを取得する(S9791)。次に、三次元データ復号装置は、前記符号化された予測モードを示す予測モード値、及び、前記符号化された予測残差を復号する(S9792)。次に、三次元データ復号装置は、復号することで得られた前記予測モード値で示される予測モードの予測値を算出する(S9793)。次に、三次元データ復号装置は、前記予測値と、復号することで得られた予測残差とを加算することで、前記第1三次元点の第1位置情報を算出する(S9794)。前記第1ビットストリームに含まれる、符号化された前記予測モードは、前記第1三次元点の前記階層構造の深さに基づいて設定された予測モードである。
 これによれば、2以上の予測モードのうちで、階層構造の深さに基づいて設定された1つの予測モードの予測値を用いて符号化された位置情報を適切に復号することができる。
 例えば、前記第1ビットストリームに含まれる、符号化された予測モードを示す予測モード値は、前記第1三次元点の前記階層構造の深さの値以下である。
 例えば、前記第1ビットストリームは、前記2以上の予測モードの数を示す予測モード数を含む。
 例えば、三次元データ復号装置は、前記復号(S9792)では、前記予測モード数を最大値としたtruncated unary codeで前記符号化された予測モード値を復号する。
 例えば、前記第1位置情報、及び、前記第1三次元点の周囲の1以上の第2三次元点の第2位置情報のそれぞれは、3つの要素を含む。前記予測モードは、前記第1位置情報が含む3つの要素の各要素の予測値を算出するために用いられ、前記3つの要素について共通して設定されている。
 例えば、前記第1位置情報、及び、前記第1三次元点の周囲の1以上の第2三次元点の第2位置情報のそれぞれは、3つの要素を含む。前記予測モードは、前記第1位置情報が含む3つの要素の各要素の予測値を算出するために用いられ、前記3つの要素それぞれについて独立して設定されている。
 例えば、前記第1位置情報、及び、前記第1三次元点の周囲の1以上の第2三次元点の第2位置情報のそれぞれは、3つの要素を含む。前記予測モードは、前記第1位置情報が含む3つの要素の各要素の予測値を算出するために用いられ、前記3つの要素のうちの2つの要素について共通して設定されており、かつ、残りの1つの要素について前記2つの要素とは独立して設定されている。
 例えば、三次元データ復号装置は、前記取得(S9791)において、前記予測モード値を含まない第2ビットストリームを取得した場合、前記予測値の算出では、特定の予測モードの予測値を算出する。
 例えば、三次元データ復号装置は、前記取得(S9791)において、前記予測残差が正であるか負であるかを示す正負情報を含まない第3ビットストリームを取得した場合、前記第1位置情報の算出(S9794)では、前記予測残差を0又は正の数として扱う。
 例えば、三次元データ復号装置は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 (実施の形態5)
 点群データをタイルおよびスライスに分割し、分割データを効率的に符号化または復号するには、符号化側および復号側で適切に制御する必要がある。分割データの符号化および復号を分割データ間で依存関係がなく独立にすることで、マルチスレッドまたはマルチコアプロセッサを用いて、それぞれのスレッド/コアにおいて分割データを並行に処理でき、パフォーマンスが向上する。
 点群データをタイルおよびスライスに分割する方法は様々な方法があり、例えば、路面などの点群データの対象物の属性や、点群データの緑などの色情報などの特性に基づき分割する方法がある。
 CABACは、Context-Based Adaptive Binary Arithmetic Codingの略で、コンテキスト(入力される2値シンボルの生起確率を推定するモデル)を符号化済みの情報に基づき順次更新することで確率の精度を高め、高い圧縮率の算術符号化(エントロピ符号化)を実現する符号化方法である。
 タイルまたはスライスのような分割データを並行処理するためには、それぞれの分割データを独立に符号化または復号できる必要がある。しかし、分割データ間でCABACを独立にするためには、符号化および復号において、分割データの先頭でCABACを初期化する必要があるが、その仕組みがない。
 CABACABAC初期化フラグは、CABAC符号化および復号においてCABACを初期化するために用いられる。
 図53は、符号化または復号において、CABAC初期化フラグに応じて、CABACCABACの初期化の処理を示すフローチャートである。
 三次元データ符号化装置または三次元データ復号装置は、符号化または復号において、CABAC初期化フラグが1であるか否かを判定する(S5201)。
 三次元データ符号化装置または三次元データ復号装置は、CABAC初期化フラグが1である場合(S5201でYes)、デフォルト状態にCABAC符号化部/復号部を初期化し(S5202)、符号化または復号を継続する。
 三次元データ符号化装置または三次元データ復号装置は、CABAC初期化フラグが1でない場合(S5201でNo)、初期化せずに符号化または復号を継続する。
 つまり、CABACを初期化する場合、CABAC_init_flag=1とし、CABACの符号化部、あるいはCABACの復号部を初期化あるいは再初期化する。なお、初期化する場合、CABAC処理に用いるコンテキストの初期値(デフォルト状態)を設定する。
 符号化処理について説明する。図54は、本実施の形態に係る三次元データ符号化装置に含まれる第1の符号化部5200の構成を示すブロック図である。図55は、本実施の形態に係る分割部5201の構成を示すブロック図である。図56は、本実施の形態に係る位置情報符号化部5202および属性情報符号化部5203の構成を示すブロック図である。
 第1の符号化部5200は、点群データを第1の符号化方法(GPCC((Geometry based PCC))で符号化することで符号化データ(符号化ストリーム)を生成する。この第1の符号化部5200は、分割部5201と、複数の位置情報符号化部5202と、複数の属性情報符号化部5203と、付加情報符号化部5204と、多重化部5205とを含む。
 分割部5201は、点群データを分割することで複数の分割データを生成する。具体的には、分割部5201は、点群データの空間を複数のサブ空間に分割することで複数の分割データを生成する。ここでサブ空間とは、タイル及びスライスの一方、又はタイル及びスライスの組み合わせである。より具体的には、点群データは、位置情報、属性情報、及び付加情報を含む。分割部5201は、位置情報を複数の分割位置情報に分割し、属性情報を複数の分割属性情報に分割する。また、分割部5201は、分割に関する付加情報を生成する。
 分割部5201は、図55に示すように、タイル分割部5211と、スライス分割部5212とを含む。例えば、タイル分割部5211は、点群をタイルに分割する。タイル分割部5211は、分割した各タイルに用いる量子化値をタイル付加情報として決定してもよい。
 スライス分割部5212は、タイル分割部5211により得られたタイルを、さらにスライスに分割する。スライス分割部5212は、分割した各スライスに用いる量子化値をスライス付加情報として決定してもよい。
 複数の位置情報符号化部5202は、複数の分割位置情報を符号化することで複数の符号化位置情報を生成する。例えば、複数の位置情報符号化部5202は、複数の分割位置情報を並列処理する。
 位置情報符号化部5202は、図56に示すように、CABAC初期化部5221と、エントロピ符号化部5222とを含む。CABAC初期化部5221は、CABAC初期化フラグに応じてCABACを初期化または再初期化する。エントロピ符号化部5222は、分割位置情報をCABACにより符号化する。
 複数の属性情報符号化部5203は、複数の分割属性情報を符号化することで複数の符号化属性情報を生成する。例えば、複数の属性情報符号化部5203は、複数の分割属性情報を並列処理する。
 属性情報符号化部5203は、図56に示すように、CABAC初期化部5231と、エントロピ符号化部5232とを含む。CABAC初期化部5221は、CABAC初期化フラグに応じてCABACを初期化または再初期化する。エントロピ符号化部5232は、分割属性情報をCABACにより符号化する。
 付加情報符号化部5204は、点群データに含まれる付加情報と、分割部5201で分割時に生成された、データ分割に関する付加情報とを符号化することで符号化付加情報を生成する。
 多重化部5205は、複数の符号化位置情報、複数の符号化属性情報及び符号化付加情報を多重化することで符号化データ(符号化ストリーム)を生成し、生成した符号化データを送出する。また、符号化付加情報は復号時に使用される。
 なお、図54では、位置情報符号化部5202及び属性情報符号化部5203の数がそれぞれ2つの例を示しているが、位置情報符号化部5202及び属性情報符号化部5203の数は、それぞれ1つであってもよいし、3つ以上であってもよい。また、複数の分割データは、CPU内の複数コアのように同一チップ内で並列処理されてもよいし、複数のチップのコアで並列処理されてもよいし、複数チップの複数コアで並列処理されてもよい。
 次に、復号処理について説明する。図57は、第1の復号部5240の構成を示すブロック図である。図58は、位置情報復号部5242および属性情報復号部5243の構成を示すブロック図である。
 第1の復号部5240は、点群データが第1の符号化方法(GPCC)で符号化されることで生成された符号化データ(符号化ストリーム)を復号することで点群データを復元する。この第1の復号部5240は、逆多重化部5241と、複数の位置情報復号部5242と、複数の属性情報復号部5243と、付加情報復号部5244と、結合部5245とを含む。
 逆多重化部5241は、符号化データ(符号化ストリーム)を逆多重化することで複数の符号化位置情報、複数の符号化属性情報及び符号化付加情報を生成する。
 複数の位置情報復号部5242は、複数の符号化位置情報を復号することで複数の量子化位置情報を生成する。例えば、複数の位置情報復号部5242は、複数の符号化位置情報を並列処理する。
 位置情報復号部5242は、図58に示すように、CABAC初期化部5251と、エントロピ復号部5252を含む。CABAC初期化部5251は、CABAC初期化フラグに応じてCABACを初期化または再初期化する。エントロピ復号部5252は、位置情報をCABACにより復号する。
 複数の属性情報復号部5243は、複数の符号化属性情報を復号することで複数の分割属性情報を生成する。例えば、複数の属性情報復号部5243は、複数の符号化属性情報を並列処理する。
 属性情報復号部5243は、図58に示すように、CABAC初期化部5261と、エントロピ復号部5262とを含む。CABAC初期化部5261は、CABAC初期化フラグに応じてCABACを初期化または再初期化する。エントロピ復号部5262は、属性情報をCABACにより復号する。
 複数の付加情報復号部5244は、符号化付加情報を復号することで付加情報を生成する。
 結合部5245は、付加情報を用いて複数の分割位置情報を結合することで位置情報を生成する。結合部5245は、付加情報を用いて複数の分割属性情報を結合することで属性情報を生成する。例えば、結合部5245は、まず、スライス付加情報を用いて、スライスに対する復号された点群データを結合することでタイルに対応する点群データを生成する。次に、結合部5245は、タイル付加情報を用いて、タイルに対応する点群データを結合することで元の点群データを復元する。
 なお、図57では、位置情報復号部5242及び属性情報復号部5243の数がそれぞれ2つの例を示しているが、位置情報復号部5242及び属性情報復号部5243の数は、それぞれ1つであってもよし、3つ以上であってもよい。また、複数の分割データは、CPU内の複数コアのように同一チップ内で並列処理されてもよいし、複数のチップのコアで並列処理されてもよい、複数チップの複数コアで並列処理されてもよい。
 図59は、位置情報の符号化あるいは属性情報の符号化におけるCABACの初期化に関する処理の一例を示すフローチャートである。
 まず、三次元データ符号化装置は、スライス毎に、所定の条件に基づき、当該スライスの位置情報の符号化でCABAC初期化をするか否かを判定する(S5201)。
 三次元データ符号化装置は、CABAC初期化すると判断した場合(S5202でYes)、位置情報の符号化に用いるコンテキスト初期値を決定する(S5203)。コンテキスト初期値は、符号化特性を考慮した初期値に設定される。初期値は、あらかじめ定められた値としても良いし、スライス内のデータの特性に応じて適応的に決定されてもよい。
 次に、三次元データ符号化装置は、位置情報のCABAC初期化フラグを1に設定し、コンテキスト初期値を設定する(S5204)。CABAC初期化する場合、位置情報の符号化において、コンテキスト初期値を用いて初期化処理が実行される。
 一方で、三次元データ符号化装置は、CABAC初期化しないと判断した場合(S5202でNo)、位置情報のCABAC初期化フラグを0に設定する(S5205)。
 次に、三次元データ符号化装置は、スライス毎に、所定の条件に基づき、当該スライスの属性情報の符号化でCABAC初期化をするか否かを判定する(S5206)。
 三次元データ符号化装置は、CABAC初期化すると判断した場合(S5207でYes)、属性情報の符号化に用いるコンテキスト初期値を決定する(S5208)。コンテキスト初期値は、符号化特性を考慮した初期値に設定される。初期値は、あらかじめ定められた値としても良いし、スライス内のデータの特性に応じて適応的に決定されてもよい。
 次に、三次元データ符号化装置は、属性情報のCABAC初期化フラグを1に設定し、コンテキスト初期値を設定する(S5209)。CABAC初期化する場合、属性情報の符号化において、コンテキスト初期値を用いて初期化処理が実行される。
 一方で、三次元データ符号化装置は、CABAC初期化しないと判断した場合(S5207でNo)、属性情報のCABAC初期化フラグを0に設定する(S5210)。
 なお、図59におけるフローチャートにおいて、位置情報に係る処理と属性情報に係る処理との処理順は反対でも良いし、並列でもよい。
 なお、図59におけるフローチャートでは、スライス単位の処理を例にしているが、タイル単位や、その他のデータ単位での処理の場合もスライス単位と同様に処理することができる。つまり、図59のフローチャートのスライスは、タイルまたは他のデータ単位と読み替えることができる。
 また、所定の条件は、位置情報と属性情報とで同一条件であってもよいし、異なる条件であってもよい。
 図60は、ビットストリームとした点群データにおいてCABAC初期化のタイミングの一例を示す図である。
 点群データは、位置情報と0以上の属性情報とを含む。すなわち、点群データは、属性情報を持たない場合もあれば、複数の属性情報を持つ場合もある。
 例えば、1つの三次元点に対して、属性情報として、色情報を持つ場合、色情報と反射情報とを持つ場合、1以上の視点情報にそれぞれ紐づく1以上の色情報を持つ場合などがある。
 いずれの構成の場合にも、本実施形態で説明する方法を適用可能である。
 次に、CABACの初期化の判定条件について説明する。
 以下の条件を満たす場合、位置情報あるいは属性情報の符号化におけるCABACを初期化するとしてもよい。
 例えば、位置情報あるいは属性情報(複数あればそれぞれの属性情報)の先頭データでCABACを初期化してもよい。例えば、単独で復号可能なPCCフレームを構成するデータの先頭でCABACを初期化してもよい。つまり、図60の(a)に示すように、PCCフレームがフレーム単位で復号可能であれば、PCCフレームの先頭データでCABACを初期化してもよい。
 また、例えば、図60の(b)に示すように、PCCフレーム間でインター予想を用いている場合などフレームで単独で復号できない場合は、ランダムアクセス単位(例えばGOF)の先頭データでCABACを初期化してもよい。
 また、例えば、図60の(c)に示すように、1以上に分割されたスライスデータの先頭や、1以上に分割されたタイルデータの先頭、その他の分割データの先頭でCABACを初期化してもよい。
 図60の(c)は、タイルを例に示すが、スライスの場合も同様である。タイルまたはスライスの先頭では、必ず初期化するとしてもよいし、必ずしも初期化しなくてもよい。
 図61は、符号化データの構成及び符号化データのNALユニットへの格納方法を示す図である。
 初期化情報は、符号化データのヘッダに格納されてもよいし、メタデータに格納されても良い。また、初期化情報は、ヘッダとメタデータとの両方に格納されてもよい。初期化情報は、例えば、caba_init_flag、CABAC初期値、または、初期値を特定できるテーブルのインデックスである。
 本実施の形態でメタデータに格納すると説明している部分は符号化データのヘッダに格納すると読み替えても良いし、逆も同様である。
 初期化情報は、符号化データのヘッダに格納される場合、例えば、符号化データにおける最初のNALユニットに格納されてもよい。位置情報には、位置情報の符号化の初期化情報を格納し、属性情報には、属性情報の符号化の初期化情報を格納する。
 属性情報の符号化のcabac_init_flagと、位置情報の符号化のcabac_init_flagとは、同じ値にしてもよいし、異なる値にしてもよい。同じ値にする場合には、位置情報と属性情報とのcabac_init_flagを共通にしてもよい。また、異なる値にする場合は、位置情報と属性情報とのcabac_init_flagは、それぞれ異なる値を示す。
 初期化情報は、位置情報と属性情報とで共通のメタデータに格納されてもよいし、位置情報の個別のメタデータ、および、属性情報の個別のメタデータの少なくとも一方に格納されてもよいし、共通のメタデータと個別のメタデータとの両方に格納されてもよい。また、位置情報の個別のメタデータ、属性情報の個別のメタデータ、および、共通のメタデータのいずれかに記載されているか否かを示すフラグを用いても良い。
 図62は、位置情報の復号あるいは属性情報の復号におけるCABACの初期化に関する処理の一例を示すフローチャートである。
 三次元データ復号装置は、符号化データを解析し、位置情報のCABAC初期化フラグと、属性情報のCABAC初期化フラグと、コンテキスト初期値とを取得する(S5211)。
 次に、三次元データ復号装置は、位置情報のCABAC初期化フラグが1であるか否かを判定する(S5212)。
 三次元データ復号装置は、位置情報のCABAC初期化フラグが1である場合(S5212でYes)、位置情報符号化のコンテキスト初期値を用いて、位置情報符号化のCABAC復号を初期化する(S5213)。
 一方で、三次元データ復号装置は、位置情報のCABAC初期化フラグが0である場合(S5212でNo)、位置情報符号化においてCABAC復号を初期化しない(S5214)。
 次に、三次元データ復号装置は、属性情報のCABAC初期化フラグが1であるか否かを判定する(S5215)。
 三次元データ復号装置は、属性情報のCABAC初期化フラグが1である場合(S5215でYes)、属性情報符号化のコンテキスト初期値を用いて、属性情報符号化のCABAC復号を初期化する(S5216)。
 一方で、三次元データ復号装置は、属性情報のCABAC初期化フラグが0である場合(S5215でNo)、属性情報符号化においてCABAC復号を初期化しない(S5217)。
 なお、図62におけるフローチャートにおいて、位置情報係る処理と属性情報に係る処理との処理順は反対でも良いし、並列でもよい。
 なお、図62におけるフローチャートは、スライス分割の場合、タイル分割の場合、いずれにも適用可能である。
 次に、本実施の形態に係る点群データの符号化処理及び復号処理の流れについて説明する。図63は、本実施の形態に係る点群データの符号化処理のフローチャートである。
 まず、三次元データ符号化装置は、使用する分割方法を決定する(S5221)。この分割方法は、タイル分割を行うか否か、スライス分割を行うか否かを含む。また、分割方法は、タイル分割又はスライス分割を行う場合の分割数、及び、分割の種別等を含んでもよい。分割の種別とは、上述したようなオブジェクト形状に基づく手法、地図情報或いは位置情報に基づく手法、又は、データ量或いは処理量に基づく手法等である。なお、分割方法は、予め定められていてもよい。
 タイル分割が行われる場合(S5222でYes)、三次元データ符号化装置は、位置情報と属性情報とをタイル単位で分割することで複数のタイル位置情報及び複数のタイル属性情報を生成する(S5223)。また、三次元データ符号化装置は、タイル分割に係るタイル付加情報を生成する。
 スライス分割が行われる場合(S5224でYes)、三次元データ符号化装置は、複数のタイル位置情報及び複数のタイル属性情報(又は位置情報及び属性情報)を分割することで複数の分割位置情報及び複数の分割属性情報を生成する(S5225)。また、三次元データ符号化装置は、スライス分割に係る位置スライス付加情報及び属性スライス付加情報を生成する。
 次に、三次元データ符号化装置は、複数の分割位置情報及び複数の分割属性情報の各々を符号化することで、複数の符号化位置情報及び複数の符号化属性情報を生成する(S5226)。また、三次元データ符号化装置は、依存関係情報を生成する。
 次に、三次元データ符号化装置は、複数の符号化位置情報、複数の符号化属性情報及び付加情報をNALユニット化(多重化)することで符号化データ(符号化ストリーム)を生成する(S5227)。また、三次元データ符号化装置は、生成した符号化データを送出する。
 図64は、タイルの分割(S5222)またはスライスの分割(S5225)において、CABAC初期化フラグの値を決定し、付加情報を更新する処理の一例を示すフローチャートである。
 ステップS5222、S5225では、タイルおよび/またはスライスの位置情報および属性情報は、それぞれの方法で独立して個別に分割してもよいし、共通して一括で分割してもよい。これにより、タイル毎および/またはスライス毎に分割された付加情報が生成される。
 このとき、三次元データ符号化装置は、CABAC初期化フラグを1に設定するか0にするかを決定する(S5231)。
 そして、三次元データ符号化装置は、決定したCABAC初期化フラグが含まれるように付加情報を更新する(S5232)。
 図65は、符号化(S5226)の処理において、CABAC初期化する処理の一例を示すフローチャートである。
 三次元データ符号化装置は、CABAC初期化フラグが1であるか否かを判定する(S5241)。
 三次元データ符号化装置は、CABAC初期化フラグが1である場合(S5241でYes)、デフォルト状態にCABAC符号化部を再初期化する(S5242)。
 そして、三次元データ符号化装置は、符号化処理の停止条件が満たされるまで、例えば、符号化対象のデータがなくなるまで、符号化処理を継続する(S5243)。
 図66は、本実施の形態に係る点群データの復号処理のフローチャートである。まず、三次元データ復号装置は、符号化データ(符号化ストリーム)に含まれる、分割方法に係る付加情報(タイル付加情報、位置スライス付加情報及び属性スライス付加情報)を解析することで、分割方法を判定する(S5251)。この分割方法は、タイル分割を行うか否か、スライス分割を行うか否かを含む。また、分割方法は、タイル分割又はスライス分割を行う場合の分割数、及び、分割の種別等を含んでもよい。
 次に、三次元データ復号装置は、符号化データに含まれる複数の符号化位置情報及び複数の符号化属性情報を、符号化データに含まれる依存関係情報を用いて復号することで分割位置情報及び分割属性情報を生成する(S5252)。
 付加情報によりスライス分割が行われていることが示される場合(S5253でYes)、三次元データ復号装置は、位置スライス付加情報及び属性スライス付加情報に基づき、複数の分割位置情報と、複数の分割属性情報とを結合することで、複数のタイル位置情報及び複数のタイル属性情報を生成する(S5254)。
 付加情報によりタイル分割が行われていることが示される場合(S5255でYes)、三次元データ復号装置は、タイル付加情報に基づき、複数のタイル位置情報及び複数のタイル属性情報(複数の分割位置情報及び複数の分割属性情報)を結合することで位置情報及び属性情報を生成する(S5256)。
 図67は、スライス毎に分割された情報の結合(S5254)またはタイル毎に分割された情報の結合(S5256)において、CABAC復号部を初期化する処理の一例を示すフローチャートである。
 スライスまたはタイルの位置情報および属性情報は、それぞれの方法を用いて結合してもよいし、同一の方法で結合してもよい。
 三次元データ復号装置は、符号化ストリームの付加情報から、CABAC初期化フラグを復号する(S5261)。
 次に、三次元データ復号装置は、CABAC初期化フラグが1であるか否かを判定する(S5262)。
 三次元データ復号装置は、CABAC初期化フラグが1である場合(S5262でYes)、デフォルト状態にCABAC復号部を再初期化する(S5263)。
 一方で、三次元データ復号装置は、CABAC初期化フラグが1でない場合(S5262でNo)、CABAC復号部を再初期化せずにステップS5264に進む。
 そして、三次元データ復号装置は、復号処理の停止条件が満たされるまで、例えば、復号対象のデータがなくなるまで、復号処理を継続する(S5264)。
 次に、CABAC初期化のその他の判定条件について説明する。
 位置情報の符号化あるいは属性情報の符号化を初期化するか否かは、タイルあるいはスライスなどのデータ単位の符号化効率を考慮して判定してもよい。この場合、所定の条件を満たすタイルあるいはスライスの先頭データにおいてCABACを初期化してもよい。
 次に、位置情報の符号化におけるCABAC初期化の判定条件について説明する。
 三次元データ符号化装置は、例えば、スライス毎に、点群データの密度、つまり、スライスに属する単位領域あたりの点の数を判定し、他のスライスのデータ密度と当該スライスのデータ密度とを比較し、データ密度の変化が所定の条件を超えない場合には、CABAC初期化しないほうが符号化効率が良いと判断し、CABAC初期化しないと判断してもよい。一方、三次元データ符号化装置は、データ密度の変化が所定の条件を満たさない場合、初期化したほうが符号化効率が良いと判断し、CABAC初期化すると判断してもよい。
 ここで、他のスライスとは、例えば、復号処理順で1つ前のスライスであってもよいし、空間的に隣接するスライスであってもよい。また、三次元データ符号化装置は、他のスライスのデータ密度と比較しなくても、当該スライスのデータ密度が所定のデータ密度であるか否かに応じて、CABAC初期化するか否かを判定してもよい。
 三次元データ符号化装置は、CABAC初期化すると判定した場合には、位置情報の符号化に用いるコンテキスト初期値を決定する。コンテキスト初期値は、データ密度に応じた符号化特性のよい初期値に設定される。三次元データ符号化装置は、あらかじめデータ密度に対する初期値テーブルを保持し、テーブルの中から最適な初期値を選択してもよい。
 なお、三次元データ符号化装置は、スライスの密度の例に限らず、点の数や、点の分布、点の偏り等に基づいて、CABAC初期化するか否かを判定してもよい。あるいは、三次元データ符号化装置は、点の情報から得られる特徴量や特徴点の数、あるいは認識されるオブジェクトに基づき、CABAC初期化するか否かを判定してもよい。その場合、判定基準は、予め、点の情報から得られる特徴量もしくは特徴点の数、または、点の情報に基づいて認識されるオブジェクトと対応付けられているテーブルとしてメモリに保持されていてもよい。
 三次元データ符号化装置は、例えば、地図情報の位置情報におけるオブジェクトを判定し、位置情報に基づくオブジェクトに基づき、CABAC初期化するか否かを判定してもよいし、三次元データを二次元に投影した情報あるいは特徴量に基づきCABAC初期化するか否かを判定してもよい。
 次に、属性情報の符号化におけるCABAC初期化の判定条件について説明する。
 三次元データ符号化装置は、例えば、1つ前のスライスの色の特性と当該スライスの色の特性とを比較し、色の特性の変化が所定の条件を満たす場合は、CABAC初期化しないほうが符号化効率が良いと判断し、CABAC初期化しないと判断してもよい。一方、三次元データ符号化装置は、色の特性の変化が所定の条件を満たさない場合は、CABAC初期化したほうが符号化効率が良いと判断し初期化すると判断してもよい。色の特性とは、例えば、輝度、色度、彩度、これらのヒストグラム、色の連続性などである。
 ここで、他のスライスとは、例えば、復号処理順で1つ前のスライスであってもよいし、空間的に隣接するスライスであってもよい。また、三次元データ符号化装置は、他のスライスのデータ密度と比較しなくても、当該スライスのデータ密度が所定のデータ密度であるか否かに応じて、CABAC初期化するか否かを判定してもよい。
 三次元データ符号化装置は、CABAC初期化すると判定した場合には、属性情報の符号化に用いるコンテキスト初期値を決定する。コンテキスト初期値は、データ密度に応じた符号化特性のよい初期値に設定される。三次元データ符号化装置は、あらかじめデータ密度に対する初期値テーブルを保持し、テーブルの中から最適な初期値を選択してもよい。
 三次元データ符号化装置は、属性情報が反射率の場合は、反射率に基づく情報に応じてCABAC初期化するか否かを判定してもよい。
 三次元データ符号化装置は、三次元点に複数の属性情報がある場合、属性情報毎に独立に、それぞれの属性情報に基づく初期化情報を決定してもよいし、あるいは、いずれか一方の属性情報に基づき、複数の属性情報の初期化情報を決定してもよいし、複数の属性情報を用いて当該複数の属性情報の初期化情報を決定してもよい。
 位置情報の初期化情報は位置情報に基づき決定し、属性情報の初期化情報は属性情報に基づき決定する例を説明したが、位置情報に基づき、位置情報および属性情報の初期化情報を決定してもよいし、属性情報に基づき、位置情報および属性情報の初期化情報を決定してもよいし、両方の情報に基づき、位置情報および属性情報の初期化情報を決定してもよい。
 三次元データ符号化装置は、例えば、cabac_init_flagをonまたはoffに設定したり、初期値テーブルの中から1以上の初期値を用いたりすることにより、あらかじめ符号化効率をシミュレートした結果に基づき、初期化情報を決定してもよい。
 三次元データ符号化装置は、スライスまたはタイルなどへのデータ分割方法を位置情報または属性情報に基づき決定した場合、分割方法の決定に基づく情報と同じ情報に基づいて初期化情報を決定してもよい。
 図68は、タイルおよびスライスの例を示す図である。
 例えば、PCCデータの一部を有する1つのタイルにおけるスライスは、凡例に示されているように識別される。CABAC初期化フラグは、連続するスライスにおいてコンテキストの再初期化が必要か否かの判定に用いることができる。例えば、図68において、一つのタイルの中に、オブジェクト(移動体、歩道、建物、木、その他のオブジェクト)毎に分割されたスライスデータが含まれる場合、移動体、歩道、木のスライスのCABAC初期化フラグは1に設定され、建物やその他のスライスのCABAC初期化フラグは0に設定される。これは、例えば、歩道と建物とが、両方とも密な永久構造であり同様の符号化効率を有する可能性がある場合、歩道と建物のスライス間でCABACを再初期化しないことで符号化効率を向上できる可能性がある。一方、建物と木とで、密度および符号化効率大きく異なる可能性がある場合、建物と木のスライス間でCABACを初期化することで符号化効率を向上できる可能性がある。
 図69は、CABACの初期化およびコンテキスト初期値の決定方法の一例を示すフローチャートである。
