[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021066163A1 - 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置 - Google Patents

三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置 Download PDF

Info

Publication number
WO2021066163A1
WO2021066163A1 PCT/JP2020/037595 JP2020037595W WO2021066163A1 WO 2021066163 A1 WO2021066163 A1 WO 2021066163A1 JP 2020037595 W JP2020037595 W JP 2020037595W WO 2021066163 A1 WO2021066163 A1 WO 2021066163A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
information
dimensional
point cloud
unit
Prior art date
Application number
PCT/JP2020/037595
Other languages
English (en)
French (fr)
Inventor
チャン ディーン ハン
ポンサク ラサン
プラヂット ミッタラピヤヌルク
ケン リン ロイ
賀敬 井口
敏康 杉尾
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to CN202080067958.6A priority Critical patent/CN114450941A/zh
Priority to JP2021551496A priority patent/JPWO2021066163A1/ja
Publication of WO2021066163A1 publication Critical patent/WO2021066163A1/ja
Priority to US17/709,966 priority patent/US20220222863A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/161Encoding, multiplexing or demultiplexing different image signal components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/001Model-based coding, e.g. wire frame
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/194Transmission of image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/174Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a slice, e.g. a line of blocks or a group of blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • H04N19/436Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation using parallelised computational arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/597Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/96Tree coding, e.g. quad-tree coding

