[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021132881A1 - Led 표시장치 및 이의 제조방법 - Google Patents

Led 표시장치 및 이의 제조방법 Download PDF

Info

Publication number
WO2021132881A1
WO2021132881A1 PCT/KR2020/015844 KR2020015844W WO2021132881A1 WO 2021132881 A1 WO2021132881 A1 WO 2021132881A1 KR 2020015844 W KR2020015844 W KR 2020015844W WO 2021132881 A1 WO2021132881 A1 WO 2021132881A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
substrate
layer
common electrode
emitting device
Prior art date
Application number
PCT/KR2020/015844
Other languages
English (en)
French (fr)
Inventor
최재용
심재민
한명수
Original Assignee
엘지디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사 filed Critical 엘지디스플레이 주식회사
Priority to CN202080090124.7A priority Critical patent/CN114902408A/zh
Priority to US17/789,102 priority patent/US20230037052A1/en
Publication of WO2021132881A1 publication Critical patent/WO2021132881A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to an LED display device and a manufacturing method thereof, and more particularly, in a display device using an LED light emitting device as a pixel and a manufacturing method thereof, wherein the LED light emitting device is grown on a semiconductor substrate and then transferred to the display substrate
  • An object of the present invention is to provide an LED display device capable of minimizing a series of processes and a manufacturing method thereof.
  • a display device is widely used as a display screen of a notebook computer, a tablet computer, a smart phone, a portable display device, and a portable information device, in addition to a display device of a television or a monitor.
  • the display device may be divided into a reflective display device and a light emitting display device.
  • the reflective display device is a display device in which natural light or light emitted from external lighting of the display device is reflected by the display device to display information.
  • a display device is a method in which a light emitting element or a light source is embedded in a display device, and information is displayed using light generated from the built-in light emitting element or light source.
  • the built-in light emitting device uses a light emitting device capable of emitting various wavelengths of light, or a color filter capable of changing the wavelength of the emitted light together with a light emitting device that emits white or blue light.
  • a plurality of light emitting devices are disposed on a substrate of the display device to realize an image as a display device, and a driving device that supplies a driving signal or a driving current to control each light emitting device to emit light individually is used as a light emitting device. is arranged on the substrate, and the plurality of light emitting devices arranged on the substrate are interpreted according to the arrangement of the information to be displayed and displayed on the substrate.
  • each pixel uses a thin film transistor as a switching element as a driving element, and is connected to the thin film transistor and driven, so that each pixel is driven. Displays the image by the operation of
  • Representative display devices using thin film transistors include a liquid crystal display device and an organic light emitting display device.
  • a backlight unit disposed to emit light at the lower portion (rear side) of the liquid crystal display is required.
  • the thickness of the liquid crystal display increases, there is a limitation in implementing the display device in various designs such as flexible or circular designs, and luminance and response speed may decrease.
  • a display device having a self-luminous element can be implemented thinner than a display device having a light source, and has the advantage of being able to implement a flexible and foldable display device.
  • a display device having a self-light emitting device may include an organic light emitting display device including an organic material as a light emitting layer and a micro LED display device using a micro LED device as a light emitting device. Since the device does not require a separate light source, it can be used as a thinner or various types of display devices.
  • the micro light emitting diode of such a fine size is a semiconductor light emitting device that emits light when a current is passed through the semiconductor, and is widely used in lighting, TV, and various display devices.
  • a micro light emitting diode is composed of an n-type semiconductor layer, a p-type semiconductor layer, and an active layer therebetween. When a current is passed, electrons are present in the n-type semiconductor layer and holes in the p-type semiconductor layer, which combine in the active layer to emit light.
  • a micro light emitting diode is used as a light emitting device of a unit pixel.
  • a micro light emitting diode is crystallized on a semiconductor wafer substrate such as sapphire or silicon (Si), and a plurality of crystallized LED chips are moved to a substrate having a driving element, but a position corresponding to each pixel
  • a sophisticated transfer process is required to place the micro light emitting diode on the
  • the micro light emitting diode can be formed using an inorganic material, but it needs to be formed by crystallization.
  • an inorganic material such as GaN
  • the inorganic material must be crystallized on a substrate that can induce crystallization.
  • the substrate capable of efficiently inducing the crystallization of the inorganic material is a semiconductor substrate, and as described above, the inorganic material must be crystallized on the semiconductor substrate.
  • the process of crystallizing the micro light emitting diode is also referred to as epitaxy, epitaxial growth, or epitaxial process.
  • the epi process refers to growth taking a specific orientation relationship on the surface of a certain crystal.
  • GaN-based compound semiconductors In order to form the device structure of a micro light emitting diode, GaN-based compound semiconductors must be stacked on a substrate in the form of a pn junction diode. It grows by inheriting the crystallinity of the underlying layer.
  • the sapphire substrate described above is mainly used as the currently used substrate, and research activities on GaN-based substrates have been actively conducted in recent years.
  • a method of using a transfer substrate using a polymer material such as PDMS, a transfer method using electromagnetic or static electricity, or physically picking up one element at a time Various transcription methods such as transfer methods can be used, and research activities on various transcription methods are being conducted.
  • Such a transfer process is related to the productivity of a process for implementing a display device, and for mass production, it can be said that the method of transferring the micro light emitting diodes one by one is inefficient.
  • a plurality of micro light emitting diodes are separated from the semiconductor substrate by using a transfer substrate using a polymer material to be correctly positioned on the substrate constituting the display device, particularly the driving element disposed in the thin film transistor and the pad electrode connected to the power electrode.
  • a sophisticated transfer process or method has become necessary.
  • the micro light emitting diode may be moved or transferred depending on conditions such as vibration or inferiority, and defects such as the micro light emitting diode being overturned and transferred may occur. There were many difficulties in finding and recovering.
  • a micro light emitting diode is formed on a semiconductor substrate and an electrode is formed on a semiconductor layer to complete the micro light emitting diode. Thereafter, the semiconductor substrate and the PDMS substrate (hereinafter referred to as a transfer substrate) are brought into contact to move the micro light emitting diode to the transfer substrate.
  • the transfer substrate the micro light emitting diode formed on the semiconductor substrate must be transferred from the semiconductor substrate to the transfer substrate in consideration of the distance equal to the pixel distance of the pixel.
  • a protrusion shape for receiving a diode is protruded and arranged.
  • the micro light emitting diode is removed from the semiconductor substrate by irradiating the laser with the micro light emitting diode through the back surface of the semiconductor substrate. At this time, in the process of irradiating the laser, the micro light emitting diode is separated from the semiconductor substrate when the GaN material of the semiconductor substrate becomes the laser. Due to the concentration of energy due to high energy, a sudden physical expansion may occur, which may cause an impact. (This is called the primary warrior.)
  • the micro light emitting diode transferred to the transfer substrate is transferred onto the substrate constituting the display device.
  • a protective layer for insulating/protecting the thin film transistor is disposed on the substrate with the thin film transistor, and then an adhesive layer is disposed on the protective layer. do.
  • the micro light emitting diode transferred to the transfer substrate is transferred to the substrate side of the display device by the adhesive layer on the above-described protective layer.
  • the adhesive force between the transfer substrate and the micro light emitting diode is made smaller than the adhesion between the substrate constituting the display device and the micro light emitting diode, so that the micro light emitting diode on the transfer substrate is smoothly transferred to the substrate of the display device. (This is called the secondary warrior)
  • the semiconductor substrate and the substrate constituting the display device are basically different in size, and the substrate constituting the display device is usually large. Due to the difference in area and size, if a plurality of the above-described primary and secondary transfers are repeatedly performed for each region of the substrate of the display device, the micro light emitting diodes corresponding to each pixel constituting the display device can be transferred. do.
  • the micro light emitting diodes formed on the semiconductor substrate may be red, blue, and green micro light emitting diodes, or white micro light emitting diodes, depending on the type.
  • the number of the above-described primary and secondary transfers may be further increased.
  • the micro light emitting diode is composed of a compound semiconductor such as GaN and can inject a high current due to the nature of the inorganic material, so it can realize high luminance, and has low environmental impact such as heat, moisture, and oxygen, so it has high reliability.
  • the micro light emitting diode since the micro light emitting diode has an internal quantum efficiency of 90%, which is higher than that of an organic light emitting diode display, it is possible to display a high-brightness image and realize a display device with low power consumption.
  • the encapsulation film or the encapsulation substrate is not required.
  • the non-display area of the display device which is a margin area that may be generated by the arrangement, can be minimized.
  • the micro light emitting diode is used as the light emitting device
  • the micro light emitting diode is used Since the display device is not required for an encapsulation film or an encapsulation substrate, the bezel area can be minimized, and it is advantageous to construct a modular type display device using a plurality of display devices.
  • a defect may occur in the process of growing the micro light emitting diode on a separate substrate and transferring it to a display device, and another defect may occur in the process of connecting the electrode to the micro light emitting diode.
  • the inventors of the present invention have invented an LED display device capable of reducing the defect rate and improving process reliability by simplifying the process of transferring a micro light emitting diode and a manufacturing method thereof.
  • An object to be solved according to an embodiment of the present specification is to provide an LED display device capable of minimizing a transfer process error by simplifying the step of transferring a micro light emitting diode and a manufacturing method thereof.
  • An object to be solved according to an embodiment of the present specification is to provide an LED display device capable of reducing an error in a method of connecting an electrode for supplying current to a micro light emitting diode, and a method for manufacturing the same.
  • a first substrate having a common electrode layer and a second substrate having a first pixel driving device and a second pixel driving device are bonded to each other to face each other.
  • a first light emitting device and a second light emitting device are disposed on the common electrode layer as at least two light emitting devices using an LED as a light emitting device.
  • the first light emitting device includes a first n-type semiconductor layer, a first active layer, and a first p-type semiconductor layer
  • the second light emitting device includes a second n-type semiconductor layer, a second active layer, and a second p-type semiconductor layer do.
  • the first p-type semiconductor layer and the first pixel driving element are electrically connected by a first connection electrode, and the second p-type semiconductor layer and the second pixel driving element are electrically connected by a second connection electrode. do. It may further include a third light emitting device and a third pixel driving device, and may be disposed similarly to the above-described configuration.
  • the common electrode layer and the first n-type semiconductor layer of the first light emitting device are separately formed of substantially the same material to have a direct connection relationship as an integral unit rather than a bonded structure, and the common electrode layer and the second n-type semiconductor layer are connected by a third connection electrically connected through electrodes.
  • the process of transferring the micro light emitting diode can be minimized and process stability can be improved.
  • the first substrate is a substrate such as sapphire on which a semiconductor can be grown.
  • a common electrode layer and a first n-type semiconductor layer are continuously grown on the first substrate, and then a first active layer and a first p-type semiconductor layer are grown.
  • a first light emitting device is formed while leaving a common electrode layer on the first substrate through an etching process.
  • a first pixel driving device and a second pixel driving device are disposed as at least two or more pixel driving devices on the second substrate.
  • a second light emitting device which is a separately grown micro light emitting diode including a second n-type semiconductor layer, a second active layer, and a second p-type semiconductor layer, is disposed adjacent to the first light emitting device on the common electrode layer. bonding the first substrate and the second substrate, the first p-type semiconductor layer, the first pixel driving device, and the second p-type semiconductor layer by disposing a first connection electrode and a second connection electrode and electrically connecting each of the second pixel driving elements to each other to configure the LED display device.
  • the manufacturing process is simplified by connecting the first light emitting device grown on the first substrate and the second light emitting device transferred on the common electrode layer to the pixel driving device, thereby converting the micro light emitting diode into a light emitting device. It is possible to provide a manufacturing method with improved process stability of the used LED display device.
  • the common electrode layer made of substantially the same material as the semiconductor layer of the micro light emitting diode, the number of connecting electrodes that additionally connect the micro light emitting diode and the common electrode layer can be reduced, thereby simplifying the process.
  • FIG. 1 is a view showing a schematic configuration of an LED display device 100 according to an embodiment of the present specification.
  • FIG. 2 is a schematic diagram for explaining a circuit structure of pixels arranged in the LED display device 100 according to an embodiment of the present specification.
  • FIG 3 is a schematic cross-sectional view for explaining the configuration of a pixel of the LED display device 100 according to an embodiment of the present specification.
  • FIG. 4 is a schematic flowchart for explaining a method of manufacturing the LED display device 100 according to an embodiment of the present specification.
  • node A passes through another node.
  • a case in which a signal is transmitted to node B may be included.
  • first, second, etc. are used to describe various components, these components are not limited by these terms. These terms are only used to distinguish one component from another. Accordingly, the first component mentioned below may be the second component within the spirit of the present invention.
  • each feature of the various embodiments of the present invention may be partially or wholly combined or combined with each other, technically various interlocking and driving are possible, and each of the embodiments may be implemented independently of each other or may be implemented together in a related relationship. may be
  • an LED display device 100 includes a display panel 101 in which a plurality of sub-pixels SP including micro light emitting diodes ( ⁇ LED) are arranged, and the display panel It may include a gate driving circuit 120 , a data driving circuit 130 , and a controller 140 for driving 101 .
  • ⁇ LED micro light emitting diodes
  • a plurality of gate lines GL and a plurality of data lines DL are disposed, and a subpixel SP is disposed in a region where the gate line GL and the data line DL intersect.
  • Each of these sub-pixels SP may include a micro light emitting diode ⁇ LED, and two or more sub-pixels SP may constitute one pixel P.
  • the gate driving circuit 120 is controlled by the controller 140 , and sequentially outputs scan signals to the plurality of gate lines GL disposed on the display panel 101 to drive timing of the plurality of subpixels SP. to control
  • the gate driving circuit 120 may include one or more gate driver integrated circuits (GDICs), and may be located on only one side or both sides of the display panel 101 depending on the driving method. may be Alternatively, the gate driving circuit 120 may be located on the rear surface of the display panel 101 .
  • GDICs gate driver integrated circuits
  • the data driving circuit 130 receives image data from the controller 140 and converts the image data into an analog data voltage. In addition, a data voltage is output to each data line DL according to a timing when a scan signal is applied through the gate line GL, so that each subpixel SP expresses brightness according to image data.
  • the data driving circuit 130 may include one or more source driver integrated circuits (SDICs).
  • SDICs source driver integrated circuits
  • the controller 140 supplies various control signals to the gate driving circuit 120 and the data driving circuit 130 , and controls operations of the gate driving circuit 120 and the data driving circuit 130 .