 まず、三次元データ符号化装置は、位置情報から判定したオブジェクトに基づいて、点群データをスライスに分割する(S5271)。
 次に、三次元データ符号化装置は、スライス毎に、当該スライスのオブジェクトのデータ密度に基づき、位置情報の符号化と属性情報の符号化のCABAC初期化するか否かを判定する(S5272)。つまり、三次元データ符号化装置は、位置情報に基づき、位置情報の符号化と属性情報の符号化のCABAC初期化情報(CABAC初期化フラグ)を決定する。三次元データ符号化装置は、例えば、点群データ密度で、符号化効率のよい初期化を判定する。なお、CABAC初期化情報は、位置情報と属性情報とで共通のcabac_init_flagに示されても良い。
 次に、三次元データ符号化装置は、CABAC初期化すると判定した場合(S5273でYes)、位置情報の符号化のコンテキスト初期値を決定する(S5274)。
 次に、三次元データ符号化装置は、属性情報の符号化のコンテキスト初期値を決定する(S5275)。
 次に、三次元データ符号化装置は、位置情報のCABAC初期化フラグを1に設定し、位置情報のコンテキスト初期値を設定するとともに、属性情報のCABAC初期化フラグを1に設定し、属性情報のコンテキスト初期値を設定する(S5276)。なお、CABAC初期化する場合、三次元データ符号化装置は、位置情報の符号化および属性情報の符号化のそれぞれにおいて、コンテキスト初期値を用いて初期化処理を実施する。
 一方で、三次元データ符号化装置は、CABAC初期化しないと判定した場合(S5273でNo)、位置情報のCABAC初期化フラグを0に設定し、属性情報のCABAC初期化フラグを0に設定する(S5277)。
 図70は、LiDARで得られた点群データを上面視した地図をタイルに分割した場合の例を示す図である。図71は、CABAC初期化およびコンテキスト初期値の決定方法の他の一例を示すフローチャートである。
 三次元データ符号化装置は、大規模地図データにおいて、位置情報に基づき、上面視における二次元の分割方法で、点群データを1以上のタイルに分割する(S5281)。三次元データ符号化装置は、例えば、図70に示すような正方形の領域で分割してもよい。また、三次元データ符号化装置は、点群データを、様々な形状、大きさのタイルに分割してもよい。タイルの分割は、あらかじめ定められた1以上の方法で行われてもよいし、適応的に行われてもよい。
 次に、三次元データ符号化装置は、タイル毎に、タイル内のオブジェクトを判定し、当該タイルの位置情報の符号化または属性情報の符号化で、CABAC初期化するか否かを判定する(S5282)。なお、三次元データ符号化装置は、スライス分割の場合は、オブジェクト(木、人、移動体、建物)を認識し、オブジェクトに応じてスライス分割および初期値の判定をする。
 三次元データ符号化装置は、CABAC初期化すると判定した場合(S5283でYes)、位置情報の符号化のコンテキスト初期値を決定する(S5284)。
 次に、三次元データ符号化装置は、属性情報の符号化のコンテキスト初期値を決定する(S5285)。
 ステップS5284およびS5285では、初期値として、特定の符号化特性を持つタイルの初期値を記憶しておき、同一の符号化特性を持つタイルの初期値として用いても良い。
 次に、三次元データ符号化装置は、位置情報のCABAC初期化フラグを1に設定し、位置情報のコンテキスト初期値を設定するとともに、属性情報のCABAC初期化フラグを1に設定し、属性情報のコンテキスト初期値を設定する(S5286)。なお、CABAC初期化する場合、三次元データ符号化装置は、位置情報の符号化および属性情報の符号化のそれぞれにおいて、コンテキスト初期値を用いて初期化処理を実施する。
 一方で、三次元データ符号化装置は、CABAC初期化しないと判定した場合(S5283でNo)、位置情報のCABAC初期化フラグを0に設定し、属性情報のCABAC初期化フラグを0に設定する(S5287)。
 (実施の形態6)
 上記実施の形態におけるCABAC(Context-Based Adaptive Binary Arithmetic Coding)において、三次元データ符号化装置は、データユニットに含まれる複数の三次元点を、互いに方式が異なる複数の符号化方式の一方で符号化してもよい。つまり、三次元データ符号化装置は、データユニット毎に、当該データユニットに含まれる複数の三次元点を符号化する符号化方式を複数の符号化方式のうちの、当該データユニットに適した符号化方式に決定する。複数の符号化方式は、例えば、三次元点の位置情報の符号化においては、8分木を用いた符号化方式である8分木符号化と、予測木を用いた符号化方式である予測木符号化とを含む。
 このようなCABAC符号化におけるCABAC初期化フラグ(以下、初期化情報、識別情報ともいう)のシグナリングについて説明する。
 [シグナリング]
 初期化情報は、符号化データのヘッダに格納する。初期化情報は、例えば、caba_init_flag、CABAC初期値、初期値を特定できるテーブルのインデックスなどである。初期化情報は、CABAC符号化および復号においてCABACを初期化するために用いられる。言い換えると、初期化情報(識別情報)は、符号化に用いられるコンテキストを継続して用いて符号化するか否かを示す情報である。
 三次元データ符号化装置は、初期化情報を、メタデータに格納してもよいし、ヘッダ及びメタデータの両方に記載してもよい。なお、本実施の形態において、メタデータに格納することは、符号化データのヘッダに格納することと読み替えてもよいし、その逆に、符号化データのヘッダに格納することは、メタデータに格納することと読み替えてもよい。
 なお、三次元データ符号化装置は、初期化情報を、位置情報の符号化、及び、属性情報の符号化のいずれに適用してもよい。三次元データ符号化装置は、初期化情報を符号化データのヘッダに格納する場合、位置情報には位置情報の符号化の初期化情報を格納し、属性情報には属性情報の初期化情報を格納してもよい。
 [位置情報のヘッダ]
 CABACは、Context-Based Adaptive Binary Arithmetic Codingの略で、コンテキスト(入力される2値シンボルの生起確率を推定するモデル)を符号化済みの情報に基づき順次更新することで確率の精度を高め、高い圧縮率の算術符号化(エントロピー符号化)を実現する符号化方法である。タイルまたはスライスのような、点群データが分割されて得られた複数のデータユニット(複数の分割データ)を並列処理するためには、それぞれのデータユニットを独立に符号化または復号できる必要がある。しかし、データユニット間でCABACを独立にするためには、符号化および復号において、データユニットの先頭でCABACを初期化する必要がある。CABAC初期化フラグは、CABAC符号化および復号においてCABACを初期化するために用いられる。
 図72は、分割後の各データユニットに含まれる位置情報のデータ構造と、位置情報のヘッダのシンタックスの一例を示す図である。
 三次元データ符号化装置は、初期化情報を、位置情報の符号化において、8分木符号化、予測木符号化などの符号化方式(符号化方法)のいずれか一方に適用してもよいし、両方に適用してもよい。8分木符号化と、予測木符号化とは、異なる木構造を用いた符号化方式である。
 三次元データ符号化装置は、8分木構造を用いた8分木符号化の場合、8分木符号化で用いるコンテキスト(つまり、8分木符号化用のコンテキスト)を保存する。また、三次元データ符号化装置は、予測木構造を用いた予測木符号化の場合、予測木符号化で用いるコンテキスト(つまり、予測木符号化用のコンテキスト)を保存する。
 三次元データ符号化装置は、分割された位置情報のデータユニットごとのヘッダに、初期化情報を格納することにより、分割されたデータユニットごとに、符号化に用いられるコンテキストを初期化するか否かを切り替えることができる。言い換えると、三次元データ符号化装置は、分割された位置情報のデータユニットごとのヘッダに、識別情報を格納することにより、分割されたデータユニットごとに、符号化に用いられるコンテキストを符号化に継続して用いるか否かを切り替えることができる。
 SPS_IDは、当該データユニットが参照するSPS(パラメータセット)の識別子を示す。GPS_IDは、当該データユニットが参照するGPS(位置情報パラメータセット)の識別子を示す。tile_idは、当該データユニットが属するタイルの識別子(分割データの識別子1)を示す。slice_idは、当該データユニットが属するスライスの識別子(分割データの識別子2)を示す。
 tree_modeは、当該データユニットの位置情報符号化で用いる木構造を示す。木構造が2種類の場合、tree_modeは、フラグでもよい。tree_modeは、例えば、フラグが0の場合に8分木(octree)を示し、フラグが1の場合に予測木(predtree)を示してもよい。なお、tree_modeは、GPSに示される場合、スライスヘッダには示さなくてもよい。
 三次元データ符号化装置は、tree_modeに基づき、それぞれの符号化に用いるメタデータの構造を切り替え、シグナリングしてもよい。
 例えば、三次元データ符号化装置は、木構造が8分木(tree_mode==‘octree’)の場合、8分木符号化に用いるパラメータ(octree_information)をシグナリングする。さらに、8分木符号化においてコンテキストを初期化するか否かを示すフラグ(cabac_init_flag)、言い換えると、コンテキストを継続して用いるか否かを示す識別情報が示されてもよい。
 また、例えば、三次元データ符号化装置は、木構造が予測木(tree_mode==‘predtree’)の場合、予測木符号化に用いるパラメータ(predtree_information)をシグナリングする。さらに、予測木符号化においてコンテキストを初期化するか否かを示すフラグ(cabac_init_flag)、言い換えると、コンテキストを継続して用いるか否かを示す識別情報が示されてもよい。
 なお、以下の方法を用いることにより、シグナリングする情報量を削減し、圧縮効率を向上できる可能性がある。三次元データ符号化装置は、cabac_init_flagを複数の符号化方式に共通するフラグとし、tree_modeの条件分岐の前にシグナリングしてもよい。
 また、三次元データ符号化装置は、コンテキストの初期化を一部の木構造に適用し、他の一部の木構造には適用しないとしてもよい。この場合、三次元データ符号化装置は、コンテキストの初期化を適用しない木構造の場合、初期化情報を含まず、コンテキストの初期化を適用する木構造の場合に初期化情報を含むシンタックスのヘッダを生成してもよい。例えば、分割された全てのデータユニットで初期化する場合、三次元データ符号化装置は、初期化情報をSPSやGPSなどの、より上位のパラメータセットに共通で示し、データユニットごとの初期化情報を示さないとしてもよい。
 図73は、三次元データ符号化方法の一例を示すフローチャートである。ここでは、データユニットに含まれる複数の三次元点の位置情報の符号化について説明する。
 三次元データ符号化装置は、処理対象のデータユニットの符号化方式を決定し、かつ、処理対象のデータユニットの先頭の三次元点の位置情報の符号化においてCABACを継続するか否かを決定する(S11401)。言い換えると、三次元データ符号化装置は、データユニットの符号化方式を8分木符号化及び予測木符号化のいずれかに決定し、かつ、符号化に用いられるコンテキストを継続して用いて符号化するか否かを決定する。
 次に、三次元データ符号化装置は、コンテキストを継続して用いることを決定した場合(S11402でYes)、cabac_init_flagをfalseに設定する(S11403)。つまり、三次元データ符号化装置は、識別情報を、符号化に用いられるコンテキストを継続して用いることを示すように設定する。三次元データ符号化装置は、識別情報がステップS11402の決定結果を示すように、識別情報を設定する。
 次に、三次元データ符号化装置は、符号化方式を8分木符号化に決定した場合(S11404で8分木)、8分木符号化で用いたコンテキストを継続して用いて8分木で符号化する(S11405)。8分木符号化で用いたコンテキストは、処理対象のデータユニットの直前のデータユニットの8分木符号化で用いられたコンテキストである。このコンテキストは、例えば、三次元データ符号化装置のメモリに一時的に格納されており、三次元データ符号化装置は、メモリに記憶されているコンテキストを読み出して、処理対象のデータユニットの符号化に用いる。
 一方で、三次元データ符号化装置は、符号化方式を予測木符号化に決定した場合(S11404で予測木)、予測木符号化で用いたコンテキストを継続して用いて予測木で符号化する(S11406)。予測木符号化で用いたコンテキストは、処理対象のデータユニットの直前のデータユニットの予測木符号化で用いられたコンテキストである。このコンテキストは、例えば、三次元データ符号化装置のメモリに一時的に格納されており、三次元データ符号化装置は、メモリに記憶されているコンテキストを読み出して、処理対象のデータユニットの符号化に用いる。
 ステップS11405及びS11406に示すように、三次元データ符号化装置は、複数の符号化方式のうちステップS11401で決定された符号化方式で用いられたコンテキストを継続して用いて、符号化を実行する。
 なお、三次元データ符号化装置は、コンテキストを継続して用いる場合、位置情報の符号化方式(8分木あるいは予測木)に応じて、継続するコンテキストの値を変更する。例えば、8分木符号化用のコンテキストとは、Occupancyコードや量子化値、リーフノードにおける重複点などをエントロピー符号化するためのコンテキストであり、予測木符号化用のコンテキストとは、ノードの数や予測モードなどをエントロピー符号化するためのコンテキストである。
 また、三次元データ符号化装置は、コンテキストを継続して用いないことを決定した場合(S11402でNo)、つまり、コンテキストを初期化することを決定した場合、cabac_init_flagをtrueに設定する(S11407)。つまり、三次元データ符号化装置は、識別情報を、符号化に用いられるコンテキストを継続して用いないことを示すように設定する。三次元データ符号化装置は、識別情報がステップS11402の決定結果を示すように、識別情報を設定する。
 次に、三次元データ符号化装置は、ステップS11401で決定した符号化方式用の初期化したコンテキストを用いてデータユニットの先頭の三次元点の位置情報を符号化する(S11408)。
 以上のように、三次元データ符号化装置は、8分木符号化を行う場合には8分木符号化用のコンテキストを用いて符号化を行い、及び、予測木符号化を行う場合には予測木符号化用のコンテキストを用いて符号化を行う。つまり、三次元データ符号化方法は、位置情報の符号化方式に応じて、符号化に継続して用いるコンテキストを変更する。
 図74は、三次元データ復号方法の一例を示すフローチャートである。ここでは、データユニットに含まれる複数の三次元点の位置情報の復号について説明する。
 三次元データ復号装置は、処理対象の符号化されたデータユニット(符号化データ)のヘッダを解析し、cabac_init_flagを解析する(S11411)。
 三次元データ復号装置は、cabac_init_flagがコンテキストを継続して用いることを示すか否かを判定する(S11412)。
 三次元データ復号装置は、cabac_init_flagがコンテキストを継続して用いることを示す場合(S11412でYes)、つまり、cabac_init_flagがfalseに設定されている場合、処理対象の符号化データの符号化方式を判定する(S11413)。
 三次元データ復号装置は、処理対象の符号化データの符号化方式が8分木符号化である場合(S11413で8分木)、8分木符号化で用いたコンテキストを継続して用いて、8分木符号化に用いるコンテキストの初期値としてエントロピー復号し、8分木を再構成し復号する(S11414)。
 三次元データ復号装置は、処理対象の符号化データの符号化方式が予測木符号化である場合(S11413で予測木)、予測木符号化で用いたコンテキストを継続して用いて、予測木符号化に用いるコンテキストの初期値としてエントロピー復号し、予測木を再構成し復号する(S11415)。
 このように、三次元データ復号装置は、cabac_init_flag(識別情報)が符号化に用いられるコンテキストを継続して用いることを示す場合、当該符号化データの符号化方式で用いられたコンテキストを継続して用いて、符号化データを復号する。
 また、三次元データ復号装置は、cabac_init_flagがコンテキストを継続して用いないことを示す場合(S11412でNo)、つまり、cabac_init_flagがtrueに設定されている場合、指定された符号化方式用のコンテキストを初期化し、エントロピー復号し、指定された符号化方式に対応する復号方式で復号する(S11416)。
 なお、上記実施の形態では、位置情報の符号化方式(8分木あるいは予測木)に応じて、継続するコンテキストを変更する方法について説明したが、この方法は、属性情報の符号化方式にも同様に適用することができる。属性情報の符号化方式には、例えば、LoDベースの符号化方式と、Transformベースの符号化方式とを含む。この場合、三次元データ符号化装置は、属性情報の符号化方式に応じて、継続するコンテキストを変更してもよい。つまり、三次元データ符号化装置は、LoDベースの符号化を行う場合にはLoDベースの符号化用のコンテキストを用いて符号化を行い、及び、Transformベースの符号化を行う場合にはTransformベースの符号化用のコンテキストを用いて符号化を行う。
 なお、属性情報の符号化においてcabac_init_flagをシグナリングする場合、LoDベースの符号化方式、及び、Transformベースの符号化方式のそれぞれで独立にシグナリングしてもよいし、共通でシグナリングしてもよい。つまり、三次元データ符号化装置は、それぞれの符号化方式用のcabac_init_flagをヘッダに格納してもよいし、複数の符号化方式で共通のcabac_init_flagをヘッダに格納してもよい。三次元データ符号化装置は、複数の符号化方式のうちの1つの符号化方式を用いる場合、cabac_init_flagを共通化する(つまり1つにする)ことでシグナリングする情報量を削減できる。
 また、属性情報の符号化のcabac_init_flagと、位置情報の符号化のcabac_init_flagとを同じ値にしてもよいし、異なる値にしてもよい。
 属性情報の符号化のcabac_init_flagと、位置情報の符号化のcabac_init_flagとを同じ値にする場合には属性情報の符号化のcabac_init_flagと、位置情報の符号化のcabac_init_flagとを共通化にして、SPSなどのシーケンス共通のメタデータに格納してもよい。この場合、三次元データ符号化装置は、符号化において符号化に用いられるコンテキストを継続して用いることを決定した場合、(i)複数の符号化方式のうち複数の三次元点の符号化方式で用いられたコンテキストを継続して用いて、複数の三次元点の位置情報を符号化し、(ii)属性情報の符号化方式で用いられたコンテキストを継続して用いて、複数の三次元点の属性情報を符号化する。反対に、三次元データ符号化装置は、符号化において符号化に用いられるコンテキストを継続して用いないことを決定した場合、(i)複数の符号化方式のうち複数の三次元点の符号化方式用の初期化したコンテキストを用いて、複数の三次元点の位置情報を符号化し、(ii)属性情報の符号化方式用の初期化したコンテキストを用いて、複数の三次元点の属性情報を符号化する。
 この場合、三次元データ復号装置は、識別情報が符号化に用いられるコンテキストを継続して用いることを示す場合、(i)複数の符号化方式のうち符号化された複数の三次元点の位置情報の符号化に用いられたコンテキストを継続して用いて復号することで、複数の三次元点の位置情報を算出し、(ii)属性情報の符号化方式で用いられたコンテキストを継続して用いて復号することで、複数の三次元点の属性情報を算出する。反対に、三次元データ復号装置は、識別情報が符号化に用いられるコンテキストを継続して用いないことを示す場合、(i)複数の符号化方式のうち符号化された複数の三次元点の位置情報の符号化に用いる符号化方式用の初期化したコンテキストを用いて復号することで、符号化された複数の三次元点の位置情報を算出し、(ii)属性情報の符号化方式用の初期化したコンテキストを用いて復号することで、複数の三次元点の属性情報を復号する。
 属性情報の符号化のcabac_init_flagと、位置情報の符号化のcabac_init_flagとを異なる値にする場合、三次元データ符号化装置は、属性情報の符号化のcabac_init_flagと、位置情報の符号化のcabac_init_flagとを、それぞれAPS、GPS、データユニットヘッダなどに格納する。
 三次元データ符号化装置は、属性情報の符号化のcabac_init_flagと、位置情報の符号化のcabac_init_flagとを、位置情報と属性情報とで共通のメタデータに格納してもよいし、個別のメタデータのいずれか一方あるいは両方に格納してもよいし、共通のメタデータと個別のメタデータの両方に格納してもよい。また、三次元データ符号化装置は、属性情報の符号化のcabac_init_flagと、位置情報の符号化のcabac_init_flagとのいずれかに記載されているか否かを示すフラグを用いてもよい。
 なお、三次元データ符号化装置は、位置情報の符号化において、データユニット間で、符号化方式を切り替える場合、符号化方式が切り替わった後で最初に符号化されるデータユニットのコンテキストを継続せずに、初期化すると決定してもよい。
 図75は、符号化方式が切り替わる場合のコンテキストの初期化について説明するための図である。図75は、slice#1のデータユニットを8分木符号化(Octree)で符号化し、slice#2およびslice#3の各データユニットを予測木符号化(predtree)で符号化する場合の例である。
 三次元データ符号化装置は、8分木符号化の先頭のデータユニット(slice#1)の位置情報の符号化に用いる初期化フラグ(cabac_init_flag)をON(true)に設定する。そして、三次元データ符号化装置は、予測木符号化の先頭のデータユニット(slice#2)の位置情報の符号化に用いる初期化フラグ(cabac_init_flag)をON(true)に設定する。なお、slice#3の初期化フラグは、ONに設定されてもよいし、OFFに設定されてもよい。
 このように、三次元データ符号化装置は、第1データユニットの符号化方式と、第1データユニットの次に符号化される第2データユニットとの符号化方式とが異なる場合、符号化に用いられるコンテキストを継続して用いないことを決定し、複数の符号化方式のうち第2データユニットの符号化方式用の初期化したコンテキストを用いて、第2データユニットの複数の三次元点を符号化する。この場合、第2データユニットに対応する識別情報(第2識別情報)は、符号化に用いられるコンテキストを継続して用いないことを示すように設定される。
 以上のように、本実施の形態の一態様に係る三次元データ符号化装置は、図76に示す処理を行う。三次元データ符号化装置は、複数の第1三次元点を含む第1データユニットを取得する(S11421)。次に、三次元データ符号化装置は、取得した前記第1データユニットに含まれる前記複数の第1三次元点を、方式が異なる複数の符号化方式の一方で符号化する(S11422)。次に、三次元データ符号化装置は、前記複数の第1三次元点が符号化された第1符号化データと、第1識別情報とを含むビットストリームを生成する(S11423)。前記符号化(S11422)では、符号化に用いられるコンテキストを継続して用いて符号化するか否かを決定し、前記複数の符号化方式のうち当該符号化に用いる符号化方式で用いられるコンテキストのうちの前記決定における決定結果に応じたコンテキストを用いて、前記複数の第1三次元点を符号化する。前記第1識別情報は、前記決定における決定結果を含む。
 これによれば、符号化に用いるコンテキストを継続するか否かを決定するため、符号化効率を向上させることができ、また、第1識別情報を含むビットストリームを生成するため、三次元データ復号装置に適切に復号させることができる。
 例えば、前記符号化(S11422)において、符号化に用いられるコンテキストを継続して用いることを決定した場合、前記符号化(S11422)では、前記複数の符号化方式のうち前記複数の第1三次元点の符号化方式で用いられたコンテキストを継続して用いて、前記複数の第1三次元点を符号化し、前記第1識別情報は、符号化に用いられるコンテキストを継続して用いて符号化することを示す。
 例えば、前記符号化(S11422)において、符号化に用いられるコンテキストを継続して用いないことを決定した場合、前記符号化(S11422)では、前記複数の符号化方式のうち前記複数の第1三次元点の符号化方式用の初期化したコンテキストを用いて、前記複数の第1三次元点を符号化し、前記第1識別情報は、符号化に用いられるコンテキストを継続して用いないことを示す。
 例えば、前記複数の第1三次元点のそれぞれは、各第1三次元点の位置情報及び各第1三次元点の属性情報を含む。前記複数の符号化方式は、位置情報の符号化方式である。前記符号化(S11422)では、前記複数の第1三次元点の属性情報を他の符号化方式で符号化する。前記符号化(S11422)では、前記符号化において符号化に用いられるコンテキストを継続して用いることを決定した場合、(i)前記複数の符号化方式のうち前記複数の第1三次元点の符号化方式で用いられたコンテキストを継続して用いて、前記複数の第1三次元点の位置情報を符号化し、(ii)前記他の符号化方式で用いられたコンテキストを継続して用いて、前記複数の第1三次元点の属性情報を符号化する。
 例えば、前記符号化(S11422)では、前記符号化(S11422)において符号化に用いられるコンテキストを継続して用いないことを決定した場合、(i)前記複数の符号化方式のうち前記複数の第1三次元点の符号化方式用の初期化したコンテキストを用いて、前記複数の第1三次元点の位置情報を符号化し、(ii)前記他の符号化方式用の初期化したコンテキストを用いて、前記複数の第1三次元点の属性情報を符号化する。
 例えば、三次元データ符号化装置は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 また、本実施の形態の一態様に係る三次元データ復号装置は、図77に示す処理を行う。三次元データ復号装置は、複数の第1三次元点が符号化された第1符号化データと、符号化に用いられるコンテキストを継続して用いるか否かを示す第1識別情報とを含むビットストリームを取得する(S11431)。次に、三次元データ復号装置は、前記第1符号化データを方式が異なる複数の符号化方式のうち前記第1符号化データの符号化に用いられた符号化方式に対応する復号方式で復号する(S11432)。前記復号(S11432)では、前記第1識別情報に応じたコンテキストを用いて、前記第1符号化データを復号する。
 これによれば、ビットストリームに含まれる第1識別情報に応じて第1符号化データを復号することで適切な複数の第1三次元点を算出することができる。
 例えば、前記復号(S11432)では、前記第1識別情報が符号化に用いられるコンテキストを継続して用いることを示す場合、前記復号方式に対応する符号化方式で用いられたコンテキストを継続して用いて、前記第1符号化データを復号する。
 例えば、前記復号(S11432)では、前記第1識別情報が符号化に用いられるコンテキストを継続して用いないことを示す場合、前記複数の符号化方式のうち前記第1符号化データの符号化に用いられた符号化方式用の初期化したコンテキストを用いて、前記第1符号化データを復号する。
 例えば、前記第1符号化データは、符号化された前記複数の第1三次元点の位置情報と、符号化された前記複数の第1三次元点の属性情報とを含む。前記複数の符号化方式は、前記符号化された前記複数の第1三次元点の位置情報の符号化方式である。符号化された前記複数の第1三次元点の属性情報は、他の符号化方式で符号化されている。前記復号(S11432)では、前記第1識別情報が符号化に用いられるコンテキストを継続して用いることを示す場合、(i)前記複数の符号化方式のうち前記符号化された前記複数の第1三次元点の位置情報の符号化に用いられたコンテキストを継続して用いて復号することで、複数の第1三次元点の位置情報を算出し、(ii)前記他の符号化方式で用いられたコンテキストを継続して用いて復号することで、複数の第1三次元点の属性情報を算出する。
 例えば、前記復号(S11432)では、前記第1識別情報が符号化に用いられるコンテキストを継続して用いないことを示す場合、(i)前記複数の符号化方式のうち前記符号化された前記複数の第1三次元点の位置情報の符号化に用いる符号化方式用の初期化したコンテキストを用いて復号することで、前記符号化された前記複数の第1三次元点の位置情報を算出し、(ii)前記他の符号化方式用の初期化したコンテキストを用いて復号することで、前記複数の第1三次元点の属性情報を復号する。
 例えば、前記ビットストリームは、さらに、複数の第2三次元点が符号化された第2符号化データと、符号化に用いられるコンテキストを継続して用いるか否かを示す第2識別情報とを含む。前記複数の第2三次元点は、前記複数の第1三次元点の次に符号化されている。前記第2識別情報は、符号化に用いられるコンテキストを継続して用いないことを示す。
 例えば、三次元データ復号装置は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 (実施の形態7)
 エントロピー符号化においてコンテキストを継続するか否かを示す場合において、コンテキストを継続することを示す場合、三次元データ復号装置において対応するコンテキストが継続されているか否かが保証されることが好ましい。例えば、コンテキストが保存されていない、あるいは使用可能でないのに、コンテキストを継続することが示されていると、三次元データ復号装置は、三次元点群を復号できない。このため、コンテキストを継続する場合において、三次元データ復号装置における三次元点群の復号を保証するために以下の制約をしてもよい。
 [符号化の制約]
 符号化において用いるコンテキストが変わる場合の例としては、予測木または8分木などの符号化方式を切り替える場合のほかに、符号化におけるパラメータを切り替える場合がある。
 符号化におけるパラメータを切り替える場合には、例えば、8分木符号化において、8分木を4分木または2分木に切り替える場合など木構造の数を変える場合がある。また、符号化におけるパラメータを切り替える場合には、例えば、8ビットのoccupancy codeのそれぞれのビットに対してコンテキストを割り当てるビット毎の符号化と、occupancy code全体に対してコンテキストを割り当てるバイト毎の符号化とを切り替える場合などのようにoccupancy codeに対するコンテキストを切り替える場合がある。また、符号化におけるパラメータを切り替える場合には、8分木符号化において、同一ノードを参照するか、隣接ノードまで参照するかを切り替える場合がある。
 なお、これらの符号化パラメータを切り替えるか否かを示すフラグは、SPS(シーケンスパラメータセット)、GPS(位置情報パラメータセット)、データユニットヘッダなどに示される。
 このように、三次元データ符号化装置は、使用するコンテキストが切り替わる場合には、当該データユニットで用いるエントロピー符号化では初めにコンテキストをリセットするとしてもよい。つまり、三次元データ符号化装置は、保存されたコンテキストを用いずにリセット(初期化)されたコンテキストを用いて符号化を行ってもよい。
