[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021249429A1 - 具有滴施喷头的无人飞机和采用无人飞机施用农药的方法 - Google Patents

具有滴施喷头的无人飞机和采用无人飞机施用农药的方法 Download PDF

Info

Publication number
WO2021249429A1
WO2021249429A1 PCT/CN2021/099123 CN2021099123W WO2021249429A1 WO 2021249429 A1 WO2021249429 A1 WO 2021249429A1 CN 2021099123 W CN2021099123 W CN 2021099123W WO 2021249429 A1 WO2021249429 A1 WO 2021249429A1
Authority
WO
WIPO (PCT)
Prior art keywords
microns
unmanned aircraft
preferably greater
spray head
pesticides
Prior art date
Application number
PCT/CN2021/099123
Other languages
English (en)
French (fr)
Inventor
齐枫
郑伟
朱军
Original Assignee
拜耳作物科学(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 拜耳作物科学(中国)有限公司 filed Critical 拜耳作物科学(中国)有限公司
Priority to CN202180040090.5A priority Critical patent/CN115697844A/zh
Publication of WO2021249429A1 publication Critical patent/WO2021249429A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides

Definitions

  • the present disclosure relates to an unmanned aircraft with drip spray nozzles, and the present disclosure also relates to a method for applying pesticides using the unmanned aircraft.
  • the plant protection unmanned aircraft flies on a prescribed path and sprays through the nozzles.
  • precise spraying and quantitative spraying can be achieved, but in the actual operation process, due to the nozzle model, droplet size, geographical location, geographical environment, wind speed, temperature and other factors
  • the sprays (pesticides) will drift or be unevenly distributed, which will have a negative impact on the spraying operation, causing problems such as respray and missed spraying, and even the sprays will drift to undesired areas, causing environmental pollution risks or affecting crops.
  • the growth of the plant has an adverse effect.
  • the present invention proposes an unmanned aircraft with drip spray nozzles and a method for applying pesticides using this unmanned aircraft.
  • the above-mentioned problems are solved by adopting the following technical features, and Bring other technical effects.
  • At least one embodiment of the present invention provides a method for applying pesticides to crop plants in a paddy field through an unmanned aircraft, the method comprising: providing an unmanned aircraft, the unmanned aircraft is provided with at least one spray head; The unmanned aircraft flies over the paddy field along a predetermined route; and applies pesticides via at least one spray head during flying over the paddy field; wherein, the pesticide application via at least one spray head includes liquid column via the at least one spray head The form sprays pesticides in at least one spray direction.
  • the applying the pesticide via at least one spray head further includes dispersing and atomizing the liquid column into mist droplets.
  • the dispersing and atomizing the liquid column into mist droplets includes using a down-pressure wind field generated by the rotor of the drone to disperse and atomize the liquid column into mist droplets.
  • the particle size of the droplets is greater than 100 microns, preferably greater than 200 microns, preferably greater than 400 microns, preferably greater than 600 microns, preferably greater than 800 microns, preferably greater than 1000 microns.
  • the particle size of the droplets satisfies the following conditions: DV10 and DV50 are both greater than 100 microns, preferably greater than 200 microns, preferably greater than 400 microns, preferably greater than 600 microns, preferably greater than 800 microns, at a working pressure of 3 bar, It is preferably greater than 1000 microns.
  • the method further includes calibrating the spray head, and calibrating the spray head includes calibrating at least one of the orientation of the spray head, the working flow rate of the spray head, or the size of the discharge hole of the spray head.
  • the parameters of the predetermined route are obtained through user input or experimental methods.
  • the pesticide is a pesticide suitable for water layer application.
  • the pesticide includes any one or a combination of the following groups: fluoxsulam, penoxsulam, mesotrione, pyrazosulfuron, bicyclosulfuron, chlorofluoro Pyridyl ester, pretilachlor, butachlor, bensulfuron-methyl, pyrazosulfuron-methyl, oxadiazon, oxadiazone, oxyfluorfen, sidiazin, promethacin, difentrazone or Oxazinon.
  • At least one embodiment of the present invention provides an unmanned aircraft for applying pesticides to crop plants in a paddy field.
  • the unmanned aircraft includes: a body; a box fixedly arranged on the body and used for accommodating pesticides; at least A spray head arranged on the body to spray pesticides; a conveying component for conveying pesticides from the box body toward the at least one spray head; and a control unit configured to manipulate or set the drone along Fly over the paddy field along a predetermined route, and when the unmanned aircraft flies over the paddy field, control the conveying component to apply pesticides to the paddy field via the at least one spray head; wherein the control unit is It is configured to spray pesticides toward at least one spray direction in the form of a liquid column via the at least one spray head.
  • the unmanned aircraft includes a push-up unit that generates a down-pressure wind field that drives the unmanned aircraft, and the down-pressure wind field disperses the liquid column into mist. drop.
  • the particle size of the droplets is greater than 100 microns, preferably greater than 200 microns, preferably greater than 400 microns, preferably greater than 600 microns, preferably greater than 800 microns, preferably greater than 1000 microns.
  • the particle size of the droplets satisfies the following conditions: DV10 and DV50 are both greater than 100 microns, preferably greater than 200 microns, preferably greater than 400 microns, preferably greater than 600 microns, preferably greater than 800 microns, at a working pressure of 3 bar, It is preferably greater than 1000 microns.
  • the spray head is a drip spray head.
  • the unmanned aircraft is a multi-rotor plant protection unmanned aircraft.
  • the pesticide is a pesticide suitable for water layer application.
  • the pesticide includes any one or a combination of the following groups: fluoxsulam, penoxsulam, mesotrione, pyrazosulfuron, bicyclosulfuron, chlorofluoro Pyridyl ester, pretilachlor, butachlor, bensulfuron-methyl, pyrazosulfuron-methyl, oxadiazon, oxadiazone, oxyfluorfen, sidiazin, promethacin, difentrazone or Oxazinon.
  • FIG. 1 shows a flowchart of a method for applying pesticides to crop plants in a paddy field through an unmanned aircraft according to an embodiment of the present disclosure
  • Fig. 2A shows a schematic diagram of a spray head spraying a liquid column in situ according to an embodiment of the present disclosure
  • FIG. 2B shows a schematic diagram of the nozzle of the embodiment of the present disclosure spraying a liquid column in the flight of an unmanned aircraft;
  • Figure 3 shows the comparison of the drift distances of different droplet sizes
  • Figure 4 shows the comparison of the droplet size of nozzles according to different models
  • Figure 5 shows a perspective view of an unmanned aircraft according to an embodiment of the present disclosure
  • FIG. 6 shows a schematic diagram of the operation of an unmanned aircraft according to an embodiment of the present disclosure
  • Figure 7 shows a spray head according to an embodiment of the present disclosure
  • Fig. 8 shows a spraying schematic diagram of the spray head shown in Fig. 7;
  • Figure 9 is a graph showing the results of a control experiment of pesticide application on a paddy field with soybeans planted in the surrounding area;
  • Figure 10 is a graph showing the results of a control experiment of pesticide application on a paddy field with sesame seeds in the surrounding area;
  • FIG. 11 shows a result diagram of another field control experiment according to an embodiment of the present disclosure.
  • Figure 12 shows a schematic diagram of the wind tunnel system used in laboratory test two.
  • the unmanned aircraft proposed in the present disclosure is preferably used for agricultural and forestry crop plant protection operations, more specifically for paddy field crop plant protection operations, but is not limited to other uses.
  • Unmanned Aerial Vehicle should be understood as an unmanned aerial vehicle operated by radio remote control equipment and self-provided program control devices. Unmanned aerial vehicles can also be called unmanned aerial vehicles or unmanned aerial vehicles. , Autonomous aircraft, etc.
  • the unmanned aircraft described in the present disclosure is a multi-rotor unmanned aircraft, but the present invention is not limited to this. Instead, various other types of unmanned aircraft or remote-controlled kites can be used, as long as the equipment can be It is sufficient to fly on the determined route to perform the method proposed according to the present invention.
  • paddy field should be understood as a field that can be irrigated and stored normally and used to grow aquatic crop plants (such as rice). Paddy fields can be evenly distributed on the land, or they can be unevenly distributed on the land. A single variety of crop plants can be grown in a paddy field; however, it is also conceivable that the paddy field can include multiple different areas where different varieties of crop plants or various varieties of single varieties of crop plants are grown respectively.
  • crop plant should be understood to mean a plant that grows in a targeted manner as a crop or ornamental plant due to human intervention.
  • Pesticide is understood as a product whose purpose is to protect plants or plant products from harmful organisms or prevent their effects, destroy undesired plants or plant parts, inhibit undesired plant growth or prevent such growth , And/or affect the life process of plants in a way other than nutrients (such as growth regulators).
  • Pesticides are herbicides, fungicides, insecticides and/or growth regulators.
  • Pesticides usually contain active substances or multiple active substances.
  • Active substance refers to a substance that has a specific effect on an organism and causes a specific reaction.
  • pesticides contain a carrier for diluting one or more active substances, such as water.