  • the controller 140 causes the gate driving circuit 120 to output a scan signal according to the timing implemented in each frame, and converts externally received image data to match the data signal format used by the data driving circuit 130 . to output the converted image data to the data driving circuit 130 .
  • the controller 140 externally transmits various timing signals including a vertical synchronization signal Vsync, a horizontal synchronization signal Hsync, an input data enable signal DE, and a clock signal CLK together with the image data. (eg host system).
  • the controller 140 may generate various control signals using various timing signals received from the outside and output them to the gate driving circuit 120 and the data driving circuit 130 .
  • the controller 140 may include a gate start pulse (GSP), a gate shift clock (GSC), a gate output enable signal (GOE, Gate Output Enable) and output various gate control signals.
  • GSP gate start pulse
  • GSC gate shift clock
  • GOE gate output enable signal
  • GOE Gate Output Enable
  • the gate start pulse GSP controls the operation start timing of one or more gate driver integrated circuits constituting the gate driving circuit 120 .
  • the gate shift clock GSC is a clock signal commonly input to one or more gate driver integrated circuits and controls shift timing of the scan signal.
  • a gate output enable signal GOE specifies timing information of one or more gate driver integrated circuits.
  • the controller 140 includes a source start pulse (SSP), a source sampling clock (SSC), and a source output enable signal (SOE, Source). Output Enable) and output various data control signals.
  • SSP source start pulse
  • SSC source sampling clock
  • SOE source output enable signal
  • Output Enable output various data control signals.
  • the source start pulse SSP controls the data sampling start timing of one or more source driver integrated circuits constituting the data driving circuit 130 .
  • the source sampling clock SSC is a clock signal that controls sampling timing of data in each of the source driver integrated circuits.
  • the source output enable signal SOE controls the output timing of the data driving circuit 130 .
  • the LED display device 100 is a power management integrated circuit that supplies various voltages or currents to the display panel 101 , the gate driving circuit 120 , the data driving circuit 130 , or controls various voltages or currents to be supplied. may further include.
  • each subpixel SP includes a micro light emitting diode ( ⁇ LED) and the same.
  • ⁇ LED micro light emitting diode
  • a transistor or the like for driving may be disposed.
  • FIG. 2 illustrates an example of a circuit structure of a sub-pixel SP in the LED display device 100 according to embodiments of the present invention, wherein three sub-pixels SP constitute one pixel P. indicates
  • a common voltage line CVL to which the common voltage Vcom is supplied may be disposed.
  • subpixels SP representing red (R), green (G), and blue (B) colors are disposed in a region where the gate line GL and the data line DL intersect.
  • One or more transistors, capacitors, etc. for driving the micro light emitting diode ( ⁇ LED) and the micro light emitting diode ( ⁇ LED) may be disposed in each of the subpixels SP.
  • a micro light emitting diode ⁇ LED emitting red (R) light to a red subpixel SP(R) disposed in a region where the first data line DL1 and the gate line GL intersect;
  • a first driving transistor DRT1 for driving the light emitting diode ⁇ LED and a first switching transistor SWT1 for controlling an operation timing of the first driving transistor DRT1 may be disposed.
  • the first driving transistor DRT1 may be connected to the anode electrode of the micro light emitting diode ⁇ LED as shown in FIG. 2 or may be connected to the cathode electrode of the micro light emitting diode ⁇ LED.
  • a storage capacitor for maintaining the data voltage Vdata for one image frame may be further disposed between the gate electrode and the source electrode (or drain electrode) of the first driving transistor DRT1 .
  • the first switching transistor SWT1 When the scan signal Scan is applied through the gate line GL, the first switching transistor SWT1 is turned on, and the first data voltage Vdata1 supplied through the first data line DL is first driven. It is applied to the gate electrode of the transistor DRT1. Then, the driving voltage Vdd is applied to the anode electrode of the micro light emitting diode ⁇ LED according to the first data voltage Vdata1 and the common voltage Vcom is applied to the cathode electrode of the micro light emitting diode ⁇ LED.
  • a micro light emitting diode ( ⁇ LED) emits light according to a voltage difference applied to an anode electrode and a cathode electrode to express brightness.
  • micro light emitting diodes disposed in the green subpixel (SP(G)) and the blue subpixel (SP(B)) operate in the same way, and the corresponding subpixels (SP) are green (G) and blue (B). ) to indicate color.
  • the micro light emitting diodes ( ⁇ LED) disposed in the red subpixel (SP(R)), the green subpixel (SP(G)), and the blue subpixel (SP(B) are grown on separate wafer substrates, respectively. It may be transferred and disposed on the display panel 101 .
  • the display panel 101 of the LED display device 100 may include a first substrate 110a and a second substrate 110b.
  • the first substrate 110a includes a first light emitting device 160 and a second light emitting device 170 that are micro light emitting diodes ( ⁇ LED).
  • the first light emitting device 160 may be integrally formed with the common electrode layer 160a, and one unit pixel P may include at least one first light emitting device 160 .
  • the second light emitting device 170 is a micro light emitting diode that is grown on a separate semiconductor substrate and transferred onto the common electrode layer 160a through a transfer process.
  • One unit pixel P is at least one second light emitting device ( 170) may be included.
  • the second substrate 110b opposite to the first substrate 110a having the micro light emitting diode includes a first pixel driving device 150a and a second pixel driving device 150b that are driving transistors.
  • the first substrate 110a and the second substrate 110b may have a structure in which they are separately manufactured and bonded.
  • an adhesive layer such as resin is disposed between the first substrate 110a and the second substrate 110b. can be filled.
  • a common electrode layer 160a is disposed on the first substrate 110a.
  • the first substrate 110a is a substrate such as sapphire on which the semiconductor layer can be substantially grown and may further include a buffer layer for growing the semiconductor layer.
  • the buffer layer is a low-temperature buffer layer and may be a buffer layer such as AlN or low-temperature GaN.
  • the common electrode layer 160a on the first substrate 110a is an n-type semiconductor layer and may be a semiconductor layer doped with silicon (Si). As described above, the n-type semiconductor layer doped with silicon can form the common electrode layer 160a as a conductor.
  • the first light emitting device 160 is disposed on the common electrode layer 160a.
  • the first light emitting device 160 has a structure in which a GaN-based compound semiconductor is grown in the form of a pn junction diode, and each layer is a layer grown by inheriting the crystallinity of the underlying layer. It includes one active layer 162 and a first p-type semiconductor layer 163 , and further includes a first device electrode 164a on the first p-type semiconductor layer 163 .
  • the first light emitting device 160 is sequentially grown (epi-growth) from the common electrode layer 160a on the first substrate 110a, there is no need for a separate process for transferring onto the common electrode layer 160a.
  • the second light emitting device 170 is disposed on the common electrode layer 160a.
  • the unit pixel P is composed of at least one sub-pixel SP, and each sub-pixel SP is configured to emit light of different wavelengths.
  • the second light emitting device 170 is a light emitting device that emits light having a wavelength different from that of the first light emitting device 160 , and is grown on a separate semiconductor growth substrate and then disposed on the common electrode layer 160a through a transfer process.
  • the present invention there is no second light emitting device 170 grown on a separate semiconductor growth substrate, and a method of configuring the unit pixel P only with the plurality of first light emitting devices 160 may be used. In this case, a color conversion layer corresponding to each of the first light emitting devices 160 may be further included.
  • a transfer process for transferring the light emitting device may not be required at all.
  • the first light emitting device 160 may be a light emitting device grown according to the lattice constant of the first substrate 110a based on a sapphire substrate, and the second light emitting device 170 may have a gallium arsenide (GaAs) substrate as a base. It may be a light emitting device grown on a separate semiconductor growth substrate.
  • GaAs gallium arsenide
  • the second light emitting device 170 includes a second n-type semiconductor layer 171 , a second active layer 172 , and a second p-type semiconductor layer 173 , and is formed on the second p-type semiconductor layer 173 .
  • the second device electrode 174a may be further included, and a third device electrode 175a may be further included on the first n-type semiconductor layer 171 for electrical connection with the common electrode layer 160a, and an adhesive layer It may be fixed on the common electrode layer 160a by (adh).
  • the second light emitting device 170 is electrically connected to the common electrode layer 160a through the third connection electrode 175 , and the third connection electrode 175 is located on the first n-type semiconductor layer 171 . It may be composed of a third device electrode 175a and a third bonding electrode 175b including a conductive ball.
  • the common electrode layer 160a may further include a light guide 180 to prevent color mixing of light emitted from each of the first light emitting device 160 and the second light emitting device 170 .
  • the light guide 180 may be formed of an opaque and conductive metal capable of reflecting light, and may be formed by etching the surface of the common electrode layer 160a and then disposing the above-described metal material.
  • a black matrix BM disposed between the first light emitting device 160 and the second light emitting device 170 may be further included to further prevent color mixing.
  • each of the first n-type semiconductor layer 161, the second n-type semiconductor layer 171, the first p-type semiconductor layer 163, and the second p-type semiconductor layer 173 is an n-type semiconductor layer and although it will be described as a p-type semiconductor layer, the opposite may be a p-type semiconductor layer and an n-type semiconductor layer.
  • the first p-type semiconductor layer 163 and the second p-type semiconductor layer 173 are provided on the first active layer 162 and the second active layer 172, respectively, and the first active layer 162 and the second active layer 172 are provided. ) to provide a hole to each.
  • the first p-type semiconductor layer 163 and the second p-type semiconductor layer 173 may be formed of a p-GaN-based semiconductor material, and the p-GaN-based semiconductor material includes GaN and AlGaN. , InGaN, or AlInGaN.
  • an impurity used for doping the first p-type semiconductor layer 163 and the second p-type semiconductor layer 173 Mg, Zn, Be, or the like may be used.
  • the first n-type semiconductor layer 161 and the second n-type semiconductor layer 171 provide electrons to the first active layer 162 and the second active layer 172 , respectively.
  • the first n-type semiconductor layer 161 and the second n-type semiconductor layer 171 may be made of an n-GaN-based semiconductor material, and the n-GaN-based semiconductor material includes GaN and AlGaN. , InGaN, or AlInGaN.
  • Si, Ge, Se, Te, or C may be used as impurities used for doping the first n-type semiconductor layer 161 and the second n-type semiconductor layer 171 .
  • the first active layer 162 and the second active layer 172 are provided on the first n-type semiconductor layer 161 and the second n-type semiconductor layer 171 .
  • the first active layer 162 and the second active layer 172 are light emitting layers and have a multi quantum well (MQW) structure having a well layer and a barrier layer having a higher band gap than the well layer.
  • MQW multi quantum well
  • the first active layer 162 and the second active layer 172 may have a multi-quantum well structure such as InGaN/GaN.
  • Each of the first device electrode 164a, the second device electrode 174a, and the third device electrode 175a is Au, W, Pt, Si, Ir, Ag, Cu, Ni, Ti , or may be made of a material including at least one of a metal material such as Cr and an alloy thereof, but is not limited thereto.
  • the second substrate 110b includes a first pixel driving device 150a and a second pixel driving device 150b that are driving transistors.
  • Each of the first pixel driving device 150a and the second pixel driving device 150b includes an active layer 151 , a gate electrode 152 , a source electrode 153 , and a drain electrode 154 .
  • Each of the first pixel driving device 150a and the second pixel driving device 150b according to an embodiment of the present specification is a thin film transistor using a polysilicon material as the active layer 151, and is a low temperature polysilicon (Low Temperature Poly-Silicon). LTPS thin film transistor using LTPS) is used.
  • the active layer 151 of the LTPS thin film transistor (hereinafter, the thin film transistor, the first pixel driving device 150a and the second pixel driving device 150b) includes a channel region 151a in which a channel is formed when the thin film transistor is driven, a channel region ( 151a) includes a source region 151b and a drain region 151c on both sides.
  • the channel region 151a, the source region 151b, and the drain region 151c are defined by ion doping (impurity doping).
  • a gate insulating layer 111 is disposed on the active layer 151.
  • the gate insulating layer 111 is composed of a single layer of silicon nitride (SiNx) or silicon oxide (SiOx), or silicon nitride (SiNx) and silicon oxide. It may be composed of multiple layers made of (SiOx).
  • the gate electrode 152 is positioned so as to overlap the channel region 151a of the active layer 151 .
  • the gate electrode 152 may have a single-layer structure made of any one of aluminum (Al), aluminum alloy (AlNd), copper (Cu), copper alloy, molybdenum (Mo), and molybdenum (MoTi) having low resistance characteristics. Or, it may have a double-layer or triple-layer structure by being made of two or more.
  • a first insulating layer 112 is disposed on the gate electrode 152 , and the first interlayer insulating layer 112 is made of silicon nitride (SiNx), and a hydrogenation process for stabilizing the active layer 151 .
  • SiNx silicon nitride
  • the protective layer 113 is positioned above the first insulating layer 112 .
  • the protective layer 113 may be made of the same material as the first insulating layer 112 , or may be made of an organic insulating material for planarization. have.
  • the protective layer 113 may include acrylic resin (polyacrylates resin), epoxy resin (epoxy resin), phenolic resin (phenolicresin), polyamides resin (polyamides resin), polyimide resin (polyimides resin), unsaturated polyester It may be formed of at least one of unsaturated polyesters resin, poly-phenylenethers resin, polyphenylenesulfides resin, and benzocyclobutene, but is not limited thereto. .
  • the protective layer 117 may be formed as a single layer or may be configured as a double or multiple layer.
  • a source electrode 153 and a drain electrode 154 connected to the source region 151b and the drain region 151c, respectively, are disposed on the first insulating layer 112 .
  • the source electrode 153 and the drain electrode 154 also have the same low resistance characteristic as aluminum (Al), aluminum alloy (AlNd), copper (Cu), copper alloy, molybdenum (Mo), molybdenum (MoTi), chromium (Cr). ), titanium (Ti), any one or two or more materials.
  • the first and second pixel electrodes 155a and 155b are disposed on the passivation layer 113 .
  • the first and second pixel electrodes 155a and 155b have a stacked structure of aluminum (Al) and titanium (Ti) (Ti/Al/Ti), a stacked structure of aluminum (Al) and ITO (ITO/Al/ITO), It may be formed of a metal material having high reflectance, such as an APC alloy (Ag/Pd/Cu), and a laminate structure of an APC alloy and ITO (ITO/APC/ITO).
  • the first connection electrode 164 may be disposed on the first light emitting device 160 for electrical connection with the first pixel driving device 150a.
  • the first connection electrode 164 may include a first device electrode 164a and a first bonding electrode 164b including a conductive ball, and is electrically connected to the first pixel electrode 155a to form a first pixel driving device. It is electrically connected to (150a).
  • a second connection electrode 174 may be disposed on the second light emitting device 170 for electrical connection with the second pixel driving device 150b.
  • the second connection electrode 174 may include a second device electrode 174a and a second bonding electrode 174b including a conductive ball, and is electrically connected to the second pixel electrode 155b to form a first pixel driving device. It is electrically connected to (150a).
  • FIG. 4 is a schematic flowchart for explaining a method of manufacturing the LED display device 100 according to an embodiment of the present specification.
  • the first substrate may be a sapphire wafer substrate on which a semiconductor may be grown.
  • forming an nGaN-based common electrode layer on a first substrate and continuously epi-growing a first light emitting device including a first n-type semiconductor layer, a first active layer and a first p-type semiconductor layer on a first substrate ( S110) is performed.
  • the first light emitting device may be configured as an individual light emitting device by etching the epitaxially grown semiconductor layer.
  • the method may further include forming a buffer layer for buffering the lattice constant on the first substrate.
  • the first pixel driving element and the second pixel driving element are thin film transistors and are arranged to be electrically connected to a driving circuit for driving the pixel.
  • a second light emitting device having a second n-type semiconductor layer, a second active layer, and a second p-type semiconductor layer on the common electrode layer on the first substrate is transferred ( S130 ).
  • the second light emitting device may be a light emitting device grown on a separate semiconductor growth substrate, and disposed on the common electrode layer through a transfer process. In this case, the step of disposing and bonding an adhesive layer and a connection electrode may be further included.
  • one connection electrode is disposed to form the first p-type