 なお、三次元データ符号化装置は、属性情報の符号化においても位置情報の符号化と同様に、使用するコンテキストが切り替わる場合には、当該データユニットのエントロピー符号化ではコンテキストをリセットするとしてもよい。
 また、符号化では、エントロピー符号化をリセットしない場合は、符号化パラメータを切り替えないように制約してもよい。
 例えば、符号化では、コンテキストを保存する、「前のデータユニットDU_prev」が参照するパラメータセット(例えばGPS1)と、DU_prevのコンテキストを用いてエントロピー符号化を開始する「今のデータユニットDU_cur」が参照するパラメータセット(GPS2)において、符号化に関わるパラメータを同じにするように規定されてもよい。
 あるいは、符号化では、GPS1及びGPS2のジオメトリパラメータセットを同一にし、同一の内容を記載するように規定されてもよい。つまり、パラメータセットにおける識別子GPS_idを同一にするように規定されてもよい。
 また、APSの場合も同様に規定されてもよい。例えば、符号化では、コンテキストを保存する、「前のデータユニットDU_prev」が参照するパラメータセット(例えばAPS1)と、DU_prevのコンテキストを用いてエントロピー符号化を開始する「今のデータユニットDU_cur」が参照するパラメータセット(APS2)において、符号化に関わるパラメータを同じにするように規定されてもよい。
 あるいは、符号化では、APS1及びAPS2のジオメトリパラメータセットを同一にし、同一の内容を記載するように規定されてもよい。つまり、パラメータセットにおける識別子APS_idを同一にするように規定されてもよい。
 なお、コンテキストを継続する場合には、データユニットヘッダには、DU_curが属するスライスのIDと、DU_prevが属するスライスのIDとが、DU_curのデータユニットヘッダに格納されてもよい。
 [復号の制約]
 また、以下のように、三次元データ復号装置の制約を設けてもよい。
 DU_curのエントロピー符号化において、DU_prevで保存されたコンテキストを用いる場合、つまり、cabac_init_flag = 0の場合、三次元データ復号装置は、DU_curを復号する前に復号されたデータユニットのスライスIDがDU_prevと一致するかどうかを判定し、一致すれば復号してもよい。つまり、三次元データ復号装置は、三次元データ符号化装置側でコンテキストを保存した対象のスライスと、三次元データ復号装置側でコンテキストを保存した対象のスライスとが一致することが確認する。そして、三次元データ復号装置は、確認した結果、これらのスライスが一致しなければコンフォーマンス違反(または仕様不適合)と判定してもよい。なお、ビットストリームの適合仕様とは、ビットストリームがデコーダにおいて正常に復号されるために、エンコーダで作成されるビットストリームの必要条件を定めた仕様であり、つまり、エンコーダにおける符号化方法の制約をデコーダで確認するための仕様ということもできる。したがって、デコーダで正常に復号されるための符号化方法をビットストリームの適合仕様として規定し、デコーダにおいてビットストリームが仕様に適合するか否かの判定することにより、ビットストリームを正しく復号可能か否かを判定することが可能である。
 また、DU_curが参照するパラメータセットとDU_prevが参照するパラメータセットとにおいて、符号化パラメータの切り替えによって使用するコンテキストが変わる場合、三次元データ復号装置は、コンフォーマンス違反(または仕様不適合)と判定してもよい。三次元データ復号装置は、コンフォーマンス違反(または仕様不適合)と判定した場合、復号を止めてもよいし、特定の回避処理を実施してもよい。
 あるいは、三次元データ復号装置は、DU_curが参照するパラメータセットとDU_prevが参照するパラメータセットとにおいて、両者のGPS_idまたはAPS_idが異なる場合は、コンフォーマンス違反(または仕様不適合)と判定してもよい。
 図78~図82は、シンタックスの一例を示す図である。図78は、SPSのシンタックスの一例を示す図である。図79は、分割位置情報のヘッダ(DevidedGeometryHeader)のシンタックスの一例を示す図である。図80は、分割属性情報のヘッダ(DevidedAttributeHeader)のシンタックスの一例を示す図である。図81は、分割属性情報のヘッダ(DevidedAttributeHeader)のシンタックスの他の一例を示す図である。図82は、分割位置情報のヘッダ(DevidedGeometryHeader)のシンタックスの他の一例を示す図である。
 これまで、符号化に用いるコンテキストを初期化するか否かを示すフラグは、cabac_init_flagと表現されていたが、ここでは、entropy_continue_flagと表現される。entropy_continue_flagでは、フラグの定義が反対になる。つまり、初期化フラグ(entropy_continue_flag)は、初期化せずにエントロピー符号化を継続するか否かを示すフラグ、つまり、前のデータユニットの符号化に用いたコンテキストを保存し、次のデータユニットへ適用することを示すフラグである。
 図78に示されるように、SPSには、データユニット間におけるコンテキストを継続する機能を有する(利用する)か否かのフラグ(entropy_continue_enable)が示される。フラグ(entropy_continue_enable)は、第3識別情報の一例である。
 図79に示されるように、分割位置情報のヘッダ(DevidedGeometryHeader)は、当該分割位置情報を含むデータユニットが参照するGPSの識別子(gps_id)、タイルの識別子(tile_id)、及び、フレームの識別子(frame_id)を含む。
 また、SPSに示されるentropy_continue_enableが有効であれば(つまり、entropy_continue_enableが、コンテキストを継続する機能を有することを示す場合)、分割位置情報のヘッダ(DevidedGeometryHeader)は、当該分割位置情報を含むデータユニットの符号化に、当該データユニットの前のデータユニットの符号化に用いられたコンテキストを継続して用いるか否かを示すフラグ(geom_du_entropy_continue_flag)を示す。つまり、この場合、分割位置情報のヘッダ(DevidedGeometryHeader)は、フラグ(geom_du_entropy_continue_flag)を含む。また、geom_du_entropy_continue_flagが有効であれば、分割位置情報のヘッダ(DevidedGeometryHeader)は、前のデータユニットが属するスライスID(slice2_id)を示す。つまり、分割位置情報のヘッダ(DevidedGeometryHeader)は、スライスID(slice2_id)を含む。なお、フラグ(geom_du_entropy_continue_flag)は、第1識別情報の一例である。
 図80に示されるように、分割属性情報のヘッダ(DevidedAttributeHeader)は、当該分割属性情報を含むデータユニットが参照するAPS(属性情報パラメータセット)の識別子(aps_id)、SPSに記載される属性情報の順番において、当該属性情報が示される番号(attr_index)、及び、当該属性情報が対応する位置情報のスライスID(geom_slice_id)を含む。
 また、SPSに示されるentropy_continue_enableが有効であれば(つまり、entropy_continue_enableが、コンテキストを継続する機能を有することを示す場合)、分割属性情報のヘッダ(DevidedAttributeHeader)は、当該分割属性情報を含むデータユニットの符号化に、当該データユニットの前のデータユニットの符号化に用いられたコンテキストを継続して用いるか否かを示すフラグ(attr_du_entropy_continue_flag)を示す。つまり、この場合、分割属性情報のヘッダ(DevidedAttributeHeader)は、フラグ(attr_du_entropy_continue_flag)を含む。また、attr_du_entropy_continue_flagが有効であれば、分割属性情報のヘッダ(DevidedAttributeHeader)は、前のデータユニットが属するスライスID(slice2_id)を示す。つまり、分割属性情報のヘッダ(DevidedAttributeHeader)は、スライスID(slice2_id)を含む。なお、フラグ(geom_du_entropy_continue_flag)は、第1識別情報の一例である。
 上述のように、SPSに示されるentropy_continue_enableが有効であれば(つまり、entropy_continue_enableが、コンテキストを継続する機能を有することを示す場合)、分割位置情報のヘッダ(DevidedGeometryHeader)は、フラグ(geom_du_entropy_continue_flag)を含み、分割属性情報のヘッダ(DevidedAttributeHeader)は、フラグ(attr_du_entropy_continue_flag)を含む。つまり、三次元データ符号化装置は、コンテキストを用いた符号化を行うか否かを決定し(第2決定)、コンテキストを用いた符号化を行うと決定した場合に、処理対象のデータユニットの符号化に、処理対象のデータユニットの前のデータユニットの符号化に用いられたコンテキストを継続して用いるか否かを決定してもよい(第1決定)。この場合、三次元データ符号化装置は、コンテキストを用いた符号化を行うか否かを示すentropy_continue_enable(第3識別情報)を含むビットストリームを生成する。また、geom_du_entropy_continue_flag(第1識別情報)またはattr_du_entropy_continue_flag(第1識別情報)は、entropy_continue_enable(第3識別情報)がコンテキストを用いた符号化を行うことを示す場合に、データユニットのヘッダに示される。
 また、このように、分割位置情報のヘッダ及び分割属性情報のヘッダには、geom_du_entropy_continue_flagと、attr_du_entropy_continue_flagとが含まれるため、位置情報と属性情報とで個別にコンテキストを継続するか否かを制御できる。よって、柔軟な制御が可能となる。
 また、図81に示されるように、属性情報の符号化に用いるコンテキストを継続するか否かを示すフラグ(attr_du_entropy_continue_flag)は、位置情報のエントロピー符号化が継続している場合に有効と定め、有効である場合に当該属性情報のデータユニットのエントロピー符号化が有効か否かが分割属性情報のヘッダ(DevidedAttributeHeader)において示されてもよい。
 つまり、三次元データ符号化装置は、前のデータユニットの符号化に用いられたコンテキストを継続して用いることを決定した場合、(i)前のデータユニットの位置情報の符号化に用いられたコンテキストを継続して用いて、処理対象のデータユニットの位置情報を符号化し、かつ、(ii)前のデータユニットの属性情報の符号化に用いられたコンテキストを継続して用いて、処理対象のデータユニットの属性情報を符号化してもよい。この場合、三次元データ復号装置は、第1識別情報が前のデータユニットの符号化に用いられたコンテキストを継続して用いることを示す場合、(i)前のデータユニットの位置情報の符号化に用いられたコンテキストを継続して用いて復号することで、データユニットに含まれる複数の三次元点の位置情報を算出し、(ii)前のデータユニットの属性情報の符号化に用いられたコンテキストを継続して用いて復号することで、データユニットに含まれる複数の三次元点の属性情報を算出する。
 あるいは、entropy_continue_enableがtrueの場合に、分割属性情報のヘッダ(DevidedAttributeHeader)にattr_du_entropy_continue_flagを設定し、geom_du_entropy_continue_flagがfalseの場合にattr_du_entropy_continue_flagがいかなる値でもattr_du_entropy_continue_flagはfalseに設定してもよい。
 あるいは、geom_du_entropy_continue_flagがfalseかつattr_du_entrpy_continue_flagがtrueの場合はコンフォーマンス違反(または仕様不適合)と規定してもよい。
 なお、位置情報の符号化の制御と属性情報の符号化の制御とは統一されてもよい。つまり、geom_du_entropy_continue_flagとattr_du_entropy_continue_flagとはマージされてもよい。この場合、分割属性情報のヘッダには、attr_du_entropy_continue_flagが示されなくてもよい。分割属性情報のエントロピー符号化では、geom_slice_idで対応づけられる位置情報のデータユニットヘッダに示されるdu_entropy_continue_flagに従い、前のデータユニットの符号化に用いられたコンテキストを継続するか否かが判断される。
 なお、DU_curとDU_prevとが参照するパラメータセットを同一とする場合には、DU_curには、パラメータセットID(GPS_idやAPS_id)が示されなくてもよい。三次元データ復号装置は、DU_curのヘッダに示されるDU_prevを参照し、DU_prevヘッダに示されるパラメータセットIDを有するパラメータセットを参照する。
 なお、DU_curとDU_prevとが同一タイルに属すると定められる場合、tile_idは示されなくてもよい。つまり、分割位置情報のヘッダは、tile_idを含まなくてもよい。これにより、DU_curとDU_prevとが同一か否かを判定する処理を軽減できる。また、コンテキストが切り替わっているにもかかわらず、エントロピー符号化が継続していることを示すような混乱を防ぐことが可能となる。
 また、du_entropy_continue_flagがfalseの場合には、gps_id及びtile_idの少なくとも一方を示し、du_entropy_continue_flagがtrueの場合には、gps_id及びtile_idを示さないと規定してもよい。
 なお、geom_entropy_continue_enable_flagは、エントロピー符号化のコンテキストを継続するか否かを示すフラグである。geom_entropy_continue_enable_flagがtrueに設定されるには、以下の条件1または条件2を満たす必要があると規定してもよい。条件1は、スライス(データユニット)間に符号化の依存関係があることを許容することである。条件2は、スライス(データユニット)の順番が入れ替わることを許容しないことである。
 なお、スライス(データユニット)の順番は、例えば、データユニットのID(スライスID)で示されてもよい。データユニットのIDは、フレーム単位で当該データユニットが識別されるためのID(番号)であってもよいし、ランダムアクセス単位で識別されるためのID(番号)であってもよい。なお、ランダムアクセス単位の先頭のデータユニットは、所定のID(所定の番号)が付与されたデータユニットである。このように、各データユニットには、ランダムアクセス単位における当該データユニットの順番が付与されている。つまり、三次元データ符号化装置は、条件2を満たすために、前のデータユニットの符号化に用いられたコンテキストを継続して用いることを決定した場合、複数のデータユニットの順番の入れ替えを行わないとしてもよい。この場合、三次元データ符号化装置は、さらに、ランダムアクセス単位の複数のデータユニットの順番の入れ替えを許容するか否かを示す第2識別情報を含むビットストリームを生成してもよい。また、三次元データ復号装置は、du_entropy_continue_flag(第1識別情報)がコンテキストを継続して用いないことを示し、かつ、第2識別情報が順番の入れ替えを許容しないことを示す場合、取得したビットストリームがコンフォーマンスに適合すると判定してもよい。また、三次元データ復号装置は、du_entropy_continue_flag(第1識別情報)がコンテキストを継続して用いないことを示す場合、または、第2識別情報が順番の入れ替えを許容することを示す場合、取得したビットストリームがコンフォーマンスに不適合であると判定してもよい。
 この場合、条件1または条件2を満たす場合に、geom_entropy_continue_enable_flagが有効か否かが示されてもよい。あるいは、geom_entropy_continue_enable_flagがtrueの場合に条件1または条件2を満たしていない場合、コンフォーマンス違反(または仕様不適合)としてもよい。また、geom_entropy_continue_enable_flagと条件1または条件2を示すフラグとは、マージされて、いずれかのフラグに置き換えられてもよい。
 また、処理対象のデータユニットがランダムアクセス単位の先頭のデータユニットである場合、du_entropy_continue_flagがランダムアクセス単位でfalseとすることが定められてもよい。つまり、この場合、三次元データ符号化装置は、前のデータユニットの符号化に用いられたコンテキストを継続して用いないことを決定してもよい。また、三次元データ符号化装置は、処理対象のデータユニットがランダムアクセス単位の先頭のデータユニットでない場合、前のデータユニットの符号化に用いられたコンテキストを継続して用いることを決定してもよい。
 また、三次元データ復号装置は、du_entropy_continue_flag(第1識別情報)が前のデータユニットの符号化に用いられたコンテキストを継続して用いないことを示し、かつ、データユニットがランダムアクセス単位の先頭のデータユニットである場合、ビットストリームがコンフォーマンスに適合すると判定してもよい。つまり、三次元データ復号装置は、データユニットがランダムアクセス単位の先頭のデータユニットである場合、第1識別情報が前記前のデータユニットの符号化に用いられたコンテキストを継続して用いないことを示すことが、ビットストリームの適合条件である(つまり、ビットストリームの適合条件を満たす)と判定する。また、三次元データ復号装置は、du_entropy_continue_flag(第1識別情報)が前のデータユニットの符号化に用いられたコンテキストを継続して用いることを示す場合、または、データユニットがランダムアクセス単位の先頭のデータユニットでない場合、ビットストリームがコンフォーマンスに不適合であると判定してもよい。
 例えば、ランダムアクセス単位は、1つのフレーム単位であってもよい。この場合、三次元データ符号化装置は、1フレームの先頭のスライス(データユニット)の符号化に、前のデータユニットの符号化に用いられたコンテキストを継続して用いないことを決定してもよい。また、三次元データ復号装置は、du_entropy_continue_flag(第1識別情報)が前のデータユニットの符号化に用いられたコンテキストを継続して用いないことを示し、かつ、データユニットが1フレームの先頭のデータユニットである場合、ビットストリームがコンフォーマンスに適合すると判定してもよい。
 また、例えば、ランダムアクセス単位は、複数のフレーム単位(GOF:Group Of Flame)であってもよい。この場合、三次元データ符号化装置は、GOFの先頭のスライス(データユニット)の符号化に、前のデータユニットの符号化に用いられたコンテキストを継続して用いないことを決定してもよい。また、三次元データ復号装置は、du_entropy_continue_flag(第1識別情報)が前のデータユニットの符号化に用いられたコンテキストを継続して用いないことを示し、かつ、データユニットがGOFの先頭のデータユニットである場合、ビットストリームがコンフォーマンスに適合すると判定してもよい。
 また、ランダムアクセス単位は、1つのタイル単位であってもよい。この場合、三次元データ符号化装置は、1つのタイルの先頭のスライス(データユニット)の符号化に、前のデータユニットの符号化に用いられたコンテキストを継続して用いないことを決定してもよい。また、三次元データ復号装置は、du_entropy_continue_flag(第1識別情報)が前のデータユニットの符号化に用いられたコンテキストを継続して用いないことを示し、かつ、データユニットが1つのタイルの先頭のデータユニットである場合、ビットストリームがコンフォーマンスに適合すると判定してもよい。
 なお、データユニットが参照するパラメータセットまたはヘッダには、当該データユニットが先頭のデータユニット(ランダムアクセスポイント)であるか否かを示すランダムアクセスポイントフラグが設定されてもよい。この場合、du_entropy_continue_flagは、ランダムアクセスポイントフラグがデータユニットが先頭のデータユニットであることを示す場合に、ヘッダにおいて有効とされてもよい(つまり、ヘッダに含まれてもよい)。また、du_entropy_continue_flagとランダムアクセスポイントフラグとはマージされてもよい。
 図83は、三次元データ符号化装置においてエントロピー符号化を初期化するか否かを決定する第1決定の一例を示すフローチャートである。
 三次元データ符号化装置は、エントロピー符号化の継続を実施するか否かを決定する(S11901)。
 次に、三次元データ符号化装置は、スライス(データユニット)毎の処理を実行する(S11902)。
 次に、三次元データ符号化装置は、処理対象のスライスがランダムアクセスポイントであるか否かを判定する(S11903)。ランダムアクセスポイントは、フレーム単位でランダムアクセス可能な場合にはフレーム先頭のスライスであり、複数フレーム単位(GOF)でランダムアクセス可能な場合はGOF先頭のスライスであり、タイル単位でランダムアクセス可能な場合はタイル先頭のスライスである。
 三次元データ符号化装置は、処理対象のスライスがランダムアクセスポイントでないと判定した場合(S11903でNo)、処理対象のスライスの符号化に用いるコンテキストは前のスライスの符号化に用いたコンテキストと同じであるか否かを判定する(S11904)。なお、三次元データ符号化装置は、符号化に用いるコンテキストが変わる場合(つまり、コンテキストが異なる場合)を、例えば、木構造が8分木か予測木かを示すフラグ、2,4分木を用いるか否かのフラグ、ビット毎のコンテキストを用いるか否かのフラグに基づき判定してもよい。
 三次元データ符号化装置は、処理対象のスライスの符号化に用いるコンテキストは前のスライスの符号化に用いたコンテキストと同じであると判定した場合(S11904でYes)、コンテキストを初期化するか否かを判定する(S11905)。
 三次元データ符号化装置は、コンテキストを初期化しないと判定した場合(S11905でNo)、コンテキストを初期化せずに継続して用いると決定する(S11906)。
 一方で、三次元データ符号化装置は、処理対象のスライスがランダムアクセスポイントであると判定した場合(S11903でYes)、処理対象のスライスの符号化に用いるコンテキストは前のスライスの符号化に用いたコンテキストと同じでないと判定した場合(S11904でNo)、及び、コンテキストを初期化すると判定した場合(S11905でYes)のいずれかの場合に、コンテキストを初期化する(つまり、継続しない)と決定する(S11907)。
 図84は、三次元データ復号装置においてエントロピー符号化のフラグがコンフォーマンスに適合するか(仕様に適合するか)を決定する処理の一例を示すフローチャートである。
 三次元データ復号装置は、スライス(データユニット)毎のヘッダを解析する(S11911)。
 次に、三次元データ復号装置は、du_entropy_continue_flag(第1識別情報)がtrueであるか否かを判定する(S11912)。
 三次元データ復号装置は、du_entropy_continue_flag(第1識別情報)がtrueであると判定した場合(S11912でYes)、処理対象のスライスが参照するGPSの識別子(gps_id)が前のスライスが参照するGPSの識別子(gps_id)と同じであるか否かを判定する(S11913)。
 三次元データ復号装置は、処理対象のスライスが参照するGPSの識別子(gps_id)が前のスライスが参照するGPSの識別子(gps_id)と同じでないと判定した場合(S11913でNo)、処理対象のスライスがランダムアクセス単位の先頭であるか否かを判定する(S11914)。三次元データ復号装置は、フレーム単位がランダムアクセスの場合、フレーム境界を示すデータユニットの存在を検出した場合、あるいは、フレームインデックスの切り替わりを検出した場合をフレーム境界として検出してもよい。
 三次元データ復号装置は、処理対象のスライスがランダムアクセス単位の先頭でないと判定した場合(S11914でNo)、コンフォーマンスに違反(仕様不適合)と決定する(S11915)。
 三次元データ復号装置は、du_entropy_continue_flag(第1識別情報)がtrueでない(つまり、falseである)と判定した場合(S11912でNo)、処理対象のスライスが参照するGPSの識別子(gps_id)が前のスライスが参照するGPSの識別子(gps_id)と同じであると判定した場合(S11913でYes)、処理対象のスライスがランダムアクセス単位の先頭であると判定した場合(S11914でYes)、コンフォーマンスに適合する(仕様適合)と決定する(S11916)。
 以上のように、本実施の形態の一態様に係る三次元データ符号化装置は、図85に示す処理を行う。三次元データ符号化装置は、複数の三次元点を含むデータユニットを取得する(S11921)。次に、三次元データ符号化装置は、前記データユニットのそれぞれについて、当該データユニットに含まれる前記複数の三次元点を符号化する(S11922)。三次元データ符号化装置は、前記データユニットが符号化された符号化データを含むビットストリームを生成する(S11925)。三次元データ符号化装置は、符号化(S11922)において、前記データユニットの符号化に、前記データユニットの前のデータユニットの符号化に用いられたコンテキストを継続して用いるか否かを決定する第1決定を行う(S11923)。そして、三次元データ符号化装置は、S11923の次に、前記第1決定の決定結果に応じたコンテキストを用いて、前記データユニットを符号化する(S11924)。前記第1決定(S11923)では、三次元データ符号化装置は、前記データユニットがランダムアクセス単位の先頭のデータユニットである場合、前記前のデータユニットの符号化に用いられたコンテキストを継続して用いないことを決定する。
 これによれば、処理対象のデータユニットがランダムアクセス単位の先頭のデータユニットである場合、前のデータユニットの符号化に用いられたコンテキストを継続して用いないことを決定するため、三次元データ復号装置にビットストリームを適切に復号させることができる。
 例えば、前記ランダムアクセス単位は、1つのフレーム単位である。
 例えば、前記ランダムアクセス単位は、複数のフレーム単位である。
 例えば、前記ランダムアクセス単位は、1つのタイル単位である。
 例えば、前記データユニットには、前記ランダムアクセス単位における当該データユニットの順番が付与されている。前記第1決定(S11923)において、三次元データ符号化装置は、前記前のデータユニットの符号化に用いられたコンテキストを継続して用いることを決定した場合、前記ランダムアクセス単位の複数のデータユニットの前記順番の入れ替えを行わない。
 例えば、前記符号化では、三次元データ符号化装置は、さらに、前記コンテキストを用いた符号化を行うか否かを決定する第2決定を行う。前記第2決定において前記コンテキストを用いた符号化を行うと決定した場合に、三次元データ符号化装置は、前記第1決定(S11923)を行う。
 例えば、前記複数の三次元点のそれぞれは、各三次元点の位置情報及び各三次元点の属性情報を含む。前記符号化(S11922)では、三次元データ符号化装置は、前記第1決定(S11923)において前記前のデータユニットの符号化に用いられたコンテキストを継続して用いることを決定した場合、(i)前記前のデータユニットの位置情報の符号化に用いられたコンテキストを継続して用いて、前記データユニットの位置情報を符号化し、かつ、(ii)前記前のデータユニットの属性情報の符号化に用いられたコンテキストを継続して用いて、前記データユニットの属性情報を符号化する。
 例えば、三次元データ符号化装置は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 また、本実施の形態の一態様に係る三次元データ復号装置は、図86に示す処理を行う。三次元データ復号装置は、複数の三次元点を含むデータユニットが符号化された符号化データと、前記データユニットの符号化に、当該データユニットの前のデータユニットの符号化に用いられたコンテキストを継続して用いるか否かを示す第1識別情報とを含むビットストリームを取得する(S11931)。三次元データ復号装置は、前記第1識別情報に応じたコンテキストを用いて前記符号化データを復号する(S11932)。前記復号(S11932)では、三次元データ復号装置は、前記データユニットがランダムアクセス単位の先頭のデータユニットである場合、前記第1識別情報が前記前のデータユニットの符号化に用いられたコンテキストを継続して用いないことを示すことが、前記ビットストリームの適合条件である(つまり、ビットストリームの適合条件を満たす)と判定する。
 このため、三次元データ復号装置は、コンフォーマンスに適合すると判定した場合、例えば復号を継続することでビットストリームを適切に復号できる。また、三次元データ復号装置は、コンフォーマンスに適合しないと判定した場合、例えば復号を停止したり、特定の回避処理を実行することで、ビットストリームを不適切に復号することを抑制することができる。
 例えば、前記ランダムアクセス単位は、1つのフレーム単位である。
 例えば、前記ランダムアクセス単位は、複数のフレーム単位である。
 例えば、前記ランダムアクセス単位は、1つのタイル単位である。
 例えば、前記データユニットには、前記ランダムアクセス単位における当該データユニットの順番が付与されている。前記ビットストリームは、さらに、前記ランダムアクセス単位の複数のデータユニットの順番の入れ替えを許容するか否かを示す第2識別情報を含む。前記復号(S11932)では、三次元データ復号装置は、前記第1識別情報が前記コンテキストを継続して用いないことを示し、かつ、前記第2識別情報が前記順番の入れ替えを許容しないことを示す場合、前記ビットストリームがコンフォーマンスに適合すると判定する。
 例えば、前記ビットストリームは、さらに、前記コンテキストを用いた符号化を行うか否かを示す第3識別情報を含む。前記第1識別情報は、前記第3識別情報が前記コンテキストを用いた符号化を行うことを示す場合に、前記データユニットのヘッダに示される。
 例えば、前記符号化データは、符号化された前記複数の三次元点の位置情報と、符号化された前記複数の三次元点の属性情報とを含む。前記復号(S11932)では、三次元データ復号装置は、前記第1識別情報が前記前のデータユニットの符号化に用いられたコンテキストを継続して用いることを示す場合、(i)前記前のデータユニットの位置情報の符号化に用いられたコンテキストを継続して用いて復号することで、前記データユニットに含まれる複数の三次元点の位置情報を算出し、(ii)前記前のデータユニットの属性情報の符号化に用いられたコンテキストを継続して用いて復号することで、前記データユニットに含まれる複数の三次元点の属性情報を算出する。