  • additives such as preservatives, buffers, colorants, etc. are conceivable.
  • Pesticides can be in solid, liquid or gaseous form. In the following description of the present disclosure, pesticides are considered to be used in liquid form.
  • weeds is understood to mean plants with accompanying vegetation that spontaneously occur in a field of crop plants, on the grass or in the garden, which plants are not grown deliberately in these settings and are, for example, produced by possible soil seeds or air Spread development.
  • the term is not limited to herbs in the strict sense, but also includes grasses, ferns, mosses, or woody plants.
  • the weeds used for the purposes of the present disclosure are plants that accompany the desired crop plants as they grow. Since they compete with crop plants for resources, they are undesirable and should inhibit the growth of weeds. For example, it is conceivable that weeds in the paddy field must be removed before the seeds of crop plants are planted. It is also conceivable that after sowing, weeds have developed in the paddy field and must be removed.
  • drift should be understood as the horizontal displacement of a solid or liquid when it is sprayed in the air. There are many factors that determine the size of the drift of a solid or liquid, including but not limited to: the particle size of the object, the initial horizontal velocity, the ambient wind speed, and the height of the spray.
  • the main herbicide products for paddy field crops are mostly contact-killing, requiring the medicinal solution to contact the weed leaves, while the unmanned aircraft has a small drug-carrying capacity, so the need for more small droplets has been achieved in the low water volume.
  • the water layer application method applies the pesticide evenly to the surface of the water layer of the paddy field instead of the weed leaves.
  • it can be divided into manual throwing method and medicine soil method:
  • the mother liquor is diluted with 2-7 liters of water and then evenly thrown onto the surface of the paddy field water layer;
  • Medicinal soil method first mix the mother liquor with a small amount of sand, then mix it with 3-7 kg of sand and evenly spread it on the surface of the water layer of the paddy field.
  • the operating height of unmanned aircraft is usually 1.5 to 2.5 meters above the crop plants. Therefore, the risk of drift due to environmental wind speed is much greater than that of ground spray machinery or manual spray.
  • Fig. 1 shows a flowchart of a method for applying pesticides to crop plants in a paddy field through an unmanned aircraft according to an embodiment of the present disclosure.
  • Applying the pesticide via the at least one spray head includes spraying the pesticide in the form of a liquid column via the at least one spray head toward at least one spray direction.
  • applying the pesticide via at least one spray head further includes dispersing and atomizing the liquid column into mist droplets.
  • the down-pressure wind field formed by the rotor of the unmanned aircraft can be used to disperse the liquid column into large particle droplets, the particle size of which is greater than 100 microns, preferably greater than 200 microns, preferably greater than 400 microns, It is preferably greater than 600 microns, preferably greater than 800 microns, preferably greater than 1000 microns.
  • a device for generating a down-pressure wind field can be installed on the unmanned aircraft to break up the liquid column into large particles. The effect of fog drops.
  • the unmanned aircraft adopts a multi-rotor unmanned aircraft for plant protection operations, which is also called a multi-rotor plant protection unmanned aircraft, and the nozzle adopts a drip sprayer for liquid fertilizer.
  • a multi-rotor unmanned aircraft for plant protection operations which is also called a multi-rotor plant protection unmanned aircraft
  • the nozzle adopts a drip sprayer for liquid fertilizer.
  • the following description will take the DJI plant protection unmanned aircraft MG-1P series as an example. This disclosure is not limited to this.
  • Other unmanned aircraft equipped with hydraulic spray nozzles can also be used, such as Anyang Quanfeng Electric Multi-rotor Plant Protection. People airplane waiting.
  • the nozzles used in the embodiments of the present disclosure can spray pesticides in the form of liquid columns instead of small-particle droplets.
  • the columns are broken up into large-size droplets. These liquid columns or large-size droplets can effectively avoid the problem of drift and achieve the effect of directional spraying.
  • Fig. 2A shows a schematic diagram of the nozzle of the embodiment of the present disclosure spraying a liquid column in situ
  • Fig. 2B shows a schematic diagram of the nozzle of the embodiment of the present disclosure spraying a liquid column during the flight of an unmanned aircraft.
  • At least one spray nozzle sprays pesticides in the form of a liquid column toward at least one spraying direction.
  • the rotor of the drone rotates to form a downward pressure wind field.
  • the liquid column ejected from the nozzle is broken up into large particle-like droplets.
  • Figure 3 shows a comparison of the drift distances of different droplet sizes
  • Figure 4 shows a comparison of the droplet sizes of different nozzles.
  • the droplet drift distance is inversely related to the particle size, that is, the smaller the droplet size, the smaller the droplet size.
  • the drift distance can be as far as 330 meters; when the droplet size is 50 microns, the drift distance is the farthest 50 meters; when the droplet size is 100 microns, the drift distance is When the farthest distance is 15 meters and the droplet size is 150 microns, the farthest drift distance is 7 meters.
  • the droplet size is 400 microns, the drift distance is only 2.5 meters.
  • the droplet size is selected to be at least greater than 100 micrometers.
  • the droplet particle size can be greater than 200 microns, greater than 400 microns, greater than 600 microns, greater than 800 microns, or greater than 1000 microns.
  • the droplet particle size needs to meet the following conditions: DV10 and DV50 are both greater than 100 microns, preferably greater than 200 microns, preferably greater than 400 microns, preferably greater than 600 microns, preferably greater than 800 microns, preferably greater than 1000 under a working pressure of 3 bar Micrometers.
  • the comparison chart in Figure 4 shows the droplet size of different types of nozzles at a pressure of 3 bar.
  • both DV10 and DV50 are expressions of granularity standards.
  • the volume of all droplets is accumulated in order from small to large.
  • the corresponding droplet diameter is the volume median diameter, referred to as the volume median diameter, or DV50.
  • the volume of all the droplets is accumulated in order from small to large.
  • the corresponding droplet diameter is DV10.
  • the DV10 of the standard nozzle of the unmanned aircraft is less than 100 microns under the experimental conditions, which means that there is a certain proportion of small droplets in the droplets emitted by the nozzle, which will cause a greater risk of drift.
  • their DV10 and DV50 cannot be larger than 400 microns at the same time. Therefore, these nozzles may also have a certain risk of drift.
  • the present invention adopts the SJ7-015-VP nozzle of Tejet Company, whose DV50 under the experimental conditions is greater than 1500 microns, which can significantly avoid droplet drift.
  • the present disclosure is not limited to this, and other nozzles of the SJ7 series and SJ3 series of Tejet can also be used.
  • nozzles that meet the selection requirements of the present invention include nozzles with a working pressure in the range of 1.5 bar to 4 bar and a single nozzle with a flow rate of 0.39 to 7 liters/minute or 0.44 to 9.31 liters/minute.
  • the SJ7-015-VP nozzle of Tejet Company includes the following features: producing seven liquid column streams with the same flow rate and flow; excellent spray distribution quality; all of acetal structure, with excellent chemical resistance; work
  • the pressure is in the range of 1.5bar to 4bar; under the usual spraying pressure of unmanned aircraft (2-3bar), the flow rate of a single nozzle is 0.46-0.57 liters/min.
  • the diameter of the jet liquid column of the nozzle that meets the selection requirements of the present invention under the working pressure in the range of 1.5 bar to 4 bar is greater than 1000 microns, for example, 1000 to 1500 microns, 1500 to 2500 microns, 2500 to 4000 microns or 4000 microns to 8000 microns.
  • the spray liquid column of the nozzle that meets the selection requirements of the present invention under the working pressure in the range of 1.5 bar to 4 bar is dispersed by the down-pressure wind field of the unmanned aircraft, and the particle size of the mist droplets formed is greater than 1000 microns, For example, it is 1000 to 1500 microns, 1500 to 2500 microns, 2500 to 4000 microns, or 4000 microns to 8000 microns.
  • the spray liquid column of the nozzle that meets the selection requirements of the present invention under the working pressure in the range of 1.5 bar to 4 bar is dispersed by the down-pressure wind field of the unmanned aircraft, and the particle size of the mist droplets formed meets the following conditions: DV10 is greater than 1000 microns and DV50 is greater than 1000 microns, for example DV10 is 1000 to 1500 microns, 1500 to 2500 microns, 2500 to 4000 microns or 4000 microns to 8000 microns, DV50 is 1000 to 1500 microns, 1500 to 2500 microns, 2500 to 4000 microns Or 4000 microns to 8000 microns.
  • FIG. 5 shows a perspective view of an unmanned aircraft according to an embodiment of the present disclosure
  • FIG. 6 shows a schematic diagram of the operation of an unmanned aircraft according to an embodiment of the present disclosure
  • FIG. 7 shows a nozzle according to an embodiment of the present disclosure. 8 shows the spraying schematic diagram of the spray head shown in FIG. 7.
  • the unmanned aircraft for applying pesticides to crop plants in paddy fields includes: a body 1, a plurality of push-up units 2, a box body 3, at least one spray head 4, and a transport Components and control unit (not shown).