Definitions

  • the present disclosure relates to a three-dimensional data coding method, a three-dimensional data decoding method, a three-dimensional data coding device, and a three-dimensional data decoding device.
  • 3D data In the future, devices or services that utilize 3D data are expected to become widespread in a wide range of fields such as computer vision for autonomous operation of automobiles or robots, map information, monitoring, infrastructure inspection, or video distribution.
  • the three-dimensional data is acquired by various methods such as a distance sensor such as a range finder, a stereo camera, or a combination of a plurality of monocular cameras.
  • point cloud As one of the expression methods of three-dimensional data, there is an expression method called point cloud that expresses the shape of three-dimensional structure by a point cloud in three-dimensional space. In the point cloud, the position and color of the point cloud are stored. Point clouds are expected to become the mainstream method for expressing three-dimensional data, but point clouds have a very large amount of data. Therefore, in the storage or transmission of 3D data, it is essential to compress the amount of data by coding, as in the case of 2D moving images (for example, MPEG-4 AVC or HEVC standardized by MPEG). Become.
  • 2D moving images for example, MPEG-4 AVC or HEVC standardized by MPEG.
  • point cloud compression is partially supported by a public library (Point Cloud Library) that performs point cloud-related processing.
  • Point Cloud Library a public library that performs point cloud-related processing.
  • Patent Document 1 a technique for searching and displaying facilities located around a vehicle using three-dimensional map data is known (see, for example, Patent Document 1).
  • the point cloud data can be appropriately decoded.
  • An object of the present disclosure is to provide a three-dimensional data coding method, a three-dimensional data decoding method, a three-dimensional data coding device, or a three-dimensional data decoding device capable of appropriately decoding point cloud data.
  • the three-dimensional data coding method encodes at least one of a divided data unit when the point group data indicating a three-dimensional point group is divided into a plurality of pieces and a point group data unit before the division.
  • the first maximum number of bits of the later coded data is determined, and the plurality of divided data in which the point group data is divided or the point group data before division is satisfied with the determined first maximum number of bits.
  • a bit stream is generated by encoding to, and the bit stream includes first bit number information indicating the first maximum bit number.
  • the three-dimensional data decoding method after encoding at least one of the divided data unit when the point group data indicating the three-dimensional point group is divided into a plurality of pieces and the point group data unit before the division.
  • a bit stream including the coded data which is the data of the above and the first bit number information indicating the first maximum number of bits of the coded data is acquired, and the acquired bit stream is indicated by the first bit number information. It is determined whether or not the first maximum number of bits is satisfied, and if it is determined that the bit stream satisfies the first maximum number of bits, the coded data is decoded.
  • a recording medium such as a system, device, integrated circuit, computer program or computer-readable CD-ROM, and the system, device, integrated circuit, computer program. And any combination of recording media may be realized.
  • the present disclosure can provide a three-dimensional data coding method, a three-dimensional data decoding method, a three-dimensional data coding device, or a three-dimensional data decoding device capable of appropriately decoding point cloud data.
  • FIG. 1 is a diagram showing a configuration of a three-dimensional data coding / decoding system according to the first embodiment.
  • FIG. 2 is a diagram showing a configuration example of point cloud data according to the first embodiment.
  • FIG. 3 is a diagram showing a configuration example of a data file in which the point cloud data information according to the first embodiment is described.
  • FIG. 4 is a diagram showing the types of point cloud data according to the first embodiment.
  • FIG. 5 is a diagram showing a configuration of a first coding unit according to the first embodiment.
  • FIG. 6 is a block diagram of the first coding unit according to the first embodiment.
  • FIG. 7 is a diagram showing a configuration of a first decoding unit according to the first embodiment.
  • FIG. 1 is a diagram showing a configuration of a three-dimensional data coding / decoding system according to the first embodiment.
  • FIG. 2 is a diagram showing a configuration example of point cloud data according to the first embodiment.
  • FIG. 3 is a diagram showing a
  • FIG. 8 is a block diagram of the first decoding unit according to the first embodiment.
  • FIG. 9 is a diagram showing a configuration of a second coding unit according to the first embodiment.
  • FIG. 10 is a block diagram of a second coding unit according to the first embodiment.
  • FIG. 11 is a diagram showing a configuration of a second decoding unit according to the first embodiment.
  • FIG. 12 is a block diagram of a second decoding unit according to the first embodiment.
  • FIG. 13 is a diagram showing a protocol stack related to PCC coded data according to the first embodiment.
  • FIG. 14 is a diagram showing a configuration of a coding unit and a multiplexing unit according to the second embodiment.
  • FIG. 15 is a diagram showing a configuration example of coded data according to the second embodiment.
  • FIG. 16 is a diagram showing a configuration example of the coded data and the NAL unit according to the second embodiment.
  • FIG. 17 is a diagram showing an example of semantics of pcc_nal_unit_type according to the second embodiment.
  • FIG. 18 is a diagram showing an example of the delivery order of the NAL unit according to the second embodiment.
  • FIG. 19 is a block diagram of the first coding unit according to the third embodiment.
  • FIG. 20 is a block diagram of the first decoding unit according to the third embodiment.
  • FIG. 21 is a block diagram of the divided portion according to the third embodiment.
  • FIG. 22 is a diagram showing a division example of slices and tiles according to the third embodiment.
  • FIG. 23 is a diagram showing an example of a slice and tile division pattern according to the third embodiment.
  • FIG. 24 is a diagram showing an example of the dependency relationship according to the third embodiment.
  • FIG. 25 is a diagram showing an example of the decoding order of the data according to the third embodiment.
  • FIG. 26 is a flowchart of the coding process according to the third embodiment.
  • FIG. 27 is a block diagram of the joint portion according to the third embodiment.
  • FIG. 28 is a diagram showing a configuration example of the coded data and the NAL unit according to the third embodiment.
  • FIG. 29 is a flowchart of the coding process according to the third embodiment.
  • FIG. 30 is a flowchart of the decoding process according to the third embodiment.
  • FIG. 31 is a diagram showing a syntax example of tile additional information according to the fourth embodiment.
  • FIG. 32 is a block diagram of the coding / decoding system according to the fourth embodiment.
  • FIG. 33 is a diagram showing a syntax example of slice addition information according to the fourth embodiment.
  • FIG. 34 is a flowchart of the coding process according to the fourth embodiment.
  • FIG. 35 is a flowchart of the decoding process according to the fourth embodiment.
  • FIG. 36 is a diagram showing an example of a tree structure according to the fifth embodiment.
  • FIG. 37 is a diagram showing an example of a data structure of the coded data of the octave tree structure according to the fifth embodiment.
  • FIG. 38 is a diagram showing an example of payload syntax according to the fifth embodiment.
  • FIG. 39 is a flowchart of the decoding process according to the fifth embodiment.
  • FIG. 39 is a flowchart of the decoding process according to the fifth embodiment.
  • FIG. 40 is a diagram showing the relationship between the level according to the fifth embodiment and the data to be decoded.
  • FIG. 41 is a schematic diagram showing the level according to the fifth embodiment.
  • FIG. 42 is a diagram showing an example of header syntax according to the fifth embodiment.
  • FIG. 43 is a diagram showing an example of payload syntax according to the fifth embodiment.
  • FIG. 44 is a diagram showing the configuration of the overall coded data according to the fifth embodiment.
  • FIG. 45 is a diagram showing the configuration of the overall coded data according to the fifth embodiment.
  • FIG. 46 is a diagram showing an example of syntax of depth information according to the fifth embodiment.
  • FIG. 47 is a diagram showing a syntax example of the hierarchical structure metadata according to the fifth embodiment.
  • FIG. 48 is a diagram showing an example of header syntax according to the fifth embodiment.
  • FIG. 41 is a schematic diagram showing the level according to the fifth embodiment.
  • FIG. 42 is a diagram showing an example of header syntax according to the fifth embodiment.
  • FIG. 43 is
  • FIG. 49 is a diagram showing the configuration of the overall coded data according to the fifth embodiment.
  • FIG. 50 is a diagram showing an example of syntax of hierarchical information according to the fifth embodiment.
  • FIG. 51 is a diagram showing a syntax example of the hierarchical structure metadata according to the fifth embodiment.
  • FIG. 52 is a diagram showing an example of syntax of the header of the overall coded data according to the fifth embodiment.
  • FIG. 53 is a diagram showing a configuration example of the bit stream according to the fifth embodiment.
  • FIG. 54 is a diagram showing a syntax example of the hierarchical structure metadata according to the fifth embodiment.
  • FIG. 55 is a diagram showing a reference relationship of position information and attribute information according to the fifth embodiment.
  • FIG. 56 is a diagram showing a reference relationship between position information and attribute information according to the fifth embodiment.
  • FIG. 57 is a diagram showing a reference relationship between position information and attribute information according to the fifth embodiment.
  • FIG. 58 is a diagram showing a configuration example of a bit stream according to the fifth embodiment.
  • FIG. 59 is a diagram showing a configuration example of the three-dimensional data coding apparatus according to the fifth embodiment.
  • FIG. 60 is a diagram showing a configuration example of the three-dimensional data decoding device according to the fifth embodiment.
  • FIG. 61 is a diagram showing a basic structure of the ISOBMFF according to the fifth embodiment.
  • FIG. 62 is a protocol stack diagram in the case where the NAL unit common to the PCC codec according to the fifth embodiment is stored in the ISOBMFF.
  • FIG. 63 is a diagram showing a conversion process from the bit stream to the file format according to the fifth embodiment.
  • FIG. 64 is a flowchart of the format conversion process according to the fifth embodiment.
  • FIG. 65 is a flowchart of the decoding process according to the fifth embodiment.
  • FIG. 66 is a diagram showing a conversion process from the bit stream to the file format according to the fifth embodiment.
  • FIG. 67 is a diagram showing a syntax example of the hierarchical structure metadata according to the fifth embodiment.
  • FIG. 68 is a diagram schematically showing the division process according to the fifth embodiment.
  • FIG. 69 is a flowchart of the conversion process using the hierarchical information according to the fifth embodiment.
  • FIG. 70 is a flowchart of the conversion process that does not use the hierarchical information according to the fifth embodiment.
  • FIG. 71 is a flowchart of the hierarchical data sample data decoding process according to the fifth embodiment.
  • FIG. 72 is a diagram showing a configuration example of the overall coded data according to the fifth embodiment.
  • FIG. 73 is a diagram showing a configuration example of the overall coded data according to the fifth embodiment.
  • FIG. 74 is a diagram showing a conversion process from the bit stream to the file format according to the fifth embodiment.
  • FIG. 75 is a flowchart of the format conversion process according to the fifth embodiment.
  • FIG. 76 is a flowchart of the decoding process according to the fifth embodiment.
  • FIG. 77 is a diagram showing an example of syntax of depth information according to the fifth embodiment.
  • FIG. 78 is a diagram showing an example of syntax of the sample size box according to the fifth embodiment.
  • FIG. 79 is a diagram showing an example of syntax of hierarchical information according to the fifth embodiment.
  • FIG. 80 is a diagram showing an example of the syntax of the PCCLayerStructureBox according to the fifth embodiment.
  • FIG. 81 is a diagram schematically showing the extraction operation according to the fifth embodiment.
  • FIG. 82 is a diagram showing an example of a file format according to the fifth embodiment.
  • FIG. 83 is a diagram showing an example of the extracted bit stream according to the fifth embodiment.
  • FIG. 84 is a diagram showing an example of the extracted bit stream according to the fifth embodiment.
  • FIG. 85 is a diagram showing an example of the extracted bit stream according to the fifth embodiment.
  • FIG. 86 is a diagram showing an example of the direct mode according to the fifth embodiment.
  • FIG. 87 is a flowchart of the three-dimensional data coding process according to the fifth embodiment.
  • FIG. 88 is a flowchart of the three-dimensional data decoding process according to the fifth embodiment.
  • FIG. 89 is a block diagram showing an example of the configuration of the three-dimensional data coding apparatus according to the sixth embodiment.
  • FIG. 90 is a flowchart showing a first example of the three-dimensional data coding method according to the sixth embodiment.
  • FIG. 91 is a block diagram showing an example of the configuration of the three-dimensional data decoding device according to the sixth embodiment.
  • FIG. 92 is a flowchart showing an example of the three-dimensional data decoding method according to the sixth embodiment.
  • FIG. 93 is a flowchart showing a second example of the three-dimensional data coding method according to the sixth embodiment.
  • FIG. 94 is a diagram showing an example of the bounding box according to the sixth embodiment.
  • FIG. 95 is a flowchart showing another example of the three-dimensional data decoding method according to the sixth embodiment.
  • FIG. 96 is a flowchart showing a third example of the three-dimensional data coding method according to the sixth embodiment.
  • FIG. 97 is an example of the process of reducing the number of bits according to the sixth embodiment.
  • FIG. 98 is another example of the process of reducing the number of bits according to the sixth embodiment.
  • FIG. 99 is a flowchart showing a fourth example of the three-dimensional data coding method according to the sixth embodiment.
  • FIG. 100 is an example of a process for increasing the number of bits according to the sixth embodiment.
  • FIG. 101 is another example of the process of increasing the number of bits according to the sixth embodiment.
  • FIG. 102 is a flowchart showing a fifth example of the three-dimensional data coding method according to the sixth embodiment.
  • FIG. 103 is a diagram showing an example of a combination of conformations according to the sixth embodiment.
  • FIG. 104 is a flowchart showing a sixth example of the three-dimensional data coding method according to the sixth embodiment.
  • FIG. 105 is a diagram showing another example of the combination of conformances according to the sixth embodiment.
  • FIG. 106 is a diagram showing another example of the combination of conformances according to the sixth embodiment.
  • FIG. 107 is a diagram showing an example (Example 1) of the SPS (Sequence Parameter Set) according to the sixth embodiment.
  • FIG. 108 is a diagram showing an example (Example 2) of the SPS according to the sixth embodiment.
  • FIG. 109 is a diagram showing an example (Example 3) of GPS (Geometry Parameter Set) according to the sixth embodiment.
  • FIG. 110 is a diagram showing a configuration of a bit stream according to the sixth embodiment.
  • FIG. 111 is a diagram for explaining an example in which the conformance is switched according to the location of the three-dimensional point cloud according to the sixth embodiment.
  • FIG. 112 is a flowchart showing another example of the three-dimensional data coding process according to the sixth embodiment.
  • FIG. 113 is a flowchart showing another example of the three-dimensional data decoding process according to the sixth embodiment.
  • FIG. 114 is a block diagram of the three-dimensional data creation device according to the seventh embodiment.
  • FIG. 115 is a flowchart of the three-dimensional data creation method according to the seventh embodiment.
  • FIG. 116 is a diagram showing a configuration of the system according to the seventh embodiment.
  • FIG. 117 is a block diagram of the client device according to the seventh embodiment.
  • FIG. 118 is a block diagram of the server according to the seventh embodiment.
  • FIG. 119 is a flowchart of the three-dimensional data creation process by the client device according to the seventh embodiment.
  • FIG. 120 is a flowchart of the sensor information transmission process by the client device according to the seventh embodiment.
  • FIG. 121 is a flowchart of a three-dimensional data creation process by the server according to the seventh embodiment.
  • FIG. 122 is a flowchart of a three-dimensional map transmission process by the server according to the seventh embodiment.
  • FIG. 123 is a diagram showing a configuration of a modified example of the system according to the seventh embodiment.
  • FIG. 124 is a diagram showing a configuration of a server and a client device according to the seventh embodiment.
  • FIG. 125 is a diagram showing a configuration of a server and a client device according to the seventh embodiment.
  • FIG. 126 is a flowchart of processing by the client device according to the seventh embodiment.
  • FIG. 127 is a diagram showing a configuration of a sensor information collecting system according to the seventh embodiment.
  • FIG. 128 is a diagram showing an example of the system according to the seventh embodiment.
  • FIG. 129 is a diagram showing a modified example of the system according to the seventh embodiment.
  • FIG. 130 is a flowchart showing an example of application processing according to the seventh embodiment.
  • FIG. 131 is a diagram showing a sensor range of various sensors according to the seventh embodiment.
  • FIG. 132 is a diagram showing a configuration example of the automatic driving system according to the seventh embodiment.
  • FIG. 133 is a diagram showing a configuration example of a bit stream according to the seventh embodiment.
  • FIG. 134 is a flowchart of the point group selection process according to the seventh embodiment.
  • FIG. 135 is a diagram showing a screen example of the point group selection process according to the seventh embodiment.
  • FIG. 136 is a diagram showing a screen example of the point group selection process according to the seventh embodiment.
  • FIG. 137 is a diagram showing a screen example of the point group selection process according to the seventh embodiment.
  • the three-dimensional data coding method encodes at least one of a divided data unit when the point group data indicating a three-dimensional point group is divided into a plurality of pieces and a point group data unit before the division.
  • the first maximum number of bits of the later coded data is determined, and the plurality of divided data in which the point group data is divided or the point group data before division is satisfied with the determined first maximum number of bits.
  • a bit stream is generated by encoding to, and the bit stream includes first bit number information indicating the first maximum bit number.
  • the three-dimensional data coding method generates a bit stream including the first bit number information indicating the first maximum number of bits of the coded data after encoding, so that the three-dimensional data decoding device uses bits. It is possible to determine whether the encoded data can be properly decoded without analyzing the stream. Therefore, the processing load of the three-dimensional data decoding device can be reduced.
  • the point group data includes position information of each three-dimensional point of the three-dimensional point group, and the first maximum number of bits is the number of bits after encoding of the position information. Even if the bit stream is generated by encoding a plurality of divided data in which the group data is divided or the position information of the point group data before division so as to satisfy the determined first maximum number of bits. Good.
  • the three-dimensional data coding method generates a bit stream including the first bit number information indicating the first maximum number of bits of the coded position information. Therefore, the three-dimensional data decoding device uses the bit stream. It is possible to determine whether the position information can be properly decoded without analyzing.
  • a range of the number of three-dimensional points included in at least one of the divided data unit and the point group data unit is determined, and in the generation, a plurality of divided data in which the point group data is divided,
  • the bit stream is generated by encoding the point group data before division so as to satisfy the determined first maximum number of bits and the range of the number, and the bit stream is further divided into the number. It may include range information indicating the range. Therefore, the processing load of the three-dimensional data decoding device can be reduced.
  • the three-dimensional data coding method generates a bit stream including range information indicating the range of the number of three-dimensional points of the coded data, so that the three-dimensional data decoding device does not analyze the bit stream. However, it can be determined whether the position information can be decrypted appropriately. Therefore, the processing load of the three-dimensional data decoding device can be reduced.
  • the point group data further includes attribute information of each three-dimensional point of the three-dimensional point group
  • the three-dimensional data coding method further includes the divided data unit and the point group data unit.
  • the second maximum number of bits after encoding the attribute information of at least one of the three-dimensional point groups is determined, and in the generation, (i) a plurality of divided data in which the point group data is divided, or the said before division.
  • the position information of the point group data is encoded so as to satisfy the determined first maximum number of bits, and (ii) a plurality of divided data in which the point group data is divided, or the point group data before division.
  • the three-dimensional data coding method generates a bit stream including the second bit number information indicating the second maximum number of bits of the attribute information after encoding, so that the three-dimensional data decoding device uses the bit stream. It is possible to determine whether the attribute information can be properly decoded without analyzing. Therefore, the processing load of the three-dimensional data decoding device can be reduced.
  • the three-dimensional data decoding method after encoding at least one of the divided data unit when the point group data indicating the three-dimensional point group is divided into a plurality of pieces and the point group data unit before the division.
  • a bit stream including the coded data which is the data of the above and the first bit number information indicating the first maximum number of bits of the coded data is acquired, and the acquired bit stream is indicated by the first bit number information. It is determined whether or not the first maximum number of bits is satisfied, and if it is determined that the bit stream satisfies the first maximum number of bits, the coded data is decoded.
  • the three-dimensional data decoding method in order to acquire the first bit number information indicating the first maximum number of bits of the encoded data after encoding from the bit stream, the three-dimensional data decoding method is based on the acquired first bit number information.
  • the point group data can be appropriately decoded.
  • the decoding when it is determined that the bit stream does not satisfy the first maximum number of bits, it is not necessary to decode the encoded data.
  • the processing load can be reduced because the decoding process of the coded data of the bit stream that cannot be appropriately decoded is not performed.
  • the point cloud data includes position information of each three-dimensional point of the three-dimensional point cloud, and the first maximum number of bits may be the number of bits after encoding of the position information.
  • the three-dimensional data decoding method acquires the first bit number information indicating the first maximum number of bits of the encoded position information from the bit stream, it is appropriate based on the acquired first bit number information.
  • the point group data can be decoded.
  • the bit stream further includes range information indicating a range of the number of three-dimensional points included in at least one of the divided data unit and the point group data unit, and in the determination, the bit stream further includes the bit stream. Determines whether or not the range of the number indicated by the range information is satisfied, and in the decoding, the bit stream satisfies the first maximum number of bits and satisfies the range of the number. If it is determined that the coded data is present, the coded data is decoded, and if it is determined that the bit stream does not satisfy the first maximum number of bits or does not satisfy the range of the number, the coded data is encoded. You do not have to decrypt the data.
  • the three-dimensional data decoding method acquires range information indicating the range of the number of three-dimensional points of the coded data from the bit stream, the point group data is appropriately decoded based on the acquired range information. be able to.
  • the point group data further includes attribute information of each three-dimensional point of the three-dimensional point group
  • the bit stream further includes the divided data unit and at least one tertiary of the point group data unit.
  • the second maximum bit number information indicating the second maximum bit number after encoding of the attribute information of the original point group is included, and in the determination, the bit stream is further represented by the second maximum bit number information.
  • the encoded data may not be decoded. Good.
  • the three-dimensional data decoding method acquires the second bit number information indicating the second maximum number of bits of the coded attribute information from the bit stream, it is appropriate based on the acquired second bit number information.
  • the point group data can be decoded.
  • a three-dimensional data coding method and a three-dimensional data coding device for providing a function of transmitting and receiving necessary information according to an application in the coded data of a three-dimensional point cloud, and the code thereof.
  • a three-dimensional data decoding method and a three-dimensional data decoding device for decoding the encoded data, a three-dimensional data multiplexing method for multiplexing the encoded data, and a three-dimensional data transmission method for transmitting the encoded data will be described. To do.
  • a first coding method and a second coding method are being studied as a coding method (coding method) for point group data, but the configuration of the coded data and the coded data are used as a system.
  • the method of storing in the format is not defined, and there is a problem that the MUX processing (multiplexing), transmission or storage in the coding unit cannot be performed as it is.
  • FIG. 1 is a diagram showing a configuration example of a three-dimensional data coding / decoding system according to the present embodiment.
  • the three-dimensional data coding / decoding system includes a three-dimensional data coding system 4601, a three-dimensional data decoding system 4602, a sensor terminal 4603, and an external connection unit 4604.
  • the three-dimensional data coding system 4601 generates coded data or multiplexed data by encoding point cloud data which is three-dimensional data.
  • the three-dimensional data coding system 4601 may be a three-dimensional data coding device realized by a single device, or may be a system realized by a plurality of devices. Further, the three-dimensional data coding apparatus may include a part of a plurality of processing units included in the three-dimensional data coding system 4601.
  • the three-dimensional data coding system 4601 includes a point cloud data generation system 4611, a presentation unit 4612, a coding unit 4613, a multiplexing unit 4614, an input / output unit 4615, and a control unit 4616.
  • the point cloud data generation system 4611 includes a sensor information acquisition unit 4617 and a point cloud data generation unit 4618.
  • the sensor information acquisition unit 4617 acquires the sensor information from the sensor terminal 4603 and outputs the sensor information to the point cloud data generation unit 4618.
  • the point cloud data generation unit 4618 generates point cloud data from the sensor information and outputs the point cloud data to the coding unit 4613.
  • the presentation unit 4612 presents the sensor information or the point cloud data to the user. For example, the presentation unit 4612 displays information or an image based on sensor information or point cloud data.
  • the coding unit 4613 encodes (compresses) the point cloud data, and outputs the obtained coded data, the control information obtained in the coding process, and other additional information to the multiplexing unit 4614.
  • the additional information includes, for example, sensor information.
  • the multiplexing unit 4614 generates multiplexed data by multiplexing the coded data input from the coding unit 4613, the control information, and the additional information.
  • the format of the multiplexed data is, for example, a file format for storage or a packet format for transmission.
  • the input / output unit 4615 (for example, the communication unit or the interface) outputs the multiplexed data to the outside.
  • the multiplexed data is stored in a storage unit such as an internal memory.
  • the control unit 4616 (or application execution unit) controls each processing unit. That is, the control unit 4616 controls coding, multiplexing, and the like.
  • the sensor information may be input to the coding unit 4613 or the multiplexing unit 4614. Further, the input / output unit 4615 may output the point cloud data or the coded data as it is to the outside.
  • the transmission signal (multiplexed data) output from the three-dimensional data coding system 4601 is input to the three-dimensional data decoding system 4602 via the external connection unit 4604.
  • the three-dimensional data decoding system 4602 generates point cloud data, which is three-dimensional data, by decoding encoded data or multiplexed data.
  • the three-dimensional data decoding system 4602 may be a three-dimensional data decoding device realized by a single device, or may be a system realized by a plurality of devices. Further, the three-dimensional data decoding device may include a part of a plurality of processing units included in the three-dimensional data decoding system 4602.
  • the three-dimensional data decoding system 4602 includes a sensor information acquisition unit 4621, an input / output unit 4622, a demultiplexing unit 4623, a decoding unit 4624, a presentation unit 4625, a user interface 4626, and a control unit 4627.
  • the sensor information acquisition unit 4621 acquires sensor information from the sensor terminal 4603.
  • the input / output unit 4622 acquires the transmission signal, decodes the multiplexed data (file format or packet) from the transmitted signal, and outputs the multiplexed data to the demultiplexed unit 4623.
  • the demultiplexing unit 4623 acquires encoded data, control information and additional information from the multiplexing data, and outputs the encoded data, control information and additional information to the decoding unit 4624.
  • the decoding unit 4624 reconstructs the point cloud data by decoding the coded data.
  • the presentation unit 4625 presents the point cloud data to the user. For example, the presentation unit 4625 displays information or an image based on the point cloud data.
  • the user interface 4626 acquires instructions based on user operations.
  • the control unit 4627 (or application execution unit) controls each processing unit. That is, the control unit 4627 controls demultiplexing, decoding, presentation, and the like.
  • the input / output unit 4622 may acquire the point cloud data or the coded data as it is from the outside. Further, the presentation unit 4625 may acquire additional information such as sensor information and present information based on the additional information. In addition, the presentation unit 4625 may make a presentation based on the user's instruction acquired by the user interface 4626.
  • the sensor terminal 4603 generates sensor information, which is information obtained by the sensor.
  • the sensor terminal 4603 is a terminal equipped with a sensor or a camera, and includes, for example, a moving object such as an automobile, a flying object such as an airplane, a mobile terminal, or a camera.
  • the sensor information that can be acquired by the sensor terminal 4603 is, for example, (1) the distance between the sensor terminal 4603 and the object obtained from the LIDAR, the millimeter-wave radar, or the infrared sensor, or the reflectance of the object, (2) a plurality.
  • the sensor information may include the attitude, orientation, gyro (angular velocity), position (GPS information or altitude), speed, acceleration, and the like of the sensor.
  • the sensor information may include temperature, atmospheric pressure, humidity, magnetism, and the like.
  • the external connection unit 4604 is realized by communication with an integrated circuit (LSI or IC), an external storage unit, a cloud server via the Internet, broadcasting, or the like.
  • LSI integrated circuit
  • IC integrated circuit
  • cloud server via the Internet, broadcasting, or the like.
  • FIG. 2 is a diagram showing the structure of point cloud data.
  • FIG. 3 is a diagram showing a configuration example of a data file in which information on point cloud data is described.
  • the point cloud data includes data of a plurality of points.
  • the data of each point includes position information (three-dimensional coordinates) and attribute information for the position information.
  • a collection of multiple points is called a point cloud.
  • a point cloud indicates a three-dimensional shape of an object.
  • Position information such as three-dimensional coordinates is sometimes called geometry.
  • the data of each point may include attribute information (attribute) of a plurality of attribute types.
  • the attribute type is, for example, color or reflectance.
  • One attribute information may be associated with one position information, or attribute information having a plurality of different attribute types may be associated with one position information. Further, a plurality of attribute information of the same attribute type may be associated with one position information.
  • the configuration example of the data file shown in FIG. 3 is an example in which the position information and the attribute information have a one-to-one correspondence, and shows the position information and the attribute information of N points constituting the point cloud data. There is.
  • the position information is, for example, information on three axes of x, y, and z.
  • the attribute information is, for example, RGB color information.
  • a typical data file is a ply file or the like.
  • FIG. 4 is a diagram showing the types of point cloud data.
  • the point cloud data includes a static object and a dynamic object.
  • the static object is 3D point cloud data at an arbitrary time (certain time).
  • a dynamic object is three-dimensional point cloud data that changes over time.
  • the three-dimensional point cloud data at a certain time is referred to as a PCC frame or a frame.
  • the object may be a point cloud whose area is limited to some extent like ordinary video data, or a large-scale point cloud whose area is not limited such as map information.
  • the sensor information is acquired by various methods such as a distance sensor such as LIDAR or a range finder, a stereo camera, or a combination of a plurality of monocular cameras.
  • the point cloud data generation unit 4618 generates point cloud data based on the sensor information obtained by the sensor information acquisition unit 4617.
  • the point cloud data generation unit 4618 generates position information as point cloud data, and adds attribute information for the position information to the position information.
  • the point cloud data generation unit 4618 may process the point cloud data when generating the position information or adding the attribute information. For example, the point cloud data generation unit 4618 may reduce the amount of data by deleting the point clouds whose positions overlap. Further, the point cloud data generation unit 4618 may convert the position information (position shift, rotation, normalization, etc.), or may render the attribute information.
  • point cloud data generation system 4611 is included in the three-dimensional data coding system 4601 in FIG. 1, it may be provided independently outside the three-dimensional data coding system 4601.
  • the coding unit 4613 generates coded data by coding the point cloud data based on a predetermined coding method.
  • a predetermined coding method There are roughly the following two types of coding methods.
  • the first is a coding method using position information, and this coding method will be hereinafter referred to as a first coding method.
  • the second is a coding method using a video codec, and this coding method will be hereinafter referred to as a second coding method.
  • the decoding unit 4624 decodes the point cloud data by decoding the coded data based on a predetermined coding method.
  • the multiplexing unit 4614 generates multiplexed data by multiplexing the encoded data using an existing multiplexing method.
  • the generated multiplexed data is transmitted or accumulated.
  • the multiplexing unit 4614 multiplexes other media such as video, audio, subtitles, applications, and files, or reference time information. Further, the multiplexing unit 4614 may further multiplex the attribute information related to the sensor information or the point cloud data.
  • the multiplexing method or file format includes ISOBMFF, ISOBMFF-based transmission method MPEG-DASH, MMT, MPEG-2 TS Systems, RMP, and the like.
  • the demultiplexing unit 4623 extracts PCC coded data, other media, time information, etc. from the multiplexing data.
  • the input / output unit 4615 transmits the multiplexed data by using a method suitable for the medium to be transmitted or the medium to be stored, such as broadcasting or communication.
  • the input / output unit 4615 may communicate with other devices via the Internet, or may communicate with a storage unit such as a cloud server.
  • http http, ftp, TCP, UDP, etc. are used.
  • a PULL type communication method may be used, or a PUSH type communication method may be used.
  • Either wired transmission or wireless transmission may be used.
  • Ethernet registered trademark
  • USB registered trademark
  • RS-232C USB-232C
  • HDMI registered trademark
  • coaxial cable or the like
  • wireless transmission a wireless LAN, Wi-Fi (registered trademark), Bluetooth (registered trademark), millimeter wave, or the like is used.
  • DVB-T2 DVB-S2, DVB-C2, ATSC3.0, ISDB-S3 or the like is used.
  • FIG. 5 is a diagram showing the configuration of the first coding unit 4630, which is an example of the coding unit 4613 that encodes the first coding method.
  • FIG. 6 is a block diagram of the first coding unit 4630.
  • the first coding unit 4630 generates coded data (coded stream) by coding the point cloud data by the first coding method.
  • the first coding unit 4630 includes a position information coding unit 4631, an attribute information coding unit 4632, an additional information coding unit 4633, and a multiplexing unit 4634.
  • the first coding unit 4630 has a feature of performing coding while being aware of the three-dimensional structure. Further, the first coding unit 4630 has a feature that the attribute information coding unit 4632 performs coding using the information obtained from the position information coding unit 4631.
  • the first coding method is also called GPCC (Geometry based PCC).
  • the point cloud data is PCC point cloud data such as a PLY file, or PCC point cloud data generated from sensor information, and is position information (Position), attribute information (Attribute), and other additional information (MetaData). including.
  • the position information is input to the position information coding unit 4631, the attribute information is input to the attribute information coding unit 4632, and the additional information is input to the additional information coding unit 4633.
  • the position information coding unit 4631 generates coded position information (Compressed Geometry) which is coded data by encoding the position information.
  • the position information coding unit 4631 encodes the position information using an N-branch structure such as an octa-tree. Specifically, in the octave tree, the target space is divided into eight nodes (subspaces), and 8-bit information (occupancy code) indicating whether or not each node contains a point cloud is generated. .. Further, the node including the point cloud is further divided into eight nodes, and 8-bit information indicating whether or not the point cloud is included in each of the eight nodes is generated. This process is repeated until it becomes equal to or less than the threshold value of the number of point clouds included in the predetermined hierarchy or node.
  • the attribute information coding unit 4632 generates the coded attribute information (Compressed Attribute) which is the coded data by encoding using the configuration information generated by the position information coding unit 4631. For example, the attribute information coding unit 4632 determines a reference point (reference node) to be referred to in the coding of the target point (target node) to be processed based on the ocree tree structure generated by the position information coding unit 4631. To do. For example, the attribute information coding unit 4632 refers to a node whose parent node in the octree is the same as the target node among the peripheral nodes or adjacent nodes. The method of determining the reference relationship is not limited to this.
  • the attribute information coding process may include at least one of a quantization process, a prediction process, and an arithmetic coding process.
  • the reference means that the reference node is used to calculate the predicted value of the attribute information, or the state of the reference node (for example, occupancy indicating whether or not the reference node contains a point cloud) is used to determine the encoding parameter. Information) is used.
  • the coding parameter is a quantization parameter in the quantization process, a context in arithmetic coding, or the like.
  • the additional information coding unit 4633 generates the encoded additional information (Compressed Metadata Data) which is the encoded data by encoding the compressible data among the additional information.
  • Compressed Metadata Data is the encoded data by encoding the compressible data among the additional information.
  • the multiplexing unit 4634 generates a coded stream (Compressed Stream) which is coded data by multiplexing the coded position information, the coded attribute information, the coded additional information, and other additional information.
  • the generated coded stream is output to a processing unit of a system layer (not shown).
  • FIG. 7 is a diagram showing the configuration of the first decoding unit 4640.
  • FIG. 8 is a block diagram of the first decoding unit 4640.
  • the first decoding unit 4640 generates point cloud data by decoding the coded data (coded stream) encoded by the first coding method by the first coding method.
  • the first decoding unit 4640 includes a demultiplexing unit 4461, a position information decoding unit 4642, an attribute information decoding unit 4634, and an additional information decoding unit 4644.
  • a coded stream (Compressed Stream), which is coded data, is input to the first decoding unit 4640 from a processing unit of a system layer (not shown).
  • the demultiplexing unit 4641 separates the coded position information (Compressed Geometry), the coded attribute information (Compressed Attribute), the coded additional information (Compressed Metadata), and other additional information from the coded data.
  • the position information decoding unit 4642 generates position information by decoding the coded position information. For example, the position information decoding unit 4642 restores the position information of the point cloud represented by the three-dimensional coordinates from the coded position information represented by the N-branch structure such as the ocree.
  • the attribute information decoding unit 4643 decodes the coded attribute information based on the configuration information generated by the position information decoding unit 4642. For example, the attribute information decoding unit 4643 determines a reference point (reference node) to be referred to in decoding the target point (target node) to be processed, based on the octave tree structure obtained by the position information decoding unit 4642. For example, the attribute information decoding unit 4643 refers to a node whose parent node in the octree is the same as the target node among the peripheral nodes or adjacent nodes. The method of determining the reference relationship is not limited to this.
  • the attribute information decoding process may include at least one of an inverse quantization process, a prediction process, and an arithmetic decoding process.
  • the reference means that the reference node is used to calculate the predicted value of the attribute information, or the state of the reference node (for example, the occupancy information indicating whether or not the reference node contains a point cloud) is used to determine the decoding parameter. ) Is used.
  • the decoding parameter is a quantization parameter in the inverse quantization process, a context in arithmetic decoding, or the like.
  • the additional information decoding unit 4644 generates additional information by decoding the coded additional information. Further, the first decoding unit 4640 uses the additional information necessary for the decoding process of the position information and the attribute information at the time of decoding, and outputs the additional information necessary for the application to the outside.
  • FIG. 9 is a diagram showing the configuration of the second coding unit 4650.
  • FIG. 10 is a block diagram of the second coding unit 4650.
  • the second coding unit 4650 generates coded data (coded stream) by coding the point cloud data by the second coding method.
  • the second coding unit 4650 includes an additional information generation unit 4651, a position image generation unit 4652, an attribute image generation unit 4653, a video coding unit 4654, an additional information coding unit 4655, and a multiplexing unit 4656. And include.
  • the second coding unit 4650 generates a position image and an attribute image by projecting the three-dimensional structure onto the two-dimensional image, and encodes the generated position image and the attribute image using an existing video coding method. It has the feature.
  • the second coding method is also called VPCC (Video based PCC).
  • the point cloud data is PCC point cloud data such as a PLY file, or PCC point cloud data generated from sensor information, and provides position information (Position), attribute information (Attribute), and other additional information (MetaData). Including.
  • the additional information generation unit 4651 generates map information of a plurality of two-dimensional images by projecting the three-dimensional structure onto the two-dimensional image.
  • the position image generation unit 4652 generates a position image (Geometry Image) based on the position information and the map information generated by the additional information generation unit 4651.
  • This position image is, for example, a distance image in which a distance (Dept) is shown as a pixel value.
  • this distance image may be an image in which a plurality of point clouds are viewed from one viewpoint (an image in which a plurality of point clouds are projected on one two-dimensional plane), or a plurality of point clouds from a plurality of viewpoints. It may be a plurality of images viewed, or it may be a single image in which these plurality of images are integrated.
  • the attribute image generation unit 4653 generates an attribute image based on the attribute information and the map information generated by the additional information generation unit 4651.
  • This attribute image is, for example, an image in which attribute information (for example, color (RGB)) is shown as a pixel value.
  • RGB color
  • this image may be an image in which a plurality of point clouds are viewed from one viewpoint (an image in which a plurality of point clouds are projected on one two-dimensional plane), or a plurality of point clouds may be viewed from a plurality of viewpoints. It may be a plurality of images viewed, or it may be a single image in which these plurality of images are integrated.
  • the video coding unit 4654 encodes the position image and the attribute image by using the video coding method, so that the coded position image (Compressed Geometry Image) and the coded attribute image (Compressed Attribute Image) which are the coded data are encoded. ) Is generated.
  • the video coding method any known coding method may be used.
  • the video coding method is AVC, HEVC, or the like.
  • the additional information coding unit 4655 generates the encoded additional information (Compressed Metadata Data) by encoding the additional information included in the point cloud data, the map information, and the like.
  • the multiplexing unit 4656 generates a coded stream (Compressed Stream) which is coded data by multiplexing the coded position image, the coded attribute image, the coded additional information, and other additional information.
  • the generated coded stream is output to a processing unit of a system layer (not shown).
  • FIG. 11 is a diagram showing the configuration of the second decoding unit 4660.
  • FIG. 12 is a block diagram of the second decoding unit 4660.
  • the second decoding unit 4660 generates point cloud data by decoding the coded data (coded stream) encoded by the second coding method by the second coding method.
  • the second decoding unit 4660 includes a demultiplexing unit 4661, a video decoding unit 4662, an additional information decoding unit 4663, a position information generation unit 4664, and an attribute information generation unit 4665.
  • a coded stream (Compressed Stream), which is coded data, is input to the second decoding unit 4660 from a processing unit of a system layer (not shown).
  • the demultiplexing unit 4661 separates the coded position image (Compressed Geometry Image), the coded attribute image (Compressed Attribute Image), the coded additional information (Compressed Metadata Data), and other additional information from the coded data. ..
  • the video decoding unit 4662 generates a position image and an attribute image by decoding the coded position image and the coded attribute image using a video coding method.
  • a video coding method any known coding method may be used.
  • the video coding method is AVC, HEVC, or the like.
  • the additional information decoding unit 4663 generates additional information including map information and the like by decoding the coded additional information.
  • the position information generation unit 4664 generates position information using the position image and the map information.
  • the attribute information generation unit 4665 generates attribute information using the attribute image and the map information.
  • the second decoding unit 4660 uses the additional information necessary for decoding at the time of decoding, and outputs the additional information necessary for the application to the outside.
  • FIG. 13 is a diagram showing a protocol stack related to PCC coded data.
  • FIG. 13 shows an example in which data of another medium such as video (for example, HEVC) or audio is multiplexed, transmitted or stored in PCC coded data.
  • video for example, HEVC
  • audio is multiplexed, transmitted or stored in PCC coded data.
  • the multiplexing method and file format have a function for multiplexing, transmitting or accumulating various coded data.
  • the coded data In order to transmit or store the coded data, the coded data must be converted to a multiplexing format.
  • HEVC defines a technique for storing coded data in a data structure called a NAL unit and storing the NAL unit in ISOBMFF.
  • a first coding method (Codec1) and a second coding method (Codec2) are being studied as a method for coding point group data.
  • the method of storing in the system format is not defined, and there is a problem that MUX processing (multiplexing), transmission and storage in the coding unit cannot be performed as it is.
  • the coded data (position information (Geometry), attribute information (Attribute), additional information (Metadata)) generated by the first coding unit 4630 or the second coding unit 4650 described above).
  • the type of the data, the method of generating additional information (metadata), and the multiplexing process in the multiplexing unit will be described.
  • the additional information (metadata) may be referred to as a parameter set or control information.
  • the dynamic object (three-dimensional point cloud data that changes with time) described in FIG. 4 will be described as an example, but even in the case of a static object (three-dimensional point cloud data at an arbitrary time). A similar method may be used.
  • FIG. 14 is a diagram showing a configuration of a coding unit 4801 and a multiplexing unit 4802 included in the three-dimensional data coding apparatus according to the present embodiment.
  • the coding unit 4801 corresponds to, for example, the first coding unit 4630 or the second coding unit 4650 described above.
  • the multiplexing unit 4802 corresponds to the multiplexing unit 4634 or 4656 described above.
  • the coding unit 4801 encodes the point cloud data of a plurality of PCC (Point Cloud Compression) frames and generates coded data (Multiple Compressed Data) of a plurality of position information, attribute information and additional information.
  • PCC Point Cloud Compression
  • the multiplexing unit 4802 converts the data of a plurality of data types (position information, attribute information, and additional information) into a NAL unit, thereby converting the data into a data structure in consideration of data access in the decoding device.
  • FIG. 15 is a diagram showing a configuration example of coded data generated by the coding unit 4801.
  • the arrow in the figure shows the dependency related to the decoding of the coded data, and the source of the arrow depends on the data at the tip of the arrow. That is, the decoding device decodes the data at the tip of the arrow, and uses the decoded data to decode the original data of the arrow.
  • "dependence" means that the dependent data is referenced (used) in the processing (encoding or decoding, etc.) of the dependent data.
  • the coding unit 4801 encodes the position information of each frame to generate coded position data (Compressed Geometry Data) for each frame.
  • the coded position data is represented by G (i). i indicates a frame number, a frame time, or the like.
  • the coding unit 4801 generates a position parameter set (GPS (i)) corresponding to each frame.
  • the position parameter set contains parameters that can be used to decode the coded position data. Also, the coded position data for each frame depends on the corresponding position parameter set.
  • the coded position data composed of a plurality of frames is defined as a position sequence (Geometric Sequence).
  • the coding unit 4801 generates a position sequence parameter set (also referred to as Geometric Sequence PS: position SPS) that stores parameters commonly used for decoding processing for a plurality of frames in the position sequence.
  • the position sequence depends on the position SPS.
  • the coding unit 4801 encodes the attribute information of each frame to generate the coded attribute data (Compressed Attribute Data) for each frame.
  • the coded attribute data is represented by A (i).
  • FIG. 15 shows an example in which the attribute X and the attribute Y exist, the coded attribute data of the attribute X is represented by AX (i), and the coded attribute data of the attribute Y is represented by AY (i). ..
  • the coding unit 4801 generates an attribute parameter set (APS (i)) corresponding to each frame.
  • the attribute parameter set of the attribute X is represented by AXPS (i)
  • the attribute parameter set of the attribute Y is represented by AYPS (i).
  • the attribute parameter set contains parameters that can be used to decode the coded attribute information.
  • the coded attribute data depends on the corresponding set of attribute parameters.
  • the coded attribute data consisting of a plurality of frames is defined as an attribute sequence (Attribute Sequence).
  • the coding unit 4801 generates an attribute sequence parameter set (Attribute Sequence PS: also referred to as attribute SPS) that stores parameters commonly used for decoding processing for a plurality of frames in the attribute sequence.
  • attribute sequence PS also referred to as attribute SPS
  • the attribute sequence depends on the attribute SPS.
  • the coding attribute data depends on the coding position data.
  • FIG. 15 shows an example in which two types of attribute information (attribute X and attribute Y) exist.
  • attribute information for example, the respective data and metadata are generated by the two coding units.
  • an attribute sequence is defined for each type of attribute information, and an attribute SPS is generated for each type of attribute information.
  • FIG. 15 shows an example in which the position information is one type and the attribute information is two types, but the present invention is not limited to this, and the attribute information may be one type or three or more types. Good.
  • the coded data can be generated by the same method.
  • the attribute information may not be present. In that case, the coding unit 4801 does not have to generate the parameter set related to the attribute information.
  • the coding unit 4801 generates a PCC stream PS (PCC Stream PS: also referred to as a stream PS), which is a parameter set for the entire PCC stream.
  • the coding unit 4801 stores in the stream PS parameters that can be commonly used in the decoding process for one or more position sequences and one or more attribute sequences.
  • the stream PS includes identification information indicating the codec of the point cloud data, information indicating the algorithm used for encoding, and the like.
  • the position sequence and attribute sequence depend on the stream PS.
  • An access unit is a basic unit for accessing data at the time of decryption, and is composed of one or more data and one or more metadata.
  • the access unit is composed of position information at the same time and one or more attribute information.
  • a GOF is a random access unit and is composed of one or more access units.
  • the coding unit 4801 generates an access unit header (AU Header) as identification information indicating the beginning of the access unit.
  • the coding unit 4801 stores the parameters related to the access unit in the access unit header.
  • the access unit header contains the structure or information of the coded data contained in the access unit.
  • the access unit header includes parameters commonly used for data included in the access unit, for example, parameters related to decoding of coded data.
  • the coding unit 4801 may generate an access unit delimiter that does not include parameters related to the access unit instead of the access unit header.
  • This access unit delimiter is used as identification information indicating the head of the access unit.
  • the decoding device identifies the head of the access unit by detecting the access unit header or the access unit delimiter.
  • the coding unit 4801 generates a GOF header (GOF Header) as identification information indicating the beginning of the GOF.
  • the coding unit 4801 stores the parameters related to the GOF in the GOF header.
  • the GOF header contains the structure or information of the coded data contained in the GOF.
  • the GOF header includes parameters commonly used for the data included in the GOF, for example, parameters related to decoding of the coded data.
  • the coding unit 4801 may generate a GOF delimiter that does not include the parameters related to the GOF instead of the GOF header.
  • This GOF delimiter is used as identification information indicating the beginning of the GOF.
  • the decoding device identifies the head of the GOF by detecting the GOF header or the GOF delimiter.
  • the access unit is defined as a PCC frame unit.
  • the decoding device accesses the PCC frame based on the identification information at the head of the access unit.
  • GOF is defined as one random access unit.
  • the decoding device accesses the random access unit based on the identification information at the head of the GOF. For example, if the PCC frames do not depend on each other and can be decoded independently, the PCC frame may be defined as a random access unit.
  • one access unit may be assigned two or more PCC frames, or one GOF may be assigned a plurality of random access units.
  • the coding unit 4801 may define and generate a parameter set or metadata other than the above.
  • the coding unit 4801 may generate SEI (Supplemental Information Information) that stores parameters (optional parameters) that may not necessarily be used at the time of decoding.
  • SEI Supplemental Information Information
  • FIG. 16 is a diagram showing an example of coded data and a NAL unit.
  • the coded data includes a header and a payload.
  • the coded data may include length information indicating the length (data amount) of the coded data, the header or the payload. Further, the coded data does not have to include a header.
  • the header contains, for example, identification information for identifying data.
  • This identification information indicates, for example, a data type or a frame number.
  • the header contains, for example, identification information indicating a reference relationship. This identification information is stored in the header when there is a dependency between the data, for example, and is information for referencing the reference destination from the reference source.
  • the referenced header contains identification information for identifying the data.
  • the header of the reference source includes identification information indicating the reference destination.
  • the identification information for specifying the data or the identification information indicating the reference relationship may be omitted.
  • the multiplexing unit 4802 stores the coded data in the payload of the NAL unit.
  • the NAL unit header includes pcc_nal_unit_type, which is identification information of the coded data.
  • FIG. 17 is a diagram showing an example of semantics of pcc_nal_unit_type.
  • pcc_codec_type is codec 1 (Codec1: first coding method)
  • the values 0 to 10 of pcc_naal_unit_type are codec position data (Geometry) and coding attribute X data in codec 1.
  • HeaderX Codec Attribute Y Data (HeaderY), Position PS (Geom.PS), Attribute XPS (AttrX.PS), Attribute YPS (AttrX.PS), Position SPS (Geometry Sequence PS), Attribute XSPS (HeaderX) It is assigned to PS), attribute YSPS (AttributeY Position PS), AU header (AU Header), and GOF header (GOF Header). Further, the value 11 or later is assigned to the reserve of the codec 1.
  • pcc_codec_type is codec 2 (Codec 2: second coding method)
  • the values 0 to 2 of pcc_nal_unit_type are assigned to codec data A (DataA), metadata A (MetaDataA), and metadata B (MetaDataB). .. Further, the value 3 or later is assigned to the reserve of the codec 2.
  • the multiplexing unit 4802 collectively sends out the NAL unit in units of GOF or AU.
  • the multiplexing unit 4802 arranges the GOF header at the head of the GOF and the AU header at the head of the AU.
  • the multiplexing unit 4802 may arrange a sequence parameter set (SPS) for each AU so that the decoding device can decode from the next AU.
  • SPS sequence parameter set
  • the decoding device decodes the referenced data and then decodes the reference source data. In order to enable the decoding device to decode the data in the order in which they are received without rearranging the data, the multiplexing unit 4802 sends the referenced data first.
  • FIG. 18 is a diagram showing an example of the sending order of the NAL unit.
  • FIG. 18 shows three examples of location information priority, parameter priority, and data integration.
  • the location information priority transmission order is an example of transmitting information related to position information and information related to attribute information together. In the case of this transmission order, the transmission of the information regarding the position information is completed earlier than the transmission of the information regarding the attribute information.
  • a decoding device that does not decode the attribute information may be able to set a time for not processing by ignoring the decoding of the attribute information. Further, for example, in the case of a decoding device that wants to decode the position information quickly, there is a possibility that the position information can be decoded faster by obtaining the coded data of the position information earlier.
  • attribute XSPS and the attribute YSPS are integrated and described as the attribute SPS in FIG. 18, the attribute XSPS and the attribute YSPS may be arranged separately.
  • the parameter set is transmitted first and the data is transmitted later.
  • the multiplexing unit 4802 may transmit the NAL units in any order.
  • the order identification information is defined, and the multiplexing unit 4802 may have a function of sending out NAL units in the order of a plurality of patterns.
  • the order identification information of the NAL unit is stored in the stream PS.
  • the three-dimensional data decoding device may perform decoding based on the order identification information.
  • a desired transmission order is instructed by the three-dimensional data decoding device to the three-dimensional data coding device, and the three-dimensional data coding device (multiplexing unit 4802) may control the transmission order according to the instructed transmission order.
  • the multiplexing unit 4802 may generate coded data in which a plurality of functions are merged as long as the transmission order is restricted, such as the transmission order of data integration.
  • the GOF header and the AU header may be integrated, or the AXIS and the AYPS may be integrated.
  • an identifier indicating that the data has a plurality of functions is defined in pcc_nal_unit_type.
  • the parameter storage method is The following method may be used.
  • the default PS value is indicated by the higher PS.
  • the value of PS is indicated by the lower PS.
  • the PS value is not described in the upper PS, and the PS value is described in the lower PS.
  • the information on whether the value of PS is indicated by the lower PS, the upper PS, or both is indicated in one or both of the lower PS and the upper PS.
  • the lower PS may be merged with the upper PS.
  • the multiplexing unit 4802 may omit the transmission of either one.
  • the coding unit 4801 or the multiplexing unit 4802 may divide the data into slices, tiles, or the like, and send out the divided data.
  • the divided data contains information for identifying the divided data, and the parameters used for decoding the divided data are included in the parameter set.
  • pcc_nal_unit_type an identifier indicating that the data or parameters related to the tile or slice are stored is defined.
  • FIG. 19 is a block diagram showing a configuration of a first coding unit 4910 included in the three-dimensional data coding device according to the present embodiment.
  • the first coding unit 4910 generates coded data (coded stream) by coding the point cloud data by the first coding method (GPC (Geometry based PCC)).
  • the first coding unit 4910 includes a dividing unit 4911, a plurality of position information coding units 4912, a plurality of attribute information coding units 4913, an additional information coding unit 4914, and a multiplexing unit 4915. ..
  • the division unit 4911 generates a plurality of division data by dividing the point cloud data. Specifically, the division unit 4911 generates a plurality of division data by dividing the space of the point cloud data into a plurality of subspaces.
  • the subspace is one of tiles and slices, or a combination of tiles and slices.
  • the point cloud data includes position information, attribute information, and additional information.
  • the division unit 4911 divides the position information into a plurality of division position information, and divides the attribute information into a plurality of division attribute information. In addition, the division unit 4911 generates additional information regarding the division.
  • the plurality of position information coding units 4912 generate a plurality of coded position information by encoding the plurality of divided position information. For example, the plurality of position information coding units 4912 process a plurality of divided position information in parallel.
  • the plurality of attribute information coding units 4913 generate a plurality of coded attribute information by encoding the plurality of divided attribute information. For example, the plurality of attribute information coding units 4913 process a plurality of divided attribute information in parallel.
  • the additional information coding unit 4914 generates the coded additional information by encoding the additional information included in the point cloud data and the additional information related to the data division generated at the time of division by the division unit 4911.
  • the multiplexing unit 4915 generates coded data (coded stream) by multiplexing a plurality of coded position information, a plurality of coded attribute information, and coded additional information, and transmits the generated coded data. ..
  • the coded additional information is used at the time of decoding.
  • the numbers of the position information coding unit 4912 and the attribute information coding unit 4913 show two examples, respectively, but the numbers of the position information coding unit 4912 and the attribute information coding unit 4913 are respectively. It may be one or three or more. Further, the plurality of divided data may be processed in parallel in the same chip like a plurality of cores in the CPU, may be processed in parallel by the cores of a plurality of chips, or may be processed in parallel by a plurality of cores of a plurality of chips. May be done.
  • FIG. 20 is a block diagram showing the configuration of the first decoding unit 4920.
  • the first decoding unit 4920 restores the point cloud data by decoding the coded data (encoded stream) generated by encoding the point cloud data by the first coding method (GPCC). ..
  • the first decoding unit 4920 includes a demultiplexing unit 4921, a plurality of position information decoding units 4922, a plurality of attribute information decoding units 4923, an additional information decoding unit 4924, and a coupling unit 4925.
  • the demultiplexing unit 4921 generates a plurality of coded position information, a plurality of coded attribute information, and coded additional information by demultiplexing the coded data (coded stream).
  • the plurality of position information decoding units 4922 generate a plurality of divided position information by decoding the plurality of coded position information. For example, the plurality of position information decoding units 4922 process a plurality of coded position information in parallel.
  • the plurality of attribute information decoding units 4923 generates a plurality of divided attribute information by decoding the plurality of coded attribute information. For example, the plurality of attribute information decoding units 4923 processes a plurality of coded attribute information in parallel.
  • the plurality of additional information decoding units 4924 generate additional information by decoding the coded additional information.
  • the connecting unit 4925 generates position information by combining a plurality of divided position information using additional information.
  • the connecting unit 4925 generates attribute information by combining a plurality of divided attribute information using additional information.
  • the number of the position information decoding unit 4922 and the number of the attribute information decoding unit 4923 are two, respectively, but the number of the position information decoding unit 4922 and the attribute information decoding unit 4923 is one, respectively. It may be three or more. Further, the plurality of divided data may be processed in parallel in the same chip like the plurality of cores in the CPU, or may be processed in parallel by the cores of the plurality of chips, and may be processed in parallel by the plurality of cores of the plurality of chips. You may.
  • FIG. 21 is a block diagram of the division portion 4911.
  • the division unit 4911 includes a slice division unit 4931 (Slice Divider), a position information tile division unit 4932 (Geometry Tile Divider), and an attribute information tile division unit 4933 (Attribute Tile Divider).
  • the slice division unit 4931 generates a plurality of slice position information by dividing the position information (Position (Geometry)) into slices. Further, the slice division unit 4931 generates a plurality of slice attribute information by dividing the attribute information (Attribute) into slices. Further, the slice division unit 4931 outputs the slice addition information (SliceMetaData) including the information related to the slice division and the information generated in the slice division.
  • the position information tile division unit 4932 generates a plurality of division position information (a plurality of tile position information) by dividing a plurality of slice position information into tiles. Further, the position information tile division unit 4932 outputs the position tile additional information (Geometry Tile Metadata Data) including the information related to the tile division of the position information and the information generated in the tile division of the position information.
  • a plurality of division position information a plurality of tile position information
  • the position information tile division unit 4932 outputs the position tile additional information (Geometry Tile Metadata Data) including the information related to the tile division of the position information and the information generated in the tile division of the position information.
  • the attribute information tile division unit 4933 generates a plurality of division attribute information (a plurality of tile attribute information) by dividing a plurality of slice attribute information into tiles. Further, the attribute information tile division unit 4933 outputs the attribute tile additional information (Attribute Tile MetaData) including the information related to the tile division of the attribute information and the information generated in the tile division of the attribute information.
  • attribute tile additional information Attribute Tile MetaData
  • the number of slices or tiles to be divided is 1 or more. That is, it is not necessary to slice or divide the tile.
  • the slice division may be performed after the tile division.
  • a new division type may be defined, and division may be performed with three or more division types.
  • FIG. 22 is a diagram showing an example of slicing and tile division.
  • the division unit 4911 divides the three-dimensional point cloud data into an arbitrary point cloud in slice units.
  • the division unit 4911 does not divide the position information and the attribute information constituting the points, but divides the position information and the attribute information at once. That is, the division unit 4911 performs slice division so that the position information and the attribute information at an arbitrary point belong to the same slice.
  • the number of divisions and the division method may be any method.
  • the smallest unit of division is a point.
  • the number of divisions between the position information and the attribute information is the same.
  • the three-dimensional point corresponding to the position information after the slice division and the three-dimensional point corresponding to the attribute information are included in the same slice.
  • the division unit 4911 generates slice addition information which is additional information related to the number of divisions and the division method at the time of slice division.
  • the slice addition information is the same for the position information and the attribute information.
  • the slice addition information includes information indicating the reference coordinate position, size, or side length of the bounding box after division. Further, the slice addition information includes information indicating the number of divisions, the division type, and the like.
  • the division unit 4911 divides the slice-divided data into slice position information (G slice) and slice attribute information (A slice), and divides the slice position information and slice attribute information into tile units, respectively.
  • FIG. 22 shows an example of dividing by an octa-tree structure
  • the number of divisions and the division method may be any method.
  • the division unit 4911 may divide the position information and the attribute information by different division methods, or may divide by the same division method. Further, the division unit 4911 may divide a plurality of slices into tiles by different division methods, or may divide them into tiles by the same division method.
  • the division unit 4911 generates tile addition information related to the number of divisions and the division method at the time of tile division.
  • the tile addition information (position tile addition information and attribute tile addition information) is independent of the position information and the attribute information.
  • the tile addition information includes information indicating the reference coordinate position, size, or side length of the bounding box after division. Further, the tile addition information includes information indicating the number of divisions, the division type, and the like.
  • the division unit 4911 may use a predetermined method as the method of slicing or tile division, or may adaptively switch the method to be used according to the point cloud data.
  • the division unit 4911 collectively divides the three-dimensional space with respect to the position information and the attribute information. For example, the division unit 4911 determines the shape of the object and divides the three-dimensional space into slices according to the shape of the object. For example, the division unit 4911 extracts an object such as a tree or a building and divides the object unit. For example, the division unit 4911 performs slice division so that the entire one or a plurality of objects are included in one slice. Alternatively, the division unit 4911 divides one object into a plurality of slices.
  • the coding apparatus may change the coding method for each slice, for example.
  • the encoding device may use a high quality compression method for a particular object or a particular part of the object.
  • the coding apparatus may store information indicating the coding method for each slice in additional information (metadata).
  • the division unit 4911 may perform slice division so that each slice corresponds to a predetermined coordinate space based on the map information or the position information.
  • the division unit 4911 independently divides the position information and the attribute information. For example, the division unit 4911 divides the slice into tiles according to the amount of data or the amount of processing. For example, the division unit 4911 determines whether the amount of data in the slice (for example, the number of three-dimensional points included in the slice) is larger than a predetermined threshold value. The dividing unit 4911 divides the slice into tiles when the amount of data of the slice is larger than the threshold value. The dividing unit 4911 does not divide the slice into tiles when the amount of data in the slice is less than the threshold value.
  • the dividing unit 4911 divides the slice into tiles so that the processing amount or processing time in the decoding device is within a certain range (less than or equal to a predetermined value). As a result, the processing amount per tile in the decoding device becomes constant, and the distributed processing in the decoding device becomes easy.
  • the division unit 4911 sets the number of divisions of the position information from the number of divisions of the attribute information. Do more.
  • the division unit 4911 determines the number of divisions of the position information. It may be larger than the number of divisions of the attribute information. As a result, the decoding device can increase the number of parallel positions of the position information, so that the processing of the position information can be made faster than the processing of the attribute information.
  • the decoding device does not necessarily have to process the sliced or tiled data in parallel, and may determine whether or not to process these in parallel according to the number or capacity of the decoding processing units.
  • adaptive coding according to the content or object can be realized.
  • parallel processing in decoding processing can be realized. This increases the flexibility of the point cloud coding system or the point cloud decoding system.
  • FIG. 23 is a diagram showing an example of a pattern of slicing and dividing tiles.
  • the DU in the figure is a data unit (DataUnit) and indicates tile or slice data.
  • each DU includes a slice index (SliceIndex) and a tile index (TileIndex).
  • sliceIndex slice index
  • TileIndex tile index
  • the number of divisions and the division method are the same for G slice and A slice.
  • the number of divisions and the division method for the G slice and the division number and the division method for the A slice are different. Further, the same number of divisions and division methods are used between a plurality of G slices. The same number of divisions and division methods are used between a plurality of A slices.
  • the number of divisions and the division method are the same for the G slice and the A slice.
  • the number of divisions and the division method for the G slice and the division number and the division method for the A slice are different. Further, the number of divisions and the division method are different among the plurality of G slices. The number of divisions and the division method are different among a plurality of A slices.
  • the three-dimensional data coding device (first coding unit 4910) encodes each of the divided data.
  • the three-dimensional data coding device When encoding the attribute information, the three-dimensional data coding device generates dependency information as additional information indicating which configuration information (position information, additional information, or other attribute information) was used for encoding. .. That is, the dependency information indicates, for example, the configuration information of the reference destination (dependency destination).
  • the three-dimensional data coding device generates the dependency information based on the configuration information corresponding to the divided shape of the attribute information.
  • the three-dimensional data coding device may generate dependency information based on the configuration information corresponding to the plurality of divided shapes.
  • Dependency information may be generated by a 3D data coding device, and the generated dependency information may be sent to a 3D data decoding device.
  • the 3D data decoding device does not have to generate the dependency information, and the 3D data coding device does not have to send the dependency information.
  • the dependency relationship used by the three-dimensional data coding device is defined in advance, and the three-dimensional data coding device does not have to send out the dependency relationship information.
  • FIG. 24 is a diagram showing an example of the dependency relationship of each data.
  • the tip of the arrow in the figure indicates the dependency destination, and the source of the arrow indicates the dependency source.
  • the three-dimensional data decoding device decodes data in the order of the dependency source from the dependency destination. Further, the data indicated by the solid line in the figure is the data actually transmitted, and the data indicated by the dotted line is the data not transmitted.
  • G indicates position information and A indicates attribute information.
  • G s1 indicates the position information of the slice number 1
  • G s2 indicates the position information of the slice number 2.
  • G s1t1 indicates the position information of slice number 1 and tile number 1
  • G s1t2 indicates the position information of slice number 1 and tile number 2
  • G s2t1 indicates the position information of slice number 2 and tile number 1.
  • G s2t2 indicate the position information of the slice number 2 and the tile number 2.
  • a s1 indicates the attribute information of the slice number 1
  • a s2 indicates the attribute information of the slice number 2.
  • As1t1 indicates the attribute information of slice number 1 and tile number 1
  • As1t2 indicates the attribute information of slice number 1 and tile number 2
  • As2t1 indicates the attribute information of slice number 2 and tile number 1.
  • As2t2 indicate the attribute information of the slice number 2 and the tile number 2.
  • Mslice indicates slice addition information
  • MGtile indicates position tile addition information
  • MAtile indicates attribute tile addition information
  • D s1t1 shows the dependency information of the attribute information A s1t1
  • D s2t1 shows the dependency information of the attribute information A s2t1 .
  • the three-dimensional data coding device may sort the data in the decoding order so that the data does not need to be sorted in the three-dimensional data decoding device.
  • the data may be rearranged in the three-dimensional data decoding device, or the data may be rearranged in both the three-dimensional data coding device and the three-dimensional data decoding device.
  • FIG. 25 is a diagram showing an example of the data decoding order.
  • decoding is performed in order from the left data.
  • the three-dimensional data decoding device decodes the dependent data first among the dependent data.
  • the three-dimensional data coding apparatus rearranges the data in advance so as to send the data in this order. Any order may be used as long as the dependent data comes first. Further, the three-dimensional data coding apparatus may send additional information and dependency information before the data.
  • FIG. 26 is a flowchart showing the flow of processing by the three-dimensional data coding device.
  • the three-dimensional data coding apparatus encodes the data of a plurality of slices or tiles as described above (S4901).
  • the three-dimensional data coding apparatus rearranges the data so that the dependent data comes first (S4902).
  • the three-dimensional data coding apparatus multiplexes (NAL unitizes) the sorted data (S4903).
  • FIG. 27 is a block diagram showing the configuration of the joint portion 4925.
  • the connecting portion 4925 includes a position information tile connecting portion 4941 (Geometry Tile Comminer), an attribute information tile connecting portion 4942 (Attribute Tile Comminer), and a slice connecting portion (Slice Comminer).
  • the position information tile connection unit 4941 generates a plurality of slice position information by combining a plurality of division position information using the position tile addition information.
  • the attribute information tile combination unit 4942 generates a plurality of slice attribute information by combining a plurality of division attribute information using the attribute tile addition information.
  • the slice joining unit 4943 generates position information by joining a plurality of slice position information using the slice addition information. Further, the slice connection unit 4943 generates attribute information by combining a plurality of slice attribute information using the slice addition information.
  • the number of slices or tiles to be divided is 1 or more. That is, the slices or tiles may not be divided.
  • the slice division may be performed after the tile division.
  • a new division type may be defined, and division may be performed with three or more division types.
  • FIG. 28 is a diagram showing a configuration of coded data and a method of storing the coded data in the NAL unit.
  • the coded data (division position information and division attribute information) is stored in the payload of the NAL unit.
  • the coded data includes a header and a payload.
  • the header contains identifying information for identifying the data contained in the payload.
  • This identification information includes, for example, the type of slice division or tile division (slice_type, tile_type), index information (slice_idx, tile_idx) for identifying a slice or tile, position information of data (slice or tile), or data address. (Addless) and the like are included.
  • the index information for identifying the slice is also referred to as a slice index (SliceIndex).
  • the index information for identifying the tile is also referred to as a tile index (TileIndex).
  • the type of division is, for example, a method based on the object shape as described above, a method based on map information or position information, a method based on the amount of data or the amount of processing, and the like.
  • the above information is stored in one of the header of the division position information and the header of the division attribute information, and may not be stored in the other.
  • the division type (slice_type, tile_type) and the index information (slice_idx, tile_idx) are the same for the position information and the attribute information. Therefore, these pieces of information may be included in one of the headers of the position information and the attribute information.
  • the attribute information depends on the position information
  • the position information is processed first. Therefore, it is not necessary that the header of the position information includes such information and the header of the attribute information does not include such information.
  • the three-dimensional data decoding device determines that the attribute information of the dependency source belongs to the same slice or tile as the slice or tile of the position information of the dependency destination, for example.
  • additional information related to slice division or tile division is the existing parameter sets (GPS, APS, position SPS, or It may be stored in the attribute SPS (etc.) and sent out.
  • information indicating the division method may be stored in a parameter set (GPS, APS, etc.) for each frame. If the division method does not change within the sequence, information indicating the division method may be stored in the parameter set (position SPS or attribute SPS) for each sequence. Further, when the same division method is used for the position information and the attribute information, the information indicating the division method may be stored in the parameter set (stream PS) of the PCC stream.
  • the above information may be stored in any of the above parameter sets, or may be stored in a plurality of parameter sets. Further, a parameter set for tile division or slice division may be defined, and the above information may be stored in the parameter set. Further, these pieces of information may be stored in the header of the coded data.
  • the header of the coded data includes identification information indicating the dependency. That is, the header includes identification information for referencing the dependency destination from the dependency source when there is a dependency relationship between the data.
  • the header of the dependent data includes identification information for identifying the data.
  • the header of the data of the dependency source includes identification information indicating the dependency destination. If the identification information for specifying the data, the additional information related to the slice division or the tile division, and the identification information indicating the dependency can be identified or derived from other information, these information are omitted. You may.
  • FIG. 29 is a flowchart of the point cloud data coding process according to the present embodiment.
  • the three-dimensional data coding device determines the division method to be used (S4911).
  • This division method includes whether or not to perform slice division and whether or not to perform tile division. Further, the division method may include the number of divisions when performing slice division or tile division, the type of division, and the like.
  • the type of division is a method based on the object shape as described above, a method based on map information or position information, a method based on the amount of data or the amount of processing, and the like.
  • the division method may be predetermined.
  • the three-dimensional data encoding device When slice division is performed (Yes in S4912), the three-dimensional data encoding device generates a plurality of slice position information and a plurality of slice attribute information by collectively dividing the position information and the attribute information (S4913). .. In addition, the three-dimensional data coding device generates slice addition information related to slice division. The three-dimensional data coding device may independently divide the position information and the attribute information.
  • the three-dimensional data encoding device divides a plurality of slice position information and a plurality of slice attribute information (or position information and attribute information) independently to obtain a plurality of division positions. Information and a plurality of division attribute information are generated (S4915). In addition, the three-dimensional data coding device generates position tile addition information and attribute tile addition information related to tile division. The three-dimensional data coding apparatus may collectively divide the slice position information and the slice attribute information.
  • the three-dimensional data coding apparatus generates a plurality of coded position information and a plurality of coded attribute information by encoding each of the plurality of divided position information and the plurality of divided attribute information (S4916). ..
  • the three-dimensional data coding device generates dependency information.
  • the three-dimensional data coding apparatus generates coded data (coded stream) by NAL unitizing (multiplexing) a plurality of coded position information, a plurality of coded attribute information, and additional information (multiplexed). S4917). In addition, the three-dimensional data coding device sends out the generated coded data.
  • FIG. 30 is a flowchart of the point cloud data decoding process according to the present embodiment.
  • the three-dimensional data decoding device analyzes the additional information (slice addition information, position tile addition information, and attribute tile addition information) related to the division method included in the coded data (encoded stream), thereby performing the division method. Is determined (S4921).
  • This division method includes whether or not to perform slice division and whether or not to perform tile division. Further, the division method may include the number of divisions when performing slice division or tile division, the type of division, and the like.
  • the three-dimensional data decoding device decodes a plurality of coded position information and a plurality of coded attribute information included in the coded data by using the dependency information included in the coded data to obtain the divided position information. And the division attribute information is generated (S4922).
  • the three-dimensional data decoding device When the additional information indicates that the tile division is performed (Yes in S4923), the three-dimensional data decoding device has a plurality of division position information and a plurality of divisions based on the position tile addition information and the attribute tile addition information. By combining the attribute information with each method, a plurality of slice position information and a plurality of slice attribute information are generated (S4924). The three-dimensional data decoding device may combine the plurality of division position information and the plurality of division attribute information by the same method.
  • the three-dimensional data decoding apparatus When the additional information indicates that the slice division is performed (Yes in S4925), the three-dimensional data decoding apparatus has a plurality of slice position information and a plurality of slice attribute information (a plurality of division positions) based on the slice addition information. Information and a plurality of divided attribute information) are combined in the same way to generate position information and attribute information (S4926).
  • the three-dimensional data decoding device may combine the plurality of slice position information and the plurality of slice attribute information by different methods.
  • tile or slice attribute information (identifier, area information, address information, position information, etc.) may be stored not only in SEI but also in other control information.
  • the attribute information may be stored in the control information indicating the configuration of the entire PCC data, or may be stored in the control information for each tile or slice.
  • the three-dimensional data encoding device converts control information such as SEI into control information specific to the protocol of the system. May be shown.
  • the three-dimensional data encoding device may store the SEI together with the PCC data in the "mdat box" when converting the PCC data including the attribute information into the ISOBMFF (ISO Base Media File Format), or the stream. It may be stored in a "track box” that describes control information related to the above. That is, the three-dimensional data coding device may store the control information in a table for random access. Further, the three-dimensional data coding device may store the SEI in the packet header when the PCC data is packetized and transmitted. By making the attribute information available at the layer of the system in this way, it becomes easy to access the attribute information and the tile data or slice data, and the speed of access can be improved.
  • ISOBMFF ISO Base Media File Format
  • the memory management unit determines in advance whether or not the information required for the decoding process is in the memory, and if there is no information required for the decoding process, the information is stored in the storage or the network. It may be obtained from.
  • the memory management unit When the three-dimensional data decoding device acquires PCC data from the storage or network using Pull in a protocol such as MPEG-DASH, the memory management unit performs the data required for the decoding process based on the information from the localization unit or the like.
  • the attribute information of the above may be specified, a tile or slice containing the specified attribute information may be requested, and necessary data (PCC stream) may be acquired.
  • the tile or slice including the attribute information may be specified on the storage or network side, or may be specified by the memory management unit.
  • the memory management unit may acquire the SEI of all the PCC data in advance and specify the tile or slice based on the information.
  • the memory management unit uses the data attribute information and tiles required for the decryption process based on the information from the localization unit, etc.
  • the desired data may be acquired by identifying the slice and filtering the desired tile or slice from the transmitted PCC data.
  • the three-dimensional data coding device determines whether or not there is desired data, whether or not processing in real time is possible based on the data size, or the communication state, etc., when acquiring the data. You may.
  • the three-dimensional data coding apparatus determines that it is difficult to acquire data based on the determination result, another slice or tile having a different priority or data amount may be selected and acquired.
  • the three-dimensional data decoding device may transmit information from the localization unit or the like to the cloud server, and the cloud server may determine necessary information based on the information.
  • the three-dimensional data encoding device generates tile addition information which is metadata about a tile division method, and transmits the generated tile addition information to the three-dimensional data decoding device.
  • FIG. 31 is a diagram showing an example of syntax of tile addition information (TileMetaData).
  • the tile addition information includes division method information (type_of_divide), shape information (topview_shape), duplicate flag (tile_overlap_flag), duplicate information (type_of_overlap), and height information (tile).
  • division method information type_of_divide
  • shape information topview_shape
  • duplicate flag duplicate flag
  • duplicate information type_of_overlap
  • height information e.g., height information for example
  • the number of tiles (tile_number) and the tile position information (global_position, removable_position).
  • the division method information indicates a tile division method.
  • the division method information indicates whether the tile division method is division based on map information, that is, division based on top view (top_view) or other (other).
  • the shape information (topview_share) is included in the tile addition information, for example, when the tile division method is division based on the top view.
  • the shape information indicates the shape of the tile viewed from above. For example, this shape includes squares and circles. In addition, this shape may include a polygon other than an ellipse, a rectangle or a quadrangle, and may include other shapes.
  • the shape information is not limited to the shape of the tile viewed from above, and may indicate the three-dimensional shape of the tile (for example, a cube or a cylinder).
  • the duplicate flag indicates whether or not tiles are duplicated.
  • the duplicate flag is included in the tile addition information when the tile division method is division based on top view.
  • the overlap flag indicates whether or not the tiles overlap in the top view.
  • the duplication flag may indicate whether or not the tiles overlap in the three-dimensional space.
  • Duplicate information (type_of_overlap) is included in the tile addition information when, for example, tiles are duplicated.
  • Duplicate information indicates how tiles are duplicated.
  • the duplicate information indicates the size of the overlapping area and the like.
  • the height information indicates the height of the tile.
  • the height information may include information indicating the shape of the tile. For example, when the shape of the tile in the top view of the tile is rectangular, the information may indicate the length of the side of the rectangle (vertical length and horizontal length). Further, when the shape of the tile in the top view of the tile is a circle, the information may indicate the diameter or radius of the circle.
  • the height information may indicate the height of each tile, or may indicate a common height for a plurality of tiles. Further, a plurality of height types such as a road and a grade separation portion may be set in advance, and the height of each height type and the height type of each tile may be indicated by the height information. Alternatively, the height of each height type may be predefined and the height information may indicate the height type of each tile. That is, the height of each height type does not have to be indicated by the height information.
  • the number of tiles indicates the number of tiles.
  • the tile addition information may include information indicating the tile spacing.
  • the tile position information (global_position, reactive_position) is information for specifying the position of each tile.
  • the tile position information indicates the absolute coordinates or relative coordinates of each tile.
  • each tile may be provided for each of a plurality of tiles (for example, for each frame or for each of a plurality of frames).
  • the three-dimensional data encoding device may send out the tile addition information by including it in SEI (Supplemental Enhancement Information).
  • SEI Supplemental Enhancement Information
  • the three-dimensional data coding device may store the tile addition information in an existing parameter set (PPS, GPS, APS, etc.) and send it out.
  • the tile addition information when the tile addition information changes for each frame, the tile addition information may be stored in the parameter set (GPS, APS, etc.) for each frame. If the tile addition information does not change in the sequence, the tile addition information may be stored in the parameter set (position SPS or attribute SPS) for each sequence. Further, when the same tile division information is used for the position information and the attribute information, the tile addition information may be stored in the parameter set (stream PS) of the PCC stream.
  • the parameter set position SPS or attribute SPS
  • the tile addition information may be stored in any of the above parameter sets, or may be stored in a plurality of parameter sets. Further, the tile addition information may be stored in the header of the coded data. Further, the tile addition information may be stored in the header of the NAL unit.
  • all or part of the tile addition information is stored in one of the header of the division position information and the header of the division attribute information, and may not be stored in the other.
  • the tile addition information may be included in one header of the position information and the attribute information.
  • the attribute information depends on the position information, the position information is processed first. Therefore, it is not necessary that the header of the position information includes these tile addition information and the header of the attribute information does not include the tile addition information.
  • the three-dimensional data decoding device determines, for example, that the attribute information of the dependency source belongs to the same tile as the tile of the position information of the dependency destination.
  • the three-dimensional data decoding device reconstructs the tile-divided point cloud data based on the tile addition information.