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

본 명세서의 일 실시예에 따른 공통전극층과 일체형인 적어도 하나의 발광소자를 포함하여 제조공정이 간편화된 LED 표시장치가 제공된다. 제1 기판은 반도체 기판으로 제1 기판상에 n형 반도체인 공통전극층을 성장시키고 이어서 제1 구동소자를 형성시킨 후 다른 기판에서 성장된 제2 구동소자를 공통전극층에 전사하여 서로다른 파장의 빛을 발하는 픽셀을 구현하고, 제조 공정이 간편화된 LED 표시장치를 제공할 수 있다. 제1 기판과 대향하고 복수의 픽셀구동소자가 있는 제2 기판과 합착하여 LED 표시장치를 구성한다. 이와 같이 공통전극층과 일체형인 적어도 하나의 발광소자와 적어도 두개의 개별 발광소자를 사용하여 복수의 픽셀로 구성된 적어도 하나의 단위픽셀이 있는 제조 신뢰성이 향상된 LED 표시장치를 제공할 수 있다.

Description

LED 표시장치 및 이의 제조방법
본 발명은 LED 표시장치 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 LED 발광소자를 화소로 사용하는 표시장치 및 이의 제조방법에 있어서, LED 발광소자를 반도체기판에서 성장시킨 이후 표시기판으로 전사하는 일련의 공정을 최소화 할 수 있는 LED 표시장치 및 이의 제조방법을 제공하는 것이다.
표시 장치는 텔레비전 또는 모니터의 표시 장치 이외에도 노트북 컴퓨터, 테블릿 컴퓨터, 스마트 폰, 휴대용 표시 기기 및 휴대용 정보 기기 등의 표시 화면으로 널리 사용되고 있다.
표시 장치는 반사형 표시 장치와 발광형 표시 장치로 구분될 수 있는데, 반사형 표시 장치는 자연광 또는 표시 장치의 외부 조명에서 나오는 빛이 표시 장치에 반사되어 정보를 표시하는 방식의 표시 장치이고 발광형 표시 장치는 발광 소자 또는 광원을 표시 장치에 내장하고, 내장된 발광 소자 또는 광원에서 발생하는 빛을 사용하여 정보를 표시하는 방식이다.
내장된 발광 소자는 다양한 빛의 파장을 발광할 수 있는 발광 소자를 사용하기도 하고 백색 또는 블루의 빛을 발광 하는 발광 소자와 함께 발광 빛의 파장을 변화 시킬 수 있는 컬러필터를 사용하기도 한다.
이와 같이, 표시 장치로서 이미지를 구현하기 위하여 복수의 발광 소자를 표시 장치의 기판상에 배치하되, 각각의 발광 소자를 개별적으로 발광하도록 컨트롤 하기 위해 구동 신호 또는 구동 전류를 공급하는 구동소자를 발광 소자와 함께 기판상에 배치하여, 기판상에 배치된 복수의 발광 소자를 표시 하고자 하는 정보의 배열대로 해석하여 기판상에 표시하도록 한다.
다시 설명하자면, 이와 같은 표시 장치는 복수의 화소가 배치되고, 각각의 화소는 구동소자인 스위칭 소자로서 박막 트랜지스터(Thin Filim Transistor)를 이용하고, 박막 트랜지스터에 연결되어 구동 됨으로서 표시 장치는 각각의 화소의 동작에 의해 영상을 표시한다.
박막 트랜지스터가 사용된 대표적인 표시 장치로서는 액정 표시 장치와 유기 발광 표시 장치가 있다. 그 중 액정 표시 장치는 자체 발광 방식이 아니기에 액정 표시 장치의 하부(후면)에 빛을 발광 하도록 배치된 백라이트 유닛(Backlight unit)이 필요하다.
부가적인 백라이트 유닛에 의해 액정 표시 장치는 두께가 증가하고, 플렉서블 하거나 원형과 같은 다양한 형태의 디자인으로 표시 장치를 구현하는데 제한이 있으며, 휘도 및 응답 속도가 저하될 수 있다.
한편, 자체 발광 소자가 있는 표시 장치는 광원을 내장하는 표시 장치보다 얇게 구현될 수 있고, 플렉서블하고 접을 수 있는 표시 장치를 구현할 수 있는 장점이 있다.
자체 발광 소자가 있는 표시 장치는 발광층으로 유기물을 포함하는 유기 발광 표시 장치와 마이크로 엘이디 소자를 발광 소자로 사용하는 마이크로 엘이디 표시 장치등이 있을수 있는데, 유기 발광 표시 장치 또는 마이크로 엘이디 표시 장치와 같은 자체 표시 장치는 별도의 광원이 필요없기에 더욱 얇거나 다양한 형태의 표시 장치로 활용될 수 있다.
그러나, 유기물을 사용하는 유기 발광 표시 장치는 별도의 광원이 필요하지 않는 반면에 수분과 산소에 의한 불량화소가 발생되기 쉬우므로 산소와 수분의 침투를 최소화 하기 위한 다양한 기술적 구상이 추가적으로 요구된다.
상술한 문제에 대하여, 최근에는, 미세한 크기의 마이크로 엘이디(Micro light emitting diode, Micro LED)를 발광 소자로 사용하는 표시장치에 대한 연구 및 개발이 진행되고 있으며, 이러한 발광 표시 장치는 고화질과 고신뢰성을 갖기 때문에 차세대 표시 장치로서 각광받고 있다.
이와 같은 미세한 크기의 마이크로 발광 다이오드는 반도체에 전류를 흘려주면 빛을 내는 성질을 이용한 반도체 발광 소자로 조명, TV, 각종 표시장치 등에 널리 활용되고 있다. 마이크로 발광 다이오드는 n형 반도체층과 p형 반도체층, 그리고 그 사이에 있는 활성층으로 구성된다. 전류를 흘려주면 n형 반도체층 부분에는 전자가, p형 반도체층 부분에는 정공이 있다가 활성층에서 결합해 빛을 낸다.
단위 화소의 발광 소자로 마이크로 발광 다이오드가 사용된 발광 표시 장치를 구현하기 위해서는 몇가지 기술적인 요구사항이 있다. 우선, 사파이어(Sapphire) 또는 실리콘(Si)과 같은 반도체 웨이퍼(wafer) 기판 상에 마이크로 발광 다이오드를 결정화 시키고, 결정화된 복수의 LED 칩을 구동소자가 있는 기판에 이동 시키되 각각의 화소에 대응하는 위치에 마이크로 발광 다이오드를 위치시키는 정교한 전사 공정이 요구된다.
마이크로 발광 다이오드는 무기재료를 사용하여 형성할 수 있으나, 결정화 하여 형성할 필요가 있고, GaN과 같은 무기재료를 결정화 하려면, 결정화를 유도 할 수 있는 기판상에서 무기재료를 결정화 하여야 한다. 이와 같이 무기재료의 결정화를 효율적으로 유도 할 수 있는 기판은 반도체 기판이며, 상술한 바와 같이 반도체 기판상에서 무기재료를 결정화 시키어야 한다.
마이크로 발광 다이오드를 결정화하는 공정은 에피택시(epitaxy), 에피텍셜 성장(epitaxial groth) 또는 에피공정이라고도 지칭한다. 에피공정은 어떤 결정의 표면에서 특정한 방위 관계를 취해 성장하는 일을 의미하는데, 마이크로 발광 다이오드의 소자구조를 형성하기 위해서는 기판위에 GaN계 화합물 반도체를 pn접합 다이오드 형태로 쌓아 올려야 하는데 이때 각각의 층은 밑의 층의 결정성을 이어받아 성장하게 된다.
이때, 결정 내부의 결함은 전자와 정공의 재합과정(Electron-hole recombination process)에서 비발광 센터(nonradiative center)로 작용하기 때문에 광자(photon)를 이용하는 마이크로 발광 다이오드에서는 각 층을 형성하는 결정들의 결정성이 소자효율에 결정적인 영향을 미치게 된다.
현재 주로 사용되는 기판으로는 상술한 사파이어(Sapphire)기판이 주로 사용되며, 근래에는 GaN를 베이스로하는 기판등에 대한 연구활동이 활발히 이루어 지고 있다.
이와 같이 LED발광 소자를 구성하는 GaN과 같은 무기재료를 반도체 기판상에 결정화 함에 있어 소요되는 반도체 기판의 높은 가격으로 인해 단순한 조명 또는 백라이트에 사용되는 광원으로서의 LED가 아닌 표시 장치의 발광 화소로서 다량의 LED를 사용하게 되는 경우 제조 비용이 높아지는 문제점이 있다.
또한, 상술한 바와 같이 반도체 기판상에 형성된 마이크로 발광 다이오드는 표시장치를 구성하는 기판으로 전사(Transfer)하는 단계가 필요하게 되는데, 이 과정에서 반도체 기판에 형성된 마이크로 발광 다이오드를 분리하는데에 어려움이 있고, 분리된 마이크로 발광 다이오드를 원하는 지점에 바르게 전사(transplant)할때에도 많은 어려움과 문제점이 있다.
반도체 기판상에 형성된 마이크로 발광 다이오드를 표시장치를 구현하는 기판으로 전사하는데 있어 PDMS와 같은 고분자물질을 사용한 전사용 기판을 사용하는 방법, 전자기나 정전기를 이용한 전사 방법 또는 물리적으로 한 개의 소자씩 집어서 옮기는 방법 등 다양한 전사 방법이 사용될 수 있으며 다양한 전사 방법에 대한 연구활동이 이루어 지고 있다.
이와 같은, 전사공정은 표시장치를 구현하는 공정의 생산성과 연관이 있으며, 대량 생산을 위하여서는 마이크로 발광 다이오드를 한 개씩 옮기는 방법은 비 효율적이라 할 수 있겠다.
이에 고분자 물질을 사용한 전사용 기판을 사용하여 복수개의 마이크로 발광 다이오드를 반도체 기판에서 분리하여 표시장치를 구성하는 기판, 특히 박막트랜지스터에 배치된 구동소자 및 전원전극과 연결된 패드전극상에 올바르게 위치하는데 있어 정교한 전사 공정 또는 공법이 필요하게 되었다.
상술한 전사공정 중에 또는 전사공정 이후에 이어 지는 후속 공정중에 마이크로 발광 다이오드는 진동 또는 열등의 조건에 따라 움직이거나 전사되는 과정에서 마이크로 발광 다이오드가 뒤집히어 전사되는등 불량이 발생될 수 있으며, 이러한 불량을 발견하고 복구하는데 많은 어려움이 있었다.
일반적인 전사 공정을 예로들어 마이크로 발광 다이오드의 전사공정에 대하여 일 예를 들어 설명하자면, 다음과 같다. 반도체 기판상에 마이크로 발광 다이오드를 형성하고 반도체층에 전극을 형성하여 개별 마이크로 발광 다이오드로서 완성시킨다. 이후, 반도체 기판과 PDMS기판(이후에는 전사기판이라 한다)을 접촉시키어 전사기판으로 마이크로 발광 다이오드를 이동시킨다. 전사기판은 반도체 기판상에 형성된 마이크로 발광 다이오드를 화소의 화소거리만큼의 거리를 고려하여 반도체 기판에서 마이크로 발광 다이오드를 전사기판으로 전사시키어야 하기에 전사기판상에는 표시장치의 화소거리를 고려하여 마이크로 발광 다이오드를 받기위한 돌기형상등이 돌출되어 배치되게 된다.
반도체 기판의 배면을 통해 마이크로 발광 다이오드로 레이저를 조사하여 마이크로 발광 다이오드를 반도체 기판에서 떼어내게 되는데, 이때 레이저를 조사하는 과정에서 마이크로 발광 다이오드는 반도체 기판에서 분리될 때 반도체 기판의 GaN물질이 레이저의 높은 에너지에 의해 에너지의 집중으로 물리적으로 급격한 확장이 일어 날 수 있고, 이로 인해 충격이 발생 할 수 있다. (이를 1차 전사라 한다.)
이후, 전사기판에 전사된 마이크로 발광 다이오드를 표시장치를 구성하는 기판상에 전사하게 되는데, 박막트랜지스터가 있는 기판상에 상기 박막 트랜지스터를 절연/보호 하는 보호층을 배치한 뒤 보호층상에 접착층을 배치한다.
전사기판과 표시장치의 기판을 접촉시키어 압력을 가하게 되면, 전사기판에 전사된 마이크로 발광 다이오드는 상술한 보호층상에 있는 접착층에 의해 표시장치의 기판측으로 전사 된다.
이때, 전사기판과 마이크로 발광 다이오드의 접착력을 표시장치를 구성하는 기판과 마이크로 발광 다이오드의 접착력보다 작게되도록 하여 전사기판상의 마이크로 발광 다이오드가 표시장치의 기판으로 원활히 전사되도록 한다. (이를 2차 전사라 한다)