  • a plurality of lift units 2 are arranged on the body 1 and are configured to form a downward pressure wind field to generate lift and thrust for driving the unmanned aircraft.
  • the box body 3 is fixedly arranged on the body 1, and the box body 3 is used for containing pesticides.
  • the box body 3 may be provided at the bottom of the center of the body 1.
  • At least one spray head 4 is arranged on the body to spray pesticides.
  • at least one spray head 4 is provided at the bottom of at least one of the plurality of push-up units 2.
  • the conveying component is used to convey the pesticide from the tank 3 toward at least one spray head 4.
  • the control unit is configured to manipulate the unmanned aircraft to fly over the paddy field in a predetermined route, and when the unmanned aircraft flies over the paddy field, control the conveying component to apply pesticides to the paddy field via at least one spray head 4.
  • At least one spray head 4 sprays pesticides in the form of a liquid column toward at least one spray direction, and preferably an underground pressure wind field disperses and atomizes the liquid column into large mist droplets.
  • the particle size of the mist droplets is greater than 100 microns, preferably greater than 200 microns, preferably greater than 400 microns, preferably greater than 600 microns, preferably greater than 800 microns, preferably greater than 1000 microns.
  • the spray head 4 may include an inlet 41 and a plurality of discharge holes 42, and the box body 3, the conveying part and the spray head 4 are in fluid communication.
  • the inlet 41 conveys and ejects in the form of a liquid column from a plurality of discharge holes 42 (for example, 7 discharge holes), as shown in FIG. 8.
  • the conveying component can be a conveying component commonly used in the art, for example, a pump is used to convey fluid through the hollow wing arm of an unmanned aircraft, and the present invention is not limited thereto.
  • the number of nozzles 4 is four, which are arranged at the bottom of the four lift units 2 of the unmanned aircraft. As shown in FIG. 6, the direction of the discharge hole 42 of the shower head 4 is substantially parallel to the flying direction. Those skilled in the art can also choose more or fewer nozzles, other suitable nozzle positions, and nozzle orientations according to actual needs.
  • each push-up unit 2 includes a rotor and a drive seat, and the drive seat is preferably provided with a drive motor that outputs power to the rotor.
  • the control unit controls the unmanned aircraft to fly on a predetermined route.
  • the route can be recorded in the memory of the control unit; however, it is also conceivable that the drone is controlled remotely, that is, it is connected to a fixed control unit that monitors the corresponding position of the drone and indicates that the drone should move Direction.
  • the control unit can also record the position of the unmanned aircraft above the paddy field, and according to the route of the unmanned aircraft, when the unmanned aircraft flies over the paddy field, control the conveying component to deliver the corresponding amount of pesticides toward the spray head.
  • the pesticide leaves the drone via the spray nozzle and is applied to the paddy field.
  • pesticides in the embodiments of the present disclosure are pesticides suitable for water layer application.
  • pesticides are herbicides, fungicides, insecticides and/or growth regulators.
  • herbicides suitable for water layer application in paddy fields can be used, and their effective active substances include fluoxsulam.
  • the effective active substances of paddy field herbicides suitable for the unmanned aircraft application method of the embodiments of the present disclosure may also include penoxsulam, mesotrione, pyrazosulfuron, bicyclosulfuron, Fluroxypyr, pretilachlor, butachlor, bensulfuron-methyl, pyrazosulfuron-methyl, oxadiazone, oxadiazone, oxyfluorfen, sichlorpyridin, promethacin, and difentrazone Nitrile, oxazimone.
  • the current commonly used application method of fluoxsulam is "aqueous layer application method".
  • the liquid medicine formed into large-particle droplets can effectively avoid drift, and the autonomous flight of the unmanned aircraft can also ensure that the uniformity of spraying is better than that of manual application, further reducing the damage Risks and guaranteed efficacy.
  • unmanned aircraft such as the DJI plant protection unmanned aircraft MG-1P series
  • the nozzle installed on the bottom of the lift unit.
  • the direction of the discharge hole of the nozzle is approximately parallel to the flying direction, that is, the direction of the discharge hole is away from the drone body and/or the box containing the pesticide.
  • the second dilution method is used to prepare the pesticide liquid and add it to the box of the unmanned aircraft. Before the flight operation, the air in the conveying parts and nozzles can be emptied.
  • the unmanned aircraft is activated, and the unmanned aircraft is controlled by the control unit to fly autonomously according to predetermined parameters and routes.
  • the flying height is 2 meters
  • the line change distance is 3-4 meters
  • the flying speed is 3-5 meters per second
  • the water consumption per mu is 1-1.5 liters
  • the suitable higher flow rate is selected
  • all the nozzles are turned on during the flight.
  • the wrap distance refers to the distance between rows or columns of the scheduled flight route.
  • the wrap distance can be preset according to actual needs or obtained through experimental methods. Common wrap distance experiments include: coated paper method, snow test method, etc.
  • the line wrapping distance can also be adjusted according to the ambient wind speed, that is, the higher the wind speed, the smaller the line wrapping distance.
  • the experimental group used Bayer Kenshou (the active ingredient is fluoxsulam), the dose was 12 ml/mu, and the SJ7-015-VP nozzle of Tejet Company, and the control group was treated with Bayer Kenshou (the active ingredient is fluoxsulam). ), dosage 12ml/mu, DJI XR11001 nozzle and Penoxsulam (a broad-spectrum herbicide), dosage 12ml/mu, DJI XR11001 nozzle.
  • the pesticide application method of the unmanned aerial vehicle of the embodiment of the present disclosure is used to apply the pesticide to the rice fields where soybean and sesame crop plants are planted in the surrounding area, respectively.
  • Figure 9 is a graph showing the results of a control experiment of pesticide application on a paddy field in which soybeans are grown in the surrounding area
  • Figure 10 is a graph showing the results of a control experiment of pesticide application on a paddy field in which sesame is grown in the surrounding area.
  • fluoxsulam 200SC can effectively remove weeds, and the nozzles and application methods selected in the embodiments of the present disclosure can effectively prevent the drift of small-size droplets from being sensitive to the surrounding paddy fields. Phytotoxicity of crop plants.
  • Treatment 1. Blank control; 2. Fluoxsulam 200SC, dose 12ml/mu—manual sanding (medicine soil method); 3. Fluoxsulam 200SC, dose 12ml/mu—using the present disclosure Unmanned aircraft pesticide application method.
  • Flight parameters flying height of 2 meters, flying speed of 4.8 meters per second, spray pattern of 3 meters, water consumption per mu is 1 liter.
  • Unmanned aircraft model DJI MG-1P.
  • Nozzle model Tejet SJ7-015-VP.
  • Figure 11 shows a photograph of the results 45 days after the field trial administration. It can be seen from FIG. 11 that, compared with manual application, the use of the unmanned aerial vehicle application method of the embodiments of the present disclosure can significantly improve the effect of pesticides.
  • the unmanned aircraft with drip nozzles and the method of applying pesticides by the unmanned aircraft in the embodiments of the present disclosure can generate large-diameter droplets and effectively prevent the droplets from drifting.
  • the use of unmanned aircraft spraying can ensure the uniformity of spraying, ensure the efficacy of the pesticide, and reduce the risk of pesticide damage to the surrounding sensitive crop plants.
  • Laboratory tests are used to verify that the unmanned aerial vehicle pesticide application methods of some embodiments of the present disclosure can prevent or reduce the drift of the droplets of the drug liquid.
  • the droplet size of different spray nozzles and chemical liquid systems was measured by laser particle size analyzer (Bettersize2000S).
  • the spray pressure was adjusted to 3bar by adjusting the water inlet valve and the air release valve of the spray system, and different nozzles were used to spray the liquid to obtain the test results shown in Table 3:
  • DV50 is about 120 microns under the working pressure of 3bar; using Tejet SJ7-015-VP nozzle and special Jet SJ3-015-VP spray nozzle sprays the droplet size of the spray liquid to meet the following requirements: DV50 is greater than 500 microns at a working pressure of 3bar. It should be pointed out that in the above test, the range of the laser particle size analyzer is 500 microns, therefore, the test result with a DV50 greater than 500 microns is obtained.
  • FIG. 12 shows a schematic diagram of the wind tunnel system 5 used in the second laboratory test.
  • the wind tunnel system 5 includes a fan 51, a first wind baffle 52, a grid member 53, a second wind baffle 54, a rectifying member 55, a spray liquid container 57, a mist collecting device 58 and mist Collection container 59.
  • the test is carried out in the wind tunnel system 5 as shown in FIG. 12, and the nozzle 56 is arranged between the rectifying member 55 and the droplet collecting device 58, so that the fan 51, the first wind baffle 52, the grid member 53, and the second The wind baffle 54 and the rectifying member 55 are arranged in the upwind direction of the nozzle, and the droplet collecting device 58 is arranged in the downwind direction of the nozzle.
  • the drone pesticide application method can spray droplets with a larger particle size, and therefore can prevent or reduce the drift of the droplets.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Insects & Arthropods (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Catching Or Destruction (AREA)