  • the three-dimensional data decoding device identifies a plurality of overlapping point cloud data, selects one of them, or merges the plurality of point cloud data.
  • the three-dimensional data decoding device may perform decoding using the tile additional information. For example, when a plurality of tiles overlap, the three-dimensional data decoding device decodes each tile, performs processing using the decoded plurality of data (for example, smoothing or filtering), and performs point cloud data. May be generated. This may enable highly accurate decoding.
  • FIG. 32 is a diagram showing a configuration example of a system including a three-dimensional data coding device and a three-dimensional data decoding device.
  • the tile dividing unit 5051 divides the point cloud data including the position information and the attribute information into the first tile and the second tile. Further, the tile division unit 5051 sends the tile addition information related to the tile division to the decoding unit 5053 and the tile connection unit 5054.
  • the coding unit 5052 generates coded data by coding the first tile and the second tile.
  • the decoding unit 5053 restores the first tile and the second tile by decoding the coded data generated by the coding unit 5052.
  • the tile joining portion 5054 restores the point cloud data (position information and attribute information) by joining the first tile and the second tile using the tile addition information.
  • the three-dimensional data encoding device generates slice addition information which is metadata related to the slice division method, and transmits the generated slice addition information to the three-dimensional data decoding device.
  • FIG. 33 is a diagram showing an example of syntax of slice addition information (SliceMetaData).
  • the slice addition information includes the division method information (type_of_divide), the duplicate flag (slice_overlap_flag), the duplicate information (type_of_overlap), the number of slices (slice_number), and the slice position information (group_fold_fold_). ) And slice size information (slice_bounding_box_size).
  • the division method information indicates the division method of the slice.
  • the division method information indicates whether or not the division method of the slice is an object based on the information of the object as shown in FIG.
  • the slice addition information may include information indicating the method of object division. For example, this information indicates whether an object should be split into multiple slices or assigned to one slice. Further, this information may indicate the number of divisions when one object is divided into a plurality of slices.
  • the duplicate flag indicates whether or not the slices are duplicated.
  • the duplicate information (type_of_overlap) is included in the slice addition information when, for example, the slices are duplicated.
  • Duplicate information indicates how slices are duplicated. For example, the duplicate information indicates the size of the overlapping area and the like.
  • the number of slices indicates the number of slices.
  • Slice position information (global_position, reactive_position) and slice size information (slice_bounding_box_size) are information related to the slice area.
  • the slice position information is information for specifying the position of each slice. For example, the slice position information indicates the absolute coordinates or relative coordinates of each slice.
  • the slice size information (slice_bounding_box_size) indicates the size of each slice. For example, the slice size information indicates the size of the bounding box for each slice.
  • the three-dimensional data encoding device may include the slice addition information in the SEI and send it out.
  • the three-dimensional data coding device may store the slice addition information in an existing parameter set (PPS, GPS, APS, etc.) and send it out.
  • the slice addition information when the slice addition information changes for each frame, the slice addition information may be stored in a parameter set (GPS, APS, etc.) for each frame. If the slice addition information does not change in the sequence, the slice addition information may be stored in the parameter set (position SPS or attribute SPS) for each sequence. Further, when the same slice division information is used for the position information and the attribute information, the slice addition information may be stored in the parameter set (stream PS) of the PCC stream.
  • a parameter set GPS, APS, etc.
  • the slice addition information may be stored in the parameter set (position SPS or attribute SPS) for each sequence.
  • the slice addition information may be stored in the parameter set (stream PS) of the PCC stream.
  • the slice addition information may be stored in any of the above parameter sets, or may be stored in a plurality of parameter sets. Further, the slice addition information may be stored in the header of the coded data. Further, the slice addition information may be stored in the header of the NAL unit.
  • all or part of the slice addition information is stored in one of the header of the division position information and the header of the division attribute information, and may not be stored in the other.
  • the slice addition information may be included in one of the headers of the position information and the attribute information.
  • the attribute information depends on the position information, the position information is processed first. Therefore, it is not necessary that the header of the position information includes these slice addition information and the header of the attribute information does not include the slice addition information.
  • the three-dimensional data decoding device determines, for example, that the attribute information of the dependency source belongs to the same slice as the slice of the position information of the dependency destination.
  • the three-dimensional data decoding device reconstructs the sliced point cloud data based on the slice addition information.
  • the three-dimensional data decoding device identifies a plurality of overlapping point cloud data, selects one of them, or merges the plurality of point cloud data.
  • the three-dimensional data decoding device may perform decoding using the slice addition information. For example, when a plurality of slices overlap, a three-dimensional data decoding device decodes each slice, performs processing using the decoded plurality of data (for example, smoothing or filtering), and obtains point cloud data. It may be generated. This may enable highly accurate decoding.
  • FIG. 34 is a flowchart of the three-dimensional data coding process including the generation process of the tile additional information by the three-dimensional data coding device according to the present embodiment.
  • the three-dimensional data coding device determines the tile division method (S5031). Specifically, the three-dimensional data coding apparatus determines whether to use a division method based on top view (top_view) or other (other) as the tile division method. In addition, the three-dimensional data coding device determines the shape of the tile when the division method based on the top view is used. The three-dimensional data coding device also determines whether a tile overlaps with another tile.
  • the three-dimensional data coding apparatus has a tile division method based on top view (top_view). Is described in the tile addition information (S5033).
  • the tile division method determined in step S5031 is other than the division method based on the top view (No in S5032), in the three-dimensional data coding apparatus, the tile division method is the division method based on the top view (top_view). It is described in the tile addition information that the method is other than the above (S5034).
  • the three-dimensional data encoding device describes in the tile addition information that the shape of the tile viewed from above is square. (S5036).
  • the shape of the tile viewed from above is a circle (circle in S5035) determined in step S5031
  • the three-dimensional data encoding device describes in the tile addition information that the shape of the tile viewed from above is a circle. (S5037).
  • the three-dimensional data coding device determines whether the tile overlaps with other tiles (S5038). When a tile overlaps with another tile (Yes in S5038), the three-dimensional data encoding device describes in the tile addition information that the tile overlaps (S5039). On the other hand, when the tile does not overlap with other tiles (No in S5038), the three-dimensional data encoding device describes in the tile addition information that the tile does not overlap (S5040).
  • the three-dimensional data encoding device divides the tiles based on the tile dividing method determined in step S5031, encodes each tile, and sends out the generated encoded data and tile addition information (S5041).
  • FIG. 35 is a flowchart of the three-dimensional data decoding process using the tile addition information by the three-dimensional data decoding apparatus according to the present embodiment.
  • the three-dimensional data decoding device analyzes the tile addition information included in the bit stream (S5051).
  • the three-dimensional data decoding device When the tile addition information indicates that the tile does not overlap with other tiles (No in S5052), the three-dimensional data decoding device generates point group data of each tile by decoding each tile (S5053). ). Next, the three-dimensional data decoding device reconstructs the point cloud data from the point cloud data of each tile based on the tile division method and the tile shape indicated by the tile addition information (S5054).
  • the three-dimensional data decoding device when the tile addition information indicates that the tile overlaps with other tiles (Yes in S5052), the three-dimensional data decoding device generates point group data of each tile by decoding each tile. .. Further, the three-dimensional data decoding device identifies the overlapping portion of the tiles based on the tile addition information (S5055). The three-dimensional data decoding apparatus may perform decoding processing on the overlapping portion by using a plurality of overlapping information. Next, the three-dimensional data decoding device reconstructs the point group data from the point group data of each tile based on the tile division method, the tile shape, and the overlapping information indicated by the tile addition information (S5056).
  • the three-dimensional data encoding device may transmit information indicating the type (road, building, tree, etc.) or attribute (dynamic information, static information, etc.) of the object as additional information.
  • the coding parameters are predetermined according to the object, and the three-dimensional data coding device may notify the three-dimensional data decoding device of the coding parameters by sending out the type or attribute of the object.
  • the three-dimensional data encoding device may encode slice data in order from data in which object recognition or clustering is easy.
  • the three-dimensional data coding apparatus may perform coding in order from the slice data for which clustering has been completed earlier.
  • the three-dimensional data coding apparatus may send out the encoded slice data in order.
  • the three-dimensional data encoding device may send out slice data in the order of priority of decoding in the application. For example, when the decoding of dynamic information has a high priority, the three-dimensional data encoding device may send out slice data in order from the slices grouped by the dynamic information.
  • the three-dimensional data coding apparatus may send the coded data after rearranging the coded data. Further, when the three-dimensional data coding apparatus stores the coded data, the coded data may be rearranged and then stored.
  • the application requests the server (three-dimensional data coding device) to send out a slice containing the desired data.
  • the server sends out slice data required by the application, and does not have to send unnecessary slice data.
  • the application requests the server to send tiles containing the desired data.
  • the server sends out the tile data required by the application, and does not have to send out the unnecessary tile data.
  • the three-dimensional data coding device divides the area containing the point cloud data using an ocree and converts it into a set of point occupancy information for each node.
  • the occupancy information is 8-bit information indicating whether or not each child node has a point, and whether or not each child node contains a point is indicated by 0 and 1.
  • the order of dividing into ocree is the method of dividing in order from the node with the smallest depth (depth value) using the breadth-first search method, and the method of dividing the point to the depth of the lowest layer using the depth-first search method. After searching, there is a method of returning to the upper depth and searching again.
  • the occupancy information is arranged and encoded in the above order.
  • FIG. 37 is a diagram showing an example of a data structure of coded data of an octane tree structure using a breadth-first search method.
  • the coded data of the point cloud includes a header and a payload.
  • Information (depth # 0 to # 6) for each depth is arranged in order on the payload.
  • FIG. 38 is a diagram showing an example of payload syntax.
  • the payload contains an occupancy code for each depth.
  • each time the level is lowered it is quantized by 1/2.
  • the level can be set in various combinations adaptively as needed according to the resolution handled by the data or the amount of data.
  • FIG. 39 is a flowchart of a decoding process for decoding encoded data in which position information is encoded at a target resolution.
  • the three-dimensional data decoding device determines the level (resolution) to be decoded and the depth corresponding to the level (S8801).
  • FIG. 40 is a diagram showing the relationship between the level and the data to be decoded.
  • FIG. 41 is a schematic diagram showing the levels. For example, in FIG. 40, in order to decode the level 0 point cloud, it is necessary to decode depth # 0 to depth # 4. Therefore, the three-dimensional data decoding device decodes up to the coded data of A.
  • the three-dimensional data decoding device decodes up to the coded data of B. Further, in order to decode the level 2 (all) point cloud, it is necessary to decode depth # 0 to depth # 6. Therefore, the three-dimensional data decoding device decodes up to the coded data of C.
  • the three-dimensional data decoding device can decode low-resolution data. Therefore, the three-dimensional data decoding device can reduce the amount of data when the high-resolution point cloud is not required, or can reduce the amount of processing by skipping the decoding process.
  • the three-dimensional data decoding device can display the low-resolution data after decoding the low-resolution data without waiting for the decoding of the remaining data, and can display the remaining data after decoding the high-resolution decoded data.
  • the initial delay of decoding and display can be shortened.
  • the three-dimensional data decoding device has acquired the data up to the time point A or B, that is, the boundary between the depths in the coded data, or the information of the depth. It is necessary to judge.
  • FIG. 42 is a diagram showing an example of header syntax.
  • FIG. 43 is a diagram showing an example of payload syntax.
  • the boundary or depth information between depths may be determined by decoding the encoded data in order from the beginning and analyzing the information of the decoded occupancy code using the converted data (occupancy_code).
  • FIG. 44 is a diagram showing the configuration of coded data having all the position information (depth # 0 to depth # 6) from the depth 0 to the depth 6.
  • this coded data is also called whole coded data or a bit stream (encoded bit stream).
  • the totally coded data does not contain information that indicates explicit boundaries in the data between depths.
  • the three-dimensional data decoding device can obtain the boundary between the depths or the depth information by analyzing the occupancy code (occupancy_code).
  • the number of points (numPoint) included in the header indicates the number of all points included in the overall coded data.
  • the depth number depth indicating the number of depths is "7" in this example.
  • FIG. 45 is a diagram showing the structure of the entire coded data.
  • the overall coded data shown in FIG. 45 includes, in addition to the configuration shown in FIG. 44, hierarchical structure metadata which is metadata showing a hierarchical structure.
  • FIG. 46 is a diagram showing an example of syntax of depth information (depth_info).
  • FIG. 47 is a diagram showing an example in which the depth information is stored in the hierarchical structure metadata (layer_metadata).
  • Depth information includes a number of depths (depth) and length information (length) indicating the length of data for each depth (depth).
  • the length information indicates, for example, the difference between the start position and the last position of the coded data (also referred to as depth data) of the corresponding depth by the number of bytes or the number of bits.
  • Hierarchical metadata including length information may be sent before or after the coded data. Further, the length information may be stored in the header of the entire coded data.
  • FIG. 48 is a diagram showing an example of header syntax in this case. The header contains the number of points (numPoint) and the depth information (depth_info).
  • the data boundaries between depths are specified in the hierarchical metadata or header.
  • the three-dimensional data decoding device does not have to use the hierarchical structure metadata for decoding. In this case, the three-dimensional data decoding device uses the hierarchical structure metadata when dividing or reconstructing the hierarchical data.
  • the three-dimensional data decoding device can easily divide the entire coded data into data for each depth, so that the amount of processing can be reduced.
  • the amount of transmission can be reduced by enabling the transmission of divided data.
  • FIG. 49 is a diagram showing a configuration example of the overall coded data in this case.
  • depths 0 to 4 depth # 0 to depth # 4
  • depth 5 depth # 5
  • depth 6 depth # 6
  • layer 0 includes the same depth as level 0, layer 1 corresponds to the depth of the difference between level 1 and level 0, and layer 2 corresponds to the difference between level 2 and level 1.
  • FIG. 50 is a diagram showing an example of syntax of hierarchical information.
  • the hierarchical information includes a number of layers (layer) indicating the number of layers and a number of layer depths (num_depth) indicating the number of depths included in each layer.
  • FIG. 51 is a diagram showing an example of syntax of hierarchical metadata.
  • hierarchical metadata includes hierarchical information (layer_info).
  • FIG. 52 is a diagram showing an example of syntax of the header of the entire coded data. For example, as shown in FIG. 52, the header contains depth information (depth_info). Both the hierarchical information and the depth information may be included in the header or the hierarchical structure metadata.
  • the syntax structure shown here is an example, and is not limited to this.
  • the information included in the overall coded data may be any information that the three-dimensional data decoding apparatus can acquire the number of depths, the number of layers, the number of layer depths, and the length information.
  • the overall coded data may include information indicating the length of each layer.
  • higher-level metadata such as a sequence-level parameter set (for example, SPS) contains some or all of this information. You may.
  • the overall coded data may include a flag indicating whether or not the overall coded data includes hierarchical information (layer_info) and depth information (depth_info).
  • layer_info hierarchical information
  • depth_info depth information
  • the flag is on (eg, value 1)
  • hierarchical information and depth information may be included in the overall coded data.
  • the flags may be provided individually for the hierarchical information and the depth information.
  • the point cloud data may have one or more attribute information (attribute) such as color or reflectance in addition to the position information (geometry).
  • attribute information may also have a hierarchical structure like the position information.
  • the three-dimensional data encoding device stores the hierarchical structure information in the hierarchical structure metadata or the data header as well as the position information. For example, the three-dimensional data encoding device stores hierarchical structure information in each of the attribute information header and the position information header.
  • the three-dimensional data encoding device stores the hierarchical structure metadata in a separate parameter set with position information such as GPS or APS and attribute information. It may be stored in a common parameter set such as SPS.
  • the three-dimensional data coding device may store the hierarchical structure metadata in SEI or other metadata.
  • FIG. 53 is a diagram showing a configuration example of a bit stream when the position information and the attribute information each have a hierarchical structure and the hierarchical structure information is stored in the hierarchical structure metadata.
  • FIG. 54 is a diagram showing an example of syntax of hierarchical metadata. The figure shows an example of applying common hierarchical metadata to position information and attribute information.
  • Hierarchical structure metadata includes hierarchical information (layer_info), the number of components (component), and depth information (depth_info) of each component.
  • the number of components indicates the number of components such as position information and attribute information. For example, if the point cloud data has color and reflectance in addition to position information, the number of components is 3. It should be noted that the number of components of the attribute information may be shown on the assumption that the position information always exists. Further, when the number of components of the attribute information is indicated in the SPS, this information may be omitted. This reduces the amount of data.
  • the layer information (layer_info) indicates the number of layers and the number of depths included in each layer. For example, hierarchical information is common to all components.
  • Depth information indicates the number of depths and the data length (length information) of each depth data.
  • the depth information is set for each component, for example. Note that part or all of the depth information may be common to all components.
  • hierarchical information may be generated for each component.
  • layering may be performed based on time information or spatial information.
  • the hierarchical structure metadata is shown by the above method.
  • a configuration having no hierarchical structure may be generated.
  • Information indicating whether or not the coded data has a hierarchical structure may be included in the header or metadata.
  • data having a hierarchical structure and data having no hierarchical structure can be mixed.
  • the position information does not have to have a hierarchical structure
  • the attribute information does not have to have a hierarchical structure.
  • information indicating this may be shown in the header or the like.
  • 55, 56 and 57 are diagrams showing a reference relationship between position information and attribute information.
  • layer 0 is a base layer and is data that can be decoded independently.
  • layer 1 cannot be decoded by itself, but is integrated with the data of layer 0 and decoded.
  • the layer 2 cannot be decoded by itself, but is integrated with the data of the layer 0 and the layer 1 and decoded.
  • the layer 0 of the attribute information is decoded with reference to the layer 0 of the position information.
  • the layer 1 of the attribute information is decoded with reference to the layer 0 of the attribute information and the layers 0 and 1 of the position information.
  • the referenced data is sent first. By transmitting the referenced data first, it becomes possible to decode the data in the order in which the data are acquired in the three-dimensional data decoding device, and efficient decoding such as reduction of the capacity of the reception buffer becomes possible.
  • FIG. 58 is a diagram showing a configuration example of a bit stream.
  • FIG. 59 is a diagram showing a configuration example of a three-dimensional data coding device.
  • the three-dimensional data coding apparatus includes a coding unit 8801 and a file conversion unit 8802.
  • the coding unit 8801 encodes the point cloud data to generate a bit stream including the coded data and the control information.
  • the file conversion unit 8802 converts the bitstream into a file format.
  • FIG. 60 is a diagram showing a configuration example of a three-dimensional data decoding device.
  • the three-dimensional data decoding device includes a file inverse conversion unit 8811 and a decoding unit 8812.
  • the file inverse conversion unit 8811 converts the file format into a bit stream including encoded data and control information.
  • the decoding unit 8812 generates point cloud data by decoding the bit stream.
  • FIG. 61 is a diagram showing the basic structure of ISOBMFF.
  • FIG. 62 is a protocol stack diagram in the case where the NAL unit common to the PCC codec is stored in the ISOBMFF. Here, what is stored in ISOBMFF is the NAL unit of the PCC codec.
  • the NAL unit includes a NAL unit for data and a NAL unit for metadata.
  • the NAL unit for data includes position information slice data (Geometry Slice Data), attribute information slice data (Attribute Slice Data), and the like.
  • NAL units for metadata include SPS, GPS, APS, SEI and the like.
  • ISOBMFF ISO based media file format
  • the basic unit in ISOBMFF is a box.
  • a box is composed of type, lens, and data, and a set of various type boxes is a file.
  • the file is composed of boxes such as ftyp which indicates the brand of the file in 4CC, moov which stores metadata such as control information, and mdat which stores data.
  • the storage method for each medium in ISOBMFF is separately specified.
  • the storage method for AVC video and HEVC video is specified in ISO / IEC14496-15. Further, in order to store and transmit PCC-encoded data, it is conceivable to extend the function of ISOBMFF and use it.
  • SEI When storing the NAL unit for metadata in ISOBMFF, SEI may be stored in “mdat box” together with PCC data, or may be stored in “track box” that describes control information about the stream. Further, when the data is packetized and transmitted, the SEI may be stored in the packet header. Showing the SEI on the layer of the system facilitates access to attribute information, tile and slice data, thus improving the speed of access.
  • the coding method is a technique for compressing data.
  • additional functions are provided in a system format and have a different role than the coding scheme. Such additional functions are defined by a standard different from the coding method.
  • the three-dimensional data coding device transforms the data in order to make it the optimum format for providing additional functions. At that time, the three-dimensional data coding apparatus stores information that facilitates conversion in the coded data in advance. As a result, the amount of processing related to conversion can be reduced.
  • Slice data such as position information and attribute information are each stored in a file format sample.
  • the sample is stored in mdat.
  • information indicating the data structure, offset information indicating the position of the data, and data length information are stored in metadata such as a random access table. Note that this information may be stored in a table different from the random access table.
  • FIG. 63 is a diagram showing a conversion process from a bit stream to a file format.
  • the three-dimensional data coding device stores the position information slice and the attribute information slice in a sample in a one-to-one correspondence.
  • the slice contains information (hierarchical data) of all layers.
  • the position information sample belongs to the position information track (Geometry Track), and the attribute information sample belongs to the attribute information track (Attribute Track).
  • Hierarchical information is stored in the metadata for each frame belonging to the metadata track (Meta Data Track).
  • the time stamp information common to the position information sample and the attribute information sample, and the like may be stored in the metadata sample.
  • a frame unit that operates with a common time stamp may be called an access unit.
  • the hierarchical information (layer_information) may be stored in moov.
  • the hierarchical information includes, for example, the above-mentioned hierarchical information (layer_info).
  • the hierarchical information may include at least a part of the above-mentioned hierarchical structure metadata or other information included in the header, such as depth information (depth_info).
  • the slice can be stored as a sample as it is, so the processing is easy.
  • FIG. 64 is a flowchart of the format conversion process.
  • the three-dimensional data coding apparatus starts the format conversion of the coded data (S8811).
  • the three-dimensional data coding apparatus stores one slice including a plurality of layers in one sample (S8812).
  • the three-dimensional data coding device stores the hierarchical information in the metadata (S8813).
  • the three-dimensional data coding device constitutes a frame (AU: access unit) (S8814).
  • FIG. 65 is a flowchart of this decoding process.
  • the three-dimensional data decoding device extracts a desired sample by random access (S8821). Specifically, the three-dimensional data decoding device identifies the position of a desired sample by using the metadata included in the moov, the random access table, and the like, and extracts the data of the sample.
  • the three-dimensional data decoding device analyzes the hierarchical information metadata (S8822) and extracts the layer boundary information in the sample (S8823). Specifically, the three-dimensional data decoding device acquires layer boundary information from the number of depths included in each layer in the sample and the data length of each depth from the hierarchical information metadata. For example, the three-dimensional data decoding device calculates the data length of each layer from the number of depths included in each layer and the data length of each depth, and determines the data boundary of each layer based on the calculated data length of each layer. To do.
  • the three-dimensional data decoding device divides the layer using the boundary information of the layer and decodes the desired data (S8824). For example, a three-dimensional data decoding device extracts a specific layer component from a sample.
  • the three-dimensional data decoding device can extract specific information by using the hierarchical information without decoding the encoded data.
  • the three-dimensional data coding apparatus may store one hierarchical data as one sample or may store it as one subsample.
  • FIG. 66 is a diagram showing a conversion process from a bit stream to a file format.
  • the three-dimensional data coding apparatus stores the data for each layer of the position information slice and the attribute information slice in a one-to-one correspondence with the sample.
  • the position information sample belongs to the position information track (Geometry Track), and the attribute information sample belongs to the attribute information track (Attribute Track).
  • Hierarchical information is stored in the metadata for each frame belonging to the metadata track (Meta Data Track).
  • Metadata Track Metadata Track
  • the three-dimensional data coding device stores the data in the sample while dividing the data.
  • the three-dimensional data encoding device divides the slice data by using the information indicating the data length of each hierarchical data. If the hierarchical information is not shown in the bitstream, the 3D data encoder calculates the hierarchical information while decoding the encoded data. The three-dimensional data coding device recodes and divides the data based on the obtained hierarchical information.
  • the information for each layer can be stored in the track and sample for each layer. Therefore, since the data can be extracted for each layer in the three-dimensional data decoding device, the handling of the data for each layer becomes easy.
  • FIG. 67 is a diagram showing an example of syntax of hierarchical metadata.
  • Hierarchical structure metadata includes hierarchical information (layer_info), the number of components (component), and depth information (depth_info) of each component.
  • the three-dimensional data encoding device may copy the slice header to all the divided data and add it when the header information is included in the sample when the slice is divided into the hierarchical data.
  • FIG. 68 is a diagram schematically showing this division process.
  • the three-dimensional data coding device may store the slice header in the metadata without including it in the sample. By copying the header information, the processing of header creation can be reduced.
  • the three-dimensional data coding device may add an identifier indicating whether or not the data to be stored in the sample is layered to the file format. Further, in the three-dimensional data encoding device, when the data is layered, whether or not the data includes all the layered data, or whether or not the data to be stored in the sample is layered layered data. An identifier indicating the above may be added to the file format. In addition, the three-dimensional data coding apparatus may indicate such information by a media type or a box type (type) such as 4CC. This facilitates the identification of the media.
  • FIG. 69 is a flowchart of the conversion process using the hierarchical information.
  • the three-dimensional data coding apparatus starts the format conversion of the coded data (S8831).
  • the three-dimensional data coding apparatus divides the slice into information for each layer using the hierarchical information metadata (S8832).
  • the three-dimensional data coding apparatus stores each of the divided plurality of hierarchical data in one sample (S8833).
  • the three-dimensional data coding device stores the hierarchical information in the metadata (S8834).
  • the three-dimensional data coding device constitutes a frame (AU) (S8835).
  • FIG. 70 is a flowchart of a conversion process that does not use hierarchical information.
  • the three-dimensional data coding apparatus starts the format conversion of the coded data (S8841).
  • the three-dimensional data coding device decodes the data and determines the boundaries of the hierarchical data (S8842).
  • the three-dimensional data coding device recodes and divides the data (S8843).
  • the three-dimensional data coding apparatus stores each of the divided plurality of hierarchical data in one sample (S8844).
  • the three-dimensional data coding device stores the hierarchical information in the metadata (S8845).
  • the three-dimensional data coding device constitutes a frame (AU) (S8846).
  • FIG. 71 is a flowchart of the decoding process of the hierarchical data sample data.
  • the three-dimensional data decoding device extracts a desired sample by random access (S8551).
  • the three-dimensional data decoding device decodes the data contained in the extracted sample (S8552).
  • FIGS. 72 and 73 are diagrams showing a configuration example of the entire coded data (PCC data).
  • the hierarchical structure in the examples shown in FIGS. 72 and 73 is the same as that in FIG. 49.
  • FIG. 72 shows a case where one depth data is used as one slice data, and a slice header is added to each depth data.
  • the slice header includes a depthId that identifies a hierarchy of depth data, a layerId that indicates the hierarchy to which the depth belongs, and a length that indicates the length of the depth data.
  • the slice header may include a groupId indicating that the data belongs to the same frame. That is, groupId indicates the frame (time) to which the data belongs.
  • the three-dimensional data coding device may store parameters common to all depths in the header of the slice that transmits the initial depth, or store the parameters in the common header of the data of depth # 0. It may be placed in front.
  • the three-dimensional data coding device may store depthId and groupId in the slice header, and store the number of depths and layerId and lens for each depth in the hierarchical structure metadata or the common header.
  • depth # 0 can be decoded independently, and other than depth # 0 cannot be decoded independently, and it depends on other data.
  • the three-dimensional data decoding device determines that data other than depth # 0 cannot be decoded independently, and has the depth data of the decoding target having the same groupId as the depth data of the decoding target, and the depth data of the decoding target. Decoding with depth data having a depthId smaller than the depthId of.
  • FIG. 73 shows a case where one hierarchical data is used as one slice data, and a slice header is added to each hierarchical data.
  • the slice header includes the layerId, the number of depths (num_depth) included in the hierarchy, and the length of the depth data (length). Further, the slice header may include a groupId indicating that the hierarchical data belongs to the same frame.
  • the slice header includes layerId and groupId, and the number of layers, the number of depths included in each layer, and the depth length information (length) may be included in the hierarchical structure metadata.
  • the three-dimensional data coding device may store one depth data as one sample or one depth data as one subsample. ..
  • FIG. 74 is a diagram showing a conversion process from a bit stream to a file format.
  • the three-dimensional data coding apparatus stores the data for each layer of the position information slice and the attribute information slice in a one-to-one correspondence with the sample.
  • the position information sample belongs to the position information track (Geometry Track), and the attribute information sample belongs to the attribute information track (Attribute Track).
  • Hierarchical information is stored in the metadata for each frame belonging to the metadata track (Meta Data Track). There are tracks for each layer, and there are samples that belong to each track. By providing a track for each layer, it becomes easy to handle data for each layer.
  • the three-dimensional data encoding device can directly store the data in the sample as it is. Therefore, the amount of processing can be reduced as compared with the case where slice data is not configured for each hierarchical data.
  • hierarchical information is stored in metadata.
  • FIG. 75 is a flowchart of the format conversion process.
  • the three-dimensional data coding apparatus starts the format conversion of the coded data (S8861).
  • the three-dimensional data coding apparatus stores slice data for each layer in one sample (S8862).
  • the three-dimensional data coding device stores the hierarchical information in the metadata (S8863).
  • the three-dimensional data coding device constitutes a frame (AU) (S8864).
  • FIG. 76 is a flowchart of the decoding process.
  • the three-dimensional data decoding device analyzes the metadata and acquires the number of depths belonging to the layer in order to access the specific hierarchical data (S7871).
  • the three-dimensional data decoding device calculates the start position of the depth data at the beginning of the hierarchical data and the size of the entire layer using the acquired information (S7872).
  • the three-dimensional data decoding device decodes the hierarchical data (S7873).
  • FIG. 77 is a diagram showing an example of syntax of depth information.
  • FIG. 78 is a diagram showing a syntax example of a sample size box (sample_size_box: stsz).
  • the three-dimensional data coding apparatus may store the size (entry_size) of each hierarchical data in a siple size box that stores size information for each sample.
  • FIG. 79 is a diagram showing an example of syntax of hierarchical information (layer_info).
  • FIG. 80 is a diagram showing an example of the syntax of PCCLayerStructureBox.
  • the three-dimensional data coding apparatus stores the number of layers (layer) and the number of depths included in the layers (num_depth) in the PCCLayerStructureBox.
  • the three-dimensional data coding device may store these information in the same box or may store them in separate boxes.
  • the three-dimensional data decoding apparatus uses the data structure and hierarchical structure metadata described in the present embodiment to partially randomly access the decoded data from the file and extract the data.
  • the three-dimensional data decoding device accesses the data based on the frame, the hierarchy, the information of each data length, the number of depths included in the hierarchy, etc. of the position information and the attribute information included in the metadata, and obtains the desired data. Can be extracted.
  • FIG. 81 is a diagram schematically showing this extraction operation.
  • the sending unit 8821 has a complete data file (file format) having layers 0 and 1, and the receiving unit 8823 has a layer 0 data file.
  • the receiving unit 8823 wants to acquire the layer 1 data, it requests the transmitting unit 8821 to transmit the layer 1 file.
  • the extraction unit 8822 included in the transmission unit 8821 extracts the layer 1 file from the complete data file (file format) and provides the layer 1 file (bitstream) to the reception unit 8823.
  • the receiving unit 8823 integrates the layer 0 file and the layer 1 file to generate a complete data file.
  • FIG. 82 is a diagram showing an example of a complete data file (file format).
  • 83, 84, and 85 are diagrams showing an example of a bit stream extracted by the extraction unit 8822.
  • the extraction unit 8822 may extract all the data from the file format.
  • the extraction unit 8822 may extract the position information and not the attribute information.
  • the extraction unit 8822 may extract layer 0 and not extract layer 1.
  • the extraction unit 8822 may transmit data in a rearranged state, although not shown, for example.
  • the direct mode is a method of stopping the Octree coding for a certain node and directly coding the coordinates of the points of the leaf node at the time of coding using the ocree.
  • the direct mode is used when the points belonging to the node are sparse. By using the direct mode, the amount of data can be reduced.
  • FIG. 86 is a diagram showing an example of the direct mode.
  • the coordinates of these two points are directly described in the data area of depth1.
  • the three-dimensional data decoding apparatus When decoding from depth 0 to depth 4, the three-dimensional data decoding apparatus performs a decoding process using a normal decoding method. On the other hand, when the three-dimensional data decoding device partially extracts and decodes depth0 to depth1 and it is necessary to make all the decoded data have the same resolution, the coordinates of depth4 included in depth1 are not used and decoding is performed. May be done. When high resolutions may be mixed, the three-dimensional data decoding apparatus may perform decoding using the coordinates of depth 4 included in depth 1.
  • the transmission device may or may not include the information of the direct mode (depth4) in the depth1.
  • the transmitting device determines whether or not to include the information in the direct mode according to whether or not the receiving device needs the information, and if the receiving device needs the information, bitstreams the information. It is not necessary to include the information in the bitstream if it is not necessary. As a result, the amount of data can be reduced. For example, the transmitting device determines that the direct mode information is necessary when the data having the resolutions of depth2 to depth4 may be decoded together with the depth0 to depth1, and when the decoding of depth2 to depth4 is not performed, the transmission device determines that the direct mode information is required. It may be determined that the information of is unnecessary.
  • the three-dimensional data coding apparatus performs the processing shown in FIG. 87.
  • the three-dimensional data encoding device sets a hierarchical structure having a plurality of depths and a plurality of layers each including a depth of one or more in a plurality of position information of a plurality of three-dimensional points included in the point cloud data. (S8881).
  • the three-dimensional data coding apparatus generates a plurality of first coded data (for example, depth data) for each depth by encoding a plurality of position information for each depth (S8882).
  • the three-dimensional data coding device is coded data for each layer, and is a bit including a plurality of second coded data including one or more first coded data having a depth of one or more included in the corresponding layer.
  • Generate a stream (S8883).
  • the bitstream contains first information indicating the data length of each of the plurality of second coded data.
  • the three-dimensional data decoding device that decodes the bit stream can easily access the data of any layer by using the first information. Therefore, the three-dimensional data coding device can reduce the processing amount of the three-dimensional data decoding device.
  • the first information includes a second information (for example, num_depth) indicating the number of depths included in each of the plurality of layers and a third information (for example, lens) indicating the data length of each of the plurality of first coded data. ) And.
  • a second information for example, num_depth
  • a third information for example, lens
  • the bit stream includes a first header (for example, the hierarchical structure metadata or header shown in FIG. 49) common to a plurality of second encoded data, and the first header contains the first information.
  • a first header for example, the hierarchical structure metadata or header shown in FIG. 49
  • the bit stream includes a plurality of second headers (for example, the slice header shown in FIG. 73) for each second coded data, and the first information corresponds to and corresponds to any of the plurality of second coded data.
  • a plurality of fourth information indicating the data length of the second encoded data to be used is included, and each of the plurality of second headers includes the fourth information indicating the data length of the second encoded data corresponding to the second header. ..
  • the bit stream includes a plurality of third headers (for example, slice headers shown in FIG. 72) for each of the plurality of first encoded data, and the first information includes the number of depths contained in each of the plurality of layers.
  • a plurality of third information (for example, num_head) including the second information (for example, num_head) and a fifth information (for example, lens) corresponding to each of the plurality of first encoded data and indicating the data length of the corresponding first encoded data are included.
  • Each of the headers includes a fifth piece of information indicating the data length of the first coded data corresponding to the third header.
  • a three-dimensional data encoding device further generates a plurality of third-coded data for each depth by encoding a plurality of attribute information possessed by a plurality of three-dimensional points for each depth, and a bit stream.
  • Is coded data for each layer and includes a plurality of fourth coded data including one or more third coded data having a depth of one or more included in the corresponding layer, and a bit stream includes a plurality of coded data.
  • the three-dimensional data encoding device includes a processor and a memory, and the processor uses the memory to perform the above processing.
  • the three-dimensional data decoding device performs the processing shown in FIG. 88.
  • the three-dimensional data decoding device acquires the first information from the bit stream including the plurality of second coded data and the first information indicating the data length of each of the plurality of second coded data (S8886).
  • the three-dimensional data decoding apparatus uses the first information to acquire at least one second coded data out of the plurality of second coded data (S8887).
  • the three-dimensional data decoding device decodes at least one acquired second coded data (S8888).
  • the bit stream is a plurality of position information of a plurality of three-dimensional points included in the point cloud data, and a hierarchical structure having a plurality of depths and a plurality of layers each including a depth of 1 or more is set. It includes a plurality of first coded data for each depth generated by encoding a plurality of position information for each depth. Each of the plurality of second-coded data corresponds to any of the plurality of layers, and among the plurality of first-coded data, one or more first codes included in the layer corresponding to the second-coded data. Includes coded data.
  • the three-dimensional data decoding device can easily access the data of any layer by using the first information. Therefore, the three-dimensional data decoding device can reduce the processing amount.
  • the first information includes a second information (for example, num_depth) indicating the number of depths included in each of the plurality of layers and a third information (for example, lens) indicating the data length of each of the plurality of first coded data. ) And.
  • the three-dimensional data decoding device calculates the data length of the second coded data using the second information and the third information.
  • the bit stream includes a first header (for example, the hierarchical structure metadata or header shown in FIG. 49) common to a plurality of second encoded data, and the first header contains the first information.
  • a first header for example, the hierarchical structure metadata or header shown in FIG. 49
  • the bit stream includes a plurality of second headers (for example, the slice header shown in FIG. 73) for each second coded data, and the first information corresponds to and corresponds to any of the plurality of second coded data.
  • a plurality of fourth information indicating the data length of the second encoded data to be used is included, and each of the plurality of second headers includes the fourth information indicating the data length of the second encoded data corresponding to the second header. ..
  • the bit stream includes a plurality of third headers (for example, slice headers shown in FIG. 72) for each of the plurality of first encoded data, and the first information includes the number of depths contained in each of the plurality of layers.
  • a plurality of third information (for example, num_head) including the second information (for example, num_head) and a fifth information (for example, lens) corresponding to each of the plurality of first encoded data and indicating the data length of the corresponding first encoded data are included.
  • Each of the headers includes a fifth piece of information indicating the data length of the first coded data corresponding to the third header.
  • the bit stream includes a plurality of third coded data for each depth generated by encoding a plurality of attribute information possessed by the plurality of three-dimensional points for each depth.
  • the bitstream is coded data for each layer, and includes a plurality of fourth coded data including one or more third coded data having one or more depths included in the corresponding layer.
  • the bitstream contains sixth information indicating the data length of each of the plurality of fourth coded data.
  • the three-dimensional data decoding device further acquires the sixth information from the bit stream, and uses the sixth information to acquire and acquire at least one fourth coded data among the plurality of fourth coded data. At least one of the 4th coded data is decoded.
  • the three-dimensional data decoding device includes a processor and a memory, and the processor uses the memory to perform the above processing.
  • Conformance is a set of 3D points encoded in a 3D data encoder, that is, a bitstream, or a predetermined standard (for example, defined by a standard) that a 3D data decoder that decodes a bitstream must meet. Standard). Conformance is also referred to as conformance point, conformance point, or conformance level.
  • the three-dimensional data encoding device selects one conformance from a plurality of predetermined conformations, and encodes a three-dimensional point cloud using a predetermined method based on the selected one conformance. ..
  • the 3D data decoder decodes based on whether the bitstream conforms to the conformation and whether the 3D data decoder supports decoding of the bitstream conforming to a given conformance. To decide.
  • the three-dimensional data coding device encodes a three-dimensional point cloud by using an arbitrary method (predetermined processing) so that the bit stream can satisfy a predetermined conformation.
  • the 3D data encoder executes, for example, scaling processing, quantization, division in slices or tiles, offset of the divided space, table reference (codebook), etc. as an arbitrary method for the 3D point cloud. You may.
  • the accuracy level of the 3D point cloud may be adjusted to increase, maintain, or decrease the bit accuracy.
  • the three-dimensional data encoding device generates a bitstream containing information indicating the conformance satisfied by the bitstream generated by encoding the three-dimensional point cloud.
  • the three-dimensional data decoding device acquires information indicating conformity from a bit stream (for example, the syntax of encoded data), and based on the information indicating conformity, a bit stream of a coded three-dimensional point group is preliminarily generated. Determine if the specified conformance is met. Then, the three-dimensional data decoding device decodes the point cloud data when it is determined that the conformity is satisfied.
  • a bit stream for example, the syntax of encoded data
  • the combination (set) of conformance may include the following parameters.
  • the combination of conformances is, for example, the accuracy of coding the 3D point group (that is, the number of bits of the data after coding), the number of 3D points in the divided data (slice or tile) unit, and the 3D data decoding device. Number of processing cores available, processor speed of 3D data decoder, application requirements of 3D data decoder (eg, real-time, low power mode, remote server processing, etc.), lossless or lossy coding, It may contain any one of the slice bounding box information (size, etc.).
  • bit precision means the number of bits. Bit precision means precision in hardware processing.
  • FIG. 89 is a block diagram showing an example of the configuration of the three-dimensional data coding device according to the sixth embodiment.
  • FIG. 90 is a flowchart showing a first example of the three-dimensional data coding method according to the sixth embodiment.
  • the three-dimensional data coding device 9600 includes a determination unit 9601, a conversion unit 9602, and a coding unit 9603.
  • the point cloud data of the three-dimensional point cloud is input to the three-dimensional data encoding device 9600.
  • the three-dimensional data coding device 9600 acquires the point cloud data.
  • the determination unit 9601 of the three-dimensional data coding device 9600 determines the conformity of the coded data, which is the coded data of the point cloud data of the three-dimensional point cloud (S9601).
  • the conformance is determined according to the performance of the corresponding device (three-dimensional data decoding device), the use case of the application, the type of the three-dimensional point cloud to be handled, and the like.
  • the conformance may be predetermined or adaptive.
  • the three-dimensional data coding apparatus 9600 determines the conformance by selecting one conformance from the combination of conformances.
  • the determination unit 9601 determines whether or not the three-dimensional point cloud of the point cloud data satisfies the determined conformation (S9602).
  • the conversion unit 9602 executes a predetermined process so as to satisfy the determined conformance. (S9603).
  • the conversion unit 9602 may perform, for example, quantization or data division as a predetermined process.
  • the coding unit 9603 After step S9603, or when the determination unit 9601 determines that the three-dimensional point cloud of the point cloud data satisfies the determined conformation (Yes in S9602), the coding unit 9603 indicates the determined conformance. Generate metadata including a conformance index (S9604).
  • the conformance index is identification information for identifying one of a plurality of combinations of conformations.
  • the coding unit 9603 encodes the point cloud data after conversion in step S9603, or the point cloud data before conversion when it is determined to be Yes in step S9602, and the point cloud data and metadata after coding.
  • FIG. 91 is a block diagram showing an example of the configuration of the three-dimensional data decoding device according to the sixth embodiment.
  • FIG. 92 is a flowchart showing an example of the three-dimensional data decoding method according to the sixth embodiment.
  • the three-dimensional data decoding device 9610 includes a determination unit 9611 and a decoding unit 9612.
  • the three-dimensional data decoding device 9610 acquires a bit stream.
  • the bitstream contains encoded point cloud data (encoded data) and metadata including a conformance index.
  • the 3D data decoding device 9610 is a decoding device that conforms to at least one of a plurality of predetermined conformations, and if the bitstream is data conforming to the conformations supported by the 3D data decoding device 9610, the data is decoded. Is possible.
  • the determination unit 9611 acquires the conformance index from the metadata (S9611).
  • the determination unit 9611 determines whether or not the conformance indicated by the conformance index is included in the conformance conformed to by the three-dimensional data decoding device 9610 (S9612).
  • the conformance to which the three-dimensional data decoding device 9610 conforms is the decoding condition of the three-dimensional data decoding device 9610. Further, the determination unit 9611 determines whether or not the bit stream satisfies the conformity indicated by the conformance index (S9612). In other words, the determination unit 9611 determines whether or not the bit stream satisfies the decoding condition of the three-dimensional data decoding device 9610.
  • the decoding unit 9612 determines the encoded point cloud data included in the bitstream. Is decoded (S9613).
  • the decoding unit 9612 is the encoded point cloud included in the bitstream. Decoding of data is skipped and point cloud data is not decoded (S9614).
  • the decoding unit 9612 may decode the point cloud data as it is, or may shift to an error-only process and perform a predetermined process.
  • the predetermined process for example, the quality after decoding is determined, and as a result of the determination, if there is no problem in quality, the decoding result is displayed (output) as it is, and if the quality is poor, the decoding result is not displayed (output). May be.
  • constraint targets There are two possible targets for setting conformance constraints (hereinafter referred to as constraint targets): input point cloud and divided data.
  • the input point cloud is point cloud data indicating the three-dimensional point cloud input to the three-dimensional coding device.
  • the input point cloud is the original point cloud data before being divided into slices, tiles, and the like.
  • the input point cloud is equal to the point cloud data after integrating the plurality of divided data in which the point cloud data is divided.
  • the conformance includes the number of three-dimensional points of the input point cloud, bit precision (number of bits), and the like.
  • the input point group conforming to the conformance may be generated by using a sensor that outputs the detection result conforming to the conformance as the input point group.
  • the input point cloud that conforms to the conformity may be generated by performing a predetermined process on the existing input point cloud so that the three-dimensional data encoding device conforms to the conformity.
  • the divided data may be restricted.
  • the divided data is the data after dividing the input point cloud into slices or tiles.
  • the conformance includes the number of three-dimensional points or bit precision (number of bits) of the divided data unit. That is, the three-dimensional data coding apparatus may perform a process of dividing the input point cloud so that the divided data after the division satisfies the conformity when the input point group is divided.
  • conformance may be set for both the input point group and the divided data.
  • the three-dimensional data encoding device divides the input point group into a plurality of divided data so that the conformity of the divided data unit is satisfied.
  • the three-dimensional data encoding device does not have to divide the input point cloud into a plurality of divided data. That is, when the input point cloud satisfies the conformity, the three-dimensional data coding apparatus may encode the input point cloud as it is without dividing it.
  • the three-dimensional data encoding device sets the conformance to the input point cloud (for example, the number of three-dimensional points of the input point cloud, the number of bits, etc.) and the input point cloud satisfying the conformity. It can be used as a rule when generating in advance. On the other hand, when restrictions are set on the divided data, the three-dimensional data encoding device can be used as a rule for dividing the input point group when the input point group does not satisfy the conformity.
  • the number of 3D points to be handled or the distribution range of the 3D point cloud differs depending on the size and density of the map, and there is no upper limit.
  • a method of setting restrictions on the divided data can be used.
  • this coding method can be applied to various contents.
  • FIG. 93 is a flowchart showing a second example of the three-dimensional data coding method according to the sixth embodiment.
  • This three-dimensional data coding method is a method of switching the processing depending on whether the constraint target is an input point cloud or divided data.
  • the three-dimensional data coding device determines whether the constraint target is an input point group or divided data (S9621). Whether the constraint target is the input point cloud or the divided data may be determined in advance by the user, or may be determined according to the use of the three-dimensional point cloud.
  • the three-dimensional data encoding device determines that the constraint target is an input point group (input point group in S9621), the three-dimensional data encoding device targets the input point group and constrains the bit accuracy (bit number) or the point number (S9622). .. Specifically, the three-dimensional data encoding device determines the bit precision or the number of points as conformity with respect to the input point cloud.
  • the number of bits is the maximum number of bits of the coded data after encoding the point cloud data of the input point cloud.
  • the number of points is a range of the number of three-dimensional points included in the input point group.
  • the three-dimensional data coding device determines whether or not the input point group is within the specified range (S9623). That is, the three-dimensional data coding apparatus determines whether or not the input point group satisfies the conformity determined in step S9622.
  • the three-dimensional data coding device determines that the input point group is not within the specified range (No in S9623)
  • the three-dimensional data coding device processes the input point group so as to conform to the specified value (S9624). That is, when the input point group does not satisfy the conformity, the three-dimensional data encoding device executes a predetermined process on the input point group so as to satisfy the conformance.
  • the three-dimensional data coding device determines that the input point group is within the specified range (Yes in S9623)
  • the three-dimensional data coding device encodes the input point group determined to be within the specified range (S9630). Further, the three-dimensional data coding apparatus encodes the input point cloud after the processing, in which the predetermined processing is executed in step S9624 to satisfy the conformity (S9630).
  • step S9621 when the three-dimensional data encoding device determines that the constraint target is the divided data (divided data in S9621), the divided data is targeted, and the bit accuracy (number of bits) or the number of points for each divided data. Is constrained (S9625). Specifically, the three-dimensional data coding device determines the bit precision or the number of points as the conformity of the divided data unit.
  • the three-dimensional data coding device determines whether or not the input point group is within the specified range (S9626). Step S9626 is the same process as step S9623.
  • the three-dimensional data coding device determines that the input point group is within the specified range (Yes in S9626), the three-dimensional data coding device encodes the input point group determined to be within the specified range (S9630).
  • step S9626 does not necessarily have to be executed.
  • the three-dimensional data encoding device determines that the input point group is not within the specified range (No in S9626)
  • the three-dimensional data encoding device divides the input point group into a plurality of divided data (S9627).
  • the three-dimensional data encoding device divides the three-dimensional space in which the input point cloud exists into a plurality of subspaces, and determines the point cloud data indicating the three-dimensional point cloud included in each subspace as the divided data. You may.
  • the subspace may be a slice or a tile.
  • the three-dimensional data coding device determines whether or not the divided data is within the specified range (S9628). That is, the three-dimensional data coding apparatus determines whether or not the divided data satisfies the conformity determined in step S9625.
  • the three-dimensional data coding device determines that the divided data is not within the specified range (No in S9628)
  • the three-dimensional data coding device processes the divided data so as to conform to the specified value (S9629). That is, when the divided data does not satisfy the conformity, the three-dimensional data coding apparatus executes a predetermined process on the divided data so as to satisfy the conformance.
  • the three-dimensional data coding device determines that the divided data is within the specified range (Yes in S9628)
  • the three-dimensional data coding device encodes the divided data determined to be within the specified range (S9630). Further, the three-dimensional data coding apparatus encodes the divided data after the processing, in which the predetermined processing is executed in step S9629 to satisfy the conformity (S9630).
  • the determination of conformity as to whether or not the conformance is satisfied, or the predetermined process for conforming to the constraint may be performed for each divided data. That is, the divided data in which the predetermined processing for conforming to the constraint is executed and the divided data in which the predetermined processing is not executed may be mixed. That is, the determination in step S9628 is performed for each of the plurality of divided data, and for the divided data that does not satisfy the regulation among the plurality of divided data, a predetermined process (S9629) for conforming to the constraint is performed. It is not necessary to execute a predetermined process (S9629) for conforming to the constraint on the divided data that is executed and satisfies the regulation.
  • the three-dimensional data encoding device may add metadata including constraint target information indicating whether the constraint target is set to the input point group or the divided data to the bit stream.
  • FIG. 94 is a diagram showing an example of a bounding box.
  • the size of the bounding box of the divided data may be defined in height, width, and depth within the same specified N bits.
  • the upper limit (maximum value) of the number of bits for each of the height, width, and depth may be specified.
  • FIG. 95 is a flowchart showing another example of the three-dimensional data decoding method according to the sixth embodiment.
  • the three-dimensional data decoding device analyzes the metadata contained in the bitstream and acquires the conformance (constraint condition) contained in the metadata (S9631). This conformance is the conformance determined when the input point cloud or the divided data is encoded by the three-dimensional data coding apparatus.
  • the three-dimensional data decoding device determines whether the constraint target is an input point group or divided data (S9632).
  • the three-dimensional data decoding device determines that the constraint target is an input point group (input point group in S9632)
  • the three-dimensional data decoding device confirms whether the bit stream of each input point group satisfies the decoding conditions of the three-dimensional data decoding device. (S9633). Then, as a result of confirmation, when the bit stream of the input point group unit satisfies the decoding condition, the three-dimensional data decoding device decodes the encoded input point group included in the bit stream, and the input point group unit. If the bitstream does not meet the decoding conditions, it is not necessary to decode the encoded input point cloud.
  • the three-dimensional data decoding device determines that the constraint target is the divided data (divided data in S9632), it confirms whether the bit stream of the divided data unit satisfies the decoding condition (S9634). Then, as a result of confirmation, the three-dimensional data decoding device decodes the encoded divided data included in the bit stream when the bit stream of the divided data unit satisfies the decoding condition, and the bit stream of the divided data unit is used. If the decoding conditions are not satisfied, it is not necessary to decode the encoded divided data.
  • FIG. 96 is a flowchart showing a third example of the three-dimensional data coding method according to the sixth embodiment.
  • This flowchart is an example of a process of reducing the number of bits as a predetermined process.
  • the constraint target is a group of input points
  • the same can be applied to the case where the data is divided. That is, the input point cloud may be read as divided data.
  • the three-dimensional data encoding device determines the conformity of the number of bits of the position information of the input point group (S9641). That is, the three-dimensional data coding apparatus determines the upper limit (first maximum number of bits) of the number of bits of the coded data after coding of the input point group as the conformity.
  • the first maximum number of bits relates to the number of bits of data after encoding the position information.
  • the position information included in the input point group indicates the position of each three-dimensional point in the input point group.
  • the position information is, for example, the coordinates of each three-dimensional point.
  • the coordinates may be shown in a Cartesian coordinate system or in a polar coordinate system.
  • the three-dimensional data encoding device determines whether or not the number of bits of the position information of the input point group satisfies the conformity determined in step S9641 (S9642). That is, the three-dimensional data encoding device determines whether or not the number of bits of the position information of the input point group satisfies the first maximum number of bits.
  • the three-dimensional data encoding device determines that the number of bits of the position information of the input point group satisfies the determined conformation (Yes in S9642), it encodes the position information of the input point group (S9644). Further, the three-dimensional data coding apparatus encodes the position information of the input point group after the processing, which satisfies the conformity in which the predetermined processing is executed in step S9643 (S9644).
  • the three-dimensional data coding apparatus generates a bit stream by encoding the point cloud data so as to satisfy the determined conformation by executing steps S9642 to S9644. Specifically, the three-dimensional data encoding device generates a bit stream by encoding the position information of the input point group so as to satisfy the determined first maximum number of bits. The three-dimensional data coding device adds conformance information indicating the determined conformance to the bit stream.
  • the conformance information is, for example, first bit number information indicating the first maximum bit number.
  • the first bit number information may be the value of the first maximum bit number itself, or may be identification information for uniquely specifying the first maximum bit number.
  • the identification information is, for example, a conformance index.
  • step S9643 of FIG. 96 Next, a predetermined process in step S9643 of FIG. 96 will be described.
  • FIG. 97 is an example of the process of reducing the number of bits according to the sixth embodiment.
  • the number of bits may be reduced by quantizing the position coordinates (x, y, z). For example, as shown in FIG. 97, when the maximum number of bits defined by conformance is 4 bits and any of the coordinates (x, y, z) included in the position information is 6 bits, The number of bits of position information does not meet the maximum number of bits specified in the conformance. Therefore, as a predetermined process to be executed for the input point group so as to satisfy the conformance, the number of bits of the position information is reduced by 2 bits by performing the quantization of the quantization by the 2-bit shift.
  • the data to be quantized by the 2-bit shift may be input bits or bits that are substantially used by all three-dimensional points in the input point cloud.
  • FIG. 98 is another example of the process of reducing the number of bits according to the sixth embodiment.
  • the bit precision of each slice may be reduced by using data division that divides into slices or tiles. Specifically, when the input point cloud is divided into slices, the three-dimensional data encoding device shifts the coordinates of the origins of other slices so as to match the origins of one slice. The accuracy may be reduced.
  • the maximum number of bits per slice is defined as conformance
  • the number of bits per point group the number of bits in the bounding box containing the slice, width, height, and depth
  • the 3D data encoder divides the point group so that the number of bits in the bounding box of the slice meets the conformance.
  • the three-dimensional data coding device reduces the number of bits by shifting the origin of the bounding box of the slice (slice 2) according to the origin of the bounding box of the divided slice (slice 1) in FIG. 98. Can be adapted to conformance.
  • the width of the bounding box constituting the input point group is set to the size. It may be divided into int (N / M) + 1 numbers by M bits.
  • a predetermined process is described using a diagram shown in a two-dimensional space, but the predetermined process may be applied to a three-dimensional space or applied to a space of another dimension. You may.
  • FIG. 99 is a flowchart showing a fourth example of the three-dimensional data coding method according to the sixth embodiment. This flowchart is an example of a process of increasing the number of bits as a predetermined process.
  • the three-dimensional data encoding device determines the conformity of the number of bits of the position information of the input point group (S9651). That is, the three-dimensional data coding apparatus determines the upper limit (first maximum number of bits) of the number of bits of the coded data after coding of the input point group as the conformity.
  • the three-dimensional data encoding device determines whether or not the number of bits of the position information of the input point group satisfies the conformity determined in step S9651 (S9652). That is, the three-dimensional data encoding device determines whether or not the number of bits of the position information of the input point group satisfies the first maximum number of bits.
  • the three-dimensional data encoding device determines that the number of bits of the position information of the input point group does not satisfy the determined conformation (No in S9652), that is, it determines that the determined conformance is insufficient. In this case, a process of increasing the number of bits of the position information of the input point group is executed as a predetermined process (S9653).
  • the three-dimensional data encoding device encodes the position information of the input point group when it is determined that the number of bits of the position information of the input point group satisfies the determined conformation (Yes in S9652). Further, the three-dimensional data coding apparatus encodes the position information of the input point group after the processing, which satisfies the conformity in which the predetermined processing is executed in step S9653 (S9654).
  • step S9653 of FIG. 99 Next, the predetermined process in step S9653 of FIG. 99 will be described.
  • FIG. 100 is an example of a process for increasing the number of bits according to the sixth embodiment.
  • the number of bits may be increased by upsampling. For example, in this method, the number of bits may be increased by padding the position coordinates (x, y, z).
  • FIG. 101 is another example of the process of increasing the number of bits according to the sixth embodiment.
  • the number of bits may be adjusted by shifting the bit or the origin of the point cloud.
  • the number of bits per slice can be increased by entering a shift value in a data partition such as a slice or tile.
  • the number of bits may be increased by shifting the coordinates of different slices from different bit streams. For example, the number of bits may be increased by shifting the origin of the bounding box of the slice (slice 2) to a position that does not overlap with the bounding box of the divided slice (slice 1) in FIG. 101. This makes it possible to adapt to conformance.
  • Conformance may be defined by a combination of the number of bits of position information and the number of three-dimensional points. This example will be described with reference to FIG. 102.
  • the number of three-dimensional points may also be referred to as the number of point clouds.
  • FIG. 102 is a flowchart showing a fifth example of the three-dimensional data coding method according to the sixth embodiment.
  • This flowchart is an example in which the number of bits of position information and the range of the number of three-dimensional points in the input point group are determined as conformance.
  • the conformance is not limited to the combination of the position accuracy and the range of the number of three-dimensional points, and may be a combination of other parameters.
  • the three-dimensional data coding device determines the conformity of the coded data, which is the coded data of the point cloud data of the three-dimensional point cloud (S9661).
  • the conformance determined here includes a first maximum number of bits that defines the number of bits of position information, and a range of the number of three-dimensional points included in the input point group.
  • the three-dimensional data coding device determines whether or not the input three-dimensional point cloud satisfies the conformity of the determined number of bits (S9662). That is, the three-dimensional data encoding device determines whether or not the number of bits of the input three-dimensional point cloud position information satisfies (matches) the determined first maximum number of bits.
  • the three-dimensional data coding apparatus determines that the input three-dimensional point cloud does not satisfy the determined number of bits of conformity (No in S9662)
  • the three-dimensional data coding apparatus performs a predetermined process so as to satisfy the determined conformance. Execute (S9663).
  • the predetermined process is, for example, any of the processes described with reference to FIGS. 97, 98, 100, and 101.
  • step S9663 When the three-dimensional data coding apparatus completes step S9663 or determines that the input three-dimensional point cloud satisfies the conformity of the determined number of bits (Yes in S9662), the next step S9664 To execute.
  • the 3D data encoding device determines whether or not the input 3D point cloud satisfies the conformity regarding the determined range of the number of 3D points (S9664). That is, the three-dimensional data encoding device determines whether or not the number of three-dimensional points in the input three-dimensional point cloud is within the determined number of three-dimensional points.
  • the three-dimensional data encoding device determines that the input three-dimensional point cloud does not satisfy the conformity regarding the determined range of the number of three-dimensional points (No in S9664), the three-dimensional data encoding device so as to satisfy the determined conformance. (S9665).
  • the predetermined process is, for example, any of the processes described with reference to FIGS. 97, 98, 100, and 101.
  • step S9665 When the three-dimensional data encoding device completes step S9665, or determines that the input three-dimensional point cloud satisfies the conformity within the determined number of three-dimensional points (Yes in S9664). , The next step S9666 is executed.
  • the three-dimensional data coding apparatus generates metadata including a conformance index indicating the conformance determined in step S9661 (S9666).
  • the conformance index is identification information for identifying one of a plurality of combinations of conformations.
  • the three-dimensional data encoding device determines the point cloud data after processing in step S9663, the point cloud data after processing in step S9665, and the point cloud data after processing in steps S9663 and S9665 according to the determination results in steps S9662 and S9664.
  • Point cloud data or unprocessed point cloud data (that is, point cloud data that has not been subjected to predetermined processing) is encoded to generate a bit stream containing the encoded point cloud data and metadata (. S9667).
  • the 3D data encoding device encodes the point cloud data so as to satisfy the conformity of both the determined first maximum number of bits and the range of the number of 3D points. Generate a bitstream by doing.
  • the three-dimensional data encoding device adds conformance information indicating the determined conformance to the bit stream.
  • the conformance information is, for example, first bit number information indicating the first maximum number of bits and range information indicating a range of the number of three-dimensional points.
  • the range information may be the value of the range itself of the number of three-dimensional points, or may be the identification information for uniquely specifying the range of the number.
  • FIG. 103 is a diagram showing an example of a combination of conformations according to the sixth embodiment.
  • the combination of conformance may be indicated by the combination of the number of bits of position information and the range of the number of point clouds.
  • the number of bits of the position information is classified into two stages, that is, the case where the upper limit is 32 bits and the case where the upper limit is 64 bits.
  • the range of the number of point clouds is classified into three stages: a case of 10,000 or less, a case of more than 10,000 and less than 100,000, and a case of more than 100,000.
  • the combination of conformances is classified into 6 types of conformance points, and each conformance is given a conformance index. That is, by specifying the conformance index represented by the numbers 1 to 6, the number of bits of the position information and the range of the number of point clouds can be uniquely set.
  • the examples described with reference to FIGS. 102 and 103 are examples in which the number of bits of position information in a divided data unit (for example, a slice unit) and the range of the number of point clouds in the divided data unit are constrained at the same time.
  • a divided data unit for example, a slice unit
  • the three-dimensional data coding device selects one of a plurality of conformance points included in the combination of conformances, and encodes the three-dimensional data coding device so as to match the selected one conformance point. If it does not fit the one conformance point selected, the 3D data encoder will quantize the data so that the number of bits in the split data unit or the number of point clouds in the split data unit fits the conformance point. Divide or integrate the divided data.
  • the 3D data encoding device may not conform to one of the conformations of the number of bits of position information and the range of the number of point clouds. For example, when the data is divided in order to match the number of bits, the three-dimensional data encoding device may not be able to fit in the specified number of point clouds because the number of three-dimensional point clouds is also divided.
  • the three-dimensional data coding device may execute a predetermined process according to a specified priority. For example, it may be specified that compliance with the constraint on the number of bits of position information is the highest priority (essential), and that the constraint on the range of the number of point clouds is desirable as much as possible. That is, in the three-dimensional data coding method, it is not necessary to execute a predetermined process for satisfying the specified specified conformance that is prioritized, and not to execute a predetermined process for satisfying the specified conformance that is not prioritized.
  • the priority of compliance with the bit number constraint may be set higher than the constraint of the point cloud number range. From the point of view of the code rate, the priority of compliance with the point cloud number constraint may be set higher than the bit number constraint. In this way, the priority for observing the range of the number of bits and the number of point clouds may be set according to the purpose.
  • conformance may be defined by the number of bits or the size of the bounding box of the divided data, may be specified by the number of divided data, or may be a combination of these specifications.
  • Conformance may be defined by a combination of the number of bits of position information and the frame rate. This example will be described with reference to FIG. 104.
  • FIG. 104 is a flowchart showing a sixth example of the three-dimensional data coding method according to the sixth embodiment. This flowchart is an example in which the number of bits of position information and the frame rate of an input point group are determined as conformance.
  • the three-dimensional data coding device determines the conformity of the coded data, which is the coded data of the point cloud data of the three-dimensional point cloud (S9671).
  • the conformance determined here includes the first maximum number of bits that defines the number of bits of position information, and the frame rate of the input point group.
  • the three-dimensional data coding device determines whether or not the input three-dimensional point cloud satisfies the conformity of the determined number of bits (S9672). That is, in the three-dimensional data encoding device, whether or not the number of bits of the input three-dimensional point cloud position information satisfies (matches) the determined first maximum number of bits, and whether or not the input third order It is determined whether or not the frame rate of the original point cloud satisfies the determined frame rate.
  • the three-dimensional data coding apparatus When the three-dimensional data coding device determines that the input three-dimensional point cloud does not satisfy the determined number of bits of conformity (No in S9672), the three-dimensional data coding apparatus performs a predetermined process so as to satisfy the determined conformance. Execute (S9733).
  • the predetermined process is, for example, any of the processes described with reference to FIGS. 97, 98, 100, and 101.
  • the three-dimensional data encoding device determines that step S9673 is completed, or that the input three-dimensional point cloud satisfies the conformity within the determined number of three-dimensional points (Yes in S9672). , The next step S9674 is executed.
  • the three-dimensional data coding apparatus generates metadata including a conformance index indicating the conformance determined in step S9671 (S9674).
  • the conformance index is identification information for identifying one of a plurality of combinations of conformations.
  • the three-dimensional data encoding device determines the point cloud data after the processing in step S9733 or the unprocessed point cloud data (that is, the point cloud data in which the predetermined processing is not performed) according to the determination result in step S9672. Is encoded to generate a bit stream containing the encoded point cloud data and the metadata (S9675).
  • conformance is an application need in terms of the number of frames per unit time (seconds) (frame rate / fps) required for hardware (three-dimensional data encoding device / three-dimensional data decoding device). It may be determined by the hardware requirements that can be converted to. In this case, one frame may be regarded as a 360-degree capture of LiDAR.
  • the combination of conformances may be a combination of other parameters. Further, the conformance may be defined by a frame rate in units of divided data (slices).
  • FIG. 105 is a diagram showing another example of the combination of conformances according to the sixth embodiment.
  • the combination of conformance may be indicated by the combination of the number of bits of position information and the frame rate.
  • the number of bits of position information is classified into three stages: a case where the upper limit is 16 bits, a case where the upper limit is 32 bits, and a case where the upper limit is 64 bits.
  • the frame rate is classified into three stages: a case of less than 60 fps, a case of less than 10 fps, and a case of less than 1 fps.
  • the combination of conformances is classified into nine types of conformance points, and each conformance is given a conformance index. That is, by specifying the conformance index represented by the numbers 1 to 9, the number of bits of the position information and the frame rate can be uniquely set.
  • conformance may be set.
  • the conformance applied to the attribute information is not only the regulation for the attribute partial information such as color or reflectance, but also the information related to the position information associated with the point cloud for the purpose of prediction or compression. It may be a provision to.
  • Prediction of attribute information using a hierarchical structure such as LoD or RAHT requires geometric position information of a three-dimensional point cloud in order to execute a function of searching for a subsample or a nearby point within a predetermined distance. And. Therefore, the conformance may include parameters based on these position information in order to define the attribute information.
  • the conformance for defining the attribute information may include the upper limit of the number of bits for expressing the color.
  • This conformance may be, for example, the number of bits of RGB information.
  • the number of bits of the RGB information indicates whether the color of the point cloud is represented by 8 bits, 12 bits, or 16 bits.
  • the reflectance may be specified in the same manner.
  • FIG. 106 is a diagram showing another example of the combination of conformances according to the sixth embodiment.
  • the combination of conformance may be indicated by the combination of the number of bits of color and the parameter of attribute conversion.
  • the number of color bits is classified into three stages: an upper limit of 8 bits, a 12-bit case, and a 16-bit case.
  • the attribute conversion parameter indicates, for example, the number of layers in the LoD hierarchy used in the prediction. Attribute conversion parameters are classified into three stages: a case of less than 10 layers, a case of less than 5 layers, and a case of 1 layer.
  • the combination of conformances is classified into nine types of conformance points, and each conformance is given a conformance index. That is, by specifying the conformance index represented by the numbers 1 to 9, the number of color bits and the attribute conversion parameter can be uniquely set.
  • Conformance may be set for attribute information. That is, the point cloud data may further include the attribute information of each three-dimensional point of the three-dimensional point cloud in addition to the position information.
  • the three-dimensional data coding apparatus determines a second maximum number of bits that defines the number of bits after coding of the attribute information of the point cloud data of the three-dimensional point cloud as the conformity of the coded data.
  • the three-dimensional data encoding device generates a bit stream by encoding the attribute information so as to satisfy the determined second maximum number of bits.
  • the bit stream may include the second bit number information indicating the second maximum bit number.
  • FIG. 107 is a diagram showing an example (Example 1) of the SPS (Sequence Parameter Set) according to the sixth embodiment.
  • FIG. 108 is a diagram showing an example (Example 2) of the SPS according to the sixth embodiment.
  • FIG. 109 is a diagram showing an example (Example 3) of GPS (Geometry Parameter Set) according to the sixth embodiment.
  • FIG. 110 is a diagram showing a configuration of a bit stream according to the sixth embodiment.
  • the conformance index may be included in the SPS to be part of the available profile_idc, profile_compatibility_flags, or level_idc parameters.
  • the conformance index is set to SPS in order to further expand a large number of difference profiles, levels, and conformations for G-PCC coding / decoding processing. May be set as an independent parameter of. That is, the conformance index may be set in the header 9621 in FIG. 110.
  • the conformance index may be set to be included in the header of each slice by the Geometry slice header (GPS). That is, the conformance index may be set in the headers 9622 and 9623 in FIG. 110.
  • GPS Geometry slice header
  • each slice can have a different conformance index to accommodate different types of 3D point clouds and data from different regions. It is also possible to perform coding processing or decoding processing corresponding to different processor types such as CPU and GPU ASIC.
  • FIG. 111 is a diagram for explaining an example of switching the conformity according to the location of the three-dimensional point cloud according to the sixth embodiment.
  • an indoor three-dimensional point cloud 9631 and an outdoor three-dimensional point cloud 9632 are obtained, and a part of the three-dimensional region 9633 of the outdoor three-dimensional point cloud 9632 is an indoor three-dimensional point.
  • This is an example corresponding to the group 9631. Since the indoor three-dimensional point cloud 9631 and the outdoor three-dimensional point cloud 9632 are data acquired by different sensors, for example, the density of the point cloud is different from each other.
  • the indoor 3D point cloud 9631 is a point cloud measured indoors such as an office, it cannot be acquired by an outdoor sensor. That is, the outdoor three-dimensional point cloud 9632 does not include the indoor three-dimensional point cloud 9631.
  • the indoor three-dimensional point cloud 9631 and the outdoor three-dimensional point cloud 9632 are independent point cloud data generated with different accuracy and different densities. Therefore, independent conformations may be set for the three-dimensional point clouds 9631 and 9632, and the conformations may be switched according to the three-dimensional point clouds 9631 and 9632.
  • Both data may be combined by switching the accuracy of the outdoor 3D point cloud 9632 and increasing the scale so that the indoor 3D point cloud 9631 fits. Then, different slice origin values may be used to shift the indoor point cloud.
  • the three-dimensional data coding apparatus performs the processing shown in FIG. 112.
  • the three-dimensional data encoding device is the first of the coded data after encoding at least one of the divided data unit when the point cloud data indicating the three-dimensional point cloud is divided into a plurality of pieces and the point cloud data unit before the division. 1
  • the maximum number of bits is determined (S9881).
  • the three-dimensional data encoding device encodes a plurality of divided data in which the point cloud data is divided, or the point cloud data before division so as to satisfy the determined first maximum number of bits.
  • Generate a stream (S9682).
  • the bit stream includes first bit number information indicating the first maximum bit number.
  • the three-dimensional data coding method generates a bit stream including the first bit number information indicating the first maximum number of bits of the coded data after encoding, so that the three-dimensional data decoding device uses bits. It is possible to determine whether the encoded data can be properly decoded without analyzing the stream. Therefore, the processing load of the three-dimensional data decoding device can be reduced.
  • the point cloud data includes position information of each three-dimensional point of the three-dimensional point cloud.
  • the first maximum number of bits relates to the number of bits after encoding the position information.
  • the position information of the plurality of divided data in which the point cloud data is divided or the point cloud data before division is encoded so as to satisfy the determined first maximum number of bits. Generates the bitstream with.
  • the three-dimensional data coding method generates a bit stream including the first bit number information indicating the first maximum number of bits of the coded position information. Therefore, the three-dimensional data decoding device uses the bit stream. It is possible to determine whether the position information can be properly decoded without analyzing.
  • the three-dimensional data encoding device further determines the range of the number of three-dimensional points included in at least one of the divided data unit and the point cloud data unit.
  • the plurality of divided data in which the point group data is divided, or the point group data before division is encoded so as to satisfy the determined first maximum number of bits and the range of the numbers.
  • the bit stream is generated.
  • the bitstream further includes range information indicating the range of the numbers.
  • the three-dimensional data coding method generates a bit stream including range information indicating the range of the number of three-dimensional points of the coded data, so that the three-dimensional data decoding device does not analyze the bit stream. However, it can be determined whether the position information can be decrypted appropriately. Therefore, the processing load of the three-dimensional data decoding device can be reduced.
  • the point cloud data further includes attribute information of each three-dimensional point of the three-dimensional point cloud.
  • the three-dimensional data coding apparatus further determines the second maximum number of bits after encoding of the attribute information of at least one of the divided data unit and the point cloud data unit.
  • the generation (S9682) (i) the position information of the plurality of divided data in which the point group data is divided or the point group data before division is coded so as to satisfy the determined first maximum number of bits.
  • the plurality of divided data in which the point group data is divided, or the attribute information of the point group data before division is encoded so as to satisfy the determined second maximum number of bits.
  • the bit stream further includes a second bit number information indicating the second maximum bit number.
  • the three-dimensional data coding method generates a bit stream including the second bit number information indicating the second maximum number of bits of the attribute information after encoding, so that the three-dimensional data decoding device uses the bit stream. It is possible to determine whether the attribute information can be properly decoded without analyzing. Therefore, the processing load of the three-dimensional data decoding device can be reduced.
  • the three-dimensional data encoding device includes a processor and a memory, and the processor uses the memory to perform the above processing.
  • the three-dimensional data decoding device performs the process shown in FIG. 113.
  • the three-dimensional data decoding device is a coded data unit obtained by dividing the point cloud data indicating the three-dimensional point cloud into a plurality of divided data units and at least one of the point cloud data units before the division after coding. And a bit stream including the first bit number information indicating the first maximum bit number of the coded data is acquired (S9691).
  • the three-dimensional data decoding device determines whether or not the acquired bit stream satisfies the first maximum number of bits indicated by the first bit number information (S9962). When it is determined that the bit stream satisfies the first maximum number of bits, the three-dimensional data decoding device decodes the coded data (S9693).
  • the three-dimensional data decoding method in order to acquire the first bit number information indicating the first maximum number of bits of the encoded data after encoding from the bit stream, the three-dimensional data decoding method is based on the acquired first bit number information.
  • the point group data can be appropriately decoded.
  • the three-dimensional data decoding device does not decode the coded data when it is determined in the decoding (S9693) that the bit stream does not satisfy the first maximum number of bits.
  • the processing load can be reduced because the decoding process of the coded data of the bit stream that cannot be appropriately decoded is not performed.
  • the point cloud data includes position information of each three-dimensional point of the three-dimensional point cloud.
  • the first maximum number of bits relates to the number of bits after encoding the position information.
  • the three-dimensional data decoding method acquires the first bit number information indicating the first maximum number of bits of the encoded position information from the bit stream, it is appropriate based on the acquired first bit number information.
  • the point group data can be decoded.
  • the bitstream further includes range information indicating a range of the number of three-dimensional points included in at least one of the divided data unit and the point cloud data unit.
  • the three-dimensional data decoding device further determines whether or not the bit stream satisfies the range of the number indicated by the range information.
  • the decoding when it is determined that the bit stream satisfies the first maximum number of bits and the range of the number is satisfied, the coded data is decoded and the bit stream is obtained. However, if it is determined that the first maximum number of bits is not satisfied or the range of the number is not satisfied, the encoded data is not decoded.
  • the three-dimensional data decoding method acquires range information indicating the range of the number of three-dimensional points of the coded data from the bit stream, the point group data is appropriately decoded based on the acquired range information. be able to.
  • the point cloud data further includes attribute information of each three-dimensional point of the three-dimensional point cloud.
  • the bit stream further includes a second bit number information indicating the second maximum bit number after encoding of the attribute information of the divided data unit and at least one of the point cloud data units of the three-dimensional point cloud.
  • the determination it is further determined whether or not the bit stream satisfies the second maximum number of bits indicated by the second bit number information.
  • the decoding when it is determined that the bit stream satisfies the first maximum number of bits and the second maximum number of bits, the coded data is decoded and the coded data is decoded. If it is determined that the bit stream does not satisfy the first maximum number of bits or the second maximum number of bits is not satisfied, the encoded data is not decoded.
  • the three-dimensional data decoding method acquires the second bit number information indicating the second maximum number of bits of the coded attribute information from the bit stream, it is appropriate based on the acquired second bit number information.
  • the point group data can be decoded.
  • the three-dimensional data decoding device includes a processor and a memory, and the processor uses the memory to perform the above processing.
  • FIG. 114 is a block diagram showing a configuration example of the three-dimensional data creation device 810 according to the present embodiment.
  • the three-dimensional data creation device 810 is mounted on a vehicle, for example.
  • the three-dimensional data creation device 810 transmits and receives three-dimensional data to and from an external traffic monitoring cloud, a vehicle in front or a following vehicle, and creates and stores three-dimensional data.
  • the three-dimensional data creation device 810 includes a data reception unit 811, a communication unit 812, a reception control unit 813, a format conversion unit 814, a plurality of sensors 815, a three-dimensional data creation unit 816, and a three-dimensional data synthesis unit. It includes 817, a three-dimensional data storage unit 818, a communication unit 819, a transmission control unit 820, a format conversion unit 821, and a data transmission unit 822.
  • the data receiving unit 811 receives the three-dimensional data 831 from the traffic monitoring cloud or the vehicle in front.
  • the three-dimensional data 831 includes information such as point cloud, visible light image, depth information, sensor position information, speed information, and the like, including an area that cannot be detected by the sensor 815 of the own vehicle.
  • the communication unit 812 communicates with the traffic monitoring cloud or the vehicle in front, and transmits a data transmission request or the like to the traffic monitoring cloud or the vehicle in front.
  • the reception control unit 813 exchanges information such as the corresponding format with the communication destination via the communication unit 812, and establishes communication with the communication destination.
  • the format conversion unit 814 generates the three-dimensional data 832 by performing format conversion or the like on the three-dimensional data 831 received by the data receiving unit 811. Further, the format conversion unit 814 performs decompression or decoding processing when the three-dimensional data 831 is compressed or encoded.
  • the plurality of sensors 815 are a group of sensors that acquire information outside the vehicle, such as a LiDAR, a visible light camera, or an infrared camera, and generate sensor information 833.