반도체 기판과 표시장치를 구성하는 기판은 기본적으로 그 크기가 상이하며 통상적으로 표시장치를 구성하는 기판이 크다. 이러한 면적, 크기의 차이로 인해 상술한 1차 및 2차 전사를 반복하여 표시장치의 기판의 구역별로 복수로 수행하면, 표시장치를 구성하는 각각의 화소에 대응하는 마이크로 발광 다이오드를 전사할 수 있게 된다.
반도체 기판에 형성된 마이크로 발광 다이오드는 그 종류에 따라 레드, 블루 및 그린의 마이크로 발광 다이오드일 수 있으며, 또는 백색 마이크로 발광 다이오드일 수 있다. 서로 다른 파장의 빛을 발광하는 마이크로 발광 다이오드를 사용하여 표시장치의 화소를 구현하는 방식에서 상술한 1차 및 2차 전사의 횟수는 더욱 증가할 수 있다.
마이크로 발광 다이오드는 GaN과 같은 화합물 반도체로 구성되어 무기 재료 특성상 고 전류를 주입할 수 있어 고휘도를 구현할 수 있고, 열, 수분, 산소 등 환경 영향성이 낮아 고신뢰성을 갖는다. 또한, 마이크로 발광 다이오드는 내부 양자 효율이 90% 수준으로 유기 발광 표시 장치 보다 높으므로 고휘도의 영상을 표시할 수 있으면서, 소모 전력이 낮은 표시 장치를 구현할 수 있는 장점이 있다.
또한, 유기 발광 표시 장치와는 달리 무기물을 사용하기에 산소와 수분의 영향이 미미한 수준으로 산소와 수분의 침투를 최소화 하기 위한 별도의 봉지막 또는 봉지기판이 필요가 없으므로, 봉지막 또는 봉지기판을 배치함으로서 발생할 수 있는 마진영역인 표시 장치의 비표시 영역을 최소화 할 수 있는 장점이 있다.
그러나 상술한 1차 및 2차 전사의 과정에서 미세한 크기의 마이크로 발광 다이오드를 배치하는 공정과 마이크로 발광 다이오드에 구동신호 및 전류를 공급하기 위한 전극을 연결하는 공정 등 필요로 하는 공정의 수도 많은 한편, 공정의 정밀도 또한 높게 요구된다.
이에 최근의 연구 활동에서 상술한 마이크로 발광 다이오드를 화소의 발광소자로 사용하는 표시장치에 있어서, 마이크로 발광 다이오드의 전사공정을 간략히 하기 위한 표시장치 및 이의 제조방법에 대한 연구활동이 활발히 이루어 지고 있다.
마이크로 발광 다이오드가 발광소자로 사용된 LED 표시장치에 있어서, 특히 발광소자로 무기물 기반의 LED, 특히 마이크로 크기의 마이크로 마이크로 발광 다이오드를 사용하는 LED 표시장치에 있어서, 상술한 바와 같이 마이크로 발광 다이오드가 사용된 표시 장치는 봉지막이나 봉지기판이 필요하지 않아 베젤 영역을 최소화 할 수 있고, 복수의 표시장치를 사용한 모듈라(Modular) 형식의 표시장치를 구성하는데 유리하다. 그러나 마이크로 발광 다이오드를 별도의 기판에서 성장시키고 표시장치로 전사하는 과정에서 불량이 발생할 수 있으며, 전극을 마이크로 발광 다이오드와 연결하는 과정에서 또 다른 불량이 발생할 수 있는 문제점이 있었다. 이에, 본 발명의 발명자들은 마이크로 발광 다이오드를 전사하는 공정을 간략히 하여 불량율을 줄이고 공정 신뢰성을 향상 시킬 수 있는 LED 표시장치 및 이의 제조방법을 발명하였다.
본 명세서의 일 실시예에 따른 해결 과제는 마이크로 발광 다이오드를 전사하는 단계를 간략히 하여 전사공정 오류를 최소화 할 수 있는 LED 표시장치 및 이의 제조방법을 제공하는 것이다.
본 명세서의 일 실시예에 따른 해결 과제는 마이크로 발광 다이오드에 전류를 공급하기 위한 전극을 연결하는 방법에 있어서 오류를 줄일 수 있는 LED 표시장치 및 이의 제조방법을 제공하는 것이다.
본 발명의 일 실시예에 따른 해결 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 명세서의 일 실시예에 따른 LED 표시장치가 제공된다. 공통전극층이 있는 제1 기판과 제1 픽셀구동소자 및 제2 픽셀구동소자가 있는 제2 기판이 서로 대향하여 합착된다. 공통전극층 상에는 LED를 발광소자로 하는 적어도 두개의 발광소자로 제1 발광소자 및 제2 발광소자가 배치된다. 제1 발광소자는 제1 n형 반도체층, 제1 활성층 및 제1 p형 반도체층을 포함하고, 제2 발광소자는 제2 n형 반도체층, 제2 활성층 및 제2 p형 반도체층을 포함한다. 상술한 구성에서 제1 p형 반도체층과 제1 픽셀구동소자는 제1 연결전극에 의해 전기적으로 연결되고, 제2 p형 반도체층과 제2 픽셀구동소자는 제2 연결전극에 의해 전기적으로 연결된다. 제3의 발광소자 및 제3의 픽셀구동소자를 더 포함할 수 있으며 상술한 구성과 유사하게 배치될 수 있다. 상기 공통전극층과 제1 발광소자의 제1 n형 반도체층은 실질적으로 동일한 물질로 별도로 형성되어 접합된 구조가 아닌 일체형으로 직접적인 연결관계를 갖고, 공통전극층과 제2 n형 반도체층은 제3 연결전극을 통해 전기적으로 연결된다. 이와 같이 전기적 연결관계에 있어서, 공통전극층과 일체형인 제1 발광소자를 사용함으로써 마이크로 발광 다이오드를 전사하는 공정을 최소화 시키어 공정 안정성을 향상시킬 수 있다.
본 명세서의 일 실시예에 따른 마이크로 발광 다이오드를 발광소자로 하는 LED 표시장치의 제조방법이 제공된다. 제1 기판은 반도체를 성장시킬 수 있는 사파이어등의 기판으로, 제1 기판상에 공통전극층 및 제1 n형 반도체층을 연속으로 성장시킨다, 이후 제1 활설층 및 제1 p형 반도체층을 성장시키고 식각하는 과정을 통해 제1 기판상에 공통전극층을 남기고 제1 발광소자를 형성한다. 한편, 제2 기판상에 적어도 둘 이상의 필셀 구동소자로, 제1 픽셀구동소자 및 제2 픽셀구동소자를 배치한다. 공통전극층에 제2 n형 반도체층 제2 활성층 및 제2 p형 반도체층을 포함하는 별도로 성장된 마이크로 발광 다이오드인 제2 발광소자를 상기 제1 발광소자와 이웃하여 배치한다. 상기 제1 기판과 제2 기판을 접합하는 단계를 거치되, 제1 연결전극 및 제2 연결전극을 배치하여 상기 제1 p형 반도체층과 상기 제1 픽셀구동소자, 그리고 제2 p형 반도체층과 상기 제2 픽셀구동소자 각각을 전기적으로 연결하는 단계를 수행하여 LED 표시장치를 구성할 수 있다. 상술한 바와 같이 제1 기판상에서 성장시킨 제1 발광소자와 공통전극층상에 전사되는 제2 발광소자를 픽셀구동소자와 연결하는 단계를 수행하는 방법으로 제조 공정을 단순화 하여 마이크로 발광 다이오드를 발광소자로 사용하는 LED 표시장치의 공정 안정성이 향상된 제조방법을 제공할 수 있다.
본 명세서의 일 실시예에 따라 공통전극층과 일체형인 적어도 하나의 마이크로 발광 다이오드를 발광소자로 이용함으로써 마이크로 발광 다이오드를 전사하는 공정을 줄이어 공정 불량을 최소화 할 수 있는 효가가 있다.
또한, 상기 마이크로 발광 다이오드의 반도체층과 실질적으로 동일한 재질의 공통전극층을 이용함으로써 마이크로 발광 다이오드와 공통전극층을 추가로 연결하는 연결전극을 줄일 수 있어 공정을 단순화 할 수 있는 효과가 있다.
본 발명의 효과는 이상에서 언급한 효과에 제한되지 않으며, 언급되지 않은 또 다른 효과는 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
이상에서 해결하고자 하는 과제, 과제 해결 수단, 효과에 기재한 발명의 내용이 청구항의 필수적인 특징을 특정하는 것은 아니므로, 청구항의 권리범위는 발명의 내용에 기재된 사항에 의하여 제한되지 않는다.
도 1은 본 명세서의 일 실시예에 따른 LED 표시장치(100)의 개략적인 구성을 나타낸 도면이다.
도 2는 본 명세서의 일 실시예에 따른 LED 표시장치(100)에 배열된 픽셀의 회로 구조를 설명하기 위한 개략적 도면이다.
도 3은 본 명세서의 일 실시예에 따른 LED 표시장치(100)의 픽셀의 구성을 설명하기 위한 개략적 단면도이다.
도 4는 본 명세서의 일 실시예에 따른 LED 표시장치(100)의 제조방법을 설명하기 위한 개략적 순서도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 발명의 실시예를 설명하기 위한 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로 본 발명이 도시된 사항에 한정되는 것은 아니다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다. 본 명세서 상에서 언급된 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 '~만'이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성 요소를 단수로 표현한 경우에 특별히 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함한다.
구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.
위치 관계에 대한 설명일 경우, 예를 들어, '~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수도 있다.
시간 관계에 대한 설명일 경우, 예를 들어, '~후에', '~에 이어서', '~다음에', '~전에' 등으로 시간 적 선후 관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 연속적이지 않은 경우도 포함할 수 있다.
신호의 흐름 관계에 대한 설명일 경우, 예를 들어, 'A 노드에서 B 노드로 신호가 전달된다'는 경우에도 '바로' 또는 '직접'이 사용되지 않은 이상, A 노드에서 다른 노드를 경유하여 B 노드로 신호가 전달되는 경우를 포함할 수 있다.
제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않는다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있다.
본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하고, 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시할 수도 있다.
이하, 첨부된 도면을 참조하여 다양한 실시예들을 설명한다.
도 1을 참조하면, 본 발명의 실시예들에 따른 LED 표시장치(100)는, 마이크로 발광 다이오드(μLED)를 포함하는 다수의 서브픽셀(SP)이 배열된 디스플레이 패널(101)과, 디스플레이 패널(101)을 구동하기 위한 게이트 구동 회로(120), 데이터 구동 회로(130) 및 컨트롤러(140) 등을 포함할 수 있다.
디스플레이 패널(101)에는, 다수의 게이트 라인(GL)과 다수의 데이터 라인(DL)이 배치되고, 게이트 라인(GL)과 데이터 라인(DL)이 교차하는 영역에 서브픽셀(SP)이 배치된다. 이러한 서브픽셀(SP)은 각각 마이크로 발광 다이오드(μLED)를 포함할 수 있으며, 둘 이상의 서브픽셀(SP)이 하나의 픽셀(P)을 구성할 수 있다.
게이트 구동 회로(120)는, 컨트롤러(140)에 의해 제어되며, 디스플레이 패널(101)에 배치된 다수의 게이트 라인(GL)으로 스캔 신호를 순차적으로 출력하여 다수의 서브픽셀(SP)의 구동 타이밍을 제어한다.
게이트 구동 회로(120)는, 하나 이상의 게이트 드라이버 집적 회로(GDIC, Gate Driver Integrated Circuit)를 포함할 수 있으며, 구동 방식에 따라 디스플레이 패널(101)의 일 측에만 위치할 수도 있고 양 측에 위치할 수도 있다. 또는, 게이트 구동 회로(120)는, 디스플레이 패널(101)의 배면에 위치할 수도 있다.