Abstract

一种具有滴施喷头的无人飞机和通过无人飞机将农药施用到水田的作物植物的方法,该方法包括:提供无人飞机,无人飞机设置有至少一个喷头(4);操纵或设定该无人飞机沿着预定路线飞过水田上方;飞过水田上方期间经由至少一个喷头(4)施用农药;其中,经由至少一个喷头(4)施用农药包括经由至少一个喷头(4)以液柱形式朝向至少一个喷射方向喷射农药。

Description

具有滴施喷头的无人飞机和采用无人飞机施用农药的方法
本申请要求于2020年06月11日递交的中国专利申请第202010528611.9号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及一种具有滴施喷头的无人飞机,本公开还涉及一种采用这种无人飞机施用农药的方法。
背景技术
精准农业对农药作业、特别是农林作业的喷洒精度提出了更高的要求。近年来,用于农林植物保护作业的无人飞机(又称为“植保无人飞机”)凭借其高效率、省人工、作业效果优异等优点被广泛应用。
植保无人飞机以规定路径飞行并通过喷头进行喷洒作业,虽然可以做到精准喷洒和定量喷洒,但是在实际作业过程中由于喷头型号、雾滴大小、地理位置、地理环境、风速、温度等因素的影响,喷洒物(农药)产生飘移或不均匀分布,从而为喷洒作业带来负面影响,导致重喷、漏喷等问题,甚至喷洒物会飘散到不期望区域,引起环境污染风险或对农作物的生长产生不利影响。
发明内容
针对上文提到的问题和需求,本发明提出了一种具有滴施喷头的无人飞机和采用这种无人飞机施用农药的方法,其由于采取了如下技术特征而解决了上述问题,并带来其他技术效果。
本发明的至少一实施例提供一种通过无人飞机将农药施用到水田的作物植物的方法,所述方法包括:提供无人飞机,所述无人飞机设置有至少一个喷头;操纵或设定所述无人飞机沿着预定路线飞过所述水田上方;飞过所述水田上方期间经由至少一个喷头施用农药;其中,所述经由至少一个喷头施 用农药包括经由所述至少一个喷头以液柱形式朝向至少一个喷射方向喷射农药。
在一些示例中,所述经由至少一个喷头施用农药还包括将所述液柱打散雾化为雾滴。
在一些示例中,所述将所述液柱打散雾化为雾滴包括利用所述无人机的旋翼产生的下压风场将所述液柱打散雾化为雾滴。
在一些示例中,所述雾滴的粒径大于100微米、优选大于200微米、优选大于400微米、优选大于600微米、优选大于800微米、优选大于1000微米。
在一些示例中,所述雾滴的粒径满足以下条件:在3bar的工作压力下DV10和DV50均大于100微米、优选大于200微米、优选大于400微米、优选大于600微米、优选大于800微米、优选大于1000微米。
在一些示例中,所述方法还包括:校准所述喷头,所述校准所述喷头包括对喷头的朝向、喷头的工作流量或喷头的排出孔的大小中的至少一个进行校准。
在一些示例中,所述预定路线的参数通过用户输入或实验方法得到。
在一些示例中,所述农药为适于水层施药的农药。
在一些示例中,所述农药包括如下组中的任一种或其组合:氟酮磺草胺、五氟磺草胺,硝磺草酮,嗪吡嘧磺隆,双环磺草酮,氯氟吡啶酯,丙草胺、丁草胺、苄嘧磺隆、吡嘧磺隆、噁草酮、丙炔噁草酮、乙氧氟草醚、西草净、扑草净、双唑草腈或噁嗪草酮。
本发明的至少一实施例提供一种用于将农药施用到水田的作物植物的无人飞机,所述无人飞机包括:本体;箱体,固定设置于所述本体,用于容纳农药;至少一个喷头,设置在所述本体上,以喷洒农药;输送部件,用于将农药从所述箱体朝向所述至少一个喷头输送;以及控制单元,配置为操纵或设定所述无人飞机沿着预定路线飞过所述水田上方,并且在所述无人飞机飞过所述水田时,控制所述输送部件经由所述至少一个喷头将农药施用到所述水田;其中,所述控制单元被配置为经由所述至少一个喷头以液柱形式朝向至少一个喷射方向喷射农药。
在一些示例中,所述无人飞机包括推升单元,所述推升单元产生驱动所 述无人飞机的下压风场,所述下压风场将所述液柱打散雾化为雾滴。
在一些示例中,所述雾滴的粒径大于100微米、优选大于200微米、优选大于400微米、优选大于600微米、优选大于800微米、优选大于1000微米。
在一些示例中,所述雾滴的粒径满足以下条件:在3bar的工作压力下DV10和DV50均大于100微米、优选大于200微米、优选大于400微米、优选大于600微米、优选大于800微米、优选大于1000微米。
在一些示例中,所述喷头为滴施喷头。
在一些示例中,所述无人飞机为多旋翼植保无人飞机。
在一些示例中,所述农药为适于水层施药的农药。
在一些示例中,所述农药包括如下组中的任一种或其组合:氟酮磺草胺、五氟磺草胺,硝磺草酮,嗪吡嘧磺隆,双环磺草酮,氯氟吡啶酯,丙草胺、丁草胺、苄嘧磺隆、吡嘧磺隆、噁草酮、丙炔噁草酮、乙氧氟草醚、西草净、扑草净、双唑草腈或噁嗪草酮。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1示出了根据本公开实施例的通过无人飞机将农药施用到水田的作物植物的方法的流程图;
图2A示出了本公开实施例的喷头在原地喷射液柱的示意图;
图2B示出了本公开实施例的喷头在无人飞机飞行中喷射液柱的示意图;
图3示出了不同雾滴粒径的飘移距离对比;
图4示出了根据不同型号的喷头雾滴粒径对比;
图5示出了根据本公开实施例的无人飞机的立体图;
图6示出了根据本公开实施例的无人飞机的作业工作示意图;
图7示出了根据本公开实施例的喷头;
图8示出了图7所示的喷头的喷洒示意图;
图9是对周边种植有大豆的水稻田进行施用农药对照实验的结果图;
图10是对周边种植有芝麻的水稻田进行施用农药对照实验的结果图;
图11示出了根据本公开实施例的另一田间对照实验的结果图;
图12示出了在实验室试验二中使用的风洞系统的示意图。
具体实施方式
为了使得本公开的技术方案的目的、技术方案和优点更加清楚,下文中将结合本公开具体实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。附图中相同的附图标记代表相同的部件。需要说明的是,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不必然表示数量限制。“包括”或者“包含”等类似的词语意指出现该词前面的元件或物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开所提出的无人飞机优选用于农林作物植物保护作业,更具体地用于水田作物植物保护作业,但不限于其他用途。