 例えば、三次元データ復号装置は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 (実施の形態8)
 本実施の形態では、エントロピー符号化の他の例について説明する。図87は、SPSのシンタックスの一例を示す図である。図88は、APSのシンタックスの一例を示す図である。図89は、分割位置情報のヘッダ(DevidedGeometryHeader)のシンタックスの一例を示す図である。図90は、分割属性情報のヘッダ(DevidedAttributeHeader)のシンタックスの一例を示す図である。
 エントロピー符号化では、属性情報のデータユニット毎に、エントロピー符号化に用いられるコンテキストの継続機能を有効にするか否かを切り替えるための切り替えフラグ(識別情報)が設けられていてもよい。
 切り替えフラグは、属性情報が参照するパラメータセット(SPSやAPS)に設けられていてもよい。具体的には、切り替えフラグ(entropy_continue_attr_enable_flag)は、図87に示すようにSPSに示されてもよいし、図88に示すようにAPSに示されてもよい。entropy_continue_attr_enable_flagは、属性情報の符号化に用いられるコンテキストの継続機能を有効にするか否かを示すフラグである。entropy_continue_attr_enable_flagは、SPSに示されるentropy_continue_enable_flagがtrueの場合に示されてもよい。なお、entropy_continue_enable_flagは、コンテキストの継続機能を有効にするか否かを示すフラグである。なお、図88に示されるSps.entropy_continue_enable_flagは、SPSにおいてシグナリングされるentropy_continue_enable_flagを意味する。
 また、図89に示すように、分割位置情報のヘッダ(DevidedGeometryHeader)には、データユニットごとにコンテキストを継続するか否かを示すフラグ(geom_du_entropy_continue_flag)が示されてもよい。また、図90に示すように、分割属性情報のヘッダ(DevidedAttributeHeader)にはコンテキストの継続に関する情報が示されなくてもよい。
 図87~図90で示したような、シンタックスを用いて、データユニット(位置情報及び属性情報)毎の継続フラグは、図91のフローチャートで示されるのように導出してもよい。図91は、三次元データ符号化装置においてエントロピー符号化に用いるコンテキストを継続するか否かを決定する処理の一例を示すフローチャートである。
 まず、三次元データ符号化装置は、SPSのentropy_continue_enable_flagがtrueを示すか否かを判定する(S12101)。
 三次元データ符号化装置は、SPSのentropy_continue_enable_flagがtrueを示す場合(S12101でYes)、分割位置情報のヘッダ(DevidedGeometryHeader)のgeom_du_entropy_continue_flagがtrueか否かを判定する(S12102)。
 三次元データ符号化装置は、分割位置情報のヘッダ(DevidedGeometryHeader)のgeom_du_entropy_continue_flagがtrueを示す場合(S12102でYes)、位置情報のデータユニットの符号化開始時に、前の位置情報のデータユニットで記憶装置(メモリ)に保存(記憶又は格納)されたコンテキストを用いることを決定する(S12103)。つまり、この場合、三次元データ符号化装置は、前の位置情報のデータユニットの符号化に用いられたコンテキストを継続して用いることを決定する。
 次に、三次元データ符号化装置は、SPSまたはAPSのentropy_continue_attr_enable_flagがtrueか否かを判定する(S12104)。
 三次元データ符号化装置は、SPSまたはAPSのentropy_continue_attr_enable_flagがtrueを示す場合(S12104でYes)、属性情報のデータユニットの符号化開始時に、前の属性情報のデータユニットで記憶装置(メモリ)に保存されたコンテキストを用いることを決定する(S12105)。つまり、この場合、三次元データ符号化装置は、前の属性情報のデータユニットの符号化に用いられたコンテキストを継続して用いることを決定する。
 三次元データ符号化装置は、SPSのentropy_continue_enable_flagがfalseを示す場合(S12101でNo)、または、分割位置情報のヘッダ(DevidedGeometryHeader)のgeom_du_entropy_continue_flagがfalseを示す場合(S12102でNo)、位置情報のデータユニットの符号化開始時に、コンテキストを初期化することを決定する(S12106)。つまり、この場合、三次元データ符号化装置は、前の位置情報のデータユニットの符号化に用いられたコンテキストを継続して用いずに、初期化することを決定する。
 そして、三次元データ符号化装置は、SPSまたはAPSのentropy_continue_attr_enable_flagがfalseを示す場合(S12104でNo)、または、ステップS12106の後に、属性情報のデータユニットの符号化開始時に、コンテキストを初期化することを決定する(S12107)。つまり、この場合、三次元データ符号化装置は、前の属性情報のデータユニットの符号化に用いられたコンテキストを継続して用いずに、初期化することを決定する。
 entropy_continue_attr_enable_flagがSPSに示されると、三次元データ符号化装置は、すべての色や反射率などのすべての属性コンポーネントで共通に制御することが可能である。また、entropy_cotinue_attr_enable_flagがAPSに示されると、三次元データ符号化装置は、色や反射率などのすべての属性コンポーネントで個別に制御することが可能である。
 属性情報のデータユニットのコンテキストを継続するか否かの判断は、位置情報のデータユニットごとのコンテキストを継続するか否かの判断結果に依存してもよい。この場合、位置情報のデータユニットのコンテキストを継続するか否か(ON/OFF)と、属性情報のデータユニットのコンテキストを継続するか否か(ON/OFF)との組み合わせ(Gometry DU, Attribute DU)は、(ON,ON)、(ON,OFF)、及び、(OFF,OFF)のいずれかの組み合わせが可能である。
 エントロピー符号化では、前のデータユニットまたはデータユニットの符号化に用いたコンテキストを記憶装置(メモリ)に保存し、記憶装置(メモリ)に保存したコンテキストを次のデータユニットの符号化に適用することで、コーディングパフォーマンスを向上できる。エントロピー符号化がビット単位で行われており、ビット単位のコンテキストが使用されている場合、ビット単位のエントロピー符号化において継続すべきエントロピーコンテキストがある。しかしながら、エントロピー符号化がバイト単位の場合、バイト単位のコンテキストがないため、バイト単位のエントロピー符号化において継続すべきエントロピーコンテキストがない。したがって、これまでに説明した方法では、バイト単位のエントロピー符号化を継続する方法がない。
 本実施形態では、N分木(Nは2以上の整数であり、例えば、8分木)を用いた位置情報の符号化においてオキュパンシー符号(occupancy code)をバイト単位で符号化する場合におけるエントロピー符号化を継続する方法について説明する。また、符号化方式(ビット単位の符号化またはバイト単位の符号化)に応じて、エントロピー符号化を継続する方法を切り替える方法について説明する。
 バイト単位の符号化では、三次元データ符号化装置は、参照テーブルを用いて、オキュパンシー符号をテーブルのインデックス情報に変換し、変換したインデックス情報を符号化する。ここで、オキュパンシー符号は、上記実施の形態において説明したとおり、三次元点群を8分木表現した場合に、あるノードにおいて分割後のどの位置に次のノードまたはリーフを有するか否かを示す8ビットの情報である。以後は、オキュパンシー符号は、オキュパンシーマップ(occupancy map)とも呼ぶこともある。以降は、オキュパンシー符号をオキュパンシーマップと表現する。
 図92は、テーブルの更新について説明するための図である。
 三次元データ符号化装置は、図92に示されるテーブル12101を用いて、オキュパンシーマップを、オキュパンシーマップの発生回数を示すヒストグラムと、発生回数の順を示す辞書インデックスとの関係を示すテーブルに変換する。図92では、オキュパンシーマップがmで示され、辞書インデックスがdで示され、ヒストグラムがhで示されている。また、図92では、オキュパンシーマップが15、25、及び、35の3種類のテーブルの例を示しているが、これに限らずに、テーブルは、4種類以上のオキュパンシーマップを有していてもよい。
 三次元データ符号化装置は、テーブルを、1つのオキュパンシーマップを符号化する毎に更新する。三次元データ符号化装置は、オキュパンシーマップを符号化する場合、対応するオキュパンシーマップのヒストグラムの値に1を加算する。例えば、図92の(a)に示されるように、三次元データ符号化装置は、入力されたオキュパンシーマップが25を示す場合、25のオキュパンシーマップに対応するヒストグラムの値に1を加算する。
 次に、三次元データ符号化装置は、更新されたヒストグラムに基づき、辞書インデックスを更新する。つまり、三次元データ符号化装置は、更新されたオキュパンシーマップの発生回数に基づき、発生回数の順序を辞書インデックスとして付与(設定)する。なお、辞書インデックスは、オキュパンシーマップの発生回数、及び、オキュパンシーマップの発生頻度のいずれかを示していればよい。
 例えば、図92の(a)に示されるように、三次元データ符号化装置は、ヒストグラムの値が更新されると、更新されたヒストグラムの値が大きい順にインデックスを付与するため、15のオキュパンシーマップに対応するインデックスを2とし、25のオキュパンシーマップに対応するインデックスを1とし、35のオキュパンシーマップに対応するインデックスを3とする。なお、15のオキュパンシーマップのヒストグラムと、35のオキュパンシーマップのヒストグラムとは同じ値であるが、この場合には、オキュパンシーマップが小さいほうのインデックスを小さい値としてもよい。なお、これに限らずに、オキュパンシーマップが小さい方のインデックスを大きい値としてもよい。
 図92の(b)では、25のオキュパンシーマップが入力され、図92の(c)~(f)のそれぞれでは、35のオキュパンシーマップが入力され、図92の(g)では、15のオキュパンシーマップが入力される。三次元データ符号化装置は、各オキュパンシーマップが入力されると、入力されたオキュパンシーマップに対応するヒストグラムの値に1を加算し、算出されたヒストグラムの値の大きい順に辞書インデックスを付与する。このため、辞書インデックスの値がより小さいことは、オキュパンシーマップの発生頻度(入力頻度)がより大きいことを意味する。
 次に、三次元データ符号化装置は、設定された辞書インデックスを示すインデックス情報を符号化する。三次元データ符号化装置は、バイト単位の符号化では、オキュパンシーマップをインデックス情報に変換することで符号量を削減することが可能である。
 このように、三次元データ符号化装置は、テーブルを用いてオキュパンシーマップに対するインデックス情報を導出し、導出したインデックス情報を符号化する。その後、三次元データ符号化装置は、記憶装置(メモリ)に保存されているテーブルを、更新されたヒストグラムと、設定されたインデックスとの関係を示すテーブルに更新する。
 三次元データ復号装置は、符号化ビットストリームから、符号化ビットストリームに含まれるインデックス情報を復号し、三次元データ符号化装置と同様の手法で、記憶装置(メモリ)に保存されているテーブルを用いてオキュパンシーマップを導出する。その後、三次元データ符号化装置と同様の手法を用いてテーブルを更新する。
 テーブルにおけるヒストグラム及びインデックス情報は、スライス(データユニット)におけるオキュパンシーマップの符号化が完了するまで更新され、次のスライスの先頭で初期化されてもよい。また、スライスの最後に用いられたテーブルは記憶され、次のスライスの符号化で記憶されたテーブルが継続して用いられてもよい。バイト単位のエントロピー符号化では、前のスライスで学習されたテーブルを、次のスライスでの符号化に引き継いで用いることで符号化の向上を期待できる。このように、ビット単位の符号化ではコンテキスト引き継ぐのに対して、バイト単位の符号化ではテーブルを引き継ぐ点で、ビット単位の符号化とバイト単位の符号化とは異なる。
 なお、バイト単位の符号化を例に説明したが、これに限定されるものではない。符号化に、コンテキストを使用せずに、値の発生をカウントするヒストグラム(オキュパンシーマップなど)にテーブルを用いる場合や、その他の学習パラメータなど符号化に用いる付加情報でも同様に適用できる。また、この手法は、位置情報の符号化だけでなく、属性情報の符号化にも適用できる。付加情報を記憶装置(メモリ)に保存し、次のデータユニットに保存した付加情報を適用する場合であっても、符号化率の向上が期待できる。
 図93は、三次元データ符号化装置によるオキュパンシーマップの符号化のフローチャートである。
 三次元データ符号化装置は、データユニット毎に三次元点をN分木表現に変換し、ノード毎のオキュパンシーマップの符号化を開始する(S12111)。三次元データ符号化装置は、処理対象のデータユニットに含まれる複数の三次元点のそれぞれについて、当該三次元点の位置情報をN分木表現(例えば、8分木表現)に変換することで、オキュパンシーマップを生成する。つまり、三次元データ符号化装置は、符号化対象のデータユニットに含まれる複数の三次元点の複数の位置情報を8分木を用いて複数のオキュパンシーマップに変換する。
 次に、三次元データ符号化装置は、テーブルを用いてオキュパンシーマップに対応するうインデックス情報を生成し、生成したインデックス情報を符号化する(S12112)。三次元データ符号化装置は、複数のオキュパンシーマップのそれぞれを、オキュパンシーマップとインデックスとの対応関係を示すテーブルを用いてインデックスに変換し、インデックスを符号化することで符号化データを生成する。
 次に、三次元データ符号化装置は、オキュパンシーマップを用いて、ヒストグラム及びインデックスを更新することで、記憶装置(メモリ)に保存されているテーブルを更新する(S12113)。三次元データ符号化装置は、変換されたインデックスに応じてテーブルを更新してメモリに記憶する。
 図94は、三次元データ復号装置によるオキュパンシーマップの復号のフローチャートである。
 三次元データ復号装置は、ビットストリーム内のデータユニット毎に、復号処理を開始する(S12121)。ビットストリームは、例えば、複数の三次元点を含むデータユニットが符号化された符号化データと、データユニットの符号化に、当該データユニットの前のデータユニットの符号化に用いられたテーブルを初期化して用いるか否かを示す第1識別情報とを含む。
 次に、三次元データ復号装置は、ビットストリームに含まれる、符号化されたインデックス情報を復号し、復号したインデックス情報と、記憶装置(メモリ)に保存されているテーブルを用いて、インデックス情報が示すインデックスに対するオキュパンシーマップを導出する(S12122)。つまり、三次元データ復号装置は、符号化データを復号することで得られたインデックスがテーブルにおいて対応するオキュパンシーマップを導出することで三次元点の位置情報を算出する。
 次に、三次元データ復号装置は、オキュパンシーマップを用いて、ヒストグラム及びインデックスを更新することで、記憶装置(メモリ)に保存されているテーブルを更新する(S12123)。
 図95は、三次元データ符号化装置におけるエントロピー符号化方式を切り替える処理のフローチャートである。
 三次元データ符号化装置は、符号化方式がビット単位であるか否かバイト単位であるかを判定する(S12131)。
 三次元データ符号化装置は、符号化方式がビット単位であると判定した場合(S12131で「ビット単位」)、ビット単位のエントロピー符号化の継続方法で符号化を実行する(S12132)。
 三次元データ符号化装置は、符号化方式がビット単位であるか否(バイト単位である)かを示すフラグ(bit-wise_flag)をtrueに設定する(S12133)。三次元データ符号化装置は、、当該フラグを含むビットストリームを生成し、三次元データ復号装置へ送信する。
 三次元データ符号化装置は、符号化方式がバイト単位であると判定した場合(S12131で「バイト単位」)、バイト単位のエントロピー符号化の継続方法で符号化を実行する(S12134)。
 三次元データ符号化装置は、符号化方式がビット単位であるか否(バイト単位である)かを示すフラグ(bit-wise_flag)をfalseに設定する(S12133)。三次元データ符号化装置は、、当該フラグを含むビットストリームを生成し、三次元データ復号装置へ送信する。
 図96は、三次元データ符号化装置におけるバイト単位のエントロピー符号化の継続方法のフローチャートである。
 三次元データ符号化装置は、エントロピー符号化を初期化するか否かを判定する(S12141)。三次元データ符号化装置は、バイト単位のエントロピー符号化に用いるテーブルを初期化するか否か、つまり、当該テーブルを継続して用いるか否かを判定する。
 三次元データ符号化装置は、エントロピー符号化を初期化しないと判定した場合(S12142でNo)、つまり、テーブルを継続して用いると判定した場合、前のデータユニットの符号化の際に記憶装置(メモリ)に保存したテーブルを継続して用いて、符号化を実行する(S12142)。
 次に、三次元データ符号化装置は、cabac_init_flagをfalseに設定する(S12143)。つまり、三次元データ符号化装置は、テーブルを継続したか否かを示すフラグ(識別情報)を、テーブルを継続したことを示す値に設定する。
 三次元データ符号化装置は、エントロピー符号化を初期化すると判定した場合(S12142でYes)、つまり、テーブルを継続して用いないと判定した場合、前のデータユニットの符号化の際に記憶装置(メモリ)に保存したテーブルを初期化して、符号化を実行する(S12144)。
 次に、三次元データ符号化装置は、cabac_init_flagをtrueに設定する(S12145)。つまり、三次元データ符号化装置は、テーブルを継続したか否かを示すフラグ(識別情報)を、テーブルを継続しなかったことを示す値に設定する。
 三次元データ符号化装置は、エントロピー符号化に応じてテーブルを更新し、更新したテーブルを記憶装置(メモリ)に保存する(S12146)。
 図97は、三次元データ復号装置におけるエントロピー復号方式を切り替える処理のフローチャートである。
 三次元データ復号装置は、ビットストリームに含まれる復号対象のデータユニットに対応するbit-wise_flagを解析する(S12151)。
 次に、三次元データ復号装置は、解析の結果、復号対象のデータユニットの符号化方式がビット単位であるか否かバイト単位であるかを判定する(S12152)。つまり、三次元データ復号装置は、復号対象のデータユニットに対応するbit-wise_flagがtrueを示すか否かを判定する。
 三次元データ復号装置は、復号対象のデータユニットの符号化方式がビット単位である場合、つまり、bit-wise_flagがtrueを示す場合、ビット単位のエントロピー符号化の継続方法で復号を実行する(S12153)。
 三次元データ復号装置は、復号対象のデータユニットの符号化方式がバイト単位である場合、つまり、bit-wise_flagがfalseを示す場合、バイト単位のエントロピー符号化の継続方法で復号を実行する(S12154)。
 図98は、三次元データ復号装置におけるバイト単位のエントロピー復号の継続方法のフローチャートである。
 三次元データ復号装置は、ビットストリームに含まれるcabac_init_flagを解析する(S12161)。
 次に、三次元データ復号装置は、cabac_init_flagがtrueを示すか否かを判定する(S12162)。
 三次元データ復号装置は、cabac_init_flagがfalseを示す場合(S12162でNo)、前のデータユニットの復号において記憶装置(メモリ)に保存したテーブルを継続して用いて、復号を実行する(S12163)。
 三次元データ復号装置は、cabac_init_flagがtrueを示す場合(S12162でYes)、前のデータユニットの復号において記憶装置(メモリ)に保存したテーブルを初期化して、復号を実行する(S12164)。
 三次元データ復号装置は、エントロピー復号に応じてテーブルを更新し、更新したテーブルを記憶装置(メモリ)に保存する(S12165)。
 以上のように、本実施の形態の一態様に係る三次元データ符号化装置は、図99に示す処理を行う。三次元データ符号化装置は、それぞれが複数の三次元点を含む複数のデータユニットを取得する(S12171)。次に、三次元データ符号化装置は、前記複数のデータユニットのそれぞれに含まれる複数の三次元点を符号化する(S12172)。次に、三次元データ符号化装置は、前記複数の三次元点が符号化された符号化データを含むビットストリームを生成する(S12173)。三次元データ符号化装置は、前記符号化(S12172)では、符号化対象のデータユニットに含まれる複数の三次元点の複数の位置情報をN分木を用いて複数のオキュパンシーマップに変換し、前記複数のオキュパンシーマップのそれぞれを、オキュパンシーマップとインデックスとの対応関係を示すテーブルを用いてインデックスに変換し、前記インデックスを符号化することで前記符号化データを生成し、変換されたインデックスに応じて前記テーブルを更新してメモリに記憶し、前記符号化対象のデータユニットの次のデータユニットの先頭の三次元点の符号化の際に、前記メモリに記憶されている前記テーブルを初期化するか否かを決定し、初期化しないと決定された場合、前記メモリに記憶されている前記テーブルを用いて前記次のデータユニットの符号化を開始する。前記ビットストリームは、前記決定の結果を示す第1識別情報をさらに含む。
 これによれば、位置情報が変換されたオキュパンシーマップの符号化の際に、テーブルを用いて得られたインデックスを符号化し、符号化に用いるテーブルを初期化するか否かを示す第1識別情報を含むビットストリームを生成するため、三次元データ復号装置にビットストリームを適切に復号させることができる。
 例えば、前記インデックスは、オキュパンシーマップの発生回数、及び、オキュパンシーマップの発生頻度のいずれかを示す。このため、例えば、発生回数及び発生頻度が大きいほどインデックスを小さい値に設定することで、符号化効率を向上させうる。
 例えば、前記第1識別情報は、前記テーブルを初期化することを示す場合、前のデータユニットのコンテキストを初期化して前記複数の三次元点の複数の属性情報を符号化することを示し、前記テーブルを初期化しないことを示す場合、前記前のデータユニットのコンテキストを継続して用いて前記複数の属性情報を符号化することを示す。
 例えば、前記ビットストリームは、前記複数のデータユニット間でエントロピーを継続する機能を用いるか否かを示す第2識別情報をさらに含む。前記第1識別情報は、前記第2識別情報が前記複数のデータユニット間でエントロピーを継続する機能を用いることを示す場合に、示される。
 例えば、三次元データ符号化装置は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 また、本実施の形態の一態様に係る三次元データ復号装置は、図100に示す処理を行う。三次元データ復号装置は、複数の三次元点を含むデータユニットが符号化された符号化データと、前記データユニットの符号化に、当該データユニットの前のデータユニットの符号化に用いられたテーブルを初期化して用いるか否かを示す第1識別情報とを含むビットストリームを取得する(S12181)。三次元データ符号化装置は、前記第1識別情報に応じたテーブルを用いて前記符号化データを復号する(S12182)。前記テーブルは、三次元点の位置情報がN分木を用いて表現されたオキュパンシーマップと、インデックスとの対応関係を示す。前記符号化データは、符号化された前記インデックスを含む。三次元データ復号装置は、前記復号(S12182)では、前記符号化データを復号することで得られた前記インデックスが前記テーブルにおいて対応するオキュパンシーマップを導出することで三次元点の位置情報を算出する。
 これによれば、符号化データを復号して得られたインデックスと、第1識別情報に応じたテーブルとを用いてオキュパンシーマップを導出できるため、三次元データ復号装置にビットストリームを適切に復号させることができる。
 例えば、前記インデックスは、オキュパンシーマップの発生回数、及び、オキュパンシーマップの発生頻度のいずれかを示す。
 例えば、前記第1識別情報は、前記テーブルを初期化することを示す場合、前のデータユニットのコンテキストを初期化して前記複数の三次元点の複数の属性情報を符号化することを示し、前記テーブルを初期化しないことを示す場合、前記前のデータユニットのコンテキストを継続して用いて前記複数の属性情報を符号化することを示す。
 例えば、前記ビットストリームは、前記複数のデータユニット間でエントロピーを継続する機能を用いるか否かを示す第2識別情報をさらに含む。前記第1識別情報は、前記第2識別情報が前記複数のデータユニット間でエントロピーを継続する機能を用いることを示す場合に、示される。
 例えば、三次元データ復号装置は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 (実施の形態9)
 点群データが複数のデータユニット(スライス)に分割されている場合において、CABACが初期化されている場合、それぞれのデータユニットには依存関係がなく、それぞれ独立に符号化、あるいは復号することが可能である。一方、現在のデータユニット(スライス)のデータ構造では、データを並列処理する機能は、サポートされていない。
 そこで、予測木符号化において、データユニット(スライス)毎のデータ内にある、予測木の単位でコンテキストを初期化する機能、予測木の単位へアクセスする情報を加えることにより、データユニット(スライス)内の複数のデータ単位を並列処理できる機能を提供する。
 図101は、グループ毎にスライスを分けて符号化する場合の三次元点群の一例を示す図である。図102は、ビットストリームの様々な構成の例を示す図である。
 三次元点群は、図101に示すように、複数のデータユニット11401~11404、11411~11413に分割されてもよい。また、複数のデータユニット11401~11404、11411~11413のうちの複数のデータユニット11401~11404はグループ1に分類され、複数のデータユニット11411~11413はグループ2に分類されてもよい。
 次に、図102を用いて、スライスと予測木との関係を説明する。
 三次元データ符号化装置は、ビットストリーム1のように1つのスライスのデータユニットを1つの予測木で符号化してもよいし、ビットストリーム2のように1つのスライスのデータユニットを複数の予測木で符号化してもよい。また、例えば、点群の特性などに基づき、点群をクラスタ化、グループ化することが可能な場合、三次元データ符号化装置は、ビットストリーム4のようにグループごとにスライスに分けて符号化してもよいし、ビットストリーム3のようにスライスに分けずに符号化してもよい。ビットストリームスライスに分けずに符号化する場合、三次元データ符号化装置は、グループごとの順番になるように、点群を並び替え、グループごとに予測木で符号化してもよい。
 図103は、スライス単位のCABACを初期化するか否かをスライスフラグ(slice_cabac_init_flag)で示し、スライス内のtree単位のCABACを初期化するか否かをツリーフラグ(tree_cabac_init_flag)で示す例である。なお、図103におけるビットストリーム1~4は、それぞれ、図102に示されたビットストリーム1~4と同じである。
 三次元データ符号化装置は、それぞれの処理単位の先頭でCABACを初期化する場合、slice_cabac_init_flagまたはtree_cabac_init_flagを1に設定し、1に設定したslice_cabac_init_flagまたはtree_cabac_init_flagをメタデータとして伝送する。なお、1に設定されたslice_cabac_init_flagまたはtree_cabac_init_flagは、それぞれの処理単位の先頭でCABACを初期化することを示す。slice_cabac_init_flagは、スライス単位でCABACの初期化を制御するための初期化フラグである。tree_cabac_init_flagは、木構造単位でCABACの初期化を制御するための初期化フラグである。
 三次元データ復号装置は、メタデータを解析し、slice_cabac_init_flagまたはtree_cabac_init_flagが1の場合にCABACを初期化する。図103では、tree_cabac_init_flagが1を示す場合、または、slice_cabac_init_flagが1を示す場合、CABACが初期化されていることを示し、tree_cabac_init_flagが0を示す場合、または、slice_cabac_init_flagが0を示す場合、CABACを初期化せず、コンテキストが連続していること(つまり、コンテキストが継続して用いられていること)を示す。
 tree_cabac_init_flagが設定されることにより、予測木単位でCABACの初期化が可能となる。tree_cabac_init_flagが設定されることにより、任意の予測木先頭でのリセットが可能であり、例えば、グループごとの先頭でCABACを初期化するようにtree_cabac_init_flagが設定されてもよい。あるいは予測木の符号化パラメータが変わる境界でCABACを初期化するようにtree_cabac_init_flagが設定されてもよい。なお、スライス毎に初期化フラグが示されている場合、スライス先頭の木構造単位の初期化フラグは示さなくてもよい。
 特定のグループの予測テーブルは、互いに類似する特性を有しているため、CABACを継続した方が符号化効率が向上する可能性が高い。よって、ビットストリーム3では、同じグループではCABACが継続されるように、各グループの先頭でCABACが初期化されるように初期化フラグが設定されてもよい。
 図104は、複数の予測木を並列処理で復号する方法について説明するための図である。
 図104では、1つのスライス内で、予測木1、2、5、7の先頭でCABACを初期化するビットストリームが示されている。このようなビットストリームでは、三次元データ復号装置は、予測木1の復号処理と、予測木2~4の復号処理と、予測木5、6の復号処理と、予測木7、8の復号処理とを、それぞれ独立に処理できる。三次元データ復号装置が並列処理をするためには、三次元データ復号装置は、独立に復号可能なデータユニットのメモリの格納場所に直接アクセスする必要がある。このため、三次元データ符号化装置は、符号化データの先頭のオフセット情報(格納場所を示す情報)を符号化データに含める。オフセット情報とは、例えば、スライス先頭からのバイト情報などである。図104では、オフセット2で示されるオフセット情報は、スライス先頭から予測木2の符号化データまでのバイト数である。オフセット情報は、予測木毎に示されてもよいし、独立に処理が可能な1以上の予測木の単位ごとに示されてもよい。また、オフセットD_56のように、予測木6の直前の予測木5の先頭からの差分のバイト数で示されてもよい。