데이터 구동 회로(130)는, 컨트롤러(140)로부터 영상 데이터를 수신하고, 영상 데이터를 아날로그 형태의 데이터 전압으로 변환한다. 그리고, 게이트 라인(GL)을 통해 스캔 신호가 인가되는 타이밍에 맞춰 데이터 전압을 각각의 데이터 라인(DL)으로 출력하여 각각의 서브픽셀(SP)이 영상 데이터에 따른 밝기를 표현하도록 한다.
데이터 구동 회로(130)는, 하나 이상의 소스 드라이버 집적 회로(SDIC, Source Driver Integrated Circuit)를 포함할 수 있다.
컨트롤러(140)는, 게이트 구동 회로(120)와 데이터 구동 회로(130)로 각종 제어 신호를 공급하며, 게이트 구동 회로(120)와 데이터 구동 회로(130)의 동작을 제어한다.
컨트롤러(140)는, 각 프레임에서 구현하는 타이밍에 따라 게이트 구동 회로(120)가 스캔 신호를 출력하도록 하며, 외부에서 수신한 영상 데이터를 데이터 구동 회로(130)에서 사용하는 데이터 신호 형식에 맞게 변환하여 변환된 영상 데이터를 데이터 구동 회로(130)로 출력한다.
컨트롤러(140)는, 영상 데이터와 함께 수직 동기 신호(Vsync), 수평 동기 신호(Hsync), 입력 데이터 인에이블 신호(DE, Data Enable), 클럭 신호(CLK) 등을 포함하는 각종 타이밍 신호를 외부(예, 호스트 시스템)로부터 수신한다.
컨트롤러(140)는, 외부로부터 수신한 각종 타이밍 신호를 이용하여 각종 제어 신호를 생성하고 게이트 구동 회로(120) 및 데이터 구동 회로(130)로 출력할 수 있다.
일 예로, 컨트롤러(140)는, 게이트 구동 회로(120)를 제어하기 위하여, 게이트 스타트 펄스(GSP, Gate Start Pulse), 게이트 시프트 클럭(GSC, Gate Shift Clock), 게이트 출력 인에이블 신호(GOE, Gate Output Enable) 등을 포함하는 각종 게이트 제어 신호를 출력한다.
여기서, 게이트 스타트 펄스(GSP)는 게이트 구동 회로(120)를 구성하는 하나 이상의 게이트 드라이버 집적 회로의 동작 스타트 타이밍을 제어한다. 게이트 시프트 클럭(GSC)은 하나 이상의 게이트 드라이버 집적 회로에 공통으로 입력되는 클럭 신호로서, 스캔 신호의 시프트 타이밍을 제어한다. 게이트 출력 인에이블 신호(GOE)는 하나 이상의 게이트 드라이버 집적 회로의 타이밍 정보를 지정하고 있다.
또한, 컨트롤러(140)는, 데이터 구동 회로(130)를 제어하기 위하여, 소스 스타트 펄스(SSP, Source Start Pulse), 소스 샘플링 클럭(SSC, Source Sampling Clock), 소스 출력 인에이블 신호(SOE, Source Output Enable) 등을 포함하는 각종 데이터 제어 신호를 출력한다.
여기서, 소스 스타트 펄스(SSP)는 데이터 구동 회로(130)를 구성하는 하나 이상의 소스 드라이버 집적 회로의 데이터 샘플링 스타트 타이밍을 제어한다. 소스 샘플링 클럭(SSC)은 소스 드라이버 집적 회로 각각에서 데이터의 샘플링 타이밍을 제어하는 클럭 신호이다. 소스 출력 인에이블 신호(SOE)는 데이터 구동 회로(130)의 출력 타이밍을 제어한다.
이러한 LED 표시장치(100)는, 디스플레이 패널(101), 게이트 구동 회로(120), 데이터 구동 회로(130) 등으로 각종 전압 또는 전류를 공급해주거나, 공급할 각종 전압 또는 전류를 제어하는 전원 관리 집적 회로를 더 포함할 수 있다.
디스플레이 패널(101)에는, 게이트 라인(GL)과 데이터 라인(DL) 이외에 각종 신호나 전압이 공급되는 전압 라인이 배치될 수 있으며, 각각의 서브픽셀(SP)에는 마이크로 발광 다이오드(μLED)와 이를 구동하기 위한 트랜지스터 등이 배치될 수 있다.
도 2는 본 발명의 실시예들에 따른 LED 표시장치(100)에서 서브픽셀(SP)의 회로 구조의 예시를 나타낸 것으로서, 세 개의 서브픽셀(SP)이 하나의 픽셀(P)을 구성하는 경우를 나타낸다.
도 2를 참조하면, 디스플레이 패널(101)에 스캔 신호가 인가되는 게이트 라인(GL), 데이터 전압(Vdata)이 공급되는 데이터 라인(DL) 이외에 구동 전압(Vdd)이 공급되는 구동 전압 라인(DVL), 공통 전압(Vcom)이 공급되는 공통 전압 라인(CVL) 등이 배치될 수 있다.
그리고, 게이트 라인(GL)과 데이터 라인(DL)이 교차하는 영역에 레드(R), 그린(G), 블루(B) 색상을 나타내는 서브픽셀(SP)이 배치된다.
이러한 서브픽셀(SP) 각각에는 마이크로 발광 다이오드(μLED) 및 마이크로 발광 다이오드(μLED)를 구동하기 위한 하나 이상의 트랜지스터, 캐패시터 등이 배치될 수 있다.
일 예로, 제1 데이터 라인(DL1)과 게이트 라인(GL)이 교차하는 영역에 배치된 레드 서브픽셀(SP(R))에 레드(R) 광을 발산하는 마이크로 발광 다이오드(μLED)와, 마이크로 발광 다이오드(μLED)를 구동하는 제1 구동 트랜지스터(DRT1)와, 제1 구동 트랜지스터(DRT1)의 동작 타이밍을 제어하는 제1 스위칭 트랜지스터(SWT1)가 배치될 수 있다.
여기서, 제1 구동 트랜지스터(DRT1)는 도 2에 도시된 바와 같이 마이크로 발광 다이오드(μLED)의 애노드 전극에 연결될 수도 있으나, 마이크로 발광 다이오드(μLED)의 캐소드 전극에 연결될 수도 있다.
그리고, 제1 구동 트랜지스터(DRT1)의 게이트 전극과 소스 전극(또는 드레인 전극) 사이에는 하나의 영상 프레임 동안 데이터 전압(Vdata)을 유지시켜주기 위한 스토리지 캐패시터가 더 배치될 수도 있다.
게이트 라인(GL)을 통해 스캔 신호(Scan)가 인가되면 제1 스위칭 트랜지스터(SWT1)가 턴-온 되고, 제1 데이터 라인(DL)을 통해 공급된 제1 데이터 전압(Vdata1)이 제1 구동 트랜지스터(DRT1)의 게이트 전극에 인가된다. 그리고, 제1 데이터 전압(Vdata1)에 따라 구동 전압(Vdd)이 마이크로 발광 다이오드(μLED)의 애노드 전극으로 인가되며, 공통 전압(Vcom)이 마이크로 발광 다이오드(μLED)의 캐소드 전극으로 인가된다. 마이크로 발광 다이오드(μLED)는 애노드 전극과 캐소드 전극에 인가되는 전압 차에 따라 발광하며 밝기를 표현한다.
그린 서브픽셀(SP(G))과 블루 서브픽셀(SP(B))에 배치된 마이크로 발광 다이오드(μLED)도 동일한 방식으로 동작하며, 해당 서브픽셀(SP)이 그린(G)과 블루(B) 색상을 나타내도록 한다.
한편, 이러한 레드 서브픽셀(SP(R)), 그린 서브픽셀(SP(G)), 블루 서브픽셀(SP(B))에 배치된 마이크로 발광 다이오드(μLED)는 각각 별도의 웨이퍼 기판에서 성장되고 디스플레이 패널(101)에 전사되어 배치될 수 있다.
이하에서는 각각 별도의 웨이퍼 기판에서 성장되는 마이크로 발광 다이오드(μLED)의 수를 최소화 한 본 명세서의 일 실시예에 따른 공통전극층일체형 마이크로 발광 다이오드(μLED)의 구성에 대하여 자세히 설명하도록 한다.
도 3은 본 명세서의 일 실시예에 따른 LED 표시장치(100)의 픽셀의 구성을 설명하기 위한 개략적 단면도이다. 도 3을 참조하면 LED 표시장치(100)의 디스플레이 패널(101)은 제1 기판(110a)과 제2 기판(110b)을 포함할 수 있다.
제1 기판(110a)은 마이크로 발광 다이오드(μLED)인 제1 발광소자(160) 및 제2 발광소자(170)를 포함한다. 제1 발광소자(160)는 공통전극층(160a)과 일체형으로 하나의 단위 픽셀(P)은 적어도 하나의 제1 발광소자(160)를 포함할 수 있다. 한편, 제2 발광소자(170)는 별도의 반도체 기판에서 성장되어 전사공정을 통해 공통전극층(160a)상에 전사된 마이크로 발광 다이오드로 하나의 단위 픽셀(P)은 적어도 하나의 제2 발광소자(170)를 포함할 수 있다.
마이크로 발광 다이오드가 있는 제1 기판(110a)과 대향하는 제2 기판(110b)은 구동 트랜지스터인 제1 픽셀구동소자(150a) 및 제2 픽셀구동소자(150b)를 포함한다.
제1 기판(110a)과 제2 기판(110b)은 각각 별도로 제작되어 합착되는 구조일 수 있으며, 이를 위해 제1 기판(110a)과 제2 기판(110b)사이에 레진(Resin)과 같은 접착층이 충진될 수 있다.
이하에서는 제1 기판(110a)과 제2 기판(110b)에 포함된 각각의 구성에 대하여 조금더 자세히 설명하도록 한다.
제1 기판(110a)상에 공통전극층(160a)이 배치된다. 제1 기판(110a)은 실질적으로 반도체층을 성장시킬 수 있는 사파이어등의 기판으로 반도체층을 성장시키기 위한 버퍼층을 더 포함할 수 있다.
도시하지는 않았으나 상기 버퍼층은 저온 완충층으로 AlN 혹은 저온 GaN 등의 버퍼층일 수 있다. 제1 기판(110a)상에 있는 공통전극층(160a)은 n형 반도체층으로 실리콘(Si)이 도핑된 반도체층일 수 있다. 상술한 바와 같이 실리콘이 도핑된 n형 반도체층은 도체로서 공통전극층(160a)을 이룰 수 있게 된다.
공통전극층(160a)상에 제1 발광소자(160)가 배치된다. 제1 발광소자(160)는 GaN계 화합물 반도체를 pn접합 다이오드 형태로 성장시킨 구조로서 각각의 층은 밑의 층의 결정성을 이어받아 성장된층으로 제1 n형반도체층(161), 제1 활성층(162), 제1 p형반도체층(163)을 포함하고, 제1 p형반도체층(163)상에 제1 소자전극(164a)을 더 포함한다.
상술한바와 같이 제1 발광소자(160)는 제1 기판(110a)상에 공통전극층(160a)로부터 순차적으로 성장(에피성장)됨으로써 공통전극층(160a)상으로 전사하는 별도의 공정이 필요없다.
한편, 공통전극층(160a)상에 제2 발광소자(170)가 배치된다. 단위 픽셀(P)은 적어도 하나의 서브픽셀(SP)로 구성되는데, 각각의 서브픽셀(SP)은 서로 다른 파장의 빛을 발하도록 구성된다.
제2 발광소자(170)는 제1 발광소자(160)와 서로 다른 파장의 빛을 발하는 발광소자로서 별도의 반도체 성장 기판에서 성장된 후 공통전극층(160a)상에 전사공정을 통해 배치된다.
그러나 본 발명의 또 다른 실시예에서, 별도의 반도체 성장 기판에서 성장된 제2 발광소자(170)가 없는, 오직 복수의 제1 발광소자(160)만으로 단위 픽셀(P)을 구성하는 방법이 사용될 수 있으며, 이러한 경우 각각의 제1 발광소자(160)와 대응하는 색변환층이 더 포함될 수 있다. 별도의 반도체 성장 기판에서 성장된 발광소자를 사용하지 않는 경우 발광소자를 전사하는 전사공정이 전혀 필요 없을 수 있다.
제1 발광소자(160)는 사파이어 기판을 베이스로하는 제1 기판(110a)의 격자상수에 따라 성장된 발광소자일 수 있으며, 제2 발광소자(170)는 갈륨비소(GaAs) 기판을 베이스로 하는 별도의 반도체 성장 기판에서 성장된 발광소자일 수 있다.