  • the sensor information 833 is three-dimensional data such as a point cloud (point cloud data) when the sensor 815 is a laser sensor such as LiDAR.
  • the number of sensors 815 does not have to be plural.
  • the three-dimensional data creation unit 816 generates three-dimensional data 834 from the sensor information 833.
  • the three-dimensional data 834 includes information such as point cloud, visible light image, depth information, sensor position information, and speed information.
  • the three-dimensional data synthesizing unit 817 synthesizes the three-dimensional data 834 created based on the sensor information 833 of the own vehicle with the three-dimensional data 832 created by the traffic monitoring cloud or the vehicle in front of the own vehicle. Three-dimensional data 835 including the space in front of the vehicle in front, which cannot be detected by the sensor 815, is constructed.
  • the three-dimensional data storage unit 818 stores the generated three-dimensional data 835 and the like.
  • the communication unit 819 communicates with the traffic monitoring cloud or the following vehicle, and transmits a data transmission request or the like to the traffic monitoring cloud or the following vehicle.
  • the transmission control unit 820 exchanges information such as the corresponding format with the communication destination via the communication unit 819, and establishes communication with the communication destination. Further, the transmission control unit 820 is in the space of the three-dimensional data to be transmitted based on the three-dimensional data construction information of the three-dimensional data 832 generated by the three-dimensional data synthesis unit 817 and the data transmission request from the communication destination. Determine a transmission area.
  • the transmission control unit 820 determines a transmission area including the space in front of the own vehicle that cannot be detected by the sensor of the following vehicle in response to a data transmission request from the traffic monitoring cloud or the following vehicle. Further, the transmission control unit 820 determines the transmission area by determining whether or not the space that can be transmitted or the space that has been transmitted is updated based on the three-dimensional data construction information. For example, the transmission control unit 820 determines the area designated by the data transmission request and the area in which the corresponding three-dimensional data 835 exists as the transmission area. Then, the transmission control unit 820 notifies the format conversion unit 821 of the format and the transmission area supported by the communication destination.
  • the format conversion unit 821 converts the three-dimensional data 836 in the transmission area out of the three-dimensional data 835 stored in the three-dimensional data storage unit 818 into a format supported by the receiving side to convert the three-dimensional data 837. Generate.
  • the format conversion unit 821 may reduce the amount of data by compressing or encoding the three-dimensional data 837.
  • the data transmission unit 822 transmits the three-dimensional data 837 to the traffic monitoring cloud or the following vehicle.
  • the three-dimensional data 837 includes information such as a point cloud in front of the own vehicle, a visible light image, depth information, or sensor position information, including an area that becomes a blind spot of the following vehicle, for example.
  • the format conversion may not be performed.
  • the three-dimensional data creation device 810 acquires the three-dimensional data 831 in the region that cannot be detected by the sensor 815 of the own vehicle from the outside, and the three-dimensional data 831 and the sensor information 833 detected by the sensor 815 of the own vehicle.
  • the three-dimensional data 835 is generated by synthesizing the three-dimensional data 834 based on the above.
  • the three-dimensional data creation device 810 can generate three-dimensional data in a range that cannot be detected by the sensor 815 of the own vehicle.
  • the three-dimensional data creation device 810 obtains three-dimensional data including the space in front of the own vehicle, which cannot be detected by the sensor of the following vehicle, in the traffic monitoring cloud or the following in response to a data transmission request from the traffic monitoring cloud or the following vehicle. Can be sent to vehicles, etc.
  • FIG. 115 is a flowchart showing an example of a procedure for transmitting three-dimensional data to the traffic monitoring cloud or the following vehicle by the three-dimensional data creation device 810.
  • the three-dimensional data creation device 810 generates and updates three-dimensional data 835 of the space including the space on the road ahead of the own vehicle (S801). Specifically, the three-dimensional data creation device 810 synthesizes the three-dimensional data 834 created based on the sensor information 833 of the own vehicle with the three-dimensional data 831 created by the traffic monitoring cloud or the vehicle in front. Therefore, the three-dimensional data 835 including the space in front of the preceding vehicle that cannot be detected by the sensor 815 of the own vehicle is constructed.
  • the three-dimensional data creation device 810 determines whether the three-dimensional data 835 included in the transmitted space has changed (S802).
  • the three-dimensional data creation device 810 changes.
  • the three-dimensional data including the three-dimensional data 835 of the generated space is transmitted to the traffic monitoring cloud or the following vehicle (S803).
  • the three-dimensional data creation device 810 may transmit the three-dimensional data in the space where the change has occurred in accordance with the transmission timing of the three-dimensional data to be transmitted at predetermined intervals, but the three-dimensional data creation device 810 transmits immediately after detecting the change. You may. That is, the three-dimensional data creation device 810 may transmit the three-dimensional data of the changed space with priority over the three-dimensional data transmitted at predetermined intervals.
  • the three-dimensional data creation device 810 may transmit all the three-dimensional data of the changed space as the three-dimensional data of the changed space, or the difference (for example, appearance or disappearance) of the three-dimensional data. Only the information of the three-dimensional point or the displacement information of the three-dimensional point may be transmitted.
  • the three-dimensional data creation device 810 may transmit metadata related to the danger avoidance operation of the own vehicle such as a sudden braking warning to the following vehicle prior to the three-dimensional data of the space where the change has occurred.
  • the following vehicle can recognize the sudden braking of the preceding vehicle at an early stage, and can start the danger avoidance operation such as deceleration at an earlier stage.
  • the three-dimensional data creation device 810 When the three-dimensional data 835 included in the transmitted space has not changed (No in S802), or after step S803, the three-dimensional data creation device 810 has a predetermined shape at a distance L in front of the own vehicle.
  • the three-dimensional data contained in the space of is transmitted to the traffic monitoring cloud or the following vehicle (S804).
  • steps S801 to S804 are repeatedly performed at predetermined time intervals.
  • the three-dimensional data creation device 810 does not have to transmit the three-dimensional data 837 of the space if there is no difference between the three-dimensional data 835 of the space to be transmitted at present and the three-dimensional map.
  • the client device transmits the sensor information obtained by the sensor to the server or another client device.
  • FIG. 116 is a diagram showing a configuration of a three-dimensional map and a sensor information transmission / reception system according to the present embodiment.
  • the system includes a server 901 and client devices 902A and 902B.
  • client devices 902A and 902B are not particularly distinguished, they are also referred to as the client devices 902.
  • the client device 902 is, for example, an in-vehicle device mounted on a moving body such as a vehicle.
  • the server 901 is, for example, a traffic monitoring cloud or the like, and can communicate with a plurality of client devices 902.
  • the server 901 transmits a three-dimensional map composed of a point cloud to the client device 902.
  • the configuration of the three-dimensional map is not limited to the point cloud, and may represent other three-dimensional data such as a mesh structure.
  • the client device 902 transmits the sensor information acquired by the client device 902 to the server 901.
  • the sensor information includes, for example, at least one of LiDAR acquisition information, visible light image, infrared image, depth image, sensor position information, and speed information.
  • the data sent and received between the server 901 and the client device 902 may be compressed to reduce the data, or may remain uncompressed to maintain the accuracy of the data.
  • a three-dimensional compression method based on an octa-tree structure can be used for the point cloud.
  • a two-dimensional image compression method can be used for visible light images, infrared images, and depth images.
  • the two-dimensional image compression method is, for example, MPEG-4 AVC or HEVC standardized by MPEG.
  • the server 901 transmits the three-dimensional map managed by the server 901 to the client device 902 in response to the transmission request of the three-dimensional map from the client device 902.
  • the server 901 may transmit the three-dimensional map without waiting for the three-dimensional map transmission request from the client device 902.
  • the server 901 may broadcast a three-dimensional map to one or more client devices 902 in a predetermined space.
  • the server 901 may transmit a three-dimensional map suitable for the position of the client device 902 to the client device 902 that has received the transmission request once at regular intervals.
  • the server 901 may transmit the three-dimensional map to the client device 902 every time the three-dimensional map managed by the server 901 is updated.
  • the client device 902 issues a three-dimensional map transmission request to the server 901. For example, when the client device 902 wants to perform self-position estimation during traveling, the client device 902 transmits a three-dimensional map transmission request to the server 901.
  • the client device 902 may issue a three-dimensional map transmission request to the server 901.
  • the client device 902 may issue a transmission request for the three-dimensional map to the server 901.
  • the client device 902 may issue a three-dimensional map transmission request to the server 901.
  • the client device 902 may issue a three-dimensional map transmission request to the server 901 before a certain time when the client device 902 goes out. For example, when the client device 902 exists within a predetermined distance from the boundary of the space indicated by the three-dimensional map held by the client device 902, the client device 902 issues a three-dimensional map transmission request to the server 901. You may. If the movement route and movement speed of the client device 902 are known, the time when the client device 902 goes out is predicted from the space shown by the three-dimensional map held by the client device 902. You may.
  • the client device 902 may issue a three-dimensional map transmission request to the server 901.
  • the client device 902 transmits the sensor information to the server 901 in response to the sensor information transmission request transmitted from the server 901.
  • the client device 902 may send the sensor information to the server 901 without waiting for the sensor information transmission request from the server 901. For example, once the client device 902 receives a request for transmitting sensor information from the server 901, the client device 902 may periodically transmit the sensor information to the server 901 for a certain period of time. Further, when the error at the time of positioning the three-dimensional data created by the client device 902 based on the sensor information and the three-dimensional map obtained from the server 901 is equal to or more than a certain value, the client device 902 is located around the client device 902. It may be determined that the three-dimensional map may have changed, and that fact and the sensor information may be transmitted to the server 901.
  • the server 901 issues a sensor information transmission request to the client device 902.
  • the server 901 receives the position information of the client device 902 such as GPS from the client device 902.
  • the server 901 determines that the client device 902 is approaching a space with little information in the three-dimensional map managed by the server 901 based on the position information of the client device 902
  • the server 901 determines that the client device 902 is approaching a space with little information, and the client 901 generates a new three-dimensional map.
  • a request for transmitting sensor information is sent to the device 902.
  • the server 901 issues a sensor information transmission request when it wants to update the three-dimensional map, when it wants to check the road condition such as when it snows or when there is a disaster, when it wants to check the traffic jam situation, or when it wants to check the incident accident situation. May be good.
  • the client device 902 may set the data amount of the sensor information to be transmitted to the server 901 according to the communication state or the band at the time of receiving the transmission request of the sensor information received from the server 901.
  • Setting the amount of sensor information data to be transmitted to the server 901 means, for example, increasing or decreasing the data itself, or appropriately selecting a compression method.
  • FIG. 117 is a block diagram showing a configuration example of the client device 902.
  • the client device 902 receives a three-dimensional map composed of a point cloud or the like from the server 901, and estimates the self-position of the client device 902 from the three-dimensional data created based on the sensor information of the client device 902. Further, the client device 902 transmits the acquired sensor information to the server 901.
  • the client device 902 includes a data reception unit 1011, a communication unit 1012, a reception control unit 1013, a format conversion unit 1014, a plurality of sensors 1015, a three-dimensional data creation unit 1016, a three-dimensional image processing unit 1017, and the like. It includes a three-dimensional data storage unit 1018, a format conversion unit 1019, a communication unit 1020, a transmission control unit 1021, and a data transmission unit 1022.
  • the data receiving unit 1011 receives the three-dimensional map 1031 from the server 901.
  • the three-dimensional map 1031 is data including a point cloud such as WLD or SWLD.
  • the three-dimensional map 1031 may include either compressed data or uncompressed data.
  • the communication unit 1012 communicates with the server 901 and transmits a data transmission request (for example, a three-dimensional map transmission request) or the like to the server 901.
  • a data transmission request for example, a three-dimensional map transmission request
  • the reception control unit 1013 exchanges information such as the corresponding format with the communication destination via the communication unit 1012, and establishes communication with the communication destination.
  • the format conversion unit 1014 generates the three-dimensional map 1032 by performing format conversion or the like on the three-dimensional map 1031 received by the data receiving unit 1011. Further, the format conversion unit 1014 performs decompression or decoding processing when the three-dimensional map 1031 is compressed or encoded. If the three-dimensional map 1031 is uncompressed data, the format conversion unit 1014 does not perform decompression or decoding processing.
  • the plurality of sensors 1015 are a group of sensors that acquire information outside the vehicle on which the client device 902 is mounted, such as a LiDAR, a visible light camera, an infrared camera, or a depth sensor, and generate sensor information 1033.
  • the sensor information 1033 is three-dimensional data such as a point cloud (point cloud data) when the sensor 1015 is a laser sensor such as LiDAR.
  • the number of sensors 1015 does not have to be plural.
  • the three-dimensional data creation unit 1016 creates three-dimensional data 1034 around the own vehicle based on the sensor information 1033. For example, the three-dimensional data creation unit 1016 creates point cloud data with color information around the own vehicle by using the information acquired by LiDAR and the visible light image obtained by the visible light camera.
  • the three-dimensional image processing unit 1017 uses the received three-dimensional map 1032 such as a point cloud and the three-dimensional data 1034 around the own vehicle generated from the sensor information 1033 to perform self-position estimation processing of the own vehicle and the like. ..
  • the three-dimensional image processing unit 1017 creates three-dimensional data 1035 around the own vehicle by synthesizing the three-dimensional map 1032 and the three-dimensional data 1034, and estimates the self-position using the created three-dimensional data 1035. Processing may be performed.
  • the three-dimensional data storage unit 1018 stores the three-dimensional map 1032, the three-dimensional data 1034, the three-dimensional data 1035, and the like.
  • the format conversion unit 1019 generates the sensor information 1037 by converting the sensor information 1033 into a format supported by the receiving side.
  • the format conversion unit 1019 may reduce the amount of data by compressing or encoding the sensor information 1037. Further, the format conversion unit 1019 may omit the process when it is not necessary to perform the format conversion. Further, the format conversion unit 1019 may control the amount of data to be transmitted according to the designation of the transmission range.
  • the communication unit 1020 communicates with the server 901 and receives a data transmission request (sensor information transmission request) and the like from the server 901.
  • the transmission control unit 1021 exchanges information such as compatible formats with the communication destination via the communication unit 1020 to establish communication.
  • the data transmission unit 1022 transmits the sensor information 1037 to the server 901.
  • the sensor information 1037 includes a plurality of sensors such as information acquired by LiDAR, a brightness image acquired by a visible light camera, an infrared image acquired by an infrared camera, a depth image acquired by a depth sensor, sensor position information, and speed information. Contains information acquired by 1015.
  • FIG. 118 is a block diagram showing a configuration example of the server 901.
  • the server 901 receives the sensor information transmitted from the client device 902, and creates three-dimensional data based on the received sensor information.
  • the server 901 updates the three-dimensional map managed by the server 901 by using the created three-dimensional data. Further, the server 901 transmits the updated three-dimensional map to the client device 902 in response to the transmission request of the three-dimensional map from the client device 902.
  • the server 901 includes a data reception unit 1111, a communication unit 1112, a reception control unit 1113, a format conversion unit 1114, a three-dimensional data creation unit 1116, a three-dimensional data synthesis unit 1117, and a three-dimensional data storage unit 1118. , A format conversion unit 1119, a communication unit 1120, a transmission control unit 1121, and a data transmission unit 1122.
  • the data receiving unit 1111 receives the sensor information 1037 from the client device 902.
  • the sensor information 1037 includes, for example, information acquired by LiDAR, a brightness image acquired by a visible light camera, an infrared image acquired by an infrared camera, a depth image acquired by a depth sensor, sensor position information, speed information, and the like.
  • the communication unit 1112 communicates with the client device 902 and transmits a data transmission request (for example, a sensor information transmission request) or the like to the client device 902.
  • a data transmission request for example, a sensor information transmission request
  • the reception control unit 1113 exchanges information such as the corresponding format with the communication destination via the communication unit 1112 to establish communication.
  • the format conversion unit 1114 When the received sensor information 1037 is compressed or encoded, the format conversion unit 1114 generates the sensor information 1132 by performing decompression or decoding processing. If the sensor information 1037 is uncompressed data, the format conversion unit 1114 does not perform decompression or decoding processing.
  • the three-dimensional data creation unit 1116 creates three-dimensional data 1134 around the client device 902 based on the sensor information 1132. For example, the three-dimensional data creation unit 1116 creates point cloud data with color information around the client device 902 using the information acquired by LiDAR and the visible light image obtained by the visible light camera.
  • the three-dimensional data synthesis unit 1117 updates the three-dimensional map 1135 by synthesizing the three-dimensional data 1134 created based on the sensor information 1132 with the three-dimensional map 1135 managed by the server 901.
  • the three-dimensional data storage unit 1118 stores the three-dimensional map 1135 and the like.
  • the format conversion unit 1119 generates the 3D map 1031 by converting the 3D map 1135 into a format supported by the receiving side.
  • the format conversion unit 1119 may reduce the amount of data by compressing or encoding the three-dimensional map 1135. Further, the format conversion unit 1119 may omit the process when it is not necessary to perform the format conversion. Further, the format conversion unit 1119 may control the amount of data to be transmitted according to the designation of the transmission range.
  • the communication unit 1120 communicates with the client device 902 and receives a data transmission request (three-dimensional map transmission request) or the like from the client device 902.
  • the transmission control unit 1121 exchanges information such as the corresponding format with the communication destination via the communication unit 1120 to establish communication.
  • the data transmission unit 1122 transmits the three-dimensional map 1031 to the client device 902.
  • the three-dimensional map 1031 is data including a point cloud such as WLD or SWLD.
  • the three-dimensional map 1031 may include either compressed data or uncompressed data.
  • FIG. 119 is a flowchart showing an operation when the client device 902 acquires a three-dimensional map.
  • the client device 902 requests the server 901 to transmit a three-dimensional map (point cloud, etc.) (S1001). At this time, the client device 902 may request the server 901 to transmit a three-dimensional map related to the position information by transmitting the position information of the client device 902 obtained by GPS or the like together.
  • a three-dimensional map point cloud, etc.
  • the client device 902 receives the three-dimensional map from the server 901 (S1002). If the received 3D map is compressed data, the client device 902 decodes the received 3D map to generate an uncompressed 3D map (S1003).
  • the client device 902 creates three-dimensional data 1034 around the client device 902 from the sensor information 1033 obtained by the plurality of sensors 1015 (S1004).
  • the client device 902 estimates the self-position of the client device 902 using the three-dimensional map 1032 received from the server 901 and the three-dimensional data 1034 created from the sensor information 1033 (S1005).
  • FIG. 120 is a flowchart showing an operation at the time of transmission of sensor information by the client device 902.
  • the client device 902 receives the sensor information transmission request from the server 901 (S1011).
  • the client device 902 transmits the sensor information 1037 to the server 901 (S1012).
  • the sensor information 1033 includes a plurality of information obtained by the plurality of sensors 1015
  • the client device 902 may generate the sensor information 1037 by compressing each information by a compression method suitable for each information. Good.
  • FIG. 121 is a flowchart showing an operation when the server 901 acquires sensor information.
  • the server 901 requests the client device 902 to transmit the sensor information (S1021).
  • the server 901 receives the sensor information 1037 transmitted from the client device 902 in response to the request (S1022).
  • the server 901 creates three-dimensional data 1134 using the received sensor information 1037 (S1023).
  • the server 901 reflects the created three-dimensional data 1134 on the three-dimensional map 1135 (S1024).
  • FIG. 122 is a flowchart showing the operation when the server 901 transmits the three-dimensional map.
  • the server 901 receives a three-dimensional map transmission request from the client device 902 (S1031).
  • the server 901 that has received the three-dimensional map transmission request transmits the three-dimensional map 1031 to the client device 902 (S1032).
  • the server 901 may extract a three-dimensional map in the vicinity thereof according to the position information of the client device 902 and transmit the extracted three-dimensional map.
  • the server 901 may compress the three-dimensional map composed of the point cloud by using, for example, a compression method based on an octree structure, and transmit the compressed three-dimensional map.
  • the server 901 creates three-dimensional data 1134 near the position of the client device 902 using the sensor information 1037 received from the client device 902. Next, the server 901 calculates the difference between the three-dimensional data 1134 and the three-dimensional map 1135 by matching the created three-dimensional data 1134 with the three-dimensional map 1135 of the same area managed by the server 901. .. When the difference is equal to or greater than a predetermined threshold value, the server 901 determines that some abnormality has occurred in the vicinity of the client device 902. For example, when land subsidence occurs due to a natural disaster such as an earthquake, a large difference occurs between the 3D map 1135 managed by the server 901 and the 3D data 1134 created based on the sensor information 1037. Can be considered.
  • the sensor information 1037 may include information indicating at least one of the sensor type, the sensor performance, and the sensor model number. Further, a class ID or the like corresponding to the performance of the sensor may be added to the sensor information 1037. For example, when the sensor information 1037 is the information acquired by LiDAR, the sensor capable of acquiring information with an accuracy of several mm is class 1, the sensor capable of acquiring information with an accuracy of several cm is class 2, and the sensor is united with several meters. As in class 3, it is conceivable to assign an identifier to the performance of the sensor that can acquire information with accuracy. Further, the server 901 may estimate the performance information of the sensor and the like from the model number of the client device 902.
  • the server 901 may determine the sensor spec information from the vehicle type of the vehicle. In this case, the server 901 may acquire the vehicle type information of the vehicle in advance, or the sensor information may include the information. Further, the server 901 may switch the degree of correction for the three-dimensional data 1134 created by using the sensor information 1037 by using the acquired sensor information 1037. For example, if the sensor performance is high accuracy (class 1), the server 901 does not make corrections to the three-dimensional data 1134. When the sensor performance is low accuracy (class 3), the server 901 applies a correction to the three-dimensional data 1134 according to the accuracy of the sensor. For example, in the server 901, the lower the accuracy of the sensor, the stronger the degree (strength) of the correction.
  • the server 901 may issue a sensor information transmission request to a plurality of client devices 902 in a certain space at the same time.
  • the server 901 receives a plurality of sensor information from the plurality of client devices 902, it is not necessary to use all the sensor information for creating the three-dimensional data 1134.
  • the sensor to be used depends on the performance of the sensor. Information may be selected.
  • the server 901 selects highly accurate sensor information (class 1) from a plurality of received sensor information, and creates 3D data 1134 using the selected sensor information. You may.
  • the server 901 is not limited to a server such as a traffic monitoring cloud, and may be another client device (vehicle-mounted).
  • FIG. 123 is a diagram showing a system configuration in this case.
  • the client device 902C issues a sensor information transmission request to the nearby client device 902A, and acquires the sensor information from the client device 902A. Then, the client device 902C creates three-dimensional data using the acquired sensor information of the client device 902A, and updates the three-dimensional map of the client device 902C. As a result, the client device 902C can generate a three-dimensional map of the space that can be acquired from the client device 902A by utilizing the performance of the client device 902C. For example, it is considered that such a case occurs when the performance of the client device 902C is high.
  • the client device 902A that provided the sensor information is given the right to acquire the highly accurate three-dimensional map generated by the client device 902C.
  • the client device 902A receives a highly accurate 3D map from the client device 902C in accordance with its rights.
  • the client device 902C may issue a request for transmitting sensor information to a plurality of nearby client devices 902 (client device 902A and client device 902B).
  • client device 902A and client device 902B client devices 902
  • the client device 902C can create three-dimensional data using the sensor information obtained by the high-performance sensor.
  • FIG. 124 is a block diagram showing the functional configurations of the server 901 and the client device 902.
  • the server 901 includes, for example, a three-dimensional map compression / decoding processing unit 1201 that compresses and decodes a three-dimensional map, and a sensor information compression / decoding processing unit 1202 that compresses and decodes sensor information.
  • the client device 902 includes a three-dimensional map decoding processing unit 1211 and a sensor information compression processing unit 1212.
  • the three-dimensional map decoding processing unit 1211 receives the encoded data of the compressed three-dimensional map, decodes the encoded data, and acquires the three-dimensional map.
  • the sensor information compression processing unit 1212 compresses the sensor information itself instead of the three-dimensional data created from the acquired sensor information, and transmits the compressed sensor information encoded data to the server 901.
  • the client device 902 may internally hold a processing unit (device or LSI) that performs a process of decoding a three-dimensional map (point cloud, etc.), and the three-dimensional data of the three-dimensional map (point cloud, etc.). It is not necessary to hold a processing unit that performs processing for compressing. As a result, the cost and power consumption of the client device 902 can be suppressed.
  • the client device 902 is mounted on the moving body, and is obtained from the sensor information 1033 indicating the surrounding condition of the moving body obtained by the sensor 1015 mounted on the moving body. Create peripheral three-dimensional data 1034.
  • the client device 902 estimates the self-position of the moving body using the created three-dimensional data 1034.
  • the client device 902 transmits the acquired sensor information 1033 to the server 901 or another client device 902.
  • the client device 902 transmits the sensor information 1033 to the server 901 and the like.
  • the amount of data to be transmitted can be reduced as compared with the case where three-dimensional data is transmitted.
  • the processing amount of the client device 902 can be reduced. Therefore, the client device 902 can reduce the amount of data to be transmitted or simplify the configuration of the device.
  • the client device 902 further transmits a three-dimensional map transmission request to the server 901, and receives the three-dimensional map 1031 from the server 901. In estimating the self-position, the client device 902 estimates the self-position using the three-dimensional data 1034 and the three-dimensional map 1032.
  • the sensor information 1033 includes at least one of the information obtained by the laser sensor, the luminance image, the infrared image, the depth image, the position information of the sensor, and the speed information of the sensor.
  • the sensor information 1033 includes information indicating the performance of the sensor.
  • the client device 902 encodes or compresses the sensor information 1033, and in transmitting the sensor information, the encoded or compressed sensor information 1037 is transmitted to the server 901 or another client device 902. According to this, the client device 902 can reduce the amount of data to be transmitted.
  • the client device 902 includes a processor and a memory, and the processor uses the memory to perform the above processing.
  • the server 901 can communicate with the client device 902 mounted on the mobile body, and the sensor information 1037 indicating the surrounding situation of the mobile body obtained by the sensor 1015 mounted on the mobile body is obtained. Is received from the client device 902. The server 901 creates three-dimensional data 1134 around the moving body from the received sensor information 1037.
  • the server 901 creates the three-dimensional data 1134 using the sensor information 1037 transmitted from the client device 902. As a result, there is a possibility that the amount of data to be transmitted can be reduced as compared with the case where the client device 902 transmits three-dimensional data. Further, since it is not necessary for the client device 902 to perform processing such as compression or coding of three-dimensional data, the processing amount of the client device 902 can be reduced. Therefore, the server 901 can reduce the amount of data to be transmitted or simplify the configuration of the device.
  • the server 901 further transmits a transmission request for sensor information to the client device 902.
  • the server 901 updates the three-dimensional map 1135 using the created three-dimensional data 1134, and sends the three-dimensional map 1135 to the client device 902 in response to the transmission request of the three-dimensional map 1135 from the client device 902. Send.
  • the sensor information 1037 includes at least one of the information obtained by the laser sensor, the luminance image, the infrared image, the depth image, the position information of the sensor, and the speed information of the sensor.
  • the sensor information 1037 includes information indicating the performance of the sensor.
  • the server 901 further corrects the three-dimensional data according to the performance of the sensor. According to this, the three-dimensional data creation method can improve the quality of the three-dimensional data.
  • the server 901 receives a plurality of sensor information 1037 from the plurality of client devices 902, and based on a plurality of information indicating the performance of the sensor included in the plurality of sensor information 1037, the server 901 receives three-dimensional data 1134.
  • the sensor information 1037 used for creating the above is selected. According to this, the server 901 can improve the quality of the three-dimensional data 1134.
  • the server 901 decodes or decompresses the received sensor information 1037, and creates three-dimensional data 1134 from the decoded or decompressed sensor information 1132. According to this, the server 901 can reduce the amount of data to be transmitted.
  • the server 901 includes a processor and a memory, and the processor uses the memory to perform the above processing.
  • FIG. 125 is a diagram showing a configuration of a system according to the present embodiment.
  • the system shown in FIG. 125 includes a server 2001, a client device 2002A, and a client device 2002B.
  • the client device 2002A and the client device 2002B are mounted on a moving body such as a vehicle, and transmit sensor information to the server 2001.
  • the server 2001 transmits a three-dimensional map (point cloud) to the client device 2002A and the client device 2002B.
  • the client device 2002A includes a sensor information acquisition unit 2011, a storage unit 2012, and a data transmission availability determination unit 2013.
  • the configuration of the client device 2002B is also the same. Further, in the following, when the client device 2002A and the client device 2002B are not particularly distinguished, they are also described as the client device 2002.
  • FIG. 126 is a flowchart showing the operation of the client device 2002 according to the present embodiment.
  • the sensor information acquisition unit 2011 acquires various sensor information using a sensor (sensor group) mounted on the moving body. That is, the sensor information acquisition unit 2011 acquires sensor information indicating the surrounding condition of the moving body, which is obtained by the sensor (sensor group) mounted on the moving body. Further, the sensor information acquisition unit 2011 stores the acquired sensor information in the storage unit 2012.
  • This sensor information includes at least one of LiDAR acquisition information, visible light image, infrared image and depth image. Further, the sensor information may include at least one of sensor position information, speed information, acquisition time information, and acquisition location information.
  • the sensor position information indicates the position of the sensor from which the sensor information has been acquired.
  • the velocity information indicates the velocity of the moving object when the sensor acquires the sensor information.
  • the acquisition time information indicates the time when the sensor information is acquired by the sensor.
  • the acquisition location information indicates the position of the moving body or the sensor when the sensor information is acquired by the sensor.
  • the data transmission availability determination unit 2013 determines whether the mobile body (client device 2002) exists in an environment in which the sensor information can be transmitted to the server 2001 (S2002). For example, the data transmission availability determination unit 2013 may specify the location and time of the client device 2002 by using information such as GPS, and determine whether or not the data can be transmitted. In addition, the data transmission availability determination unit 2013 may determine whether or not data can be transmitted depending on whether or not it can be connected to a specific access point.
  • the client device 2002 determines that the moving body exists in an environment in which the sensor information can be transmitted to the server 2001 (Yes in S2002), the client device 2002 transmits the sensor information to the server 2001 (S2003). That is, when the client device 2002 is in a situation where the sensor information can be transmitted to the server 2001, the client device 2002 transmits the held sensor information to the server 2001.
  • a millimeter-wave access point capable of high-speed communication is installed at an intersection or the like.
  • the sensor information held by the client device 2002 is transmitted to the server 2001 at high speed by using millimeter wave communication.
  • the client device 2002 deletes the sensor information transmitted to the server 2001 from the storage unit 2012 (S2004).
  • the client device 2002 may delete the sensor information when the sensor information not transmitted to the server 2001 satisfies a predetermined condition.
  • the client device 2002 may delete the sensor information from the storage unit 2012 when the acquisition time of the sensor information to be held is older than a certain time before the current time. That is, the client device 2002 may delete the sensor information from the storage unit 2012 when the difference between the time when the sensor information is acquired by the sensor and the current time exceeds a predetermined time. Further, the client device 2002 may delete the sensor information from the storage unit 2012 when the acquisition location of the sensor information to be held is more than a certain distance from the current position.
  • the sensor information May be deleted from the storage unit 2012.
  • the capacity of the storage unit 2012 of the client device 2002 can be suppressed.
  • the client device 2002 repeats the processes after step S2001.
  • the client device 2002 ends the process.
  • the client device 2002 may select the sensor information to be transmitted to the server 2001 according to the communication status. For example, when high-speed communication is possible, the client device 2002 preferentially transmits sensor information (for example, LiDAR acquisition information) having a large size held in the storage unit 2012. Further, when high-speed communication is difficult, the client device 2002 transmits sensor information (for example, a visible light image) having a small size and a high priority held in the storage unit 2012. As a result, the client device 2002 can efficiently transmit the sensor information held in the storage unit 2012 to the server 2001 according to the network conditions.
  • sensor information for example, LiDAR acquisition information
  • sensor information for example, a visible light image
  • the client device 2002 may acquire the time information indicating the current time and the location information indicating the current location from the server 2001. Further, the client device 2002 may determine the acquisition time and acquisition location of the sensor information based on the acquired time information and location information. That is, the client device 2002 may acquire the time information from the server 2001 and generate the acquisition time information using the acquired time information. Further, the client device 2002 may acquire the location information from the server 2001 and generate the acquisition location information using the acquired location information.
  • the server 2001 and the client device 2002 synchronize the time using a mechanism such as NTP (Network Time Protocol) or PTP (Precision Time Protocol).
  • NTP Network Time Protocol
  • PTP Precision Time Protocol
  • the client device 2002 can acquire accurate time information.
  • the server 2001 can handle the sensor information indicating the synchronized time.
  • the time synchronization mechanism may be any method other than NTP or PTP.
  • GPS information may be used as the time information and location information.
  • the server 2001 may acquire sensor information from a plurality of client devices 2002 by designating a time or place. For example, in the event of an accident, the server 2001 broadcasts a sensor information transmission request to a plurality of client devices 2002 by designating the time and place of the accident in order to search for a client in the vicinity thereof. Then, the client device 2002 having the sensor information of the corresponding time and place transmits the sensor information to the server 2001. That is, the client device 2002 receives the sensor information transmission request including the designated information for designating the place and time from the server 2001. The client device 2002 determines that the storage unit 2012 stores the sensor information obtained at the place and time indicated by the designated information, and that the moving body exists in an environment in which the sensor information can be transmitted to the server 2001.
  • the sensor information obtained at the place and time indicated by the designated information is transmitted to the server 2001.
  • the server 2001 can acquire sensor information related to the occurrence of an accident from a plurality of client devices 2002 and use it for accident analysis and the like.
  • the client device 2002 may refuse to transmit the sensor information when it receives the sensor information transmission request from the server 2001. Further, the client device 2002 may set in advance which sensor information among the plurality of sensor information can be transmitted. Alternatively, the server 2001 may inquire of the client device 2002 whether or not the sensor information can be transmitted each time.
  • points may be given to the client device 2002 that has transmitted the sensor information to the server 2001. These points can be used to pay, for example, gasoline purchase costs, EV (Electric Vehicle) charging costs, highway tolls, or rental car costs.
  • the server 2001 may delete the information for identifying the client device 2002 that is the source of the sensor information. For example, this information is information such as the network address of the client device 2002.
  • the sensor information can be anonymized, so that the user of the client device 2002 can safely transmit the sensor information from the client device 2002 to the server 2001.
  • the server 2001 may be composed of a plurality of servers. For example, by sharing sensor information among a plurality of servers, even if one server fails, another server can communicate with the client device 2002. As a result, it is possible to avoid stopping the service due to a server failure.
  • the designated location specified in the sensor information transmission request indicates the position where the accident occurred, and may differ from the position of the client device 2002 at the designated time specified in the sensor information transmission request. Therefore, the server 2001 can request the client device 2002 existing in the range to acquire information by designating a range such as within XXm in the vicinity as the designated place. Similarly, for the designated time, the server 2001 may specify a range such as within N seconds before and after a certain time. As a result, the server 2001 can acquire the sensor information from the client device 2002 that exists at "time: t-N to t + N, location: within XXm from the absolute position S". When transmitting three-dimensional data such as LiDAR, the client device 2002 may transmit the data generated immediately after the time t.
  • three-dimensional data such as LiDAR
  • the server 2001 may separately specify, as the designated location, the information indicating the location of the client device 2002 for which the sensor information is to be acquired and the location where the sensor information is desired. For example, the server 2001 specifies that the sensor information including at least the range from the absolute position S to YYm is acquired from the client device 2002 existing within XXm from the absolute position S.
  • the client device 2002 selects the 3D data of one or more randomly accessible units so as to include at least the sensor information in the specified range.
  • the client device 2002 may transmit a plurality of time-consecutive image data including at least a frame immediately before or after the time t.
  • the client device 2002 uses a network to be used according to the priority notified from the server 2001. You may choose. Alternatively, the client device 2002 itself may select a network that can secure an appropriate bandwidth based on the size of the transmitted data. Alternatively, the client device 2002 may select a network to be used based on the cost for data transmission and the like. Further, the transmission request from the server 2001 may include information indicating a transmission deadline, such as transmission when the client device 2002 can start transmission by time T. The server 2001 may issue a transmission request again if sufficient sensor information cannot be acquired within the deadline.
  • a transmission deadline such as transmission when the client device 2002 can start transmission by time T.
  • the sensor information may include header information indicating the characteristics of the sensor data together with the compressed or uncompressed sensor data.
  • the client device 2002 may transmit the header information to the server 2001 via a physical network or communication protocol different from the sensor data. For example, the client device 2002 transmits the header information to the server 2001 prior to the transmission of the sensor data.
  • the server 2001 determines whether or not to acquire the sensor data of the client device 2002 based on the analysis result of the header information.
  • the header information may include information indicating the point cloud acquisition density, elevation angle, or frame rate of LiDAR, or the resolution, signal-to-noise ratio, or frame rate of a visible light image. As a result, the server 2001 can acquire the sensor information from the client device 2002 having the sensor data of the determined quality.
  • the client device 2002 acquires the sensor information indicating the surrounding situation of the moving body, which is mounted on the moving body and obtained by the sensor mounted on the moving body, and stores the sensor information in the storage unit 2012. ..
  • the client device 2002 determines whether the moving body exists in an environment capable of transmitting sensor information to the server 2001, and if it determines that the moving body exists in an environment capable of transmitting sensor information to the server, the client device 2002 transmits the sensor information to the server 2001. Send to.
  • the client device 2002 further creates three-dimensional data around the moving body from the sensor information, and estimates the self-position of the moving body using the created three-dimensional data.
  • the client device 2002 further transmits a three-dimensional map transmission request to the server 2001, and receives the three-dimensional map from the server 2001.
  • the client device 2002 estimates the self-position by using the three-dimensional data and the three-dimensional map in the estimation of the self-position.
  • processing by the client device 2002 may be realized as an information transmission method in the client device 2002.
  • the client device 2002 includes a processor and a memory, and the processor may perform the above processing using the memory.
  • FIG. 127 is a diagram showing a configuration of a sensor information collecting system according to the present embodiment.
  • the sensor information collection system according to the present embodiment includes a terminal 2021A, a terminal 2021B, a communication device 2022A, a communication device 2022B, a network 2023, a data collection server 2024, and a map server 2025.
  • the client device 2026 and the like.
  • the terminal 2021A and the terminal 2021B are not particularly distinguished, they are also described as the terminal 2021.
  • the communication device 2022A and the communication device 2022B are not particularly distinguished, they are also described as the communication device 2022.
  • the data collection server 2024 collects data such as sensor data obtained by the sensor included in the terminal 2021 as position-related data associated with the position in the three-dimensional space.
  • the sensor data is, for example, data acquired by using a sensor included in the terminal 2021 such as a state around the terminal 2021 or an internal state of the terminal 2021.
  • the terminal 2021 transmits sensor data collected from one or more sensor devices at a position capable of directly communicating with the terminal 2021 or relaying one or a plurality of relay devices by the same communication method to the data collection server 2024. Send.
  • the data included in the position-related data may include, for example, information indicating the operation status of the terminal itself or the device included in the terminal, the operation log, the usage status of the service, and the like. Further, the data included in the position-related data may include information in which the identifier of the terminal 2021 is associated with the position or movement route of the terminal 2021.
  • the information indicating the position included in the position-related data is associated with the information indicating the position in the three-dimensional data such as the three-dimensional map data.
  • the details of the information indicating the position will be described later.
  • the position-related data includes the above-mentioned time information and the attributes of the data included in the position-related data, or information indicating the type of sensor (for example, model number) that generated the data, in addition to the position information which is the information indicating the position. It may contain at least one of.
  • the position information and the time information may be stored in the header area of the position-related data or the header area of the frame for storing the position-related data. Further, the position information and the time information may be transmitted and / or stored separately from the position-related data as metadata associated with the position-related data.
  • the map server 2025 is connected to the network 2023, for example, and transmits three-dimensional data such as three-dimensional map data in response to a request from another device such as the terminal 2021. Further, as described in each of the above-described embodiments, the map server 2025 may have a function of updating three-dimensional data by using the sensor information transmitted from the terminal 2021.
  • the data collection server 2024 is connected to the network 2023, for example, collects position-related data from another device such as the terminal 2021, and stores the collected position-related data in a storage device inside or in another server. Further, the data collection server 2024 transmits the collected position-related data or the metadata of the three-dimensional map data generated based on the position-related data to the terminal 2021 in response to the request from the terminal 2021.
  • Network 2023 is a communication network such as the Internet.
  • the terminal 2021 is connected to the network 2023 via the communication device 2022.
  • the communication device 2022 communicates with the terminal 2021 while switching between one communication method or a plurality of communication methods.
  • the communication device 2022 is, for example, (1) a base station such as LTE (Long Term Evolution), (2) an access point (AP) such as WiFi or millimeter wave communication, and (3) LPWA such as SIGFOX, LoRaWAN or Wi-SUN. (Low Power Wide Area)
  • a communication satellite that communicates using a network gateway or (4) a satellite communication method such as DVB-S2.
  • the base station may communicate with the terminal 2021 by a method classified into LPWA such as NB-IoT (Narrow Band-IoT) or LTE-M, or may switch between these methods and the terminal 2021. Communication may be performed.
  • LPWA Low Band-IoT
  • LTE-M Long Term Evolution
  • Communication may be performed.
  • the terminal 2021 has a function of communicating with a communication device 2022 that uses two types of communication methods, and a communication device that uses any of these communication methods, or is a plurality of these communication methods and a direct communication partner.
  • a communication device 2022 that uses two types of communication methods
  • a communication device that uses any of these communication methods, or is a plurality of these communication methods and a direct communication partner.
  • An example is given in which communication is performed with the map server 2025 or the data collection server 2024 while switching 2022, but the configuration of the sensor information collection system and the terminal 2021 is not limited to this.
  • the terminal 2021 may not have a communication function in a plurality of communication methods, but may have a function of communicating in any one communication method.
  • the terminal 2021 may support three or more communication methods. Further, the corresponding communication method may be different for each terminal 2021.
  • the terminal 2021 includes, for example, the configuration of the client device 902 shown in FIG. 117.
  • the terminal 2021 estimates the position such as its own position using the received three-dimensional data. Further, the terminal 2021 generates position-related data by associating the sensor data acquired from the sensor with the position information obtained by the position estimation process.
  • the position information added to the position-related data indicates, for example, the position in the coordinate system used in the three-dimensional data.
  • the position information is a coordinate value represented by a value of latitude and longitude.
  • the terminal 2021 may include the coordinate value as well as the information indicating the coordinate system that is the reference of the coordinate value and the three-dimensional data used for the position estimation in the position information.
  • the coordinate values may include altitude information.
  • the position information may be associated with a unit of data or a unit of space that can be used for coding the three-dimensional data described above.
  • This unit is, for example, WLD, GOS, SPC, VLM, VXL, or the like.
  • the position information is represented by an identifier for specifying a data unit such as an SPC corresponding to the position-related data.
  • the position information is information indicating three-dimensional data in which the three-dimensional space including the data unit such as SPC is encoded, or details in the SPC. It may include information indicating a different position.
  • the information indicating the three-dimensional data is, for example, a file name of the three-dimensional data.
  • the system generates the position-related data associated with the position information based on the position estimation using the three-dimensional data, so that the self-position of the client device (terminal 2021) acquired by using GPS is set. It is possible to add position information to the sensor information with higher accuracy than when the based position information is added to the sensor information. As a result, even when the position-related data is used by another device in another service, the position corresponding to the position-related data can be more accurately specified in the real space by performing the position estimation based on the same three-dimensional data. There is a possibility that it can be done.
  • the data transmitted from the terminal 2021 is the position-related data
  • the data transmitted from the terminal 2021 may be data not associated with the position information.
  • the transmission / reception of the three-dimensional data or the sensor data described in the other embodiment may be performed via the network 2023 described in the present embodiment.
  • the position information added to the position-related data may be information indicating a position relative to a feature point in the three-dimensional data.
  • the feature point that serves as a reference for the position information is, for example, a feature point encoded as SWLD and notified to the terminal 2021 as three-dimensional data.
  • the information indicating the relative position with respect to the feature point is represented by, for example, a vector from the feature point to the point indicated by the position information, and may be information indicating the direction and distance from the feature point to the point indicated by the position information.
  • the information indicating the relative position with respect to the feature point may be information indicating the amount of displacement of each of the X-axis, Y-axis, and Z-axis from the feature point to the point indicated by the position information.
  • the information indicating the relative position with respect to the feature point may be information indicating the distance from each of the three or more feature points to the point indicated by the position information.
  • the relative position may not be the relative position of the point indicated by the position information expressed with respect to each feature point, but may be the relative position of each feature point expressed with reference to the point indicated by the position information.
  • An example of position information based on a relative position with respect to a feature point includes information for specifying a reference feature point and information indicating a relative position of a point indicated by the position information with respect to the feature point.
  • the information indicating the relative position with respect to the feature point includes the coordinate axes used for deriving the relative position and the information indicating the type of the three-dimensional data. Alternatively, it may include information indicating the magnitude (scale, etc.) of the value of the information indicating the relative position per unit amount.
  • the position information may include information indicating a relative position with respect to each feature point for a plurality of feature points.
  • the terminal 2021 that tries to specify the position indicated by the position information in the real space has the position information from the position of the feature point estimated from the sensor data for each feature point.
  • the candidate points of the positions indicated by may be calculated, and the points obtained by averaging the calculated plurality of candidate points may be determined to be the points indicated by the position information. According to this configuration, the influence of an error when estimating the position of a feature point from the sensor data can be reduced, so that the estimation accuracy of the point indicated by the position information in the real space can be improved.
  • the position information includes information indicating a relative position with respect to a plurality of feature points, even if there is a feature point that cannot be detected due to restrictions such as the type or performance of the sensor included in the terminal 2021, any of the plurality of feature points. If even one of them can be detected, the value of the point indicated by the position information can be estimated.
  • a point that can be identified from the sensor data can be used.
  • the points that can be identified from the sensor data are, for example, points within a region or points that satisfy predetermined conditions for feature point detection, such as the above-mentioned three-dimensional feature amount or feature amount of visible light data being equal to or greater than a threshold value.
  • a marker installed in the real space may be used as a feature point.
  • the marker may be detected and its position can be specified from the data acquired by using a sensor such as LiDER or a camera.
  • the marker is represented by a change in color or brightness value (reflectance), or a three-dimensional shape (unevenness, etc.).
  • a coordinate value indicating the position of the marker, a two-dimensional code or a barcode generated from the identifier of the marker, or the like may be used.
  • a light source that transmits an optical signal may be used as a marker.
  • a light source of an optical signal is used as a marker, not only information for acquiring a position such as a coordinate value or an identifier but also other data may be transmitted by the optical signal.
  • the optical signal is connected to the content of the service according to the position of the marker, an address such as a url for acquiring the content, or an identifier of the wireless communication device for receiving the provision of the service, and the wireless communication device. It may include information indicating a wireless communication method for the purpose.
  • the terminal 2021 grasps the correspondence relationship of feature points between different data by using, for example, an identifier commonly used between data or information or a table indicating the correspondence relationship of feature points between data. Further, when there is no information indicating the correspondence between the feature points, the terminal 2021 is the feature at the closest distance when the coordinates of the feature points in one three-dimensional data are converted to the positions in the other three-dimensional data space. A point may be determined to be a corresponding feature point.
  • the position information based on the relative position described above is used, even between terminals 2021 or services that use different three-dimensional data, they are included in each three-dimensional data or associated with each three-dimensional data.
  • the position indicated by the position information can be specified or estimated based on a common feature point. As a result, it becomes possible to identify or estimate the same position with higher accuracy between terminals 2021 or services that use different three-dimensional data.
  • the data collection server 2024 may transfer the received position-related data to another data server.
  • the data collection server 2024 determines to which data server the received position-related data is to be transferred, and transfers the position-related data to the data server determined as the transfer destination.
  • the data collection server 2024 determines the transfer destination based on, for example, the determination rule of the transfer destination server preset in the data collection server 2024.
  • the determination rule of the transfer destination server is set, for example, in a transfer destination table in which the identifier associated with each terminal 2021 and the data server of the transfer destination are associated with each other.
  • the terminal 2021 adds an identifier associated with the terminal 2021 to the position-related data to be transmitted and transmits the data to the data collection server 2024.
  • the data collection server 2024 specifies the data server of the transfer destination corresponding to the identifier added to the position-related data based on the determination rule of the transfer destination server using the transfer destination table or the like, and the position-related data is specified. Send to the data server. Further, the determination rule of the transfer destination server may be specified by the determination condition using the time or place where the position-related data is acquired.
  • the identifier associated with the transmission source terminal 2021 described above is, for example, an identifier unique to each terminal 2021 or an identifier indicating a group to which the terminal 2021 belongs.
  • the transfer destination table does not have to be a direct association between the identifier associated with the source terminal and the transfer destination data server.
  • the data collection server 2024 holds a management table that stores tag information assigned to each identifier unique to the terminal 2021, and a transfer destination table that associates the tag information with the data server of the transfer destination.
  • the data collection server 2024 may determine the data server of the transfer destination based on the tag information by using the management table and the transfer destination table.
  • the tag information is, for example, management control information or service provision control information given to the type, model number, owner, group to which the terminal 2021 corresponds to the identifier, or other identifier.
  • an identifier unique to each sensor may be used instead of the identifier associated with the transmission source terminal 2021.
  • the determination rule of the transfer destination server may be set from the client device 2026.
  • the data collection server 2024 may determine a plurality of data servers as transfer destinations and transfer the received position-related data to the plurality of data servers. According to this configuration, for example, when backing up location-related data automatically, or in order to share location-related data with different services, location-related data is sent to a data server for providing each service. When it is necessary to do so, the data can be transferred as intended by changing the setting for the data collection server 2024. As a result, the man-hours required for constructing and changing the system can be reduced as compared with the case where the transmission destination of the position-related data is set in the individual terminals 2021.
  • the data collection server 2024 registers the data server specified by the transfer request signal as a new transfer destination in response to the transfer request signal received from the data server, and transfers the position-related data received thereafter to the data server. You may.
  • the data collection server 2024 stores the position-related data received from the terminal 2021 in the recording device, and requests the position-related data specified by the transmission request signal according to the transmission request signal received from the terminal 2021 or the data server. It may be transmitted to the terminal 2021 or the data server of.
  • the data collection server 2024 determines whether or not the location-related data can be provided to the requesting data server or terminal 2021, and if it is determined that the location-related data can be provided, the data collection server 2024 transfers or transmits the location-related data to the requesting data server or terminal 2021. May be done.
  • the data collection server 2024 When the request for the current position-related data is received from the client device 2026, the data collection server 2024 requests the terminal 2021 to transmit the position-related data even if the terminal 2021 does not transmit the position-related data. 2021 may transmit position-related data in response to the transmission request.
  • the terminal 2021 transmits the position information data to the data collection server 2024, but the data collection server 2024 collects the position-related data from the terminal 2021, such as a function of managing the terminal 2021. It may be provided with a function necessary for the terminal 2021 or a function used when collecting position-related data from the terminal 2021.
  • the data collection server 2024 may have a function of transmitting a data request signal requesting the transmission of position information data to the terminal 2021 and collecting position-related data.
  • Management information such as an address for communicating with the terminal 2021 to be collected data or an identifier unique to the terminal 2021 is registered in the data collection server 2024 in advance.
  • the data collection server 2024 collects location-related data from the terminal 2021 based on the registered management information.
  • the management information may include information such as the type of sensor included in the terminal 2021, the number of sensors included in the terminal 2021, and the communication method supported by the terminal 2021.
  • the data collection server 2024 may collect information such as the operating status or the current position of the terminal 2021 from the terminal 2021.
  • the registration of the management information may be performed from the client device 2026, or the process for registration may be started by the terminal 2021 transmitting the registration request to the data collection server 2024.
  • the data collection server 2024 may have a function of controlling communication with the terminal 2021.
  • the communication connecting the data collection server 2024 and the terminal 2021 is a dedicated line provided by a service provider such as an MNO (Mobile Network Operator) or a MVNO (Mobile Virtual Network Operator), or a VPN (Virtual Private Network) configured Network. It may be a virtual private line or the like. According to this configuration, communication between the terminal 2021 and the data collection server 2024 can be performed safely.
  • a service provider such as an MNO (Mobile Network Operator) or a MVNO (Mobile Virtual Network Operator), or a VPN (Virtual Private Network) configured Network. It may be a virtual private line or the like. According to this configuration, communication between the terminal 2021 and the data collection server 2024 can be performed safely.
  • the data collection server 2024 may have a function of authenticating the terminal 2021 or a function of encrypting data transmitted to and received from the terminal 2021.
  • the authentication process of the terminal 2021 or the data encryption process is a terminal group including an identifier unique to the terminal 2021 or a plurality of terminals 2021 shared in advance between the data collection server 2024 and the terminal 2021. It is done by using a unique identifier for.
  • This identifier is, for example, an IMSI (International Mobile Subscribe Subsiber Identity), which is a unique number stored in a SIM (Subscriber Identity Module) card.
  • IMSI International Mobile Subscribe Subsiber Identity
  • SIM Subscriber Identity Module
  • the process of authentication or data encryption between the data collection server 2024 and the terminal 2021 can be provided as long as both the data collection server 2024 and the terminal 2021 have a function to perform the process, and relays the data. It does not depend on the communication method used by the communication device 2022. Therefore, since the common authentication or encryption process can be used without considering whether the terminal 2021 uses the communication method, the convenience of the user's system construction is improved. However, the fact that the communication device 2022 for relaying does not depend on the communication method means that it is not essential to change the communication method according to the communication method. That is, for the purpose of improving transmission efficiency or ensuring safety, the authentication or data encryption process between the data collection server 2024 and the terminal 2021 may be switched according to the communication method used by the relay device.
  • the data collection server 2024 may provide the client device 2026 with a UI that manages data collection rules such as the type of location-related data collected from the terminal 2021 and the data collection schedule. As a result, the user can specify the terminal 2021 for collecting data using the client device 2026, the data collection time and frequency, and the like. Further, the data collection server 2024 may specify an area on the map on which data is to be collected and collect position-related data from the terminal 2021 included in the area.
  • the client device 2026 When the data collection rule is managed in units of terminals 2021, the client device 2026 presents, for example, a list of terminals 2021 or sensors to be managed on the screen. The user sets the necessity of data collection or the collection schedule for each item in the list.
  • the client device 2026 When designating an area on a map for which data is to be collected, the client device 2026 presents, for example, a two-dimensional or three-dimensional map of the area to be managed on the screen. The user selects an area on the displayed map to collect data.
  • the area selected on the map may be a circular or rectangular area centered on a point specified on the map, or may be a circular or rectangular area that can be specified by a drag operation.
  • the client device 2026 may also select an area in preset units such as a city, an area within the city, a block, or a major road.
  • the area may be set by inputting the numerical values of latitude and longitude, or the area is selected from the list of candidate areas derived based on the input text information. May be done.
  • Textual information may be, for example, the name of a region, city, or landmark.
  • an area on the map may be specified based on the position of the client device 2026 in the real space obtained from the sensor data. For example, the client device 2026 estimates its own position using sensor data, and data a region within a predetermined distance from a point on the map corresponding to the estimated position or a distance specified by the user. May be specified as the area to collect. Further, the client device 2026 may designate the sensing area of the sensor, that is, the area corresponding to the acquired sensor data as the area for collecting the data. Alternatively, the client device 2026 may designate an area based on the position corresponding to the sensor data specified by the user as an area for collecting data. The area or position on the map corresponding to the sensor data may be estimated by the client device 2026 or the data collection server 2024.
  • the data collection server 2024 When specifying in the area on the map, the data collection server 2024 identifies the terminal 2021 in the specified area by collecting the current position information of each terminal 2021, and positions the terminal 2021 with respect to the specified terminal 2021. You may request the transmission of relevant data. Further, the data collection server 2024 does not specify the terminal 2021 in the area, but the data collection server 2024 transmits information indicating the designated area to the terminal 2021, and the terminal 2021 itself is in the designated area. Whether or not it is determined, and if it is determined that it is within the specified area, the position-related data may be transmitted.
  • the data collection server 2024 transmits data such as a list or a map for providing the above-mentioned UI (User Interface) in the application executed by the client device 2026 to the client device 2026.
  • the data collection server 2024 may transmit not only data such as a list or a map but also an application program to the client device 2026.
  • the above-mentioned UI may be provided as content created by HTML or the like that can be displayed by a browser.
  • Some data such as map data may be provided from a server other than the data collection server 2024 such as the map server 2025.
  • the client device 2026 transmits the input information to the data collection server 2024 as the setting information when the input for notifying the completion of the input is performed such as the user pressing the setting button.
  • the data collection server 2024 transmits a signal for notifying the position-related data request or the position-related data collection rule to each terminal 2021 based on the setting information received from the client device 2026, and collects the position-related data. Do.
  • object information indicating the position of a power feeding unit such as a wireless power feeding antenna or a power feeding coil embedded in a road or a parking lot is included in the three-dimensional data or associated with the three-dimensional data.
  • a power feeding unit such as a wireless power feeding antenna or a power feeding coil embedded in a road or a parking lot is included in the three-dimensional data or associated with the three-dimensional data.
  • terminal 2021 such as a car or drone.
  • the vehicle or drone that has acquired the object information for charging automatically drives itself so that the position of the charging part such as the charging antenna or charging coil of the vehicle faces the area indicated by the object information. Move the position of and start charging.
  • the direction to move or the operation to be performed is presented to the driver or operator using the image or sound displayed on the screen.
  • the operation or maneuvering is stopped.
  • the image or sound presented to is switched, and charging is started.
  • the object information may not be information indicating the position of the power feeding unit, but may be information indicating an area where charging efficiency equal to or higher than a predetermined threshold value can be obtained by arranging the charging unit in the area.
  • the position of the object information may be represented by a point at the center of the region indicated by the object information, a region or line in a two-dimensional plane, or a region, line or plane in a three-dimensional space. Good.
  • the antenna for wireless charging provided in the terminal 2021 such as a car and the wireless embedded in the road or the like can be grasped.
  • the alignment with the feeding antenna can be performed with higher accuracy. As a result, the charging speed at the time of wireless charging can be shortened and the charging efficiency can be improved.
  • the object information may be an object other than the feeding antenna.
  • the three-dimensional data includes the position of the AP of millimeter-wave wireless communication as object information.
  • the terminal 2021 can grasp the position of the AP in advance, so that the directivity of the beam can be directed in the direction of the object information and the communication can be started.
  • the communication quality such as improving the transmission speed, shortening the time until the start of communication, and extending the communicable period.
  • the object information may include information indicating the type of the object corresponding to the object information. Further, the object information should be executed by the terminal 2021 when the terminal 2021 is included in the area in the real space corresponding to the position of the object information on the three-dimensional data or within a range of a predetermined distance from the area. Information indicating the process may be included.
  • the object information may be provided by a server different from the server that provides the three-dimensional data.
  • the object group in which the object information used in the same service is stored may be provided as different data depending on the type of the target service or the target device. ..
  • the three-dimensional data used in combination with the object information may be WLD point cloud data or SWLD feature point data.
  • the three-dimensional data decoding device when the attribute information of the target three-dimensional point, which is the three-dimensional point to be encoded, is hierarchically coded using LoD (Level of Datail), the three-dimensional data decoding device is the three-dimensional. It is not necessary for the data decoding device to decode the attribute information up to the required LoD layer and not to decode the attribute information of the unnecessary layer. For example, when the total number of LoDs of the attribute information in the bit stream encoded by the 3D data encoding device is N, the 3D data decoding device has Ms from LoD0 to LoD (M-1) of the uppermost layer.
  • the three-dimensional data decoding apparatus can decode the attribute information from LoD0 to LoD (M-1) required by the three-dimensional data decoding apparatus while suppressing the processing load.
  • FIG. 128 is a diagram showing the above use case.
  • the server holds a three-dimensional map obtained by encoding the three-dimensional position information and the attribute information.
  • the server (three-dimensional data coding device) broadcasts a three-dimensional map to a client device (three-dimensional data decoding device: for example, a vehicle or a drone) in an area managed by the server, and the client device receives the data from the server.
  • a process of specifying the self-position of the client device using a three-dimensional map, or a process of displaying map information to a user or the like who operates the client device is performed.
  • the server encodes the position information of the three-dimensional map using an octane tree configuration or the like. Then, the server hierarchically encodes the attribute information of the three-dimensional map using N LoDs constructed based on the position information. The server stores a bitstream of the 3D map obtained by hierarchical coding.
  • the server transmits a bit stream of the encoded three-dimensional map to the client device in response to a transmission request for map information transmitted from the client device in the area managed by the server.
  • the client device receives the bitstream of the 3D map transmitted from the server, and decodes the position information and attribute information of the 3D map according to the purpose of the client device. For example, when the client device performs highly accurate self-position estimation using the position information and the attribute information of N LoDs, the client device determines that the decoding result up to a dense three-dimensional point is required as the attribute information. And decrypt all the information in the bitstream.
  • the client device determines that the decoding result up to the sparse three-dimensional point is necessary as the attribute information, and the position information and the upper layer of LoD are used. Decrypts LoD attribute information from a certain LoD0 to M (M ⁇ N).
  • the three-dimensional point map includes position information and attribute information.
  • the position information is encoded by an ocree.
  • the attribute information is encoded by N LoDs.
  • Client device A performs highly accurate self-position estimation. In this case, the client device A determines that all the position information and the attribute information are necessary, and decodes all the position information in the bit stream and the attribute information composed of N LoDs.
  • Client device B displays a three-dimensional map to the user.
  • the client device B determines that the position information and the attribute information of M LoDs (M ⁇ N) are necessary, and decodes the position information in the bit stream and the attribute information composed of M LoDs. To do.
  • the server may broadcast the three-dimensional map to the client device, multicast transmission, or unicast transmission.
  • the three-dimensional data coding device when the attribute information of the target three-dimensional point, which is the three-dimensional point to be coded, is hierarchically coded using LoD, the three-dimensional data coding device is the three-dimensional data decoding device. It is not necessary to encode the attribute information up to the required LoD hierarchy and not to encode the attribute information of the unnecessary hierarchy. For example, when the total number of LoDs is N, the three-dimensional data encoding device encodes M (M ⁇ N) LoDs from the top layer LoD0 to LoD (M-1), and the remaining LoDs (N). A bit stream may be generated by not encoding LoD up to -1).
  • the 3D data encoding device encodes a bit stream in which the attribute information from LoD0 to LoD (M-1) required by the 3D data decoding device is encoded in response to the request from the 3D data decoding device. Can be provided.
  • FIG. 129 is a diagram showing the above use case.
  • the server holds a three-dimensional map obtained by encoding the three-dimensional position information and the attribute information.
  • the server (three-dimensional data encoding device) unicasts a three-dimensional map to the client device (three-dimensional data decoding device: for example, a vehicle or a drone) in the area managed by the server at the request of the client device.
  • the client device performs a process of identifying the self-position of the client device using a three-dimensional map received from the server, or a process of displaying map information to a user or the like who operates the client device.
  • the server encodes the position information of the three-dimensional map using an octane tree configuration or the like. Then, the server generates a bitstream of the three-dimensional map A by hierarchically coding the attribute information of the three-dimensional map using N LoDs constructed based on the position information, and generates the generated bitstream. Save to the server. Further, the server generates a bit stream of the three-dimensional map B by hierarchically coding the attribute information of the three-dimensional map using M (M ⁇ N) LoDs constructed based on the position information. Save the generated bitstream on the server.
  • the client device requests the server to send a three-dimensional map according to the purpose of the client device. For example, when the client device performs highly accurate self-position estimation using the position information and the attribute information of N LoDs, the client device determines that the decoding result up to a dense three-dimensional point is necessary as the attribute information, and is tertiary. Requests the server to send the bitstream of the original map A. Further, when displaying the 3D map information to the user or the like, the client device determines that the decoding result up to the sparse 3D point is necessary as the attribute information, and M pieces from the position information and the upper layer LoD0 of LoD.
  • the server Requests the server to transmit a bitstream of the three-dimensional map B including LoD attribute information up to (M ⁇ N). Then, the server transmits the encoded bit stream of the three-dimensional map A or the three-dimensional map B to the client device in response to the request for transmitting the map information from the client device.
  • the client device receives the bitstream of the three-dimensional map A or the three-dimensional map B transmitted from the server according to the use of the client device, and decodes the bitstream. In this way, the server switches the bit stream to be transmitted according to the usage of the client device. As a result, the processing load of the client device can be reduced.
  • the server holds the three-dimensional map A and the three-dimensional map B.
  • the server generates the three-dimensional map A by encoding the position information of the three-dimensional map with, for example, an octree, and encoding the attribute information of the three-dimensional map with N LoDs. That is, NumLoD included in the bitstream of the three-dimensional map A indicates N.
  • the server generates the three-dimensional map B by encoding the position information of the three-dimensional map with, for example, an octree, and the attribute information of the three-dimensional map with M LoDs. That is, NumLoD included in the bitstream of the three-dimensional map B indicates M.
  • Client device A performs highly accurate self-position estimation.
  • the client device A determines that all the position information and the attribute information are necessary, and sends a transmission request of the three-dimensional map A including all the position information and the attribute information composed of N LoDs to the server. ..
  • the client device A receives the three-dimensional map A and decodes all the position information and the attribute information composed of N LoDs.
  • Client device B displays a three-dimensional map to the user.
  • the client device B determines that the position information and the attribute information of M LoDs (M ⁇ N) are necessary, and includes all the position information and the attribute information composed of M LoDs in three dimensions.
  • the client device B receives the three-dimensional map B and decodes all the position information and the attribute information composed of M LoDs.
  • the server (three-dimensional data encoding device) encodes the three-dimensional map C in which the remaining NM attribute information of LoD is encoded in addition to the three-dimensional map B, and the request of the client device B.
  • the three-dimensional map C may be transmitted to the client device B according to the above. Further, the client device B may obtain the decoding results of N LoDs by using the bitstream of the three-dimensional map B and the three-dimensional map C.
  • FIG. 130 is a flowchart showing an example of application processing.
  • the three-dimensional data demultiplexing device acquires an ISOBMFF file containing the point cloud data and the plurality of coded data (S7301).
  • the three-dimensional data demultiplexing device may acquire the ISOBMFF file by communication or may read the ISOBMFF file from the accumulated data.
  • the three-dimensional data demultiplexing device analyzes the entire configuration information in the ISOBMFF file and identifies the data to be used for the application (S7302). For example, the three-dimensional data demultiplexing device acquires data used for processing and does not acquire data not used for processing.
  • the three-dimensional data demultiplexing device extracts one or more data to be used for the application and analyzes the configuration information of the data (S7303).
  • the three-dimensional data demultiplexing device converts ISOBMFF into an encoded stream and extracts a time stamp (S7305). Further, the three-dimensional data demultiplexing device determines whether or not the data are synchronized, for example, by referring to a flag indicating whether or not the data are synchronized, and if they are not, the synchronization is performed. Processing may be performed.
  • the three-dimensional data demultiplexing device decodes the data by a predetermined method according to the time stamp and other instructions, and processes the decoded data (S7306).
  • the three-dimensional data demultiplexing device extracts the data and the time stamp (S7307). Further, the three-dimensional data demultiplexing device determines whether or not the data are synchronized, for example, by referring to a flag indicating whether or not the data are synchronized, and if they are not, the synchronization is performed. Processing may be performed. The three-dimensional data demultiplexer then processes the data according to the time stamp and other instructions (S7308).
  • FIG. 131 is a diagram showing an example of the sensor range of the beam LiDAR, FLASH LiDAR, and the camera.
  • the beam LiDAR detects all directions around the vehicle (sensor), and the FLASH LiDAR and the camera detect a range in one direction (for example, forward) of the vehicle.
  • the three-dimensional data demultiplexing device extracts and decodes the coded data of the beam LiDAR and FLASH LiDAR with reference to the overall configuration information. Further, the three-dimensional data demultiplexing device does not extract the camera image.
  • the three-dimensional data demultiplexing device simultaneously processes each coded data at the same time stamp according to the time stamps of LiDAR and FLASH LiDAR.
  • the three-dimensional data demultiplexing device may present the processed data by the presenting device, synthesize the point cloud data of the beam LiDAR and the FLASH LiDAR, perform processing such as rendering.
  • the three-dimensional data demultiplexing device may extract the sensor position information and use it in the application.
  • the three-dimensional data demultiplexing device may select whether to use beam LiDAR information or FLASH LiDAR in the application, and switch the processing according to the selection result.
  • FIG. 132 is a diagram showing a configuration example of an automatic driving system.
  • This autonomous driving system includes a cloud server 7350 and an edge 7360 such as an in-vehicle device or a mobile device.
  • the cloud server 7350 includes a demultiplexing unit 7351, decoding units 7352A, 7352B and 7355, a point cloud data synthesis unit 7353, a large-scale data storage unit 7354, a comparison unit 7356, and a coding unit 7357.
  • the edge 7360 includes sensors 7361A and 7361B, point cloud data generation units 7362A and 7362B, synchronization unit 7363, coding units 7364A and 7364B, multiplexing unit 7365, update data storage unit 7366, and demultiplexing unit. It includes a 7637, a decoding unit 7368, a filter 7369, a self-position estimation unit 7370, and an operation control unit 7371.
  • Edge 7360 downloads large-scale data which is large-scale point cloud map data stored in the cloud server 7350.
  • the edge 7360 performs self-position estimation processing of the edge 7360 (vehicle or terminal) by matching the large-scale data with the sensor information obtained by the edge 7360. Further, the edge 7360 uploads the acquired sensor information to the cloud server 7350 and updates the large-scale data with the latest map data.
  • point cloud data with different coding methods is handled.
  • the cloud server 7350 encodes and multiplexes large-scale data.
  • the coding unit 7357 performs coding by using a third coding method suitable for coding a large-scale point cloud.
  • the coding unit 7357 multiplexes the coded data.
  • the large-scale data storage unit 7354 stores data encoded and multiplexed by the coding unit 7357.
  • Edge 7360 performs sensing.
  • the point cloud data generation unit 7362A generates the first point cloud data (position information (geometry) and attribute information) using the sensing information acquired by the sensor 7361A.
  • the point cloud data generation unit 7362B generates the second point cloud data (position information and attribute information) by using the sensing information acquired by the sensor 7361B.
  • the generated first point cloud data and the second point cloud data are used for self-position estimation or vehicle control of automatic driving, or map update. In each process, some information of the first point cloud data and the second point cloud data may be used.
  • Edge 7360 performs self-position estimation. Specifically, Edge 7360 downloads large-scale data from the cloud server 7350.
  • the demultiplexing unit 7376 acquires the coded data by demultiplexing the large-scale data in the file format.
  • the decoding unit 7368 acquires large-scale data, which is large-scale point cloud map data, by decoding the acquired coded data.
  • the self-position estimation unit 7370 matches the acquired large-scale data with the first point cloud data and the second point cloud data generated by the point cloud data generation units 7362A and 7362B to map the vehicle. Estimate the self-position in. Further, the operation control unit 7371 uses the matching result or the self-position estimation result for the operation control.
  • the self-position estimation unit 7370 and the operation control unit 7371 may extract specific information such as position information from the large-scale data and perform processing using the extracted information. Further, the filter 7369 performs processing such as correction or thinning on the first point cloud data and the second point cloud data. The self-position estimation unit 7370 and the operation control unit 7371 may use the first point cloud data and the second point cloud data after the processing is performed. Further, the self-position estimation unit 7370 and the operation control unit 7371 may use the sensor signals obtained by the sensors 7361A and 7361B.
  • the synchronization unit 7363 performs time synchronization and position correction between a plurality of sensor signals or a plurality of point cloud data. Further, the synchronization unit 7363 corrects the position information of the sensor signal or the point group data so as to match the large-scale data based on the position correction information of the large-scale data and the sensor data generated by the self-position estimation process. May be good.
  • synchronization and position correction may be performed on the cloud server 7350 instead of the edge 7360.
  • the edge 7360 may multiplex the synchronization information and the location information and transmit them to the cloud server 7350.
  • Edge 7360 is. Encode and multiplex sensor signals or point cloud data.
  • the sensor signal or point cloud data is encoded using a first or second coding method suitable for encoding each signal.
  • the coding unit 7364A generates the first coded data by coding the first point cloud data using the first coding method.
  • the coding unit 7364B generates the second coded data by coding the second point cloud data using the second coding method.
  • the multiplexing unit 7365 generates a multiplexed signal by multiplexing the first coded data, the second coded data, the synchronization information, and the like.
  • the update data storage unit 7366 stores the generated multiplexed signal. Further, the update data storage unit 7366 uploads the multiplexing signal to the cloud server 7350.
  • the cloud server 7350 synthesizes the point cloud data. Specifically, the demultiplexing unit 7351 acquires the first coded data and the second coded data by demultiplexing the multiplexing signal uploaded to the cloud server 7350.
  • the decoding unit 7352A acquires the first point cloud data (or sensor signal) by decoding the first coded data.
  • the decoding unit 7352B acquires the second point cloud data (or sensor signal) by decoding the second coded data.
  • the point cloud data synthesis unit 7353 synthesizes the first point cloud data and the second point cloud data by a predetermined method.
  • the point cloud data synthesis unit 7353 may perform the synthesis using the information.
  • the decoding unit 7355 demultiplexes and decodes the large-scale data stored in the large-scale data storage unit 7354.
  • the comparison unit 7356 compares the point cloud data generated based on the sensor signal obtained at the edge 7360 with the large-scale data possessed by the cloud server 7350, and determines the point cloud data that needs to be updated.
  • the comparison unit 7356 updates the point cloud data determined to need to be updated among the large-scale data to the point cloud data obtained from the edge 7360.
  • the coding unit 7357 encodes and multiplexes the updated large-scale data, and stores the obtained data in the large-scale data storage unit 7354.
  • the signals to be handled may differ, and the signals to be multiplexed or the coding method may differ depending on the intended use or application. Even in such a case, flexible decoding and application processing can be performed by multiplexing data of various coding methods using the present embodiment. In addition, even if the signal encoding method is different, various applications and systems can be constructed by converting a coding method suitable for demultiplexing, decoding, data conversion, coding, and multiplexing processing. , Flexible service can be provided.
  • FIG. 133 is a diagram showing a configuration example of a bit stream.
  • the entire information of the divided data indicates a sensor ID (sensor_id) and a data ID (data_id) of the divided data for each divided data.
  • the data ID is also shown in the header of each coded data.
  • the entire information of the divided data shown in FIG. 133 includes the sensor information (Sensor), the sensor version (Version), the sensor manufacturer name (Maker), and the sensor, in addition to the sensor ID. At least one of the installation information (Mount Info.) And the position coordinates (World Coordinate) of the sensor may be included.
  • the three-dimensional data decoding device can acquire information on various sensors from the configuration information.
  • the entire information of the divided data may be stored in the metadata SPS, GPS or APS, or may be stored in the metadata SEI which is not essential for coding. Further, the three-dimensional data encoding device stores the SEI in the ISOBMFF file at the time of multiplexing. The three-dimensional data decoding device can acquire desired divided data based on the metadata.
  • SPS is the metadata of the entire coded data
  • GPS is the metadata of the position information
  • APS is the metadata for each attribute information
  • G is the coded data of the position information for each divided data.
  • FIG. 134 is a flowchart of the point group selection process executed by this application.
  • 135 to 137 are diagrams showing screen examples of point group selection processing.
  • the three-dimensional data decoding device that executes the application has, for example, a UI unit that displays an input UI (user interface) 8661 for selecting an arbitrary point cloud.
  • the input UI 8661 has a presentation unit 8662 that presents the selected point cloud, and an operation unit (buttons 8663 and 8664) that accepts the user's operation.
  • the three-dimensional data decoding device acquires desired data from the storage unit 8665 after the point cloud is selected by UI8661.
  • the point cloud information that the user wants to display is selected based on the operation for the user's input UI8661 (S8631). Specifically, when the button 8663 is selected, a point cloud based on the sensor 1 is selected. When the button 8664 is selected, a point cloud based on the sensor 2 is selected. Alternatively, by selecting both the button 8663 and the button 8664, both the point cloud based on the sensor 1 and the point cloud based on the sensor 2 are selected.
  • the point cloud selection method is an example and is not limited to this.
  • the three-dimensional data decoding device analyzes the entire information of the divided data contained in the multiplexed signal (bit stream) or the coded data, and selects a point group from the sensor ID (sensor_id) of the selected sensor.
  • the data ID (data_id) of the divided data constituting the above is specified (S8632).
  • the three-dimensional data decoding device extracts coded data including the specified desired data ID from the multiplexed signal, and decodes the extracted coded data to obtain a point cloud based on the selected sensor. Is decoded (S8633).
  • the three-dimensional data decoding device does not decode other coded data.
  • the three-dimensional data decoding device presents (for example, displays) the decoded point cloud (S8634).
  • FIG. 136 shows an example when the button 8663 of the sensor 1 is pressed, and the point cloud of the sensor 1 is presented.
  • FIG. 137 shows an example in which both the button 8663 of the sensor 1 and the button 8664 of the sensor 2 are pressed, and the point cloud of the sensor 1 and the sensor 2 is presented.
  • the present disclosure is not limited to this embodiment.
  • each processing unit included in the three-dimensional data coding device, the three-dimensional data decoding device, and the like according to the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually integrated into one chip, or may be integrated into one chip so as to include a part or all of them.
  • the integrated circuit is not limited to the LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and settings of the circuit cells inside the LSI may be used.
  • each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the present disclosure may be realized as a three-dimensional data coding method, a three-dimensional data decoding method, or the like executed by a three-dimensional data coding device, a three-dimensional data decoding device, or the like.
  • the division of the functional block in the block diagram is an example, and a plurality of functional blocks can be realized as one functional block, one functional block can be divided into a plurality of functional blocks, and some functions can be transferred to other functional blocks. You may. Further, the functions of a plurality of functional blocks having similar functions may be processed by a single hardware or software in parallel or in a time division manner.
  • each step in the flowchart is executed is for exemplifying in order to specifically explain the present disclosure, and may be an order other than the above. Further, a part of the above steps may be executed at the same time (parallel) as other steps.
  • the three-dimensional data coding device, the three-dimensional data decoding device, and the like have been described above based on the embodiment, but the present disclosure is not limited to this embodiment. .. As long as the gist of the present disclosure is not deviated, various modifications that can be conceived by those skilled in the art are applied to the present embodiment, and a form constructed by combining components in different embodiments is also within the scope of one or more embodiments. May be included within.
  • the present disclosure is applicable to a three-dimensional data coding device and a three-dimensional data decoding device.
  • Three-dimensional data creation device 811 Data reception unit 812, 819 Communication unit 813 Reception control unit 814, 821 Format conversion unit 815