 図105は、三次元データ符号化方法の一例を示す図である。
 三次元データ符号化装置は、スライス毎に予測木符号化を実行する(S11441)。
 次に、三次元データ符号化装置は、予測木を生成し、予測木毎のエントロピー符号化を実行する(S11442)。
 次に、三次元データ符号化装置は、木構造(予測木)の先頭でコンテキストを継続するか否かを判定する(S11443)。
 三次元データ符号化装置は、木構造(予測木)の先頭でコンテキストを継続しないと判定した場合(S11443でNo)、コンテキストを初期化し、tree_cabac_init_flagを1に設定する(S11444)。
 次に、三次元データ符号化装置は、木構造の先頭のオフセット情報(格納場所を示す情報)を記憶する(S11445)。
 一方で、三次元データ符号化装置は、木構造(予測木)の先頭でコンテキストを継続すると判定した場合(S11443でYes)、コンテキストを継続し、tree_cabac_init_flagを0に設定する(S11446)。
 次に、三次元データ符号化装置は、所定の方法で、tree_cabac_init_flag及びオフセット情報のうちの少なくともtree_cabac_init_flagをシグナリングする(S11447)。
 図106は、三次元データ復号方法の一例を示す図である。
 三次元データ復号装置は、tree_cabac_init_flagを解析する(S11451)。
 次に、三次元データ復号装置は、tree_cabac_init_flagが、木構造(予測木)の先頭でコンテキストを継続することを示すか否かを判定する(S11452)。
 三次元データ復号装置は、tree_cabac_init_flagが、木構造(予測木)の先頭でコンテキストを継続しないことを示す場合(S11452でNo)、コンテキストを初期化し、エントロピー復号を実行する(S11453)。
 三次元データ復号装置は、tree_cabac_init_flagが、木構造(予測木)の先頭でコンテキストを継続することを示す場合(S11452でYes)、コンテキストを継続して用いて、エントロピー復号を実行する(S11454)。
 図107は、三次元データ復号方法において並列復号する場合の一例を示す図である。
 三次元データ復号装置は、並列復号を実施するか否かを判定する(S11461)。
 三次元データ復号装置は、並列復号を実施すると判定した場合(S11461でYes)、オフセット情報に基づき並列符号化単位にアクセスし、複数の符号化単位を並列で復号する(S11462)。
 このように、三次元データ符号化装置は、CABACを初期化して木構造における依存関係をなくすことで、独立して処理することができる。また、木構造の先頭のオフセット情報が示されるため、三次元データ復号装置は、複数の予測木で符号化された複数の符号化データにランダムアクセスすることができるため、独立して復号処理させることができ、並列で復号処理することができる。また、三次元データ符号化装置及び三次元データ復号装置は、tree_cabac_init_flagに基づいてCABACを初期化するため、符号化時と復号時における初期化のタイミングを同一にすることができる。
 図108は、位置情報のデータに初期化フラグを格納する場合の位置情報のデータユニットのシンタックスの一例を示す図である。
 位置情報のデータユニットにおいて、予測木符号化の符号化データは、三次元点毎のループ内に、ノード情報、例えば予測モード(pred_mode)などが示されても良い。pred_mode=0(ダイレクトモード)の場合は、当該ノードはルートノードであることを示す。ルートノードは、予測木の先頭のノード(三次元点)であり、処理対象がルートノードの場合、当該ルートノードでCABACが初期化されているか否かを示す初期化フラグ(tree_cabac_init_flag)が示されてもよい。なお、初期化フラグでなく、ランダムアクセスフラグでCABACが初期化されているか否かが示されてもよい。例えば、ランダムアクセスフラグがONの場合には、必ずCABACは初期化されているとみなされてもよい。
 図109は、位置情報のヘッダに初期化フラグ及びオフセット情報を格納する場合のヘッダのシンタックスの一例を示す図である。
 初期化フラグ及びオフセット情報は、位置情報のデータユニットヘッダにまとめて示されてもよい。位置情報のデータユニットヘッダには、位置情報のデータユニットに含まれる予測木の数(num_predtree_minus2)が示されてもよく、予測木毎のtree_cabac_init_flagが示されてもよい。また、tree_cabac_init_flagが1に設定されている場合、データユニットヘッダには、オフセット情報が示される。オフセット情報は、データユニットの先頭からのオフセット(差分情報)であってもよいし、前の予測木の先頭からのオフセット(差分情報)であってもよい。なお、num_predtree_minus2として、先頭の予測木の情報をヘッダに含めないように設定されてもよいし、num_predtree_minus1として、先頭の予測木の情報をヘッダに含めるように設定されてもよい。
 図110は、位置情報のヘッダに初期化フラグ及びオフセット情報をランダムアクセス単位で格納する場合のヘッダのシンタックスの一例を示す図である。
 num_rapは、並列復号可能(ランダムアクセス)な単位の数を示す。オフセット情報は、並列復号可能な単位のそれぞれで示されてもよい。なお、tree_cabac_init_flagは、示されずに、当該オフセット情報で示される予測木の先頭で、CABACが初期化されてもよい。
 また、位置情報のデータ内に予測木毎に識別子(tree_id)を示し、当該ヘッダにおいて、ランダムアクセス可能な予測木の識別子(tree_id)が示されてもよい。このように、予測木の番号を明示することにより予測木の順番を判定(識別)することができる。
 オフセット情報は、ヘッダに示される必要があり、tree_cabac_init_flagは、データ、ヘッダのいずれで示されてもよい。オフセット情報は、ヘッダに示され、tree_cabac_init_flagはデータに示されてもよい。
 なお、CABACを初期化する場合、CABACの初期値は、あらかじめ定められた値に設定されてもよいし、cabac_init_flagまたはoffsetと同様にシグナリングされてもよい。
 また、属性情報についても、位置情報と同様の方法を用いることにより並列処理が可能となる。同様のシグナリング方法を用いて、初期化フラグまたはオフセット情報が示されてもよい。初期化フラグは、属性情報のヘッダあるいはデータに含めてもよい。
 なお、並列復号可能な単位は、位置情報と属性情報とで共通にしてもよい。この場合、属性情報の並列復号可能な単位の情報、及び、初期化フラグは、位置情報と共通であるため位置情報のヘッダに示され、属性情報におけるオフセット情報は、属性情報のヘッダに示されてもよい。
 (実施の形態10)
 次に、本実施の形態に係る三次元データ作成装置810の構成を説明する。図111は、本実施の形態に係る三次元データ作成装置810の構成例を示すブロック図である。この三次元データ作成装置810は、例えば、車両に搭載される。三次元データ作成装置810は、外部の交通監視クラウド、前走車両又は後続車両と三次元データの送受信を行うとともに、三次元データを作成及び蓄積する。
 三次元データ作成装置810は、データ受信部811と、通信部812と、受信制御部813と、フォーマット変換部814と、複数のセンサ815と、三次元データ作成部816と、三次元データ合成部817と、三次元データ蓄積部818と、通信部819と、送信制御部820と、フォーマット変換部821と、データ送信部822とを備える。
 データ受信部811は、交通監視クラウド又は前走車両から三次元データ831を受信する。三次元データ831は、例えば、自車両のセンサ815で検知不能な領域を含む、ポイントクラウド、可視光映像、奥行き情報、センサ位置情報、又は速度情報などの情報を含む。
 通信部812は、交通監視クラウド又は前走車両と通信し、データ送信要求などを交通監視クラウド又は前走車両に送信する。
 受信制御部813は、通信部812を介して、対応フォーマット等の情報を通信先と交換し、通信先との通信を確立する。
 フォーマット変換部814は、データ受信部811が受信した三次元データ831にフォーマット変換等を行うことで三次元データ832を生成する。また、フォーマット変換部814は、三次元データ831が圧縮又は符号化されている場合には、伸張又は復号処理を行う。
 複数のセンサ815は、LiDAR、可視光カメラ又は赤外線カメラなどの、車両の外部の情報を取得するセンサ群であり、センサ情報833を生成する。例えば、センサ情報833は、センサ815がLiDARなどのレーザセンサである場合、ポイントクラウド(点群データ)等の三次元データである。なお、センサ815は複数でなくてもよい。
 三次元データ作成部816は、センサ情報833から三次元データ834を生成する。三次元データ834は、例えば、ポイントクラウド、可視光映像、奥行き情報、センサ位置情報、又は速度情報などの情報を含む。
 三次元データ合成部817は、自車両のセンサ情報833に基づいて作成された三次元データ834に、交通監視クラウド又は前走車両等が作成した三次元データ832を合成することで、自車両のセンサ815では検知できない前走車両の前方の空間も含む三次元データ835を構築する。
 三次元データ蓄積部818は、生成された三次元データ835等を蓄積する。
 通信部819は、交通監視クラウド又は後続車両と通信し、データ送信要求などを交通監視クラウド又は後続車両に送信する。
 送信制御部820は、通信部819を介して、対応フォーマット等の情報を通信先と交換し、通信先と通信を確立する。また、送信制御部820は、三次元データ合成部817で生成された三次元データ832の三次元データ構築情報と、通信先からのデータ送信要求とに基づき、送信対象の三次元データの空間である送信領域を決定する。
 具体的には、送信制御部820は、交通監視クラウド又は後続車両からのデータ送信要求に応じて、後続車両のセンサでは検知できない自車両の前方の空間を含む送信領域を決定する。また、送信制御部820は、三次元データ構築情報に基づいて送信可能な空間又は送信済み空間の更新有無等を判断することで送信領域を決定する。例えば、送信制御部820は、データ送信要求で指定された領域であり、かつ、対応する三次元データ835が存在する領域を送信領域に決定する。そして、送信制御部820は、通信先が対応するフォーマット、及び送信領域をフォーマット変換部821に通知する。
 フォーマット変換部821は、三次元データ蓄積部818に蓄積されている三次元データ835のうち、送信領域の三次元データ836を、受信側が対応しているフォーマットへ変換することで三次元データ837を生成する。なお、フォーマット変換部821は、三次元データ837を圧縮又は符号化することでデータ量を削減してもよい。
 データ送信部822は、三次元データ837を交通監視クラウド又は後続車両に送信する。この三次元データ837は、例えば、後続車両の死角になる領域を含む、自車両の前方のポイントクラウド、可視光映像、奥行き情報、又はセンサ位置情報などの情報を含む。
 なお、ここでは、フォーマット変換部814及び821にてフォーマット変換等が行われる例を述べたが、フォーマット変換は行われなくてもよい。
 このような構成により、三次元データ作成装置810は、自車両のセンサ815では検知できない領域の三次元データ831を外部から取得し、三次元データ831と自車両のセンサ815で検知したセンサ情報833に基づく三次元データ834とを合成することで三次元データ835を生成する。これにより、三次元データ作成装置810は、自車両のセンサ815で検知できない範囲の三次元データを生成できる。
 また、三次元データ作成装置810は、交通監視クラウド又は後続車両からのデータ送信要求に応じて、後続車両のセンサでは検知できない自車両の前方の空間を含む三次元データを、交通監視クラウド又は後続車両等へ送信できる。
 次に、三次元データ作成装置810における後続車両への三次元データの送信手順について説明する。図112は、三次元データ作成装置810による交通監視クラウド又は後続車両へ三次元データを送信する手順の一例を示すフローチャートである。
 まず、三次元データ作成装置810は、自車両の前方道路上の空間を含む空間の三次元データ835を生成及び更新する(S801)。具体的には、三次元データ作成装置810は、自車両のセンサ情報833に基づいて作成した三次元データ834に、交通監視クラウド又は前走車両等が作成した三次元データ831を合成するなどして、自車両のセンサ815では検知できない前走車両の前方の空間も含む三次元データ835を構築する。
 次に、三次元データ作成装置810は、送信済みの空間に含まれる三次元データ835が変化したかを判定する(S802)。
 送信済みの空間に外部から車両又は人が進入するなどして、当該空間に含まれる三次元データ835に変化が生じた場合には(S802でYes)、三次元データ作成装置810は、変化が生じた空間の三次元データ835を含む三次元データを交通監視クラウド又は後続車両に送信する(S803)。
 なお、三次元データ作成装置810は、変化が生じた空間の三次元データを、所定間隔で送信する三次元データの送信タイミングに合わせて送信してもよいが、変化を検知した後すぐに送信してもよい。つまり、三次元データ作成装置810は、変化が生じた空間の三次元データを、所定間隔で送信する三次元データよりも優先して送信してもよい。
 また、三次元データ作成装置810は、変化が生じた空間の三次元データとして、変化が生じた空間の三次元データの全てを送信してもよいし、三次元データの差分(例えば出現又は消失した三次元点の情報、又は三次元点の変位情報など)のみを送信してもよい。
 また、三次元データ作成装置810は、変化が生じた空間の三次元データに先行して、急制動警報など自車両の危険回避動作に関するメタデータを後続車両へ送信してもよい。これによれば、後続車両は前走車両の急制動などを早期に認知でき、より早期に減速などの危険回避動作を開始できる。
 送信済みの空間に含まれる三次元データ835に変化が生じていない場合(S802でNo)、又は、ステップS803の後、三次元データ作成装置810は、自車両の前方距離Lにある所定の形状の空間に含まれる三次元データを、交通監視クラウド又は後続車両へ送信する(S804)。
 また、例えば、ステップS801~S804の処理は、所定の時間間隔で繰り返し行われる。
 また、三次元データ作成装置810は、現在の送信対象の空間の三次元データ835と、三次元地図とに差がない場合には、空間の三次元データ837を送信しなくてもよい。
 本実施の形態では、クライアント装置は、サーバ又は他のクライアント装置にセンサで得られたセンサ情報を送信する。
 まず、本実施の形態に係るシステムの構成を説明する。図113は、本実施の形態に係る三次元マップ及びセンサ情報の送受信システムの構成を示す図である。このシステムは、サーバ901と、クライアント装置902A及び902Bを含む。なお、クライアント装置902A及び902Bを特に区別しない場合には、クライアント装置902とも記す。
 クライアント装置902は、例えば、車両等の移動体に搭載される車載機器である。サーバ901は、例えば、交通監視クラウド等であり、複数のクライアント装置902と通信可能である。
 サーバ901は、クライアント装置902に、ポイントクラウドから構成される三次元マップを送信する。なお、三次元マップの構成はポイントクラウドに限定されず、メッシュ構造等、他の三次元データを表すものであってもよい。
 クライアント装置902は、サーバ901に、クライアント装置902が取得したセンサ情報を送信する。センサ情報は、例えば、LiDAR取得情報、可視光画像、赤外画像、デプス画像、センサ位置情報及び速度情報のうち少なくとも一つを含む。
 サーバ901とクライアント装置902との間で送受信されるデータは、データ削減のために圧縮されてもよいし、データの精度を維持するために非圧縮のままでも構わない。データを圧縮する場合、ポイントクラウドには例えば8分木構造に基づく三次元圧縮方式を用いることができる。また、可視光画像、赤外画像、及びデプス画像には二次元の画像圧縮方式を用いることできる。二次元の画像圧縮方式とは、例えば、MPEGで規格化されたMPEG-4 AVC又はHEVC等である。
 また、サーバ901は、クライアント装置902からの三次元マップの送信要求に応じてサーバ901で管理する三次元マップをクライアント装置902に送信する。なお、サーバ901はクライアント装置902からの三次元マップの送信要求を待たずに三次元マップを送信してもよい。例えば、サーバ901は、予め定められた空間にいる1つ以上のクライアント装置902に三次元マップをブロードキャストしても構わない。また、サーバ901は、一度送信要求を受けたクライアント装置902に、一定時間毎にクライアント装置902の位置に適した三次元マップを送信してもよい。また、サーバ901は、サーバ901が管理する三次元マップが更新される度にクライアント装置902に三次元マップを送信してもよい。
 クライアント装置902は、サーバ901に三次元マップの送信要求を出す。例えば、クライアント装置902が、走行時に自己位置推定を行いたい場合に、クライアント装置902は、三次元マップの送信要求をサーバ901に送信する。
 なお、次のような場合に、クライアント装置902はサーバ901に三次元マップの送信要求を出してもよい。クライアント装置902の保持する三次元マップが古い場合に、クライアント装置902はサーバ901に三次元マップの送信要求を出してもよい。例えば、クライアント装置902が三次元マップを取得してから一定期間が経過した場合に、クライアント装置902はサーバ901に三次元マップの送信要求を出してもよい。
 クライアント装置902が保持する三次元マップで示される空間から、クライアント装置902が外に出る一定時刻前に、クライアント装置902はサーバ901に三次元マップの送信要求を出してもよい。例えば、クライアント装置902が、クライアント装置902が保持する三次元マップで示される空間の境界から予め定められた距離以内に存在する場合に、クライアント装置902はサーバ901に三次元マップの送信要求を出してもよい。また、クライアント装置902の移動経路及び移動速度が把握できている場合には、これらに基づき、クライアント装置902が保持する三次元マップで示される空間から、クライアント装置902が外に出る時刻を予測してもよい。
 クライアント装置902がセンサ情報から作成した三次元データと三次元マップとの位置合せ時の誤差が一定以上の場合に、クライアント装置902はサーバ901に三次元マップの送信要求を出してもよい。
 クライアント装置902は、サーバ901から送信されたセンサ情報の送信要求に応じて、サーバ901にセンサ情報を送信する。なお、クライアント装置902はサーバ901からのセンサ情報の送信要求を待たずにセンサ情報をサーバ901に送ってもよい。例えば、クライアント装置902は、一度サーバ901からセンサ情報の送信要求を得た場合、一定期間の間、定期的にセンサ情報をサーバ901に送信してもよい。また、クライアント装置902は、クライアント装置902がセンサ情報を元に作成した三次元データと、サーバ901から得た三次元マップとの位置合せ時の誤差が一定以上の場合、クライアント装置902の周辺の三次元マップに変化が生じた可能性があると判断し、その旨とセンサ情報とをサーバ901に送信してもよい。
 サーバ901は、クライアント装置902にセンサ情報の送信要求を出す。例えば、サーバ901は、クライアント装置902から、GPS等のクライアント装置902の位置情報を受信する。サーバ901は、クライアント装置902の位置情報に基づき、サーバ901が管理する三次元マップにおいて情報が少ない空間にクライアント装置902が近づいていると判断した場合、新たな三次元マップを生成するためにクライアント装置902にセンサ情報の送信要求を出す。また、サーバ901は、三次元マップを更新したい場合、積雪時或いは災害時などの道路状況を確認したい場合、渋滞状況、或いは事件事故状況等を確認したい場合に、センサ情報の送信要求を出してもよい。
 また、クライアント装置902は、サーバ901から受け取るセンサ情報の送信要求の受信時における通信状態又は帯域に応じて、サーバ901に送信するセンサ情報のデータ量を設定してもよい。サーバ901に送信するセンサ情報のデータ量を設定するというのは、例えば、当該データそのものを増減させること、又は圧縮方式を適宜選択することである。
 図114は、クライアント装置902の構成例を示すブロック図である。クライアント装置902は、サーバ901からポイントクラウド等で構成される三次元マップを受信し、クライアント装置902のセンサ情報に基づいて作成した三次元データからクライアント装置902の自己位置を推定する。また、クライアント装置902は、取得したセンサ情報をサーバ901に送信する。
 クライアント装置902は、データ受信部1011と、通信部1012と、受信制御部1013と、フォーマット変換部1014と、複数のセンサ1015と、三次元データ作成部1016と、三次元画像処理部1017と、三次元データ蓄積部1018と、フォーマット変換部1019と、通信部1020と、送信制御部1021と、データ送信部1022とを備える。
 データ受信部1011は、サーバ901から三次元マップ1031を受信する。三次元マップ1031は、WLD又はSWLD等のポイントクラウドを含むデータである。三次元マップ1031には、圧縮データ、及び非圧縮データのどちらが含まれていてもよい。
 通信部1012は、サーバ901と通信し、データ送信要求(例えば、三次元マップの送信要求)などをサーバ901に送信する。
 受信制御部1013は、通信部1012を介して、対応フォーマット等の情報を通信先と交換し、通信先との通信を確立する。
 フォーマット変換部1014は、データ受信部1011が受信した三次元マップ1031にフォーマット変換等を行うことで三次元マップ1032を生成する。また、フォーマット変換部1014は、三次元マップ1031が圧縮又は符号化されている場合には、伸張又は復号処理を行う。なお、フォーマット変換部1014は、三次元マップ1031が非圧縮データであれば、伸張又は復号処理を行わない。
 複数のセンサ1015は、LiDAR、可視光カメラ、赤外線カメラ、又はデプスセンサなど、クライアント装置902が搭載されている車両の外部の情報を取得するセンサ群であり、センサ情報1033を生成する。例えば、センサ情報1033は、センサ1015がLiDARなどのレーザセンサである場合、ポイントクラウド(点群データ)等の三次元データである。なお、センサ1015は複数でなくてもよい。
 三次元データ作成部1016は、センサ情報1033に基づいて自車両の周辺の三次元データ1034を作成する。例えば、三次元データ作成部1016は、LiDARで取得した情報と、可視光カメラで得られた可視光映像とを用いて自車両の周辺の色情報付きのポイントクラウドデータを作成する。
 三次元画像処理部1017は、受信したポイントクラウド等の三次元マップ1032と、センサ情報1033から生成した自車両の周辺の三次元データ1034とを用いて、自車両の自己位置推定処理等を行う。なお、三次元画像処理部1017は、三次元マップ1032と三次元データ1034とを合成することで自車両の周辺の三次元データ1035を作成し、作成した三次元データ1035を用いて自己位置推定処理を行ってもよい。
 三次元データ蓄積部1018は、三次元マップ1032、三次元データ1034及び三次元データ1035等を蓄積する。
 フォーマット変換部1019は、センサ情報1033を、受信側が対応しているフォーマットへ変換することでセンサ情報1037を生成する。なお、フォーマット変換部1019は、センサ情報1037を圧縮又は符号化することでデータ量を削減してもよい。また、フォーマット変換部1019は、フォーマット変換をする必要がない場合は処理を省略してもよい。また、フォーマット変換部1019は、送信範囲の指定に応じて送信するデータ量を制御してもよい。
 通信部1020は、サーバ901と通信し、データ送信要求(センサ情報の送信要求)などをサーバ901から受信する。
 送信制御部1021は、通信部1020を介して、対応フォーマット等の情報を通信先と交換し、通信を確立する。
 データ送信部1022は、センサ情報1037をサーバ901に送信する。センサ情報1037は、例えば、LiDARで取得した情報、可視光カメラで取得した輝度画像、赤外線カメラで取得した赤外画像、デプスセンサで取得したデプス画像、センサ位置情報、及び速度情報など、複数のセンサ1015によって取得した情報を含む。
 次に、サーバ901の構成を説明する。図115は、サーバ901の構成例を示すブロック図である。サーバ901は、クライアント装置902から送信されたセンサ情報を受信し、受信したセンサ情報に基づいて三次元データを作成する。サーバ901は、作成した三次元データを用いて、サーバ901が管理する三次元マップを更新する。また、サーバ901は、クライアント装置902からの三次元マップの送信要求に応じて、更新した三次元マップをクライアント装置902に送信する。
 サーバ901は、データ受信部1111と、通信部1112と、受信制御部1113と、フォーマット変換部1114と、三次元データ作成部1116と、三次元データ合成部1117と、三次元データ蓄積部1118と、フォーマット変換部1119と、通信部1120と、送信制御部1121と、データ送信部1122とを備える。
 データ受信部1111は、クライアント装置902からセンサ情報1037を受信する。センサ情報1037は、例えば、LiDARで取得した情報、可視光カメラで取得した輝度画像、赤外線カメラで取得した赤外画像、デプスセンサで取得したデプス画像、センサ位置情報、及び速度情報などを含む。
 通信部1112は、クライアント装置902と通信し、データ送信要求(例えば、センサ情報の送信要求)などをクライアント装置902に送信する。
 受信制御部1113は、通信部1112を介して、対応フォーマット等の情報を通信先と交換し、通信を確立する。
 フォーマット変換部1114は、受信したセンサ情報1037が圧縮又は符号化されている場合には、伸張又は復号処理を行うことでセンサ情報1132を生成する。なお、フォーマット変換部1114は、センサ情報1037が非圧縮データであれば、伸張又は復号処理を行わない。
 三次元データ作成部1116は、センサ情報1132に基づいてクライアント装置902の周辺の三次元データ1134を作成する。例えば、三次元データ作成部1116は、LiDARで取得した情報と、可視光カメラで得られた可視光映像とを用いてクライアント装置902の周辺の色情報付ポイントクラウドデータを作成する。
 三次元データ合成部1117は、センサ情報1132を元に作成した三次元データ1134を、サーバ901が管理する三次元マップ1135に合成することで三次元マップ1135を更新する。
 三次元データ蓄積部1118は、三次元マップ1135等を蓄積する。
 フォーマット変換部1119は、三次元マップ1135を、受信側が対応しているフォーマットへ変換することで三次元マップ1031を生成する。なお、フォーマット変換部1119は、三次元マップ1135を圧縮又は符号化することでデータ量を削減してもよい。また、フォーマット変換部1119は、フォーマット変換をする必要がない場合は処理を省略してもよい。また、フォーマット変換部1119は、送信範囲の指定に応じて送信するデータ量を制御してもよい。
 通信部1120は、クライアント装置902と通信し、データ送信要求(三次元マップの送信要求)などをクライアント装置902から受信する。
 送信制御部1121は、通信部1120を介して、対応フォーマット等の情報を通信先と交換し、通信を確立する。
 データ送信部1122は、三次元マップ1031をクライアント装置902に送信する。三次元マップ1031は、WLD又はSWLD等のポイントクラウドを含むデータである。三次元マップ1031には、圧縮データ、及び非圧縮データのどちらが含まれていてもよい。
 次に、クライアント装置902の動作フローについて説明する。図116は、クライアント装置902による三次元マップ取得時の動作を示すフローチャートである。
 まず、クライアント装置902は、サーバ901へ三次元マップ(ポイントクラウド等)の送信を要求する(S1001)。このとき、クライアント装置902は、GPS等で得られたクライアント装置902の位置情報を合わせて送信することで、その位置情報に関連する三次元マップの送信をサーバ901に要求してもよい。
 次に、クライアント装置902は、サーバ901から三次元マップを受信する(S1002)。受信した三次元マップが圧縮データであれば、クライアント装置902は、受信した三次元マップを復号して非圧縮の三次元マップを生成する(S1003)。
 次に、クライアント装置902は、複数のセンサ1015で得られたセンサ情報1033からクライアント装置902の周辺の三次元データ1034を作成する(S1004)。次に、クライアント装置902は、サーバ901から受信した三次元マップ1032と、センサ情報1033から作成した三次元データ1034とを用いてクライアント装置902の自己位置を推定する(S1005)。
 図117は、クライアント装置902によるセンサ情報の送信時の動作を示すフローチャートである。まず、クライアント装置902は、サーバ901からセンサ情報の送信要求を受信する(S1011)。送信要求を受信したクライアント装置902は、センサ情報1037をサーバ901に送信する(S1012)。なお、クライアント装置902は、センサ情報1033が複数のセンサ1015で得られた複数の情報を含む場合、各情報を、各情報に適した圧縮方式で圧縮することでセンサ情報1037を生成してもよい。
 次に、サーバ901の動作フローについて説明する。図118は、サーバ901によるセンサ情報の取得時の動作を示すフローチャートである。まず、サーバ901は、クライアント装置902へセンサ情報の送信を要求する(S1021)。次に、サーバ901は、当該要求に応じてクライアント装置902から送信されたセンサ情報1037を受信する(S1022)。次に、サーバ901は、受信したセンサ情報1037を用いて三次元データ1134を作成する(S1023)。次に、サーバ901は、作成した三次元データ1134を三次元マップ1135に反映する(S1024)。
 図119は、サーバ901による三次元マップの送信時の動作を示すフローチャートである。まず、サーバ901は、クライアント装置902から三次元マップの送信要求を受信する(S1031)。三次元マップの送信要求を受信したサーバ901は、クライアント装置902へ三次元マップ1031を送信する(S1032)。このとき、サーバ901は、クライアント装置902の位置情報に合わせてその付近の三次元マップを抽出し、抽出した三次元マップを送信してもよい。また、サーバ901は、ポイントクラウドで構成される三次元マップを、例えば8分木構造による圧縮方式等を用いて圧縮し、圧縮後の三次元マップを送信してもよい。
 以下、本実施の形態の変形例について説明する。