术语“无人飞机”(Unmanned Aerial Vehicle,UAV)应理解为利用无线电遥控设备和自备的程序控制装置操纵的无人驾驶飞行器,无人飞机又可以被称为无人飞机、无人驾驶飞行器、自主飞行器等。
优选地,本公开所述的无人飞机为多旋翼无人飞机,但本发明并不局限于此,而是可以采用各种其他类型的无人飞机或遥控风筝等,只要该设备能够按照事先确定的路线飞行以进行根据本发明所提出的方法即可。
术语“水田”应理解为能正常灌溉和蓄水,用于种植水生作物植物(例 如水稻)的田地。水田可以是平整均匀分布在土地上,或者也可以不均匀地分布在土地上。单个品种的作物植物可以在一块水田中生长;然而,还可以想到,水田可以包括多个不同区域,分别生长不同品种的作物植物或单个品种的作物植物的各种变种。
术语“作物植物”应理解为意指由于人为干预以作为作物或观赏植物的针对性的方式生长的植物。
术语“农药”被理解为一种产品,其目的是保护植物或植物产品免受有害生物的侵害或防止其影响、破坏不希望的植物或植物部分、抑制不希望的植物生长或防止这种生长、和/或以养分(例如生长调节剂)以外的方式影响植物的生命过程。
农药的示例是除草剂、杀菌剂、杀虫剂和/或生长调节剂。农药通常包含活性物质或多种活性物质。“活性物质”是指对生物体具有特定作用并引起特定反应的物质。通常,农药包含用于稀释一种或多种活性物质的载体,例如水。此外,可以想到添加剂,诸如防腐剂、缓冲剂、着色剂等。农药可以是固体、液体或气体形式。在本公开的以下描述中,农药被认为以液体形式使用。
术语“杂草”被理解为意指在作物植物的地段中、草地上或花园中自发发生的伴生植被的植物,该植物在这些设定中不是故意生长的并且例如由可能的土壤种子或空气传播发育。该术语不限于严格意义上的草本植物,还包括青草、蕨类植物、苔藓或木本植物。
用于本公开目的的杂草是在生长时伴随所需作物植物的植物。由于它们与作物植物竞争资源,因此它们是不期望的,应该抑制杂草的生长。例如,可以想象在播种作物植物种子之前必须除去水田中的杂草。还可以想到,在播种后,杂草已经在水田中发育并且必须被除去。
术语“飘移”应理解为固体或液体在空中被播洒时在水平方向产生的位移。决定固体或液体的飘移大小的因素有很多,包括但不限于:物体颗粒大小、水平初速度、环境风速、播洒高度等。
目前主要的水田作物植物除草剂产品的作用方式多为触杀型,需要药液接触到杂草叶片,而无人飞机的载药容量较小,所以需要更多的小雾滴已实现在低水量下更好的药液覆盖,但液体雾滴的尺寸越小飘移的风险就越大, 也就很容易被误播洒到不期望区域,例如杂草周围的敏感作物植物区域,从而对这些作物植物产生药害,影响正常生长甚至导致作物植物死亡。
区别于触杀型施药,水层施药法将农药均匀施用到水稻田水层表面而非杂草叶片。具体可以分为人工甩施法和药土法:
甩施法:将药液配置为母液后,将母液对2-7升水稀释后再均匀甩施到水稻田水层表面;
药土法:先将母液与少量沙土混匀,再与3-7千克沙土拌匀后均匀撒施到水稻田水层表面。
但以上两种方法都需要人工操作实现,不仅人工费较高、作业效率慢,甚至有时会由于人工施药不匀还会导致药效不足或产生药害的风险。
目前的用于农林作物植物保护作业的无人飞机大多使用液力式扇形喷头或离心喷头,这类喷头喷出的雾滴都非常小,因此也都会存在飘移问题。
此外,无人飞机的作业高度通常在作物植物上方1.5至2.5米以上,因此受环境风速影响而产生飘移的风险远大于地面喷雾机械或人工喷雾。
综上所述,需要一种通过无人飞机将农药施用到水田的作物植物的方法,使其同时具有施药均匀并且防止飘移的优点。
下面结合附图具体说明根据本公开内容的用于将农药施用到水田的作物植物的无人飞机的优选实施方式。
与附图所展示的实施例相比,本公开保护范围内的可行实施方案可以具有更少的部件、具有附图未展示的其他部件、不同的部件、不同地布置的部件或不同连接的部件等。此外,在不脱离本公开的理念的情况下,附图中两个或更多个部件可以在单个部件中实现,或者附图中所示的单个部件可以实现为多个分开的部件。
图1示出了根据本公开实施例的通过无人飞机将农药施用到水田的作物植物的方法的流程图。
根据本公开实施例的通过无人飞机将农药施用到水田的作物植物的方法,包括以下步骤:
S101、提供无人飞机,无人飞机设置有至少一个喷头;
S102、操纵或设定无人飞机沿着预定路线飞过水田上方;
S103、飞过所述水田上方期间经由至少一个喷头施用农药;
经由至少一个喷头施用农药包括经由至少一个喷头以液柱形式朝向至少一个喷射方向喷射农药。优选地,经由至少一个喷头施用农药还包括将所述液柱打散雾化为雾滴。优选地,可以利用无人飞机的旋翼形成的下压风场将液柱打散为大颗粒雾滴,所述大颗粒雾滴的粒径大于100微米、优选大于200微米、优选大于400微米、优选大于600微米、优选大于800微米、优选大于1000微米。但是,本发明并不局限于此,在采用其他类型的无人飞机的情况下,可以在无人飞机上设置用于产生下压风场的装置,以将实现将液柱打散成大颗粒雾滴的效果。
优选地,无人飞机采用用于植保作业的多旋翼无人飞机,又称为多旋翼植保无人飞机,喷头采用用于液体肥料的滴施喷头。以下描述将以大疆植保无人飞机MG-1P系列为例,本公开并不以此为限,还可以采用其他配备液力式喷雾喷头的无人飞机,如安阳全丰电动多旋翼植保无人飞机等。
不同于传统的植保无人飞机喷头,本公开实施例采用的喷头能够以液柱形式而不是小粒径雾滴形式喷射农药,优选地通过无人飞机的下压风场将下降过程中的液柱打散为大粒径的雾滴,这些液柱或大粒径雾滴可以有效地避免飘移问题,达到定向施药的效果。
图2A示出了本公开实施例的喷头在原地喷射液柱的示意图;图2B示出了本公开实施例的喷头在无人飞机飞行中喷射液柱的示意图。
如图2A和2B所示,在原地喷射时,至少一个喷头以液柱形式朝向至少一个喷射方向喷射农药,而当无人飞机飞行时,无人飞机的旋翼旋转形成下压风场,将从喷头出射的液柱打散为大颗粒状的雾滴。
图3示出了不同雾滴粒径的飘移距离对比,图4示出了根据不同型号的喷头雾滴粒径对比。
从图3可以看出,在环境风速为1.4m/s、飞行高度为30厘米的室温条件下,雾滴飘移距离与粒径大小呈反相关关系,即,雾滴粒径越小,雾滴飘移距离越远。具体而言,雾滴粒径为20微米时,飘移距离最远可达330米;雾滴粒径为50微米时,飘移距离最远为50米;雾滴粒径为100微米时,飘移距离最远为15米,雾滴粒径为150微米时,飘移距离最远为7米。而当雾滴粒径为400微米时,飘移距离仅为2.5米。由此可知,当雾滴粒径小于100微米时,存在较高的飘移风险。因此本实施例选择雾滴粒径至少大于100微 米。优选地,雾滴粒径可以大于200微米、大于400微米、大于600微米、大于800微米或大于1000微米。可选地,雾滴粒径需要满足以下条件:在3bar的工作压力下DV10和DV50均大于100微米、优选大于200微米、优选大于400微米、优选大于600微米、优选大于800微米、优选大于1000微米。