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

三次元データ符号化方法は、三次元点群を示す点群データを複数に分割した際の分割データ単位、及び、分割前の点群データ単位の少なくとも一方の符号化後の符号化データの第1最大ビット数を決定し(S9681)、点群データが分割された複数の分割データ、又は、分割前の点群データを、決定した第1最大ビット数を満たすように符号化することでビットストリームを生成し(S9682)、ビットストリームは、第1最大ビット数を示す第1ビット数情報を含む。

Description

三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
 本開示は、三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置に関する。
 自動車或いはロボットが自律的に動作するためのコンピュータビジョン、マップ情報、監視、インフラ点検、又は、映像配信など、幅広い分野において、今後、三次元データを活用した装置又はサービスの普及が見込まれる。三次元データは、レンジファインダなどの距離センサ、ステレオカメラ、又は複数の単眼カメラの組み合わせなど様々な方法で取得される。
 三次元データの表現方法の1つとして、三次元空間内の点群によって三次元構造の形状を表すポイントクラウドと呼ばれる表現方法がある。ポイントクラウドでは、点群の位置と色とが格納される。ポイントクラウドは三次元データの表現方法として主流になると予想されるが、点群はデータ量が非常に大きい。よって、三次元データの蓄積又は伝送においては二次元の動画像(一例として、MPEGで規格化されたMPEG-4 AVC又はHEVCなどがある)と同様に、符号化によるデータ量の圧縮が必須となる。
 また、ポイントクラウドの圧縮については、ポイントクラウド関連の処理を行う公開のライブラリ(Point Cloud Library)などによって一部サポートされている。
 また、三次元の地図データを用いて、車両周辺に位置する施設を検索し、表示する技術が知られている(例えば、特許文献1参照)。
国際公開第2014/020663号
 三次元データの符号化処理及び復号処理では、点群データを適切に復号することができることが望まれている。
 本開示は、点群データを適切に復号することができる三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、又は三次元データ復号装置を提供することを目的とする。
 本開示の一態様に係る三次元データ符号化方法は、三次元点群を示す点群データを複数に分割した際の分割データ単位、及び、分割前の点群データ単位の少なくとも一方の符号化後の符号化データの第1最大ビット数を決定し、前記点群データが分割された複数の分割データ、又は、分割前の前記点群データを、決定した前記第1最大ビット数を満たすように符号化することでビットストリームを生成し、前記ビットストリームは、前記第1最大ビット数を示す第1ビット数情報を含む。
 本開示の一態様に係る三次元データ復号方法は、三次元点群を示す点群データを複数に分割した際の分割データ単位、及び、分割前の点群データ単位の少なくとも一方の符号化後のデータである符号化データと、前記符号化データの第1最大ビット数を示す第1ビット数情報とを含むビットストリームを取得し、取得した前記ビットストリームが前記第1ビット数情報で示される第1最大ビット数を満たしているか否かを判定し、前記ビットストリームが前記第1最大ビット数を満たしていると判定された場合、前記符号化データを復号する。
 なお、これらの全般的または具体的な態様は、システム、装置、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、装置、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
 本開示は、点群データを適切に復号することができる三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、又は三次元データ復号装置を提供できる。
図1は、実施の形態1に係る三次元データ符号化復号システムの構成を示す図である。 図2は、実施の形態1に係る点群データの構成例を示す図である。 図3は、実施の形態1に係る点群データ情報が記述されたデータファイルの構成例を示す図である。 図4は、実施の形態1に係る点群データの種類を示す図である。 図5は、実施の形態1に係る第1の符号化部の構成を示す図である。 図6は、実施の形態1に係る第1の符号化部のブロック図である。 図7は、実施の形態1に係る第1の復号部の構成を示す図である。 図8は、実施の形態1に係る第1の復号部のブロック図である。 図9は、実施の形態1に係る第2の符号化部の構成を示す図である。 図10は、実施の形態1に係る第2の符号化部のブロック図である。 図11は、実施の形態1に係る第2の復号部の構成を示す図である。 図12は、実施の形態1に係る第2の復号部のブロック図である。 図13は、実施の形態1に係るPCC符号化データに関わるプロトコルスタックを示す図である。 図14は、実施の形態2に係る符号化部及び多重化部の構成を示す図である。 図15は、実施の形態2に係る符号化データの構成例を示す図である。 図16は、実施の形態2に係る符号化データ及びNALユニットの構成例を示す図である。 図17は、実施の形態2に係るpcc_nal_unit_typeのセマンティクス例を示す図である。 図18は、実施の形態2に係るNALユニットの送出順序の例を示す図である。 図19は、実施の形態3に係る第1の符号化部のブロック図である。 図20は、実施の形態3に係る第1の復号部のブロック図である。 図21は、実施の形態3に係る分割部のブロック図である。 図22は、実施の形態3に係るスライス及びタイルの分割例を示す図である。 図23は、実施の形態3に係るスライス及びタイルの分割パターンの例を示す図である。 図24は、実施の形態3に係る依存関係の例を示す図である。 図25は、実施の形態3に係るデータの復号順の例を示す図である。 図26は、実施の形態3に係る符号化処理のフローチャートである。 図27は、実施の形態3に係る結合部のブロック図である。 図28は、実施の形態3に係る符号化データ及びNALユニットの構成例を示す図である。 図29は、実施の形態3に係る符号化処理のフローチャートである。 図30は、実施の形態3に係る復号処理のフローチャートである。 図31は、実施の形態4に係るタイル付加情報のシンタックス例を示す図である。 図32は、実施の形態4に係る符号化復号システムのブロック図である。 図33は、実施の形態4に係るスライス付加情報のシンタックス例を示す図である。 図34は、実施の形態4に係る符号化処理のフローチャートである。 図35は、実施の形態4に係る復号処理のフローチャートである。 図36は、実施の形態5に係る木構造の例を示す図である。 図37は、実施の形態5に係る8分木構造の符号化データのデータ構造の例を示す図である。 図38は、実施の形態5に係るペイロードのシンタックス例を示す図である。 図39は、実施の形態5に係る復号処理のフローチャートである。 図40は、実施の形態5に係るレベルと復号されるデータのとの関係を示す図である。 図41は、実施の形態5に係るレベルを示す模式図である。 図42は、実施の形態5に係るヘッダのシンタックス例を示す図である。 図43は、実施の形態5に係るペイロードのシンタックス例を示す図である。 図44は、実施の形態5に係る全体符号化データの構成を示す図である。 図45は、実施の形態5に係る全体符号化データの構成を示す図である。 図46は、実施の形態5に係る深さ情報のシンタックス例を示す図である。 図47は、実施の形態5に係る階層構造メタデータのシンタックス例を示す図である。 図48は、実施の形態5に係るヘッダのシンタックス例を示す図である。 図49は、実施の形態5に係る全体符号化データの構成を示す図である。 図50は、実施の形態5に係る階層情報のシンタックス例を示す図である。 図51は、実施の形態5に係る階層構造メタデータのシンタックス例を示す図である。 図52は、実施の形態5に係る全体符号化データのヘッダのシンタックス例を示す図である。 図53は、実施の形態5に係るビットストリームの構成例を示す図である。 図54は、実施の形態5に係る階層構造メタデータのシンタックス例を示す図である。 図55は、実施の形態5に係る位置情報及び属性情報の参照関係を示す図である。 図56は、実施の形態5に係る位置情報及び属性情報の参照関係を示す図である。 図57は、実施の形態5に係る位置情報及び属性情報の参照関係を示す図である。 図58は、実施の形態5に係るビットストリームの構成例を示す図である。 図59は、実施の形態5に係る三次元データ符号化装置の構成例を示す図である。 図60は、実施の形態5に係る三次元データ復号装置の構成例を示す図である。 図61は、実施の形態5に係るISOBMFFの基本構造を示す図である。 図62は、実施の形態5に係るPCCコーデック共通のNALユニットをISOBMFFに格納する場合のプロトコルスタック図である。 図63は、実施の形態5に係るビットストリームからファイルフォーマットへの変換処理を示す図である。 図64は、実施の形態5に係るフォーマット変換処理のフローチャートである。 図65は、実施の形態5に係る復号処理のフローチャートである。 図66は、実施の形態5に係るビットストリームからファイルフォーマットへの変換処理を示す図である。 図67は、実施の形態5に係る階層構造メタデータのシンタックス例を示す図である。 図68は、実施の形態5に係る分割処理を模式的に示す図である。 図69は、実施の形態5に係る階層情報を用いた変換処理のフローチャートである。 図70は、実施の形態5に係る階層情報を用いない変換処理のフローチャートである。 図71は、実施の形態5に係る階層データサンプルデータの復号処理のフローチャートである。 図72は、実施の形態5に係る全体符号化データの構成例を示す図である。 図73は、実施の形態5に係る全体符号化データの構成例を示す図である。 図74は、実施の形態5に係るビットストリームからファイルフォーマットへの変換処理を示す図である。 図75は、実施の形態5に係るフォーマット変換処理のフローチャートである。 図76は、実施の形態5に係る復号処理のフローチャートである。 図77は、実施の形態5に係る深さ情報のシンタックス例を示す図である。 図78は、実施の形態5に係るサンプルサイズボックスのシンタックス例を示す図である。 図79は、実施の形態5に係る階層情報のシンタックス例を示す図である。 図80は、実施の形態5に係るPCCLayerStructureBoxのシンタックス例を示す図である。 図81は、実施の形態5に係る抽出動作を模式的に示す図である。 図82は、実施の形態5に係るファイルフォーマットの例を示す図である。 図83は、実施の形態5に係る抽出されたビットストリームの例を示す図である。 図84は、実施の形態5に係る抽出されたビットストリームの例を示す図である。 図85は、実施の形態5に係る抽出されたビットストリームの例を示す図である。 図86は、実施の形態5に係るダイレクトモードの例を示す図である。 図87は、実施の形態5に係る三次元データ符号化処理のフローチャートである。 図88は、実施の形態5に係る三次元データ復号処理のフローチャートである。 図89は、実施の形態6に係る三次元データ符号化装置の構成の一例を示すブロック図である。 図90は、実施の形態6に係る三次元データ符号化方法の第1の例を示すフローチャートである。 図91は、実施の形態6に係る三次元データ復号装置の構成の一例を示すブロック図である。 図92は、実施の形態6に係る三次元データ復号方法の一例を示すフローチャートである。 図93は、実施の形態6に係る三次元データ符号化方法の第2の例を示すフローチャートである。 図94は、実施の形態6に係るバウンディングボックスの一例を示す図である。 図95は、実施の形態6に係る三次元データ復号方法の他の一例を示すフローチャートである。 図96は、実施の形態6に係る三次元データ符号化方法の第3の例を示すフローチャートである。 図97は、実施の形態6に係るビット数を減らす処理の一例である。 図98は、実施の形態6に係るビット数を減らす処理の他の一例である。 図99は、実施の形態6に係る三次元データ符号化方法の第4の例を示すフローチャートである。 図100は、実施の形態6に係るビット数を増やす処理の一例である。 図101は、実施の形態6に係るビット数を増やす処理の他の一例である。 図102は、実施の形態6に係る三次元データ符号化方法の第5の例を示すフローチャートである。 図103は、実施の形態6に係るコンフォーマンスの組み合わせの一例を示す図である。 図104は、実施の形態6に係る三次元データ符号化方法の第6の例を示すフローチャートである。 図105は、実施の形態6に係るコンフォーマンスの組み合わせの他の一例を示す図である。 図106は、実施の形態6に係るコンフォーマンスの組み合わせの他の一例を示す図である。 図107は、実施の形態6に係るSPS(Sequence Parameter Set)の一例(例1)を示す図である。 図108は、実施の形態6に係るSPSの一例(例2)を示す図である。 図109は、実施の形態6に係るGPS(Geometry Parameter Set)の一例(例3)を示す図である。 図110は、実施の形態6に係るビットストリームの構成を示す図である。 図111は、実施の形態6に係る、三次元点群の場所に応じてコンフォーマンスを切り替える場合の例について説明するための図である。 図112は、実施の形態6に係る三次元データ符号化処理の他の一例を示すフローチャートである。 図113は、実施の形態6に係る三次元データ復号処理の他の一例を示すフローチャートである。 図114は、実施の形態7に係る三次元データ作成装置のブロック図である。 図115は、実施の形態7に係る三次元データ作成方法のフローチャートである。 図116は、実施の形態7に係るシステムの構成を示す図である。 図117は、実施の形態7に係るクライアント装置のブロック図である。 図118は、実施の形態7に係るサーバのブロック図である。 図119は、実施の形態7に係るクライアント装置による三次元データ作成処理のフローチャートである。 図120は、実施の形態7に係るクライアント装置によるセンサ情報送信処理のフローチャートである。 図121は、実施の形態7に係るサーバによる三次元データ作成処理のフローチャートである。 図122は、実施の形態7に係るサーバによる三次元マップ送信処理のフローチャートである。 図123は、実施の形態7に係るシステムの変形例の構成を示す図である。 図124は、実施の形態7に係るサーバ及びクライアント装置の構成を示す図である。 図125は、実施の形態7に係るサーバ及びクライアント装置の構成を示す図である。 図126は、実施の形態7に係るクライアント装置による処理のフローチャートである。 図127は、実施の形態7に係るセンサ情報収集システムの構成を示す図である。 図128は、実施の形態7に係るシステムの例を示す図である。 図129は、実施の形態7に係るシステムの変形例を示す図である。 図130は、実施の形態7に係るアプリケーション処理の例を示すフローチャートである。 図131は、実施の形態7に係る各種センサのセンサ範囲を示す図である。 図132は、実施の形態7に係る自動運転システムの構成例を示す図である。 図133は、実施の形態7に係るビットストリームの構成例を示す図である。 図134は、実施の形態7に係る点群選択処理のフローチャートである。 図135は、実施の形態7に係る点群選択処理の画面例を示す図である。 図136は、実施の形態7に係る点群選択処理の画面例を示す図である。 図137は、実施の形態7に係る点群選択処理の画面例を示す図である。
 本開示の一態様に係る三次元データ符号化方法は、三次元点群を示す点群データを複数に分割した際の分割データ単位、及び、分割前の点群データ単位の少なくとも一方の符号化後の符号化データの第1最大ビット数を決定し、前記点群データが分割された複数の分割データ、又は、分割前の前記点群データを、決定した前記第1最大ビット数を満たすように符号化することでビットストリームを生成し、前記ビットストリームは、前記第1最大ビット数を示す第1ビット数情報を含む。
 これによれば、三次元データ符号化方法は、符号化後の符号化データの第1最大ビット数を示す第1ビット数情報を含むビットストリームを生成するため、三次元データ復号装置は、ビットストリームを解析しなくても適切に符号化データを復号できるかを判断できる。このため、三次元データ復号装置の処理負荷を低減することができる。
 例えば、前記点群データは、前記三次元点群の各三次元点の位置情報を含み、前記第1最大ビット数は、前記位置情報の符号化後のビット数に関し、前記生成では、前記点群データが分割された複数の分割データ、又は、分割前の前記点群データの位置情報を、決定した前記第1最大ビット数を満たすように符号化することで前記ビットストリームを生成してもよい。
 これによれば、三次元データ符号化方法は、符号化後の位置情報の第1最大ビット数を示す第1ビット数情報を含むビットストリームを生成するため、三次元データ復号装置は、ビットストリームを解析しなくても適切に位置情報を復号できるかを判断できる。
 例えば、さらに、前記分割データ単位、及び、前記点群データ単位の少なくとも一方に含まれる三次元点の数の範囲を決定し、前記生成では、前記点群データが分割された複数の分割データ、又は、分割前の前記点群データを、決定した前記第1最大ビット数及び前記数の範囲を満たすように符号化することで前記ビットストリームを生成し、前記ビットストリームは、さらに、前記数の範囲を示す範囲情報を含んでもよい。このため、三次元データ復号装置の処理負荷を低減することができる。
 これによれば、三次元データ符号化方法は、符号化データの三次元点の数の範囲を示す範囲情報を含むビットストリームを生成するため、三次元データ復号装置は、ビットストリームを解析しなくても適切に位置情報を復号できるかを判断できる。このため、三次元データ復号装置の処理負荷を低減することができる。
 例えば、前記点群データは、さらに、前記三次元点群の各三次元点の属性情報を含み、前記三次元データ符号化方法は、さらに、前記分割データ単位、及び、前記点群データ単位の少なくとも一方の三次元点群の属性情報の符号化後の第2最大ビット数を決定し、前記生成では、(i)前記点群データが分割された複数の分割データ、又は、分割前の前記点群データの位置情報を、決定した前記第1最大ビット数を満たすように符号化し、かつ、(ii)前記点群データが分割された複数の分割データ、又は、分割前の前記点群データの属性情報を、決定した前記第2最大ビット数を満たすように符号化することで、前記ビットストリームを生成し、前記ビットストリームは、さらに、前記第2最大ビット数を示す第2ビット数情報を含んでもよい。
 これによれば、三次元データ符号化方法は、符号化後の属性情報の第2最大ビット数を示す第2ビット数情報を含むビットストリームを生成するため、三次元データ復号装置は、ビットストリームを解析しなくても適切に属性情報を復号できるかを判断できる。このため、三次元データ復号装置の処理負荷を低減することができる。
 本開示の一態様に係る三次元データ復号方法は、三次元点群を示す点群データを複数に分割した際の分割データ単位、及び、分割前の点群データ単位の少なくとも一方の符号化後のデータである符号化データと、前記符号化データの第1最大ビット数を示す第1ビット数情報とを含むビットストリームを取得し、取得した前記ビットストリームが前記第1ビット数情報で示される第1最大ビット数を満たしているか否かを判定し、前記ビットストリームが前記第1最大ビット数を満たしていると判定された場合、前記符号化データを復号する。
 これによれば、三次元データ復号方法は、ビットストリームから符号化後の符号化データの第1最大ビット数を示す第1ビット数情報を取得するため、取得した第1ビット数情報に基づいて適切に点群データを復号することができる。
 例えば、前記復号では、前記ビットストリームが前記第1最大ビット数を満たしていないと判定された場合、前記符号化データを復号しなくてもよい。
 これによれば、適切に復号できないビットストリームの符号化データの復号処理を行わないため、処理負荷を低減することができる。
 例えば、前記点群データは、前記三次元点群の各三次元点の位置情報を含み、前記第1最大ビット数は、前記位置情報の符号化後のビット数に関してもよい。
 これによれば、三次元データ復号方法は、ビットストリームから符号化後の位置情報の第1最大ビット数を示す第1ビット数情報を取得するため、取得した第1ビット数情報に基づいて適切に点群データを復号することができる。
 例えば、前記ビットストリームは、さらに、前記分割データ単位、及び、前記点群データ単位の少なくとも一方に含まれる三次元点の数の範囲を示す範囲情報を含み、前記判定では、さらに、前記ビットストリームが前記範囲情報で示される前記数の範囲を満たしているか否かを判定し、前記復号では、前記ビットストリームが、前記第1最大ビット数を満たしており、かつ、前記数の範囲を満たしていると判定された場合、前記符号化データを復号し、前記ビットストリームが、前記第1最大ビット数を満たしていない、又は、前記数の範囲を満たしていないと判定された場合、前記符号化データを復号しなくてもよい。
 これによれば、三次元データ復号方法は、ビットストリームから符号化データの三次元点の数の範囲を示す範囲情報を取得するため、取得した範囲情報に基づいて適切に点群データを復号することができる。
 例えば、前記点群データは、さらに、前記三次元点群の各三次元点の属性情報を含み、前記ビットストリームは、さらに、前記分割データ単位、及び、前記点群データ単位の少なくとも一方の三次元点群の属性情報の符号化後の第2最大ビット数を示す第2ビット数情報を含み、前記判定では、さらに、前記ビットストリームが前記第2ビット数情報で示される前記第2最大ビット数を満たしているか否かを判定し、前記復号では、前記ビットストリームが、前記第1最大ビット数を満たしており、かつ、前記第2最大ビット数を満たしていると判定された場合、前記符号化データを復号し、前記ビットストリームが、第1最大ビット数を満たしていない、又は、前記第2最大ビット数を満たしていないと判定された場合、前記符号化データを復号しなくてもよい。
 これによれば、三次元データ復号方法は、ビットストリームから符号化後の属性情報の第2最大ビット数を示す第2ビット数情報を取得するため、取得した第2ビット数情報に基づいて適切に点群データを復号することができる。
 (実施の形態1)
 ポイントクラウドの符号化データを実際の装置又はサービスにおいて使用する際には、ネットワーク帯域を抑制するために用途に応じて必要な情報を送受信することが望ましい。しかしながら、これまで、三次元データの符号化構造にはそのような機能が存在せず、そのための符号化方法も存在しなかった。
 本実施の形態では、三次元のポイントクラウドの符号化データにおいて用途に応じて必要な情報を送受信する機能を提供するための三次元データ符号化方法及び三次元データ符号化装置、並びに、当該符号化データを復号する三次元データ復号方法及び三次元データ復号装置、並びに、当該符号化データを多重化する三次元データ多重化方法、並びに、当該符号化データを伝送する三次元データ伝送方法について説明する。
 特に、現在、点群データの符号化方法(符号化方式)として第1の符号化方法、及び第2の符号化方法が検討されているが、符号化データの構成、及び符号化データをシステムフォーマットへ格納する方法が定義されておらず、このままでは符号化部におけるMUX処理(多重化)、又は、伝送或いは蓄積ができないという課題がある。
 また、PCC(Point Cloud Compression)のように、第1の符号化方法と第2の符号化方法の2つのコーデックが混在するフォーマットをサポートする方法はこれまで存在しない。
 本実施の形態では、第1の符号化方法と第2の符号化方法の2つのコーデックが混在するPCC符号化データの構成、及び符号化データをシステムフォーマットへ格納する方法について説明する。
 まず、本実施の形態に係る三次元データ(点群データ)符号化復号システムの構成を説明する。図1は、本実施の形態に係る三次元データ符号化復号システムの構成例を示す図である。図1に示すように、三次元データ符号化復号システムは、三次元データ符号化システム4601と、三次元データ復号システム4602と、センサ端末4603と、外部接続部4604とを含む。
 三次元データ符号化システム4601は、三次元データである点群データを符号化することで符号化データ又は多重化データを生成する。なお、三次元データ符号化システム4601は、単一の装置により実現される三次元データ符号化装置であってもよいし、複数の装置により実現されるシステムであってもよい。また、三次元データ符号化装置は、三次元データ符号化システム4601に含まれる複数の処理部のうち一部を含んでもよい。
 三次元データ符号化システム4601は、点群データ生成システム4611と、提示部4612と、符号化部4613と、多重化部4614と、入出力部4615と、制御部4616とを含む。点群データ生成システム4611は、センサ情報取得部4617と、点群データ生成部4618とを含む。
 センサ情報取得部4617は、センサ端末4603からセンサ情報を取得し、センサ情報を点群データ生成部4618に出力する。点群データ生成部4618は、センサ情報から点群データを生成し、点群データを符号化部4613へ出力する。
 提示部4612は、センサ情報又は点群データをユーザに提示する。例えば、提示部4612は、センサ情報又は点群データに基づく情報又は画像を表示する。
 符号化部4613は、点群データを符号化(圧縮)し、得られた符号化データと、符号化過程において得られた制御情報と、その他の付加情報とを多重化部4614へ出力する。付加情報は、例えば、センサ情報を含む。
 多重化部4614は、符号化部4613から入力された符号化データと、制御情報と、付加情報とを多重することで多重化データを生成する。多重化データのフォーマットは、例えば蓄積のためのファイルフォーマット、又は伝送のためのパケットフォーマットである。
 入出力部4615(例えば、通信部又はインタフェース)は、多重化データを外部へ出力する。または、多重化データは、内部メモリ等の蓄積部に蓄積される。制御部4616(またはアプリ実行部)は、各処理部を制御する。つまり、制御部4616は、符号化及び多重化等の制御を行う。
 なお、センサ情報が符号化部4613又は多重化部4614へ入力されてもよい。また、入出力部4615は、点群データ又は符号化データをそのまま外部へ出力してもよい。
 三次元データ符号化システム4601から出力された伝送信号(多重化データ)は、外部接続部4604を介して、三次元データ復号システム4602に入力される。
 三次元データ復号システム4602は、符号化データ又は多重化データを復号することで三次元データである点群データを生成する。なお、三次元データ復号システム4602は、単一の装置により実現される三次元データ復号装置であってもよいし、複数の装置により実現されるシステムであってもよい。また、三次元データ復号装置は、三次元データ復号システム4602に含まれる複数の処理部のうち一部を含んでもよい。
 三次元データ復号システム4602は、センサ情報取得部4621と、入出力部4622と、逆多重化部4623と、復号部4624と、提示部4625と、ユーザインタフェース4626と、制御部4627とを含む。
 センサ情報取得部4621は、センサ端末4603からセンサ情報を取得する。
 入出力部4622は、伝送信号を取得し、伝送信号から多重化データ(ファイルフォーマット又はパケット)を復号し、多重化データを逆多重化部4623へ出力する。
 逆多重化部4623は、多重化データから符号化データ、制御情報及び付加情報を取得し、符号化データ、制御情報及び付加情報を復号部4624へ出力する。
 復号部4624は、符号化データを復号することで点群データを再構成する。
 提示部4625は、点群データをユーザに提示する。例えば、提示部4625は、点群データに基づく情報又は画像を表示する。ユーザインタフェース4626は、ユーザの操作に基づく指示を取得する。制御部4627(またはアプリ実行部)は、各処理部を制御する。つまり、制御部4627は、逆多重化、復号及び提示等の制御を行う。
 なお、入出力部4622は、点群データ又は符号化データをそのまま外部から取得してもよい。また、提示部4625は、センサ情報などの付加情報を取得し、付加情報に基づいた情報を提示してもよい。また、提示部4625は、ユーザインタフェース4626で取得されたユーザの指示に基づき、提示を行ってもよい。
 センサ端末4603は、センサで得られた情報であるセンサ情報を生成する。センサ端末4603は、センサ又はカメラを搭載した端末であり、例えば、自動車などの移動体、飛行機などの飛行物体、携帯端末、又はカメラなどがある。
 センサ端末4603で取得可能なセンサ情報は、例えば、(1)LIDAR、ミリ波レーダ、又は赤外線センサから得られる、センサ端末4603と対象物との距離、又は対象物の反射率、(2)複数の単眼カメラ画像又はステレオカメラ画像から得られるカメラと対象物との距離又は対象物の反射率等である。また、センサ情報は、センサの姿勢、向き、ジャイロ(角速度)、位置(GPS情報又は高度)、速度、又は加速度等を含んでもよい。また、センサ情報は、気温、気圧、湿度、又は磁気等を含んでもよい。
 外部接続部4604は、集積回路(LSI又はIC)、外部蓄積部、インターネットを介したクラウドサーバとの通信、又は、放送等により実現される。
 次に、点群データについて説明する。図2は、点群データの構成を示す図である。図3は、点群データの情報が記述されたデータファイルの構成例を示す図である。
 点群データは、複数の点のデータを含む。各点のデータは、位置情報(三次元座標)、及びその位置情報に対する属性情報とを含む。この点が複数集まったものを点群と呼ぶ。例えば、点群は対象物(オブジェクト)の三次元形状を示す。
 三次元座標等の位置情報(Position)をジオメトリ(geometry)と呼ぶこともある。また、各点のデータは、複数の属性種別の属性情報(attribute)を含んでもよい。属性種別は、例えば色又は反射率などである。
 1つの位置情報に対して1つの属性情報が対応付けられてもよいし、1つの位置情報に対して複数の異なる属性種別を持つ属性情報が対応付けられてもよい。また、1つの位置情報に対して同じ属性種別の属性情報が複数対応付けられてもよい。
 図3に示すデータファイルの構成例は、位置情報と属性情報とが1対1に対応する場合の例であり、点群データを構成するN個の点の位置情報と属性情報とを示している。
 位置情報は、例えば、x、y、zの3軸の情報である。属性情報は、例えば、RGBの色情報である。代表的なデータファイルとしてplyファイルなどがある。
 次に、点群データの種類について説明する。図4は、点群データの種類を示す図である。図4に示すように、点群データには、静的オブジェクトと、動的オブジェクトとがある。
 静的オブジェクトは、任意の時間(ある時刻)の三次元点群データである。動的オブジェクトは、時間的に変化する三次元点群データである。以降、ある時刻の三次元点群データをPCCフレーム、又はフレームと呼ぶ。
 オブジェクトは、通常の映像データのように、ある程度領域が制限されている点群であってもよいし、地図情報のように領域が制限されていない大規模点群であってもよい。
 また、様々な密度の点群データがあり、疎な点群データと、密な点群データとが存在してもよい。
 以下、各処理部の詳細について説明する。センサ情報は、LIDAR或いはレンジファインダなどの距離センサ、ステレオカメラ、又は、複数の単眼カメラの組合せなど様々な方法で取得される。点群データ生成部4618は、センサ情報取得部4617で得られたセンサ情報に基づき点群データを生成する。点群データ生成部4618は、点群データとして、位置情報を生成し、位置情報に、当該位置情報に対する属性情報を付加する。
 点群データ生成部4618は、位置情報の生成又は属性情報の付加の際に、点群データを加工してもよい。例えば、点群データ生成部4618は、位置が重複する点群を削除することでデータ量を減らしてもよい。また、点群データ生成部4618は、位置情報を変換(位置シフト、回転又は正規化など)してもよいし、属性情報をレンダリングしてもよい。
 なお、図1では、点群データ生成システム4611は、三次元データ符号化システム4601に含まれるが、三次元データ符号化システム4601の外部に独立して設けられてもよい。
 符号化部4613は、点群データを予め規定された符号化方法に基づき符号化することで符号化データを生成する。符号化方法には大きく以下の2種類がある。一つ目は、位置情報を用いた符号化方法であり、この符号化方法を、以降、第1の符号化方法と記載する。二つ目は、ビデオコーデックを用いた符号化方法であり、この符号化方法を、以降、第2の符号化方法と記載する。
 復号部4624は、符号化データを予め規定された符号化方法に基づき復号することで点群データを復号する。
 多重化部4614は、符号化データを、既存の多重化方式を用いて多重化することで多重化データを生成する。生成された多重化データは、伝送又は蓄積される。多重化部4614は、PCC符号化データの他に、映像、音声、字幕、アプリケーション、ファイルなどの他のメディア、又は基準時刻情報を多重化する。また、多重化部4614は、さらに、センサ情報又は点群データに関連する属性情報を多重してもよい。
 多重化方式又はファイルフォーマットとしては、ISOBMFF、ISOBMFFベースの伝送方式であるMPEG-DASH、MMT、MPEG-2 TS Systems、RMPなどがある。
 逆多重化部4623は、多重化データからPCC符号化データ、その他のメディア、及び時刻情報などを抽出する。
 入出力部4615は、多重化データを、放送又は通信など、伝送する媒体又は蓄積する媒体にあわせた方法を用いて伝送する。入出力部4615は、インターネット経由で他のデバイスと通信してもよいし、クラウドサーバなどの蓄積部と通信してもよい。
 通信プロトコルとしては、http、ftp、TCP又はUDPなどが用いられる。PULL型の通信方式が用いられてもよいし、PUSH型の通信方式が用いられてもよい。
 有線伝送及び無線伝送のいずれが用いられてもよい。有線伝送としては、Ethernet(登録商標)、USB、RS-232C、HDMI(登録商標)、又は同軸ケーブルなどが用いられる。無線伝送としては、無線LAN、Wi-Fi(登録商標)、Bluetooth(登録商標)又はミリ波などが用いられる。
 また、放送方式としては、例えばDVB-T2、DVB-S2、DVB-C2、ATSC3.0、又はISDB-S3などが用いられる。
 図5は、第1の符号化方法の符号化を行う符号化部4613の例である第1の符号化部4630の構成を示す図である。図6は、第1の符号化部4630のブロック図である。第1の符号化部4630は、点群データを第1の符号化方法で符号化することで符号化データ(符号化ストリーム)を生成する。この第1の符号化部4630は、位置情報符号化部4631と、属性情報符号化部4632と、付加情報符号化部4633と、多重化部4634とを含む。
 第1の符号化部4630は、三次元構造を意識して符号化を行うという特徴を有する。また、第1の符号化部4630は、属性情報符号化部4632が、位置情報符号化部4631から得られる情報を用いて符号を行うという特徴を有する。第1の符号化方法は、GPCC(Geometry based PCC)とも呼ばれる。
 点群データは、PLYファイルのようなPCC点群データ、又は、センサ情報から生成されたPCC点群データであり、位置情報(Position)、属性情報(Attribute)、及びその他の付加情報(MetaData)を含む。位置情報は位置情報符号化部4631に入力され、属性情報は属性情報符号化部4632に入力され、付加情報は付加情報符号化部4633に入力される。
 位置情報符号化部4631は、位置情報を符号化することで符号化データである符号化位置情報(Compressed Geometry)を生成する。例えば、位置情報符号化部4631は、8分木等のN分木構造を用いて位置情報を符号化する。具体的には、8分木では、対象空間が8個のノード(サブ空間)に分割され、各ノードに点群が含まれるか否かを示す8ビットの情報(オキュパンシー符号)が生成される。また、点群が含まれるノードは、さらに、8個のノードに分割され、当該8個のノードの各々に点群が含まれるか否かを示す8ビットの情報が生成される。この処理が、予め定められた階層又はノードに含まれる点群の数の閾値以下になるまで繰り返される。
 属性情報符号化部4632は、位置情報符号化部4631で生成された構成情報を用いて符号化することで符号化データである符号化属性情報(Compressed Attribute)を生成する。例えば、属性情報符号化部4632は、位置情報符号化部4631で生成された8分木構造に基づき、処理対象の対象点(対象ノード)の符号化において参照する参照点(参照ノード)を決定する。例えば、属性情報符号化部4632は、周辺ノード又は隣接ノードのうち、8分木における親ノードが対象ノードと同一のノードを参照する。なお、参照関係の決定方法はこれに限らない。
 また、属性情報の符号化処理は、量子化処理、予測処理、及び算術符号化処理のうち少なくとも一つを含んでもよい。この場合、参照とは、属性情報の予測値の算出に参照ノードを用いること、又は、符号化のパラメータの決定に参照ノードの状態(例えば、参照ノードに点群が含まれる否かを示す占有情報)を用いること、である。例えば、符号化のパラメータとは、量子化処理における量子化パラメータ、又は算術符号化におけるコンテキスト等である。
 付加情報符号化部4633は、付加情報のうち、圧縮可能なデータを符号化することで符号化データである符号化付加情報(Compressed MetaData)を生成する。
 多重化部4634は、符号化位置情報、符号化属性情報、符号化付加情報及びその他の付加情報を多重化することで符号化データである符号化ストリーム(Compressed Stream)を生成する。生成された符号化ストリームは、図示しないシステムレイヤの処理部へ出力される。
 次に、第1の符号化方法の復号を行う復号部4624の例である第1の復号部4640について説明する。図7は、第1の復号部4640の構成を示す図である。図8は、第1の復号部4640のブロック図である。第1の復号部4640は、第1の符号化方法で符号化された符号化データ(符号化ストリーム)を、第1の符号化方法で復号することで点群データを生成する。この第1の復号部4640は、逆多重化部4641と、位置情報復号部4642と、属性情報復号部4643と、付加情報復号部4644とを含む。
 図示しないシステムレイヤの処理部から符号化データである符号化ストリーム(Compressed Stream)が第1の復号部4640に入力される。
 逆多重化部4641は、符号化データから、符号化位置情報(Compressed Geometry)、符号化属性情報(Compressed Attribute)、符号化付加情報(Compressed MetaData)、及び、その他の付加情報を分離する。
 位置情報復号部4642は、符号化位置情報を復号することで位置情報を生成する。例えば、位置情報復号部4642は、8分木等のN分木構造で表される符号化位置情報から三次元座標で表される点群の位置情報を復元する。
 属性情報復号部4643は、位置情報復号部4642で生成された構成情報に基づき、符号化属性情報を復号する。例えば、属性情報復号部4643は、位置情報復号部4642で得られた8分木構造に基づき、処理対象の対象点(対象ノード)の復号において参照する参照点(参照ノード)を決定する。例えば、属性情報復号部4643は、周辺ノード又は隣接ノードのうち、8分木における親ノードが対象ノードと同一のノードを参照する。なお、参照関係の決定方法はこれに限らない。
 また、属性情報の復号処理は、逆量子化処理、予測処理、及び算術復号処理のうち少なくとも一つを含んでもよい。この場合、参照とは、属性情報の予測値の算出に参照ノードを用いること、又は、復号のパラメータの決定に参照ノードの状態(例えば、参照ノードに点群が含まれる否かを示す占有情報)を用いること、である。例えば、復号のパラメータとは、逆量子化処理における量子化パラメータ、又は算術復号におけるコンテキスト等である。
 付加情報復号部4644は、符号化付加情報を復号することで付加情報を生成する。また、第1の復号部4640は、位置情報及び属性情報の復号処理に必要な付加情報を復号時に使用し、アプリケーションに必要な付加情報を外部に出力する。
 次に、第2の符号化方法の符号化を行う符号化部4613の例である第2の符号化部4650について説明する。図9は、第2の符号化部4650の構成を示す図である。図10は、第2の符号化部4650のブロック図である。
 第2の符号化部4650は、点群データを第2の符号化方法で符号化することで符号化データ(符号化ストリーム)を生成する。この第2の符号化部4650は、付加情報生成部4651と、位置画像生成部4652と、属性画像生成部4653と、映像符号化部4654と、付加情報符号化部4655と、多重化部4656とを含む。
 第2の符号化部4650は、三次元構造を二次元画像に投影することで位置画像及び属性画像を生成し、生成した位置画像及び属性画像を既存の映像符号化方式を用いて符号化するという特徴を有する。第2の符号化方法は、VPCC(Video based PCC)とも呼ばれる。
 点群データは、PLYファイルのようなPCC点群データ、又は、センサ情報から生成されたPCC点群データであり、位置情報(Position)、属性情報(Attribute)、及びその他の付加情報MetaData)を含む。
 付加情報生成部4651は、三次元構造を二次元画像に投影することで、複数の二次元画像のマップ情報を生成する。
 位置画像生成部4652は、位置情報と、付加情報生成部4651で生成されたマップ情報とに基づき、位置画像(Geometry Image)を生成する。この位置画像は、例えば、画素値として距離(Depth)が示される距離画像である。なお、この距離画像は、一つの視点から複数の点群を見た画像(一つの二次元平面に複数の点群を投影した画像)であってもよいし、複数の視点から複数の点群を見た複数の画像であってもよいし、これらの複数の画像を統合した一つの画像であってもよい。
 属性画像生成部4653は、属性情報と、付加情報生成部4651で生成されたマップ情報とに基づき、属性画像を生成する。この属性画像は、例えば、画素値として属性情報(例えば色(RGB))が示される画像である。なお、この画像は、一つの視点から複数の点群を見た画像(一つの二次元平面に複数の点群を投影した画像)であってもよいし、複数の視点から複数の点群を見た複数の画像であってもよいし、これらの複数の画像を統合した一つの画像であってもよい。
 映像符号化部4654は、位置画像及び属性画像を、映像符号化方式を用いて符号化することで、符号化データである符号化位置画像(Compressed Geometry Image)及び符号化属性画像(Compressed Attribute Image)を生成する。なお、映像符号化方式として、公知の任意の符号化方法が用いられてよい。例えば、映像符号化方式は、AVC又はHEVC等である。
 付加情報符号化部4655は、点群データに含まれる付加情報、及びマップ情報等を符号化することで符号化付加情報(Compressed MetaData)を生成する。
 多重化部4656は、符号化位置画像、符号化属性画像、符号化付加情報、及び、その他の付加情報を多重化することで符号化データである符号化ストリーム(Compressed Stream)を生成する。生成された符号化ストリームは、図示しないシステムレイヤの処理部へ出力される。
 次に、第2の符号化方法の復号を行う復号部4624の例である第2の復号部4660について説明する。図11は、第2の復号部4660の構成を示す図である。図12は、第2の復号部4660のブロック図である。第2の復号部4660は、第2の符号化方法で符号化された符号化データ(符号化ストリーム)を、第2の符号化方法で復号することで点群データを生成する。この第2の復号部4660は、逆多重化部4661と、映像復号部4662と、付加情報復号部4663と、位置情報生成部4664と、属性情報生成部4665とを含む。
 図示しないシステムレイヤの処理部から符号化データである符号化ストリーム(Compressed Stream)が第2の復号部4660に入力される。
 逆多重化部4661は、符号化データから、符号化位置画像(Compressed Geometry Image)、符号化属性画像(Compressed Attribute Image)、符号化付加情報(Compressed MetaData)、及び、その他の付加情報を分離する。
 映像復号部4662は、符号化位置画像及び符号化属性画像を、映像符号化方式を用いて復号することで、位置画像及び属性画像を生成する。なお、映像符号化方式として、公知の任意の符号化方式が用いられてよい。例えば、映像符号化方式は、AVC又はHEVC等である。
 付加情報復号部4663は、符号化付加情報を復号することで、マップ情報等を含む付加情報を生成する。
 位置情報生成部4664は、位置画像とマップ情報とを用いて位置情報を生成する。属性情報生成部4665は、属性画像とマップ情報とを用いて属性情報を生成する。
 第2の復号部4660は、復号に必要な付加情報を復号時に使用し、アプリケーションに必要な付加情報を外部に出力する。
 以下、PCC符号化方式における課題を説明する。図13は、PCC符号化データに関わるプロトコルスタックを示す図である。図13には、PCC符号化データに、映像(例えばHEVC)又は音声などの他のメディアのデータを多重し、伝送又は蓄積する例を示す。
 多重化方式及びファイルフォーマットは、様々な符号化データを多重し、伝送又は蓄積するための機能を有している。符号化データを伝送又は蓄積するためには、符号化データを多重化方式のフォーマットに変換しなければならない。例えば、HEVCでは、NALユニットと呼ばれるデータ構造に符号化データを格納し、NALユニットをISOBMFFに格納する技術が規定されている。
 一方、現在、点群データの符号化方法として第1の符号化方法(Codec1)、及び第2の符号化方法(Codec2)が検討されているが、符号化データの構成、及び符号化データをシステムフォーマットへ格納する方法が定義されておらず、このままでは符号化部におけるMUX処理(多重化)、伝送及び蓄積ができないという課題がある。
 なお、以降において、特定の符号化方法の記載がなければ、第1の符号化方法、及び第2の符号化方法のいずれかを示すものとする。
 (実施の形態2)
 本実施の形態では、上述した第1の符号化部4630、又は第2の符号化部4650で生成される符号化データ(位置情報(Geometry)、属性情報(Attribute)、付加情報(Metadata))の種別、及び付加情報(メタデータ)の生成方法、及び多重化部における多重処理について説明する。なお、付加情報(メタデータ)は、パラメータセット、又は制御情報と表記することもある。
 本実施の形態では、図4で説明した動的オブジェクト(時間的に変化する三次元点群データ)を例に説明するが、静的オブジェクト(任意の時刻の三次元点群データ)の場合でも同様の方法を用いてもよい。
 図14は、本実施の形態に係る三次元データ符号化装置に含まれる符号化部4801及び多重化部4802の構成を示す図である。符号化部4801は、例えば、上述した第1の符号化部4630又は第2の符号化部4650に対応する。多重化部4802は、上述した多重化部4634又は4656に対応する。
 符号化部4801は、複数のPCC(Point Cloud Compression)フレームの点群データを符号化し、複数の位置情報、属性情報及び付加情報の符号化データ(Multiple Compressed Data)を生成する。
 多重化部4802は、複数のデータ種別(位置情報、属性情報及び付加情報)のデータをNALユニット化することで、データを復号装置におけるデータアクセスを考慮したデータ構成に変換する。
 図15は、符号化部4801で生成される符号化データの構成例を示す図である。図中の矢印は符号化データの復号に係る依存関係を示しており、矢印の元は矢印の先のデータに依存している。つまり、復号装置は、矢印の先のデータを復号し、その復号したデータを用いて矢印の元のデータを復号する。言い換えると、依存するとは、依存元のデータの処理(符号化又は復号等)において依存先のデータが参照(使用)されることを意味する。
 まず、位置情報の符号化データの生成処理について説明する。符号化部4801は、各フレームの位置情報を符号化することで、フレーム毎の符号化位置データ(Compressed Geometry Data)を生成する。また、符号化位置データをG(i)で表す。iはフレーム番号、又はフレームの時刻等を示す。
 また、符号化部4801は、各フレームに対応する位置パラメータセット(GPS(i))を生成する。位置パラメータセットは、符号化位置データの復号に使用することが可能なパラメータを含む。また、フレーム毎の符号化位置データは、対応する位置パラメータセットに依存する。
 また、複数フレームから成る符号化位置データを位置シーケンス(Geometry Sequence)と定義する。符号化部4801は、位置シーケンス内の複数のフレームに対する復号処理に共通に使用するパラメータを格納する位置シーケンスパラメータセット(Geometry Sequence PS:位置SPSとも記す)を生成する。位置シーケンスは、位置SPSに依存する。
 次に、属性情報の符号化データの生成処理について説明する。符号化部4801は、各フレームの属性情報を符号化することで、フレーム毎の符号化属性データ(Compressed Attribute Data)を生成する。また、符号化属性データをA(i)で表す。また、図15では、属性Xと属性Yとが存在する例を示しており、属性Xの符号化属性データをAX(i)で表し、属性Yの符号化属性データをAY(i)で表す。
 また、符号化部4801は、各フレームに対応する属性パラメータセット(APS(i))を生成する。また、属性Xの属性パラメータセットをAXPS(i)で表し、属性Yの属性パラメータセットをAYPS(i)で表す。属性パラメータセットは、符号化属性情報の復号に使用することが可能なパラメータを含む。符号化属性データは、対応する属性パラメータセットに依存する。
 また、複数フレームから成る符号化属性データを属性シーケンス(Attribute Sequence)と定義する。符号化部4801は、属性シーケンス内の複数のフレームに対する復号処理に共通に使用するパラメータを格納する属性シーケンスパラメータセット(Attribute Sequence PS:属性SPSとも記す)を生成する。属性シーケンスは、属性SPSに依存する。
 また、第1の符号化方法では、符号化属性データは符号化位置データに依存する。
 また、図15では2種類の属性情報(属性Xと属性Y)が存在する場合の例を示している。2種類の属性情報がある場合は、例えば、2つの符号化部により、それぞれのデータ及びメタデータが生成される。また、例えば、属性情報の種類毎に属性シーケンスが定義され、属性情報の種類毎に属性SPSが生成される。
 なお、図15では、位置情報が1種類、属性情報が2種類である例を示しているが、これに限らず、属性情報は1種類であってもよいし、3種類以上であってもよい。この場合も、同様の方法で符号化データを生成できる。また、属性情報を持たない点群データの場合は、属性情報はなくてもよい。その場合は、符号化部4801は、属性情報に関連するパラメータセットを生成しなくてもよい。
 次に、付加情報(メタデータ)の生成処理について説明する。符号化部4801は、PCCストリーム全体のパラメータセットであるPCCストリームPS(PCC Stream PS:ストリームPSとも記す)を生成する。符号化部4801は、ストリームPSに、1又は複数の位置シーケンス及び1又は複数の属性シーケンスに対する復号処理に共通に使用することができるパラメータを格納する。例えば、ストリームPSには、点群データのコーデックを示す識別情報、及び符号化に使用されたアルゴリズムを示す情報等が含まれる。位置シーケンス及び属性シーケンスはストリームPSに依存する。
 次に、アクセスユニット及びGOFについて説明する。本実施の形態では、新たにアクセスユニット(Access Unit:AU)、及びGOF(Group of Frame)の考え方を導入する。
 アクセスユニットは、復号時にデータにアクセスするため基本単位であり、1つ以上のデータ及び1つ以上のメタデータで構成される。例えば、アクセスユニットは、同一時刻の位置情報と1又は複数の属性情報とで構成される。GOFは、ランダムアクセス単位であり、1つ以上のアクセスユニットで構成される。
 符号化部4801は、アクセスユニットの先頭を示す識別情報として、アクセスユニットヘッダ(AU Header)を生成する。符号化部4801は、アクセスユニットヘッダに、アクセスユニットに係るパラメータを格納する。例えば、アクセスユニットヘッダは、アクセスユニットに含まれる符号化データの構成又は情報を含む。また、アクセスユニットヘッダは、アクセスユニットに含まれるデータに共通に用いられるパラメータ、例えば、符号化データの復号に係るパラメータなどを含む。
 なお、符号化部4801は、アクセスユニットヘッダの代わりに、アクセスユニットに係るパラメータを含まないアクセスユニットデリミタを生成してもよい。このアクセスユニットデリミタは、アクセスユニットの先頭を示す識別情報として用いられる。復号装置は、アクセスユニットヘッダ又はアクセスユニットデリミタを検出することにより、アクセスユニットの先頭を識別する。
 次に、GOF先頭の識別情報の生成について説明する。符号化部4801は、GOFの先頭を示す識別情報として、GOFヘッダ(GOF Header)を生成する。符号化部4801は、GOFヘッダに、GOFに係るパラメータを格納する。例えば、GOFヘッダは、GOFに含まれる符号化データの構成又は情報を含む。また、GOFヘッダは、GOFに含まれるデータに共通に用いられるパラメータ、例えば、符号化データの復号に係るパラメータなどを含む。
 なお、符号化部4801は、GOFヘッダの代わりに、GOFに係るパラメータを含まないGOFデリミタを生成してもよい。このGOFデリミタは、GOFの先頭を示す識別情報として用いられる。復号装置は、GOFヘッダ又はGOFデリミタを検出することにより、GOFの先頭を識別する。
 PCC符号化データにおいて、例えば、アクセスユニットはPCCフレーム単位であると定義される。復号装置は、アクセスユニット先頭の識別情報に基づき、PCCフレームにアクセスする。
 また、例えば、GOFは1つのランダムアクセス単位であると定義される。復号装置は、GOF先頭の識別情報に基づき、ランダムアクセス単位にアクセスする。例えば、PCCフレームが互いに依存関係がなく、単独で復号可能であれば、PCCフレームをランダムアクセス単位と定義してもよい。
 なお、1つのアクセスユニットに2つ以上のPCCフレームが割り当てられてもよいし、1つのGOFに複数のランダムアクセス単位が割り当てられてもよい。
 また、符号化部4801は、上記以外のパラメータセット又はメタデータを定義し、生成してもよい。例えば、符号化部4801は、復号時に必ずしも用いない可能性のあるパラメータ(オプションのパラメータ)を格納するSEI(Supplemental Enhancement Information)を生成してもよい。
 次に、符号化データの構成、及び符号化データのNALユニットへの格納方法を説明する。
 例えば、符号化データの種類毎にデータフォーマットが規定される。図16は、符号化データ及びNALユニットの例を示す図である。
 例えば、図16に示すように符号化データは、ヘッダとペイロードとを含む。なお、符号化データは、符号化データ、ヘッダ又はペイロードの長さ(データ量)を示す長さ情報を含んでもよい。また、符号化データは、ヘッダを含まなくてもよい。
 ヘッダは、例えば、データを特定するための識別情報を含む。この識別情報は、例えば、データ種別又はフレーム番号を示す。
 ヘッダは、例えば、参照関係を示す識別情報を含む。この識別情報は、例えば、データ間に依存関係がある場合にヘッダに格納され、参照元から参照先を参照するための情報である。例えば、参照先のヘッダには、当該データを特定するための識別情報が含まれる。参照元のヘッダには、参照先を示す識別情報が含まれる。
 なお、他の情報から参照先又は参照元を識別可能又は導出可能である場合は、データを特定するための識別情報、又は参照関係を示す識別情報を省略してもよい。
 多重化部4802は、符号化データを、NALユニットのペイロードに格納する。NALユニットヘッダには、符号化データの識別情報であるpcc_nal_unit_typeが含まれる。図17は、pcc_nal_unit_typeのセマンティクスの例を示す図である。
 図17に示すように、pcc_codec_typeがコーデック1(Codec1:第1の符号化方法)である場合、pcc_nal_unit_typeの値0~10は、コーデック1における、符号化位置データ(Geometry)、符号化属性Xデータ(AttributeX)、符号化属性Yデータ(AttributeY)、位置PS(Geom.PS)、属性XPS(AttrX.PS)、属性YPS(AttrX.PS)、位置SPS(Geometry Sequence PS)、属性XSPS(AttributeX Sequence PS)、属性YSPS(AttributeY Sequence PS)、AUヘッダ(AU Header)、GOFヘッダ(GOF Header)に割り当てられる。また、値11以降は、コーデック1の予備に割り当てられる。
 pcc_codec_typeがコーデック2(Codec2:第2の符号化方法)である場合、pcc_nal_unit_typeの値0~2は、コーデックのデータA(DataA)、メタデータA(MetaDataA)、メタデータB(MetaDataB)に割り当てられる。また、値3以降は、コーデック2の予備に割り当てられる。
 次に、データの送出順序について説明する。以下、NALユニットの送出順序の制約について説明する。
 多重化部4802は、NALユニットをGOF又はAU単位でまとめて送出する。多重化部4802は、GOFの先頭にGOFヘッダを配置し、AUの先頭にAUヘッダを配置する。
 パケットロスなどでデータが失われた場合でも、復号装置が次のAUから復号できるように、多重化部4802は、シーケンスパラメータセット(SPS)を、AU毎に配置してもよい。
 符号化データに復号に係る依存関係がある場合には、復号装置は、参照先のデータを復号した後に、参照元のデータを復号する。復号装置において、データを並び替ることなく、受信した順番に復号できるようにするために、多重化部4802は、参照先のデータを先に送出する。
 図18は、NALユニットの送出順の例を示す図である。図18は、位置情報優先と、パラメータ優先と、データ統合との3つの例を示す。
 位置情報優先の送出順序は、位置情報に関する情報と、属性情報に関する情報との各々をまとめて送出する例である。この送出順序の場合、位置情報に関する情報の送出が属性情報に関する情報の送出よりも早く完了する。
 例えば、この送出順序を用いることで、属性情報を復号しない復号装置は、属性情報の復号を無視することで、処理しない時間を設けることができる可能性がある。また、例えば、位置情報を早く復号したい復号装置の場合、位置情報の符号化データを早く得ることにより、より早く位置情報を復号することができる可能性がある。
 なお、図18では、属性XSPSと属性YSPSを統合し、属性SPSと記載しているが、属性XSPSと属性YSPSとを個別に配置してもよい。
 パラメータセット優先の送出順序では、パラメータセットが先に送出され、データが後で送出される。
 以上のようにNALユニット送出順序の制約に従えば、多重化部4802は、NALユニットをどのような順序で送出してもよい。例えば、順序識別情報が定義され、多重化部4802は、複数パターンの順序でNALユニットを送出する機能を有してもよい。例えばストリームPSにNALユニットの順序識別情報が格納される。
 三次元データ復号装置は、順序識別情報に基づき復号を行ってもよい。三次元データ復号装置から三次元データ符号化装置に所望の送出順序が指示され、三次元データ符号化装置(多重化部4802)は、指示された送出順序に従って送出順序を制御してもよい。
 なお、多重化部4802は、データ統合の送出順序のように、送出順序の制約に従う範囲であれば、複数の機能をマージした符号化データを生成してもよい。例えば、図18に示すように、GOFヘッダとAUヘッダとを統合してもよいし、AXPSとAYPSとを統合してもよい。この場合、pcc_nal_unit_typeには、複数の機能を有するデータであることを示す識別子が定義される。
 以下、本実施の形態の変形例について説明する。フレームレベルのPS、シーケンスレベルのPS、PCCシーケンスレベルのPSのように、PSにはレベルがあり、PCCシーケンスレベルを上位のレベルとし、フレームレベルを下位のレベルとすると、パラメータの格納方法には下記の方法を用いてもよい。
 デフォルトのPSの値をより上位のPSで示す。また、下位のPSの値が上位のPSの値と異なる場合には、下位のPSでPSの値が示される。または、上位ではPSの値を記載せず、下位のPSにPSの値を記載する。または、PSの値を、下位のPSで示すか、上位のPSで示すか、両方で示すかの情報を、下位のPSと上位のPSのいずれか一方又は両方に示す。または、下位のPSを上位のPSにマージしてもよい。または、下位のPSと上位のPSとが重複する場合には、多重化部4802は、いずれか一方の送出を省略してもよい。
 なお、符号化部4801又は多重化部4802は、データをスライス又はタイルなどに分割し、分割したデータを送出してもよい。分割したデータには、分割したデータを識別するための情報が含まれ、分割データの復号に使用するパラメータがパラメータセットに含まれる。この場合、pcc_nal_unit_typeには、タイル又はスライスに係るデータ又はパラメータを格納するデータであることを示す識別子が定義される。
 (実施の形態3)
 HEVC符号化では復号装置における並列処理を可能とするために、スライス又はタイルといったデータ分割のツールがあるが、PCC(Point Cloud Compression)符号化ではまだない。
 PCCでは、並列処理、圧縮効率、及び圧縮アルゴリズムによって、様々なデータ分割方法が考えられる。ここでは、スライス及びタイルの定義、データ構造及び送受信方法について説明する。
 図19は、本実施の形態に係る三次元データ符号化装置に含まれる第1の符号化部4910の構成を示すブロック図である。第1の符号化部4910は、点群データを第1の符号化方法(GPCC(Geometry based PCC))で符号化することで符号化データ(符号化ストリーム)を生成する。この第1の符号化部4910は、分割部4911と、複数の位置情報符号化部4912と、複数の属性情報符号化部4913と、付加情報符号化部4914と、多重化部4915とを含む。
 分割部4911は、点群データを分割することで複数の分割データを生成する。具体的には、分割部4911は、点群データの空間を複数のサブ空間に分割することで複数の分割データを生成する。ここでサブ空間とは、タイル及びスライスの一方、又はタイル及びスライスの組み合わせである。より具体的には、点群データは、位置情報、属性情報、及び付加情報を含む。分割部4911は、位置情報を複数の分割位置情報に分割し、属性情報を複数の分割属性情報に分割する。また、分割部4911は、分割に関する付加情報を生成する。
 複数の位置情報符号化部4912は、複数の分割位置情報を符号化することで複数の符号化位置情報を生成する。例えば、複数の位置情報符号化部4912は、複数の分割位置情報を並列処理する。
 複数の属性情報符号化部4913は、複数の分割属性情報を符号化することで複数の符号化属性情報を生成する。例えば、複数の属性情報符号化部4913は、複数の分割属性情報を並列処理する。
 付加情報符号化部4914は、点群データに含まれる付加情報と、分割部4911で分割時に生成された、データ分割に関する付加情報とを符号化することで符号化付加情報を生成する。
 多重化部4915は、複数の符号化位置情報、複数の符号化属性情報及び符号化付加情報を多重化することで符号化データ(符号化ストリーム)を生成し、生成した符号化データを送出する。また、符号化付加情報は復号時に使用される。
 なお、図19では、位置情報符号化部4912及び属性情報符号化部4913の数がそれぞれ2つの例を示しているが、位置情報符号化部4912及び属性情報符号化部4913の数は、それぞれ1つであってもよいし、3つ以上であってもよい。また、複数の分割データは、CPU内の複数コアのように同一チップ内で並列処理されてもよいし、複数のチップのコアで並列処理されてもよいし、複数チップの複数コアで並列処理されてもよい。
 図20は、第1の復号部4920の構成を示すブロック図である。第1の復号部4920は、点群データが第1の符号化方法(GPCC)で符号化されることで生成された符号化データ(符号化ストリーム)を復号することで点群データを復元する。この第1の復号部4920は、逆多重化部4921と、複数の位置情報復号部4922と、複数の属性情報復号部4923と、付加情報復号部4924と、結合部4925とを含む。
 逆多重化部4921は、符号化データ(符号化ストリーム)を逆多重化することで複数の符号化位置情報、複数の符号化属性情報及び符号化付加情報を生成する。
 複数の位置情報復号部4922は、複数の符号化位置情報を復号することで複数の分割位置情報を生成する。例えば、複数の位置情報復号部4922は、複数の符号化位置情報を並列処理する。
 複数の属性情報復号部4923は、複数の符号化属性情報を復号することで複数の分割属性情報を生成する。例えば、複数の属性情報復号部4923は、複数の符号化属性情報を並列処理する。
 複数の付加情報復号部4924は、符号化付加情報を復号することで付加情報を生成する。
 結合部4925は、付加情報を用いて複数の分割位置情報を結合することで位置情報を生成する。結合部4925は、付加情報を用いて複数の分割属性情報を結合することで属性情報を生成する。
 なお、図20では、位置情報復号部4922及び属性情報復号部4923の数がそれぞれ2つの例を示しているが、位置情報復号部4922及び属性情報復号部4923の数は、それぞれ1つであってもよし、3つ以上であってもよい。また、複数の分割データは、CPU内の複数コアのように同一チップ内で並列処理されてもよいし、複数のチップのコアで並列処理されてもよい、複数チップの複数コアで並列処理されてもよい。
 次に、分割部4911の構成を説明する。図21は、分割部4911のブロック図である。分割部4911は、スライス分割部4931(Slice Divider)と、位置情報タイル分割部4932(Geometry Tile Divider)と、属性情報タイル分割部4933(Attribute Tile Divider)とを含む。
 スライス分割部4931は、位置情報(Position(Geometry))をスライスに分割することで複数のスライス位置情報を生成する。また、スライス分割部4931は、属性情報(Attribute)をスライスに分割することで複数のスライス属性情報を生成する。また、スライス分割部4931は、スライス分割に係る情報、及びスライス分割において生成された情報を含むスライス付加情報(SliceMetaData)を出力する。
 位置情報タイル分割部4932は、複数のスライス位置情報をタイルに分割することで複数の分割位置情報(複数のタイル位置情報)を生成する。また、位置情報タイル分割部4932は、位置情報のタイル分割に係る情報、及び位置情報のタイル分割において生成された情報を含む位置タイル付加情報(Geometry Tile MetaData)を出力する。
 属性情報タイル分割部4933は、複数のスライス属性情報をタイルに分割することで複数の分割属性情報(複数のタイル属性情報)を生成する。また、属性情報タイル分割部4933は、属性情報のタイル分割に係る情報、及び属性情報のタイル分割において生成された情報を含む属性タイル付加情報(Attribute Tile MetaData)を出力する。
 なお、分割されるスライス又はタイルの数は1以上である。つまり、スライス又はタイルの分割を行わなくてもよい。
 また、ここでは、スライス分割後にタイル分割が行われる例を示したが、タイル分割後にスライス分割が行われてもよい。また、スライス及びタイルに加え新たな分割種別を定義し、3つ以上の分割種別で分割が行われてもよい。
 以下、点群データの分割方法について説明する。図22は、スライス及びタイル分割の例を示す図である。
 まず、スライス分割の方法について説明する。分割部4911は、三次元点群データを、スライス単位で、任意の点群に分割する。分割部4911は、スライス分割において、点を構成する位置情報と属性情報とを分割せず、位置情報と属性情報とを一括で分割する。すなわち、分割部4911は、任意の点における位置情報と属性情報とが同じスライスに属するようにスライス分割を行う。なお、これらに従えば、分割数、及び分割方法はどのような方法でもよい。また、分割の最小単位は点である。例えば、位置情報と属性情報との分割数は同一である。例えば、スライス分割後の位置情報に対応する三次元点と、属性情報に対応する三次元点とは同一のスライスに含まれる。
 また、分割部4911は、スライス分割時に分割数及び分割方法に係る付加情報であるスライス付加情報を生成する。スライス付加情報は、位置情報と属性情報とで同一である。例えば、スライス付加情報は、分割後のバウンディングボックスの基準座標位置、大きさ、又は辺の長さを示す情報を含む。また、スライス付加情報は、分割数、及び分割タイプなどを示す情報を含む。
 次に、タイル分割の方法について説明する。分割部4911は、スライス分割されたデータを、スライス位置情報(Gスライス)とスライス属性情報(Aスライス)とに分割し、スライス位置情報とスライス属性情報をそれぞれタイル単位に分割する。
 なお、図22では8分木構造で分割する例を示しているが、分割数及び分割方法はどのような方法でもよい。
 また、分割部4911は、位置情報と属性情報とを異なる分割方法で分割してもよいし、同一の分割方法で分割してもよい。また、分割部4911は、複数のスライスを異なる分割方法でタイルに分割してもよいし、同一の分割方法でタイルに分割してもよい。
 また、分割部4911は、タイル分割時に分割数及び分割方法に係るタイル付加情報を生成する。タイル付加情報(位置タイル付加情報及び属性タイル付加情報)は、位置情報と属性情報とで独立している。例えば、タイル付加情報は、分割後のバウンディングボックスの基準座標位置、大きさ、又は辺の長さを示す情報を含む。また、タイル付加情報は、分割数、及び分割タイプなど示す情報を含む。
 次に、点群データをスライス又はタイルに分割する方法の例を説明する。分割部4911は、スライス又はタイル分割の方法として、予め定められた方法を用いてもよいし、点群データに応じて使用する方法を適応的に切り替えてもよい。
 スライス分割時には、分割部4911は、位置情報と属性情報とに対して一括で三次元空間を分割する。例えば、分割部4911は、オブジェクトの形状を判定し、オブジェクトの形状に応じて三次元空間をスライスに分割する。例えば、分割部4911は、木又は建物などのオブジェクトを抽出し、オブジェクト単位で分割を行う。例えば、分割部4911は、1又は複数のオブジェクトの全体が1つのスライスに含まれるようにスライス分割を行う。または、分割部4911は、一つのオブジェクトを複数のスライスに分割する。
 この場合、符号化装置は、例えば、スライス毎に符号化方法を変えてもよい。例えば、符号化装置は、特定のオブジェクト、又はオブジェクトの特定の一部に対して、高品質な圧縮方法を用いてもよい。この場合、符号化装置は、スライス毎の符号化方法を示す情報を付加情報(メタデータ)に格納してもよい。
 また、分割部4911は、地図情報又は位置情報に基づき、各スライスが予め定められた座標空間に対応するようにスライス分割を行ってもよい。
 タイル分割時には、分割部4911は、位置情報と属性情報とを独立に分割する。例えば、分割部4911は、データ量又は処理量に応じてスライスをタイルに分割する。例えば、分割部4911は、スライスのデータ量(例えばスライスに含まれる三次元点の数)が予め定められた閾値より多いかを判定する。分割部4911は、スライスのデータ量が閾値より多い場合にはスライスをタイルに分割する。分割部4911は、スライスのデータ量が閾値より少ないときにはスライスをタイルに分割しない。
 例えば、分割部4911は、復号装置での処理量又は処理時間が一定の範囲(予め定められた値以下)となるよう、スライスをタイルに分割する。これにより、復号装置におけるタイル当たりの処理量が一定となり、復号装置における分散処理が容易となる。
 また、分割部4911は、位置情報と属性情報とで処理量が異なる場合、例えば、位置情報の処理量が属性情報の処理量より多い場合、位置情報の分割数を、属性情報の分割数より多くする。
 また、例えば、コンテンツによって、復号装置で、位置情報を早く復号して表示し、属性情報を後でゆっくり復号して表示してもよい場合に、分割部4911は、位置情報の分割数を、属性情報の分割数より多くしてもよい。これにより、復号装置は、位置情報の並列数を多くできるので、位置情報の処理を属性情報の処理より高速化できる。
 なお、復号装置は、スライス化又はタイル化されているデータを必ずしも並列処理する必要はなく、復号処理部の数又は能力に応じて、これらを並列処理するかどうかを判定してもよい。
 以上のような方法で分割することにより、コンテンツ又はオブジェクトに応じた、適応的な符号化を実現できる。また、復号処理における並列処理を実現できる。これにより、点群符号化システム又は点群復号システムの柔軟性が向上する。
 図23は、スライス及びタイルの分割のパターンの例を示す図である。図中のDUはデータ単位(DataUnit)であり、タイル又はスライスのデータを示す。また、各DUは、スライスインデックス(SliceIndex)とタイルインデックス(TileIndex)を含む。図中のDUの右上の数値がスライスインデックスを示し、DUの左下の数値がタイルインデックスを示す。
 パターン1では、スライス分割において、GスライスとAスライスとで分割数及び分割方法は同じである。タイル分割において、Gスライスに対する分割数及び分割方法とAスライスに対する分割数及び分割方法とは異なる。また、複数のGスライス間では同一の分割数及び分割方法が用いられる。複数のAスライス間では同一の分割数及び分割方法が用いられる。
 パターン2では、スライス分割において、GスライスとAスライスとで分割数及び分割方法は同じである。タイル分割において、Gスライスに対する分割数及び分割方法とAスライスに対する分割数及び分割方法とは異なる。また、複数のGスライス間で分割数及び分割方法が異なる。複数のAスライス間で分割数及び分割方法が異なる。
 次に、分割データの符号化方法について説明する。三次元データ符号化装置(第1の符号化部4910)は、分割されたデータを、それぞれ符号化する。三次元データ符号化装置は、属性情報を符号化する際に、どの構成情報(位置情報、付加情報又は他の属性情報)に基づき符号化を行ったかを示す依存関係情報を付加情報として生成する。つまり、依存関係情報は、例えば、参照先(依存先)の構成情報を示す。この場合、三次元データ符号化装置は、属性情報の分割形状に対応する構成情報に基づき依存関係情報を生成する。なお、三次元データ符号化装置は、複数の分割形状に対応する構成情報に基づき依存関係情報を生成してもよい。
 依存関係情報は三次元データ符号化装置で生成され、生成された依存関係情報が三次元データ復号装置に送出されてもよい。または、三次元データ復号装置が依存関係情報を生成し、三次元データ符号化装置は依存関係情報を送出しなくてもよい。また、三次元データ符号化装置が使用する依存関係を、予め定めておき、三次元データ符号化装置は、依存関係情報を送出しなくてもよい。
 図24は、各データの依存関係の一例を示す図である。図中の矢印の先は依存先を示し、矢印の元は依存元を示している。三次元データ復号装置は、依存先から依存元の順でデータを復号する。また、図中に実線で示すデータは実際に送出されるデータであり、点線で示すデータは送出されないデータである。
 また、同図において、Gは位置情報を示し、Aは属性情報を示す。Gs1は、スライス番号1の位置情報を示し、Gs2は、スライス番号2の位置情報を示す。Gs1t1は、スライス番号1かつタイル番号1の位置情報を示し、Gs1t2は、スライス番号1かつタイル番号2の位置情報を示し、Gs2t1は、スライス番号2かつタイル番号1の位置情報を示し、Gs2t2は、スライス番号2かつタイル番号2の位置情報を示す。同様に、As1は、スライス番号1の属性情報を示し、As2は、スライス番号2の属性情報を示す。As1t1は、スライス番号1かつタイル番号1の属性情報を示し、As1t2は、スライス番号1かつタイル番号2の属性情報を示し、As2t1は、スライス番号2かつタイル番号1の属性情報を示し、As2t2は、スライス番号2かつタイル番号2の属性情報を示す。
 Msliceは、スライス付加情報を示し、MGtileは、位置タイル付加情報を示し、MAtileは、属性タイル付加情報を示す。Ds1t1は属性情報As1t1の依存関係情報を示し、Ds2t1は属性情報As2t1の依存関係情報を示す。
 また、三次元データ符号化装置は、三次元データ復号装置においてデータを並び替える必要がないように、データを復号順に並び替えてもよい。なお、三次元データ復号装置においてデータを並び替えてもよいし、三次元データ符号化装置と三次元データ復号装置との両方でデータを並び替えてもよい。
 図25は、データの復号順の例を示す図である。図25の例では、左のデータから順に復号が行われる。三次元データ復号装置は、依存関係にあるデータ間では、依存先のデータから先に復号する。例えば、三次元データ符号化装置は、この順序となるようにデータを予め並び替えて送出する。なお、依存先のデータが先になる順序であれば、どのような順序でもよい。また、三次元データ符号化装置は、付加情報及び依存関係情報をデータより先に送出してもよい。
 図26は、三次元データ符号装置による処理の流れを示すフローチャートである。まず、三次元データ符号化装置は、上記のように複数のスライス又はタイルのデータを符号化する(S4901)。次に、三次元データ符号化装置は、図25に示すように、依存先のデータが先になるようにデータを並び替える(S4902)。次に、三次元データ符号化装置は、並び替え後のデータを多重化(NALユニット化)する(S4903)。
 次に、第1の復号部4920に含まれる結合部4925の構成を説明する。図27は、結合部4925の構成を示すブロック図である。結合部4925は、位置情報タイル結合部4941(Geometry Tile Combiner)と、属性情報タイル結合部4942(Attribute Tile Combiner)と、スライス結合部(Slice Combiner)とを含む。
 位置情報タイル結合部4941は、位置タイル付加情報を用いて複数の分割位置情報を結合することで複数のスライス位置情報を生成する。属性情報タイル結合部4942は、属性タイル付加情報を用いて複数の分割属性情報を結合することで複数のスライス属性情報を生成する。
 スライス結合部4943は、スライス付加情報を用いて複数のスライス位置情報を結合することで位置情報を生成する。また、スライス結合部4943は、スライス付加情報を用いて複数のスライス属性情報を結合することで属性情報を生成する。
 なお、分割されるスライス又はタイルの数は1以上である。つまり、スライス又はタイルの分割が行われていなくてもよい。
 また、ここでは、スライス分割後にタイル分割が行われる例を示したが、タイル分割後にスライス分割が行われてもよい。また、スライス及びタイルに加え新たな分割種別を定義し、3つ以上の分割種別で分割が行われてもよい。
 次に、スライス分割又はタイル分割された符号化データの構成、及び符号化データのNALユニットへの格納方法(多重化方法)を説明する。図28は、符号化データの構成及び符号化データのNALユニットへの格納方法を示す図である。
 符号化データ(分割位置情報及び分割属性情報)は、NALユニットのペイロードに格納される。
 符号化データは、ヘッダとペイロードとを含む。ヘッダは、ペイロードに含まれるデータを特定するための識別情報を含む。この識別情報は、例えば、スライス分割或いはタイル分割の種別(slice_type、tile_type)、スライス或いはタイルを特定するためのインデックス情報(slice_idx、tile_idx)、データ(スライス或いはタイル)の位置情報、又はデータのアドレス(address)などを含む。スライスを特定するためのインデックス情報は、スライスインデックス(SliceIndex)とも記す。タイルを特定するためのインデックス情報は、タイルインデックス(TileIndex)とも記す。また、分割の種別とは、例えば、上述したようなオブジェクト形状に基づく手法、地図情報或いは位置情報に基づく手法、又は、データ量或いは処理量に基づく手法等である。
 なお、上記の情報の全て又は一部は、分割位置情報のヘッダ及び分割属性情報のヘッダの一方に格納され、他方に格納されてなくてもよい。例えば、位置情報と属性情報とで同一の分割方法が用いられる場合には、位置情報と属性情報とで分割の種別(slice_type、tile_type)及びインデックス情報(slice_idx、tile_idx)は同一である。よって、位置情報と属性情報の一方のヘッダにこれらの情報が含まれてもよい。例えば、位置情報に属性情報が依存する場合には、位置情報が先に処理される。よって、位置情報のヘッダにこれらの情報が含まれ、属性情報のヘッダにはこれらの情報が含まれなくてもよい。この場合、三次元データ復号装置は、例えば、依存先の位置情報のスライス又はタイルと同一のスライス又はタイルに依存元の属性情報が属すると判断する。
 また、スライス分割又はタイル分割に係る付加情報(スライス付加情報、位置タイル付加情報又は属性タイル付加情報)、及び依存関係を示す依存関係情報等は、既存のパラメータセット(GPS、APS、位置SPS又は属性SPSなど)に格納されて送出されてもよい。分割方法がフレーム毎に変化する場合は、フレーム毎のパラメータセット(GPS又はAPS等)に分割方法を示す情報が格納されてもよい。シーケンス内で分割方法が変化しない場合は、シーケンス毎のパラメータセット(位置SPS又は属性SPS)に分割方法を示す情報が格納されてもよい。さらに、位置情報と属性情報とで同じ分割方法が用いられる場合は、PCCストリームのパラメータセット(ストリームPS)に分割方法を示す情報が格納されてもよい。
 また、上記の情報は、上記のいずれかのパラメータセットに格納されてもよいし、複数のパラメータセットに格納されてもよい。また、タイル分割又はスライス分割用のパラメータセットを定義し、当該パラメータセットに上記の情報を格納してもよい。また、これらの情報は、符号化データのヘッダに格納されてもよい。
 また、符号化データのヘッダは、依存関係を示す識別情報を含む。つまり、当該ヘッダは、データ間に依存関係がある場合は、依存元から依存先を参照するための識別情報を含む。例えば、依存先のデータのヘッダには、当該データを特定するための識別情報が含まれる。依存元のデータのヘッダには、依存先を示す識別情報が含まれる。なお、データを特定するための識別情報、スライス分割又はタイル分割に係る付加情報、及び依存関係を示す識別情報を、他の情報から識別可能又は導出可能である場合は、これらの情報を省略してもよい。
 次に、本実施の形態に係る点群データの符号化処理及び復号処理の流れについて説明する。図29は、本実施の形態に係る点群データの符号化処理のフローチャートである。
 まず、三次元データ符号化装置は、使用する分割方法を決定する(S4911)。この分割方法は、スライス分割を行うか否か、タイル分割を行うか否かを含む。また、分割方法は、スライス分割又はタイル分割を行う場合の分割数、及び、分割の種別等を含んでもよい。分割の種別とは、上述したようなオブジェクト形状に基づく手法、地図情報或いは位置情報に基づく手法、又は、データ量或いは処理量に基づく手法等である。なお、分割方法は、予め定められていてもよい。
 スライス分割が行われる場合(S4912でYes)、三次元データ符号化装置は、位置情報と属性情報とを一括で分割することで複数のスライス位置情報及び複数のスライス属性情報を生成する(S4913)。また、三次元データ符号化装置は、スライス分割に係るスライス付加情報を生成する。なお、三次元データ符号化装置は、位置情報と属性情報とを独立に分割してもよい。
 タイル分割が行われる場合(S4914でYes)、三次元データ符号化装置は、複数のスライス位置情報及び複数のスライス属性情報(又は位置情報及び属性情報)を独立に分割することで複数の分割位置情報及び複数の分割属性情報を生成する(S4915)。また、三次元データ符号化装置は、タイル分割に係る位置タイル付加情報及び属性タイル付加情報を生成する。なお、三次元データ符号化装置は、スライス位置情報とスライス属性情報とを一括で分割してもよい。
 次に、三次元データ符号化装置は、複数の分割位置情報及び複数の分割属性情報の各々を符号化することで、複数の符号化位置情報及び複数の符号化属性情報を生成する(S4916)。また、三次元データ符号化装置は、依存関係情報を生成する。
 次に、三次元データ符号化装置は、複数の符号化位置情報、複数の符号化属性情報及び付加情報をNALユニット化(多重化)することで符号化データ(符号化ストリーム)を生成する(S4917)。また、三次元データ符号化装置は、生成した符号化データを送出する。
 図30は、本実施の形態に係る点群データの復号処理のフローチャートである。まず、三次元データ復号装置は、符号化データ(符号化ストリーム)に含まれる、分割方法に係る付加情報(スライス付加情報、位置タイル付加情報及び属性タイル付加情報)を解析することで、分割方法を判定する(S4921)。この分割方法は、スライス分割を行うか否か、タイル分割を行うか否かを含む。また、分割方法は、スライス分割又はタイル分割を行う場合の分割数、及び、分割の種別等を含んでもよい。
 次に、三次元データ復号装置は、符号化データに含まれる複数の符号化位置情報及び複数の符号化属性情報を、符号化データに含まれる依存関係情報を用いて復号することで分割位置情報及び分割属性情報を生成する(S4922)。
 付加情報によりタイル分割が行われていることが示される場合(S4923でYes)、三次元データ復号装置は、位置タイル付加情報及び属性タイル付加情報に基づき、複数の分割位置情報と、複数の分割属性情報とを、それぞれの方法で結合することで、複数のスライス位置情報及び複数のスライス属性情報を生成する(S4924)。なお、三次元データ復号装置は、複数の分割位置情報と、複数の分割属性情報とを同一の方法で結合してもよい。
 付加情報によりスライス分割が行われていることが示される場合(S4925でYes)、三次元データ復号装置は、スライス付加情報に基づき、複数のスライス位置情報及び複数のスライス属性情報(複数の分割位置情報及び複数の分割属性情報)を同一の方法で結合することで位置情報及び属性情報を生成する(S4926)。なお、三次元データ復号装置は、複数のスライス位置情報と複数のスライス属性情報とを、それぞれ異なる方法で結合してもよい。
 なお、タイル又はスライスの属性情報(識別子、領域情報、アドレス情報及び位置情報等)は、SEIに限らず、その他の制御情報に格納されてもよい。例えば、属性情報は、PCCデータ全体の構成を示す制御情報に格納されてもよいし、タイル又はスライス毎の制御情報に格納されてもよい。
 また、三次元データ符号化装置(三次元データ送信装置)は、PCCデータを他のデバイスに伝送する際には、SEI等の制御情報を、そのシステムのプロトコルに特有の制御情報に変換して示してもよい。
 例えば、三次元データ符号化装置は、属性情報を含むPCCデータを、ISOBMFF(ISO Base Media File Format)に変換する際に、SEIをPCCデータとともに「mdat box」に格納してもよいし、ストリームに関する制御情報を記載する「track box」に格納してもよい。つまり、三次元データ符号化装置は、制御情報を、ランダムアクセスのためのテーブルに格納してもよい。また、三次元データ符号化装置は、PCCデータをパケット化して伝送する場合には、SEIをパケットヘッダに格納してもよい。このように、属性情報をシステムのレイヤで取得可能にすることにより、属性情報、及びタイルデータ又はスライスデータへのアクセスが容易となり、アクセスの速度を向上できる。
 なお、三次元データ復号装置の構成において、メモリ管理部は、復号処理に必要な情報がメモリにあるか否かを予め判定し、復号処理に必要な情報がなければ、当該情報をストレージ又はネットワークから取得してもよい。
 三次元データ復号装置が、ストレージ又はネットワークからPCCデータをMPEG-DASHなどのプロトコルにおけるPullを用いて取得する場合は、メモリ管理部は、ローカライズ部などからの情報に基づき、復号処理に必要なデータの属性情報を特定し、特定した属性情報を含むタイル又はスライスを要求し、必要なデータ(PCCストリーム)を取得してもよい。属性情報を含むタイル又はスライスの特定は、ストレージ又はネットワーク側で行われてもよいし、メモリ管理部が行ってもよい。例えば、メモリ管理部は、予め全てのPCCデータのSEIを取得しておき、その情報に基づき、タイル又はスライスを特定してもよい。
 ストレージ又はネットワークから全てのPCCデータがUDPプロトコルなどにおいてPushを用いて送信されている場合は、メモリ管理部は、ローカライズ部などからの情報に基づき、復号処理に必要なデータの属性情報、及びタイル又はスライスを特定し、送出されるPCCデータから所望のタイル又はスライスをフィルタリングすることで、所望のデータを取得してもよい。
 また、三次元データ符号化装置は、データの取得の際に、所望のデータがあるか否か、又はデータサイズ等に基づき実時間での処理が可能か否か、又は通信状態等を判定してもよい。三次元データ符号化装置は、この判定結果に基づき、データ取得が困難であると判断した場合は、優先度又はデータ量の異なる別のスライス又はタイルを選択して取得してもよい。
 また、三次元データ復号装置は、ローカライズ部などからの情報をクラウドサーバへ送信し、クラウドサーバが、その情報に基づき必要な情報を判定してもよい。
 (実施の形態4)
 次に、タイル付加情報について説明する。三次元データ符号化装置は、タイルの分割方法に関するメタデータであるタイル付加情報を生成し、生成したタイル付加情報を三次元データ復号装置に送信する。
 図31は、タイル付加情報(TileMetaData)のシンタックス例を示す図である。図31に示すように、例えば、タイル付加情報は、分割方法情報(type_of_divide)と、形状情報(topview_shape)と、重複フラグ(tile_overlap_flag)と、重複情報(type_of_overlap)と、高さ情報(tile_height)と、タイル数(tile_number)と、タイル位置情報(global_position、relative_position)と、を含む。
 分割方法情報(type_of_divide)は、タイルの分割方法を示す。例えば、分割方法情報は、タイルの分割方法が、地図の情報に基づいた分割であるか、つまり上面視に基づく分割(top_view)であるか、それ以外(other)であるかを示す。
 形状情報(topview_shape)は、例えば、タイルの分割方法が上面視に基づく分割である場合に、タイル付加情報に含まれる。形状情報は、タイルを上面視した形状を示す。例えば、この形状は、正方形及び円を含む。なお、この形状は、楕円、矩形又は四角形以外の多角形を含んでもよいし、それ以外の形状を含んでもよい。なお、形状情報は、タイルを上面視した形状に限らず、タイルの三次元形状(例えば、立方体及び円柱等)を示してもよい。
 重複フラグ(tile_overlap_flag)は、タイルが重複するか否かを示す。例えば、重複フラグは、タイルの分割方法が上面視に基づく分割である場合に、タイル付加情報に含まれる。この場合、重複フラグは、上面視において、タイルが重複するか否かを示す。なお、重複フラグは、三次元空間においてタイルが重複するか否かを示してもよい。
 重複情報(type_of_overlap)は、例えば、タイルが重複する場合に、タイル付加情報に含まれる。重複情報は、タイルの重複のしかた等を示す。例えば、重複情報は、重複する領域の大きさ等を示す。
 高さ情報(tile_height)は、タイルの高さを示す。なお、高さ情報は、タイルの形状を示す情報を含んでもよい。例えば、当該情報は、タイルの上面視における形状が矩形の場合には、当該の矩形の辺の長さ(縦の長さ及び横の長さ)を示してもよい。また、当該情報は、タイルの上面視における形状が円の場合には、当該円の直径又は半径を示してもよい。
 また、高さ情報は、各タイルの高さを示してもよし、複数のタイルで共通の高さを示してもよい。また、予め道路及び立体交差部分等の複数の高さタイプが設定され、高さ情報により、各高さタイプの高さと、各タイルの高さタイプとが示されてもよい。または、各高さタイプの高さは予め定義されており、高さ情報により、各タイルの高さタイプが示されてもよい。つまり、各高さタイプの高さは、高さ情報で示されなくてもよい。
 タイル数(tile_number)は、タイルの数を示す。なお、タイル付加情報は、タイルの間隔を示す情報を含んでもよい。
 タイル位置情報(global_position、relative_position)は、各タイルの位置を特定するための情報である。例えば、タイル位置情報は、各タイルの絶対座標又は相対座標を示す。
 なお、上記の情報の一部又は全ては、タイル毎に設けられてもよいし、複数のタイル毎(例えばフレーム毎又は複数フレーム毎)に設けられてもよい。
 三次元データ符号化装置は、タイル付加情報を、SEI(Supplemental Enhancement Information)に含めて送出してもよい。または、三次元データ符号化装置は、タイル付加情報を、既存のパラメータセット(PPS、GPS、又はAPS等)に格納して送出してもよい。
 例えば、タイル付加情報がフレーム毎に変化する場合は、フレーム毎のパラメータセット(GPS又はAPS等)にタイル付加情報が格納されてもよい。シーケンス内でタイル付加情報が変化しない場合は、シーケンス毎のパラメータセット(位置SPS又は属性SPS)にタイル付加情報が格納されてもよい。さらに、位置情報と属性情報とで同じタイル分割情報が用いられる場合は、PCCストリームのパラメータセット(ストリームPS)にタイル付加情報が格納されてもよい。
 また、タイル付加情報は、上記のいずれかのパラメータセットに格納されてもよいし、複数のパラメータセットに格納されてもよい。また、タイル付加情報は、符号化データのヘッダに格納されてもよい。また、タイル付加情報は、NALユニットのヘッダに格納されてもよい。
 また、タイル付加情報の全て又は一部は、分割位置情報のヘッダ及び分割属性情報のヘッダの一方に格納され、他方に格納されてなくてもよい。例えば、位置情報と属性情報とで同一のタイル付加情報が用いられる場合には、位置情報と属性情報の一方のヘッダにタイル付加情報が含まれてもよい。例えば、位置情報に属性情報が依存する場合には、位置情報が先に処理される。よって、位置情報のヘッダにこれらのタイル付加情報が含まれ、属性情報のヘッダにはタイル付加情報が含まれなくてもよい。この場合、三次元データ復号装置は、例えば、依存先の位置情報のタイルと同一のタイルに依存元の属性情報が属すると判断する。
 三次元データ復号装置は、タイル付加情報に基づき、タイル分割された点群データを再構成する。三次元データ復号装置は、重複する点群データがある場合は、重複する複数の点群データを特定し、いずれかを選択、又は複数の点群データをマージする。
 また、三次元データ復号装置は、タイル付加情報を用いて復号を行ってもよい。例えば、三次元データ復号装置は、複数のタイルが重複する場合は、タイル毎に復号を行い、復号された複数のデータを用いた処理(例えば平滑化、又はフィルタリング等)を行い、点群データを生成してもよい。これにより精度の高い復号が可能となる可能性がある。
 図32は、三次元データ符号化装置及び三次元データ復号装置を含むシステムの構成例を示す図である。タイル分割部5051は、位置情報及び属性情報を含む点群データを第1タイルと第2タイルとに分割する。また、タイル分割部5051は、タイル分割に係るタイル付加情報を復号部5053及びタイル結合部5054に送る。
 符号化部5052は、第1タイル及び第2タイルを符号化することで符号化データを生成する。
 復号部5053は、符号化部5052で生成された符号化データを復号することで第1タイル及び第2タイルを復元する。タイル結合部5054は、タイル付加情報を用いて、第1タイル及び第2タイルを結合することで点群データ(位置情報及び属性情報)を復元する。
 次に、スライス付加情報について説明する。三次元データ符号化装置は、スライスの分割方法に関するメタデータであるスライス付加情報を生成し、生成したスライス付加情報を三次元データ復号装置に送信する。
 図33は、スライス付加情報(SliceMetaData)のシンタックス例を示す図である。図33に示すように、例えば、スライス付加情報は、分割方法情報(type_of_divide)と、重複フラグ(slice_overlap_flag)と、重複情報(type_of_overlap)と、スライス数(slice_number)と、スライス位置情報(global_position、relative_position)と、スライスサイズ情報(slice_bounding_box_size)とを含む。
 分割方法情報(type_of_divide)は、スライスの分割方法を示す。例えば、分割方法情報は、スライスの分割方法が、図50で示すようなオブジェクトの情報に基づいた分割である(object)か否かを示す。なお、スライス付加情報は、オブジェクト分割の方法を示す情報を含んでもよい。例えば、この情報は、1つのオブジェクトを複数のスライスに分割するか、1つのスライスに割り当てるかを示す。また、この情報は、1つのオブジェクトを複数のスライスに分割する場合の分割数等を示してもよい。
 重複フラグ(slice_overlap_flag)は、スライスが重複するか否かを示す。重複情報(type_of_overlap)は、例えば、スライスが重複する場合に、スライス付加情報に含まれる。重複情報は、スライスの重複のしかた等を示す。例えば、重複情報は、重複する領域の大きさ等を示す。
 スライス数(slice_number)は、スライスの数を示す。
 スライス位置情報(global_position、relative_position)、及びスライスサイズ情報(slice_bounding_box_size)は、スライスの領域に関する情報である。スライス位置情報は、各スライスの位置を特定するための情報である。例えば、スライス位置情報は、各スライスの絶対座標又は相対座標を示す。スライスサイズ情報(slice_bounding_box_size)は、各スライスのサイズを示す。例えば、スライスサイズ情報は、各スライスのバウンディングボックスのサイズを示す。
 三次元データ符号化装置は、スライス付加情報をSEIに含めて送出してもよい。または、三次元データ符号化装置は、スライス付加情報を、既存のパラメータセット(PPS、GPS、又はAPS等)に格納して送出してもよい。
 例えば、スライス付加情報がフレーム毎に変化する場合は、フレーム毎のパラメータセット(GPS又はAPS等)にスライス付加情報が格納されてもよい。シーケンス内でスライス付加情報が変化しない場合は、シーケンス毎のパラメータセット(位置SPS又は属性SPS)にスライス付加情報が格納されてもよい。さらに、位置情報と属性情報とで同じスライス分割情報が用いられる場合は、PCCストリームのパラメータセット(ストリームPS)にスライス付加情報が格納されてもよい。
 また、スライス付加情報は、上記のいずれかのパラメータセットに格納されてもよいし、複数のパラメータセットに格納されてもよい。また、スライス付加情報は、符号化データのヘッダに格納されてもよい。また、スライス付加情報は、NALユニットのヘッダに格納されてもよい。