제2 발광소자(170)는 제2 n형반도체층(171), 제2 활성층(172), 제2 p형반도체층(173)을 포함하고, 제2 p형반도체층(173)상에 제2 소자전극(174a)을 더 포함할 수 있고, 공통전극층(160a)과의 전기적 연결을 위해 제1 n형반도체층(171)상에 제3 소자전극(175a)을 더 포함할 수 있으며, 접착층(adh)에 의해 공통전극층(160a)상에 고정될 수 있다.
제2 발광소자(170)는 제3 연결전극(175)을 통해 공통전극층(160a)과 전기적인 연결을 이루는데, 제3 연결전극(175)은 제1 n형반도체층(171)상에 있는 제3 소자전극(175a)과 도전볼 등을 포함하는 제3 접합전극(175b)으로 구성될 수 있다.
한편, 공통전극층(160a)은 제1 발광소자(160)와 제2 발광소자(170) 각각에서 발광되는 빛의 혼색을 막기 위해 광가이드(180)를 더 포함할 수 있다. 광가이드(180)는 불투명하고 빛을 반사할 수 있는 도전성 금속등이 사용될 수 있으며 공통전극층(160a)의 표면을 식각한 후 상술한 금속물질등을 배치하여 구성될 수 있다.
또한, 혼색을 더욱 방지하기 위해 제1 발광소자(160)와 제2 발광소자(170) 사이에 배치된 블랙매트릭스(BM)을 더 포함할 수 있다.
상술한 구성에서 제1 n형반도체층(161), 제2 n형반도체층(171), 제1 p형반도체층(163) 및 제2 p형반도체층(173) 각각을 n형 반도체층 및 p형 반도체층으로 설명하겠으나 그 반대인 p형 반도체층 및 n형 반도체층 일 수 있다.
제1 p형반도체층(163) 및 제2 p형반도체층(173)은 각각 제1 활성층(162) 및 제2 활성층(172)상에 마련되어, 제1 활성층(162) 및 제2 활성층(172) 각각에 정공을 제공한다. 본 명세서의 일 실시예에 따른 제1 p형반도체층(163) 및 제2 p형반도체층(173)은 p-GaN계 반도체 물질로 이루어질 수 있으며, p-GaN계 반도체 물질로는 GaN, AlGaN, InGaN, 또는 AlInGaN 등이 될 수 있다. 여기서, 제1 p형반도체층(163) 및 제2 p형반도체층(173)의 도핑에 사용되는 불순물로는 Mg, Zn, 또는 Be 등이 이용될 수 있다.
제1 n형반도체층(161) 및 제2 n형반도체층(171)은 제1 활성층(162) 및 제2 활성층(172) 각각에 전자를 제공한다. 본 발명의 일 실시예에 따른 제1 n형반도체층(161) 및 제2 n형반도체층(171)은 n-GaN계 반도체 물질로 이루어질 수 있으며, n-GaN계 반도체 물질로는 GaN, AlGaN, InGaN, 또는 AlInGaN 등이 될 수 있다. 여기서, 제1 n형반도체층(161) 및 제2 n형반도체층(171)의 도핑에 사용되는 불순물로는 Si, Ge, Se, Te, 또는 C 등이 사용될 수 있다.
제1 활성층(162) 및 제2 활성층(172)은 제1 n형반도체층(161) 및 제2 n형반도체층(171)상에 마련된다. 이러한 제1 활성층(162) 및 제2 활성층(172)은 발광층으로 우물층과 우물층보다 밴드 갭이 높은 장벽층을 갖는 다중 양자 우물(MQW; Multi Quantum Well) 구조를 갖는다. 본 발명의 일 실시예에 따른 제1 활성층(162) 및 제2 활성층(172)은 InGaN/GaN 등의 다중 양자 우물 구조를 가질 수 있다.
본 발명의 일 실시예에 따른 제1소자전극(164a), 제2소자전극(174a) 및 제3소자전극(175a) 각각은 Au, W, Pt, Si, Ir, Ag, Cu, Ni, Ti, 또는 Cr 등의 금속 물질 및 그 합금 중 하나 이상을 포함한 물질로 이루어질 수 있으나 이에 한정되지 않는다.
상술한 바와 같이 본 명세서의 일 실시예에 따르면, 제2 기판(110b)은 구동 트랜지스터인 제1 픽셀구동소자(150a) 및 제2 픽셀구동소자(150b)를 포함한다.
제1 픽셀구동소자(150a) 및 제2 픽셀구동소자(150b) 각각은 액티브층(151), 게이트전극(152), 소스전극(153) 및 드레인전극(154)을 포함한다. 본 명세서의 일 실시예에 따른 제1 픽셀구동소자(150a) 및 제2 픽셀구동소자(150b) 각각은 폴리 실리콘 물질을 액티브층(151)으로 하는 박막트랜지스터로서 저온 폴리실리콘(Low Temperature Poly-Silicon; LTPS)을 이용한 LTPS 박막트랜지스터가 사용된다.
폴리실리콘 물질은 이동도가 높아 에너지 소비 전력이 낮고 신뢰성이 우수하다. LTPS 박막트랜지스터(이하 박막트랜지스터, 제1 픽셀구동소자(150a) 및 제2 픽셀구동소자(150b))의 액티브층(151)은 박막트랜지스터 구동 시 채널이 형성되는 채널영역(151a), 채널영역(151a) 양 측의 소스영역(151b) 및 드레인영역(151c)을 포함한다.
채널영역(151a), 소스영역(151b) 및 드레인영역(151c)은 이온도핑(불순물 도핑)에 의해 정의된다. 액티브층(151)상에 게이트절연층(111)이 배치되는데, 게이트절연층(111)은 질화실리콘(SiNx) 또는 산화실리콘(SiOx)의 단일층으로 구성되거나, 질화실리콘(SiNx) 및 산화실리콘(SiOx)으로 이루어진 다중층으로 구성될 수 있다.
게이트절연층(111) 상에는 게이트전극(152)이 액티브층(151)의 채널영역(151a)과 중첩되도록 대응하여 위치한다. 게이트전극(152)은 저저항 특성을 갖는 알루미늄(Al), 알루미늄 합금(AlNd), 구리(Cu), 구리합금, 몰리브덴(Mo), 몰리티타늄(MoTi) 중 어느 하나로 이루어져 단일층 구조를 가질 수 있으며, 또는 둘 이상으로 이루어짐으로써 이중층 또는 삼중 층 구조를 가질 수도 있다.
이어서, 게이트전극(152) 상부로 제1 절연층(112)이 배치되는데, 제 1 층간절연층(112)은 질화실리콘(SiNx)으로 이루어지도록 하여, 액티브층(151)을 안정화시키기 위한 수소화 공정 시, 질화실리콘(SiNx)으로 이루어지는 제1 절연층(112)에 포함된 수소가 액티브층(151)으로 확산되도록 하는 것이 바람직하다.
제1 절연층(112) 상부로는 보호층(113)이 위치하는데, 보호층(113)은 제1 절연층(112)과 동일 물질로 이루어질 수 있으며, 또는 평탄화를 위하여 유기절연물질로 이루어질 수도 있다.
예를 들어 보호층(113)은 아크릴계 수지(polyacrylates resin), 에폭시 수지(epoxy resin), 페놀 수지(phenolicresin), 폴리아미드계 수지(polyamides resin), 폴리이미드계 수지(polyimides resin), 불포화 폴리에스테르계수지(unsaturated polyesters resin), 폴리페닐렌계 수지(poly-phenylenethers resin), 폴리페닐렌설파이드계수지(polyphenylenesulfides resin) 및 벤조사이클로부텐(benzocyclobutene) 중 하나 이상의 물질로 형성될 수 있으나, 이에 한정되지 않는다. 보호층(117)은 단층으로 형성되거나 이중 혹은 다중 층으로 구성될 수 있다.
제1 절연층(112)상에 소스영역(151b) 및 드레인영역(151c)각각과 연결된 소스전극(153) 및 드레인전극(154)이 배치된다. 소스전극(153) 및 드레인전극(154) 또한 저저항 특성을 같는 알루미늄(Al), 알루미늄 합금(AlNd), 구리(Cu), 구리 합금, 몰리브덴(Mo), 몰리티타늄(MoTi), 크롬(Cr), 티타늄(Ti) 중 어느 하나 또는 둘 이상의 물질로서 이루어진다.
보호층(113)상에는 제1 및 제2 화소전극(155a, 155b)이 배치된다. 제1 및 제2 화소전극(155a, 155b)은 알루미늄(Al)과 티타늄(Ti)의 적층 구조(Ti/Al/Ti), 알루미늄(Al)과 ITO의 적층 구조(ITO/Al/ITO), APC 합금(Ag/Pd/Cu), 및 APC 합금과 ITO의 적층 구조(ITO/APC/ITO)와 같은 반사율이 높은 금속물질로 형성될 수 있다.
상술한 설명에서, 제1 발광소자(160)상에 제1 픽셀구동소자(150a)와의 전기적 연결을 위해 제1 연결전극(164)이 배치될 수 있다. 제1 연결전극(164)은 제1 소자전극(164a) 및 도전볼을 포함하는 제1 접합전극(164b)를 포함할 수 있으며 제1 화소전극(155a)과 전기적으로 연결되어 제1 픽셀구동소자(150a)와 전기적으로 연결된다.
한편, 제2 발광소자(170)상에 제2 픽셀구동소자(150b)와의 전기적 연결을 위해 제2 연결전극(174)이 배치될 수 있다. 제2 연결전극(174)은 제2 소자전극(174a) 및 도전볼을 포함하는 제2 접합전극(174b)를 포함할 수 있으며 제2 화소전극(155b)과 전기적으로 연결되어 제1 픽셀구동소자(150a)와 전기적으로 연결된다.
도 4는 본 명세서의 일 실시예에 따른 LED 표시장치(100)의 제조방법을 설명하기 위한 개략적 순서도이다.
제1 기판은 반도체를 성장시킬 수 있는 사파이어 웨이퍼 기판일 수 있다. 제1 기판상에 nGaN계열의 공통전극층을 형성하고 연속적으로, 제1 n형 반도체층, 제1 활성층 및 제1 p형 반도체층을 포함하는 제1 발광소자를 제1 기판상에서 에피성장시키는 단계(S110)를 수행한다. 제1 발광소자는 에피성장된 반도체층을 식각하여 개별 발광소자로 구성할 수 있다. 이때, 제1 기판상에 격자상수를 완충하는 버퍼층을 형성하는 단계를 더 포함할 수 있다.
한편, 제2 기판상에 제1 픽셀구동소자 및 제2 픽셀구동소자를 배치하는 단계(S120)를 수핸한다. 제1 픽셀구동소자 및 제2 픽셀구동소자는 박막트랜지스터로서 픽셀을 구동하기 위한 구동회로와 전기적으로 연결되도록 배치한다.
이어서, 제1 기판상에 있는 상기 공통전극층 상에 제2 n형 반도체층, 제2 활성층 및 제2 p형 반도체층이 있는 제2 발광소자를 전사하는 단계(S130)를 수행한다. 제2 발광소자는 별도의 반도체 성장기판에서 성장된 발광소자일 수 있으며, 전사공정을 통해 공통전극층 상에 배치하며 이때, 접착층 및 연결전극을 배치하고 접합하는 단계를 더 포함할 수 있다.
이어서, 상기 제1 기판과 상기 제2 기판을 접합하는 단계(S140);를 수행하는데, 상기 제1 기판과 상기 제2 기판을 접합하는 단계에 있어서, 1 연결전극을 배치하여 상기 제1 p형 반도체층과 상기 제1 픽셀구동소자를 전기적으로 연결하는 단계 및 제2 연결전극을 배치하여 상기 제2 p형 반도체층과 상기 제2 픽셀구동소자를 전기적으로 연결하는 단계(S150);를 수행하여 LED 표시장치를 구성하도록 한다. 이와 같이 제1 기판상의 공통전극층 및 제1 발광소자를 성장시키어 발광소자로 사용하는 제조방법을 사용함으로써 발광소자를 전사하는 전사공정이 최소화된 LED 표시장치 제조방법을 제공할 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 더욱 상세하게 설명하였으나, 본 발명은 반드시 이러한 실시예로 국한되는 것은 아니고, 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형 실시될 수 있다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 보호 범위는 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (16)

