WO2021132239A1 - Method for producing indene - Google Patents
Method for producing indene Download PDFInfo
- Publication number
- WO2021132239A1 WO2021132239A1 PCT/JP2020/047943 JP2020047943W WO2021132239A1 WO 2021132239 A1 WO2021132239 A1 WO 2021132239A1 JP 2020047943 W JP2020047943 W JP 2020047943W WO 2021132239 A1 WO2021132239 A1 WO 2021132239A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- indene
- zeolite
- zeolite catalyst
- atom
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C13/00—Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
- C07C13/28—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
- C07C13/32—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
- C07C13/45—Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with a bicyclo ring system containing nine carbon atoms
- C07C13/465—Indenes; Completely or partially hydrogenated indenes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/32—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
- C07C5/327—Formation of non-aromatic carbon-to-carbon double bonds only
- C07C5/333—Catalytic processes
Definitions
- the present invention relates to a method for producing indene.
- Inden is an industrially useful substance as a raw material for kumaron-indene resin and optical resin.
- a method for producing indene a method of recovering indene from a coal tar fraction is known, but the coal tar fraction contains many impurities such as benzonitrile and benzofuran, and the separation and recovery method by distillation is used. In particular, it is difficult to separate benzofurans with similar boiling points to obtain high-purity indene.
- a method for producing high-purity indene a method by a direct dehydrogenation reaction of tetrahydroindene is known (Patent Documents 1 to 3).
- a zeolite catalyst and the like are known (Patent Document 4).
- An object of the present invention is to provide a method for stably producing indene in a high yield for a long period of time using a zeolite catalyst as a new method for producing indene.
- indene can be stably produced from a raw material composition containing indane in a high yield for a long period of time by using a specific zeolite catalyst. We have found that we can do this, and have completed the present invention.
- One aspect of the present invention relates to a method for producing indene, which comprises a dehydrogenation step of bringing a raw material composition containing indane into contact with a zeolite catalyst having an MFI structure to obtain a reaction product containing indene.
- the zeolite catalyst contains at least one metal atom selected from a transition metal or a post-transition metal in the zeolite skeleton, and has Lewis acidity and strong solid basicity.
- the metal atom is one or more selected from Zn atom, Fe atom, and Ni atom, and the content of the metal atom may be 1 to 15 atom% with respect to the Si atom.
- the zeolite catalyst may not contain an alkali metal or may contain 1 atom% or less of an alkali metal with respect to the Si atom of the zeolite skeleton.
- the zeolite catalyst may be a catalyst on which a Pt atom is supported.
- the raw material composition may further contain at least one or more of octahydroindene and hexahydroindene.
- the raw material composition may further contain molecular hydrogen.
- the production method according to one embodiment may further include a raw material synthesis step for obtaining indane by a dehydrogenation reaction of tetrahydroindene.
- the present invention as a new method for producing inden, it is possible to provide a method for stably producing inden in a high yield for a long period of time using a zeolite catalyst.
- the method for producing indene according to the present embodiment includes a dehydrogenation step of bringing a raw material composition containing indane into contact with a zeolite catalyst having an MFI structure to obtain a reaction product containing indene. According to the production method according to the present embodiment, by adopting a specific zeolite catalyst, indene can be stably produced in a high yield for a long period of time.
- the zeolite catalyst according to the present embodiment contains at least one metal atom selected from a transition metal or a post-transition metal in the zeolite skeleton, and has Lewis acidity and strong solid basicity.
- the zeolite catalyst according to the present embodiment Bronsted acid is hardly present in the zeolite catalyst, and only Lewis acid is present. In general, it is known that the amount of by-products of the dehydrogenation reaction increases or decreases depending on the presence of Bronsted acid, but since the zeolite catalyst according to the present embodiment contains almost no Bronsted acid. , Side reactions can be controlled, and the generation of by-products can be suppressed.
- the zeolite catalyst according to the present embodiment for the production of inden for example, it is conceivable that side reactions are suppressed and the inden selectivity is improved, coke generation due to polymerization of decomposition by-products is suppressed, and the like.