 また、スライス付加情報の全て又は一部は、分割位置情報のヘッダ及び分割属性情報のヘッダの一方に格納され、他方に格納されてなくてもよい。例えば、位置情報と属性情報とで同一のスライス付加情報が用いられる場合には、位置情報と属性情報の一方のヘッダにスライス付加情報が含まれてもよい。例えば、位置情報に属性情報が依存する場合には、位置情報が先に処理される。よって、位置情報のヘッダにこれらのスライス付加情報が含まれ、属性情報のヘッダにはスライス付加情報が含まれなくてもよい。この場合、三次元データ復号装置は、例えば、依存先の位置情報のスライスと同一のスライスに依存元の属性情報が属すると判断する。
 三次元データ復号装置は、スライス付加情報に基づき、スライス分割された点群データを再構成する。三次元データ復号装置は、重複する点群データがある場合は、重複する複数の点群データを特定し、いずれかを選択、又は複数の点群データをマージする。
 また、三次元データ復号装置は、スライス付加情報を用いて復号を行ってもよい。例えば、三次元データ復号装置は、複数のスライスが重複する場合は、スライス毎に復号を行い、復号された複数のデータを用いた処理(例えば平滑化、又はフィルタリング)を行い、点群データを生成してもよい。これにより精度の高い復号が可能となる可能性がある。
 図34は、本実施の形態に係る三次元データ符号化装置による、タイル付加情報の生成処理を含む三次元データ符号化処理のフローチャートである。
 まず、三次元データ符号化装置は、タイルの分割方法を決定する(S5031)。具体的には、三次元データ符号化装置は、タイルの分割方法として、上面視に基づく分割方法(top_view)を用いるか、それ以外(other)を用いるかを決定する。また、三次元データ符号化装置は、上面視に基づく分割方法を用いる場合のタイルの形状を決定する。また、三次元データ符号化装置は、タイルが他のタイルと重複するか否かを決定する。
 ステップS5031で決定したタイルの分割方法が上面視に基づく分割方法である場合(S5032でYes)、三次元データ符号化装置は、タイルの分割方法が上面視に基づく分割方法(top_view)であることをタイル付加情報に記載する(S5033)。
 一方、ステップS5031で決定したタイルの分割方法が上面視に基づく分割方法以外である場合(S5032でNo)、三次元データ符号化装置は、タイルの分割方法が上面視に基づく分割方法(top_view)以外の方法であることをタイル付加情報に記載する(S5034)。
 また、ステップS5031で決定した、タイルを上面視した形状が正方形である場合(S5035で正方形)、三次元データ符号化装置は、タイルを上面視した形状が正方形であることをタイル付加情報に記載する(S5036)。一方、ステップS5031で決定した、タイルを上面視した形状が円である場合(S5035で円)、三次元データ符号化装置は、タイルを上面視した形状が円であることをタイル付加情報に記載する(S5037)。
 次に、三次元データ符号化装置は、タイルが他のタイルと重複するかを判定する(S5038)。タイルが他のタイルと重複している場合(S5038でYes)、三次元データ符号化装置は、タイルが重複していることをタイル付加情報に記載する(S5039)。一方、タイルが他のタイルと重複していない場合(S5038でNo)、三次元データ符号化装置は、タイルが重複していないことをタイル付加情報に記載する(S5040)。
 次に、三次元データ符号化装置は、ステップS5031で決定したタイルの分割方法に基づきタイルを分割し、各タイルを符号化し、生成された符号化データ及びタイル付加情報を送出する(S5041)。
 図35は、本実施の形態に係る三次元データ復号装置による、タイル付加情報を用いた三次元データ復号処理のフローチャートである。
 まず、三次元データ復号装置は、ビットストリームに含まれるタイル付加情報を解析する(S5051)。
 タイル付加情報によりタイルが他のタイルと重複していないことが示される場合(S5052でNo)、三次元データ復号装置は、各タイルを復号することで各タイルの点群データを生成する(S5053)。次に、三次元データ復号装置は、タイル付加情報で示されるタイルの分割方法及びタイルの形状に基づき、各タイルの点群データから点群データを再構成する(S5054)。
 一方、タイル付加情報によりタイルが他のタイルと重複していることが示される場合(S5052でYes)、三次元データ復号装置は、各タイルを復号することで各タイルの点群データを生成する。また、三次元データ復号装置は、タイル付加情報に基づき、タイルの重複部分を特定する(S5055)。なお、三次元データ復号装置は、重複部分については重複する複数の情報を用いて復号処理を行ってもよい。次に、三次元データ復号装置は、タイル付加情報で示されるタイルの分割方法、タイルの形状、及び重複情報に基づき、各タイルの点群データから点群データを再構成する(S5056)。
 以下、スライスに関する変形例等を説明する。三次元データ符号化装置は、オブジェクトの種類(道、建物、木等)又は属性(動的情報、静的情報等)を示す情報を付加情報として送信してもよい。または、オブジェクトに応じて符号化のパラメータが予め規定され、三次元データ符号化装置は、オブジェクトの種類又は属性を送出することにより符号化パラメータを三次元データ復号装置へ通知してもよい。
 スライスデータの符号化順及び送出順について以下の方法を用いてもよい。例えば、三次元データ符号化装置は、オブジェクトの認識又はクラスタリングが容易なデータから順にスライスデータを符号化してもよい。または、三次元データ符号化装置は、早くクラスタリングが終わったスライスデータから順に符号化を行ってもよい。また、三次元データ符号化装置は、符号化されたスライスデータから順に送出してもよい。または、三次元データ符号化装置は、アプリケーションにおいて復号の優先度の高い順にスライスデータを送出してもよい。例えば、動的情報の復号の優先度が高い場合には、三次元データ符号化装置は、動的情報でグループ化されたスライスから順にスライスデータを送出してもよい。
 また、三次元データ符号化装置は、符号化データの順番と、復号の優先度の順番とが異なる場合には、符号化データを並び替えた後に送出してもよい。また、三次元データ符号化装置は、符号化データを蓄積する際には、符号化データを並び替えた後に蓄積してもよい。
 アプリケーション(三次元データ復号装置)は、所望のデータを含むスライスの送出をサーバ(三次元データ符号化装置)に要求する。サーバはアプリケーションが必要とするスライスデータを送出し、不要なスライスデータは送出しなくてもよい。
 アプリケーションは、所望のデータを含むタイルの送出をサーバに要求する。サーバはアプリケーションが必要とするタイルデータを送出し、不要なタイルデータは送出しなくてもよい。
 (実施の形態5)
 位置情報(ジオメトリ)の符号化について説明する。三次元データ符号化装置は、位置情報の符号化において、点群データを含む領域を8分木を用いて分割し、ノード毎の点の占有情報の集合に変換する。占有情報は、子ノードの各々に点があるかないかを示す8bitの情報であり、各子ノードに点が含まれるか否かが0、1により示される。
 8分木に分割する順番としては、幅優先探索法を用いて、深さ(depthの値)の小さいノードから順に分割する方法と、深さ優先探索法を用いて、点を最下層の深さまで探索した後に、また上の深さに戻って再度探索する方法などがある。符号化では、占有情報を上記順番に並べて符号化する。
 図36は、depth=6の深さまで持つ点群を8分木で分割する際の木構造を示す図である。図37は、幅優先探索法を用いた8分木構造の符号化データのデータ構造の例を示す図である。点群の符号化データは、ヘッダ(header)とペイロード(payload)とを含む。ペイロードには、深さ(depth)毎の情報(depth#0~#6)が順に配置される。図38は、ペイロードのシンタックス例を示す図である。ペイロードは、深さ毎のオキュパンシー符号を含む。
 次に、階層構造について説明する。例えば、図36に示すように、複数のレベル(階層レベルとも呼ぶ)を定義する。レベル2は、depth=0から最終の深さ(depth=6)まで8分木分割が行われた点群データを用いて表現された点群であり、レベル1は、depth=0からdepth=5まで8分木分割が行われた点群データを用いて表現された点群であり、レベル0は、depth=0からdepth=4まで8分木分割が行われた点群データを用いて表現された点群である。つまり、レベル0、レベル1、レベル2の順に点群の解像度が高くなる。逆にレベル2、レベル1、レベル0の順に点群の解像度が低くなる。これは、レベルが下がるごとに1/2で量子化されているともいうことができる。このように、レベルを用いることで、最下位層までの全てのデータを用いて点群全体を表現したり、depth=0から一部の上位の階層までのデータを用いることで低解像度の点群データを表現したりできる。なお、データの取り扱う解像度、又はデータ量に応じて、必要に応じて適応的に様々な組み合わせでレベルを設定することができる。
 図39は、位置情報が符号化された符号化データを目的の解像度で復号する復号処理のフローチャートである。まず、三次元データ復号装置は、復号したいレベル(解像度)及びそのレベルに対応する深さを決定する(S8801)。
 次に、三次元データ復号装置は、決定された深さの符号化データを復号する。具体的には、三次元データ復号装置は、最初の深さ(深さ0(depth=0))を復号する(S8802)。三次元データ復号装置は、復号対象の全ての深さの復号が完了していない場合(S8803でNo)、次の深さを復号する(S8804)。なお、三次元データ復号装置は、復号対象の深さを前のレベル(又は深さ)のデータを用いて復号してもよい。三次元データ復号装置は、復号対象の全ての深さの復号が完了した場合(S8803でYes)、得られた点群を表示する(S8805)。
 また、三次元データ復号装置は、決定された深さの符号化データを復号し、残りの深さの符号化データは復号しなくてもよい。図40は、レベルと復号されるデータのとの関係を示す図である。図41は、レベルを示す模式図である。例えば、図40において、レベル0の点群を復号するためには、depth#0~depth#4の復号が必要である。よって、三次元データ復号装置は、Aの符号化データまでを復号する。
 また、レベル1の点群を復号するためには、depth#0~depth#5の復号が必要である。よって、三次元データ復号装置は、Bの符号化データまでを復号する。また、レベル2(全て)の点群を復号するためには、depth#0~depth#6の復号が必要である。よって、三次元データ復号装置は、Cの符号化データまでを復号する。
 以上の処理により、三次元データ復号装置は、低解像度のデータを復号できる。よって、三次元データ復号装置は、高解像度の点群を必要としない場合にデータ量を削減したり、復号処理をスキップすることにより処理量を削減できる。
 あるいは、三次元データ復号装置は、低解像度のデータを復号後に、残りのデータの復号を待たずに低解像度データを表示し、高解像度の復号データを復号後に残りのデータを表示できる。これにより、復号及び表示の初期遅延を短くできる。
 ここで、三次元データ復号装置は、途中のデータまで復号するためには、A又はBの時点までデータを取得したこと、つまり、符号化データにおける深さ間の境界、又は深さの情報を判定する必要がある。図42は、ヘッダのシンタックス例を示す図である。図43は、ペイロードのシンタックス例を示す図である。
 例えば、三次元データ復号装置は、ヘッダに示される点群のポイント数(numPoint)、深さの数(depth)、及び、ペイロードに示される深さ毎に格納されるノード毎又はリーフ毎の符号化データ(occupancy_code)を用い、符号化データを先頭から順に復号し、復号されたオキュパンシー符号の情報を解析することで、深さ間の境界又は深さ情報を判定してもよい。
 本実施の形態では、このような深さデータの部分復号、並びに、データの分割及び結合が容易となるようなデータ構成について説明する。ここでは、新たに階層化構造を意識したデータ構造を定義する。本データ構造を用いることにより、階層データ単位のデータ分割及び結合が可能となる。三次元データ符号化装置又は三次元データ復号装置は、特定の必要な階層データを抽出することにより、伝送に必要なデータ量を削減できる。また、三次元データ符号化装置又は三次元データ復号装置は、符号化データの復号を行うことなしにデータ分割又は結合を行うことが可能となることで、機能性が向上する。
 図44は、深さ0から深さ6までの全ての位置情報(depth#0~depth#6)を持つ符号化データの構成を示す図である。なお、この符号化データを全体符号化データ又はビットストリーム(符号化ビットストリーム)とも呼ぶ。この例では、全体符号化データには、深さ間のデータに明示的な境界を示す情報は含まれていない。三次元データ復号装置は、オキュパンシー符号(occupancy_code)を解析することにより深さ間の境界、又は深さ情報を得ることができる。ここで、ヘッダに含まれるポイント数(numPoint)は全体符号化データに含まれる全ての点の数を示す。また、深さの数を示す深さ数depthはこの例では「7」である。
 図45は、全体符号化データの構成を示す図である。図45に示す全体符号化データは、図44に示す構成に加え、さらに階層構造を示すメタデータである階層構造メタデータを含む。図46は、深さ情報(depth_info)のシンタックス例を示す図である。図47は、深さ情報が階層構造メタデータ(layer_metadata)に格納される例を示す図である。
 深さ情報は、深さ数(depth)と、深さ(depth)毎のデータの長さを示す長さ情報(length)を含む。長さ情報は、例えば、対応する深さの符号化データ(深さデータとも記す)の先頭の位置と最終の位置との差をバイト数又はビット数などで示す。
 長さ情報を含む階層構造メタデータは、符号化データの前に送出されてもよいし、後に送出されてもよい。また、長さ情報は、全体符号化データのヘッダに格納されてもよい。図48は、この場合のヘッダのシンタックス例を示す図である。ヘッダは、ポイント数(numPoint)、及び深さ情報(depth_info)を含む。
 このように、例えば、階層構造メタデータ又はヘッダに深さ間のデータ境界が明示される。なお、三次元データ復号装置は、階層構造メタデータを、復号に用いなくてもよい。この場合、三次元データ復号装置は、階層構造メタデータを、階層データを分割又は再構成する際に用いる。
 なお、図44及び図45に示す構成の場合、全ての深さデータは連続しており、エントロピー符号化に用いるコンテキスト情報も初期化されず連続している。
 本構造を用いることにより、三次元データ復号装置は、全体符号化データを深さ毎のデータに容易に分割できるので、処理量を削減できる。また、分割データの伝送が可能となることで伝送量を削減できる。
 次に、階層(レイヤ)の概念を導入した場合について説明する。図49が、この場合の全体符号化データの構成例を示す図である。同図では、深さ0~深さ4(depth#0~depth#4)がレイヤ0と定義され、深さ5(depth#5)がレイヤ1と定義され、深さ6(depth#6)がレイヤ2と定義される。つまり、上述したレベル(階層レベル)と比較した場合、レベルは深さ0から所望の深さまでの複数の深さで定義されるのに対して、複数の階層は互いに重複しない深さで定義される。例えば、レイヤ0はレベル0と同一の深さを含み、レイヤ1は、レベル1とレベル0との差分の深さに対応し、レイヤ2は、レベル2とレベル1との差分に対応する。
 この場合、階層情報(layer_info)が全体符号化データに付加される。図50は、階層情報のシンタックス例を示す図である。階層情報は、レイヤの数を示すレイヤ数(layer)、及び各レイヤに含まれる深さの数を示すレイヤ深さ数(num_depth)を含む。図51は、階層構造メタデータのシンタックス例を示す図である。例えば、階層構造メタデータは、階層情報(layer_info)を含む。図52は、全体符号化データのヘッダのシンタックス例を示す図である。例えば、図52に示すように、ヘッダは、深さ情報(depth_info)を含む。なお、階層情報及び深さ情報は、両方ともヘッダ又は階層構造メタデータに含まれてもよい。なお、ここで示すシンタックス構造は一例であり、これに限らない。全体符号化データに含まれる情報は、三次元データ復号装置が、深さ数、レイヤ数、レイヤ深さ数、及び長さ情報を取得できる情報であればよい。例えば、全体符号化データは、各レイヤの長さを示す情報を含んでもよい。
 また、レイヤ構造が複数の処理単位(例えばフレーム等)で共通であれば、シーケンスレベルのパラメータセット(例えばSPS)などの、より上位のメタデータに、これらの情報の一部又は全てが含まれてもよい。
 なお、全体符号化データが、階層情報(layer_info)及び深さ情報(depth_info)を含むか否かを示すフラグが全体符号化データに含まれてもよい。フラグがオン(例えば値1)の場合に、階層情報及び深さ情報が全体符号化データに含まれてもよい。なお、フラグは、階層情報と深さ情報とで個別に設けられてもよい。
 本構造を用いることにより、本データから深さ毎のデータへの分割、又は本データから階層ごとのデータへの分割が容易となるので、処理量を削減できる。また、分割データの伝送が可能となることで、伝送量を削減できる。
 次に、点群データ全体の構成について説明する。点群データは、位置情報(geometry)に加え、例えば、色又は反射率などの属性情報(Attribute)を1以上持つ場合がある。属性情報も、位置情報と同様に階層構造を有してもよい。
 属性情報が位置情報と同様の階層構造を持つ場合、三次元データ符号化装置は、位置情報と同様に階層構造の情報を階層構造メタデータ又はデータヘッダに格納する。例えば、三次元データ符号化装置は、属性情報ヘッダと位置情報ヘッダとのそれぞれに階層構造の情報を格納する。三次元データ符号化装置は、階層構造メタデータに階層構造の情報を格納する際には、階層構造メタデータを、GPS又はAPSなどの位置情報と属性情報とで個別のパラメータセットに格納してもよいし、SPSなどの共通のパラメータセットに格納してもよい。また、三次元データ符号化装置は、SEI、又はその他のメタデータに階層構造メタデータを格納してもよい。
 図53は、位置情報と属性情報とがそれぞれ階層構造を持ち、階層構造の情報が階層構造メタデータに格納される場合のビットストリームの構成例を示す図である。本構造を用いることにより、本データから階層毎のデータへの分割が容易となるので、処理量を削減できる。また、分割データの伝送が可能となることで、伝送量を削減できる。また、位置情報と属性情報とを同様に階層毎に分割することが可能となる。
 図54は、階層構造メタデータのシンタックス例を示す図である。同図は、位置情報と属性情報とに共通の階層構造メタデータを適用する場合の例を示す。
 階層構造メタデータは、階層情報(layer_info)と、コンポーネント数(component)と、各コンポーネントの深さ情報(depth_info)とを含む。コンポーネント数は、位置情報、及び属性情報などのコンポーネント数を示す。例えば、点群データが位置情報に加え、色及び反射率を持つ場合、コンポーネント数は3である。なお、位置情報は必ず存在すると仮定して、属性情報のコンポーネント数が示されてもよい。また、SPSに属性情報のコンポーネント数が示されている場合には、この情報は省略されてもよい。これにより、データ量が削減される。
 階層情報(layer_info)は、レイヤ数及び各レイヤに含まれる深さの数を示す。例えば、階層情報は、全てのコンポーネントで共通である。
 深さ情報(depth_info)は、深さ数及び各深さデータのデータ長(長さ情報)を示す。深さ情報は、例えば、コンポーネント毎に設定される。なお、深さ情報の一部又は全てが、全てのコンポーネントで共通であってもよい。
 また、階層構造をコンポーネントごとに独立させる場合は、階層情報がコンポーネント毎に生成されてもよい。
 なお、ここでは、深さを基準に階層化を行う方法を説明したが、時間情報又は空間情報に基づき階層化が行われてもよい。階層化される場合には、階層構造メタデータを上記の方法で示す。また、階層構造を持たない構成が生成される場合があってもよい。符号化データが階層構造を持つか否かを示す情報が、ヘッダ又はメタデータに含まれてもよい。これにより、階層構造を持つデータと階層構造を持たないデータとを混在させることができる。例えば、位置情報は階層構造を持ち、属性情報は階層構造を持たなくてもよい。また、このことを示す情報がヘッダ等に示されてもよい。
 次に、位置情報と属性情報とのデータ参照関係、及び依存関係について説明する。図55、図56及び図57は、位置情報及び属性情報の参照関係を示す図である。
 符号化データが階層構造を持つ場合、レイヤ0はベースレイヤであり単独で復号可能なデータである。一方、レイヤ1は単独では復号できず、レイヤ0のデータと統合して復号される。また、レイヤ2は単独では復号できず、レイヤ0及びレイヤ1のデータと統合して復号される。また、8分木ベースの符号化方式を用いる場合は、図55に示すように、属性情報のレイヤ0は位置情報のレイヤ0を参照して復号される。例えば、図56に示すように、属性情報のレイヤ1は、属性情報のレイヤ0と、位置情報のレイヤ0及びレイヤ1とを参照して復号される。復号に参照関係又は依存関係がある場合、参照先のデータが先に送出される。参照先のデータを先に伝送することで、三次元データ復号装置においてデータを取得した順番に復号することが可能となり、受信バッファの容量を削減できるなど効率の良い復号が可能となる。
 以下、符号化データを、例えばISOBMFFなどのファイルフォーマットに格納する方法について説明する。図58は、ビットストリームの構成例を示す図である。図59は、三次元データ符号化装置の構成例を示す図である。三次元データ符号化装置は、符号化部8801と、ファイル変換部8802とを含む。符号化部8801は、点群データを符号化することで符号化データと制御情報とを含むビットストリームを生成する。ファイル変換部8802は、ビットストリームをファイルフォーマットに変換する。
 図60は、三次元データ復号装置の構成例を示す図である。三次元データ復号装置は、ファイル逆変換部8811と、復号部8812とを含む。ファイル逆変換部8811は、ファイルフォーマットを、符号化データ及び制御情報を含むビットストリームに変換する。復号部8812は、ビットストリームを復号することで点群データを生成する。
 図61は、ISOBMFFの基本構造を示す図である。図62は、PCCコーデック共通のNALユニットをISOBMFFに格納する場合のプロトコルスタック図である。ここで、ISOBMFFに格納されるのは、PCCコーデックのNALユニットである。
 NALユニットには、データ用のNALユニット、メタデータ用のNALユニットがある。データ用のNALユニットには、位置情報スライスデータ(Geometry Slice Data)、及び属性情報スライスデータ(Attribute Slice Data)などがある。メタデータ用のNALユニットには、SPS、GPS、APS、及びSEIなどがある。
 ISOBMFF(ISO based media file format)は、ISO/IEC14496-12に規定されるファイルフォーマット規格であり、ビデオ、オーディオ、及びテキストなど様々なメディアを多重して格納できるフォーマットを規定しており、メディアに依存しない規格である。
 ISOBMFFにおける基本単位はボックスである。ボックスはtype、length及びdataで構成され、様々なtypeのボックスを組み合わせた集合がファイルである。主に、ファイルは、ファイルのブランドを4CCで示すftyp、制御情報などのメタデータを格納するmoov、及びデータを格納するmdatなどのボックスで構成される。
 ISOBMFFへのメディア毎の格納方法は別途規定されており、例えば、AVCビデオ及びHEVCビデオの格納方法としては、ISO/IEC14496-15に規定される。また、PCC符号化データを、蓄積及び伝送するために、ISOBMFFの機能を拡張して使用することが考えられる。
 メタデータ用のNALユニットをISOBMFFに格納する際には、SEIをPCCデータとともに「mdat box」に格納してもよいし、ストリームに関する制御情報を記載する「track box」に格納してもよい。また、データをパケット化して伝送する場合には、パケットヘッダにSEIを格納してもよい。SEIをシステムのレイヤに示すことにより、属性情報、タイル及びスライスデータへのアクセスが容易となるので、アクセスの速度が向上する。
 次に、PCC階層データのフォーマット変換の第1の例について説明する。符号化方式はデータを圧縮する技術である。一方で、付加的な機能はシステムフォーマットで提供され、符号化方式とは役割が異なる。このような付加機能は、符号化方式とは異なる規格で規定される。付加機能を提供ために最適なフォーマットとするため、三次元データ符号化装置は、データを変換する。その際、三次元データ符号化装置は、変換が容易となる情報を予め符号化データに格納する。これにより変換に関わる処理量を削減できる。
 以下、階層毎のデータと、階層情報を含む階層構造メタデータとをファイルフォーマットに変換する方法を説明する。位置情報及び属性情報などのスライスデータは、それぞれファイルフォーマットのサンプルに格納される。サンプルはmdatに格納される。また、サンプルデータへのアクセスのために、ランダムアクセステーブルなどのメタデータに、データ構成を示す情報と、データの位置を示すオフセット情報と、データの長さ情報とが格納される。なお、これらの情報は、ランダムアクセステーブルとは異なるテーブルに格納されてもよい。
 以下、スライスデータをサンプルに格納する場合について説明する。図63は、ビットストリームからファイルフォーマットへの変換処理を示す図である。三次元データ符号化装置は、位置情報スライス及び属性情報スライスを、サンプル(sample)へ1対1に対応させて格納する。ここで、スライスは全てのレイヤの情報(階層データ)を含む。
 位置情報サンプルは、位置情報トラック(Geometry Track)に属し、属性情報サンプルは、属性情報トラック(Attribute Track)に属する。階層情報は、メタデータトラック(Meta Data Track)に属するフレーム毎のメタデータに格納される。また、位置情報サンプルと属性情報サンプルとが同じフレームに属することを示す情報と、8分木ベースの符号化方式の場合には属性情報サンプルが位置情報サンプルを参照するか否かを示す情報と、位置情報サンプル及び属性情報サンプルに共通のタイムスタンプ情報となどが、メタデータサンプルに格納されてもよい。
 共通のタイムスタンプで動作するフレーム単位をアクセスユニットと呼んでもよい。なお、階層情報(layer_information)は、moovに格納されてもよい。ここで階層情報は、例えば、上述した階層の情報(layer_info)を含む。なお、階層情報は、深さ情報(depth_info)等の、上述した階層構造メタデータ又はヘッダに含まれるその他の情報の少なくとも一部を含んでもよい。
 本方法を用いる場合、スライスをそのままサンプルとして格納できるので、処理が容易である。
 図64は、フォーマット変換処理のフローチャートである。まず、三次元データ符号化装置は、符号化データのフォーマット変換を開始する(S8811)。次に、三次元データ符号化装置は、複数のレイヤを含む1つのスライスを1サンプルに格納する(S8812)。また、三次元データ符号化装置は、階層情報をメタデータに格納する(S8813)。三次元データ符号化装置は、フレーム(AU:アクセスユニット)を構成する(S8814)。
 次に、ファイルフォーマットを用いた部分復号方法について説明する。図65は、この復号処理のフローチャートである。まず、三次元データ復号装置は、ランダムアクセスにより所望のサンプルを抽出する(S8821)。具体的には、三次元データ復号装置は、moovに含まれるメタデータ、及びランダムアクセステーブルなどを用いて、所望のサンプルの位置を特定し、当該サンプルのデータを抽出する。
 三次元データ復号装置は、階層情報メタデータを解析し(S8822)、サンプル内のレイヤ境界情報を抽出する(S8823)。具体的には、三次元データ復号装置は、階層情報メタデータからサンプル内の各レイヤに含まれる深さの数及び各深さのデータ長からレイヤの境界情報を取得する。例えば、三次元データ復号装置は、各レイヤに含まれる深さの数及び各深さのデータ長から各レイヤのデータ長を算出し、算出した各レイヤのデータ長に基づきレイヤのデータ境界を判定する。
 次に、三次元データ復号装置は、レイヤの境界情報を用いてレイヤを分割し、所望のデータを復号する(S8824)。例えば、三次元データ復号装置は、サンプルから特定のレイヤ成分を抽出する。
 このように、階層情報をメタデータに含めることにより、三次元データ復号装置において、階層情報を用いて、符号化データを復号することなく特定の情報を抽出できる。
 以下、PCC階層データのフォーマット変換の第2の例について説明する。三次元データ符号化装置は、階層データをサンプルに格納する際に、1つの階層データを1サンプルとして格納してもよいし、1つのサブサンプルとして格納してもよい。
 図66は、ビットストリームからファイルフォーマットへの変換処理を示す図である。三次元データ符号化装置は、位置情報スライス及び属性情報スライスのうち、レイヤ毎のデータをサンプルに1対1に対応させて格納する。
 位置情報サンプルは、位置情報トラック(Geometry Track)に属し、属性情報サンプルは、属性情報トラック(Attribute Track)に属する。階層情報は、メタデータトラック(Meta Data Track)に属するフレーム毎のメタデータに格納される。また、レイヤ毎にトラックが存在し、それぞれのトラックに属するサンプルが存在する。レイヤ毎にトラックが設けられることで、レイヤ毎にデータを扱うことが容易となる。
 また、符号化データのビットストリームにおいて、スライスデータは階層データを全て含むため、三次元データ符号化装置は、データを分割しながらサンプルへの格納を行う。階層情報がビットストリームに示されている場合には、三次元データ符号化装置は、各階層データのデータ長を示す情報などを用いて、スライスデータを分割する。階層情報がビットストリームに示されない場合は、三次元データ符号化装置は、符号化データを復号しながら階層情報を算出する。三次元データ符号化装置は、得られた階層情報に基づきデータを再符号化し分割する。
 本処理により、レイヤ毎のトラック及びサンプルにレイヤ毎の情報を格納できる。よって、三次元データ復号装置においてレイヤ毎にデータを抽出できるので、レイヤ毎のデータの取り扱いが容易となる。
 図67は、階層構造メタデータのシンタックス例を示す図である。階層構造メタデータは、階層情報(layer_info)と、コンポーネント数(component)と、各コンポーネントの深さ情報(depth_info)とを含む。
 なお、三次元データ符号化装置は、スライスを階層データに分割する際、サンプルにヘッダ情報を含める場合は、スライスヘッダを、全ての分割データにコピーして付加してもよい。図68は、この分割処理を模式的に示す図である。なお、三次元データ符号化装置は、スライスヘッダをサンプルに含めずメタデータに格納してもよい。ヘッダ情報をコピーすることによりヘッダ作成の処理を軽減できる。
 また、三次元データ符号化装置は、サンプルに格納するデータが階層化されているか否かを示す識別子をファイルフォーマットに付加してもよい。また、三次元データ符号化装置は、データが階層化されている場合には、データが全ての階層データを含むか否か、又はサンプルに格納するデータが階層化された階層データであるか否かを示す識別子をファイルフォーマットに付加してもよい。また、三次元データ符号化装置は、これらの情報を、メディアタイプ又は4CCなどのboxのタイプ(type)で示してもよい。これによりメディアの識別が容易となる。
 図69は、階層情報を用いた変換処理のフローチャートである。まず、三次元データ符号化装置は、符号化データのフォーマット変換を開始する(S8831)。次に、三次元データ符号化装置は、階層情報メタデータを用いて、スライスをレイヤ毎の情報に分割する(S8832)。次に、三次元データ符号化装置は、分割した複数の階層データの各々を1サンプルに格納する(S8833)。次に、三次元データ符号化装置は、階層情報をメタデータに格納する(S8834)。次に、三次元データ符号化装置は、フレーム(AU)を構成する(S8835)。
 図70は、階層情報を用いない変換処理のフローチャートである。まず、三次元データ符号化装置は、符号化データのフォーマット変換を開始する(S8841)。次に、三次元データ符号化装置は、データを復号し、階層データの境界を判定する(S8842)。次に、三次元データ符号化装置は、データを再符号化して分割する(S8843)。次に、三次元データ符号化装置は、分割した複数の階層データの各々を1サンプルに格納する(S8844)。次に、三次元データ符号化装置は、階層情報をメタデータに格納する(S8845)。次に、三次元データ符号化装置は、フレーム(AU)を構成する(S8846)。
 図71は、階層データサンプルデータの復号処理のフローチャートである。まず、三次元データ復号装置は、ランダムアクセスにより所望のサンプルを抽出する(S8851)。次に、三次元データ復号装置は、抽出したサンプルに含まれるデータを復号する(S8852)。
 次に、階層データ構造の別の例について説明する。図72及び図73は、全体符号化データ(PCCデータ)の構成例を示す図である。図72及び図73に示す例における階層構造は、図49と同様である。
 図72は、1つの深さデータが1つのスライスデータとして用いられる場合を示しており、深さデータ毎にスライスヘッダが付与される。スライスヘッダは、深さデータの階層を識別するdepthIdと、深さの属する階層を示すlayerIdと、深さデータの長さを示すlengthとを含む。また、スライスヘッダは、当該データが同一フレームに属することを示すgroupIdを含んでもよい。つまり、groupIdは、当該データが属するフレーム(時刻)を示す。
 これらの情報が、スライスヘッダに含まれる場合は、全体符号化データは階層構造メタデータを持たなくてもよい。また、三次元データ符号化装置は、全ての深さに共通のパラメータを、初めの深さを伝送するスライスのヘッダに格納してもよいし、共通ヘッダに格納し、depth#0のデータの前に配置してもよい。なお、三次元データ符号化装置は、スライスヘッダにdepthId及びgroupIdを格納し、階層構造メタデータ又は共通ヘッダに深さの数、並びに、深さ毎のlayerId及びlengthを格納してもよい。
 また、depth#0は単独で復号することが可能であり、depth#0以外は単独での復号ができず、他のデータに依存する。三次元データ復号装置は、depth#0以外のデータは単独で復号できないと判断し、復号対象の深さデータを、復号対象の深さデータと同一groupIdを持ち、かつ、復号対象の深さデータのdepthIdより小さいdepthIdを持つ深さデータとともに復号する。
 図73は、1つの階層データが1つのスライスデータとして用いられる場合を示しており、階層データ毎にスライスヘッダが付与される。スライスヘッダは、layerIdと、当該階層に含まれる深さの数(num_depth)と、深さデータの長さ(length)とを含む。また、スライスヘッダは、当該階層データが同一フレームに属することを示すgroupIdを含んでもよい。なお、スライスヘッダは、layerId及びgroupIdを含み、階層の数と、各階層に含まれる深さの数と、深さの長さ情報(length)は階層構造メタデータに含まれてもよい。
 本構造を用いることにより、本データから階層毎のデータへの分割が容易となるので、分割する際の処理量を削減できる。また、分割データの伝送が可能となることで、伝送量を削減できる。また位置情報と属性情報とを同様に階層毎に分割することが可能となる。
 次に、PCC階層データのフォーマット変換の第3の例について説明する。三次元データ符号化装置は、階層データをサンプルに格納する際に、1つの深さデータを1サンプルとして格納してもよいし、1つの深さデータを1つのサブサンプルとして格納してもよい。
 図74は、ビットストリームからファイルフォーマットへの変換処理を示す図である。三次元データ符号化装置は、位置情報スライス及び属性情報スライスのうち、レイヤ毎のデータをサンプルに1対1に対応させて格納する。
 位置情報サンプルは、位置情報トラック(Geometry Track)に属し、属性情報サンプルは、属性情報トラック(Attribute Track)に属する。階層情報は、メタデータトラック(Meta Data Track)に属するフレーム毎のメタデータに格納される。レイヤ毎にトラックが存在し、それぞれのトラックに属するサンプルが存在する。レイヤ毎にトラックが設けられることで、レイヤ毎にデータを扱うことが容易となる。
 また、符号化データのビットストリームにおいて、階層データ毎にスライスデータが構成されているため、三次元データ符号化装置は、データをそのまま直接サンプルに格納することが可能である。よって、階層データ毎にスライスデータが構成されていない場合と比較して処理量を低減できる。また、階層情報は、メタデータに格納される。
 図75は、フォーマット変換処理のフローチャートである。まず、三次元データ符号化装置は、符号化データのフォーマット変換を開始する(S8861)。次に、三次元データ符号化装置は、階層毎のスライスデータを1サンプルに格納する(S8862)。次に、三次元データ符号化装置は、階層情報をメタデータに格納する(S8863)。次に、三次元データ符号化装置は、フレーム(AU)を構成する(S8864)。
 図76は、復号処理のフローチャートである。まず、三次元データ復号装置は、特定の階層データにアクセスするために、メタデータを解析し、レイヤに属する深さ数を取得する(S8871)。次に、三次元データ復号装置は、取得した情報を用いて、階層データ先頭の深さデータの開始位置及びレイヤ全体サイズを算出する(S8872)。次に、三次元データ復号装置は、階層データを復号する(S8873)。
 図77は、深さ情報のシンタックス例を示す図である。図78は、サンプルサイズボックス(sample_size_box:stsz)のシンタックス例を示す図である。三次元データ符号化装置は、サンプル毎のサイズ情報を格納するサイプルサイズボックスにそれぞれの階層データのサイズ(entry_size)を格納してもよい。
 図79は、階層情報(layer_info)のシンタックス例を示す図である。図80は、PCCLayerStructureBoxのシンタックス例を示す図である。例えば、図79及び図80に示すように、三次元データ符号化装置は、階層数(layer)及び階層に含まれる深さの数(num_depth)を、PCCLayerStructureBoxに格納する。なお、三次元データ符号化装置は、これらの情報を同一のboxに格納してもよいし、別々のboxに格納してもよい。
 次に、ファイルフォーマットから部分データを抽出する処理について説明する。三次元データ復号装置は、本実施の形態で説明した、データ構造及び階層構造メタデータを用いて、ファイルから部分的に復号データにランダムアクセスし、データを抽出する。三次元データ復号装置は、メタデータに含まれる位置情報及び属性情報の、フレーム、階層、それぞれのデータ長の情報、及び階層に含まれる深さ数などに基づき、データにアクセスし、所望のデータを抽出できる。
 図81は、この抽出動作を模式的に示す図である。送出部8821は、レイヤ0、レイヤ1を持つ完全データのファイル(ファイルフォーマット)を有しており、受信部8823は、レイヤ0のデータファイルを有している。この状態で、受信部8823がレイヤ1のデータを取得したい場合、送出部8821にレイヤ1のファイルを送出することを要求する。送出部8821に含まれる抽出部8822は、完全データのファイル(ファイルフォーマット)からレイヤ1のファイルを抽出し、レイヤ1のファイル(ビットストリーム)を受信部8823に提供する。受信部8823は、レイヤ0のファイルとレイヤ1のファイルとを統合し、完全データのファイルを生成する。
 図82は、完全データのファイル(ファイルフォーマット)の例を示す図である。図83、図84及び図85は、抽出部8822で抽出されたビットストリームの例を示す図である。例えば、図83に示すように、抽出部8822は、ファイルフォーマットから、全てのデータを抽出してもよい。または、抽出部8822は、図84に示すように、位置情報を抽出し属性情報は抽出しなくてもよい。または、抽出部8822は、図85に示すように、レイヤ0を抽出し、レイヤ1を抽出しなくてもよい。または、抽出部8822は、例えば、図示しないが、データを並び替えた状態で伝送してもよい。
 本実施の形態で説明したデータ構造、及び階層構造メタデータを用いることにより、階層データの分割が容易となるので、必要なデータを取得し、不要なデータを取得しない機能を実現することが可能となる。これにより、伝送帯域及び伝送遅延を削減することができ、データ伝送の機能性が向上する。
 次に、ダイレクトモードデータの部分復号処理について説明する。ダイレクトモードとは、8分木を用いた符号化の際に、あるノードに対し、8分木(Octree)符号化を止め、リーフノードの点の座標を直接符号化する手法である。例えば、ノードに属する点が疎である場合に、ダイレクトモードが用いられる。ダイレクトモードを用いることで、データ量を削減できる。
 図86は、ダイレクトモードの例を示す図である。図86の点線で囲った部分におけるリーフの点は2つ(疎)である。例えば、depth=1におけるAノードにおいて、点が疎であると判断した場合には、この2点の座標は、直接depth1のデータ領域に記載される。2点の座標とは、Aノードからの座標であり、これはdepth=4の分解能を持つ座標である。つまり、depth=1のデータは、depth=1のオキュパンシー符号(occpancy_code)と、点線で囲ったdepth=4のダイレクトモードにおける座標(B領域)データとを含む。
 次に、このようなデータの復号方法について説明する。三次元データ復号装置は、depth0~depth4まで復号する場合は、通常の復号方法を用いて復号処理を行う。一方、三次元データ復号装置は、部分的にdepth0~depth1を抽出して復号する場合において、復号データを全て同じ解像度にする必要がある場合は、depth1に含まれるdepth4の座標は用いず、復号を行ってもよい。また、高い解像度が混在してもよい場合は、三次元データ復号装置は、depth1に含まれるdepth4の座標を用いて復号を行ってもよい。
 次に、ダイレクトモードが用いられている場合におけるデータ分割について説明する。送信装置は、depth0~depth1のデータを抽出して伝送する場合、depth1にダイレクトモード(depth4)の情報を含めてもよいし含めなくてもよい。
 また、送信装置は、ダイレクトモードの情報を含めるか否かを、受信装置で当該情報が必要か否かに応じて判定し、受信装置で当該情報が必要である場合には当該情報をビットストリームに含め、必要でない場合には当該情報をビットストリームに含めなくてもよい。これにより、データ量を削減できる。例えば、送信装置は、depth2~depth4の解像度のデータをdepth0~depth1とともに復号することがある場合は、ダイレクトモードの情報が必要であると判断し、depth2~depth4の復号はしない場合は、ダイレクトモードの情報が不要であると判断してもよい。
 以上のように、本実施の形態に係る三次元データ符号化装置は、図87に示す処理を行う。三次元データ符号化装置は、点群データに含まれる複数の三次元点の複数の位置情報に、複数の深さと、各々が1以上の深さを含む複数の階層とを有する階層構造を設定する(S8881)。三次元データ符号化装置は、深さ毎に複数の位置情報を符号化することで深さ毎の複数の第1符号化データ(例えば深さデータ)を生成する(S8882)。三次元データ符号化装置は、階層毎の符号化データであって、対応する階層に含まれる1以上の深さの1以上の第1符号化データを含む複数の第2符号化データを含むビットストリームを生成する(S8883)。ビットストリームは、複数の第2符号化データの各々のデータ長を示す第1情報を含む。
 これによれば、ビットストリームを復号する三次元データ復号装置は、第1情報を用いて、任意の階層のデータに容易にアクセスできる。よって、当該三次元データ符号化装置は、三次元データ復号装置の処理量を低減できる。
 例えば、第1情報は、複数の階層の各々に含まれる深さの数を示す第2情報(例えばnum_depth)と、複数の第1符号化データの各々のデータ長を示す第3情報(例えばlength)とを含む。
 例えば、ビットストリームは、複数の第2符号化データに共通の第1ヘッダ(例えば図49に示す階層構造メタデータ又はヘッダ)を含み、第1ヘッダは、第1情報を含む。
 例えば、ビットストリームは、第2符号化データ毎の複数の第2ヘッダ(例えば図73に示すスライスヘッダ)を含み、第1情報は、複数の第2符号化データのいずれかに対応し、対応する第2符号化データのデータ長を示す複数の第4情報を含み、複数の第2ヘッダの各々は、当該第2ヘッダに対応する第2符号化データのデータ長を示す第4情報を含む。
 例えば、ビットストリームは、複数の第1符号化データ毎の複数の第3ヘッダ(例えば図72に示すスライスヘッダ)を含み、第1情報は、複数の階層の各々に含まれる深さの数を示す第2情報(例えばnum_depth)と、複数の第1符号化データの各々に対応し、対応する第1符号化データのデータ長を示す第5情報(例えばlength)とを含み、複数の第3ヘッダの各々は、当該第3ヘッダに対応する第1符号化データのデータ長を示す第5情報を含む。
 例えば、三次元データ符号化装置は、さらに、複数の三次元点が有する複数の属性情報を深さ毎に符号化することで深さ毎の複数の第3符号化データを生成し、ビットストリームは、階層毎の符号化データであって、対応する階層に含まれる1以上の深さの1以上の第3符号化データを含む複数の第4符号化データを含み、ビットストリームは、複数の第4符号化データの各々のデータ長を示す第6情報を含む。
 例えば、三次元データ符号化装置は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 また、本実施の形態に係る三次元データ復号装置は、図88に示す処理を行う。三次元データ復号装置は、複数の第2符号化データと、複数の第2符号化データの各々のデータ長を示す第1情報を含むビットストリームから、第1情報を取得する(S8886)。三次元データ復号装置は、第1情報を用いて、複数の第2符号化データのうちの少なくとも一つの第2符号化データを取得する(S8887)。三次元データ復号装置は、取得した少なくとも一つの第2符号化データを復号する(S8888)。ビットストリームは、点群データに含まれる複数の三次元点の複数の位置情報であって、複数の深さと、各々が1以上の深さを含む複数の階層とを有する階層構造が設定された複数の位置情報が深さ毎に符号化されることで生成された深さ毎の複数の第1符号化データを含む。複数の第2符号化データの各々は、複数の階層のいずれかに対応し、複数の第1符号化データのうち、当該第2符号化データに対応する階層に含まれる1以上の第1符号化データを含む。
 これによれば、三次元データ復号装置は、第1情報を用いて、任意の階層のデータに容易にアクセスできる。よって、当該三次元データ復号装置は、処理量を低減できる。
 例えば、第1情報は、複数の階層の各々に含まれる深さの数を示す第2情報(例えばnum_depth)と、複数の第1符号化データの各々のデータ長を示す第3情報(例えばlength)とを含む。例えば、三次元データ復号装置は、第2情報及び第3情報を用いて、第2符号化データのデータ長を算出する。
 例えば、ビットストリームは、複数の第2符号化データに共通の第1ヘッダ(例えば図49に示す階層構造メタデータ又はヘッダ)を含み、第1ヘッダは、第1情報を含む。
 例えば、ビットストリームは、第2符号化データ毎の複数の第2ヘッダ(例えば図73に示すスライスヘッダ)を含み、第1情報は、複数の第2符号化データのいずれかに対応し、対応する第2符号化データのデータ長を示す複数の第4情報を含み、複数の第2ヘッダの各々は、当該第2ヘッダに対応する第2符号化データのデータ長を示す第4情報を含む。
 例えば、ビットストリームは、複数の第1符号化データ毎の複数の第3ヘッダ(例えば図72に示すスライスヘッダ)を含み、第1情報は、複数の階層の各々に含まれる深さの数を示す第2情報(例えばnum_depth)と、複数の第1符号化データの各々に対応し、対応する第1符号化データのデータ長を示す第5情報(例えばlength)とを含み、複数の第3ヘッダの各々は、当該第3ヘッダに対応する第1符号化データのデータ長を示す第5情報を含む。
 例えば、ビットストリームは、複数の三次元点が有する複数の属性情報が深さ毎に符号化されることで生成された深さ毎の複数の第3符号化データを含む。ビットストリームは、階層毎の符号化データであって、対応する階層に含まれる1以上の深さの1以上の第3符号化データを含む複数の第4符号化データを含む。ビットストリームは、複数の第4符号化データの各々のデータ長を示す第6情報を含む。三次元データ復号装置は、さらに、ビットストリームから、第6情報を取得し、第6情報を用いて、複数の第4符号化データのうちの少なくとも一つの第4符号化データを取得し、取得した少なくとも一つの第4符号化データを復号する。
 例えば、三次元データ復号装置は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 (実施の形態6)
 実施の形態6について、説明する。
 コンフォーマンスとは、三次元データ符号化装置において符号化された三次元点群、すなわちビットストリーム、あるいは、ビットストリームを復号する三次元データ復号装置が満たすべき所定の基準(例えば、規格で定められた基準)である。コンフォーマンスは、コンフォーマンスポイントあるいは適合点、適合レベルとも表現される。三次元データ符号化装置は、予め定められた複数のコンフォーマンスのうちから1つのコンフォーマンスを選択し、選択された1つのコンフォーマンスに基づき所定の方法を用いて三次元点群を符号化する。三次元データ復号装置は、ビットストリームがコンフォーマンスに適合するか否か、および、三次元データ復号装置が所定のコンフォーマンスに準拠するビットストリームの復号をサポートするか否かに基づき復号するか否かを決定する。
 三次元データ符号化装置は、ビットストリームが予め定められたコンフォーマンスを満たすことができるように任意の方法(所定の処理)を用いて、三次元点群の符号化を行う。三次元データ符号化装置は、三次元点群に対する任意の方法として、例えば、スケーリング処理、量子化、スライス単位又はタイル単位の分割、分割した空間のオフセット、テーブル参照(コードブック)などを実行してもよい。三次元点群の精度レベルは、ビット精度を増加、維持、または減少させるために調整されてもよい。三次元データ符号化装置は、三次元点群の符号化で生成したビットストリームが満たすコンフォーマンスを示す情報を含むビットストリームを生成する。
 三次元データ復号装置は、ビットストリーム(例えば、符号化データのシンタックス)からコンフォーマンスを示す情報を取得し、コンフォーマンスを示す情報に基づき、符号化された三次元点群のビットストリームが予め定められたコンフォーマンスを満たすか否かを判定する。そして、三次元データ復号装置は、コンフォーマンスを満たしていると判定した場合に点群データを復号する。
 コンフォーマンスの組み合わせ(セット)は、以下のようなパラメータを含んでいてもよい。コンフォーマンスの組み合わせは、例えば、三次元点群の符号化の精度(つまり、符号化後のデータのビット数)、分割データ(スライス又はタイル)単位の三次元点の数、三次元データ復号装置の利用可能な処理コア数、三次元データ復号装置のプロセッサの速度、三次元データ復号装置のアプリケーション要件(例えば、リアルタイム、低消費電力モード、リモートサーバ処理など)、ロスレス符号化又はロッシー符号化、スライスのバウンディングボックスの情報(サイズなど)のいずれか1つを含んでいてもよい。
 なお、本実施の形態では、ビット精度は、ビット数を意味する。ビット精度は、ハードウェア処理における精度を意味する。
 図89は、実施の形態6に係る三次元データ符号化装置の構成の一例を示すブロック図である。図90は、実施の形態6に係る三次元データ符号化方法の第1の例を示すフローチャートである。
 三次元データ符号化装置9600は、判定部9601と、変換部9602と、符号化部9603とを備える。
 三次元データ符号化装置9600には、三次元点群の点群データが入力される。これにより、三次元データ符号化装置9600は、点群データを取得する。
 三次元データ符号化装置9600の判定部9601は、三次元点群の点群データの符号化後のデータである符号化データのコンフォーマンスを決定する(S9601)。ここでコンフォーマンスは、対応する機器(三次元データ復号装置)の性能、アプリケーションのユースケース、取り扱う三次元点群の種類などに応じて決定される。コンフォーマンスは、予め定められていてもよいし、適応的に定められてもよい。三次元データ符号化装置9600は、コンフォーマンスの組み合わせの中から1つのコンフォーマンスを選択することで、コンフォーマンスを決定する。
 判定部9601は、点群データの三次元点群が、決定したコンフォーマンスを満たすか否かを判定する(S9602)。
 点群データの三次元点群が、決定したコンフォーマンスを満たさないと判定部9601により判定された場合(S9602でNo)、変換部9602は、決定したコンフォーマンスを満たすように所定の処理を実行する(S9603)。変換部9602は、所定の処理として、例えば量子化またはデータ分割を行ってもよい。
 ステップS9603の後、又は、点群データの三次元点群が、決定したコンフォーマンスを満たすと判定部9601により判定された場合(S9602でYes)、符号化部9603は、決定したコンフォーマンスを示すコンフォーマンスインデックスを含むメタデータを生成する(S9604)。コンフォーマンスインデックスは、複数のコンフォーマンスの組み合わせのうちの1つのコンフォーマンスを特定するための識別情報である。
 符号化部9603は、ステップS9603にて変換後の点群データ、又は、ステップS9602でYesと判定された場合には変換前の点群データを符号化し、符号化後の点群データとメタデータとを含むビットストリームを生成する(S9605)。
 図91は、実施の形態6に係る三次元データ復号装置の構成の一例を示すブロック図である。図92は、実施の形態6に係る三次元データ復号方法の一例を示すフローチャートである。
 三次元データ復号装置9610は、判定部9611と、復号部9612とを備える。
 三次元データ復号装置9610は、ビットストリームを取得する。ビットストリームは、符号化された点群データ(符号化データ)と、コンフォーマンスインデックスを含むメタデータとを含む。
 三次元データ復号装置9610は、予め定められた複数のコンフォーマンスの少なくともいずれかに準拠する復号装置であり、ビットストリームが三次元データ復号装置9610がサポートするコンフォーマンスに準拠したデータであれば復号が可能である。
 判定部9611は、メタデータからコンフォーマンスインデックスを取得する(S9611)。
 判定部9611は、コンフォーマンスインデックスで示されるコンフォーマンスが、三次元データ復号装置9610が準拠するコンフォーマンスに含まれるか否かを判定する(S9612)。三次元データ復号装置9610が準拠するコンフォーマンスとは、三次元データ復号装置9610の復号条件である。また、判定部9611は、ビットストリームがコンフォーマンスインデックスで示されるコンフォーマンスを満たすか否かを判定する(S9612)。いいかえれば、判定部9611は、ビットストリームが三次元データ復号装置9610の復号条件を満たすか否かを判定する。
 ビットストリームが、三次元データ復号装置9610が準拠するコンフォーマンスに含まれると判定部9611により判定された場合(S9612でYes)、復号部9612は、ビットストリームに含まれる符号化された点群データを復号する(S9613)。
 ビットストリームが、三次元データ復号装置9610が準拠するコンフォーマンスに含まれないと判定部9611により判定された場合(S9612でNo)、復号部9612は、ビットストリームに含まれる符号化された点群データの復号をスキップし、点群データを復号しない(S9614)。
 なお、復号部9612は、ステップS9612でNoと判定された場合、点群データをそのまま復号してもよいし、エラー専用処理に移行し所定の処理を行ってもよい。ここで、所定の処理は、例えば、復号後の品質を判定し、判定の結果、品質に問題がなければ復号結果をそのまま表示(出力)し、品質が悪ければ復号結果を表示(出力)しないとしてもよい。
 次に、コンフォーマンスを設定することによる制約の種類について説明する。
 コンフォーマンスの制約を設ける対象(以下、制約対象という)としては、入力点群と、分割データとの2つの対象が考えられる。
 入力点群は、三次元符号化装置に入力される三次元点群を示す点群データである。入力点群は、スライス又はタイルなどに分割される前の元の点群データである。入力点群は、点群データが分割された複数の分割データを統合した後の点群データと等しい。このような入力点群が制約対象である場合、コンフォーマンスは、入力点群の三次元点の数、ビット精度(ビット数)などを含む。この場合、コンフォーマンスに適合する入力点群は、コンフォーマンスに適合する検出結果を入力点群として出力するセンサを用いることで、生成されてもよい。また、コンフォーマンスに適合する入力点群は、三次元データ符号化装置が既存の入力点群に対してコンフォーマンスに適合するように所定の処理を実行することで生成されてもよい。
 上記のように入力点群に制約を設ける代わりに、分割データを制約対象としてもよい。分割データは、入力点群をスライス又はタイルに分割した後のデータである。分割データが制約対象である場合、コンフォーマンスは、分割データ単位の三次元点の数又はビット精度(ビット数)などを含む。つまり、三次元データ符号化装置は、入力点群を分割する際に分割後の分割データがコンフォーマンスを満たすように、入力点群を分割する処理を行ってもよい。
 なお、入力点群及び分割データの両方にコンフォーマンスが設定されてもよい。この場合において、入力点群がコンフォーマンスを満たさない場合、三次元データ符号化装置は、入力点群を分割データ単位のコンフォーマンスが満たされるように複数の分割データに分割する。一方で、入力点群がコンフォーマンスを満たす場合、三次元データ符号化装置は、入力点群を複数の分割データに分割しなくてもよい。つまり、入力点群がコンフォーマンスを満たす場合、三次元データ符号化装置は、入力点群を分割せずにそのまま符号化してもよい。
 入力点群に制約を設ける場合、三次元データ符号化装置は、入力点群に対するコンフォーマンス(例えば、入力点群の三次元点の数、ビット数など)を、コンフォーマンスを満たす入力点群を予め生成する際の規定として用いることができる。一方で、分割データに制約を設ける場合、三次元データ符号化装置は、入力点群がコンフォーマンスを満たさない場合の入力点群を分割するときの規定として用いることができる。
 例えば、地図データに用いられる三次元点群は、取り扱う三次元点の数又は三次元点群の分布範囲が地図の大きさや密度により異なり、上限がない。このような大規模な、三次元点群に対しては、分割データに制約を設ける方法を用いることができる。言い換えれば、分割データ単位に制約を設けることにより、三次元点の数又はビット数に上限のない大規模な点群データを、限られたリソース(メモリ、処理能力)をもつ三次元データ復号装置であっても復号することが可能となる。
 また、入力点群と、分割データとの両方に制約を設けることにより、様々なコンテンツに対して本符号化方式を適用することができる。
 図93は、実施の形態6に係る三次元データ符号化方法の第2の例を示すフローチャートである。この三次元データ符号化方法は、制約対象を入力点群とする場合と分割データとする場合とで処理を切り替える方法である。
 三次元データ符号化装置は、制約対象が入力点群であるか分割データであるかを判定する(S9621)。制約対象が入力点群であるか分割データであるかは、予めユーザにより定められていてもよいし、三次元点群の用途に応じて定められてもよい。
 三次元データ符号化装置は、制約対象が入力点群であると判定した場合(S9621で入力点群)、入力点群を対象とし、ビット精度(ビット数)又はポイント数を制約する(S9622)。具体的には、三次元データ符号化装置は、入力点群に対してコンフォーマンスとしてのビット精度又はポイント数を決定する。なお、ビット数は、入力点群の点群データを符号化後の符号化データの最大ビット数である。また、ポイント数は、入力点群に含まれる三次元点の数の範囲である。
 三次元データ符号化装置は、入力点群が規定内であるか否かを判定する(S9623)。つまり、三次元データ符号化装置は、入力点群がステップS9622で決定されたコンフォーマンスを満たすか否かを判定する。
 三次元データ符号化装置は、入力点群が規定内でないと判定した場合(S9623でNo)、規定に適合するように入力点群を処理する(S9624)。つまり、三次元データ符号化装置は、入力点群がコンフォーマンスを満たさない場合、コンフォーマンスを満たすように入力点群に対して所定の処理を実行する。
 三次元データ符号化装置は、入力点群が規定内であると判定した場合(S9623でYes)、規定内であると判定された入力点群を符号化する(S9630)。また、三次元データ符号化装置は、ステップS9624で所定の処理が実行されてコンフォーマンスを満たす、処理後の入力点群を符号化する(S9630)。
 ステップS9621に戻り、三次元データ符号化装置は、制約対象が分割データであると判定した場合(S9621で分割データ)、分割データを対象とし、分割データ毎にビット精度(ビット数)又はポイント数を制約する(S9625)。具体的には、三次元データ符号化装置は、分割データ単位のコンフォーマンスとしてのビット精度又はポイント数を決定する。
 三次元データ符号化装置は、入力点群が規定内であるか否かを判定する(S9626)。ステップS9626は、ステップS9623と同じ処理である。
 三次元データ符号化装置は、入力点群が規定内であると判定した場合(S9626でYes)、規定内であると判定された入力点群を符号化する(S9630)。
 なお、ステップS9626は、必ずしも実行されなくてもよい。
 三次元データ符号化装置は、入力点群が規定内でないと判定した場合(S9626でNo)、入力点群を複数の分割データに分割する(S9627)。三次元データ符号化装置は、例えば、入力点群が存在する三次元空間を複数のサブ空間に分割することで、各サブ空間に含まれる三次元点群を示す点群データを分割データとして決定してもよい。サブ空間は、スライスであってもよいし、タイルであってもよい。
 三次元データ符号化装置は、分割データが規定内であるか否かを判定する(S9628)。つまり、三次元データ符号化装置は、分割データがステップS9625で決定されたコンフォーマンスを満たすか否かを判定する。
 三次元データ符号化装置は、分割データが規定内でないと判定した場合(S9628でNo)、規定に適合するように分割データを処理する(S9629)。つまり、三次元データ符号化装置は、分割データがコンフォーマンスを満たさない場合、コンフォーマンスを満たすように分割データに対して所定の処理を実行する。
 三次元データ符号化装置は、分割データが規定内であると判定した場合(S9628でYes)、規定内であると判定された分割データを符号化する(S9630)。また、三次元データ符号化装置は、ステップS9629で所定の処理が実行されてコンフォーマンスを満たす、処理後の分割データを符号化する(S9630)。
 なお、コンフォーマンスを満たすか否かの適合性の判定、又は、制約に適合させるための所定の処理は、分割データ毎に実施されてもよい。すなわち、制約に適合させるための所定の処理が実行される分割データと、実行されない分割データとが混在していてもよい。つまり、ステップS9628の判定は、複数の分割データのそれぞれに対して行われ、複数の分割データのうちで規定を満たさない分割データに対しては制約に適合させるための所定の処理(S9629)を実行し、規定を満たす分割データに対しては制約に適合させるための所定の処理(S9629)を実行しなくてもよい。
 三次元データ符号化装置は、符号化の際に、制約対象を入力点群に設定したか、分割データに設定したかを示す制約対象情報を含むメタデータをビットストリームに付加してもよい。
 図94は、バウンディングボックスの一例を示す図である。
 分割データのビット精度の制約方法として、例えば、分割データのバウンディングボックスの大きさを定める方法がある。例えば、このバウンディングボックスの大きさは、高さ、幅、奥行きを所定の同一のNビット以内に規定されてもよい。なお、高さ、幅、奥行きのそれぞれのビット数の上限(最大値)が規定されていてもよい。
 図95は、実施の形態6に係る三次元データ復号方法の他の一例を示すフローチャートである。
 三次元データ復号装置は、ビットストリームに含まれるメタデータを解析し、メタデータに含まれるコンフォーマンス(制約条件)を取得する(S9631)。このコンフォーマンスは、三次元データ符号化装置によって入力点群又は分割データが符号化されるときに決定されたコンフォーマンスである。
 三次元データ復号装置は、制約対象が入力点群であるか分割データであるかを判定する(S9632)。
 三次元データ復号装置は、制約対象が入力点群であると判定した場合(S9632で入力点群)、入力点群単位のビットストリームが三次元データ復号装置の復号条件を満たしているかを確認する(S9633)。そして、三次元データ復号装置は、確認した結果、入力点群単位のビットストリームが復号条件を満たしている場合、ビットストリームに含まれる符号化された入力点群を復号し、入力点群単位のビットストリームが復号条件を満たしていない場合、符号化された入力点群を復号しなくてもよい。
 三次元データ復号装置は、制約対象が分割データであると判定した場合(S9632で分割データ)、分割データ単位のビットストリームが復号条件を満たしているかを確認する(S9634)。そして、三次元データ復号装置は、確認した結果、分割データ単位のビットストリームが復号条件を満たしている場合、ビットストリームに含まれる符号化された分割データを復号し、分割データ単位のビットストリームが復号条件を満たしていない場合、符号化された分割データを復号しなくてもよい。
 次に、スライス毎のビット数の制約を規定する場合の所定の処理について説明する。
 図96は、実施の形態6に係る三次元データ符号化方法の第3の例を示すフローチャートである。このフローチャートは、所定の処理としてビット数を減らす処理を行う場合の例である。なお、以下では、制約対象が入力点群である場合を例に説明するが、分割データである場合にも同様に適用することができる。つまり、入力点群を分割データに読み替えてもよい。
 三次元データ符号化装置は、入力点群の位置情報のビット数のコンフォーマンスを決定する(S9641)。つまり、三次元データ符号化装置は、入力点群の符号化後の符号化データのビット数の上限(第1最大ビット数)をコンフォーマンスとして決定する。第1最大ビット数は、位置情報の符号化後のデータのビット数に関する。入力点群に含まれる位置情報は、入力点群の各三次元点の位置を示す。位置情報は、例えば、各三次元点の座標である。座標は、直交座標系で示されてもよいし、極座標系で示されてもよい。
 三次元データ符号化装置は、入力点群の位置情報のビット数が、ステップS9641で決定されたコンフォーマンスを満たすか否かを判定する(S9642)。つまり、三次元データ符号化装置は、入力点群の位置情報のビット数が、第1最大ビット数を満たすか否かを判定する。
 三次元データ符号化装置は、入力点群の位置情報のビット数が、決定されたコンフォーマンスを満たさないと判定した場合(S9642でNo)、つまり、決定されたコンフォーマンスを超えると判定した場合、入力点群の位置情報のビット数を減らす処理を所定の処理として実行する(S9643)。
 三次元データ符号化装置は、入力点群の位置情報のビット数が、決定されたコンフォーマンスを満たすと判定した場合(S9642でYes)、入力点群の位置情報を符号化する(S9644)。また、三次元データ符号化装置は、ステップS9643で所定の処理が実行されたコンフォーマンスを満たす、処理後の入力点群の位置情報を符号化する(S9644)。
 三次元データ符号化装置は、ステップS9642~S9644を実行することで、点群データを、決定したコンフォーマンスを満たすように符号化することでビットストリームを生成する。具体的には、三次元データ符号化装置は、入力点群の位置情報を、決定した第1最大ビット数を満たすように符号化することでビットストリームを生成する。三次元データ符号化装置は、決定したコンフォーマンスを示すコンフォーマンス情報をビットストリームに付加する。コンフォーマンス情報は、例えば、第1最大ビット数を示す第1ビット数情報である。第1ビット数情報は、第1最大ビット数そのものの値であってもよいし、第1最大ビット数を一意に特定するための識別情報であってもよい。識別情報は、例えば、コンフォーマンスインデックスである。
 次に、図96のステップS9643における所定の処理について説明する。
 図97は、実施の形態6に係るビット数を減らす処理の一例である。
 所定の処理では、位置座標(x,y,z)を量子化することで、ビット数を減らしてもよい。例えば、図97に示すように、コンフォーマンスで規定されている最大ビット数が4ビットである場合において、位置情報として含まれる座標(x,y,z)のいずれかが6ビットである場合、位置情報のビット数はコンフォーマンスで規定されている最大ビット数を満たさない。このため、コンフォーマンスを満たすように入力点群に対して実行する所定の処理として、量子化の2ビットシフトの量子化を実施することで、位置情報のビット数を2ビット削減する。ここで、2ビットシフトの量子化の対象となるデータは、入力ビットであってもよいし、入力点群におけるすべての三次元点の実質的に使用しているビットであってもよい。
 図98は、実施の形態6に係るビット数を減らす処理の他の一例である。
 所定の処理では、スライス又はタイルなどに分割するデータ分割を用いて、スライス単位のビット精度を減らしてもよい。具体的には、三次元データ符号化装置は、入力点群をスライス単位でデータ分割する際に、一のスライスの原点に合わせるように、他のスライスの原点の座標をシフトすることで、ビット精度を減らしてもよい。
 スライス単位の最大ビット数がコンフォーマンスとして定められている場合において、点群当たりのビット(スライスを含むバウンディングボックスのサイズ、幅、高さ、奥行きのビット数)がコンフォーマンスを超える場合(つまり、スライス単位の最大ビット数がコンフォーマンスを満たさない場合)、三次元データ符号化装置は、スライスのバウンディングボックスのビット数がコンフォーマンスを満たすように点群を分割する。そして、三次元データ符号化装置は、図98における分割されたスライス(slice1)のバウンディングボックスの原点に合わせて、スライス(slice2)のバウンディングボックスの原点をシフトすることにより、ビット数を削減し、コンフォーマンスに適合させることができる。例えば、スライス単位でビット数の上限がMビットに定めたルールがある場合、入力点群を構成するバウンディングボックスの幅がN(>M)ビットの場合には、バウンディングボックスの幅を、サイズがMビットで、int(N/M)+1の数に分割してもよい。
 なお、図98では、二次元空間で示される図を用いて所定の処理について説明しているが、所定の処理は、三次元空間に適用されてもよいし、他の次元の空間に適用されてもよい。
 図99は、実施の形態6に係る三次元データ符号化方法の第4の例を示すフローチャートである。このフローチャートは、所定の処理としてビット数を増やす処理を行う場合の例である。
 三次元データ符号化装置は、入力点群の位置情報のビット数のコンフォーマンスを決定する(S9651)。つまり、三次元データ符号化装置は、入力点群の符号化後の符号化データのビット数の上限(第1最大ビット数)をコンフォーマンスとして決定する。
 三次元データ符号化装置は、入力点群の位置情報のビット数が、ステップS9651で決定されたコンフォーマンスを満たすか否かを判定する(S9652)。つまり、三次元データ符号化装置は、入力点群の位置情報のビット数が、第1最大ビット数を満たすか否かを判定する。
 三次元データ符号化装置は、入力点群の位置情報のビット数が、決定されたコンフォーマンスを満たさないと判定した場合(S9652でNo)、つまり、決定されたコンフォーマンスに足りないと判定した場合、入力点群の位置情報のビット数を増やす処理を所定の処理として実行する(S9653)。
 三次元データ符号化装置は、入力点群の位置情報のビット数が、決定されたコンフォーマンスを満たすと判定した場合(S9652でYes)、入力点群の位置情報を符号化する(S9654)。また、三次元データ符号化装置は、ステップS9653で所定の処理が実行されたコンフォーマンスを満たす、処理後の入力点群の位置情報を符号化する(S9654)。
 次に、図99のステップS9653における所定の処理について説明する。
 図100は、実施の形態6に係るビット数を増やす処理の一例である。
 所定の処理では、ビット数が足りない場合、アップサンプルするなどしてビット数を増やしてもよい。例えば、この方法では、位置座標(x,y,z)をパディングすることで、ビット数を増やしてもよい。
 図101は、実施の形態6に係るビット数を増やす処理の他の一例である。
 所定の処理では、ビットシフトや点群の原点をシフトすることにより、ビット数を調整してもよい。スライス又はタイルなどのデータパーティションにシフト値を入力することで、スライス毎のビット数を増やすことができる。複数のスライス(複数の分割データ)を結合する際には、異なるビットストリームから異なるスライスの座標をシフトさせることで、ビット数を増やしてもよい。例えば、図101における分割されたスライス(slice1)のバウンディングボックスとは重ならない位置にスライス(slice2)のバウンディングボックスの原点をシフトすることにより、ビット数を増やしてもよい。これにより、コンフォーマンスに適合させることができる。
 コンフォーマンスは、位置情報のビット数と、三次元点の数との組み合わせで規定されてもよい。この例について図102を用いて説明する。なお、三次元点の数のことを点群の数ということもある。
 図102は、実施の形態6に係る三次元データ符号化方法の第5の例を示すフローチャートである。このフローチャートでは、コンフォーマンスとして、位置情報のビット数と、入力点群における三次元点の数の範囲とが決定される例である。なお、コンフォーマンスは、位置精度と三次元点の数の範囲との組み合わせに限らずに、他のパラメータの組み合わせであってもよい。
 三次元データ符号化装置は、三次元点群の点群データの符号化後のデータである符号化データのコンフォーマンスを決定する(S9661)。ここで決定されるコンフォーマンスは、位置情報のビット数を規定する第1最大ビット数と、入力点群に含まれる三次元点の数の範囲とを含む。
 三次元データ符号化装置は、入力された三次元点群が、決定されたビット数のコンフォーマンスを満たすか否かを判定する(S9662)。つまり、三次元データ符号化装置は、入力された三次元点群の位置情報のビット数が、決定された第1最大ビット数を満たすか(一致するか)否かを判定する。
 三次元データ符号化装置は、入力された三次元点群が、決定されたビット数のコンフォーマンスを満たさないと判定した場合(S9662でNo)、決定したコンフォーマンスを満たすように所定の処理を実行する(S9663)。所定の処理は、例えば、図97、図98、図100、図101を用いて説明した処理のいずれかの処理である。
 三次元データ符号化装置は、ステップS9663が終了した場合、又は、入力された三次元点群が、決定されたビット数のコンフォーマンスを満たすと判定した場合(S9662でYes)、次のステップS9664を実行する。
 三次元データ符号化装置は、入力された三次元点群が、決定された三次元点の数の範囲に関するコンフォーマンスを満たすか否かを判定する(S9664)。つまり、三次元データ符号化装置は、入力された三次元点群の三次元点の数が、決定された三次元点の数の範囲内にあるか否かを判定する。
 三次元データ符号化装置は、入力された三次元点群が、決定された三次元点の数の範囲に関するコンフォーマンスを満たさないと判定した場合(S9664でNo)、決定したコンフォーマンスを満たすように所定の処理を実行する(S9665)。所定の処理は、例えば、図97、図98、図100、図101を用いて説明した処理のいずれかの処理である。
 三次元データ符号化装置は、ステップS9665が終了した場合、又は、入力された三次元点群が、決定された三次元点の数の範囲のコンフォーマンスを満たすと判定した場合(S9664でYes)、次のステップS9666を実行する。
 三次元データ符号化装置は、ステップS9661で決定したコンフォーマンスを示すコンフォーマンスインデックスを含むメタデータを生成する(S9666)。コンフォーマンスインデックスは、複数のコンフォーマンスの組み合わせのうちの1つのコンフォーマンスを特定するための識別情報である。
 三次元データ符号化装置は、ステップS9662及びステップS9664の判定結果に応じて、ステップS9663での処理後の点群データ、ステップS9665での処理後の点群データ、ステップS9663及びS9665での処理後の点群データ、または、未処理の点群データ(つまり所定の処理が行われていない点群データ)を符号化し、符号化後の点群データとメタデータとを含むビットストリームを生成する(S9667)。
 三次元データ符号化装置は、ステップS9662~S9665を実行することで、点群データを、決定した第1最大ビット数と三次元点の数の範囲との両方のコンフォーマンスを満たすように符号化することでビットストリームを生成する。ここで、三次元データ符号化装置は、決定したコンフォーマンスを示すコンフォーマンス情報をビットストリームに付加する。コンフォーマンス情報は、例えば、第1最大ビット数を示す第1ビット数情報と、三次元点の数の範囲を示す範囲情報である。なお、範囲情報は、三次元点の数の範囲そのものの値であってもよいし、当該数の範囲を一意に特定するための識別情報であってもよい。
 図103は、実施の形態6に係るコンフォーマンスの組み合わせの一例を示す図である。
 この図に示すように、コンフォーマンスの組み合わせは、位置情報のビット数と、点群の数の範囲との組み合わせで示されてもよい。この例では、位置情報のビット数は、上限が32ビットの場合と、64ビットの場合との2段階に分類される。点群の数の範囲は、10000以下の場合と、10000より多く100000以下の場合と、100000より多い場合との3段階に分類される。これにより、コンフォーマンスの組み合わせは、6通りのコンフォーマンスポイントに分類され、各コンフォーマンスにはコンフォーマンスインデックスが付与されている。つまり、1から6の数字で示されるコンフォーマンスインデックスを指定することで、位置情報のビット数と、点群の数の範囲とを一意に設定することができる。
 図102及び図103で説明した例は、分割データ単位(例えばスライス単位)の位置情報のビット数と、分割データ単位の点群の数の範囲を同時に制約する場合の例である。
 三次元データ符号化装置は、コンフォーマンスの組み合わせに含まれる複数のコンフォーマンスポイントのいずれか1つを選択し、選択した1つのコンフォーマンスポイントに適合するように符号化を行う。選択した1つのコンフォーマンスポイントに適合しなければ、三次元データ符号化装置は、分割データ単位のビット数又は分割データ単位の点群の数がコンフォーマンスポイントに適合するように、量子化、データ分割、又は、分割データの統合を実施する。
 なお、三次元データ符号化装置は、位置情報のビット数と、点群の数の範囲との一方のコンフォーマンスに適合させようとした場合に、他方のコンフォーマンスに適合しない場合がある。三次元データ符号化装置は、例えば、ビット数に適合しようとデータ分割した場合、三次元点群の数も分割されるため、規定の点群の数の範囲に収めることができない場合がある。
 この場合、三次元データ符号化装置は、規定の優先度に応じて所定の処理を実行してもよい。例えば、位置情報のビット数の制約の順守が最優先(必須)であり、点群の数の範囲の制約は可能な限り順守が望ましいと規定されてもよい。つまり、三次元データ符号化方法は、優先する規定のコンフォーマンスを満たすための所定の処理を実行し、優先しない規定のコンフォーマンスを満たすための所定の処理を実行しなくてもよい。
 低遅延モードなど、処理速度優先の場合は、ビット数の制約の順守の優先度が、点群の数の範囲の制約よりも高く設定され手もよい。符号化率の観点では、点群の数の制約の順守の優先度が、ビット数の制約よりも高く設定されてもよい。このように、目的に応じ、ビット数、及び、点群の数の範囲を順守する優先度が設定されてもよい。
 なお、コンフォーマンスは、ビット数、又は、分割データのバウンディングボックスのサイズの規定でもよいし、分割データの数の規定でもよいし、これらの規定の組み合わせであってもよい。
 コンフォーマンスは、位置情報のビット数と、フレームレートとの組み合わせで規定されてもよい。この例について図104を用いて説明する。
 図104は、実施の形態6に係る三次元データ符号化方法の第6の例を示すフローチャートである。このフローチャートでは、コンフォーマンスとして、位置情報のビット数と、入力点群のフレームレートとが決定される例である。
 三次元データ符号化装置は、三次元点群の点群データの符号化後のデータである符号化データのコンフォーマンスを決定する(S9671)。ここで決定されるコンフォーマンスは、位置情報のビット数を規定する第1最大ビット数と、入力点群のフレームレートとを含む。
 三次元データ符号化装置は、入力された三次元点群が、決定されたビット数のコンフォーマンスを満たすか否かを判定する(S9672)。つまり、三次元データ符号化装置は、入力された三次元点群の位置情報のビット数が、決定された第1最大ビット数を満たすか(一致するか)否か、及び、入力された三次元点群のフレームレートが、決定されたフレームレートを満たすか否かを判定する。
 三次元データ符号化装置は、入力された三次元点群が、決定されたビット数のコンフォーマンスを満たさないと判定した場合(S9672でNo)、決定したコンフォーマンスを満たすように所定の処理を実行する(S9673)。所定の処理は、例えば、図97、図98、図100、図101を用いて説明した処理のいずれかの処理である。
 三次元データ符号化装置は、ステップS9673が終了した場合、又は、入力された三次元点群が、決定された三次元点の数の範囲のコンフォーマンスを満たすと判定した場合(S9672でYes)、次のステップS9674を実行する。
 三次元データ符号化装置は、ステップS9671で決定したコンフォーマンスを示すコンフォーマンスインデックスを含むメタデータを生成する(S9674)。コンフォーマンスインデックスは、複数のコンフォーマンスの組み合わせのうちの1つのコンフォーマンスを特定するための識別情報である。
 三次元データ符号化装置は、ステップS9672の判定結果に応じて、ステップS9673での処理後の点群データ、または、未処理の点群データ(つまり所定の処理が行われていない点群データ)を符号化し、符号化後の点群データとメタデータとを含むビットストリームを生成する(S9675)。
 このように、例えば、コンフォーマンスは、ハードウェア(三次元データ符号化装置/三次元データ復号装置)に必要な単位時間(秒)当たりのフレーム数(フレームレート/fps)の点でアプリケーションのニーズに変換されうるハードウェアの要件によって決定されてもよい。この場合、1フレームをLiDARの360度キャプチャと見なしてもよい。コンフォーマンスの組合せは、他のパラメータの組み合わせであってもよい。また、コンフォーマンスは、分割データ(スライス)単位のフレームレートで規定されてもよい。
 図105は、実施の形態6に係るコンフォーマンスの組み合わせの他の一例を示す図である。
 この図に示すように、コンフォーマンスの組み合わせは、位置情報のビット数と、フレームレートとの組み合わせで示されてもよい。この例では、位置情報のビット数は、上限が16ビットの場合と、32ビットの場合と、64ビットの場合との3段階に分類される。フレームレートは、60fps未満の場合と、10fps未満の場合と、1fps未満の場合との3段階に分類される。これにより、コンフォーマンスの組み合わせは、9通りのコンフォーマンスポイントに分類され、各コンフォーマンスにはコンフォーマンスインデックスが付与されている。つまり、1から9の数字で示されるコンフォーマンスインデックスを指定することで、位置情報のビット数と、フレームレートとを一意に設定することができる。
 ここまでは、位置情報の符号化処理及び復号処理において、コンフォーマンスを設定する例について説明したが、属性情報の符号化処理及び復号処理においても、位置情報の符号化処理及び復号処理と同様にコンフォーマンスを設定してもよい。なお、属性情報に対して適用されるコンフォーマンスは、色又は反射率などのような属性部分情報への規定だけでなく、予測又は圧縮の目的で点群に関連付けられた位置情報に関連する情報への規定であってもよい。LoD又はRAHTなどの階層構造を用いた属性情報の予測には、サブサンプル又は所定距離内の近傍の点を探索する機能を実行するために、三次元点群の幾何学的な位置情報を必要とする。このため、属性情報を規定するためコンフォーマンスは、これらの位置情報に基づくパラメータを含んでいてもよい。
 また、属性情報を規定するためのコンフォーマンスは、色を表現するビット数の上限を含んでいてもよい。このコンフォーマンスは、例えば、RGB情報のビット数であってもよい。RGB情報のビット数は、点群の色が8ビットでの表現であるか、12ビットでの表現であるか、16ビットでの表現であるかを示す。反射率に対しても同様に規定されてもよい。
 図106は、実施の形態6に係るコンフォーマンスの組み合わせの他の一例を示す図である。
 この図に示すように、コンフォーマンスの組み合わせは、色のビット数と、属性変換のパラメータとの組み合わせで示されてもよい。この例では、色のビット数は、上限が8ビットの場合と、12ビットの場合と、16ビットの場合との3段階に分類される。属性変換のパラメータは、例えば、予測の際に用いられるLoDの階層構造の階層の数を示す。属性変換のパラメータは、10階層未満の場合と、5階層未満の場合と、1階層の場合との3段階に分類される。これにより、コンフォーマンスの組み合わせは、9通りのコンフォーマンスポイントに分類され、各コンフォーマンスにはコンフォーマンスインデックスが付与されている。つまり、1から9の数字で示されるコンフォーマンスインデックスを指定することで、色のビット数と、属性変換のパラメータとを一意に設定することができる。
 属性情報について、コンフォーマンスが設定されてもよい。つまり、点群データは、位置情報の他に、さらに、三次元点群の各三次元点の属性情報を含んでいてもよい。三次元データ符号化装置は、三次元点群の点群データの属性情報の符号化後のビット数を規定する第2最大ビット数を、符号化データのコンフォーマンスとして決定する。三次元データ符号化装置は、属性情報を決定した第2最大ビット数を満たすように符号化することでビットストリームを生成する。ビットストリームは、第2最大ビット数を示す第2ビット数情報を含んでいてもよい。
 コンフォーマンスインデックスのシンタックスについて説明する。
 図107は、実施の形態6に係るSPS(Sequence Parameter Set)の一例(例1)を示す図である。図108は、実施の形態6に係るSPSの一例(例2)を示す図である。図109は、実施の形態6に係るGPS(Geometry Parameter Set)の一例(例3)を示す図である。図110は、実施の形態6に係るビットストリームの構成を示す図である。
 図107に示すように、コンフォーマンスインデックスは、SPSにおいて、利用可能なprofile_idc、profile_compatibility_flags、またはlevel_idcパラメータの一部となるように含めてもよい。
 また、図108に示すように、記述や使用シナリオによっては、G-PCCの符号化・復号処理のための多数の差分プロファイル、レベル、コンフォーマンスをさらに拡大するために、コンフォーマンスインデックスは、SPSの独立したパラメータとして設定されてもよい。つまり、コンフォーマンスインデックスは、図110におけるヘッダ9621に設定されてもよい。
 また、図109に示すように、コンフォーマンスインデックスは、Geometry slice header(GPS)で各スライスのヘッダに含まれるように設定されてもよい。つまり、コンフォーマンスインデックスは、図110におけるヘッダ9622、9623に設定されてもよい。
 これは、各スライスが、異なるタイプの三次元点群や異なる地域のデータに対応するために、異なるコンフォーマンスインデックスを有することができることを意味する。また、CPUやGPU ASICなどの異なるプロセッサタイプに対応した符号化処理又は復号処理を行うこともできる。
 図111は、実施の形態6に係る、三次元点群の場所に応じてコンフォーマンスを切り替える場合の例について説明するための図である。
 図111では、屋内の三次元点群9631と、屋外の三次元点群9632とが得られており、屋外の三次元点群9632のうちの一部の三次元領域9633が屋内の三次元点群9631に対応している例である。屋内の三次元点群9631と、屋外の三次元点群9632とは、異なるセンサによって取得されたデータであるため、例えば、互いに点群の密度などが異なる。
 屋内の三次元点群9631は、オフィスなどの屋内で計測された点群であるため、屋外のセンサでは取得できない。つまり、屋外の三次元点群9632には、屋内の三次元点群9631は含まれない。
 このように、屋内の三次元点群9631と、屋外の三次元点群9632とは、異なる精度、異なる密度で生成された互いに独立した点群データである。このため、それぞれの三次元点群9631、9632に対して独立したコンフォーマンスが設定されて、三次元点群9631、9632に応じてコンフォーマンスが切り替えられてもよい。
 屋外の三次元点群9632の精度を切り替えて、屋内の三次元点群9631が収まるようにスケールを大きくすることで、両方のデータを組み合わせてもよい。そして、異なるスライス原点値を用いて、屋内点群をシフトさせてもよい。
 以上のように、本実施の形態の一態様に係る三次元データ符号化装置は、図112に示す処理を行う。三次元データ符号化装置は、三次元点群を示す点群データを複数に分割した際の分割データ単位、及び、分割前の点群データ単位の少なくとも一方の符号化後の符号化データの第1最大ビット数を決定する(S9681)。三次元データ符号化装置は、前記点群データが分割された複数の分割データ、又は、分割前の前記点群データを、決定した前記第1最大ビット数を満たすように符号化することでビットストリームを生成する(S9682)。前記ビットストリームは、前記第1最大ビット数を示す第1ビット数情報を含む。
 これによれば、三次元データ符号化方法は、符号化後の符号化データの第1最大ビット数を示す第1ビット数情報を含むビットストリームを生成するため、三次元データ復号装置は、ビットストリームを解析しなくても適切に符号化データを復号できるかを判断できる。このため、三次元データ復号装置の処理負荷を低減することができる。
 例えば、前記点群データは、前記三次元点群の各三次元点の位置情報を含む。前記第1最大ビット数は、前記位置情報の符号化後のビット数に関する。前記生成(S9682)では、前記点群データが分割された複数の分割データ、又は、分割前の前記点群データの位置情報を、決定した前記第1最大ビット数を満たすように符号化することで前記ビットストリームを生成する。
 これによれば、三次元データ符号化方法は、符号化後の位置情報の第1最大ビット数を示す第1ビット数情報を含むビットストリームを生成するため、三次元データ復号装置は、ビットストリームを解析しなくても適切に位置情報を復号できるかを判断できる。
 例えば、三次元データ符号化装置は、さらに、前記分割データ単位、及び、前記点群データ単位の少なくとも一方に含まれる三次元点の数の範囲を決定する。前記生成(S9682)では、前記点群データが分割された複数の分割データ、又は、分割前の前記点群データを、決定した前記第1最大ビット数及び前記数の範囲を満たすように符号化することで前記ビットストリームを生成する。前記ビットストリームは、さらに、前記数の範囲を示す範囲情報を含む。
 これによれば、三次元データ符号化方法は、符号化データの三次元点の数の範囲を示す範囲情報を含むビットストリームを生成するため、三次元データ復号装置は、ビットストリームを解析しなくても適切に位置情報を復号できるかを判断できる。このため、三次元データ復号装置の処理負荷を低減することができる。
 例えば、前記点群データは、さらに、前記三次元点群の各三次元点の属性情報を含む。三次元データ符号化装置は、さらに、前記分割データ単位、及び、前記点群データ単位の少なくとも一方の三次元点群の属性情報の符号化後の第2最大ビット数を決定する。前記生成(S9682)では、(i)前記点群データが分割された複数の分割データ、又は、分割前の前記点群データの位置情報を、決定した前記第1最大ビット数を満たすように符号化し、かつ、(ii)前記点群データが分割された複数の分割データ、又は、分割前の前記点群データの属性情報を、決定した前記第2最大ビット数を満たすように符号化することで、前記ビットストリームを生成する。前記ビットストリームは、さらに、前記第2最大ビット数を示す第2ビット数情報を含む。
 これによれば、三次元データ符号化方法は、符号化後の属性情報の第2最大ビット数を示す第2ビット数情報を含むビットストリームを生成するため、三次元データ復号装置は、ビットストリームを解析しなくても適切に属性情報を復号できるかを判断できる。このため、三次元データ復号装置の処理負荷を低減することができる。
 例えば、三次元データ符号化装置は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 また、本実施の形態の一態様に係る三次元データ復号装置は、図113に示す処理を行う。三次元データ復号装置は、三次元点群を示す点群データを複数に分割した際の分割データ単位、及び、分割前の点群データ単位の少なくとも一方の符号化後のデータである符号化データと、前記符号化データの第1最大ビット数を示す第1ビット数情報とを含むビットストリームを取得する(S9691)。三次元データ復号装置は、取得した前記ビットストリームが前記第1ビット数情報で示される第1最大ビット数を満たしているか否かを判定する(S9692)。三次元データ復号装置は、前記ビットストリームが前記第1最大ビット数を満たしていると判定された場合、前記符号化データを復号する(S9693)。
 これによれば、三次元データ復号方法は、ビットストリームから符号化後の符号化データの第1最大ビット数を示す第1ビット数情報を取得するため、取得した第1ビット数情報に基づいて適切に点群データを復号することができる。
 例えば、三次元データ復号装置は、前記復号(S9693)では、前記ビットストリームが前記第1最大ビット数を満たしていないと判定された場合、前記符号化データを復号しない。
 これによれば、適切に復号できないビットストリームの符号化データの復号処理を行わないため、処理負荷を低減することができる。
 例えば、前記点群データは、前記三次元点群の各三次元点の位置情報を含む。前記第1最大ビット数は、前記位置情報の符号化後のビット数に関する。
 これによれば、三次元データ復号方法は、ビットストリームから符号化後の位置情報の第1最大ビット数を示す第1ビット数情報を取得するため、取得した第1ビット数情報に基づいて適切に点群データを復号することができる。
 例えば、前記ビットストリームは、さらに、前記分割データ単位、及び、前記点群データ単位の少なくとも一方に含まれる三次元点の数の範囲を示す範囲情報を含む。前記三次元データ復号装置は、前記判定(S9692)では、さらに、前記ビットストリームが前記範囲情報で示される前記数の範囲を満たしているか否かを判定する。前記復号(S9693)では、前記ビットストリームが、前記第1最大ビット数を満たしており、かつ、前記数の範囲を満たしていると判定された場合、前記符号化データを復号し、前記ビットストリームが、前記第1最大ビット数を満たしていない、又は、前記数の範囲を満たしていないと判定された場合、前記符号化データを復号しない。
 これによれば、三次元データ復号方法は、ビットストリームから符号化データの三次元点の数の範囲を示す範囲情報を取得するため、取得した範囲情報に基づいて適切に点群データを復号することができる。
 例えば、前記点群データは、さらに、前記三次元点群の各三次元点の属性情報を含む。前記ビットストリームは、さらに、前記分割データ単位、及び、前記点群データ単位の少なくとも一方の三次元点群の属性情報の符号化後の第2最大ビット数を示す第2ビット数情報を含む。前記判定(S9692)では、さらに、前記ビットストリームが前記第2ビット数情報で示される前記第2最大ビット数を満たしているか否かを判定する。前記復号(S9693)では、前記ビットストリームが、前記第1最大ビット数を満たしており、かつ、前記第2最大ビット数を満たしていると判定された場合、前記符号化データを復号し、前記ビットストリームが、前記第1最大ビット数を満たしていない、又は、前記第2最大ビット数を満たしていないと判定された場合、前記符号化データを復号しない。
 これによれば、三次元データ復号方法は、ビットストリームから符号化後の属性情報の第2最大ビット数を示す第2ビット数情報を取得するため、取得した第2ビット数情報に基づいて適切に点群データを復号することができる。
 例えば、三次元データ復号装置は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 (実施の形態7)
 次に、本実施の形態に係る三次元データ作成装置810の構成を説明する。図114は、本実施の形態に係る三次元データ作成装置810の構成例を示すブロック図である。この三次元データ作成装置810は、例えば、車両に搭載される。三次元データ作成装置810は、外部の交通監視クラウド、前走車両又は後続車両と三次元データの送受信を行うとともに、三次元データを作成及び蓄積する。
 三次元データ作成装置810は、データ受信部811と、通信部812と、受信制御部813と、フォーマット変換部814と、複数のセンサ815と、三次元データ作成部816と、三次元データ合成部817と、三次元データ蓄積部818と、通信部819と、送信制御部820と、フォーマット変換部821と、データ送信部822とを備える。
 データ受信部811は、交通監視クラウド又は前走車両から三次元データ831を受信する。三次元データ831は、例えば、自車両のセンサ815で検知不能な領域を含む、ポイントクラウド、可視光映像、奥行き情報、センサ位置情報、又は速度情報などの情報を含む。
 通信部812は、交通監視クラウド又は前走車両と通信し、データ送信要求などを交通監視クラウド又は前走車両に送信する。
 受信制御部813は、通信部812を介して、対応フォーマット等の情報を通信先と交換し、通信先との通信を確立する。
 フォーマット変換部814は、データ受信部811が受信した三次元データ831にフォーマット変換等を行うことで三次元データ832を生成する。また、フォーマット変換部814は、三次元データ831が圧縮又は符号化されている場合には、伸張又は復号処理を行う。
 複数のセンサ815は、LiDAR、可視光カメラ又は赤外線カメラなどの、車両の外部の情報を取得するセンサ群であり、センサ情報833を生成する。例えば、センサ情報833は、センサ815がLiDARなどのレーザセンサである場合、ポイントクラウド(点群データ)等の三次元データである。なお、センサ815は複数でなくてもよい。
 三次元データ作成部816は、センサ情報833から三次元データ834を生成する。三次元データ834は、例えば、ポイントクラウド、可視光映像、奥行き情報、センサ位置情報、又は速度情報などの情報を含む。