喷头选型
为此,需要选择合适的喷头以实现雾滴粒径的要求。图4的对比图示出了不同型号的喷头在3bar压力下的雾滴粒径大小。需要说明的是,DV10和DV50均为粒度标准的表达方式。在一次喷雾中,将全部雾滴的体积从小到大顺序累加,当累加值等于全部雾滴体积的50%时,所对应的雾滴直径为体积中值直径,简称体积中径,即DV50。同理,在一次喷雾中,将全部雾滴的体积从小到大顺序累加,当累加值等于全部雾滴体积的10%时,所对应的雾滴直径为DV10。
可以看出,无人飞机标配的喷头在实验条件下的DV10小于100微米,意味着该喷头喷出的雾滴中存在一定比例的小雾滴,会引起较大的飘移风险。而市售的其他喷头,例如型号为TT11001、AIXR110015、TTI110015的喷头,它们的DV10、DV50也都无法同时大于400微米。因此这些喷头也可能存在一定的飘移风险。
优选地,本发明采用特杰特公司SJ7-015-VP喷头,其在实验条件下的DV50大于1500微米,能够显著地避免雾滴飘移。本公开并不以此为限,还可以采用特杰特公司的SJ7系列、SJ3系列的其他喷头。例如,符合本发明选型要求的喷头包括工作压力在1.5bar至4bar范围内、单只喷头流速为0.39至7升/分钟或0.44至9.31升/分钟的喷头。
例如,特杰特公司SJ7-015-VP喷头包括以下特点:产生七个流速和流量相同的液柱流;优秀的喷雾分布质量;全部为乙缩醛结构,具备优良的抗化学物性能;工作压力1.5bar至4bar范围内;在无人飞机常用喷洒压力下(2-3bar),单只喷头流速为0.46-0.57升/分钟。
可选地,符合本发明选型要求的喷头在1.5bar至4bar范围内的工作压力下的喷射液柱的直径大于1000微米,例如为1000至1500微米、1500至2500微米、2500至4000微米或4000微米至8000微米。
可选地,符合本发明选型要求的喷头在1.5bar至4bar范围内的工作压力下的喷射液柱被无人飞机的下压风场打散后形成的雾滴的粒径大于1000微米,例如为1000至1500微米、1500至2500微米、2500至4000微米或4000微米至8000微米。
可选地,符合本发明选型要求的喷头在1.5bar至4bar范围内的工作压力下的喷射液柱被无人飞机的下压风场打散后形成的雾滴的粒径满足以下条件:DV10大于1000微米且DV50大于1000微米,例如DV10为1000至1500微米、1500至2500微米、2500至4000微米或4000微米至8000微米,DV50为1000至1500微米、1500至2500微米、2500至4000微米或4000微米至8000微米。
无人飞机构造
图5示出了根据本公开实施例的无人飞机的立体图;图6示出了根据本公开实施例的无人飞机的作业工作示意图;图7示出了根据本公开实施例的喷头,图8示出了图7所示的喷头的喷洒示意图。
如图5至7所示,本公开实施例的用于将农药施用到水田的作物植物的无人飞机,包括:本体1、多个推升单元2、箱体3、至少一个喷头4、输送部件以及控制单元(未示出)。
多个推升单元2设置于本体1上,配置为形成下压风场以产生驱动无人飞机的升推力。
箱体3固定设置于本体1,箱体3用于容纳农药。例如,箱体3可以设置在本体1的中心的底部。
至少一个喷头4设置在本体上,以喷洒农药。可选地,至少一个喷头4设置在多个推升单元2中的至少一个的底部。
输送部件用于将农药从箱体3朝向至少一个喷头4输送。
控制单元配置为操纵无人飞机以预定路线飞过水田上方,并且在无人飞机飞过水田时,控制输送部件经由至少一个喷头4将农药施用到水田。至少一个喷头4以液柱形式朝向至少一个喷射方向喷射农药,并且优选地下压风场将液柱打散雾化为大雾滴,雾滴的粒径大于100微米、优选大于200微米、优选大于400微米、优选大于600微米、优选大于800微米、优选大于1000微米。
如图7所示,喷头4可以包括入口41和多个排出孔42,箱体3、输送部件以及喷头4形成流体连通,在需要喷洒农药时,农药通过输送部件从箱体3朝向喷头4的入口41输送,并从多个排出孔42(例如,7个排出孔)以液柱形式喷出,如图8所示。输送部件可以采用本领域常用的输送部件,例如采用泵经由无人飞机的中空的翼臂进行流体输送,本发明并不以此为限。
在本实施例中,喷头4的数量为四个,设置在无人飞机的四个推升单元2的底部。如图6所示,喷头4的排出孔42的朝向与飞行方向大致平行。本领域技术人员也可以根据实际需求选择更多或更少的喷头数量、其他合适的喷头位置、以及喷头朝向。
可选地,每个推升单元2包括旋翼和驱动座,驱动座上优选地设置有对旋翼输出动力的驱动电机。
控制单元操纵无人飞机以预定路线飞行。该路线可以记录在控制单元的存储器中;然而,也可以想到,无人飞机被远程控制,即它连接到固定的控制单元,该控制单元监视无人飞机的相应位置并指示无人飞机应该移动的方向。
控制单元还可以记录无人飞机在水田上方的位置,并根据无人飞机的路线,在所述无人飞机飞过水田上方时控制输送部件将对应量的农药朝向喷头输送。农药经由喷头离开无人飞机并施用到水田。
农药活性物质
本公开实施例的农药为适于水层施药的农药。农药的示例为除草剂、杀菌剂、杀虫剂和/或生长调节剂。具体地,可使用适用于水稻田水层施药的除草剂,其有效活性物质包括氟酮磺草胺。除此之外,适用于本公开实施例的无人飞机施用方法的水稻田除草剂有效活性物质还可以包括五氟磺草胺,硝磺草酮,嗪吡嘧磺隆,双环磺草酮,氯氟吡啶酯,丙草胺、丁草胺、苄嘧磺隆、吡嘧磺隆、噁草酮、丙炔噁草酮、乙氧氟草醚、西草净、扑草净、双唑草腈、噁嗪草酮。
氟酮磺草胺目前常用的施药方法为“水层施药法”。采用本公开实施例的无人飞机施药方法,形成为大颗粒雾滴的药液可以有效避免飘移,无人飞机自主飞行还可以确保喷洒的均匀性优于人工施药,进一步降低了药害风险、保证了药效。
农药施用作业
以下将描述农药施用作业的步骤和流程。本示例将以大疆植保无人飞机MG-1P系列为例,仅为示例性而非限制本公开的范围。
提供无人飞机,例如大疆植保无人飞机MG-1P系列,将喷头安装至推升单元的底部。喷头的排出孔朝向与飞行方向大致平行,也就是说,排出孔的朝向远离无人飞机本体和/或容纳农药的箱体。