- inden can be stably produced over a long period of time. Further, since the zeolite catalyst according to the present embodiment has the active sites of the dehydrogenation reaction arranged in a high dispersion, the zeolite catalyst according to the present embodiment is used for the production of indene, so that the indene can be produced in a high yield. Can be manufactured.
- zeolite is a crystal in which TO 4 units (T is the central atom) having a tetrahedral structure share an O atom and are three-dimensionally connected to form open regular micropores. It means a sex substance.
- the transition metal means a metal belonging to the Group 3 to Group 12 elements of the periodic table in the periodic table of long-periodic elements based on the provisions of the IUPAC (International Union of Pure and Applied Chemistry).
- the post-transition metal means a base metal having an atomic number after the transition metal of the 4th, 5th, and 6th periods of the periodic table in the periodic table.
- the inclusion of metal atoms in the zeolite skeleton means that the metal atoms are introduced into the zeolite skeleton in the same manner as silicon (Si) by a method of mixing the metal atoms as a raw material for hydrothermal synthesis.
- the states containing metal atoms in the zeolite skeleton include, for example, XRD (X-ray Diffraction), NMR (Nuclear Magnetic Resonance spectroscopy), FT-IR (Fourier Transform Infrared Spectroscopy), XPS (X-ray Photoelectron Spectroscopy) and It can be grasped by various measurement methods such as ESCA (Electron Spectroscopy for Chemical Analysis).
- Lewis acidity means the property of being able to accept unshared electron pairs, and means that, for example, when pyridine is adsorbed on a zeolite catalyst and FT-IR analysis is performed, an absorption band is detected in the vicinity of 1450 cm -1. To do.
- Solid basicity means that the surface of the zeolite catalyst is basic.
- strong solid basic means that strong basicity of the surface of the zeolite catalyst, for example, TPD (Temperature Programmed Desorption) upon CO 2 -TPD analyzed by the analyzer, the zeolite to a high temperature range of not lower than 500 ° C. It means that the peak derived from the catalyst is detected.
- the zeolite catalyst according to this embodiment is a zeolite having a 10-membered ring structure and has an MFI structure.
- Zeolites having an MFI structure are not particularly limited, but are preferably crystalline metallosilicates.
- the zeolite having an MFI structure means a zeolite corresponding to MFI in the structure code stored in the database by the International Zeolite Association. It can be confirmed by, for example, X-ray diffraction that the zeolite is a zeolite having a 10-membered ring structure, particularly an MFI structure.
- the metal atom contained in the zeolite skeleton is not particularly limited as long as it is a transition metal atom or a post-transition metal atom, and for example, titanium (Ti), vanadium (V), iron (Fe), cobalt (Co), nickel ( Ni), copper (Cu), zinc (Zn), gallium (Ga), zirconium (Zr), indium (In) and the like can be used.
- titanium (Ti), vanadium (V), iron (Fe), cobalt (Co), nickel ( Ni), copper (Cu), zinc (Zn), gallium (Ga), zirconium (Zr), indium (In) and the like can be used.
- zinc (Zn), nickel (Ni), and iron (Fe) are preferably used from the viewpoint of excellent reactivity in the dehydrogenation reaction.
- the metal atom contained in the zeolite skeleton one kind may be used alone, or two or more kinds may be used.
- the content of the metal atom contained in the zeolite skeleton is not particularly limited, but is preferably 1 to 15 atom% and more preferably 2 to 10 atom% with respect to the silicon (Si) atom.
- the content of the metal atom contained in the zeolite skeleton is at least the lower limit of the above range, the solid basicity of the zeolite catalyst becomes strong, and the reactivity of the dehydration reaction of indane is excellent.
- the content of the metal atom contained in the zeolite skeleton is not more than the upper limit of the above range, the reaction efficiency of the dehydrogenation reaction of indane with respect to the metal content is excellent, which is preferable.
- the content of the alkali metal contained in the zeolite catalyst is preferably not containing the alkali metal or is preferably 1 atom% or less, and more preferably 0.1 atom% or less with respect to the Si atom.
- it is not more than the above upper limit value it is preferable because the reactivity of the dehydrogenation reaction of indene can be maintained high while promoting the crystallization of zeolite.