 サーバ901は、クライアント装置902から受信したセンサ情報1037を用いてクライアント装置902の位置付近の三次元データ1134を作成する。次に、サーバ901は、作成した三次元データ1134と、サーバ901が管理する同エリアの三次元マップ1135とのマッチングを行うことによって、三次元データ1134と三次元マップ1135との差分を算出する。サーバ901は、差分が予め定められた閾値以上の場合は、クライアント装置902の周辺で何らかの異常が発生したと判断する。例えば、地震等の自然災害によって地盤沈下等が発生した際などに、サーバ901が管理する三次元マップ1135と、センサ情報1037を基に作成した三次元データ1134との間に大きな差が発生することが考えられる。
 センサ情報1037は、センサの種類、センサの性能、及びセンサの型番のうち少なくとも一つを示す情報を含んでもよい。また、センサ情報1037に、センサの性能に応じたクラスID等が付加されてもよい。例えば、センサ情報1037がLiDARで取得された情報である場合、数mm単位の精度で情報を取得できるセンサをクラス1、数cm単位の精度で情報を取得できるセンサをクラス2、数m単位の精度で情報を取得できるセンサをクラス3のように、センサの性能に識別子を割り当てることが考えられる。また、サーバ901は、センサの性能情報等を、クライアント装置902の型番から推定してもよい。例えば、クライアント装置902が車両に搭載されている場合、サーバ901は、当該車両の車種からセンサのスペック情報を判断してもよい。この場合、サーバ901は、車両の車種の情報を事前に取得していてもよいし、センサ情報に、当該情報が含まれてもよい。また、サーバ901は取得したセンサ情報1037を用いて、センサ情報1037を用いて作成した三次元データ1134に対する補正の度合いを切り替えてもよい。例えば、センサ性能が高精度(クラス1)である場合、サーバ901は、三次元データ1134に対する補正を行わない。センサ性能が低精度(クラス3)である場合、サーバ901は、三次元データ1134に、センサの精度に応じた補正を適用する。例えば、サーバ901は、センサの精度が低いほど補正の度合い(強度)を強くする。
 サーバ901は、ある空間にいる複数のクライアント装置902に同時にセンサ情報の送信要求を出してもよい。サーバ901は、複数のクライアント装置902から複数のセンサ情報を受信した場合に、全てのセンサ情報を三次元データ1134の作成に利用する必要はなく、例えば、センサの性能に応じて、利用するセンサ情報を選択してもよい。例えば、サーバ901は、三次元マップ1135を更新する場合、受信した複数のセンサ情報の中から高精度なセンサ情報(クラス1)を選別し、選別したセンサ情報を用いて三次元データ1134を作成してもよい。
 サーバ901は、交通監視クラウド等のサーバのみに限定されず、他のクライアント装置(車載)であってもよい。図120は、この場合のシステム構成を示す図である。
 例えば、クライアント装置902Cが近くにいるクライアント装置902Aにセンサ情報の送信要求を出し、クライアント装置902Aからセンサ情報を取得する。そして、クライアント装置902Cは、取得したクライアント装置902Aのセンサ情報を用いて三次元データを作成し、クライアント装置902Cの三次元マップを更新する。これにより、クライアント装置902Cは、クライアント装置902Aから取得可能な空間の三次元マップを、クライアント装置902Cの性能を活かして生成できる。例えば、クライアント装置902Cの性能が高い場合に、このようなケースが発生すると考えられる。
 また、この場合、センサ情報を提供したクライアント装置902Aは、クライアント装置902Cが生成した高精度な三次元マップを取得する権利が与えられる。クライアント装置902Aは、その権利に従ってクライアント装置902Cから高精度な三次元マップを受信する。
 また、クライアント装置902Cは近くにいる複数のクライアント装置902(クライアント装置902A及びクライアント装置902B)にセンサ情報の送信要求を出してもよい。クライアント装置902A又はクライアント装置902Bのセンサが高性能である場合には、クライアント装置902Cは、この高性能なセンサで得られたセンサ情報を用いて三次元データを作成できる。
 図121は、サーバ901及びクライアント装置902の機能構成を示すブロック図である。サーバ901は、例えば、三次元マップを圧縮及び復号する三次元マップ圧縮/復号処理部1201と、センサ情報を圧縮及び復号するセンサ情報圧縮/復号処理部1202とを備える。
 クライアント装置902は、三次元マップ復号処理部1211と、センサ情報圧縮処理部1212とを備える。三次元マップ復号処理部1211は、圧縮された三次元マップの符号化データを受信し、符号化データを復号して三次元マップを取得する。センサ情報圧縮処理部1212は、取得したセンサ情報から作成した三次元データの代わりに、センサ情報そのものを圧縮し、圧縮したセンサ情報の符号化データをサーバ901へ送信する。この構成により、クライアント装置902は、三次元マップ(ポイントクラウド等)を復号する処理を行う処理部(装置又はLSI)を内部に保持すればよく、三次元マップ(ポイントクラウド等)の三次元データを圧縮する処理を行う処理部を内部に保持する必要がない。これにより、クライアント装置902のコスト及び消費電力等を抑えることができる。
 以上のように、本実施の形態に係るクライアント装置902は、移動体に搭載され、移動体に搭載されたセンサ1015により得られた、移動体の周辺状況を示すセンサ情報1033から、移動体の周辺の三次元データ1034を作成する。クライアント装置902は、作成された三次元データ1034を用いて移動体の自己位置を推定する。クライアント装置902は、取得したセンサ情報1033をサーバ901又は他のクライアント装置902に送信する。
 これによれば、クライアント装置902は、センサ情報1033をサーバ901等に送信する。これにより、三次元データを送信する場合に比べて、送信データのデータ量を削減できる可能性がある。また、三次元データの圧縮又は符号化等の処理をクライアント装置902で行う必要がないので、クライアント装置902の処理量を削減できる。よって、クライアント装置902は、伝送されるデータ量の削減、又は、装置の構成の簡略化を実現できる。
 また、クライアント装置902は、さらに、サーバ901に三次元マップの送信要求を送信し、サーバ901から三次元マップ1031を受信する。クライアント装置902は、自己位置の推定では、三次元データ1034と三次元マップ1032とを用いて、自己位置を推定する。
 また、センサ情報1033は、レーザセンサで得られた情報、輝度画像、赤外画像、デプス画像、センサの位置情報、及びセンサの速度情報のうち少なくとも一つを含む。
 また、センサ情報1033は、センサの性能を示す情報を含む。
 また、クライアント装置902は、センサ情報1033を符号化又は圧縮し、センサ情報の送信では、符号化又は圧縮後のセンサ情報1037を、サーバ901又は他のクライアント装置902に送信する。これによれば、クライアント装置902は、伝送されるデータ量を削減できる。
 例えば、クライアント装置902は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 また、本実施の形態に係るサーバ901は、移動体に搭載されるクライアント装置902と通信可能であり、移動体に搭載されたセンサ1015により得られた、移動体の周辺状況を示すセンサ情報1037をクライアント装置902から受信する。サーバ901は、受信したセンサ情報1037から、移動体の周辺の三次元データ1134を作成する。
 これによれば、サーバ901は、クライアント装置902から送信されたセンサ情報1037を用いて三次元データ1134を作成する。これにより、クライアント装置902が三次元データを送信する場合に比べて、送信データのデータ量を削減できる可能性がある。また、三次元データの圧縮又は符号化等の処理をクライアント装置902で行う必要がないので、クライアント装置902の処理量を削減できる。よって、サーバ901は、伝送されるデータ量の削減、又は、装置の構成の簡略化を実現できる。
 また、サーバ901は、さらに、クライアント装置902にセンサ情報の送信要求を送信する。
 また、サーバ901は、さらに、作成された三次元データ1134を用いて三次元マップ1135を更新し、クライアント装置902からの三次元マップ1135の送信要求に応じて三次元マップ1135をクライアント装置902に送信する。
 また、センサ情報1037は、レーザセンサで得られた情報、輝度画像、赤外画像、デプス画像、センサの位置情報、及びセンサの速度情報のうち少なくとも一つを含む。
 また、センサ情報1037は、センサの性能を示す情報を含む。
 また、サーバ901は、さらに、センサの性能に応じて、三次元データを補正する。これによれば、当該三次元データ作成方法は、三次元データの品質を向上できる。
 また、サーバ901は、センサ情報の受信では、複数のクライアント装置902から複数のセンサ情報1037を受信し、複数のセンサ情報1037に含まれるセンサの性能を示す複数の情報に基づき、三次元データ1134の作成に用いるセンサ情報1037を選択する。これによれば、サーバ901は、三次元データ1134の品質を向上できる。
 また、サーバ901は、受信したセンサ情報1037を復号又は伸張し、復号又は伸張後のセンサ情報1132から、三次元データ1134を作成する。これによれば、サーバ901は、伝送されるデータ量を削減できる。
 例えば、サーバ901は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 以下、変形例について説明する。図122は、本実施の形態に係るシステムの構成を示す図である。図122に示すシステムは、サーバ2001と、クライアント装置2002Aと、クライアント装置2002Bとを含む。
 クライアント装置2002A及びクライアント装置2002Bは、車両等の移動体に搭載され、センサ情報をサーバ2001に送信する。サーバ2001は、三次元マップ(ポイントクラウド)をクライアント装置2002A及びクライアント装置2002Bに送信する。
 クライアント装置2002Aは、センサ情報取得部2011と、記憶部2012と、データ送信可否判定部2013とを備える。なお、クライアント装置2002Bの構成も同様である。また、以下ではクライアント装置2002Aとクライアント装置2002Bとを特に区別しない場合には、クライアント装置2002とも記載する。
 図123は、本実施の形態に係るクライアント装置2002の動作を示すフローチャートである。
 センサ情報取得部2011は、移動体に搭載されたセンサ(センサ群)を用いて各種センサ情報を取得する。つまり、センサ情報取得部2011は、移動体に搭載されたセンサ(センサ群)により得られた、移動体の周辺状況を示すセンサ情報を取得する。また、センサ情報取得部2011は、取得したセンサ情報を記憶部2012に記憶する。このセンサ情報は、LiDAR取得情報、可視光画像、赤外画像及びデプス画像の少なくとも一つを含む。また、センサ情報は、センサ位置情報、速度情報、取得時刻情報、及び取得場所情報の少なくとも一つを含んでもよい。センサ位置情報は、センサ情報を取得したセンサの位置を示す。速度情報は、センサがセンサ情報を取得した際の移動体の速度を示す。取得時刻情報は、センサ情報がセンサにより取得された時刻を示す。取得場所情報は、センサ情報がセンサにより取得された際の移動体又はセンサの位置を示す。
 次に、データ送信可否判定部2013は、移動体(クライアント装置2002)がサーバ2001へセンサ情報を送信可能な環境に存在するかを判定する(S2002)。例えば、データ送信可否判定部2013は、GPS等の情報を用いて、クライアント装置2002がいる場所及び時刻を特定し、データを送信可能かどうかを判定してもよい。また、データ送信可否判定部2013は、特定のアクセスポイントに接続できるかどうかで、データを送信可能かどうかを判定してもよい。
 クライアント装置2002は、移動体がサーバ2001へセンサ情報を送信可能な環境に存在すると判定した場合(S2002でYes)、センサ情報をサーバ2001に送信する(S2003)。つまり、クライアント装置2002がセンサ情報をサーバ2001に送信できるような状況になった時点で、クライアント装置2002は、保持しているセンサ情報をサーバ2001に送信する。例えば、交差点等に高速通信が可能なミリ波のアクセスポイントが設置される。クライアント装置2002は、交差点内に入った時点で、ミリ波通信を用いてクライアント装置2002が保持するセンサ情報を高速にサーバ2001に送信する。
 次に、クライアント装置2002は、サーバ2001に送信済みのセンサ情報を記憶部2012から削除する(S2004)。なお、クライアント装置2002は、サーバ2001に送信していないセンサ情報が所定の条件を満たした場合に、当該センサ情報を削除してもよい。例えば、クライアント装置2002は、保持するセンサ情報の取得時刻が現在時刻から一定時刻前より古くなった時点でそのセンサ情報を記憶部2012から削除してもよい。つまり、クライアント装置2002は、センサ情報がセンサにより取得された時刻と、現在の時刻との差が、予め定められた時間を超えた場合にセンサ情報を記憶部2012から削除してもよい。また、クライアント装置2002は、保持するセンサ情報の取得場所が現在地点から一定距離より離れた時点でそのセンサ情報を記憶部2012から削除してもよい。つまり、クライアント装置2002は、センサ情報がセンサにより取得された際の移動体又はセンサの位置と、現在の移動体又はセンサの位置との差が、予め定められた距離を超えた場合にセンサ情報を記憶部2012から削除してもよい。これにより、クライアント装置2002の記憶部2012の容量を抑制することができる。
 クライアント装置2002によるセンサ情報の取得が終了していない場合(S2005でNo)、クライアント装置2002は、ステップS2001以降の処理を再度行う。また、クライアント装置2002によるセンサ情報の取得が終了した場合(S2005でYes)、クライアント装置2002は処理を終了する。
 また、クライアント装置2002はサーバ2001に送信するセンサ情報を通信状況に合わせて選択してもよい。例えば、クライアント装置2002は、高速通信が可能な場合は、記憶部2012に保持されるサイズが大きいセンサ情報(例えばLiDAR取得情報等)を優先して送信する。また、クライアント装置2002は、高速通信が難しい場合は、記憶部2012に保持されるサイズが小さく優先度の高いセンサ情報(例えば可視光画像)を送信する。これにより、クライアント装置2002は記憶部2012に保持したセンサ情報をネットワークの状況に応じて効率的にサーバ2001に送信できる。
 また、クライアント装置2002は、上記現在時刻を示す時刻情報、及び、現在地点を示す場所情報をサーバ2001から取得してもよい。また、クライアント装置2002は、取得した時刻情報及び場所情報に基づきセンサ情報の取得時刻及び取得場所を決定してもよい。つまり、クライアント装置2002は、サーバ2001から時刻情報を取得し、取得した時刻情報を用いて取得時刻情報を生成してもよい。また、クライアント装置2002は、サーバ2001から場所情報を取得し、取得した場所情報を用いて取得場所情報を生成してもよい。
 例えば時刻情報については、サーバ2001とクライアント装置2002とはNTP(Network Time Protocol)、又はPTP(Precision Time Protocol)等の仕組みを用いて時刻同期を行う。これにより、クライアント装置2002は正確な時刻情報を取得できる。また、サーバ2001と複数のクライアント装置との間で時刻を同期できるので、別々のクライアント装置2002が取得したセンサ情報内の時刻を同期できる。よって、サーバ2001は、同期された時刻を示すセンサ情報を取り扱える。なお、時刻同期の仕組みはNTP又はPTP以外のどのような方法でも構わない。また、上記時刻情報及び場所情報としてGPSの情報が用いられてもよい。
 サーバ2001は、時刻又は場所を指定して複数のクライアント装置2002からセンサ情報を取得しても構わない。例えば何らかの事故が発生した場合に、その付近にいたクライアントを探すため、サーバ2001は、事故発生時刻と場所を指定して複数のクライアント装置2002にセンサ情報送信要求をブロードキャスト送信する。そして、該当する時刻と場所のセンサ情報を持つクライアント装置2002は、サーバ2001にセンサ情報を送信する。つまり、クライアント装置2002は、サーバ2001から場所及び時刻を指定する指定情報を含むセンサ情報送信要求を受信する。クライアント装置2002は、記憶部2012に、指定情報で示される場所及び時刻において得られたセンサ情報が記憶されており、かつ、移動体がサーバ2001へセンサ情報を送信可能な環境に存在すると判定した場合、指定情報で示される場所及び時刻において得られたセンサ情報をサーバ2001に送信する。これにより、サーバ2001は、事故の発生に関連するセンサ情報を複数のクライアント装置2002から取得し、事故解析等に利用できる。
 なお、クライアント装置2002は、サーバ2001からのセンサ情報送信要求を受信した場合に、センサ情報の送信を拒否してもよい。また、複数のセンサ情報のうち、どのセンサ情報を送信可能かどうかを事前にクライアント装置2002が設定してもよい。または、サーバ2001は、センサ情報の送信の可否を都度クライアント装置2002に問い合わせてもよい。
 また、サーバ2001にセンサ情報を送信したクライアント装置2002にはポイントが付与されてもよい。このポイントは、例えば、ガソリン購入費、EV(Electric Vehicle)の充電費、高速道路の通行料、又はレンタカー費用などの支払いに使用できる。また、サーバ2001は、センサ情報を取得した後、センサ情報の送信元のクライアント装置2002を特定するための情報を削除してもよい。例えば、この情報は、クライアント装置2002のネットワークアドレスなどの情報である。これによりセンサ情報を匿名化することができるので、クライアント装置2002のユーザは安心して、クライアント装置2002からセンサ情報をサーバ2001に送信できる。また、サーバ2001は、複数のサーバから構成されてもよい。例えば複数のサーバでセンサ情報が共有化されることで、あるサーバが故障しても他のサーバがクライアント装置2002と通信できる。これにより、サーバ故障によるサービスの停止を回避できる。
 また、センサ情報送信要求で指定される指定場所は事故の発生位置などを示すものであり、センサ情報送信要求で指定される指定時刻におけるクライアント装置2002の位置とは異なることがある。よって、サーバ2001は、例えば、指定場所として周辺XXm以内などの範囲を指定することで、当該範囲内に存在するクライアント装置2002に対して情報取得を要求できる。指定時刻についても同様に、サーバ2001は、ある時刻から前後N秒以内など範囲を指定してもよい。これにより、サーバ2001は、「時刻:t-Nからt+Nにおいて、場所:絶対位置SからXXm以内」に存在していたクライアント装置2002からセンサ情報が取得できる。クライアント装置2002は、LiDARなどの三次元データを送信する際に、時刻tの直後に生成したデータを送信してもよい。
 また、サーバ2001は、指定場所として、センサ情報取得対象となるクライアント装置2002の場所を示す情報と、センサ情報が欲しい場所とをそれぞれ別に指定してもよい。例えば、サーバ2001は、絶対位置SからYYmの範囲を少なくとも含むセンサ情報を、絶対位置SからXXm以内に存在したクライアント装置2002から取得することを指定する。クライアント装置2002は、送信する三次元データを選択する際には、指定された範囲のセンサ情報を少なくとも含むように、1つ以上のランダムアクセス可能な単位の三次元データを選択する。また、クライアント装置2002は、可視光画像を送信する際は、少なくとも時刻tの直前又は直後のフレームを含む、時間的に連続した複数の画像データを送信してもよい。
 クライアント装置2002が5G或いはWiFi、又は、5Gにおける複数モードなど、複数の物理ネットワークをセンサ情報の送信に利用できる場合には、クライアント装置2002は、サーバ2001から通知された優先順位に従って利用するネットワークを選択してもよい。または、クライアント装置2002自身が送信データのサイズに基づいて適切な帯域を確保できるネットワークを選択してもよい。または、クライアント装置2002は、データ送信にかかる費用等に基づいて利用するネットワークを選択してもよい。また、サーバ2001からの送信要求には、クライアント装置2002が時刻Tまでに送信を開始可能な場合に送信を行う、など、送信期限を示す情報が含まれてもよい。サーバ2001は、期限内に十分なセンサ情報が取得できなければ再度送信要求を発行してもよい。
 センサ情報は、圧縮又は非圧縮のセンサデータと共に、センサデータの特性を示すヘッダ情報を含んでもよい。クライアント装置2002は、ヘッダ情報を、センサデータとは異なる物理ネットワーク又は通信プロトコルを介してサーバ2001に送信してもよい。例えば、クライアント装置2002は、センサデータの送信に先立ってヘッダ情報をサーバ2001に送信する。サーバ2001は、ヘッダ情報の解析結果に基づいてクライアント装置2002のセンサデータを取得するかどうかを判断する。例えば、ヘッダ情報は、LiDARの点群取得密度、仰角、或いはフレームレート、又は、可視光画像の解像度、SN比、或いはフレームレートなどを示す情報を含んでもよい。これにより、サーバ2001は、決定した品質のセンサデータを有するクライアント装置2002からセンサ情報を取得できる。
 以上のように、クライアント装置2002は、移動体に搭載され、移動体に搭載されたセンサにより得られた、移動体の周辺状況を示すセンサ情報を取得し、センサ情報を記憶部2012に記憶する。クライアント装置2002は、移動体がサーバ2001へセンサ情報を送信可能な環境に存在するかを判定し、移動体がサーバへセンサ情報を送信可能な環境に存在すると判定した場合、センサ情報をサーバ2001に送信する。
 また、クライアント装置2002は、さらに、センサ情報から、移動体の周辺の三次元データを作成し、作成された三次元データを用いて移動体の自己位置を推定する。
 また、クライアント装置2002は、さらに、サーバ2001に三次元マップの送信要求を送信し、サーバ2001から三次元マップを受信する。クライアント装置2002は、自己位置の推定では、三次元データと三次元マップとを用いて、自己位置を推定する。
 なお、上記クライアント装置2002による処理は、クライアント装置2002における情報送信方法として実現されてもよい。
 また、クライアント装置2002は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行ってもよい。
 次に、本実施の形態に係るセンサ情報収集システムについて説明する。図124は、本実施の形態に係るセンサ情報収集システムの構成を示す図である。図124に示すように本実施の形態に係るセンサ情報収集システムは、端末2021Aと、端末2021Bと、通信装置2022Aと、通信装置2022Bと、ネットワーク2023と、データ収集サーバ2024と、地図サーバ2025と、クライアント装置2026とを含む。なお、端末2021A及び端末2021Bを特に区別しない場合には端末2021とも記載する。通信装置2022A及び通信装置2022Bを特に区別しない場合には通信装置2022とも記載する。
 データ収集サーバ2024は、端末2021が備えるセンサで得られたセンサデータなどのデータを三次元空間中の位置と対応付けられた位置関連データとして収集する。
 センサデータとは、例えば、端末2021の周囲の状態または端末2021の内部の状態などを、端末2021が備えるセンサを用いて取得したデータである。端末2021は、端末2021と直接通信可能、又は同一の通信方式で一或いは複数の中継装置を中継して通信可能な位置にある一又は複数のセンサ機器から収集したセンサデータをデータ収集サーバ2024に送信する。
 位置関連データに含まれるデータは、例えば、端末自身又は端末が備える機器の動作状態、動作ログ、サービスの利用状況などを示す情報を含んでいてもよい。また、位置関連データに含まれるデータは、端末2021の識別子と端末2021の位置又は移動経路などとを対応付けた情報などを含んでもよい。
 位置関連データに含まれる、位置を示す情報は、例えば三次元地図データなどの三次元データにおける位置を示す情報と対応付けられている。位置を示す情報の詳細については後述する。
 位置関連データは、位置を示す情報である位置情報に加えて、前述した時刻情報と、位置関連データに含まれるデータの属性、又は当該データを生成したセンサの種類(例えば型番など)を示す情報とのうち少なくとも一つを含んでいてもよい。位置情報及び時刻情報は、位置関連データのヘッダ領域又は位置関連データを格納するフレームのヘッダ領域に格納されていてもよい。また、位置情報及び時刻情報は、位置関連データと対応付けられたメタデータとして位置関連データとは別に送信及び/又は格納されてもよい。
 地図サーバ2025は、例えば、ネットワーク2023に接続されており、端末2021などの他の装置からの要求に応じて三次元地図データなどの三次元データを送信する。また、前述した各実施の形態で説明したように、地図サーバ2025は、端末2021から送信されたセンサ情報を用いて、三次元データを更新する機能などを備えていてもよい。
 データ収集サーバ2024は、例えば、ネットワーク2023に接続されており、端末2021などの他の装置から位置関連データを収集し、収集した位置関連データを内部又は他のサーバ内の記憶装置に格納する。また、データ収集サーバ2024は、収集した位置関連データ又は位置関連データに基づいて生成した三次元地図データのメタデータなどを、端末2021からの要求に応じて端末2021に対して送信する。
 ネットワーク2023は、例えばインターネットなどの通信ネットワークである。端末2021は、通信装置2022を介してネットワーク2023に接続されている。通信装置2022は、一つの通信方式、又は複数の通信方式を切り替えながら端末2021と通信を行う。通信装置2022は、例えば、(1)LTE(Long Term Evolution)などの基地局、(2)WiFi或いはミリ波通信などのアクセスポイント(AP)、(3)SIGFOX、LoRaWAN或いはWi-SUNなどのLPWA(Low Power Wide Area) Networkのゲートウェイ、又は、(4)DVB-S2などの衛星通信方式を用いて通信を行う通信衛星である。
 なお、基地局は、NB-IoT(Narrow Band-IoT)又はLTE-MなどのLPWAに分類される方式で端末2021との通信を行っていてもよいし、これらの方式を切り替えながら端末2021との通信を行っていてもよい。
 ここでは、端末2021が2種類の通信方式を用いる通信装置2022と通信する機能を備え、これらの通信方式のいずれかを用いて、またはこれらの複数の通信方式及び直接の通信相手となる通信装置2022を切り替えながら地図サーバ2025又はデータ収集サーバ2024と通信を行う場合を例に挙げるが、センサ情報収集システム及び端末2021の構成はこれに限らない。例えば、端末2021は、複数の通信方式での通信機能を有さず、いずれか一つの通信方式で通信を行う機能を備えてもよい。また、端末2021は、3つ以上の通信方式に対応していてもよい。また、端末2021ごとに対応する通信方式が異なっていてもよい。
 端末2021は、例えば図114に示したクライアント装置902の構成を備える。端末2021は、受信した三次元データを用いて自己位置などの位置推定を行う。また、端末2021は、センサから取得したセンサデータと位置推定の処理により得られた位置情報とを対応付けて位置関連データを生成する。
 位置関連データに付加される位置情報は、例えば、三次元データで用いられている座標系における位置を示す。例えば、位置情報は、緯度及び経度の値で表される座標値である。このとき、端末2021は、座標値と共に当該座標値の基準となる座標系、及び位置推定に用いた三次元データを示す情報を位置情報に含めてもよい。また、座標値は高度の情報を含んでいてもよい。
 また、位置情報は、前述した三次元データの符号化に用いることができるデータの単位又は空間の単位に対応付けられていてもよい。この単位とは、例えば、WLD、GOS、SPC、VLM、又はVXLなどである。このとき、位置情報は、例えば位置関連データに対応するSPCなどのデータ単位を特定するための識別子で表現される。なお、位置情報は、SPCなどのデータ単位を特定するための識別子に加えて、当該SPCなどのデータ単位を含む三次元空間を符号化した三次元データを示す情報、又は当該SPC内での詳細な位置を示す情報などを含んでいてもよい。三次元データを示す情報とは、例えば、当該三次元データのファイル名である。
 このように、当該システムは、三次元データを用いた位置推定に基づく位置情報と対応付けた位置関連データを生成することにより、GPSを用いて取得されたクライアント装置(端末2021)の自己位置に基づく位置情報をセンサ情報に付加する場合よりも精度の高い位置情報をセンサ情報に付与することができる。その結果、位置関連データを他の装置が他のサービスにおいて利用する場合においても、同じ三次元データに基づいて位置推定を行うことで、位置関連データに対応する位置を実空間でより正確に特定できる可能性がある。
 なお、本実施の形態では、端末2021から送信されるデータが位置関連データの場合を例に挙げて説明したが、端末2021から送信されるデータは位置情報と関連付けられていないデータであってもよい。すなわち、他の実施の形態で説明した三次元データ又はセンサデータの送受信が本実施の形態で説明したネットワーク2023を介して行われてもよい。
 次に、三次元又は二次元の実空間又は地図空間における位置を示す位置情報の異なる例について説明する。位置関連データに付加される位置情報は、三次元データ中の特徴点に対する相対位置を示す情報であってもよい。ここで、位置情報の基準となる特徴点は、例えばSWLDとして符号化され、三次元データとして端末2021に通知された特徴点である。
 特徴点に対する相対位置を示す情報は、例えば、特徴点から位置情報が示す点までのベクトルで表され、特徴点から位置情報が示す点までの方向と距離を示す情報であってもよい。または、特徴点に対する相対位置を示す情報は、特徴点から位置情報が示す点までのX軸、Y軸、Z軸のそれぞれの変位量を示す情報であってもよい。また、特徴点に対する相対位置を示す情報は、3以上の特徴点のそれぞれから位置情報が示す点までの距離を示す情報であってもよい。なお、相対位置は、各特徴点を基準として表現された位置情報が示す点の相対位置ではなく、位置情報が示す点を基準として表現された各特徴点の相対位置であってもよい。特徴点に対する相対位置に基づく位置情報の一例は、基準となる特徴点を特定するための情報と、当該特徴点に対する位置情報が示す点の相対位置を示す情報とを含む。また、特徴点に対する相対位置を示す情報が三次元データとは別に提供される場合、特徴点に対する相対位置を示す情報は、相対位置の導出に用いた座標軸、三次元データの種類を示す情報、又は/及び相対位置を示す情報の値の単位量あたりの大きさ(縮尺など)を示す情報などを含んでいてもよい。