  1. 제1 기판상에 있는 공통전극층;
    제1 픽셀구동소자 및 제2 픽셀구동소자가 있는 제2 기판;
    상기 공통전극층 상에 배치되고 제1 n형 반도체층, 제1 활성층 및 제1 p형 반도체층을 포함하는 제1 발광소자;
    상기 공통전극층 상에 있고 제2 n형 반도체층, 제2 활성층 및 제2 p형 반도체층이 있는 제2 발광소자;
    상기 제1 p형 반도체층과 상기 제1 픽셀구동소자를 전기적으로 연결하는 제1 연결전극; 및
    상기 제2 p형 반도체층과 상기 제2 픽셀구동소자를 전기적으로 연결하는 제2 연결전극; 을 포함하고,
    상기 공통전극층과 상기 제1 n형 반도체층은 동일한 물질로 직접적인 연결관계를 갖고,
    상기 공통전극층과 상기 제2 n형 반도체층을 전기적으로 연결하는 제3 연결전극을 포함하는 LED 표시장치.
  2. 제1 항에 있어서,
    상기 공통전극층은 상기 제1 기판 전면에 배치된 LED 표시장치.
  3. 제1 항에 있어서,
    상기 제1 활성층과 상기 제2 활성층은 서로다른 파장의 빛을 발하도록 구성된 LED 표시장치.
  4. 제1 항에 있어서,
    상기 제1 활성층은 블루 또는 그린의 파장의 빛을 발하도록 구성된 LED 표시장치.
  5. 제1 항에 있어서,
    상기 제1 기판과 상기 공통전극사이에 두층간의 격자상수를 완충하는 버퍼층을 더 포함하고,상기 공통전극은 상기 제1 기판상에서 에피택시(epitaxy) 기법으로 성장된 LED 표시장치.
  6. 제1 항에 있어서,
    상기 제1 기판은 사파이어 기판인 LED 표시장치.
  7. 제1 항에 있어서,
    상기 공통전극은 Si도핑된 nGaN층인 LED 표시장치.
  8. 제1 항에 있어서,
    상기 제1 발광소자와 상기 제2 발광소자 사이를 충진하는 블랙매트릭스를 더 포함하는 LED 표시장치.
  9. 제1 항에 있어서,
    상기 공통전극은 상기 제1 발광소자 및 상기 제2 발광소자사이에 혼색방지층을 더 포함하는 LED 표시장치.
  10. 제9 항에 있어서,
    상기 혼색방지층은 광가이드층으로 빛을 반사하는 도전물질로 구성된 LED 표시장치.
  11. 제1 항에 있어서,
    상기 공통전극층상에 제3 발광소자를 더 포함하고, 상기 제1 발광소자, 상기 제2 발광소자 및 상기 제3 발광소자는 서로 다른 파장의 빛을 발광하는 LED 표시장치.
  12. 제1 기판상에 공통전극층을 형성하고 연속적으로, 제1 n형 반도체층, 제1 활성층 및 제1 p형 반도체층을 포함하는 제1 발광소자를 성장시키는 단계;
    제2 기판상에 픽셀구동소자 및 제2 픽셀구동소자를 배치하는 단계;
    상기 공통전극층 상에 제2 n형 반도체층, 제2 활성층 및 제2 p형 반도체층이 있는 제2 발광소자를 전사하는 단계; 및
    상기 제1 기판과 상기 제2 기판을 접합하는 단계;
    제1 연결전극을 배치하여 상기 제1 p형 반도체층과 상기 제1 픽셀구동소자를 전기적으로 연결하는 단계 ; 및
    제2 연결전극을 배치하여 상기 제2 p형 반도체층과 상기 제2 픽셀구동소자를 전기적으로 연결하는 단계; 를 포함하는 LED 표시장치 제조방법.
  13. 제12 항에 있어서,
    제1 기판상에 공통전극층을 형성하고제1 발광소자를 성장시키는 단계는
    제1 기판상에 연속적으로 반도체층을 성장시키고, 식각하는 과정을 통해 제1 발광소자를 형성하는 단계를 포함하는 LED 표시장치 제조방법.
  14. 제12 항에 있어서,
    제1 기판상에 공통전극을 형성하는 단계는 제1 기판상에 격자상수를 완충하는 버퍼층을 형성하는 단계를 더 포함하는 LED 표시장치 제조방법.
  15. 제12 항에 있어서,
    상기 공통전극층 상에 제2 발광소자를 전사하는 단계는,
    제3 기판을 통해 성장시킨 제2 발광소자를 제공하는 단계: 및
    공통전극층 상에 접착층을 배치하고 제2 발광소자를 접합하는 단계를 더 포함하는 LED 표시장치 제조방법.
  16. 제12 항에 있어서,
    상기 공통전극층 상에 제2 발광소자를 전사하는 단계는 제3 연결전극을 배치하여 공통전극층과 제2 발광소자를 전기적으로 연결하는 단계를 더 포함하는 LED 표시장치 제조방법.
PCT/KR2020/015844 2019-12-26 2020-11-12 Led 표시장치 및 이의 제조방법 WO2021132881A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080090124.7A CN114902408A (zh) 2019-12-26 2020-11-12 Led显示设备及其制造方法
US17/789,102 US20230037052A1 (en) 2019-12-26 2020-11-12 Led display apparatus and manufacturing method of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190175014A KR20210082754A (ko) 2019-12-26 2019-12-26 Led 표시장치 및 이의 제조방법
KR10-2019-0175014 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021132881A1 true WO2021132881A1 (ko) 2021-07-01