校准喷头,对喷头的朝向、喷头的工作流量、排出孔的大小等参数进行校准。本领域的技术人员可以采用常用的校准方式校准喷头,本公开并不以此为限。
采用二次稀释法配置农药药液,并加入无人飞机箱体内。在飞行作业前可以先排空输送部件和喷头内的空气。
启动无人飞机,无人飞机按照预定参数和路线由控制单元控制自主飞行。例如,飞行高度2米、换行距离3-4米、飞行速度3-5米/秒、亩用水量1-1.5升、选择适合的较高流速、飞行过程中所有喷头全部开启。换行距离指的是预定飞行路线的行或列之间的距离,换行距离可以根据实际需求预设,或者通过实验方法得到,常见的换行距离实验有:铜版纸法、雪地测试法等。换行距离还可以根据环境风速进行调整,即,风速越大,换行距离越小。
田间试验
采用田间试验验证本公开的无人飞机农药施用方法(以下简称“本方法”)的可行性、安全性和除杂草效果。
田间试验一:
实验组采用拜耳垦收(有效成分为氟酮磺草胺)、剂量12毫升/亩,特杰特公司SJ7-015-VP喷头,对照组分别采用拜耳垦收(有效成分为氟酮磺草胺)、剂量12毫升/亩,大疆XR11001喷头以及五氟黄草胺(一种广谱除草剂)、剂量12毫升/亩,大疆XR11001喷头。
分别对周边种植有大豆和芝麻作物植物的水稻田采用本公开实施例的无人飞机施用农药的方法进行施用作业。图9是对周边种植有大豆的水稻田进行施用农药对照实验的结果图,图10是对周边种植有芝麻的水稻田进行施用农药对照实验的结果图。
从图9和图10可以看出,氟酮磺草胺200SC可以有效去除杂草,且采 用本公开实施例选用的喷头和施用方法可以有效避免小粒径雾滴的飘移对水稻田周边的敏感作物植物的药害。
田间试验二:
试验条件:
处理:1、空白对照;2、氟酮磺草胺200SC、剂量12毫升/亩—人工撒沙(药土法);3、氟酮磺草胺200SC、剂量12毫升/亩—采用本公开的无人飞机农药施用方法。
飞行参数:飞行高度2米,飞行速度4.8米/秒,喷幅3米,亩用水量1升。
无人飞机型号:大疆MG-1P。
喷头型号:特杰特SJ7-015-VP。
试验结果如下:
表1安全性
Figure PCTCN2021099123-appb-000001
表2除草效果
Figure PCTCN2021099123-appb-000002
图11示出了该田间试验用药后45天的结果照片。从图11可以看出,相比于人工施药,采用本公开实施例的无人飞机施药方法可以显著提高农药作用效果。
综上所述,本公开实施例的具有滴施喷头的无人飞机和采用无人飞机施用农药的方法可以产生大粒径的雾滴,有效防止雾滴飘移。此外,采用无人飞机喷洒相比于人工施药可以确保喷洒的均匀性,保证药效的同时降低对周边敏感作物植物的药害风险。
以上所述,仅为本公开的具体实施方式,但本公开实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开实施例揭露的技术范围内或者在本公开实施例揭露的思想下,可轻易想到变化、替换或组合,都应涵盖在本公开实施例的保护范围之内。
实验室试验
采用实验室试验验证本公开的一些实施例的无人飞机农药施用方法能够防止或减少药液雾滴的飘移。
实验室实验一:
通过激光粒径仪(Bettersize2000S)测定不同喷头及药液体系的雾滴粒径。在试验中,通过调整喷雾系统的进水阀和放气阀,将喷雾压力调整为3bar,使用不同的喷头喷射药液得到如表3所示的试验结果:
表3
Figure PCTCN2021099123-appb-000003
Figure PCTCN2021099123-appb-000004
由表3可以看出,使用特杰特XR 110015喷头喷射药液得到的雾滴的粒径满足:在3bar的工作压力下DV50约为120微米;使用特杰特SJ7-015-VP喷头和特杰特SJ3-015-VP喷头喷射药液得到的雾滴的粒径满足:在3bar的工作压力下DV50大于500微米。需要指出的是,在上述试验中,激光粒径仪的量程为500微米,因此,得到了DV50大于500微米的试验结果。
实验室实验二:
图12示出了在实验室试验二中使用的风洞系统5的示意图。如图12所示,风洞系统5包括风扇51、第一风挡板52、栅格件53、第二风挡板54、整流件55、喷射液容器57、雾滴收集器件58和雾滴收集容器59。
在如图12所示的风洞系统5中进行试验,将喷头56布置在整流件55和雾滴收集器件58之间,使得风扇51、第一风挡板52、栅格件53、第二风挡板54和整流件55布置在喷头的上风方向,雾滴收集器件58布置在喷头的下风方向。在试验中,使用不同喷头56喷射作为药液的模拟的水以测量不同类型的喷头56喷射的总药液量和雾滴收集器件58收集的药液量,得到相应喷头56喷射的雾滴的的飘移率=收集的药液量/喷射的总药液量。在液体收集器件58和喷头56之间的距离为1.4m、喷雾压力为3bar、试验时间为5min、水的温度为20℃、风速为1.5m/s或3m/s的情况下,重复实验5次,得到每种喷头56喷射的雾滴的平均飘移率如下表4:
表4
序号 风速(m/s) 喷头 飘移率(%)
1 3 特杰特XR 110015 32.9
2 1.5 特杰特XR 110015 18.2
3 3 特杰特SJ3-015-VP 0
4 1.5 特杰特SJ3-015-VP 0
5 3 特杰特SJ7-015-VP 0
6 1.5 特杰特SJ7-015-VP 0
在液体收集器件58和喷头56之间的距离为1.4m、喷雾压力为1.5bar、试验时间为5min、水的温度为20℃、风速为1.5m/s或3m/s情况下,重复实验5次,得到每种喷头喷射的雾滴的平均飘移率如下表5:
表5
序号 风速(m/s) 喷头 飘移率(%)
1 3 特杰特XR 110015 26.0
2 1.5 特杰特XR 110015 13.0
3 3 特杰特SJ3-015-VP 0
4 1.5 特杰特SJ3-015-VP 0
5 3 特杰特SJ7-015-VP 0
6 1.5 特杰特SJ7-015-VP 0
由表4和表5可以看出,相较于特杰特XR 110015喷头,特杰特SJ7-015-VP喷头和特杰特SJ3-015-VP喷头喷射的药液雾滴具有很小的飘移。
由上述表3和表4可以看出,当雾滴粒径满足在3bar的工作压力下DV50大于500微米,可以有效的防止或减小飘移。进一步的,可以看出,雾滴粒径约大,雾滴的飘移约小。
由上述实验室试验一和实验室试验二,根据本公开的一些实施例的无人飞机农药施用方法能够喷射具有较大粒径的雾滴,因此,能够防止或减小雾滴的飘移。