- the zeolite catalyst may further contain a molding aid as long as it does not deviate from the gist of the present invention.
- the molding aid may be, for example, at least one selected from the group consisting of thickeners, surfactants, water retention agents, plasticizers, binder raw materials and the like.
- the molding step of molding the zeolite catalyst may be performed at an appropriate stage in the manufacturing process of the zeolite catalyst in consideration of the reactivity of the molding aid.
- the zeolite catalyst may be a catalyst in which platinum is supported on a carrier using a platinum (Pt) source.
- platinum platinum
- the platinum source include tetraammine platinum (II) acid, tetraammine platinum (II) acid salt (for example, nitrate), tetraammine platinum (II) acid hydroxide solution, dinitrodiammine platinum (II) nitric acid solution, and hexahydroxo.
- platinum it is preferable to use a metal source containing no chlorine atom. By using a metal source that does not contain chlorine atoms, corrosion of the device can be suppressed and indane can be dehydrogenated more efficiently.
- the content of platinum in the zeolite catalyst is usually 0.05 to 2.5 wt% based on the total amount of the zeolite catalyst.
- the amount of platinum carried is preferably 0.1 wt% or more based on the total amount of the zeolite catalyst.
- the amount of platinum supported is preferably 2.0 wt% or less based on the total amount of the zeolite catalyst. With such a loading amount, the platinum surface area per unit platinum weight becomes large, so that a more efficient reaction system can be realized.
- a catalyst that has been reduced as a pretreatment may be used as the zeolite catalyst.
- the reduction treatment can be carried out, for example, by holding the zeolite catalyst at 40 to 600 ° C. in an atmosphere of a reducing gas.
- the holding time may be, for example, 0.05 to 24 hours.
- the reducing gas may be, for example, a gas containing hydrogen, carbon monoxide, or the like.
- the zeolite catalyst in the present embodiment can be prepared by treating a combination of a silica gel aging step, a hydrothermal synthesis step, and a firing step. This allows the zeolite catalyst to be prepared without the use of alkali metals, boron or aluminum.
- a silica source, an organic structure defining agent (OSDA), and water are mixed and aged (stirred) at 100 ° C. or lower for 10 hours or more. Then, after mixing the transition metal atom or the post-transition metal atom as a metal source, hydrothermal synthesis is performed at 100 ° C. or higher, and then firing is performed at 500 ° C. or higher for 5 hours or longer.
- OSDA organic structure defining agent
- the method for supporting platinum is not particularly limited, and for example, an impregnation method, a deposition method, a coprecipitation method, a kneading method, an ion exchange method, a pore filling method and the like can be used.
- a hydrolyzable silicon compound such as silicon alcoholate, silane, silicon tetrachloride, or water glass
- the organic structure defining agent is not particularly limited as long as a zeolite having an MFI structure can be obtained, and for example, a quaternary alkylammonium salt, an amine or the like can be used.
- the organic structure defining agent one kind may be used alone, or two or more kinds may be mixed and used.
- a step of washing the synthetic reaction product with water before firing the synthetic reaction product obtained after hydrothermal synthesis at 500 ° C. or higher for 5 hours or more is further performed. It is preferable to include it. By including the step of washing with water, the influence of alkali such as sodium on the zeolite catalyst can be reduced.
- the above-mentioned method is an example of a suitable production example for preparing a zeolite catalyst without using alkali metal, boron or aluminum, but the production method of the present embodiment does not deviate from the gist of the present invention.
- the production method of the present embodiment does not deviate from the gist of the present invention.
- it does not limit the use of alkali metals, boron or aluminum.
- an alkali metal may be mixed as long as it does not deviate from the gist of the present invention.
- the alkali metal By mixing the alkali metal, crystallization of the zeolite is promoted, and there is a tendency that a zeolite catalyst having an MFI structure in which a transition metal atom or a post-transition metal atom is introduced into the zeolite skeleton can be easily obtained.
- the alkali metal include sodium (Na), potassium (K), rubidium (Rb) and the like. Of these, sodium (Na) is preferred.
- the mixing amount of the alkali metal as described above, it is preferable to mix an amount of 1 atom% or less with respect to the Si atom in the zeolite catalyst.