Family

ID=76574909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015844 WO2021132881A1 (ko) 2019-12-26 2020-11-12 Led 표시장치 및 이의 제조방법

Country Status (4)

Country Link
US (1) US20230037052A1 (ko)
KR (1) KR20210082754A (ko)
CN (1) CN114902408A (ko)
WO (1) WO2021132881A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113725315B (zh) * 2021-09-02 2023-10-20 上海交通大学 基于Micro-LED的片上传感集成装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170338199A1 (en) * 2015-05-21 2017-11-23 Goertek, Inc. Transferring Method, Manufacturing Method, Device and Electronic Apparatus of Micro-LED
KR20180052977A (ko) * 2016-11-11 2018-05-21 순천대학교 산학협력단 마이크로 픽셀 어레이 발광다이오드 및 이를 포함하는 조명 장치
KR101890582B1 (ko) * 2017-12-14 2018-08-22 엘지디스플레이 주식회사 발광 다이오드 칩, 마이크로 디스플레이 장치
KR20190076673A (ko) * 2017-12-22 2019-07-02 엘지디스플레이 주식회사 발광소자, 표시패널 및 표시장치
KR20190117968A (ko) * 2018-04-09 2019-10-17 (주)라이타이저 디스플레이 장치 및 그의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170338199A1 (en) * 2015-05-21 2017-11-23 Goertek, Inc. Transferring Method, Manufacturing Method, Device and Electronic Apparatus of Micro-LED
KR20180052977A (ko) * 2016-11-11 2018-05-21 순천대학교 산학협력단 마이크로 픽셀 어레이 발광다이오드 및 이를 포함하는 조명 장치
KR101890582B1 (ko) * 2017-12-14 2018-08-22 엘지디스플레이 주식회사 발광 다이오드 칩, 마이크로 디스플레이 장치
KR20190076673A (ko) * 2017-12-22 2019-07-02 엘지디스플레이 주식회사 발광소자, 표시패널 및 표시장치
KR20190117968A (ko) * 2018-04-09 2019-10-17 (주)라이타이저 디스플레이 장치 및 그의 제조 방법

Also Published As

Publication number Publication date
CN114902408A (zh) 2022-08-12
KR20210082754A (ko) 2021-07-06
US20230037052A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
WO2017126762A1 (en) Display device using semiconductor light emitting device
WO2019223567A1 (zh) 显示基板、显示装置以及显示基板的制作方法
WO2019124684A1 (en) Micro light emitting diode(led) display device
JP2019191573A (ja) 表示装置及びその製造方法
WO2021149861A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2017073865A1 (en) Display device using semiconductor light emitting device and method for manufacturing the same
WO2021149856A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2020130521A1 (en) Display device using semiconductor light emitting device and method for manufacturing the same
WO2016122125A1 (en) Display device using semiconductor light emitting devices and method for manufacturing the same
WO2016133250A1 (en) Display device using semiconductor light emitting devices
WO2020222557A1 (en) Light emitting diode element, method of manufacturing light emitting diode element, and display panel including light emitting diode element
WO2021107271A1 (ko) 마이크로 엘이디를 이용한 디스플레이 장치
WO2020085677A1 (ko) 반도체 발광소자의 자가조립 장치 및 방법
WO2021149862A1 (ko) 반도체 발광소자의 자가조립 장치 및 방법
WO2020085678A1 (en) Display device using semiconductor light emitting device and method for manufacturing the same
KR20190051824A (ko) 발광 소자, 디스플레이 집적 회로 및 마이크로 디스플레이 장치
WO2020096314A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2021112555A1 (ko) 표시 장치
WO2018182108A1 (en) Display device using semiconductor light emitting device
WO2021107278A1 (ko) 표시 장치 및 표시 장치 제조 방법
WO2019203403A1 (ko) 반도체 발광소자의 자가조립 장치 및 방법
WO2020256250A1 (ko) 마이크로 엘이디를 이용한 디스플레이 장치
WO2021137404A1 (ko) 표시장치
WO2021132881A1 (ko) Led 표시장치 및 이의 제조방법
WO2020036385A1 (en) Display device using semiconductor light emitting diode and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906720

Country of ref document: EP

Kind code of ref document: A1