Claims (17)

  1. 一种通过无人飞机将农药施用到水田的作物植物的方法,包括:
    提供无人飞机,所述无人飞机设置有至少一个喷头;
    操纵或设定所述无人飞机沿着预定路线飞过所述水田上方;
    飞过所述水田上方期间经由至少一个喷头施用农药;
    其中,所述经由至少一个喷头施用农药包括经由所述至少一个喷头以液柱形式朝向至少一个喷射方向喷射农药。
  2. 根据权利要求1所述的方法,其中,所述经由至少一个喷头施用农药还包括将所述液柱打散雾化为雾滴。
  3. 根据权利要求2所述的方法,其中,所述将所述液柱打散雾化为雾滴包括利用所述无人机的旋翼产生的下压风场将所述液柱打散雾化为雾滴。
  4. 根据权利要求2或3所述的方法,其中,所述雾滴的粒径大于100微米、优选大于200微米、优选大于400微米、优选大于600微米、优选大于800微米、优选大于1000微米。
  5. 根据权利要求2至4中任一项所述的方法,其中,所述雾滴的粒径满足以下条件:在3bar的工作压力下DV10和DV50均大于100微米、优选大于200微米、优选大于400微米、优选大于600微米、优选大于800微米、优选大于1000微米。
  6. 根据权利要求1至5中任一项所述的方法,还包括:
    校准所述喷头,所述校准所述喷头包括对喷头的朝向、喷头的工作流量或喷头的排出孔的大小中的至少一个进行校准。
  7. 根据权利要求1至6中任一项所述的方法,其中,所述预定路线的参数通过用户输入或实验方法得到。
  8. 根据权利要求1至7中任一项所述的方法,其中,所述农药为适于水层施药的农药。
  9. 根据权利要求8所述的方法,其中,所述农药包括如下组中的任一种或其组合:氟酮磺草胺、五氟磺草胺,硝磺草酮,嗪吡嘧磺隆,双环磺草酮,氯氟吡啶酯,丙草胺、丁草胺、苄嘧磺隆、吡嘧磺隆、噁草酮、丙炔噁草酮、乙氧氟草醚、西草净、扑草净、双唑草腈或噁嗪草酮。
  10. 一种用于将农药施用到水田的作物植物的无人飞机,包括:
    本体;
    箱体,固定设置于所述本体,用于容纳农药;
    至少一个喷头,设置在所述本体上,以喷洒农药;
    输送部件,用于将农药从所述箱体朝向所述至少一个喷头输送;以及
    控制单元,配置为操纵或设定所述无人飞机沿着预定路线飞过所述水田上方,并且在所述无人飞机飞过所述水田时,控制所述输送部件经由所述至少一个喷头将农药施用到所述水田;
    其中,所述控制单元被配置为经由所述至少一个喷头以液柱形式朝向至少一个喷射方向喷射农药。
  11. 根据权利要求10所述的无人飞机,其中,所述无人飞机包括推升单元,所述推升单元产生驱动所述无人飞机的下压风场,所述下压风场将所述液柱打散雾化为雾滴。
  12. 根据权利要求11所述的无人飞机,其中,所述雾滴的粒径大于100微米、优选大于200微米、优选大于400微米、优选大于600微米、优选大于800微米、优选大于1000微米。
  13. 根据权利要求11至12中任一项所述的无人飞机,其中,所述雾滴的粒径满足以下条件:在3bar的工作压力下DV10和DV50均大于100微米、优选大于200微米、优选大于400微米、优选大于600微米、优选大于800微米、优选大于1000微米。
  14. 根据权利要求10至13中任一项所述的无人飞机,其中,所述喷头为滴施喷头。
  15. 根据权利要求10至14中任一项所述的无人飞机,其中,所述无人飞机为多旋翼植保无人飞机。
  16. 根据权利要求10至15中任一项所述的无人飞机,其中,所述农药为适于水层施药的农药。
  17. 根据权利要求16所述的无人飞机,其中,所述农药包括如下组中的任一种或其组合:氟酮磺草胺、五氟磺草胺,硝磺草酮,嗪吡嘧磺隆,双环磺草酮,氯氟吡啶酯,丙草胺、丁草胺、苄嘧磺隆、吡嘧磺隆、噁草酮、丙炔噁草酮、乙氧氟草醚、西草净、扑草净、双唑草腈或噁嗪草酮。
PCT/CN2021/099123 2020-06-11 2021-06-09 具有滴施喷头的无人飞机和采用无人飞机施用农药的方法 WO2021249429A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180040090.5A CN115697844A (zh) 2020-06-11 2021-06-09 具有滴施喷头的无人飞机和采用无人飞机施用农药的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010528611.9 2020-06-11
CN202010528611 2020-06-11

Publications (1)

Publication Number Publication Date
WO2021249429A1 true WO2021249429A1 (zh) 2021-12-16

Family

ID=78845350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099123 WO2021249429A1 (zh) 2020-06-11 2021-06-09 具有滴施喷头的无人飞机和采用无人飞机施用农药的方法

Country Status (2)

Country Link
CN (1) CN115697844A (zh)
WO (1) WO2021249429A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114431140A (zh) * 2022-03-09 2022-05-06 张家口市农业科学院(河北省高寒作物研究所) 一种杂交谷子无人机辅助授粉技术
CN117602073A (zh) * 2023-11-28 2024-02-27 黑龙江惠达科技股份有限公司 一种确定离心喷头间距的无人机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205327423U (zh) * 2016-01-29 2016-06-22 北京博鹰通航科技有限公司 一种具有喷洒装置的多旋翼植保无人机
TWI598269B (zh) * 2016-11-01 2017-09-11 國立彰化師範大學 無人飛行噴灑系統
KR20170126274A (ko) * 2016-05-09 2017-11-17 김성진 농약 살포용 드론
CN207389563U (zh) * 2017-10-31 2018-05-22 上海拓攻机器人有限公司 一种多旋翼植保无人机
CN208165255U (zh) * 2018-03-01 2018-11-30 郑州菲软科技有限公司 一种多旋翼植保无人机
WO2019048907A1 (en) * 2017-09-08 2019-03-14 Pleatman Andrew ANGLE ADJUSTING SUBASSEMBLY AND AERIAL VEHICLE WITHOUT PILOT AND APPARATUS INCLUDING THE SAME
CN109573027A (zh) * 2018-11-29 2019-04-05 沈宗义 一种农业用农药喷洒无人机
CN209160011U (zh) * 2018-11-29 2019-07-26 青岛一粒粟农业科技有限公司 一种农药喷洒无人机
CN111202038A (zh) * 2018-11-21 2020-05-29 陕西安格锐信息科技有限公司 一种无人机农药喷洒装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205327423U (zh) * 2016-01-29 2016-06-22 北京博鹰通航科技有限公司 一种具有喷洒装置的多旋翼植保无人机
KR20170126274A (ko) * 2016-05-09 2017-11-17 김성진 농약 살포용 드론
TWI598269B (zh) * 2016-11-01 2017-09-11 國立彰化師範大學 無人飛行噴灑系統
WO2019048907A1 (en) * 2017-09-08 2019-03-14 Pleatman Andrew ANGLE ADJUSTING SUBASSEMBLY AND AERIAL VEHICLE WITHOUT PILOT AND APPARATUS INCLUDING THE SAME
CN207389563U (zh) * 2017-10-31 2018-05-22 上海拓攻机器人有限公司 一种多旋翼植保无人机
CN208165255U (zh) * 2018-03-01 2018-11-30 郑州菲软科技有限公司 一种多旋翼植保无人机
CN111202038A (zh) * 2018-11-21 2020-05-29 陕西安格锐信息科技有限公司 一种无人机农药喷洒装置
CN109573027A (zh) * 2018-11-29 2019-04-05 沈宗义 一种农业用农药喷洒无人机
CN209160011U (zh) * 2018-11-29 2019-07-26 青岛一粒粟农业科技有限公司 一种农药喷洒无人机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114431140A (zh) * 2022-03-09 2022-05-06 张家口市农业科学院(河北省高寒作物研究所) 一种杂交谷子无人机辅助授粉技术
CN117602073A (zh) * 2023-11-28 2024-02-27 黑龙江惠达科技股份有限公司 一种确定离心喷头间距的无人机

Also Published As

Publication number Publication date
CN115697844A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
AU2021290406B2 (en) Automatic target recognition and dispensing system
US6375089B1 (en) Multiple sprayer assembly and method for use
US10377491B1 (en) Apparatus and method for delivering a dry material with an unmanned aerial vehicle
WO2021249429A1 (zh) 具有滴施喷头的无人飞机和采用无人飞机施用农药的方法
CN111417305A (zh) 无人机
US3506195A (en) Low volume spray method
Matthews Application of pesticides to crops
Matthews Cda–Controlled droplet application
CN108128462A (zh) 一种多药箱农用喷药无人机
Parmar et al. Bio-efficacy of Unmanned Aerial Vehicle based spraying to manage pests
Matthews Improved systems of pesticide application
Ozkan Herbicide formulations, adjuvants, and spray drift management
Deveau Six elements of effective spraying in orchards and vineyards
Parma et al. On-Farm Assessment of unmanned aerial vehicle (UAV) based Spraying Technology in Green Gram
Ozkan Best practices for effective spraying in orchards and vineyards
Matthews New developments in pesticide-application technology
KR20230086227A (ko) 미니 화단에 양액 살포가 용이한 방제용 미니 드론
Raetano et al. Application technologies for Asian soybean rust management
Bound Spray technology in perennial tree crops
Matthews Application techniques for agrochemicals
Ozkan et al. Recent Trends in Agrochemical Application in the USA
Vlăduțoiu et al. Modern trends in the selection of smart equipment, intended for the application of phytosanitary treatments.
Gamliel et al. Improved sprayer performance in trailed pepper crops in the greenhouse.
Kehayov et al. DETERMINATION THE DEGREE OF COVERAGE WHEN TREATING PEPPER WITH DIFFERENT TYPES OF NOZZLES
Yan et al. Application of Unmanned Aerial Vehicles to Control Crop Insects and Diseases in China

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21821077

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21821077

Country of ref document: EP

Kind code of ref document: A1