- a transition metal atom or a post-transition metal atom is introduced into the skeleton of zeolite, and a zeolite catalyst in which active sites are highly dispersed can be obtained. Furthermore, it is possible to obtain a zeolite catalyst having a strong solid basicity in which Bronsted acid is almost absent and only Lewis acid is present.
- the raw material composition containing indane is brought into contact with the above-mentioned zeolite catalyst. As a result, a dehydrogenation reaction of indane occurs, and a reaction product containing indene is obtained.
- the raw material composition may contain at least indane, but it is preferable that at least one of octahydroindene and hexahydroindene is further contained. Since the zeolite catalyst according to the present embodiment has excellent reactivity in the dehydrogenation reaction, indene can be efficiently produced by containing at least one of octahydroindene and hexahydroindene.
- Octahydroindene has two isomers, a cis form and a trans form, and hexahydroindene has a plurality of isomers having different double bond positions.
- Hexahydroindene has a structure in which one molecule of hydrogen is dehydrogenated from octahydroindene, so that it is easily dehydrogenated and indene is likely to occur.
- the origin of production of indane, octahydroindene and hexahydroindene (hereinafter, may be referred to as "indane mixture”) is not particularly limited.
- tetrahydroindene may be obtained by a dehydrogenation reaction.
- a mixture in which compounds other than the indane mixture resulting from the production method are arbitrarily mixed may be used as it is, or a purified product may be used.
- the mixing ratio of indane, octahydroindene, and hexahydroindene is not particularly limited, and for example, the mixing ratio depends on the ratio due to the production method. May be.
- the mixing ratio (wt%) of indane and hexahydroindene is preferably 40 to 90: 1 to 60.
- the mixing ratio of indane, octahydroindene, and hexahydroindene can be measured using a gas chromatograph analyzer.
- the raw material composition may further contain an indane or a compound other than the indane mixture.
- the raw material composition may further contain, for example, an inert gas such as nitrogen or argon, steam, molecular hydrogen, oxygen, carbon monoxide, carbon dioxide, alkanes, olefins and the like.
- the raw material composition preferably contains molecular hydrogen from the viewpoint of improving the reaction efficiency in the dehydrogenation reaction of indane.
- an inert gas such as nitrogen or argon, steam, molecular hydrogen, oxygen, carbon monoxide, carbon dioxide, alkanes, olefins and the like.
- the raw material composition preferably contains molecular hydrogen from the viewpoint of improving the reaction efficiency in the dehydrogenation reaction of indane.
- the coexistence of molecular hydrogen reduces the yield from the viewpoint of thermodynamic equilibrium constraint.
- the present inventors have found that when the zeolite catalyst of the present embodiment is used, the reaction efficiency in the dehydrogenation reaction of indane or an indane mixture can be improved by intentionally coexisting with molecular hydrogen. It was. Therefore, the raw material composition preferably contains molecular hydrogen.
- the mole fraction of the indane or the indane mixture in the raw material composition is preferably 0.1 or more, and more preferably 0.2 or more.
- the upper limit of the molar fraction of indane or the indane mixture in the raw material composition is not particularly limited, but may be, for example, 0.95 or less, preferably 0.9 or less.
- the molar ratio of molecular hydrogen to the indan or indan mixture is preferably 10.0 or less in the raw material composition. It is more preferable that it is 7.0 or less. As a result, the influence of the thermodynamic equilibrium constraint is reduced, and the dehydrogenation reaction tends to proceed more efficiently.
- the molar ratio of molecular hydrogen to the indane or indane mixture in the raw material composition is preferably 0.01 or more, more preferably 0.05 or more. As a result, the presence of molecular hydrogen can suppress the formation of cork on the catalyst, improve the durability of the catalyst, and obtain indene in a high yield.
- the total content of the indane or the indane mixture and other compounds other than the molecular hydrogen is, for example, 10.0 times mol or less with respect to the indane or the indane mixture. It is preferably 5.0 times or less the molar amount of indane or an indane mixture, and may be 0.
- a reactor filled with a zeolite catalyst may be used, and the dehydrogenation reaction may be carried out by flowing a raw material gas through the reactor.