 また、位置情報は、複数の特徴点について、各特徴点に対する相対位置を示す情報を含んでいてもよい。位置情報を複数の特徴点に対する相対位置で表した場合、実空間において当該位置情報が示す位置を特定しようとする端末2021は、特徴点ごとにセンサデータから推定した当該特徴点の位置から位置情報が示す位置の候補点を算出し、算出された複数の候補点を平均して求めた点を位置情報が示す点であると判定してもよい。この構成によると、センサデータから特徴点の位置を推定する際の誤差の影響を軽減できるため、実空間における位置情報が示す点の推定精度を向上できる。また、位置情報が複数の特徴点に対する相対位置を示す情報を含む場合、端末2021が備えるセンサの種類又は性能などの制約で検出できない特徴点がある場合であっても、複数の特徴点のいずれか一つでも検出することができれば位置情報が示す点の値を推定することが可能となる。
 特徴点として、センサデータから特定可能な点を用いことができる。センサデータから特定可能な点とは、例えば、前述した三次元特徴量又は可視光データの特徴量が閾値以上であるなど特徴点検出用の所定の条件を満たす点又は領域内の点である。
 また、実空間に設置されたマーカなどを特徴点として用いてもよい。この場合、マーカは、LiDER又はカメラなどのセンサを用いて取得されたデータから検出及び位置の特定が可能であればよい。例えば、マーカは、色或いは輝度値(反射率)の変化、又は、三次元形状(凹凸など)で表現される。また、当該マーカの位置を示す座標値、又は当該マーカの識別子から生成された二次元コード又はバーコードなどが用いられてもよい。
 また、光信号を送信する光源をマーカとして用いてもよい。光信号の光源をマーカとして用いる場合、座標値又は識別子などの位置を取得するための情報だけでなく、その他のデータが光信号により送信されてもよい。例えば、光信号は、当該マーカの位置に応じたサービスのコンテンツ、コンテンツを取得するためのurlなどのアドレス、又はサービスの提供を受けるための無線通信装置の識別子と、当該無線通信装置と接続するための無線通信方式などを示す情報を含んでもよい。光通信装置(光源)をマーカとして用いることで、位置を示す情報以外のデータの送信が容易になると共に、当該データを動的に切り替えることが可能となる。
 端末2021は、互いに異なるデータ間での特徴点の対応関係を、例えば、データ間で共通に用いられる識別子、又は、データ間の特徴点の対応関係を示す情報或いはテーブルを用いて把握する。また、特徴点間の対応関係を示す情報がない場合、端末2021は、一方の三次元データにおける特徴点の座標を他方の三次元データ空間上の位置に変換した場合に最も近い距離にある特徴点を対応する特徴点であると判定してもよい。
 以上で説明した相対位置に基づく位置情報を用いた場合、互いに異なる三次元データを用いる端末2021又はサービス間であっても、各三次元データに含まれる、又は各三次元データと対応付けられた共通の特徴点を基準に位置情報が示す位置を特定、又は推定することができる。その結果、互いに異なる三次元データを用いる端末2021又はサービス間で、同じ位置をより高い精度で特定又は推定することが可能となる。
 また、互いに異なる座標系を用いて表現された地図データ又は三次元データを用いる場合であっても、座標系の変換に伴う誤差の影響を低減できるため、より高精度な位置情報に基づくサービスの連携が可能となる。
 以下、データ収集サーバ2024が提供する機能の例について説明する。データ収集サーバ2024は、受信した位置関連データを他のデータサーバに転送してもよい。データサーバが複数ある場合、データ収集サーバ2024は、受信した位置関連データをどのデータサーバに転送するかを判定して、転送先として判定されたデータサーバ宛に位置関連データを転送する。
 データ収集サーバ2024は、転送先の判定を、例えば、データ収集サーバ2024に事前に設定された転送先サーバの判定ルールに基づいて行う。転送先サーバの判定ルールとは、例えば、各端末2021に対応付けられた識別子と転送先のデータサーバとを対応付けた転送先テーブルなどで設定される。
 端末2021は、送信する位置関連データに対して当該端末2021に対応付けられた識別子を付加してデータ収集サーバ2024に送信する。データ収集サーバ2024は、位置関連データに付加された識別子に対応する転送先のデータサーバを転送先テーブルなどを用いた転送先サーバの判定ルールに基づいて特定し、当該位置関連データを特定されたデータサーバに送信する。また、転送先サーバの判定ルールは、位置関連データが取得された時間又は場所などを用いた判定条件で指定されてもよい。ここで、上述した送信元の端末2021に対応付けられた識別子とは、例えば各端末2021に固有の識別子、又は端末2021が属するグループを示す識別子などである。
 また、転送先テーブルは、送信元の端末に対応付けられた識別子と転送先のデータサーバとを直接対応付けたものでなくてもよい。例えば、データ収集サーバ2024は、端末2021に固有の識別子毎に付与されたタグ情報を格納した管理テーブルと、当該タグ情報と転送先のデータサーバを対応付けた転送先テーブルとを保持する。データ収集サーバ2024は、管理テーブルと転送先テーブルとを用いてタグ情報に基づく転送先のデータサーバを判定してもよい。ここで、タグ情報は、例えば当該識別子に対応する端末2021の種類、型番、所有者、所属するグループ又はその他の識別子に付与された管理用の制御情報又はサービス提供用の制御情報である。また、転送先テーブルに、送信元の端末2021に対応付けられた識別子の代わりに、センサ毎に固有の識別子が用いられてもよい。また、転送先サーバの判定ルールは、クライアント装置2026から設定できてもよい。
 データ収集サーバ2024は、複数のデータサーバを転送先として判定し、受信した位置関連データを当該複数のデータサーバに転送してもよい。この構成によると、例えば、位置関連データを自動的にバックアップする場合、又は位置関連データを異なるサービスで共通に利用するために、各サービスを提供するためのデータサーバに対して位置関連データを送信する必要がある場合に、データ収集サーバ2024に対する設定を変更ことで意図通りのデータの転送を実現できる。その結果、個別の端末2021に位置関連データの送信先を設定する場合と比較して、システムの構築及び変更に要する工数を削減することができる。
 データ収集サーバ2024は、データサーバから受信した転送要求信号に応じて、転送要求信号で指定されたデータサーバを新たな転送先として登録し、以降に受信した位置関連データを当該データサーバに転送してもよい。
 データ収集サーバ2024は、端末2021から受信した位置関連データを記録装置に保存し、端末2021又はデータサーバから受信した送信要求信号に応じて、送信要求信号で指定された位置関連データを、要求元の端末2021又はデータサーバに送信してもよい。
 データ収集サーバ2024は、要求元のデータサーバ又は端末2021に対する位置関連データの提供の可否を判断し、提供可能と判断された場合に要求元のデータサーバ又は端末2021に位置関連データの転送又は送信を行ってもよい。
 クライアント装置2026から現在の位置関連データの要求を受け付けた場合、端末2021による位置関連データの送信タイミングでなくても、データ収集サーバ2024が端末2021に対して位置関連データの送信要求を行い、端末2021が当該送信要求に応じて位置関連データを送信してもよい。
 上記の説明では、端末2021がデータ収集サーバ2024に対して位置情報データを送信するとしたが、データ収集サーバ2024は、例えば、端末2021を管理する機能など、端末2021から位置関連データを収集するために必要な機能又は端末2021から位置関連データを収集する際に用いられる機能などを備えてもよい。
 データ収集サーバ2024は、端末2021に対して位置情報データの送信を要求するデータ要求信号を送信し、位置関連データを収集する機能を備えてもよい。
 データ収集サーバ2024には、データ収集の対象となる端末2021と通信を行うためのアドレス又は端末2021固有の識別子などの管理情報が事前に登録されている。データ収集サーバ2024は、登録されている管理情報に基づいて端末2021から位置関連データを収集する。管理情報は、端末2021が備えるセンサの種類、端末2021が備えるセンサの数、及び端末2021が対応する通信方式などの情報を含んでいてもよい。
 データ収集サーバ2024は、端末2021の稼働状態又は現在位置などの情報を端末2021から収集してもよい。
 管理情報の登録は、クライアント装置2026から行われてもよいし、端末2021が登録要求をデータ収集サーバ2024に送信することで、登録のための処理が開始されてもよい。データ収集サーバ2024は、端末2021との間の通信を制御する機能を備えてもよい。
 データ収集サーバ2024と端末2021とを結ぶ通信は、MNO(Mobile Network Operator)、或いはMVNO(Mobile Virtual Network Operator)などのサービス事業者が提供する専用回線、又は、VPN(Virtual Private Network)で構成された仮想の専用回線などであってもよい。この構成によると、端末2021とデータ収集サーバ2024との間の通信を安全に行うことができる。
 データ収集サーバ2024は、端末2021を認証する機能、又は端末2021との間で送受信されるデータを暗号化する機能を備えてもよい。ここで、端末2021の認証の処理又はデータの暗号化の処理は、データ収集サーバ2024と端末2021との間で事前に共有された、端末2021に固有の識別子又は複数の端末2021を含む端末グループに固有の識別子などを用いて行われる。この識別子とは、例えば、SIM(Subscriber Identity Module)カードに格納された固有の番号であるIMSI(International Mobile Subscriber Identity)などである。認証処理に用いられる識別子とデータの暗号化処理に用いる識別子とは、同じであってもよいし、異なっていてもよい。
 データ収集サーバ2024と端末2021との間の認証又はデータの暗号化の処理は、データ収集サーバ2024と端末2021との両方が当該処理を実施する機能を備えていれば提供可能であり、中継を行う通信装置2022が用いる通信方式に依存しない。よって、端末2021が通信方式を用いるかを考慮することなく、共通の認証又は暗号化の処理を用いることができるので、ユーザのシステム構築の利便性が向上する。ただし、中継を行う通信装置2022が用いる通信方式に依存しないとは、通信方式に応じて変更することが必須ではないことを意味している。つまり、伝送効率の向上又は安全性の確保の目的で、中継装置が用いる通信方式に応じてデータ収集サーバ2024と端末2021との間の認証又はデータの暗号化の処理が切り替えられてもよい。
 データ収集サーバ2024は、端末2021から収集する位置関連データの種類及びデータ収集のスケジュールなどのデータ収集ルールを管理するUIをクライアント装置2026に提供してもよい。これにより、ユーザはクライアント装置2026を用いてデータを収集する端末2021、並びに、データの収集時間及び頻度などを指定できる。また、データ収集サーバ2024は、データを収集したい地図上の領域などを指定し、当該領域に含まれる端末2021から位置関連データを収集してもよい。
 データ収集ルールを端末2021単位で管理する場合、クライアント装置2026は、例えば、管理対象となる端末2021又はセンサのリストを画面に提示する。ユーザはリストの項目毎にデータの収集の要否又は収集スケジュールなどを設定する。
 データを収集したい地図上の領域などを指定する場合、クライアント装置2026は、例えば、管理対象となる地域の二次元又は三次元の地図を画面に提示する。ユーザは、表示された地図上でデータを収集する領域を選択する。地図上で選択される領域は、地図上で指定された点を中心とする円形又は矩形の領域であってもよいし、ドラッグ動作で特定可能な円形又は矩形の領域であってもよい。また、クライアント装置2026は、都市、都市内のエリア、ブロック、又は主要な道路など予め設定された単位で領域を選択してもよい。また、地図を用いて領域を指定するのではなく、緯度及び経度の数値を入力して領域が設定されてもよいし、入力されたテキスト情報に基づいて導出した候補領域のリストから領域が選択されてもよい。テキスト情報は、例えば、地域、都市、又はランドマークの名前などである。
 また、ユーザが一又は複数の端末2021を指定して、当該端末2021の周囲100メートルの範囲内などの条件を設定することで、指定領域を動的に変更しながらデータの収集が行われてもよい。
 また、クライアント装置2026がカメラなどのセンサを備える場合、センサデータから得られたクライアント装置2026の実空間での位置に基づいて地図上の領域が指定されてもよい。例えば、クライアント装置2026は、センサデータを用いて自己位置を推定し、推定された位置に対応する地図上の点から予め定められた距離、又はユーザが指定した距離の範囲内の領域を、データを収集する領域として指定してもよい。また、クライアント装置2026は、センサのセンシング領域、すなわち取得されたセンサデータに対応する領域を、データを収集する領域として指定してもよい。または、クライアント装置2026は、ユーザの指定したセンサデータに対応する位置に基づく領域を、データを収集する領域として指定してもよい。センサデータに対応する地図上の領域、又は位置の推定は、クライアント装置2026が行ってもよいし、データ収集サーバ2024が行ってもよい。
 地図上の領域で指定を行う場合、データ収集サーバ2024は、各端末2021の現在位置情報を収集することで、指定された領域内の端末2021を特定し、特定された端末2021に対して位置関連データの送信を要求してもよい。また、データ収集サーバ2024が領域内の端末2021を特定するのではなく、データ収集サーバ2024が指定された領域を示す情報を端末2021に送信し、端末2021が自身が指定された領域内にあるか否かを判定して、指定された領域内にあると判断された場合に位置関連データを送信してもよい。
 データ収集サーバ2024は、クライアント装置2026が実行するアプリケーションにおいて上述したUI(User Interface)を提供するためのリスト又は地図などのデータをクライアント装置2026に送信する。データ収集サーバ2024は、リスト又は地図などのデータだけでなく、アプリケーションのプログラムをクライアント装置2026に送信してもよい。また、上述したUIは、ブラウザで表示可能なHTMLなどで作成されたコンテンツとして提供されてもよい。なお、地図データなど一部のデータは地図サーバ2025などのデータ収集サーバ2024以外のサーバから提供されてもよい。
 クライアント装置2026は、ユーザによる設定ボタンの押下など、入力が完了したことを通知する入力が行われると、入力された情報を設定情報としてデータ収集サーバ2024に送信する。データ収集サーバ2024は、クライアント装置2026から受信した設定情報に基づいて各端末2021に対して、位置関連データの要求又は位置関連データの収集ルールを通知する信号を送信し、位置関連データの収集を行う。
 次に、三次元又は二次元の地図データに付加された付加情報に基づいて端末2021の動作を制御する例について説明する。
 本構成では、道路又は駐車場に埋設された無線給電の給電アンテナ又は給電コイルなどの給電部の位置を示すオブジェクト情報が、三次元データに含まれて、又は三次元データに対応付けられて、車又はドローンなどである端末2021に提供される。
 充電を行うために当該オブジェクト情報を取得した車両又はドローンは、車両が備える充電アンテナ又は充電コイルなどの充電部の位置が、当該オブジェクト情報が示す領域と対向する位置になるよう自動運転で車両自身の位置を移動させ、充電を開始する。なお、自動運転機能を備えていない車両又はドローンの場合は、画面上に表示された画像又は音声などを利用して、移動すべき方向又は行うべき操作を運転手又は操縦者に対して提示される。そして、推定された自己位置に基づいて算出した充電部の位置が、オブジェクト情報で示された領域又は当該領域から所定の距離の範囲内に入った判断されると、運転又は操縦を中止させる内容へと提示する画像又は音声が切り替えられ、充電が開始される。
 また、オブジェクト情報は給電部の位置を示す情報ではなく、当該領域内に充電部を配置すると所定の閾値以上の充電効率が得られる領域を示す情報であってもよい。オブジェクト情報の位置は、オブジェクト情報が示す領域の中心の点で表されてもよいし、二次元平面内の領域或いは線、又は、三次元空間内の領域、線或いは平面などで表されてもよい。
 この構成によると、LiDERのセンシングデータ又はカメラで撮影した映像では把握できない給電アンテナの位置を把握することができるので、車などの端末2021が備える無線充電用のアンテナと道路などに埋設された無線給電アンテナとの位置合わせをより高精度に行うことができる。その結果、無線充電時の充電速度を短くしたり、充電効率を向上させることができる。
 オブジェクト情報は、給電アンテナの以外の対象物であってもよい。例えば、三次元データは、ミリ波無線通信のAPの位置などをオブジェクト情報として含む。これにより、端末2021は、APの位置を事前に把握することができるので、当該オブジェクト情報の方向にビームの指向性を向けて通信を開始することができる。その結果、伝送速度の向上、通信開始までの時間の短縮、及び通信可能な期間を延ばすなどの通信品質の向上を実現できる。
 オブジェクト情報は、当該オブジェクト情報に対応する対象物のタイプを示す情報を含んでもよい。また、オブジェクト情報は、当該オブジェクト情報の三次元データ上の位置に対応する実空間上の領域内、又は領域から所定の距離の範囲内に端末2021が含まれる場合に、端末2021が実施すべき処理を示す情報を含んでもよい。
 オブジェクト情報は、三次元データを提供するサーバとは異なるサーバから提供されてもよい。オブジェクト情報を三次元データとは別に提供する場合、同一のサービスで使用されるオブジェクト情報が格納されたオブジェクトグループが、対象サービス又は対象機器の種類に応じてそれぞれ別のデータとして提供されてもよい。
 オブジェクト情報と組み合わせて用いられる三次元データは、WLDの点群データであってもよいし、SWLDの特徴点データであってもよい。
 三次元データ符号化装置において、符号化対象の三次元点である対象三次元点の属性情報をLoD(Level of Detail)を用いて階層符号化した場合、三次元データ復号装置は、当該三次元データ復号装置で必要なLoDの階層まで属性情報を復号し、必要でない階層の属性情報を復号しなくてもよい。例えば、三次元データ符号化装置が符号化したビットストリーム内の属性情報のLoDの総数がN個の場合、三次元データ復号装置は、最上位層のLoD0からLoD(M-1)までのM個(M<N)のLoDを復号し、残りのLoD(N-1)までのLoDを復号しなくてもよい。これにより、三次元データ復号装置は、処理負荷を抑制しつつ、三次元データ復号装置で必要なLoD0からLoD(M-1)までの属性情報を復号できる。
 図125は、上記のユースケースを示す図である。図125に例では、サーバは、三次元位置情報と属性情報とを符号化することで得られた三次元地図を保持する。サーバ(三次元データ符号化装置)は、サーバが管理する領域のクライアント装置(三次元データ復号装置:例えば車両又はドローン等)に対し、三次元地図をブロードキャスト送信し、クライアント装置はサーバから受信した三次元地図を用いてクライアント装置の自己位置を特定する処理、又は、クライアント装置を操作するユーザ等に地図情報を表示する処理を行う。
 以下、この例における動作例を説明する。まず、サーバは、三次元地図の位置情報を8分木構成などを用いて符号化する。そして、サーバは、位置情報をベースに構築されたN個のLoDを用いて三次元地図の属性情報を階層符号化する。サーバは、階層符号化により得られた三次元地図のビットストリームを保存する。
 次にサーバは、サーバが管理する領域のクライアント装置から送信された地図情報の送信要求に応じて、符号化された三次元地図のビットストリームをクライアント装置に送信する。
 クライアント装置は、サーバから送信された三次元地図のビットストリームを受信し、クライアント装置の用途に応じて三次元地図の位置情報と属性情報とを復号する。例えば、クライアント装置が位置情報とN個のLoDの属性情報とを用いて高精度な自己位置推定を行う場合は、クライアント装置は、属性情報として密な三次元点までの復号結果が必要と判断し、ビットストリーム内の全ての情報を復号する。
 また、クライアント装置が三次元地図の情報をユーザ等に表示する場合は、クライアント装置は、属性情報として疎な三次元点までの復号結果までが必要と判断し、位置情報とLoDの上位層であるLoD0からM個(M<N)までのLoDの属性情報とを復号する。
 このようにクライアント装置の用途に応じて復号する属性情報のLoDを切替えることによって、クライアント装置の処理負荷を削減できる。
 図125に示す例では、例えば、三次元点地図は、位置情報と属性情報とを含む。位置情報は、8分木で符号化される。属性情報は、N個のLoDで符号化される。
 クライアント装置Aは、高精度な自己位置推定を行う。この場合、クライアント装置Aは、全ての位置情報と属性情報とが必要と判断し、ビットストリーム内の位置情報とN個のLoDで構成される属性情報とを全て復号する。
 クライアント装置Bは、三次元地図をユーザへ表示する。この場合、クライアント装置Bは、位置情報とM個(M<N)のLoDの属性情報とが必要と判断し、ビットストリーム内の位置情報とM個のLoDで構成される属性情報とを復号する。
 なお、サーバは、三次元地図をクライアント装置にブロードキャスト送信してもよいし、マルチキャスト送信、又はユニキャスト送信してもよい。
 以下、本実施の形態に係るシステムの変形例について説明する。三次元データ符号化装置において、符号化対象の三次元点である対象三次元点の属性情報をLoDを用いて階層符号化する場合、三次元データ符号化装置は、当該三次元データ復号装置で必要なLoDの階層まで属性情報を符号化し、必要でない階層の属性情報を符号化しなくてもよい。例えば、LoDの総数がN個の場合に、三次元データ符号化装置は、最上位層LoD0からLoD(M-1)までのM個(M<N)のLoDを符号化し、残りLoD(N-1)までのLoDを符号化しないことによりビットストリームを生成してもよい。これにより、三次元データ符号化装置は、三次元データ復号装置からの要望に応じて、三次元データ復号装置で必要なLoD0からLoD(M-1)までの属性情報を符号化したビットストリームを提供できる。
 図126は、上記ユースケースを示す図である。図126に示す例では、サーバは、三次元位置情報と属性情報とを符号化することで得られた三次元地図を保持する。サーバ(三次元データ符号化装置)は、サーバが管理する領域のクライアント装置(三次元データ復号装置:例えば車両又はドローン等)に対し、クライアント装置の要望に応じて三次元地図をユニキャスト送信し、クライアント装置はサーバから受信した三次元地図を用いてクライアント装置の自己位置を特定する処理、又は地図情報をクライアント装置を操作するユーザ等に表示する処理を行う。
 以下、この例における動作例を説明する。まず、サーバは、三次元地図の位置情報を8分木構成などを用いて符号化する。そして、サーバは、三次元地図の属性情報を、位置情報をベースに構築されたN個のLoDを用いて階層符号化することで三次元地図Aのビットストリームを生成し、生成したビットストリームを当該サーバに保存する。また、サーバは、三次元地図の属性情報を、位置情報をベースに構築されたM個(M<N)のLoDを用いて階層符号化することで三次元地図Bのビットストリームを生成し、生成したビットストリームを当該サーバに保存する。
 次にクライアント装置は、クライアント装置の用途に応じて三次元地図の送信をサーバに要求する。例えば、クライアント装置は、位置情報とN個のLoDの属性情報とを用いて高精度な自己位置推定を行う場合は、属性情報として密な三次元点までの復号結果が必要と判断し、三次元地図Aのビットストリームの送信をサーバへ要求する。また、クライアント装置は、三次元地図の情報をユーザ等に表示する場合は、属性情報として疎な三次元点までの復号結果までが必要と判断し、位置情報とLoDの上位層LoD0からM個(M<N)までのLoDの属性情報とを含む三次元地図Bのビットストリームの送信をサーバへ要求する。そしてサーバは、クライアント装置からの地図情報の送信要求に応じて、符号化された三次元地図A又は三次元地図Bのビットストリームをクライアント装置に送信する。
 クライアント装置は、クライアント装置の用途に応じてサーバから送信された三次元地図A又は三次元地図Bのビットストリームを受信し、当該ビットストリームを復号する。このようにサーバは、クライアント装置の用途に応じて送信するビットストリームを切替える。これにより、クライアント装置の処理負荷を削減できる。
 図126に示す例では、サーバは、三次元地図A及び三次元地図Bを保持する。サーバは、三次元地図の位置情報を、例えば8分木で符号化し、三次元地図の属性情報をN個のLoDで符号化することで三次元地図Aを生成する。つまり、三次元地図Aのビットストリームに含まれるNumLoDはNを示す。
 また、サーバは、三次元地図の位置情報を、例えば8分木で符号化し、三次元地図の属性情報をM個のLoDで符号化することで三次元地図Bを生成する。つまり、三次元地図Bのビットストリームに含まれるNumLoDはMを示す。
 クライアント装置Aは、高精度な自己位置推定を行う。この場合クライアント装置Aは、全ての位置情報と属性情報とが必要と判断し、全ての位置情報とN個のLoDで構成される属性情報とを含む三次元地図Aの送信要求をサーバに送る。クライアント装置Aは、三次元地図Aを受信し、全ての位置情報とN個のLoDで構成される属性情報とを復号する。
 クライアント装置Bは、三次元地図をユーザへ表示する。この場合、クライアント装置Bは、位置情報とM個(M<N)のLoDの属性情報とが必要と判断し、全ての位置情報とM個のLoDで構成される属性情報とを含む三次元地図Bの送信要求をサーバに送る。クライアント装置Bは、三次元地図Bを受信して、全ての位置情報とM個のLoDで構成される属性情報とを復号する。
 なお、サーバ(三次元データ符号化装置)は、三次元地図Bに加え、残りのN-M個のLoDの属性情報を符号化した三次元地図Cを符号化しておき、クライアント装置Bの要望に応じて三次元地図Cをクライアント装置Bに送信してもよい。また、クライアント装置Bは、三次元地図Bと三次元地図Cとのビットストリームを用いて、N個のLoDの復号結果を得てもよい。
 以下、アプリケーション処理の例を説明する。図127は、アプリケーション処理の例を示すフローチャートである。アプリ操作が開始されると、三次元データ逆多重化装置は、点群データ及び複数の符号化データを含むISOBMFFファイルを取得する(S7301)。例えば、三次元データ逆多重化装置は、ISOBMFFファイルを、通信により取得してもよいし、蓄積しているデータから読み込んでもよい。
 次に、三次元データ逆多重化装置は、ISOBMFFファイルにおける全体構成情報を解析し、アプリケーションに使用するデータを特定する(S7302)。例えば、三次元データ逆多重化装置は、処理に用いるデータを取得し、処理に用いないデータは取得しない。
 次に、三次元データ逆多重化装置は、アプリケーションに使用する1以上のデータを抽出し、当該データの構成情報を解析する(S7303)。
 データの種別が符号化データである場合(S7304で符号化データ)、三次元データ逆多重化装置は、ISOBMFFを符号化ストリームに変換し、タイムスタンプを抽出する(S7305)。また、三次元データ逆多重化装置は、データ間の同期がそろっているか否かを、例えば、データ間の同期がそろっているか否かを示すフラグを参照して判定し、揃っていなければ同期処理を行ってもよい。
 次に、三次元データ逆多重化装置は、タイムスタンプ及びその他の指示に従い、所定の方法でデータを復号し、復号したデータを処理する(S7306)。
 一方、データの種別が符号化データである場合(S7304でRAWデータ)、三次元データ逆多重化装置は、データ及びタイムスタンプを抽出する(S7307)。また、三次元データ逆多重化装置は、データ間の同期がそろっているか否かを、例えば、データ間の同期がそろっているか否かを示すフラグを参照して判定し、揃っていなければ同期処理を行ってもよい。次に、三次元データ逆多重化装置は、タイムスタンプ及びその他の指示に従い、データを処理する(S7308)。
 例えば、ビームLiDAR、FLASH LiDAR、及びカメラで取得されたセンサ信号が、それぞれ異なる符号化方式で符号化及び多重化されている場合の例を説明する。図128は、ビームLiDAR、FLASH LiDAR及びカメラのセンサ範囲の例を示す図である。例えば、ビームLiDARは、車両(センサ)の周囲の全方向を検知し、FLASH LiDAR及びカメラは、車両の一方向(例えば前方)の範囲を検知する。
 LiDAR点群を統合的に扱うアプリケーションの場合、三次元データ逆多重化装置は、全体構成情報を参照して、ビームLiDARとFLASH LiDARの符号化データを抽出して復号する。また、三次元データ逆多重化装置は、カメラ映像は抽出しない。
 三次元データ逆多重化装置は、LiDARとFLASH LiDARのタイムスタンプに従い、同一のタイムスタンプの時刻のそれぞれの符号化データを同時に処理する。
 例えば、三次元データ逆多重化装置は、処理したデータを提示装置で提示したり、ビームLiDARとFLASH LiDARの点群データを合成したり、レンダリングなどの処理を行ってもよい。
 また、データ間でキャリブレーションをするアプリケーションの場合には、三次元データ逆多重化装置は、センサ位置情報を抽出してアプリケーションで用いてもよい。
 例えば、三次元データ逆多重化装置は、アプリケーションにおいて、ビームLiDAR情報を使用するか、FLASH LiDARを使用するかを選択し、選択結果に応じて処理を切り替えてもよい。
 このように、アプリケーションの処理に応じて適応的にデータの取得及び符号処理を変えることができるので、処理量及び消費電力を削減できる。
 以下、自動運転におけるユースケースについて説明する。図129は、自動運転システムの構成例を示す図である。この自動運転システムは、クラウドサーバ7350と、車載装置又はモバイル装置等のエッジ7360とを含む。クラウドサーバ7350は、逆多重化部7351と、復号部7352A、7352B及び7355と、点群データ合成部7353と、大規模データ蓄積部7354と、比較部7356と、符号化部7357とを備える。エッジ7360は、センサ7361A及び7361Bと、点群データ生成部7362A及び7362Bと、同期部7363と、符号化部7364A及び7364Bと、多重化部7365と、更新データ蓄積部7366と、逆多重化部7367と、復号部7368と、フィルタ7369と、自己位置推定部7370と、運転制御部7371とを備える。
 このシステムでは、エッジ7360は、クラウドサーバ7350に蓄積されている大規模点群地図データである大規模データをダウンロードする。エッジ7360は、大規模データとエッジ7360で得られたセンサ情報とをマッチングすることで、エッジ7360(車両又は端末)の自己位置推定処理を行う。また、エッジ7360は、取得したセンサ情報をクラウドサーバ7350へアップロードし、大規模データを最新の地図データに更新する。
 また、システム内における点群データを扱う様々なアプリケーションにおいて、符号化方法の異なる点群データが扱われる。
 クラウドサーバ7350は、大規模データを符号化及び多重化する。具体的には、符号化部7357は、大規模点群を符号化するために適した第3の符号化方法を用いて符号化を行う。また、符号化部7357は、符号化データを多重化する。大規模データ蓄積部7354は、符号化部7357で符号化及び多重化されたデータを蓄積する。