 三次元データ合成部817は、自車両のセンサ情報833に基づいて作成された三次元データ834に、交通監視クラウド又は前走車両等が作成した三次元データ832を合成することで、自車両のセンサ815では検知できない前走車両の前方の空間も含む三次元データ835を構築する。
 三次元データ蓄積部818は、生成された三次元データ835等を蓄積する。
 通信部819は、交通監視クラウド又は後続車両と通信し、データ送信要求などを交通監視クラウド又は後続車両に送信する。
 送信制御部820は、通信部819を介して、対応フォーマット等の情報を通信先と交換し、通信先と通信を確立する。また、送信制御部820は、三次元データ合成部817で生成された三次元データ832の三次元データ構築情報と、通信先からのデータ送信要求とに基づき、送信対象の三次元データの空間である送信領域を決定する。
 具体的には、送信制御部820は、交通監視クラウド又は後続車両からのデータ送信要求に応じて、後続車両のセンサでは検知できない自車両の前方の空間を含む送信領域を決定する。また、送信制御部820は、三次元データ構築情報に基づいて送信可能な空間又は送信済み空間の更新有無等を判断することで送信領域を決定する。例えば、送信制御部820は、データ送信要求で指定された領域であり、かつ、対応する三次元データ835が存在する領域を送信領域に決定する。そして、送信制御部820は、通信先が対応するフォーマット、及び送信領域をフォーマット変換部821に通知する。
 フォーマット変換部821は、三次元データ蓄積部818に蓄積されている三次元データ835のうち、送信領域の三次元データ836を、受信側が対応しているフォーマットへ変換することで三次元データ837を生成する。なお、フォーマット変換部821は、三次元データ837を圧縮又は符号化することでデータ量を削減してもよい。
 データ送信部822は、三次元データ837を交通監視クラウド又は後続車両に送信する。この三次元データ837は、例えば、後続車両の死角になる領域を含む、自車両の前方のポイントクラウド、可視光映像、奥行き情報、又はセンサ位置情報などの情報を含む。
 なお、ここでは、フォーマット変換部814及び821にてフォーマット変換等が行われる例を述べたが、フォーマット変換は行われなくてもよい。
 このような構成により、三次元データ作成装置810は、自車両のセンサ815では検知できない領域の三次元データ831を外部から取得し、三次元データ831と自車両のセンサ815で検知したセンサ情報833に基づく三次元データ834とを合成することで三次元データ835を生成する。これにより、三次元データ作成装置810は、自車両のセンサ815で検知できない範囲の三次元データを生成できる。
 また、三次元データ作成装置810は、交通監視クラウド又は後続車両からのデータ送信要求に応じて、後続車両のセンサでは検知できない自車両の前方の空間を含む三次元データを、交通監視クラウド又は後続車両等へ送信できる。
 次に、三次元データ作成装置810における後続車両への三次元データの送信手順について説明する。図115は、三次元データ作成装置810による交通監視クラウド又は後続車両へ三次元データを送信する手順の一例を示すフローチャートである。
 まず、三次元データ作成装置810は、自車両の前方道路上の空間を含む空間の三次元データ835を生成及び更新する(S801)。具体的には、三次元データ作成装置810は、自車両のセンサ情報833に基づいて作成した三次元データ834に、交通監視クラウド又は前走車両等が作成した三次元データ831を合成するなどして、自車両のセンサ815では検知できない前走車両の前方の空間も含む三次元データ835を構築する。
 次に、三次元データ作成装置810は、送信済みの空間に含まれる三次元データ835が変化したかを判定する(S802)。
 送信済みの空間に外部から車両又は人が進入するなどして、当該空間に含まれる三次元データ835に変化が生じた場合には(S802でYes)、三次元データ作成装置810は、変化が生じた空間の三次元データ835を含む三次元データを交通監視クラウド又は後続車両に送信する(S803)。
 なお、三次元データ作成装置810は、変化が生じた空間の三次元データを、所定間隔で送信する三次元データの送信タイミングに合わせて送信してもよいが、変化を検知した後すぐに送信してもよい。つまり、三次元データ作成装置810は、変化が生じた空間の三次元データを、所定間隔で送信する三次元データよりも優先して送信してもよい。
 また、三次元データ作成装置810は、変化が生じた空間の三次元データとして、変化が生じた空間の三次元データの全てを送信してもよいし、三次元データの差分(例えば出現又は消失した三次元点の情報、又は三次元点の変位情報など)のみを送信してもよい。
 また、三次元データ作成装置810は、変化が生じた空間の三次元データに先行して、急制動警報など自車両の危険回避動作に関するメタデータを後続車両へ送信してもよい。これによれば、後続車両は前走車両の急制動などを早期に認知でき、より早期に減速などの危険回避動作を開始できる。
 送信済みの空間に含まれる三次元データ835に変化が生じていない場合(S802でNo)、又は、ステップS803の後、三次元データ作成装置810は、自車両の前方距離Lにある所定の形状の空間に含まれる三次元データを、交通監視クラウド又は後続車両へ送信する(S804)。
 また、例えば、ステップS801~S804の処理は、所定の時間間隔で繰り返し行われる。
 また、三次元データ作成装置810は、現在の送信対象の空間の三次元データ835と、三次元地図とに差がない場合には、空間の三次元データ837を送信しなくてもよい。
 本実施の形態では、クライアント装置は、サーバ又は他のクライアント装置にセンサで得られたセンサ情報を送信する。
 まず、本実施の形態に係るシステムの構成を説明する。図116は、本実施の形態に係る三次元マップ及びセンサ情報の送受信システムの構成を示す図である。このシステムは、サーバ901と、クライアント装置902A及び902Bを含む。なお、クライアント装置902A及び902Bを特に区別しない場合には、クライアント装置902とも記す。
 クライアント装置902は、例えば、車両等の移動体に搭載される車載機器である。サーバ901は、例えば、交通監視クラウド等であり、複数のクライアント装置902と通信可能である。
 サーバ901は、クライアント装置902に、ポイントクラウドから構成される三次元マップを送信する。なお、三次元マップの構成はポイントクラウドに限定されず、メッシュ構造等、他の三次元データを表すものであってもよい。
 クライアント装置902は、サーバ901に、クライアント装置902が取得したセンサ情報を送信する。センサ情報は、例えば、LiDAR取得情報、可視光画像、赤外画像、デプス画像、センサ位置情報及び速度情報のうち少なくとも一つを含む。
 サーバ901とクライアント装置902との間で送受信されるデータは、データ削減のために圧縮されてもよいし、データの精度を維持するために非圧縮のままでも構わない。データを圧縮する場合、ポイントクラウドには例えば8分木構造に基づく三次元圧縮方式を用いることができる。また、可視光画像、赤外画像、及びデプス画像には二次元の画像圧縮方式を用いることできる。二次元の画像圧縮方式とは、例えば、MPEGで規格化されたMPEG-4 AVC又はHEVC等である。
 また、サーバ901は、クライアント装置902からの三次元マップの送信要求に応じてサーバ901で管理する三次元マップをクライアント装置902に送信する。なお、サーバ901はクライアント装置902からの三次元マップの送信要求を待たずに三次元マップを送信してもよい。例えば、サーバ901は、予め定められた空間にいる1つ以上のクライアント装置902に三次元マップをブロードキャストしても構わない。また、サーバ901は、一度送信要求を受けたクライアント装置902に、一定時間毎にクライアント装置902の位置に適した三次元マップを送信してもよい。また、サーバ901は、サーバ901が管理する三次元マップが更新される度にクライアント装置902に三次元マップを送信してもよい。
 クライアント装置902は、サーバ901に三次元マップの送信要求を出す。例えば、クライアント装置902が、走行時に自己位置推定を行いたい場合に、クライアント装置902は、三次元マップの送信要求をサーバ901に送信する。
 なお、次のような場合に、クライアント装置902はサーバ901に三次元マップの送信要求を出してもよい。クライアント装置902の保持する三次元マップが古い場合に、クライアント装置902はサーバ901に三次元マップの送信要求を出してもよい。例えば、クライアント装置902が三次元マップを取得してから一定期間が経過した場合に、クライアント装置902はサーバ901に三次元マップの送信要求を出してもよい。
 クライアント装置902が保持する三次元マップで示される空間から、クライアント装置902が外に出る一定時刻前に、クライアント装置902はサーバ901に三次元マップの送信要求を出してもよい。例えば、クライアント装置902が、クライアント装置902が保持する三次元マップで示される空間の境界から予め定められた距離以内に存在する場合に、クライアント装置902はサーバ901に三次元マップの送信要求を出してもよい。また、クライアント装置902の移動経路及び移動速度が把握できている場合には、これらに基づき、クライアント装置902が保持する三次元マップで示される空間から、クライアント装置902が外に出る時刻を予測してもよい。
 クライアント装置902がセンサ情報から作成した三次元データと三次元マップとの位置合せ時の誤差が一定以上の場合に、クライアント装置902はサーバ901に三次元マップの送信要求を出してもよい。
 クライアント装置902は、サーバ901から送信されたセンサ情報の送信要求に応じて、サーバ901にセンサ情報を送信する。なお、クライアント装置902はサーバ901からのセンサ情報の送信要求を待たずにセンサ情報をサーバ901に送ってもよい。例えば、クライアント装置902は、一度サーバ901からセンサ情報の送信要求を得た場合、一定期間の間、定期的にセンサ情報をサーバ901に送信してもよい。また、クライアント装置902は、クライアント装置902がセンサ情報を元に作成した三次元データと、サーバ901から得た三次元マップとの位置合せ時の誤差が一定以上の場合、クライアント装置902の周辺の三次元マップに変化が生じた可能性があると判断し、その旨とセンサ情報とをサーバ901に送信してもよい。
 サーバ901は、クライアント装置902にセンサ情報の送信要求を出す。例えば、サーバ901は、クライアント装置902から、GPS等のクライアント装置902の位置情報を受信する。サーバ901は、クライアント装置902の位置情報に基づき、サーバ901が管理する三次元マップにおいて情報が少ない空間にクライアント装置902が近づいていると判断した場合、新たな三次元マップを生成するためにクライアント装置902にセンサ情報の送信要求を出す。また、サーバ901は、三次元マップを更新したい場合、積雪時或いは災害時などの道路状況を確認したい場合、渋滞状況、或いは事件事故状況等を確認したい場合に、センサ情報の送信要求を出してもよい。
 また、クライアント装置902は、サーバ901から受け取るセンサ情報の送信要求の受信時における通信状態又は帯域に応じて、サーバ901に送信するセンサ情報のデータ量を設定してもよい。サーバ901に送信するセンサ情報のデータ量を設定するというのは、例えば、当該データそのものを増減させること、又は圧縮方式を適宜選択することである。
 図117は、クライアント装置902の構成例を示すブロック図である。クライアント装置902は、サーバ901からポイントクラウド等で構成される三次元マップを受信し、クライアント装置902のセンサ情報に基づいて作成した三次元データからクライアント装置902の自己位置を推定する。また、クライアント装置902は、取得したセンサ情報をサーバ901に送信する。
 クライアント装置902は、データ受信部1011と、通信部1012と、受信制御部1013と、フォーマット変換部1014と、複数のセンサ1015と、三次元データ作成部1016と、三次元画像処理部1017と、三次元データ蓄積部1018と、フォーマット変換部1019と、通信部1020と、送信制御部1021と、データ送信部1022とを備える。
 データ受信部1011は、サーバ901から三次元マップ1031を受信する。三次元マップ1031は、WLD又はSWLD等のポイントクラウドを含むデータである。三次元マップ1031には、圧縮データ、及び非圧縮データのどちらが含まれていてもよい。
 通信部1012は、サーバ901と通信し、データ送信要求(例えば、三次元マップの送信要求)などをサーバ901に送信する。
 受信制御部1013は、通信部1012を介して、対応フォーマット等の情報を通信先と交換し、通信先との通信を確立する。
 フォーマット変換部1014は、データ受信部1011が受信した三次元マップ1031にフォーマット変換等を行うことで三次元マップ1032を生成する。また、フォーマット変換部1014は、三次元マップ1031が圧縮又は符号化されている場合には、伸張又は復号処理を行う。なお、フォーマット変換部1014は、三次元マップ1031が非圧縮データであれば、伸張又は復号処理を行わない。
 複数のセンサ1015は、LiDAR、可視光カメラ、赤外線カメラ、又はデプスセンサなど、クライアント装置902が搭載されている車両の外部の情報を取得するセンサ群であり、センサ情報1033を生成する。例えば、センサ情報1033は、センサ1015がLiDARなどのレーザセンサである場合、ポイントクラウド(点群データ)等の三次元データである。なお、センサ1015は複数でなくてもよい。
 三次元データ作成部1016は、センサ情報1033に基づいて自車両の周辺の三次元データ1034を作成する。例えば、三次元データ作成部1016は、LiDARで取得した情報と、可視光カメラで得られた可視光映像とを用いて自車両の周辺の色情報付きのポイントクラウドデータを作成する。
 三次元画像処理部1017は、受信したポイントクラウド等の三次元マップ1032と、センサ情報1033から生成した自車両の周辺の三次元データ1034とを用いて、自車両の自己位置推定処理等を行う。なお、三次元画像処理部1017は、三次元マップ1032と三次元データ1034とを合成することで自車両の周辺の三次元データ1035を作成し、作成した三次元データ1035を用いて自己位置推定処理を行ってもよい。
 三次元データ蓄積部1018は、三次元マップ1032、三次元データ1034及び三次元データ1035等を蓄積する。
 フォーマット変換部1019は、センサ情報1033を、受信側が対応しているフォーマットへ変換することでセンサ情報1037を生成する。なお、フォーマット変換部1019は、センサ情報1037を圧縮又は符号化することでデータ量を削減してもよい。また、フォーマット変換部1019は、フォーマット変換をする必要がない場合は処理を省略してもよい。また、フォーマット変換部1019は、送信範囲の指定に応じて送信するデータ量を制御してもよい。
 通信部1020は、サーバ901と通信し、データ送信要求(センサ情報の送信要求)などをサーバ901から受信する。
 送信制御部1021は、通信部1020を介して、対応フォーマット等の情報を通信先と交換し、通信を確立する。
 データ送信部1022は、センサ情報1037をサーバ901に送信する。センサ情報1037は、例えば、LiDARで取得した情報、可視光カメラで取得した輝度画像、赤外線カメラで取得した赤外画像、デプスセンサで取得したデプス画像、センサ位置情報、及び速度情報など、複数のセンサ1015によって取得した情報を含む。
 次に、サーバ901の構成を説明する。図118は、サーバ901の構成例を示すブロック図である。サーバ901は、クライアント装置902から送信されたセンサ情報を受信し、受信したセンサ情報に基づいて三次元データを作成する。サーバ901は、作成した三次元データを用いて、サーバ901が管理する三次元マップを更新する。また、サーバ901は、クライアント装置902からの三次元マップの送信要求に応じて、更新した三次元マップをクライアント装置902に送信する。
 サーバ901は、データ受信部1111と、通信部1112と、受信制御部1113と、フォーマット変換部1114と、三次元データ作成部1116と、三次元データ合成部1117と、三次元データ蓄積部1118と、フォーマット変換部1119と、通信部1120と、送信制御部1121と、データ送信部1122とを備える。
 データ受信部1111は、クライアント装置902からセンサ情報1037を受信する。センサ情報1037は、例えば、LiDARで取得した情報、可視光カメラで取得した輝度画像、赤外線カメラで取得した赤外画像、デプスセンサで取得したデプス画像、センサ位置情報、及び速度情報などを含む。
 通信部1112は、クライアント装置902と通信し、データ送信要求(例えば、センサ情報の送信要求)などをクライアント装置902に送信する。
 受信制御部1113は、通信部1112を介して、対応フォーマット等の情報を通信先と交換し、通信を確立する。
 フォーマット変換部1114は、受信したセンサ情報1037が圧縮又は符号化されている場合には、伸張又は復号処理を行うことでセンサ情報1132を生成する。なお、フォーマット変換部1114は、センサ情報1037が非圧縮データであれば、伸張又は復号処理を行わない。
 三次元データ作成部1116は、センサ情報1132に基づいてクライアント装置902の周辺の三次元データ1134を作成する。例えば、三次元データ作成部1116は、LiDARで取得した情報と、可視光カメラで得られた可視光映像とを用いてクライアント装置902の周辺の色情報付ポイントクラウドデータを作成する。
 三次元データ合成部1117は、センサ情報1132を元に作成した三次元データ1134を、サーバ901が管理する三次元マップ1135に合成することで三次元マップ1135を更新する。
 三次元データ蓄積部1118は、三次元マップ1135等を蓄積する。
 フォーマット変換部1119は、三次元マップ1135を、受信側が対応しているフォーマットへ変換することで三次元マップ1031を生成する。なお、フォーマット変換部1119は、三次元マップ1135を圧縮又は符号化することでデータ量を削減してもよい。また、フォーマット変換部1119は、フォーマット変換をする必要がない場合は処理を省略してもよい。また、フォーマット変換部1119は、送信範囲の指定に応じて送信するデータ量を制御してもよい。
 通信部1120は、クライアント装置902と通信し、データ送信要求(三次元マップの送信要求)などをクライアント装置902から受信する。
 送信制御部1121は、通信部1120を介して、対応フォーマット等の情報を通信先と交換し、通信を確立する。
 データ送信部1122は、三次元マップ1031をクライアント装置902に送信する。三次元マップ1031は、WLD又はSWLD等のポイントクラウドを含むデータである。三次元マップ1031には、圧縮データ、及び非圧縮データのどちらが含まれていてもよい。
 次に、クライアント装置902の動作フローについて説明する。図119は、クライアント装置902による三次元マップ取得時の動作を示すフローチャートである。
 まず、クライアント装置902は、サーバ901へ三次元マップ(ポイントクラウド等)の送信を要求する(S1001)。このとき、クライアント装置902は、GPS等で得られたクライアント装置902の位置情報を合わせて送信することで、その位置情報に関連する三次元マップの送信をサーバ901に要求してもよい。
 次に、クライアント装置902は、サーバ901から三次元マップを受信する(S1002)。受信した三次元マップが圧縮データであれば、クライアント装置902は、受信した三次元マップを復号して非圧縮の三次元マップを生成する(S1003)。
 次に、クライアント装置902は、複数のセンサ1015で得られたセンサ情報1033からクライアント装置902の周辺の三次元データ1034を作成する(S1004)。次に、クライアント装置902は、サーバ901から受信した三次元マップ1032と、センサ情報1033から作成した三次元データ1034とを用いてクライアント装置902の自己位置を推定する(S1005)。
 図120は、クライアント装置902によるセンサ情報の送信時の動作を示すフローチャートである。まず、クライアント装置902は、サーバ901からセンサ情報の送信要求を受信する(S1011)。送信要求を受信したクライアント装置902は、センサ情報1037をサーバ901に送信する(S1012)。なお、クライアント装置902は、センサ情報1033が複数のセンサ1015で得られた複数の情報を含む場合、各情報を、各情報に適した圧縮方式で圧縮することでセンサ情報1037を生成してもよい。
 次に、サーバ901の動作フローについて説明する。図121は、サーバ901によるセンサ情報の取得時の動作を示すフローチャートである。まず、サーバ901は、クライアント装置902へセンサ情報の送信を要求する(S1021)。次に、サーバ901は、当該要求に応じてクライアント装置902から送信されたセンサ情報1037を受信する(S1022)。次に、サーバ901は、受信したセンサ情報1037を用いて三次元データ1134を作成する(S1023)。次に、サーバ901は、作成した三次元データ1134を三次元マップ1135に反映する(S1024)。
 図122は、サーバ901による三次元マップの送信時の動作を示すフローチャートである。まず、サーバ901は、クライアント装置902から三次元マップの送信要求を受信する(S1031)。三次元マップの送信要求を受信したサーバ901は、クライアント装置902へ三次元マップ1031を送信する(S1032)。このとき、サーバ901は、クライアント装置902の位置情報に合わせてその付近の三次元マップを抽出し、抽出した三次元マップを送信してもよい。また、サーバ901は、ポイントクラウドで構成される三次元マップを、例えば8分木構造による圧縮方式等を用いて圧縮し、圧縮後の三次元マップを送信してもよい。
 以下、本実施の形態の変形例について説明する。
 サーバ901は、クライアント装置902から受信したセンサ情報1037を用いてクライアント装置902の位置付近の三次元データ1134を作成する。次に、サーバ901は、作成した三次元データ1134と、サーバ901が管理する同エリアの三次元マップ1135とのマッチングを行うことによって、三次元データ1134と三次元マップ1135との差分を算出する。サーバ901は、差分が予め定められた閾値以上の場合は、クライアント装置902の周辺で何らかの異常が発生したと判断する。例えば、地震等の自然災害によって地盤沈下等が発生した際などに、サーバ901が管理する三次元マップ1135と、センサ情報1037を基に作成した三次元データ1134との間に大きな差が発生することが考えられる。
 センサ情報1037は、センサの種類、センサの性能、及びセンサの型番のうち少なくとも一つを示す情報を含んでもよい。また、センサ情報1037に、センサの性能に応じたクラスID等が付加されてもよい。例えば、センサ情報1037がLiDARで取得された情報である場合、数mm単位の精度で情報を取得できるセンサをクラス1、数cm単位の精度で情報を取得できるセンサをクラス2、数m単位の精度で情報を取得できるセンサをクラス3のように、センサの性能に識別子を割り当てることが考えられる。また、サーバ901は、センサの性能情報等を、クライアント装置902の型番から推定してもよい。例えば、クライアント装置902が車両に搭載されている場合、サーバ901は、当該車両の車種からセンサのスペック情報を判断してもよい。この場合、サーバ901は、車両の車種の情報を事前に取得していてもよいし、センサ情報に、当該情報が含まれてもよい。また、サーバ901は取得したセンサ情報1037を用いて、センサ情報1037を用いて作成した三次元データ1134に対する補正の度合いを切り替えてもよい。例えば、センサ性能が高精度(クラス1)である場合、サーバ901は、三次元データ1134に対する補正を行わない。センサ性能が低精度(クラス3)である場合、サーバ901は、三次元データ1134に、センサの精度に応じた補正を適用する。例えば、サーバ901は、センサの精度が低いほど補正の度合い(強度)を強くする。
 サーバ901は、ある空間にいる複数のクライアント装置902に同時にセンサ情報の送信要求を出してもよい。サーバ901は、複数のクライアント装置902から複数のセンサ情報を受信した場合に、全てのセンサ情報を三次元データ1134の作成に利用する必要はなく、例えば、センサの性能に応じて、利用するセンサ情報を選択してもよい。例えば、サーバ901は、三次元マップ1135を更新する場合、受信した複数のセンサ情報の中から高精度なセンサ情報(クラス1)を選別し、選別したセンサ情報を用いて三次元データ1134を作成してもよい。
 サーバ901は、交通監視クラウド等のサーバのみに限定されず、他のクライアント装置(車載)であってもよい。図123は、この場合のシステム構成を示す図である。
 例えば、クライアント装置902Cが近くにいるクライアント装置902Aにセンサ情報の送信要求を出し、クライアント装置902Aからセンサ情報を取得する。そして、クライアント装置902Cは、取得したクライアント装置902Aのセンサ情報を用いて三次元データを作成し、クライアント装置902Cの三次元マップを更新する。これにより、クライアント装置902Cは、クライアント装置902Aから取得可能な空間の三次元マップを、クライアント装置902Cの性能を活かして生成できる。例えば、クライアント装置902Cの性能が高い場合に、このようなケースが発生すると考えられる。
 また、この場合、センサ情報を提供したクライアント装置902Aは、クライアント装置902Cが生成した高精度な三次元マップを取得する権利が与えられる。クライアント装置902Aは、その権利に従ってクライアント装置902Cから高精度な三次元マップを受信する。
 また、クライアント装置902Cは近くにいる複数のクライアント装置902(クライアント装置902A及びクライアント装置902B)にセンサ情報の送信要求を出してもよい。クライアント装置902A又はクライアント装置902Bのセンサが高性能である場合には、クライアント装置902Cは、この高性能なセンサで得られたセンサ情報を用いて三次元データを作成できる。
 図124は、サーバ901及びクライアント装置902の機能構成を示すブロック図である。サーバ901は、例えば、三次元マップを圧縮及び復号する三次元マップ圧縮/復号処理部1201と、センサ情報を圧縮及び復号するセンサ情報圧縮/復号処理部1202とを備える。
 クライアント装置902は、三次元マップ復号処理部1211と、センサ情報圧縮処理部1212とを備える。三次元マップ復号処理部1211は、圧縮された三次元マップの符号化データを受信し、符号化データを復号して三次元マップを取得する。センサ情報圧縮処理部1212は、取得したセンサ情報から作成した三次元データの代わりに、センサ情報そのものを圧縮し、圧縮したセンサ情報の符号化データをサーバ901へ送信する。この構成により、クライアント装置902は、三次元マップ(ポイントクラウド等)を復号する処理を行う処理部(装置又はLSI)を内部に保持すればよく、三次元マップ(ポイントクラウド等)の三次元データを圧縮する処理を行う処理部を内部に保持する必要がない。これにより、クライアント装置902のコスト及び消費電力等を抑えることができる。
 以上のように、本実施の形態に係るクライアント装置902は、移動体に搭載され、移動体に搭載されたセンサ1015により得られた、移動体の周辺状況を示すセンサ情報1033から、移動体の周辺の三次元データ1034を作成する。クライアント装置902は、作成された三次元データ1034を用いて移動体の自己位置を推定する。クライアント装置902は、取得したセンサ情報1033をサーバ901又は他のクライアント装置902に送信する。
 これによれば、クライアント装置902は、センサ情報1033をサーバ901等に送信する。これにより、三次元データを送信する場合に比べて、送信データのデータ量を削減できる可能性がある。また、三次元データの圧縮又は符号化等の処理をクライアント装置902で行う必要がないので、クライアント装置902の処理量を削減できる。よって、クライアント装置902は、伝送されるデータ量の削減、又は、装置の構成の簡略化を実現できる。
 また、クライアント装置902は、さらに、サーバ901に三次元マップの送信要求を送信し、サーバ901から三次元マップ1031を受信する。クライアント装置902は、自己位置の推定では、三次元データ1034と三次元マップ1032とを用いて、自己位置を推定する。
 また、センサ情報1033は、レーザセンサで得られた情報、輝度画像、赤外画像、デプス画像、センサの位置情報、及びセンサの速度情報のうち少なくとも一つを含む。
 また、センサ情報1033は、センサの性能を示す情報を含む。
 また、クライアント装置902は、センサ情報1033を符号化又は圧縮し、センサ情報の送信では、符号化又は圧縮後のセンサ情報1037を、サーバ901又は他のクライアント装置902に送信する。これによれば、クライアント装置902は、伝送されるデータ量を削減できる。
 例えば、クライアント装置902は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 また、本実施の形態に係るサーバ901は、移動体に搭載されるクライアント装置902と通信可能であり、移動体に搭載されたセンサ1015により得られた、移動体の周辺状況を示すセンサ情報1037をクライアント装置902から受信する。サーバ901は、受信したセンサ情報1037から、移動体の周辺の三次元データ1134を作成する。
 これによれば、サーバ901は、クライアント装置902から送信されたセンサ情報1037を用いて三次元データ1134を作成する。これにより、クライアント装置902が三次元データを送信する場合に比べて、送信データのデータ量を削減できる可能性がある。また、三次元データの圧縮又は符号化等の処理をクライアント装置902で行う必要がないので、クライアント装置902の処理量を削減できる。よって、サーバ901は、伝送されるデータ量の削減、又は、装置の構成の簡略化を実現できる。
 また、サーバ901は、さらに、クライアント装置902にセンサ情報の送信要求を送信する。
 また、サーバ901は、さらに、作成された三次元データ1134を用いて三次元マップ1135を更新し、クライアント装置902からの三次元マップ1135の送信要求に応じて三次元マップ1135をクライアント装置902に送信する。
 また、センサ情報1037は、レーザセンサで得られた情報、輝度画像、赤外画像、デプス画像、センサの位置情報、及びセンサの速度情報のうち少なくとも一つを含む。
 また、センサ情報1037は、センサの性能を示す情報を含む。
 また、サーバ901は、さらに、センサの性能に応じて、三次元データを補正する。これによれば、当該三次元データ作成方法は、三次元データの品質を向上できる。
 また、サーバ901は、センサ情報の受信では、複数のクライアント装置902から複数のセンサ情報1037を受信し、複数のセンサ情報1037に含まれるセンサの性能を示す複数の情報に基づき、三次元データ1134の作成に用いるセンサ情報1037を選択する。これによれば、サーバ901は、三次元データ1134の品質を向上できる。
 また、サーバ901は、受信したセンサ情報1037を復号又は伸張し、復号又は伸張後のセンサ情報1132から、三次元データ1134を作成する。これによれば、サーバ901は、伝送されるデータ量を削減できる。
 例えば、サーバ901は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 以下、変形例について説明する。図125は、本実施の形態に係るシステムの構成を示す図である。図125に示すシステムは、サーバ2001と、クライアント装置2002Aと、クライアント装置2002Bとを含む。
 クライアント装置2002A及びクライアント装置2002Bは、車両等の移動体に搭載され、センサ情報をサーバ2001に送信する。サーバ2001は、三次元マップ(ポイントクラウド)をクライアント装置2002A及びクライアント装置2002Bに送信する。
 クライアント装置2002Aは、センサ情報取得部2011と、記憶部2012と、データ送信可否判定部2013とを備える。なお、クライアント装置2002Bの構成も同様である。また、以下ではクライアント装置2002Aとクライアント装置2002Bとを特に区別しない場合には、クライアント装置2002とも記載する。
 図126は、本実施の形態に係るクライアント装置2002の動作を示すフローチャートである。
 センサ情報取得部2011は、移動体に搭載されたセンサ(センサ群)を用いて各種センサ情報を取得する。つまり、センサ情報取得部2011は、移動体に搭載されたセンサ(センサ群)により得られた、移動体の周辺状況を示すセンサ情報を取得する。また、センサ情報取得部2011は、取得したセンサ情報を記憶部2012に記憶する。このセンサ情報は、LiDAR取得情報、可視光画像、赤外画像及びデプス画像の少なくとも一つを含む。また、センサ情報は、センサ位置情報、速度情報、取得時刻情報、及び取得場所情報の少なくとも一つを含んでもよい。センサ位置情報は、センサ情報を取得したセンサの位置を示す。速度情報は、センサがセンサ情報を取得した際の移動体の速度を示す。取得時刻情報は、センサ情報がセンサにより取得された時刻を示す。取得場所情報は、センサ情報がセンサにより取得された際の移動体又はセンサの位置を示す。
 次に、データ送信可否判定部2013は、移動体(クライアント装置2002)がサーバ2001へセンサ情報を送信可能な環境に存在するかを判定する(S2002)。例えば、データ送信可否判定部2013は、GPS等の情報を用いて、クライアント装置2002がいる場所及び時刻を特定し、データを送信可能かどうかを判定してもよい。また、データ送信可否判定部2013は、特定のアクセスポイントに接続できるかどうかで、データを送信可能かどうかを判定してもよい。
 クライアント装置2002は、移動体がサーバ2001へセンサ情報を送信可能な環境に存在すると判定した場合(S2002でYes)、センサ情報をサーバ2001に送信する(S2003)。つまり、クライアント装置2002がセンサ情報をサーバ2001に送信できるような状況になった時点で、クライアント装置2002は、保持しているセンサ情報をサーバ2001に送信する。例えば、交差点等に高速通信が可能なミリ波のアクセスポイントが設置される。クライアント装置2002は、交差点内に入った時点で、ミリ波通信を用いてクライアント装置2002が保持するセンサ情報を高速にサーバ2001に送信する。
 次に、クライアント装置2002は、サーバ2001に送信済みのセンサ情報を記憶部2012から削除する(S2004)。なお、クライアント装置2002は、サーバ2001に送信していないセンサ情報が所定の条件を満たした場合に、当該センサ情報を削除してもよい。例えば、クライアント装置2002は、保持するセンサ情報の取得時刻が現在時刻から一定時刻前より古くなった時点でそのセンサ情報を記憶部2012から削除してもよい。つまり、クライアント装置2002は、センサ情報がセンサにより取得された時刻と、現在の時刻との差が、予め定められた時間を超えた場合にセンサ情報を記憶部2012から削除してもよい。また、クライアント装置2002は、保持するセンサ情報の取得場所が現在地点から一定距離より離れた時点でそのセンサ情報を記憶部2012から削除してもよい。つまり、クライアント装置2002は、センサ情報がセンサにより取得された際の移動体又はセンサの位置と、現在の移動体又はセンサの位置との差が、予め定められた距離を超えた場合にセンサ情報を記憶部2012から削除してもよい。これにより、クライアント装置2002の記憶部2012の容量を抑制することができる。
 クライアント装置2002によるセンサ情報の取得が終了していない場合(S2005でNo)、クライアント装置2002は、ステップS2001以降の処理を再度行う。また、クライアント装置2002によるセンサ情報の取得が終了した場合(S2005でYes)、クライアント装置2002は処理を終了する。
 また、クライアント装置2002はサーバ2001に送信するセンサ情報を通信状況に合わせて選択してもよい。例えば、クライアント装置2002は、高速通信が可能な場合は、記憶部2012に保持されるサイズが大きいセンサ情報(例えばLiDAR取得情報等)を優先して送信する。また、クライアント装置2002は、高速通信が難しい場合は、記憶部2012に保持されるサイズが小さく優先度の高いセンサ情報(例えば可視光画像)を送信する。これにより、クライアント装置2002は記憶部2012に保持したセンサ情報をネットワークの状況に応じて効率的にサーバ2001に送信できる。
 また、クライアント装置2002は、上記現在時刻を示す時刻情報、及び、現在地点を示す場所情報をサーバ2001から取得してもよい。また、クライアント装置2002は、取得した時刻情報及び場所情報に基づきセンサ情報の取得時刻及び取得場所を決定してもよい。つまり、クライアント装置2002は、サーバ2001から時刻情報を取得し、取得した時刻情報を用いて取得時刻情報を生成してもよい。また、クライアント装置2002は、サーバ2001から場所情報を取得し、取得した場所情報を用いて取得場所情報を生成してもよい。
 例えば時刻情報については、サーバ2001とクライアント装置2002とはNTP(Network Time Protocol)、又はPTP(Precision Time Protocol)等の仕組みを用いて時刻同期を行う。これにより、クライアント装置2002は正確な時刻情報を取得できる。また、サーバ2001と複数のクライアント装置との間で時刻を同期できるので、別々のクライアント装置2002が取得したセンサ情報内の時刻を同期できる。よって、サーバ2001は、同期された時刻を示すセンサ情報を取り扱える。なお、時刻同期の仕組みはNTP又はPTP以外のどのような方法でも構わない。また、上記時刻情報及び場所情報としてGPSの情報が用いられてもよい。
 サーバ2001は、時刻又は場所を指定して複数のクライアント装置2002からセンサ情報を取得しても構わない。例えば何らかの事故が発生した場合に、その付近にいたクライアントを探すため、サーバ2001は、事故発生時刻と場所を指定して複数のクライアント装置2002にセンサ情報送信要求をブロードキャスト送信する。そして、該当する時刻と場所のセンサ情報を持つクライアント装置2002は、サーバ2001にセンサ情報を送信する。つまり、クライアント装置2002は、サーバ2001から場所及び時刻を指定する指定情報を含むセンサ情報送信要求を受信する。クライアント装置2002は、記憶部2012に、指定情報で示される場所及び時刻において得られたセンサ情報が記憶されており、かつ、移動体がサーバ2001へセンサ情報を送信可能な環境に存在すると判定した場合、指定情報で示される場所及び時刻において得られたセンサ情報をサーバ2001に送信する。これにより、サーバ2001は、事故の発生に関連するセンサ情報を複数のクライアント装置2002から取得し、事故解析等に利用できる。
 なお、クライアント装置2002は、サーバ2001からのセンサ情報送信要求を受信した場合に、センサ情報の送信を拒否してもよい。また、複数のセンサ情報のうち、どのセンサ情報を送信可能かどうかを事前にクライアント装置2002が設定してもよい。または、サーバ2001は、センサ情報の送信の可否を都度クライアント装置2002に問い合わせてもよい。
 また、サーバ2001にセンサ情報を送信したクライアント装置2002にはポイントが付与されてもよい。このポイントは、例えば、ガソリン購入費、EV(Electric Vehicle)の充電費、高速道路の通行料、又はレンタカー費用などの支払いに使用できる。また、サーバ2001は、センサ情報を取得した後、センサ情報の送信元のクライアント装置2002を特定するための情報を削除してもよい。例えば、この情報は、クライアント装置2002のネットワークアドレスなどの情報である。これによりセンサ情報を匿名化することができるので、クライアント装置2002のユーザは安心して、クライアント装置2002からセンサ情報をサーバ2001に送信できる。また、サーバ2001は、複数のサーバから構成されてもよい。例えば複数のサーバでセンサ情報が共有化されることで、あるサーバが故障しても他のサーバがクライアント装置2002と通信できる。これにより、サーバ故障によるサービスの停止を回避できる。
 また、センサ情報送信要求で指定される指定場所は事故の発生位置などを示すものであり、センサ情報送信要求で指定される指定時刻におけるクライアント装置2002の位置とは異なることがある。よって、サーバ2001は、例えば、指定場所として周辺XXm以内などの範囲を指定することで、当該範囲内に存在するクライアント装置2002に対して情報取得を要求できる。指定時刻についても同様に、サーバ2001は、ある時刻から前後N秒以内など範囲を指定してもよい。これにより、サーバ2001は、「時刻:t-Nからt+Nにおいて、場所:絶対位置SからXXm以内」に存在していたクライアント装置2002からセンサ情報が取得できる。クライアント装置2002は、LiDARなどの三次元データを送信する際に、時刻tの直後に生成したデータを送信してもよい。
 また、サーバ2001は、指定場所として、センサ情報取得対象となるクライアント装置2002の場所を示す情報と、センサ情報が欲しい場所とをそれぞれ別に指定してもよい。例えば、サーバ2001は、絶対位置SからYYmの範囲を少なくとも含むセンサ情報を、絶対位置SからXXm以内に存在したクライアント装置2002から取得することを指定する。クライアント装置2002は、送信する三次元データを選択する際には、指定された範囲のセンサ情報を少なくとも含むように、1つ以上のランダムアクセス可能な単位の三次元データを選択する。また、クライアント装置2002は、可視光画像を送信する際は、少なくとも時刻tの直前又は直後のフレームを含む、時間的に連続した複数の画像データを送信してもよい。
 クライアント装置2002が5G或いはWiFi、又は、5Gにおける複数モードなど、複数の物理ネットワークをセンサ情報の送信に利用できる場合には、クライアント装置2002は、サーバ2001から通知された優先順位に従って利用するネットワークを選択してもよい。または、クライアント装置2002自身が送信データのサイズに基づいて適切な帯域を確保できるネットワークを選択してもよい。または、クライアント装置2002は、データ送信にかかる費用等に基づいて利用するネットワークを選択してもよい。また、サーバ2001からの送信要求には、クライアント装置2002が時刻Tまでに送信を開始可能な場合に送信を行う、など、送信期限を示す情報が含まれてもよい。サーバ2001は、期限内に十分なセンサ情報が取得できなければ再度送信要求を発行してもよい。
 センサ情報は、圧縮又は非圧縮のセンサデータと共に、センサデータの特性を示すヘッダ情報を含んでもよい。クライアント装置2002は、ヘッダ情報を、センサデータとは異なる物理ネットワーク又は通信プロトコルを介してサーバ2001に送信してもよい。例えば、クライアント装置2002は、センサデータの送信に先立ってヘッダ情報をサーバ2001に送信する。サーバ2001は、ヘッダ情報の解析結果に基づいてクライアント装置2002のセンサデータを取得するかどうかを判断する。例えば、ヘッダ情報は、LiDARの点群取得密度、仰角、或いはフレームレート、又は、可視光画像の解像度、SN比、或いはフレームレートなどを示す情報を含んでもよい。これにより、サーバ2001は、決定した品質のセンサデータを有するクライアント装置2002からセンサ情報を取得できる。
 以上のように、クライアント装置2002は、移動体に搭載され、移動体に搭載されたセンサにより得られた、移動体の周辺状況を示すセンサ情報を取得し、センサ情報を記憶部2012に記憶する。クライアント装置2002は、移動体がサーバ2001へセンサ情報を送信可能な環境に存在するかを判定し、移動体がサーバへセンサ情報を送信可能な環境に存在すると判定した場合、センサ情報をサーバ2001に送信する。
 また、クライアント装置2002は、さらに、センサ情報から、移動体の周辺の三次元データを作成し、作成された三次元データを用いて移動体の自己位置を推定する。
 また、クライアント装置2002は、さらに、サーバ2001に三次元マップの送信要求を送信し、サーバ2001から三次元マップを受信する。クライアント装置2002は、自己位置の推定では、三次元データと三次元マップとを用いて、自己位置を推定する。
 なお、上記クライアント装置2002による処理は、クライアント装置2002における情報送信方法として実現されてもよい。
 また、クライアント装置2002は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行ってもよい。
 次に、本実施の形態に係るセンサ情報収集システムについて説明する。図127は、本実施の形態に係るセンサ情報収集システムの構成を示す図である。図127に示すように本実施の形態に係るセンサ情報収集システムは、端末2021Aと、端末2021Bと、通信装置2022Aと、通信装置2022Bと、ネットワーク2023と、データ収集サーバ2024と、地図サーバ2025と、クライアント装置2026とを含む。なお、端末2021A及び端末2021Bを特に区別しない場合には端末2021とも記載する。通信装置2022A及び通信装置2022Bを特に区別しない場合には通信装置2022とも記載する。
 データ収集サーバ2024は、端末2021が備えるセンサで得られたセンサデータなどのデータを三次元空間中の位置と対応付けられた位置関連データとして収集する。
 センサデータとは、例えば、端末2021の周囲の状態または端末2021の内部の状態などを、端末2021が備えるセンサを用いて取得したデータである。端末2021は、端末2021と直接通信可能、又は同一の通信方式で一或いは複数の中継装置を中継して通信可能な位置にある一又は複数のセンサ機器から収集したセンサデータをデータ収集サーバ2024に送信する。
 位置関連データに含まれるデータは、例えば、端末自身又は端末が備える機器の動作状態、動作ログ、サービスの利用状況などを示す情報を含んでいてもよい。また、位置関連データに含まれるデータは、端末2021の識別子と端末2021の位置又は移動経路などとを対応付けた情報などを含んでもよい。
 位置関連データに含まれる、位置を示す情報は、例えば三次元地図データなどの三次元データにおける位置を示す情報と対応付けられている。位置を示す情報の詳細については後述する。
 位置関連データは、位置を示す情報である位置情報に加えて、前述した時刻情報と、位置関連データに含まれるデータの属性、又は当該データを生成したセンサの種類(例えば型番など)を示す情報とのうち少なくとも一つを含んでいてもよい。位置情報及び時刻情報は、位置関連データのヘッダ領域又は位置関連データを格納するフレームのヘッダ領域に格納されていてもよい。また、位置情報及び時刻情報は、位置関連データと対応付けられたメタデータとして位置関連データとは別に送信及び/又は格納されてもよい。
 地図サーバ2025は、例えば、ネットワーク2023に接続されており、端末2021などの他の装置からの要求に応じて三次元地図データなどの三次元データを送信する。また、前述した各実施の形態で説明したように、地図サーバ2025は、端末2021から送信されたセンサ情報を用いて、三次元データを更新する機能などを備えていてもよい。
 データ収集サーバ2024は、例えば、ネットワーク2023に接続されており、端末2021などの他の装置から位置関連データを収集し、収集した位置関連データを内部又は他のサーバ内の記憶装置に格納する。また、データ収集サーバ2024は、収集した位置関連データ又は位置関連データに基づいて生成した三次元地図データのメタデータなどを、端末2021からの要求に応じて端末2021に対して送信する。
 ネットワーク2023は、例えばインターネットなどの通信ネットワークである。端末2021は、通信装置2022を介してネットワーク2023に接続されている。通信装置2022は、一つの通信方式、又は複数の通信方式を切り替えながら端末2021と通信を行う。通信装置2022は、例えば、(1)LTE(Long Term Evolution)などの基地局、(2)WiFi或いはミリ波通信などのアクセスポイント(AP)、(3)SIGFOX、LoRaWAN或いはWi-SUNなどのLPWA(Low Power Wide Area) Networkのゲートウェイ、又は、(4)DVB-S2などの衛星通信方式を用いて通信を行う通信衛星である。
 なお、基地局は、NB-IoT(Narrow Band-IoT)又はLTE-MなどのLPWAに分類される方式で端末2021との通信を行っていてもよいし、これらの方式を切り替えながら端末2021との通信を行っていてもよい。
 ここでは、端末2021が2種類の通信方式を用いる通信装置2022と通信する機能を備え、これらの通信方式のいずれかを用いて、またはこれらの複数の通信方式及び直接の通信相手となる通信装置2022を切り替えながら地図サーバ2025又はデータ収集サーバ2024と通信を行う場合を例に挙げるが、センサ情報収集システム及び端末2021の構成はこれに限らない。例えば、端末2021は、複数の通信方式での通信機能を有さず、いずれか一つの通信方式で通信を行う機能を備えてもよい。また、端末2021は、3つ以上の通信方式に対応していてもよい。また、端末2021ごとに対応する通信方式が異なっていてもよい。
 端末2021は、例えば図117に示したクライアント装置902の構成を備える。端末2021は、受信した三次元データを用いて自己位置などの位置推定を行う。また、端末2021は、センサから取得したセンサデータと位置推定の処理により得られた位置情報とを対応付けて位置関連データを生成する。
 位置関連データに付加される位置情報は、例えば、三次元データで用いられている座標系における位置を示す。例えば、位置情報は、緯度及び経度の値で表される座標値である。このとき、端末2021は、座標値と共に当該座標値の基準となる座標系、及び位置推定に用いた三次元データを示す情報を位置情報に含めてもよい。また、座標値は高度の情報を含んでいてもよい。
 また、位置情報は、前述した三次元データの符号化に用いることができるデータの単位又は空間の単位に対応付けられていてもよい。この単位とは、例えば、WLD、GOS、SPC、VLM、又はVXLなどである。このとき、位置情報は、例えば位置関連データに対応するSPCなどのデータ単位を特定するための識別子で表現される。なお、位置情報は、SPCなどのデータ単位を特定するための識別子に加えて、当該SPCなどのデータ単位を含む三次元空間を符号化した三次元データを示す情報、又は当該SPC内での詳細な位置を示す情報などを含んでいてもよい。三次元データを示す情報とは、例えば、当該三次元データのファイル名である。
 このように、当該システムは、三次元データを用いた位置推定に基づく位置情報と対応付けた位置関連データを生成することにより、GPSを用いて取得されたクライアント装置(端末2021)の自己位置に基づく位置情報をセンサ情報に付加する場合よりも精度の高い位置情報をセンサ情報に付与することができる。その結果、位置関連データを他の装置が他のサービスにおいて利用する場合においても、同じ三次元データに基づいて位置推定を行うことで、位置関連データに対応する位置を実空間でより正確に特定できる可能性がある。
 なお、本実施の形態では、端末2021から送信されるデータが位置関連データの場合を例に挙げて説明したが、端末2021から送信されるデータは位置情報と関連付けられていないデータであってもよい。すなわち、他の実施の形態で説明した三次元データ又はセンサデータの送受信が本実施の形態で説明したネットワーク2023を介して行われてもよい。
 次に、三次元又は二次元の実空間又は地図空間における位置を示す位置情報の異なる例について説明する。位置関連データに付加される位置情報は、三次元データ中の特徴点に対する相対位置を示す情報であってもよい。ここで、位置情報の基準となる特徴点は、例えばSWLDとして符号化され、三次元データとして端末2021に通知された特徴点である。
 特徴点に対する相対位置を示す情報は、例えば、特徴点から位置情報が示す点までのベクトルで表され、特徴点から位置情報が示す点までの方向と距離を示す情報であってもよい。または、特徴点に対する相対位置を示す情報は、特徴点から位置情報が示す点までのX軸、Y軸、Z軸のそれぞれの変位量を示す情報であってもよい。また、特徴点に対する相対位置を示す情報は、3以上の特徴点のそれぞれから位置情報が示す点までの距離を示す情報であってもよい。なお、相対位置は、各特徴点を基準として表現された位置情報が示す点の相対位置ではなく、位置情報が示す点を基準として表現された各特徴点の相対位置であってもよい。特徴点に対する相対位置に基づく位置情報の一例は、基準となる特徴点を特定するための情報と、当該特徴点に対する位置情報が示す点の相対位置を示す情報とを含む。また、特徴点に対する相対位置を示す情報が三次元データとは別に提供される場合、特徴点に対する相対位置を示す情報は、相対位置の導出に用いた座標軸、三次元データの種類を示す情報、又は/及び相対位置を示す情報の値の単位量あたりの大きさ(縮尺など)を示す情報などを含んでいてもよい。
 また、位置情報は、複数の特徴点について、各特徴点に対する相対位置を示す情報を含んでいてもよい。位置情報を複数の特徴点に対する相対位置で表した場合、実空間において当該位置情報が示す位置を特定しようとする端末2021は、特徴点ごとにセンサデータから推定した当該特徴点の位置から位置情報が示す位置の候補点を算出し、算出された複数の候補点を平均して求めた点を位置情報が示す点であると判定してもよい。この構成によると、センサデータから特徴点の位置を推定する際の誤差の影響を軽減できるため、実空間における位置情報が示す点の推定精度を向上できる。また、位置情報が複数の特徴点に対する相対位置を示す情報を含む場合、端末2021が備えるセンサの種類又は性能などの制約で検出できない特徴点がある場合であっても、複数の特徴点のいずれか一つでも検出することができれば位置情報が示す点の値を推定することが可能となる。
 特徴点として、センサデータから特定可能な点を用いことができる。センサデータから特定可能な点とは、例えば、前述した三次元特徴量又は可視光データの特徴量が閾値以上であるなど特徴点検出用の所定の条件を満たす点又は領域内の点である。
 また、実空間に設置されたマーカなどを特徴点として用いてもよい。この場合、マーカは、LiDER又はカメラなどのセンサを用いて取得されたデータから検出及び位置の特定が可能であればよい。例えば、マーカは、色或いは輝度値(反射率)の変化、又は、三次元形状(凹凸など)で表現される。また、当該マーカの位置を示す座標値、又は当該マーカの識別子から生成された二次元コード又はバーコードなどが用いられてもよい。
 また、光信号を送信する光源をマーカとして用いてもよい。光信号の光源をマーカとして用いる場合、座標値又は識別子などの位置を取得するための情報だけでなく、その他のデータが光信号により送信されてもよい。例えば、光信号は、当該マーカの位置に応じたサービスのコンテンツ、コンテンツを取得するためのurlなどのアドレス、又はサービスの提供を受けるための無線通信装置の識別子と、当該無線通信装置と接続するための無線通信方式などを示す情報を含んでもよい。光通信装置(光源)をマーカとして用いることで、位置を示す情報以外のデータの送信が容易になると共に、当該データを動的に切り替えることが可能となる。
 端末2021は、互いに異なるデータ間での特徴点の対応関係を、例えば、データ間で共通に用いられる識別子、又は、データ間の特徴点の対応関係を示す情報或いはテーブルを用いて把握する。また、特徴点間の対応関係を示す情報がない場合、端末2021は、一方の三次元データにおける特徴点の座標を他方の三次元データ空間上の位置に変換した場合に最も近い距離にある特徴点を対応する特徴点であると判定してもよい。
 以上で説明した相対位置に基づく位置情報を用いた場合、互いに異なる三次元データを用いる端末2021又はサービス間であっても、各三次元データに含まれる、又は各三次元データと対応付けられた共通の特徴点を基準に位置情報が示す位置を特定、又は推定することができる。その結果、互いに異なる三次元データを用いる端末2021又はサービス間で、同じ位置をより高い精度で特定又は推定することが可能となる。
 また、互いに異なる座標系を用いて表現された地図データ又は三次元データを用いる場合であっても、座標系の変換に伴う誤差の影響を低減できるため、より高精度な位置情報に基づくサービスの連携が可能となる。
 以下、データ収集サーバ2024が提供する機能の例について説明する。データ収集サーバ2024は、受信した位置関連データを他のデータサーバに転送してもよい。データサーバが複数ある場合、データ収集サーバ2024は、受信した位置関連データをどのデータサーバに転送するかを判定して、転送先として判定されたデータサーバ宛に位置関連データを転送する。
 データ収集サーバ2024は、転送先の判定を、例えば、データ収集サーバ2024に事前に設定された転送先サーバの判定ルールに基づいて行う。転送先サーバの判定ルールとは、例えば、各端末2021に対応付けられた識別子と転送先のデータサーバとを対応付けた転送先テーブルなどで設定される。
 端末2021は、送信する位置関連データに対して当該端末2021に対応付けられた識別子を付加してデータ収集サーバ2024に送信する。データ収集サーバ2024は、位置関連データに付加された識別子に対応する転送先のデータサーバを転送先テーブルなどを用いた転送先サーバの判定ルールに基づいて特定し、当該位置関連データを特定されたデータサーバに送信する。また、転送先サーバの判定ルールは、位置関連データが取得された時間又は場所などを用いた判定条件で指定されてもよい。ここで、上述した送信元の端末2021に対応付けられた識別子とは、例えば各端末2021に固有の識別子、又は端末2021が属するグループを示す識別子などである。
 また、転送先テーブルは、送信元の端末に対応付けられた識別子と転送先のデータサーバとを直接対応付けたものでなくてもよい。例えば、データ収集サーバ2024は、端末2021に固有の識別子毎に付与されたタグ情報を格納した管理テーブルと、当該タグ情報と転送先のデータサーバを対応付けた転送先テーブルとを保持する。データ収集サーバ2024は、管理テーブルと転送先テーブルとを用いてタグ情報に基づく転送先のデータサーバを判定してもよい。ここで、タグ情報は、例えば当該識別子に対応する端末2021の種類、型番、所有者、所属するグループ又はその他の識別子に付与された管理用の制御情報又はサービス提供用の制御情報である。また、転送先テーブルに、送信元の端末2021に対応付けられた識別子の代わりに、センサ毎に固有の識別子が用いられてもよい。また、転送先サーバの判定ルールは、クライアント装置2026から設定できてもよい。
 データ収集サーバ2024は、複数のデータサーバを転送先として判定し、受信した位置関連データを当該複数のデータサーバに転送してもよい。この構成によると、例えば、位置関連データを自動的にバックアップする場合、又は位置関連データを異なるサービスで共通に利用するために、各サービスを提供するためのデータサーバに対して位置関連データを送信する必要がある場合に、データ収集サーバ2024に対する設定を変更ことで意図通りのデータの転送を実現できる。その結果、個別の端末2021に位置関連データの送信先を設定する場合と比較して、システムの構築及び変更に要する工数を削減することができる。
 データ収集サーバ2024は、データサーバから受信した転送要求信号に応じて、転送要求信号で指定されたデータサーバを新たな転送先として登録し、以降に受信した位置関連データを当該データサーバに転送してもよい。
 データ収集サーバ2024は、端末2021から受信した位置関連データを記録装置に保存し、端末2021又はデータサーバから受信した送信要求信号に応じて、送信要求信号で指定された位置関連データを、要求元の端末2021又はデータサーバに送信してもよい。
 データ収集サーバ2024は、要求元のデータサーバ又は端末2021に対する位置関連データの提供の可否を判断し、提供可能と判断された場合に要求元のデータサーバ又は端末2021に位置関連データの転送又は送信を行ってもよい。
 クライアント装置2026から現在の位置関連データの要求を受け付けた場合、端末2021による位置関連データの送信タイミングでなくても、データ収集サーバ2024が端末2021に対して位置関連データの送信要求を行い、端末2021が当該送信要求に応じて位置関連データを送信してもよい。
 上記の説明では、端末2021がデータ収集サーバ2024に対して位置情報データを送信するとしたが、データ収集サーバ2024は、例えば、端末2021を管理する機能など、端末2021から位置関連データを収集するために必要な機能又は端末2021から位置関連データを収集する際に用いられる機能などを備えてもよい。
 データ収集サーバ2024は、端末2021に対して位置情報データの送信を要求するデータ要求信号を送信し、位置関連データを収集する機能を備えてもよい。
 データ収集サーバ2024には、データ収集の対象となる端末2021と通信を行うためのアドレス又は端末2021固有の識別子などの管理情報が事前に登録されている。データ収集サーバ2024は、登録されている管理情報に基づいて端末2021から位置関連データを収集する。管理情報は、端末2021が備えるセンサの種類、端末2021が備えるセンサの数、及び端末2021が対応する通信方式などの情報を含んでいてもよい。
 データ収集サーバ2024は、端末2021の稼働状態又は現在位置などの情報を端末2021から収集してもよい。
 管理情報の登録は、クライアント装置2026から行われてもよいし、端末2021が登録要求をデータ収集サーバ2024に送信することで、登録のための処理が開始されてもよい。データ収集サーバ2024は、端末2021との間の通信を制御する機能を備えてもよい。
 データ収集サーバ2024と端末2021とを結ぶ通信は、MNO(Mobile Network Operator)、或いはMVNO(Mobile Virtual Network Operator)などのサービス事業者が提供する専用回線、又は、VPN(Virtual Private Network)で構成された仮想の専用回線などであってもよい。この構成によると、端末2021とデータ収集サーバ2024との間の通信を安全に行うことができる。
 データ収集サーバ2024は、端末2021を認証する機能、又は端末2021との間で送受信されるデータを暗号化する機能を備えてもよい。ここで、端末2021の認証の処理又はデータの暗号化の処理は、データ収集サーバ2024と端末2021との間で事前に共有された、端末2021に固有の識別子又は複数の端末2021を含む端末グループに固有の識別子などを用いて行われる。この識別子とは、例えば、SIM(Subscriber Identity Module)カードに格納された固有の番号であるIMSI(International Mobile Subscriber Identity)などである。認証処理に用いられる識別子とデータの暗号化処理に用いる識別子とは、同じであってもよいし、異なっていてもよい。
 データ収集サーバ2024と端末2021との間の認証又はデータの暗号化の処理は、データ収集サーバ2024と端末2021との両方が当該処理を実施する機能を備えていれば提供可能であり、中継を行う通信装置2022が用いる通信方式に依存しない。よって、端末2021が通信方式を用いるかを考慮することなく、共通の認証又は暗号化の処理を用いることができるので、ユーザのシステム構築の利便性が向上する。ただし、中継を行う通信装置2022が用いる通信方式に依存しないとは、通信方式に応じて変更することが必須ではないことを意味している。つまり、伝送効率の向上又は安全性の確保の目的で、中継装置が用いる通信方式に応じてデータ収集サーバ2024と端末2021との間の認証又はデータの暗号化の処理が切り替えられてもよい。
 データ収集サーバ2024は、端末2021から収集する位置関連データの種類及びデータ収集のスケジュールなどのデータ収集ルールを管理するUIをクライアント装置2026に提供してもよい。これにより、ユーザはクライアント装置2026を用いてデータを収集する端末2021、並びに、データの収集時間及び頻度などを指定できる。また、データ収集サーバ2024は、データを収集したい地図上の領域などを指定し、当該領域に含まれる端末2021から位置関連データを収集してもよい。
 データ収集ルールを端末2021単位で管理する場合、クライアント装置2026は、例えば、管理対象となる端末2021又はセンサのリストを画面に提示する。ユーザはリストの項目毎にデータの収集の要否又は収集スケジュールなどを設定する。
 データを収集したい地図上の領域などを指定する場合、クライアント装置2026は、例えば、管理対象となる地域の二次元又は三次元の地図を画面に提示する。ユーザは、表示された地図上でデータを収集する領域を選択する。地図上で選択される領域は、地図上で指定された点を中心とする円形又は矩形の領域であってもよいし、ドラッグ動作で特定可能な円形又は矩形の領域であってもよい。また、クライアント装置2026は、都市、都市内のエリア、ブロック、又は主要な道路など予め設定された単位で領域を選択してもよい。また、地図を用いて領域を指定するのではなく、緯度及び経度の数値を入力して領域が設定されてもよいし、入力されたテキスト情報に基づいて導出した候補領域のリストから領域が選択されてもよい。テキスト情報は、例えば、地域、都市、又はランドマークの名前などである。
 また、ユーザが一又は複数の端末2021を指定して、当該端末2021の周囲100メートルの範囲内などの条件を設定することで、指定領域を動的に変更しながらデータの収集が行われてもよい。
 また、クライアント装置2026がカメラなどのセンサを備える場合、センサデータから得られたクライアント装置2026の実空間での位置に基づいて地図上の領域が指定されてもよい。例えば、クライアント装置2026は、センサデータを用いて自己位置を推定し、推定された位置に対応する地図上の点から予め定められた距離、又はユーザが指定した距離の範囲内の領域を、データを収集する領域として指定してもよい。また、クライアント装置2026は、センサのセンシング領域、すなわち取得されたセンサデータに対応する領域を、データを収集する領域として指定してもよい。または、クライアント装置2026は、ユーザの指定したセンサデータに対応する位置に基づく領域を、データを収集する領域として指定してもよい。センサデータに対応する地図上の領域、又は位置の推定は、クライアント装置2026が行ってもよいし、データ収集サーバ2024が行ってもよい。
 地図上の領域で指定を行う場合、データ収集サーバ2024は、各端末2021の現在位置情報を収集することで、指定された領域内の端末2021を特定し、特定された端末2021に対して位置関連データの送信を要求してもよい。また、データ収集サーバ2024が領域内の端末2021を特定するのではなく、データ収集サーバ2024が指定された領域を示す情報を端末2021に送信し、端末2021が自身が指定された領域内にあるか否かを判定して、指定された領域内にあると判断された場合に位置関連データを送信してもよい。
 データ収集サーバ2024は、クライアント装置2026が実行するアプリケーションにおいて上述したUI(User Interface)を提供するためのリスト又は地図などのデータをクライアント装置2026に送信する。データ収集サーバ2024は、リスト又は地図などのデータだけでなく、アプリケーションのプログラムをクライアント装置2026に送信してもよい。また、上述したUIは、ブラウザで表示可能なHTMLなどで作成されたコンテンツとして提供されてもよい。なお、地図データなど一部のデータは地図サーバ2025などのデータ収集サーバ2024以外のサーバから提供されてもよい。
 クライアント装置2026は、ユーザによる設定ボタンの押下など、入力が完了したことを通知する入力が行われると、入力された情報を設定情報としてデータ収集サーバ2024に送信する。データ収集サーバ2024は、クライアント装置2026から受信した設定情報に基づいて各端末2021に対して、位置関連データの要求又は位置関連データの収集ルールを通知する信号を送信し、位置関連データの収集を行う。
 次に、三次元又は二次元の地図データに付加された付加情報に基づいて端末2021の動作を制御する例について説明する。
 本構成では、道路又は駐車場に埋設された無線給電の給電アンテナ又は給電コイルなどの給電部の位置を示すオブジェクト情報が、三次元データに含まれて、又は三次元データに対応付けられて、車又はドローンなどである端末2021に提供される。
 充電を行うために当該オブジェクト情報を取得した車両又はドローンは、車両が備える充電アンテナ又は充電コイルなどの充電部の位置が、当該オブジェクト情報が示す領域と対向する位置になるよう自動運転で車両自身の位置を移動させ、充電を開始する。なお、自動運転機能を備えていない車両又はドローンの場合は、画面上に表示された画像又は音声などを利用して、移動すべき方向又は行うべき操作を運転手又は操縦者に対して提示される。そして、推定された自己位置に基づいて算出した充電部の位置が、オブジェクト情報で示された領域又は当該領域から所定の距離の範囲内に入った判断されると、運転又は操縦を中止させる内容へと提示する画像又は音声が切り替えられ、充電が開始される。
 また、オブジェクト情報は給電部の位置を示す情報ではなく、当該領域内に充電部を配置すると所定の閾値以上の充電効率が得られる領域を示す情報であってもよい。オブジェクト情報の位置は、オブジェクト情報が示す領域の中心の点で表されてもよいし、二次元平面内の領域或いは線、又は、三次元空間内の領域、線或いは平面などで表されてもよい。
 この構成によると、LiDERのセンシングデータ又はカメラで撮影した映像では把握できない給電アンテナの位置を把握することができるので、車などの端末2021が備える無線充電用のアンテナと道路などに埋設された無線給電アンテナとの位置合わせをより高精度に行うことができる。その結果、無線充電時の充電速度を短くしたり、充電効率を向上させることができる。
 オブジェクト情報は、給電アンテナの以外の対象物であってもよい。例えば、三次元データは、ミリ波無線通信のAPの位置などをオブジェクト情報として含む。これにより、端末2021は、APの位置を事前に把握することができるので、当該オブジェクト情報の方向にビームの指向性を向けて通信を開始することができる。その結果、伝送速度の向上、通信開始までの時間の短縮、及び通信可能な期間を延ばすなどの通信品質の向上を実現できる。
 オブジェクト情報は、当該オブジェクト情報に対応する対象物のタイプを示す情報を含んでもよい。また、オブジェクト情報は、当該オブジェクト情報の三次元データ上の位置に対応する実空間上の領域内、又は領域から所定の距離の範囲内に端末2021が含まれる場合に、端末2021が実施すべき処理を示す情報を含んでもよい。
 オブジェクト情報は、三次元データを提供するサーバとは異なるサーバから提供されてもよい。オブジェクト情報を三次元データとは別に提供する場合、同一のサービスで使用されるオブジェクト情報が格納されたオブジェクトグループが、対象サービス又は対象機器の種類に応じてそれぞれ別のデータとして提供されてもよい。
 オブジェクト情報と組み合わせて用いられる三次元データは、WLDの点群データであってもよいし、SWLDの特徴点データであってもよい。
 三次元データ符号化装置において、符号化対象の三次元点である対象三次元点の属性情報をLoD(Level of Detail)を用いて階層符号化した場合、三次元データ復号装置は、当該三次元データ復号装置で必要なLoDの階層まで属性情報を復号し、必要でない階層の属性情報を復号しなくてもよい。例えば、三次元データ符号化装置が符号化したビットストリーム内の属性情報のLoDの総数がN個の場合、三次元データ復号装置は、最上位層のLoD0からLoD(M-1)までのM個(M<N)のLoDを復号し、残りのLoD(N-1)までのLoDを復号しなくてもよい。これにより、三次元データ復号装置は、処理負荷を抑制しつつ、三次元データ復号装置で必要なLoD0からLoD(M-1)までの属性情報を復号できる。
 図128は、上記のユースケースを示す図である。図128に例では、サーバは、三次元位置情報と属性情報とを符号化することで得られた三次元地図を保持する。サーバ(三次元データ符号化装置)は、サーバが管理する領域のクライアント装置(三次元データ復号装置:例えば車両又はドローン等)に対し、三次元地図をブロードキャスト送信し、クライアント装置はサーバから受信した三次元地図を用いてクライアント装置の自己位置を特定する処理、又は、クライアント装置を操作するユーザ等に地図情報を表示する処理を行う。
 以下、この例における動作例を説明する。まず、サーバは、三次元地図の位置情報を8分木構成などを用いて符号化する。そして、サーバは、位置情報をベースに構築されたN個のLoDを用いて三次元地図の属性情報を階層符号化する。サーバは、階層符号化により得られた三次元地図のビットストリームを保存する。
 次にサーバは、サーバが管理する領域のクライアント装置から送信された地図情報の送信要求に応じて、符号化された三次元地図のビットストリームをクライアント装置に送信する。
 クライアント装置は、サーバから送信された三次元地図のビットストリームを受信し、クライアント装置の用途に応じて三次元地図の位置情報と属性情報とを復号する。例えば、クライアント装置が位置情報とN個のLoDの属性情報とを用いて高精度な自己位置推定を行う場合は、クライアント装置は、属性情報として密な三次元点までの復号結果が必要と判断し、ビットストリーム内の全ての情報を復号する。
 また、クライアント装置が三次元地図の情報をユーザ等に表示する場合は、クライアント装置は、属性情報として疎な三次元点までの復号結果までが必要と判断し、位置情報とLoDの上位層であるLoD0からM個(M<N)までのLoDの属性情報とを復号する。
 このようにクライアント装置の用途に応じて復号する属性情報のLoDを切替えることによって、クライアント装置の処理負荷を削減できる。
 図128に示す例では、例えば、三次元点地図は、位置情報と属性情報とを含む。位置情報は、8分木で符号化される。属性情報は、N個のLoDで符号化される。
 クライアント装置Aは、高精度な自己位置推定を行う。この場合、クライアント装置Aは、全ての位置情報と属性情報とが必要と判断し、ビットストリーム内の位置情報とN個のLoDで構成される属性情報とを全て復号する。
 クライアント装置Bは、三次元地図をユーザへ表示する。この場合、クライアント装置Bは、位置情報とM個(M<N)のLoDの属性情報とが必要と判断し、ビットストリーム内の位置情報とM個のLoDで構成される属性情報とを復号する。
 なお、サーバは、三次元地図をクライアント装置にブロードキャスト送信してもよいし、マルチキャスト送信、又はユニキャスト送信してもよい。
 以下、本実施の形態に係るシステムの変形例について説明する。三次元データ符号化装置において、符号化対象の三次元点である対象三次元点の属性情報をLoDを用いて階層符号化する場合、三次元データ符号化装置は、当該三次元データ復号装置で必要なLoDの階層まで属性情報を符号化し、必要でない階層の属性情報を符号化しなくてもよい。例えば、LoDの総数がN個の場合に、三次元データ符号化装置は、最上位層LoD0からLoD(M-1)までのM個(M<N)のLoDを符号化し、残りLoD(N-1)までのLoDを符号化しないことによりビットストリームを生成してもよい。これにより、三次元データ符号化装置は、三次元データ復号装置からの要望に応じて、三次元データ復号装置で必要なLoD0からLoD(M-1)までの属性情報を符号化したビットストリームを提供できる。
 図129は、上記ユースケースを示す図である。図129に示す例では、サーバは、三次元位置情報と属性情報とを符号化することで得られた三次元地図を保持する。サーバ(三次元データ符号化装置)は、サーバが管理する領域のクライアント装置(三次元データ復号装置:例えば車両又はドローン等)に対し、クライアント装置の要望に応じて三次元地図をユニキャスト送信し、クライアント装置はサーバから受信した三次元地図を用いてクライアント装置の自己位置を特定する処理、又は地図情報をクライアント装置を操作するユーザ等に表示する処理を行う。
 以下、この例における動作例を説明する。まず、サーバは、三次元地図の位置情報を8分木構成などを用いて符号化する。そして、サーバは、三次元地図の属性情報を、位置情報をベースに構築されたN個のLoDを用いて階層符号化することで三次元地図Aのビットストリームを生成し、生成したビットストリームを当該サーバに保存する。また、サーバは、三次元地図の属性情報を、位置情報をベースに構築されたM個(M<N)のLoDを用いて階層符号化することで三次元地図Bのビットストリームを生成し、生成したビットストリームを当該サーバに保存する。
 次にクライアント装置は、クライアント装置の用途に応じて三次元地図の送信をサーバに要求する。例えば、クライアント装置は、位置情報とN個のLoDの属性情報とを用いて高精度な自己位置推定を行う場合は、属性情報として密な三次元点までの復号結果が必要と判断し、三次元地図Aのビットストリームの送信をサーバへ要求する。また、クライアント装置は、三次元地図の情報をユーザ等に表示する場合は、属性情報として疎な三次元点までの復号結果までが必要と判断し、位置情報とLoDの上位層LoD0からM個(M<N)までのLoDの属性情報とを含む三次元地図Bのビットストリームの送信をサーバへ要求する。そしてサーバは、クライアント装置からの地図情報の送信要求に応じて、符号化された三次元地図A又は三次元地図Bのビットストリームをクライアント装置に送信する。
 クライアント装置は、クライアント装置の用途に応じてサーバから送信された三次元地図A又は三次元地図Bのビットストリームを受信し、当該ビットストリームを復号する。このようにサーバは、クライアント装置の用途に応じて送信するビットストリームを切替える。これにより、クライアント装置の処理負荷を削減できる。
 図129に示す例では、サーバは、三次元地図A及び三次元地図Bを保持する。サーバは、三次元地図の位置情報を、例えば8分木で符号化し、三次元地図の属性情報をN個のLoDで符号化することで三次元地図Aを生成する。つまり、三次元地図Aのビットストリームに含まれるNumLoDはNを示す。
 また、サーバは、三次元地図の位置情報を、例えば8分木で符号化し、三次元地図の属性情報をM個のLoDで符号化することで三次元地図Bを生成する。つまり、三次元地図Bのビットストリームに含まれるNumLoDはMを示す。
 クライアント装置Aは、高精度な自己位置推定を行う。この場合クライアント装置Aは、全ての位置情報と属性情報とが必要と判断し、全ての位置情報とN個のLoDで構成される属性情報とを含む三次元地図Aの送信要求をサーバに送る。クライアント装置Aは、三次元地図Aを受信し、全ての位置情報とN個のLoDで構成される属性情報とを復号する。
 クライアント装置Bは、三次元地図をユーザへ表示する。この場合、クライアント装置Bは、位置情報とM個(M<N)のLoDの属性情報とが必要と判断し、全ての位置情報とM個のLoDで構成される属性情報とを含む三次元地図Bの送信要求をサーバに送る。クライアント装置Bは、三次元地図Bを受信して、全ての位置情報とM個のLoDで構成される属性情報とを復号する。
 なお、サーバ(三次元データ符号化装置)は、三次元地図Bに加え、残りのN-M個のLoDの属性情報を符号化した三次元地図Cを符号化しておき、クライアント装置Bの要望に応じて三次元地図Cをクライアント装置Bに送信してもよい。また、クライアント装置Bは、三次元地図Bと三次元地図Cとのビットストリームを用いて、N個のLoDの復号結果を得てもよい。
 以下、アプリケーション処理の例を説明する。図130は、アプリケーション処理の例を示すフローチャートである。アプリ操作が開始されると、三次元データ逆多重化装置は、点群データ及び複数の符号化データを含むISOBMFFファイルを取得する(S7301)。例えば、三次元データ逆多重化装置は、ISOBMFFファイルを、通信により取得してもよいし、蓄積しているデータから読み込んでもよい。
 次に、三次元データ逆多重化装置は、ISOBMFFファイルにおける全体構成情報を解析し、アプリケーションに使用するデータを特定する(S7302)。例えば、三次元データ逆多重化装置は、処理に用いるデータを取得し、処理に用いないデータは取得しない。
 次に、三次元データ逆多重化装置は、アプリケーションに使用する1以上のデータを抽出し、当該データの構成情報を解析する(S7303)。
 データの種別が符号化データである場合(S7304で符号化データ)、三次元データ逆多重化装置は、ISOBMFFを符号化ストリームに変換し、タイムスタンプを抽出する(S7305)。また、三次元データ逆多重化装置は、データ間の同期がそろっているか否かを、例えば、データ間の同期がそろっているか否かを示すフラグを参照して判定し、揃っていなければ同期処理を行ってもよい。
 次に、三次元データ逆多重化装置は、タイムスタンプ及びその他の指示に従い、所定の方法でデータを復号し、復号したデータを処理する(S7306)。
 一方、データの種別が符号化データである場合(S7304でRAWデータ)、三次元データ逆多重化装置は、データ及びタイムスタンプを抽出する(S7307)。また、三次元データ逆多重化装置は、データ間の同期がそろっているか否かを、例えば、データ間の同期がそろっているか否かを示すフラグを参照して判定し、揃っていなければ同期処理を行ってもよい。次に、三次元データ逆多重化装置は、タイムスタンプ及びその他の指示に従い、データを処理する(S7308)。
 例えば、ビームLiDAR、FLASH LiDAR、及びカメラで取得されたセンサ信号が、それぞれ異なる符号化方式で符号化及び多重化されている場合の例を説明する。図131は、ビームLiDAR、FLASH LiDAR及びカメラのセンサ範囲の例を示す図である。例えば、ビームLiDARは、車両(センサ)の周囲の全方向を検知し、FLASH LiDAR及びカメラは、車両の一方向(例えば前方)の範囲を検知する。
 LiDAR点群を統合的に扱うアプリケーションの場合、三次元データ逆多重化装置は、全体構成情報を参照して、ビームLiDARとFLASH LiDARの符号化データを抽出して復号する。また、三次元データ逆多重化装置は、カメラ映像は抽出しない。
 三次元データ逆多重化装置は、LiDARとFLASH LiDARのタイムスタンプに従い、同一のタイムスタンプの時刻のそれぞれの符号化データを同時に処理する。
 例えば、三次元データ逆多重化装置は、処理したデータを提示装置で提示したり、ビームLiDARとFLASH LiDARの点群データを合成したり、レンダリングなどの処理を行ってもよい。
 また、データ間でキャリブレーションをするアプリケーションの場合には、三次元データ逆多重化装置は、センサ位置情報を抽出してアプリケーションで用いてもよい。
 例えば、三次元データ逆多重化装置は、アプリケーションにおいて、ビームLiDAR情報を使用するか、FLASH LiDARを使用するかを選択し、選択結果に応じて処理を切り替えてもよい。
 このように、アプリケーションの処理に応じて適応的にデータの取得及び符号処理を変えることができるので、処理量及び消費電力を削減できる。
 以下、自動運転におけるユースケースについて説明する。図132は、自動運転システムの構成例を示す図である。この自動運転システムは、クラウドサーバ7350と、車載装置又はモバイル装置等のエッジ7360とを含む。クラウドサーバ7350は、逆多重化部7351と、復号部7352A、7352B及び7355と、点群データ合成部7353と、大規模データ蓄積部7354と、比較部7356と、符号化部7357とを備える。エッジ7360は、センサ7361A及び7361Bと、点群データ生成部7362A及び7362Bと、同期部7363と、符号化部7364A及び7364Bと、多重化部7365と、更新データ蓄積部7366と、逆多重化部7367と、復号部7368と、フィルタ7369と、自己位置推定部7370と、運転制御部7371とを備える。
 このシステムでは、エッジ7360は、クラウドサーバ7350に蓄積されている大規模点群地図データである大規模データをダウンロードする。エッジ7360は、大規模データとエッジ7360で得られたセンサ情報とをマッチングすることで、エッジ7360(車両又は端末)の自己位置推定処理を行う。また、エッジ7360は、取得したセンサ情報をクラウドサーバ7350へアップロードし、大規模データを最新の地図データに更新する。
 また、システム内における点群データを扱う様々なアプリケーションにおいて、符号化方法の異なる点群データが扱われる。
 クラウドサーバ7350は、大規模データを符号化及び多重化する。具体的には、符号化部7357は、大規模点群を符号化するために適した第3の符号化方法を用いて符号化を行う。また、符号化部7357は、符号化データを多重化する。大規模データ蓄積部7354は、符号化部7357で符号化及び多重化されたデータを蓄積する。
 エッジ7360は、センシングを行う。具体的には、点群データ生成部7362Aは、センサ7361Aで取得されるセンシング情報を用いて、第1の点群データ(位置情報(ジオメトリ)及び属性情報)を生成する。点群データ生成部7362Bは、センサ7361Bで取得されるセンシング情報を用いて、第2の点群データ(位置情報及び属性情報)を生成する。生成された第1の点群データ及び第2の点群データは、自動運転の自己位置推定或いは車両制御、又は地図更新に用いられる。それぞれの処理において、第1の点群データ及び第2の点群データのうちの一部の情報が用いられてもよい。
 エッジ7360は、自己位置推定を行う。具体的には、エッジ7360は、大規模データをクラウドサーバ7350からダウンロードする。逆多重化部7367は、ファイルフォーマットの大規模データを逆多重化することで符号化データを取得する。復号部7368は、取得された符号化データを復号することで大規模点群地図データである大規模データを取得する。
 自己位置推定部7370は、取得された大規模データと、点群データ生成部7362A及び7362Bで生成された第1の点群データ及び第2の点群データとをマッチングすることで、車両の地図における自己位置を推定する。また、運転制御部7371は、当該マッチング結果又は自己位置推定結果を運転制御に用いる。
 なお、自己位置推定部7370及び運転制御部7371は、大規模データのうち、位置情報などの特定の情報を抽出し、抽出した情報を用いて処理を行ってもよい。また、フィルタ7369は、第1の点群データ及び第2の点群データに補正又は間引き等の処理を行う。自己位置推定部7370及び運転制御部7371は、当該処理が行われた後の第1の点群データ及び第2の点群データを用いてもよい。また、自己位置推定部7370及び運転制御部7371は、センサ7361A及び7361Bで得られたセンサ信号を用いてもよい。
 同期部7363は、複数のセンサ信号又は複数の点群データのデータ間の時間同期及び位置補正を行う。また、同期部7363は、自己位置推定処理によって生成された、大規模データとセンサデータとの位置補正情報に基づき、センサ信号又は点群データの位置情報を大規模データに合わせるように補正してもよい。
 なお、同期及び位置補正はエッジ7360でなく、クラウドサーバ7350で行われてもよい。この場合、エッジ7360は、同期情報及び位置情報を多重化してクラウドサーバ7350へ送信してもよい。
 エッジ7360は.センサ信号又は点群データを符号化及び多重化する。具体的には、センサ信号又は点群データは、それぞれの信号を符号化するために適した第1の符号化方法又は第2の符号化方法を用いて符号化される。例えば、符号化部7364Aは、第1の符号化方法を用いて第1の点群データを符号化することで第1の符号化データを生成する。符号化部7364Bは、第2の符号化方法を用いて第2の点群データを符号化することで第2の符号化データを生成する。
 多重化部7365は、第1の符号化データ、第2の符号化データ、及び同期情報などを多重化することで多重化信号を生成する。更新データ蓄積部7366は、生成された多重化信号を蓄積する。また、更新データ蓄積部7366は、多重化信号をクラウドサーバ7350へアップロードする。
 クラウドサーバ7350は、点群データを合成する。具体的には、逆多重化部7351は、クラウドサーバ7350にアップロードされた多重化信号を逆多重化することで第1の符号化データ及び第2の符号化データを取得する。復号部7352Aは、第1の符号化データを復号することで第1の点群データ(又はセンサ信号)を取得する。復号部7352Bは、第2の符号化データを復号することで第2の点群データ(又はセンサ信号)を取得する。
 点群データ合成部7353は、第1の点群データと第2の点群データとを所定の方法で合成する。多重化信号に同期情報及び位置補正情報が多重化されている場合には、点群データ合成部7353は、それらの情報を用いて合成を行ってもよい。
 復号部7355は、大規模データ蓄積部7354に蓄積されている大規模データを逆多重化及び復号する。比較部7356は、エッジ7360で得られたセンサ信号に基づき生成された点群データとクラウドサーバ7350が有する大規模データとを比較し、更新が必要な点群データを判断する。比較部7356は、大規模データのうち、更新が必要と判断された点群データを、エッジ7360から得られた点群データに更新する。
 符号化部7357は、更新された大規模データを符号化及び多重化し、得られたデータを大規模データ蓄積部7354に蓄積する。
 以上のように、使用する用途又はアプリケーションに応じて、取り扱う信号が異なり、多重化する信号又は符号化方法が異なる場合がある。このような場合であっても、本実施の形態を用いて様々な符号化方式のデータを多重化することで、柔軟な復号及びアプリケーション処理が可能となる。また、信号の符号化方式が異なる場合であっても、逆多重化、復号、データ変換、符号化、多重の処理により適した符号化方式を変換することで、様々なアプリケーションやシステムを構築し、柔軟なサービスの提供が可能となる。
 以下、分割データの復号及びアプリケーションの例を説明する。まず、分割データの情報について説明する。図133は、ビットストリームの構成例を示す図である。分割データの全体情報は、分割データ毎に、当該分割データのセンサID(sensor_id)とデータID(data_id)とを示す。なお、データIDは各符号化データのヘッダにも示される。
 なお、図133に示す分割データの全体情報は、図31と同様に、センサIDに加え、センサ情報(Sensor)と、センサのバージョン(Version)と、センサのメーカー名(Maker)と、センサの設置情報(Mount Info.)と、センサの位置座標(World Coordinate)とのうち少なく一つを含んでもよい。これにより、三次元データ復号装置は、構成情報から各種センサの情報を取得できる。
 分割データの全体情報は、メタデータであるSPS、GPS又はAPSに格納されてもよいし、符号化に必須でないメタデータであるSEIに格納されてもよい。また、三次元データ符号化装置は、多重化の際に、当該SEIをISOBMFFのファイルに格納する。三次元データ復号装置は、当該メタデータに基づき、所望の分割データを取得できる。
 図133において、SPSは符号化データ全体のメタデータであり、GPSは位置情報のメタデータであり、APSは属性情報毎のメタデータであり、Gは分割データ毎の位置情報の符号化データであり、A1等は分割データ毎の属性情報の符号化データである。
 次に、分割データのアプリケーション例を説明する。点群データから、任意の点群を選択し、選択した点群を提示するアプリケーションの例を説明する。図134は、このアプリケーションにより実行される点群選択処理のフローチャートである。図135~図137は、点群選択処理の画面例を示す図である。
 図135に示すように、アプリケーションを実行する三次元データ復号装置は、例えば、任意の点群を選択するための入力UI(ユーザインタフェース)8661を表示するUI部を有する。入力UI8661は、選択された点群を提示する提示部8662と、ユーザの操作を受け付ける操作部(ボタン8663及び8664)を有する。三次元データ復号装置は、UI8661で点群が選択された後、蓄積部8665から所望のデータを取得する。
 まず、ユーザの入力UI8661に対する操作に基づき、ユーザが表示したい点群情報が選択される(S8631)。具体的には、ボタン8663が選択されることで、センサ1に基づく点群が選択される。ボタン8664が選択されることで、センサ2に基づく点群が選択される。または、ボタン8663及びボタン8664の両方が選択されることで、センサ1に基づく点群とセンサ2に基づく点群の両方が選択される。なお、点群の選択方法は一例であり、これに限らない。
 次に、三次元データ復号装置は、多重化信号(ビットストリーム)又は符号化データに含まれる分割データの全体情報を解析し、選択されたセンサのセンサID(sensor_id)から、選択された点群を構成する分割データのデータID(data_id)を特定する(S8632)。次に、三次元データ復号装置は、多重化信号から、特定された所望のデータIDを含む符号化データを抽出し、抽出した符号化データを復号することで、選択されたセンサに基づく点群を復号する(S8633)。なお、三次元データ復号装置は、その他の符号化データは復号しない。
 最後に、三次元データ復号装置は、復号された点群を提示(例えば表示)する(S8634)。図136は、センサ1のボタン8663が押下された場合の例を示し、センサ1の点群が提示される。図137は、センサ1のボタン8663とセンサ2のボタン8664の両方が押下された場合の例を示し、センサ1及びセンサ2の点群が提示される。
 以上、本開示の実施の形態に係る三次元データ符号化装置及び三次元データ復号装置等について説明したが、本開示は、この実施の形態に限定されるものではない。
 また、上記実施の形態に係る三次元データ符号化装置及び三次元データ復号装置等に含まれる各処理部は典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。
 また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 また、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 また、本開示は、三次元データ符号化装置及び三次元データ復号装置等により実行される三次元データ符号化方法又は三次元データ復号方法等として実現されてもよい。
 また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを一つの機能ブロックとして実現したり、一つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。
 また、フローチャートにおける各ステップが実行される順序は、本開示を具体的に説明するために例示するためのものであり、上記以外の順序であってもよい。また、上記ステップの一部が、他のステップと同時(並列)に実行されてもよい。
 以上、一つまたは複数の態様に係る三次元データ符号化装置及び三次元データ復号装置等について、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。
 本開示は、三次元データ符号化装置及び三次元データ復号装置に適用できる。
 810 三次元データ作成装置
 811 データ受信部
 812、819 通信部
 813 受信制御部
 814、821 フォーマット変換部
 815 センサ
 816 三次元データ作成部
 817 三次元データ合成部
 818 三次元データ蓄積部
 820 送信制御部
 822 データ送信部
 831、832、834、835、836、837 三次元データ
 833 センサ情報
 901 サーバ
 902、902A、902B、902C クライアント装置
 1011、1111 データ受信部
 1012、1020、1112、1120 通信部
 1013、1113 受信制御部
 1014、1019、1114、1119 フォーマット変換部
 1015 センサ
 1016、1116 三次元データ作成部
 1017 三次元画像処理部
 1018、1118 三次元データ蓄積部
 1021、1121 送信制御部
 1022、1122 データ送信部
 1031、1032、1135 三次元マップ
 1033、1037、1132 センサ情報
 1034、1035、1134 三次元データ
 1117 三次元データ合成部
 1201 三次元マップ圧縮/復号処理部
 1202 センサ情報圧縮/復号処理部
 1211 三次元マップ復号処理部
 1212 センサ情報圧縮処理部
 2001 サーバ
 2002、2002A、2002B クライアント装置
 2011 センサ情報取得部
 2012 記憶部
 2013 データ送信可否判定部
 2021、2021A、2021B 端末
 2022、2022A、2022B 通信装置
 2023 ネットワーク
 2024 データ収集サーバ
 2025 地図サーバ
 2026 クライアント装置
 4601 三次元データ符号化システム
 4602 三次元データ復号システム
 4603 センサ端末
 4604 外部接続部
 4611 点群データ生成システム
 4612 提示部
 4613 符号化部
 4614 多重化部
 4615 入出力部
 4616 制御部
 4617 センサ情報取得部
 4618 点群データ生成部
 4621 センサ情報取得部
 4622 入出力部
 4623 逆多重化部
 4624 復号部
 4625 提示部
 4626 ユーザインタフェース
 4627 制御部
 4630 第1の符号化部
 4631 位置情報符号化部
 4632 属性情報符号化部
 4633 付加情報符号化部
 4634 多重化部
 4640 第1の復号部
 4641 逆多重化部
 4642 位置情報復号部
 4643 属性情報復号部
 4644 付加情報復号部
 4650 第2の符号化部
 4651 付加情報生成部
 4652 位置画像生成部
 4653 属性画像生成部
 4654 映像符号化部
 4655 付加情報符号化部
 4656 多重化部
 4660 第2の復号部
 4661 逆多重化部
 4662 映像復号部
 4663 付加情報復号部
 4664 位置情報生成部
 4665 属性情報生成部
 4801 符号化部
 4802 多重化部
 4910 第1の符号化部
 4911 分割部
 4912 位置情報符号化部
 4913 属性情報符号化部
 4914 付加情報符号化部
 4915 多重化部
 4920 第1の復号部
 4921 逆多重化部
 4922 位置情報復号部
 4923 属性情報復号部
 4924 付加情報復号部
 4925 結合部
 4931 スライス分割部
 4932 位置情報タイル分割部
 4933 属性情報タイル分割部
 4941 位置情報タイル結合部
 4942 属性情報タイル結合部
 4943 スライス結合部
 5051 タイル分割部
 5052 符号化部
 5053 復号部
 5054 タイル結合部
 7350 クラウドサーバ
 7351 逆多重化部
 7352A、7352B 復号部
 7353 点群データ合成部
 7354 大規模データ蓄積部
 7355 復号部
 7356 比較部
 7357 符号化部
 7360 エッジ
 7361A、7361B センサ
 7362A、7362B 点群データ生成部
 7363 同期部
 7364A、7364B 符号化部
 7365 多重化部
 7366 更新データ蓄積部
 7367 逆多重化部
 7368 復号部
 7369 フィルタ
 7370 自己位置推定部
 7371 運転制御部
 8661 入力UI
 8662 提示部
 8663、8664 ボタン
 8665 蓄積部
 8801 符号化部
 8802 ファイル変換部
 8811 ファイル逆変換部
 8812 復号部
 8821 送出部
 8822 抽出部
 8823 受信部
 9600 三次元データ符号化装置
 9601 判定部
 9602 変換部
 9603 符号化部
 9610 三次元データ復号装置
 9611 判定部
 9612 復号部