- the reactor various reactors used for the gas phase reaction using a solid catalyst can be used. Examples of the reactor include a fixed bed adiabatic reactor, a radial flow reactor, a tubular reactor and the like.
- the reaction type of the dehydrogenation reaction may be, for example, a fixed bed type, a moving bed type or a fluidized bed type. Of these, the fixed floor type is preferable from the viewpoint of equipment cost.
- the temperature at which the raw material composition is brought into contact with the zeolite catalyst (which may also be the reaction temperature of the dehydrogenation reaction or the temperature inside the reactor) may be, for example, 350 to 800 ° C. from the viewpoint of reaction efficiency. , 400 to 700 ° C., and may be 450 ° C. to 650 ° C.
- the reaction temperature is 350 ° C. or higher, the equilibrium conversion rate of indane or an indane mixture does not become too low, so that the yield of indene tends to be further improved.
- the reaction temperature is 800 ° C. or lower, the rate of cork formation is suppressed, and the high activity of the zeolite catalyst can be maintained for a longer period of time.
- the pressure at which the raw material composition is brought into contact with the zeolite catalyst (which can also be referred to as the reaction pressure of the dehydrogenation reaction or the pressure inside the reactor) may be, for example, 0.01 to 4.0 MPa, and may be 0. It may be 03 to 0.5 MPa, and may be 0.05 to 0.3 MPa. If the reaction pressure is within the above range, the dehydrogenation reaction tends to proceed easily, and a more excellent reaction efficiency tends to be obtained.
- the mass space velocity (hereinafter, may be referred to as “WHSV”) may be 0.01 h -1 or more. It may be 0.1h -1 or more. When the WHSV is equal to or higher than the above lower limit value, the conversion rate of indane can be further increased. Further, the WHSV may be 100h -1 or less, and may be 20h -1 or less. When the WHSV is equal to or less than the above upper limit value, the reactor size can be further reduced.
- WHSV is the ratio (F / W) of the supply rate (supply amount / hour) F of the raw material to the mass W of the zeolite catalyst in the continuous reactor.
- the amount of the raw material and the catalyst used may be appropriately selected in a more preferable range depending on the reaction conditions, the activity of the catalyst, and the like, and WHSV is not limited to the above range.
- the production method according to the present embodiment may further include a raw material synthesis step of obtaining indane or an indane mixture by a dehydrogenation reaction of tetrahydroindene. It has a production method having a first dehydrogenation step of obtaining an indane mixture by dehydrogenating tetrahydroindene and a second dehydrogenation step of obtaining indene from the obtained indane mixture by a dehydrogenation reaction, that is, having tetrahydroindene.
- a production method for producing indene from a raw material is mentioned as a preferable production example according to the present embodiment.
- the production conditions (conditions such as temperature and pressure) in the first and second dehydrogenation steps are not particularly limited and can be appropriately adjusted according to the purpose.
- the production conditions are not particularly limited, but for example, the production conditions in the first dehydrogenation step are relatively mild conditions, and the production conditions in the second dehydrogenation step are the first dehydrogenation step. It is preferable to manufacture under harsher conditions. Under the above production conditions, an indane mixture in which indane, octahydroindene and hexahydroindene are mixed in a suitable ratio is obtained in the first dehydrogenation step, and the indane mixture is used in the second dehydrogenation step. Indane tends to be produced efficiently and in high yield.
- the temperature at which the raw material having tetrahydroindene is brought into contact with the dehydrogenation catalyst is not particularly limited, but may be, for example, 150 to 300 ° C.
- the pressure at which the raw material having tetrahydroindene is brought into contact with the dehydrogenation catalyst is not particularly limited, but may be, for example, 0.01 to 5.0 MPa.
- the WHSV is not particularly limited, but may be, for example, 0.1 to 10 h- 1 .
- a solid catalyst that catalyzes the dehydrogenation reaction of tetrahydroindene can be used without particular limitation.
- the dehydrogenation catalyst chromium / Al 2 O 3 catalyst used as a catalyst for the dehydrogenation reaction, platinum / Al 2 O 3 catalyst, Fe-K catalyst, platinum / SnO 2 -Al 2 O 3 catalyst , Platinum-tin / magnesia alumina catalyst, Bi-Mo catalyst often used as a catalyst for oxidative dehydrogenation reaction, etc.