 エッジ7360は、センシングを行う。具体的には、点群データ生成部7362Aは、センサ7361Aで取得されるセンシング情報を用いて、第1の点群データ(位置情報(ジオメトリ)及び属性情報)を生成する。点群データ生成部7362Bは、センサ7361Bで取得されるセンシング情報を用いて、第2の点群データ(位置情報及び属性情報)を生成する。生成された第1の点群データ及び第2の点群データは、自動運転の自己位置推定或いは車両制御、又は地図更新に用いられる。それぞれの処理において、第1の点群データ及び第2の点群データのうちの一部の情報が用いられてもよい。
 エッジ7360は、自己位置推定を行う。具体的には、エッジ7360は、大規模データをクラウドサーバ7350からダウンロードする。逆多重化部7367は、ファイルフォーマットの大規模データを逆多重化することで符号化データを取得する。復号部7368は、取得された符号化データを復号することで大規模点群地図データである大規模データを取得する。
 自己位置推定部7370は、取得された大規模データと、点群データ生成部7362A及び7362Bで生成された第1の点群データ及び第2の点群データとをマッチングすることで、車両の地図における自己位置を推定する。また、運転制御部7371は、当該マッチング結果又は自己位置推定結果を運転制御に用いる。
 なお、自己位置推定部7370及び運転制御部7371は、大規模データのうち、位置情報などの特定の情報を抽出し、抽出した情報を用いて処理を行ってもよい。また、フィルタ7369は、第1の点群データ及び第2の点群データに補正又は間引き等の処理を行う。自己位置推定部7370及び運転制御部7371は、当該処理が行われた後の第1の点群データ及び第2の点群データを用いてもよい。また、自己位置推定部7370及び運転制御部7371は、センサ7361A及び7361Bで得られたセンサ信号を用いてもよい。
 同期部7363は、複数のセンサ信号又は複数の点群データのデータ間の時間同期及び位置補正を行う。また、同期部7363は、自己位置推定処理によって生成された、大規模データとセンサデータとの位置補正情報に基づき、センサ信号又は点群データの位置情報を大規模データに合わせるように補正してもよい。
 なお、同期及び位置補正はエッジ7360でなく、クラウドサーバ7350で行われてもよい。この場合、エッジ7360は、同期情報及び位置情報を多重化してクラウドサーバ7350へ送信してもよい。
 エッジ7360は.センサ信号又は点群データを符号化及び多重化する。具体的には、センサ信号又は点群データは、それぞれの信号を符号化するために適した第1の符号化方法又は第2の符号化方法を用いて符号化される。例えば、符号化部7364Aは、第1の符号化方法を用いて第1の点群データを符号化することで第1の符号化データを生成する。符号化部7364Bは、第2の符号化方法を用いて第2の点群データを符号化することで第2の符号化データを生成する。
 多重化部7365は、第1の符号化データ、第2の符号化データ、及び同期情報などを多重化することで多重化信号を生成する。更新データ蓄積部7366は、生成された多重化信号を蓄積する。また、更新データ蓄積部7366は、多重化信号をクラウドサーバ7350へアップロードする。
 クラウドサーバ7350は、点群データを合成する。具体的には、逆多重化部7351は、クラウドサーバ7350にアップロードされた多重化信号を逆多重化することで第1の符号化データ及び第2の符号化データを取得する。復号部7352Aは、第1の符号化データを復号することで第1の点群データ(又はセンサ信号)を取得する。復号部7352Bは、第2の符号化データを復号することで第2の点群データ(又はセンサ信号)を取得する。
 点群データ合成部7353は、第1の点群データと第2の点群データとを所定の方法で合成する。多重化信号に同期情報及び位置補正情報が多重化されている場合には、点群データ合成部7353は、それらの情報を用いて合成を行ってもよい。
 復号部7355は、大規模データ蓄積部7354に蓄積されている大規模データを逆多重化及び復号する。比較部7356は、エッジ7360で得られたセンサ信号に基づき生成された点群データとクラウドサーバ7350が有する大規模データとを比較し、更新が必要な点群データを判断する。比較部7356は、大規模データのうち、更新が必要と判断された点群データを、エッジ7360から得られた点群データに更新する。
 符号化部7357は、更新された大規模データを符号化及び多重化し、得られたデータを大規模データ蓄積部7354に蓄積する。
 以上のように、使用する用途又はアプリケーションに応じて、取り扱う信号が異なり、多重化する信号又は符号化方法が異なる場合がある。このような場合であっても、本実施の形態を用いて様々な符号化方式のデータを多重化することで、柔軟な復号及びアプリケーション処理が可能となる。また、信号の符号化方式が異なる場合であっても、逆多重化、復号、データ変換、符号化、多重の処理により適した符号化方式を変換することで、様々なアプリケーションやシステムを構築し、柔軟なサービスの提供が可能となる。
 以下、分割データの復号及びアプリケーションの例を説明する。まず、分割データの情報について説明する。図130は、ビットストリームの構成例を示す図である。分割データの全体情報は、分割データ毎に、当該分割データのセンサID(sensor_id)とデータID(data_id)とを示す。なお、データIDは各符号化データのヘッダにも示される。
 なお、図130に示す分割データの全体情報は、図37と同様に、センサIDに加え、センサ情報(Sensor)と、センサのバージョン(Version)と、センサのメーカー名(Maker)と、センサの設置情報(Mount Info.)と、センサの位置座標(World Coordinate)とのうち少なく一つを含んでもよい。これにより、三次元データ復号装置は、構成情報から各種センサの情報を取得できる。
 分割データの全体情報は、メタデータであるSPS、GPS又はAPSに格納されてもよいし、符号化に必須でないメタデータであるSEIに格納されてもよい。また、三次元データ符号化装置は、多重化の際に、当該SEIをISOBMFFのファイルに格納する。三次元データ復号装置は、当該メタデータに基づき、所望の分割データを取得できる。
 図130において、SPSは符号化データ全体のメタデータであり、GPSは位置情報のメタデータであり、APSは属性情報毎のメタデータであり、Gは分割データ毎の位置情報の符号化データであり、A1等は分割データ毎の属性情報の符号化データである。
 次に、分割データのアプリケーション例を説明する。点群データから、任意の点群を選択し、選択した点群を提示するアプリケーションの例を説明する。図131は、このアプリケーションにより実行される点群選択処理のフローチャートである。図132~図134は、点群選択処理の画面例を示す図である。
 図132に示すように、アプリケーションを実行する三次元データ復号装置は、例えば、任意の点群を選択するための入力UI(ユーザインタフェース)8661を表示するUI部を有する。入力UI8661は、選択された点群を提示する提示部8662と、ユーザの操作を受け付ける操作部(ボタン8663及び8664)を有する。三次元データ復号装置は、UI8661で点群が選択された後、蓄積部8665から所望のデータを取得する。
 まず、ユーザの入力UI8661に対する操作に基づき、ユーザが表示したい点群情報が選択される(S8631)。具体的には、ボタン8663が選択されることで、センサ1に基づく点群が選択される。ボタン8664が選択されることで、センサ2に基づく点群が選択される。または、ボタン8663及びボタン8664の両方が選択されることで、センサ1に基づく点群とセンサ2に基づく点群の両方が選択される。なお、点群の選択方法は一例であり、これに限らない。
 次に、三次元データ復号装置は、多重化信号(ビットストリーム)又は符号化データに含まれる分割データの全体情報を解析し、選択されたセンサのセンサID(sensor_id)から、選択された点群を構成する分割データのデータID(data_id)を特定する(S8632)。次に、三次元データ復号装置は、多重化信号から、特定された所望のデータIDを含む符号化データを抽出し、抽出した符号化データを復号することで、選択されたセンサに基づく点群を復号する(S8633)。なお、三次元データ復号装置は、その他の符号化データは復号しない。
 最後に、三次元データ復号装置は、復号された点群を提示(例えば表示)する(S8634)。図133は、センサ1のボタン8663が押下された場合の例を示し、センサ1の点群が提示される。図134は、センサ1のボタン8663とセンサ2のボタン8664の両方が押下された場合の例を示し、センサ1及びセンサ2の点群が提示される。
 以上、本開示の実施の形態に係る三次元データ符号化装置及び三次元データ復号装置等について説明したが、本開示は、この実施の形態に限定されるものではない。
 また、上記実施の形態に係る三次元データ符号化装置及び三次元データ復号装置等に含まれる各処理部は典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。
 また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 また、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU又はプロセッサ等のプログラム実行部が、ハードディスク又は半導体メモリ等の記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 また、本開示は、三次元データ符号化装置及び三次元データ復号装置等により実行される三次元データ符号化方法又は三次元データ復号方法等として実現されてもよい。
 また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを一つの機能ブロックとして実現したり、一つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。
 また、フローチャートにおける各ステップが実行される順序は、本開示を具体的に説明するために例示するためのものであり、上記以外の順序であってもよい。また、上記ステップの一部が、他のステップと同時(並列)に実行されてもよい。
 以上、一つ又は複数の態様に係る三次元データ符号化装置及び三次元データ復号装置等について、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つ又は複数の態様の範囲内に含まれてもよい。
 本開示は、三次元データ符号化装置及び三次元データ復号装置に適用できる。
 810 三次元データ作成装置
 811 データ受信部
 812、819 通信部
 813 受信制御部
 814、821 フォーマット変換部
 815 センサ
 816 三次元データ作成部
 817 三次元データ合成部
 818 三次元データ蓄積部
 820 送信制御部
 822 データ送信部
 831、832、834、835、836、837 三次元データ
 833 センサ情報
 901 サーバ
 902、902A、902B、902C クライアント装置
 1011、1111 データ受信部
 1012、1020、1112、1120 通信部
 1013、1113 受信制御部
 1014、1019、1114、1119 フォーマット変換部
 1015 センサ
 1016、1116 三次元データ作成部
 1017 三次元画像処理部
 1018、1118 三次元データ蓄積部
 1021、1121 送信制御部
 1022、1122 データ送信部
 1031、1032、1135 三次元マップ
 1033、1037、1132 センサ情報
 1034、1035、1134 三次元データ
 1117 三次元データ合成部
 1201 三次元マップ圧縮/復号処理部
 1202 センサ情報圧縮/復号処理部
 1211 三次元マップ復号処理部
 1212 センサ情報圧縮処理部
 1501 サーバ
 1502 クライアント
 1511 記憶部
 1512 制御部
 1513 符号化三次元マップ
 1521 デコーダ
 1522 アプリケーション
 2001 サーバ
 2002、2002A、2002B クライアント装置
 2011 センサ情報取得部
 2012 記憶部
 2013 データ送信可否判定部
 2021、2021A、2021B 端末
 2022、2022A、2022B 通信装置
 2023 ネットワーク
 2024 データ収集サーバ
 2025 地図サーバ
 2026 クライアント装置
 2700 位置情報符号化部
 2701、2711 8分木生成部
 2702、2712 幾何情報算出部
 2703、2713 符号化テーブル選択部
 2704 エントロピー符号化部
 2710 位置情報復号部
 2714 エントロピー復号部
 3140 属性情報符号化部
 3141、3151 LoD生成部
 3142、3152 周囲探索部
 3143、3153 予測部
 3144 予測残差算出部
 3145 量子化部
 3146 算術符号化部
 3147、3155 逆量子化部
 3148、3156 復号値生成部
 3149、3157 メモリ
 3150 属性情報復号部
 3154 算術復号部
 4601 三次元データ符号化システム
 4602 三次元データ復号システム
 4603 センサ端末
 4604 外部接続部
 4611 点群データ生成システム
 4612 提示部
 4613 符号化部
 4614 多重化部
 4615 入出力部
 4616 制御部
 4617 センサ情報取得部
 4618 点群データ生成部
 4621 センサ情報取得部
 4622 入出力部
 4623 逆多重化部
 4624 復号部
 4625 提示部
 4626 ユーザインタフェース
 4627 制御部
 4630 第1の符号化部
 4631 位置情報符号化部
 4632 属性情報符号化部
 4633 付加情報符号化部
 4634 多重化部
 4640 第1の復号部
 4641 逆多重化部
 4642 位置情報復号部
 4643 属性情報復号部
 4644 付加情報復号部
 4650 第2の符号化部
 4651 付加情報生成部
 4652 位置画像生成部
 4653 属性画像生成部
 4654 映像符号化部
 4655 付加情報符号化部
 4656 多重化部
 4660 第2の復号部
 4661 逆多重化部
 4662 映像復号部
 4663 付加情報復号部
 4664 位置情報生成部
 4665 属性情報生成部
 4801 符号化部
 4802 多重化部
 4910 第1の符号化部
 4911 分割部
 4912 位置情報符号化部
 4913 属性情報符号化部
 4914 付加情報符号化部
 4915 多重化部
 4920 第1の復号部
 4921 逆多重化部
 4922 位置情報復号部
 4923 属性情報復号部
 4924 付加情報復号部
 4925 結合部
 4931 スライス分割部
 4932 位置情報タイル分割部
 4933 属性情報タイル分割部
 4941 位置情報タイル結合部
 4942 属性情報タイル結合部
 4943 スライス結合部
 5200 第1の符号化部
 5201 分割部
 5202 位置情報符号化部
 5203 属性情報符号化部
 5204 付加情報符号化部
 5205 多重化部
 5211 タイル分割部
 5212 スライス分割部
 5221、5231、5251、5261 CABAC初期化部
 5222、5232 エントロピ符号化部
 5240 第1の復号部
 5241 逆多重化部
 5242 位置情報復号部
 5243 属性情報復号部
 5244 付加情報復号部
 5245 結合部
 5252、5262 エントロピ復号部
 6600 属性情報符号化部
 6601 ソート部
 6602 Haar変換部
 6603 量子化部
 6604、6612 逆量子化部
 6605、6613 逆Haar変換部
 6606、6614 メモリ
 6607 算術符号化部
 6610 属性情報復号部
 6611 算術復号部
 7350 クラウドサーバ
 7351 逆多重化部
 7352A、7352B 復号部
 7353 点群データ合成部
 7354 大規模データ蓄積部
 7355 復号部
 7356 比較部
 7357 符号化部
 7360 エッジ
 7361A、7361B センサ
 7362A、7362B 点群データ生成部
 7363 同期部
 7364A、7364B 符号化部
 7365 多重化部
 7366 更新データ蓄積部
 7367 逆多重化部
 7368 復号部
 7369 フィルタ
 7370 自己位置推定部
 7371 運転制御部
 8661 入力UI
 8662 提示部
 8663、8664 ボタン
 8665 蓄積部
 10500 位置情報符号化部
 10501、10521 木構造生成部
 10502、10522 幾何情報算出部
 10503、10523 符号化テーブル選択部
 10504 エントロピー符号化部
 10511 制御部
 10512、10532 8分木生成部
 10513、10533 予測木生成部
 10520 位置情報復号部
 10524 エントロピー復号部
 10531 解析部
 A100 属性情報符号化部
 A101 LoD属性情報符号化部
 A102 変換属性情報符号化部
 A110 属性情報復号部
 A111 LoD属性情報復号部
 A112 変換属性情報復号部

Claims (10)

  1.  それぞれが複数の三次元点を含む複数のデータユニットを取得し、
     前記複数のデータユニットのそれぞれに含まれる複数の三次元点を符号化し、
     前記複数の三次元点が符号化された符号化データを含むビットストリームを生成し、
     前記符号化では、
      符号化対象のデータユニットに含まれる複数の三次元点の複数の位置情報をN分木(Nは2以上の整数)を用いて複数のオキュパンシーマップに変換し、
      前記複数のオキュパンシーマップのそれぞれを、オキュパンシーマップとインデックスとの対応関係を示すテーブルを用いてインデックスに変換し、前記インデックスを符号化することで前記符号化データを生成し、
      変換されたインデックスに応じて前記テーブルを更新してメモリに記憶し、
      前記符号化対象のデータユニットの次のデータユニットの先頭の三次元点の符号化の際に、前記メモリに記憶されている前記テーブルを初期化するか否かを決定し、
      初期化しないと決定された場合、前記メモリに記憶されている前記テーブルを用いて前記次のデータユニットの符号化を開始し、
     前記ビットストリームは、前記決定の結果を示す第1識別情報をさらに含む
     三次元データ符号化方法。
  2.  前記インデックスは、オキュパンシーマップの発生回数、及び、オキュパンシーマップの発生頻度のいずれかを示す
     請求項1に記載の三次元データ符号化方法。
  3.  前記第1識別情報は、前記テーブルを初期化することを示す場合、前のデータユニットのコンテキストを初期化して前記複数の三次元点の複数の属性情報を符号化することを示し、前記テーブルを初期化しないことを示す場合、前記前のデータユニットのコンテキストを継続して用いて前記複数の属性情報を符号化することを示す
     請求項1または2に記載の三次元データ符号化方法。
  4.  前記ビットストリームは、前記複数のデータユニット間でエントロピーを継続する機能を用いるか否かを示す第2識別情報をさらに含み、
     前記第1識別情報は、前記第2識別情報が前記複数のデータユニット間でエントロピーを継続する機能を用いることを示す場合に、示される
     請求項1から3のいずれか1項に記載の三次元データ符号化方法。
  5.  複数の三次元点を含むデータユニットが符号化された符号化データと、前記データユニットの符号化に、当該データユニットの前のデータユニットの符号化に用いられたテーブルを初期化して用いるか否かを示す第1識別情報とを含むビットストリームを取得し、
     前記第1識別情報に応じたテーブルを用いて前記符号化データを復号し、
     前記テーブルは、三次元点の位置情報がN分木(Nは2以上の整数)を用いて表現されたオキュパンシーマップと、インデックスとの対応関係を示し、
     前記符号化データは、符号化された前記インデックスを含み、
     前記復号では、前記符号化データを復号することで得られた前記インデックスが前記テーブルにおいて対応するオキュパンシーマップを導出することで三次元点の位置情報を算出する
     三次元データ復号方法。
  6.  前記インデックスは、オキュパンシーマップの発生回数、及び、オキュパンシーマップの発生頻度のいずれかを示す
     請求項5に記載の三次元データ復号方法。
  7.  前記第1識別情報は、前記テーブルを初期化することを示す場合、前のデータユニットのコンテキストを初期化して前記複数の三次元点の複数の属性情報を復号することを示し、前記テーブルを初期化しないことを示す場合、前記前のデータユニットのコンテキストを継続して用いて前記複数の属性情報を復号することを示す
     請求項5または6に記載の三次元データ復号方法。
  8.  前記ビットストリームは、複数のデータユニット間でエントロピーを継続する機能を用いるか否かを示す第2識別情報をさらに含み、
     前記第1識別情報は、前記第2識別情報が前記複数のデータユニット間でエントロピーを継続する機能を用いることを示す場合に、示される
     請求項5から7のいずれか1項に記載の三次元データ復号方法。
  9.  プロセッサと、
     メモリと、を備え、
     前記プロセッサは、前記メモリを用いて、
     それぞれが複数の三次元点を含む複数のデータユニットを取得し、
     前記複数のデータユニットのそれぞれに含まれる複数の三次元点を符号化し、
     前記複数の三次元点が符号化された符号化データを含むビットストリームを生成し、
     前記符号化では、
      符号化対象のデータユニットに含まれる複数の三次元点の複数の位置情報をN分木(Nは2以上の整数)を用いて複数のオキュパンシーマップに変換し、
      前記複数のオキュパンシーマップのそれぞれを、オキュパンシーマップとインデックスとの対応関係を示すテーブルを用いてインデックスに変換し、前記インデックスを符号化することで前記符号化データを生成し、
      変換されたインデックスに応じて前記テーブルを更新してメモリに記憶し、
      前記符号化対象のデータユニットの次のデータユニットの先頭の三次元点の符号化の際に、前記メモリに記憶されている前記テーブルを初期化するか否かを決定し、
      初期化しないと決定された場合、前記メモリに記憶されている前記テーブルを用いて前記次のデータユニットの符号化を開始し、
     前記ビットストリームは、前記決定の結果を示す第1識別情報をさらに含む
     三次元データ符号化装置。
  10.  プロセッサと、
     メモリと、を備え、
     前記プロセッサは、前記メモリを用いて、
     複数の三次元点を含むデータユニットが符号化された符号化データと、前記データユニットの符号化に、当該データユニットの前のデータユニットの符号化に用いられたテーブルを初期化して用いるか否かを示す第1識別情報とを含むビットストリームを取得し、
     前記第1識別情報に応じたテーブルを用いて前記符号化データを復号し、
     前記テーブルは、三次元点の位置情報がN分木(Nは2以上の整数)を用いて表現されたオキュパンシーマップと、インデックスとの対応関係を示し、
     前記符号化データは、符号化された前記インデックスを含み、
     前記復号では、前記符号化データを復号することで得られた前記インデックスが前記テーブルにおいて対応するオキュパンシーマップを導出することで三次元点の位置情報を算出する
     三次元データ復号装置。
PCT/JP2021/023939 2020-06-25 2021-06-24 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置 WO2021261555A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180043574.5A CN115943434A (zh) 2020-06-25 2021-06-24 三维数据编码方法、三维数据解码方法、三维数据编码装置及三维数据解码装置
US18/081,029 US20230145001A1 (en) 2020-06-25 2022-12-14 Three-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063043937P 2020-06-25 2020-06-25
US63/043,937 2020-06-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/081,029 Continuation US20230145001A1 (en) 2020-06-25 2022-12-14 Three-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device

Publications (1)

Publication Number Publication Date
WO2021261555A1 true WO2021261555A1 (ja) 2021-12-30

Family

ID=79281306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023939 WO2021261555A1 (ja) 2020-06-25 2021-06-24 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置

Country Status (3)

Country Link
US (1) US20230145001A1 (ja)
CN (1) CN115943434A (ja)
WO (1) WO2021261555A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156141A1 (ja) * 2018-02-08 2019-08-15 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2019203297A1 (ja) * 2018-04-19 2019-10-24 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10861196B2 (en) * 2017-09-14 2020-12-08 Apple Inc. Point cloud compression
WO2020014319A1 (en) * 2018-07-11 2020-01-16 Interdigital Vc Holdings, Inc. Processing a point cloud

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156141A1 (ja) * 2018-02-08 2019-08-15 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2019203297A1 (ja) * 2018-04-19 2019-10-24 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置

Also Published As

Publication number Publication date
US20230145001A1 (en) 2023-05-11
CN115943434A (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2020241723A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021261516A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021070952A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021141090A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021066163A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2022075428A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021256559A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021210548A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2022075326A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021187561A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021141117A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
US20230125325A1 (en) Three-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device
WO2021210549A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021193899A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021210550A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021066162A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2022025278A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2022004682A1 (ja) 三次元データ符号化方法及び三次元データ符号化装置
WO2022025280A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2022080283A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2022149589A1 (ja) 三次元データ復号方法、三次元データ符号化方法、三次元データ復号装置、及び三次元データ符号化装置
WO2022075234A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021210513A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021095879A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021261555A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829355

Country of ref document: EP

Kind code of ref document: A1