Claims (11)

  1.  三次元点群を示す点群データを複数に分割した際の分割データ単位、及び、分割前の点群データ単位の少なくとも一方の符号化後の符号化データの第1最大ビット数を決定し、
     前記点群データが分割された複数の分割データ、又は、分割前の前記点群データを、決定した前記第1最大ビット数を満たすように符号化することでビットストリームを生成し、
     前記ビットストリームは、前記第1最大ビット数を示す第1ビット数情報を含む
     三次元データ符号化方法。
  2.  前記点群データは、前記三次元点群の各三次元点の位置情報を含み、
     前記第1最大ビット数は、前記位置情報の符号化後のビット数に関し、
     前記生成では、前記点群データが分割された複数の分割データ、又は、分割前の前記点群データの位置情報を、決定した前記第1最大ビット数を満たすように符号化することで前記ビットストリームを生成する
     請求項1に記載の三次元データ符号化方法。
  3.  さらに、
     前記分割データ単位、及び、前記点群データ単位の少なくとも一方に含まれる三次元点の数の範囲を決定し、
     前記生成では、前記点群データが分割された複数の分割データ、又は、分割前の前記点群データを、決定した前記第1最大ビット数及び前記数の範囲を満たすように符号化することで前記ビットストリームを生成し、
     前記ビットストリームは、さらに、前記数の範囲を示す範囲情報を含む
     請求項1又は2に記載の三次元データ符号化方法。
  4.  前記点群データは、さらに、前記三次元点群の各三次元点の属性情報を含み、
     前記三次元データ符号化方法は、さらに、
     前記分割データ単位、及び、前記点群データ単位の少なくとも一方の三次元点群の属性情報の符号化後の第2最大ビット数を決定し、
     前記生成では、(i)前記点群データが分割された複数の分割データ、又は、分割前の前記点群データの位置情報を、決定した前記第1最大ビット数を満たすように符号化し、かつ、(ii)前記点群データが分割された複数の分割データ、又は、分割前の前記点群データの属性情報を、決定した前記第2最大ビット数を満たすように符号化することで、前記ビットストリームを生成し、
     前記ビットストリームは、さらに、前記第2最大ビット数を示す第2ビット数情報を含む
     請求項2に記載の三次元データ符号化方法。
  5.  三次元点群を示す点群データを複数に分割した際の分割データ単位、及び、分割前の点群データ単位の少なくとも一方の符号化後のデータである符号化データと、前記符号化データの第1最大ビット数を示す第1ビット数情報とを含むビットストリームを取得し、
     取得した前記ビットストリームが前記第1ビット数情報で示される第1最大ビット数を満たしているか否かを判定し、
     前記ビットストリームが前記第1最大ビット数を満たしていると判定された場合、前記符号化データを復号する
     三次元データ復号方法。
  6.  前記復号では、前記ビットストリームが前記第1最大ビット数を満たしていないと判定された場合、前記符号化データを復号しない
     請求項5に記載の三次元データ復号方法。
  7.  前記点群データは、前記三次元点群の各三次元点の位置情報を含み、
     前記第1最大ビット数は、前記位置情報の符号化後のビット数に関する
     請求項5又は6に記載の三次元データ復号方法。
  8.  前記ビットストリームは、さらに、前記分割データ単位、及び、前記点群データ単位の少なくとも一方に含まれる三次元点の数の範囲を示す範囲情報を含み、
     前記判定では、さらに、前記ビットストリームが前記範囲情報で示される前記数の範囲を満たしているか否かを判定し、
     前記復号では、
      前記ビットストリームが、前記第1最大ビット数を満たしており、かつ、前記数の範囲を満たしていると判定された場合、前記符号化データを復号し、
      前記ビットストリームが、前記第1最大ビット数を満たしていない、又は、前記数の範囲を満たしていないと判定された場合、前記符号化データを復号しない
     請求項5から7のいずれか1項に記載の三次元データ復号方法。
  9.  前記点群データは、さらに、前記三次元点群の各三次元点の属性情報を含み、
     前記ビットストリームは、さらに、前記分割データ単位、及び、前記点群データ単位の少なくとも一方の三次元点群の属性情報の符号化後の第2最大ビット数を示す第2ビット数情報を含み、
     前記判定では、さらに、前記ビットストリームが前記第2ビット数情報で示される前記第2最大ビット数を満たしているか否かを判定し、
     前記復号では、
      前記ビットストリームが、前記第1最大ビット数を満たしており、かつ、前記第2最大ビット数を満たしていると判定された場合、前記符号化データを復号し、
      前記ビットストリームが、第1最大ビット数を満たしていない、又は、前記第2最大ビット数を満たしていないと判定された場合、前記符号化データを復号しない
     請求項7に記載の三次元データ復号方法。
  10.  プロセッサと、
     メモリと、を備え、
     前記プロセッサは、前記メモリを用いて、
     三次元点群を示す点群データを複数に分割した際の分割データ単位、及び、分割前の点群データ単位の少なくとも一方の符号化後の符号化データの第1最大ビット数を決定し、
     前記点群データが分割された複数の分割データ、又は、分割前の前記点群データを、決定した前記第1最大ビット数を満たすように符号化することでビットストリームを生成し、
     前記ビットストリームは、前記第1最大ビット数を示す第1ビット数情報を含む
     三次元データ符号化装置。
  11.  プロセッサと、
     メモリと、を備え、
     前記プロセッサは、前記メモリを用いて、
     三次元点群を示す点群データを複数に分割した際の分割データ単位、及び、分割前の点群データ単位の少なくとも一方の符号化後のデータである符号化データと、前記符号化データの第1最大ビット数を示す第1ビット数情報とを含むビットストリームを取得し、
     取得した前記ビットストリームが前記第1ビット数情報で示される第1最大ビット数を満たしているか否かを判定し、
     前記ビットストリームが前記第1最大ビット数を満たしていると判定された場合、前記符号化データを復号する
     三次元データ復号装置。
PCT/JP2020/037595 2019-10-04 2020-10-02 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置 WO2021066163A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080067958.6A CN114450941A (zh) 2019-10-04 2020-10-02 三维数据编码方法、三维数据解码方法、三维数据编码装置及三维数据解码装置
JP2021551496A JPWO2021066163A1 (ja) 2019-10-04 2020-10-02
US17/709,966 US20220222863A1 (en) 2019-10-04 2022-03-31 Three-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962910600P 2019-10-04 2019-10-04
US62/910,600 2019-10-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/709,966 Continuation US20220222863A1 (en) 2019-10-04 2022-03-31 Three-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device

Publications (1)

Publication Number Publication Date
WO2021066163A1 true WO2021066163A1 (ja) 2021-04-08

Family

ID=75338103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037595 WO2021066163A1 (ja) 2019-10-04 2020-10-02 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置

Country Status (4)

Country Link
US (1) US20220222863A1 (ja)
JP (1) JPWO2021066163A1 (ja)
CN (1) CN114450941A (ja)
WO (1) WO2021066163A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115150818A (zh) * 2022-09-05 2022-10-04 光谷技术有限公司 一种基于人工智能的通信传输加密方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022539762A (ja) * 2019-06-28 2022-09-13 エルジー エレクトロニクス インコーポレイティド ポイントクラウドデータ処理装置及び方法
WO2021193899A1 (ja) * 2020-03-27 2021-09-30 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
US11743501B2 (en) * 2020-04-07 2023-08-29 Qualcomm Incorporated High-level syntax design for geometry-based point cloud compression
WO2022004682A1 (ja) * 2020-06-29 2022-01-06 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 三次元データ符号化方法及び三次元データ符号化装置
CN116626706B (zh) * 2023-05-12 2024-01-16 北京交通大学 轨道交通隧道侵限检测方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08322018A (ja) * 1995-05-26 1996-12-03 Hitachi Ltd ビデオ・オーディオデータの再生装置
JP2009033604A (ja) * 2007-07-30 2009-02-12 Victor Co Of Japan Ltd 映像信号符号化装置および方法
WO2017169727A1 (ja) * 2016-03-28 2017-10-05 ソニー株式会社 情報処理装置および情報処理方法、並びに情報処理システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054788A (ja) * 2010-09-01 2012-03-15 Canon Inc データファイル転送装置、その制御方法、プログラム及び記憶媒体
CN112219228B (zh) * 2018-06-08 2024-10-22 松下电器(美国)知识产权公司 三维数据编码方法、三维数据解码方法、三维数据编码装置、以及三维数据解码装置
CN112424833A (zh) * 2018-07-13 2021-02-26 松下电器(美国)知识产权公司 三维数据编码方法、三维数据解码方法、三维数据编码装置、以及三维数据解码装置
CN115668938A (zh) * 2020-03-18 2023-01-31 Lg电子株式会社 点云数据发送装置、点云数据发送方法、点云数据接收装置和点云数据接收方法
WO2022075326A1 (ja) * 2020-10-07 2022-04-14 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08322018A (ja) * 1995-05-26 1996-12-03 Hitachi Ltd ビデオ・オーディオデータの再生装置
JP2009033604A (ja) * 2007-07-30 2009-02-12 Victor Co Of Japan Ltd 映像信号符号化装置および方法
WO2017169727A1 (ja) * 2016-03-28 2017-10-05 ソニー株式会社 情報処理装置および情報処理方法、並びに情報処理システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GONCALVES, M. ET AL.: "Encoding efficiency and computational cost assessment of state-of-the-art point cloud codecs", 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP, 22 September 2019 (2019-09-22), pages 3726 - 3730, XP033647478, DOI: 10.1109/ICIP.2019.8803524 *
XU, Y. Q. ET AL.: "Rate-distortion optimized scan for point cloud color compression", 2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP, 10 December 2017 (2017-12-10), pages 1 - 4, XP033325807, DOI: 10.1109/VCIP.2017.8305129 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115150818A (zh) * 2022-09-05 2022-10-04 光谷技术有限公司 一种基于人工智能的通信传输加密方法
CN115150818B (zh) * 2022-09-05 2022-11-04 光谷技术有限公司 一种基于人工智能的通信传输加密方法

Also Published As

Publication number Publication date
US20220222863A1 (en) 2022-07-14
JPWO2021066163A1 (ja) 2021-04-08
CN114450941A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
WO2021066163A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2020241723A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021261516A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021141090A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2022075428A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2022075326A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021187561A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021210548A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021261514A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021210550A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021261458A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021210549A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021193899A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021066162A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
US20230030392A1 (en) Three-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device
WO2022025278A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2022025280A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2022075234A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2022149589A1 (ja) 三次元データ復号方法、三次元データ符号化方法、三次元データ復号装置、及び三次元データ符号化装置
WO2022004682A1 (ja) 三次元データ符号化方法及び三次元データ符号化装置
WO2022080283A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2021095879A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
US12143634B2 (en) Three-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device
WO2021141093A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2020251019A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551496

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20871617

Country of ref document: EP

Kind code of ref document: A1