- the dehydrogenation catalyst chromium / Al 2 O 3 catalyst used as a catalyst for the dehydrogenation reaction
- platinum / Al 2 O 3 catalyst Fe-K catalyst
- platinum / SnO 2 -Al 2 O 3 catalyst platinum / SnO 2 -Al 2 O 3 catalyst
- Platinum-tin / magnesia alumina catalyst platinum-tin / magnesia alumina catalyst
- Bi-Mo catalyst often used as a catalyst
- indene can be produced using an indane mixture in which indane, octahydroindene and hexahydroindene are mixed, and therefore indene can be produced from tetrahydroindene. Can be produced with high efficiency and high yield.
- the downstream side of the reactor is filled with the above-mentioned zeolite catalyst, and the upstream side of the reactor is filled with a dehydrogenation catalyst for converting tetrahydroindene into indane or an indane mixture.
- a dehydrogenation catalyst for converting tetrahydroindene into indane or an indane mixture.
- indene can be stably produced from a raw material composition containing indane in a high yield for a long period of time by using a specific zeolite catalyst. Can be done. As a result, the number of times of catalyst regeneration required for producing inden can be reduced and the production efficiency can be improved, which is very useful industrially.
- the zeolite catalyst was pretreated at 500 ° C. for 1 hour while flowing helium gas at a flow rate of 50 mL / min. Then, it was cooled to less than 40 ° C., 1 vol% CO 2 / He gas was circulated at a flow rate of 50 mL / min to adsorb CO 2 on the zeolite catalyst, and then helium gas was circulated at a flow rate of 50 mL / min for 5 minutes. .. Then, while helium gas was circulated at 30 mL / min, the temperature was raised to 800 ° C.
- the mixture was cooled to 100 ° C., 1 vol% NH 3 / He gas was circulated at a flow rate of 50 mL / min to adsorb NH 3 on a zeolite catalyst, and then helium gas was circulated at a flow rate of 50 mL / min for 15 minutes. Then, while helium gas was circulated at 30 mL / min, the temperature was raised to 700 ° C. at a heating rate of 10 ° C./min, and the withdrawal of NH 3 was analyzed by TCD and MASS. As MASS, BELMass manufactured by Microtrack Bell Co., Ltd. was used. Measurement of the Lewis acid amount was calculated from the peak area by NH 3 -TPD.
- (C) FT-IR analysis The result of FT-IR analysis at room temperature is shown in FIG. 3 after performing pretreatment by vacuum exhausting at 450 ° C. for 1 hour. If Zns are close to each other, they become Zn—O—Zn by pretreatment. ZnO crystals and Zn-impregnated supported catalysts do not have an absorption band in the region of 3600 to 3700 cm -1 in FT-IR analysis. However, in the zeolite catalyst of this example, an absorption band around 3640 cm -1 derived from the Zn-OH vibration of Zn is observed, and it is considered that the Zns are isolated from each other by being incorporated into the zeolite skeleton.
- the obtained zeolite catalyst is a zeolite catalyst having an MFI structure, which does not have Bronsted acid but has only Lewis acid and has strong solid basicity.
- HZSM-5 commercially available MFI-type zeolite
- silica light was confirmed to have an MFI structure by X-ray diffraction measurement (X-ray source: CuK ⁇ , apparatus: manufactured by Rigaku, RINT 2500).
- X-ray source CuK ⁇ , apparatus: manufactured by Rigaku, RINT 2500.
- platinum was supported so that the amount of platinum supported was 1.0 wt%.
- Catalyst synthesis example 5 ⁇ Preparation of catalyst E> To silicalite 1.25g obtained by the process of Catalyst Preparation Example 4, zinc nitrate hexahydrate (Kishida Chemical Ltd., Zn (NO 3) 2 ⁇ 6H 2 O) and 0.57g of water 0.71mL The dissolved aqueous solution was mixed, and zinc was impregnated and supported so that the final zinc content after the catalyst was prepared was 9.0 wt%. Then, it was dried overnight at 130 ° C. and calcined at 550 ° C. for 3 hours.
- II dinitrodiammine platinum
- FIG. 9 is a graph showing the indene yield at the time when 2, 4 and 6 hours have passed from the start of the reaction in the indene production of Examples and Comparative Examples.
- the indene yield is defined by the following formula (1).
- rY (m 1 / m 0 ) x 100 (1)
- RY in the formula (1) is the indene yield (wt%).
- m 0 is the total mass of the indane mixture present in the raw material.
- m 1 is the mass of indene contained in the product.
- Example 2 When 2, 4 and 6 hours have passed from the start of the reaction, the product of the dehydrogenation reaction was collected from the tubular reactor, and from the start of the reaction to 24 hours, every 2 hours. The same procedure as in Example 1 was carried out except that the product of the dehydrogenation reaction was collected from a tubular reactor. The results are shown in FIG. FIG. 10 is a graph showing the indene yield from the start of the reaction to 24 hours in the indene production of Examples and Comparative Examples.
- Examples 1 and 2 are experimental examples showing the indene yield using a zeolite catalyst in which a transition metal is introduced into the zeolite skeleton.
- a transition metal is not introduced in the zeolite skeleton and the aluminum content is small (Comparative Example 1), and a transition metal is not introduced in the zeolite skeleton and the aluminum content is high.
- a large zeolite catalyst (Comparative Example 2), a catalyst using silicalite as a carrier (Comparative Example 3), a catalyst using a silicalite as a carrier impregnated with a transition metal (Comparative Example 4), and an alumina having a spinel-type structure.
- the inden yield was determined by a method similar to that of Examples.
- Tetrahydroindene (3a, 4,7,7a-tetrahydroindene; manufactured by Tokyo Chemical Industry Co., Ltd.) was used as a raw material and supplied at 3.0 g / h from the first stage entrance.
- the reaction temperature of the first stage was 180 ° C.
- the reaction pressure was 0.9 MPa
- no diluting gas such as hydrogen or nitrogen was used, and only the raw materials were supplied (first dehydrogenation step).
- the product oil of the first stage is supplied as it is to the second stage, the reaction temperature of the second stage is set to 500 ° C., the reaction pressure is set to normal pressure, and molecular hydrogen is added from the inlet of the second stage in an amount three times as much as that of tetrahydroinden.
- the reaction was carried out to produce an inden (second dehydrogenation step).
- the reaction was carried out for 12 hours, and the first-stage outlet composition and the second-stage outlet composition were measured every 2 to 3 hours.
- the first-stage outlet composition was stable at 52 wt% for indene, 1 wt% for indene, 6 wt% for octahydroindene, 40 wt% for hexahydroindene, and 1 wt% for unidentified material.
- the raw material tetrahydroindene was not detected at the exit of the first stage, and the conversion rate was 100%.
- the time course of indene and hexahydroindene at the exit of the second stage is shown in FIG.
- the composition of the first-stage outlet was stable, and the indene yield of the second-stage outlet was also stable. Since hexahydroindene was significantly reduced and indene was generated at the second stage reaction outlet, it is considered that hexahydroindene is easily dehydrogenated and contributes to the improvement of indene yield.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Provided is a method for stably producing indene over a long time with a high yield using a zeolite catalyst, as a novel method for producing indene. This method for producing indene comprises a dehydrogenation step of bringing a raw material composition including indene into contact with a zeolite catalyst having an MFI structure to obtain a reaction product including indene, wherein the zeolite catalyst includes, within the zeolite skeleton, at least one kind of metal atoms selected from transition metals or post-transition metals and has Lewis acidity and strong solid basicity.
Description
本発明は、インデンの製造方法に関する。
The present invention relates to a method for producing indene.
インデンは、クマロン・インデン樹脂や光学樹脂の原料として工業的に有用な物質である。インデンの製造方法としては、コールタール留分からインデンを回収する方法が知られているが、コールタール留分にはベンゾニトリル、ベンゾフラン等の数多くの不純物が含まれており、蒸留による分離回収方法では、特に沸点の近似したベンゾニトリルを分離して高純度のインデンを得ることは困難である。高純度のインデンを製造する方法として、テトラヒドロインデンの直接脱水素化反応による方法が知られている(特許文献1~3)。
一方、ブタンの直接脱水素化反応に用いられる脱水素触媒としては、ゼオライト触媒等が知られている(特許文献4)。 Inden is an industrially useful substance as a raw material for kumaron-indene resin and optical resin. As a method for producing indene, a method of recovering indene from a coal tar fraction is known, but the coal tar fraction contains many impurities such as benzonitrile and benzofuran, and the separation and recovery method by distillation is used. In particular, it is difficult to separate benzofurans with similar boiling points to obtain high-purity indene. As a method for producing high-purity indene, a method by a direct dehydrogenation reaction of tetrahydroindene is known (Patent Documents 1 to 3).
On the other hand, as a dehydrogenation catalyst used for the direct dehydrogenation reaction of butane, a zeolite catalyst and the like are known (Patent Document 4).
一方、ブタンの直接脱水素化反応に用いられる脱水素触媒としては、ゼオライト触媒等が知られている(特許文献4)。 Inden is an industrially useful substance as a raw material for kumaron-indene resin and optical resin. As a method for producing indene, a method of recovering indene from a coal tar fraction is known, but the coal tar fraction contains many impurities such as benzonitrile and benzofuran, and the separation and recovery method by distillation is used. In particular, it is difficult to separate benzofurans with similar boiling points to obtain high-purity indene. As a method for producing high-purity indene, a method by a direct dehydrogenation reaction of tetrahydroindene is known (
On the other hand, as a dehydrogenation catalyst used for the direct dehydrogenation reaction of butane, a zeolite catalyst and the like are known (Patent Document 4).
しかしながら、特許文献1~3のような従来のインデンの製造方法においては、原料の転化率は良好であるものの、高い収率で長時間に亘って安定的にインデンを製造することに関しては検討が十分とはいえず、未だ改善の余地が残されていた。
However, in the conventional methods for producing inden as in Patent Documents 1 to 3, although the conversion rate of the raw material is good, it has been studied to stably produce inden in a high yield for a long period of time. It wasn't enough, and there was still room for improvement.
本発明は、インデンの新規製造方法として、ゼオライト触媒を用いて高い収率で長時間に亘って安定的にインデンを製造する方法を提供することを目的とする。
An object of the present invention is to provide a method for stably producing indene in a high yield for a long period of time using a zeolite catalyst as a new method for producing indene.
本発明者らが上記課題を解決すべく鋭意検討を行った結果、特定のゼオライト触媒を用いることで、インダンを含む原料組成物から高い収率で長時間に亘って安定的にインデンを製造することができることを見出し、本発明を完成させるに至った。
As a result of diligent studies by the present inventors to solve the above problems, indene can be stably produced from a raw material composition containing indane in a high yield for a long period of time by using a specific zeolite catalyst. We have found that we can do this, and have completed the present invention.
本発明の一側面は、インダンを含む原料組成物をMFI構造のゼオライト触媒に接触させて、インデンを含む反応生成物を得る脱水素工程を備えるインデンの製造方法に関する。この製造方法において、上記ゼオライト触媒は、当該ゼオライト骨格中に、遷移金属又はポスト遷移金属から選ばれる少なくとも一種の金属原子を含み、ルイス酸性と強い固体塩基性を有する。
One aspect of the present invention relates to a method for producing indene, which comprises a dehydrogenation step of bringing a raw material composition containing indane into contact with a zeolite catalyst having an MFI structure to obtain a reaction product containing indene. In this production method, the zeolite catalyst contains at least one metal atom selected from a transition metal or a post-transition metal in the zeolite skeleton, and has Lewis acidity and strong solid basicity.
一態様において、上記金属原子は、Zn原子、Fe原子、Ni原子から選択される1種以上であり、上記金属原子の含有量は、Si原子に対して1~15atom%であってもよい。
In one embodiment, the metal atom is one or more selected from Zn atom, Fe atom, and Ni atom, and the content of the metal atom may be 1 to 15 atom% with respect to the Si atom.
一態様において、上記ゼオライト触媒は、アルカリ金属を含有しないか又は上記ゼオライト骨格のSi原子に対して1atom%以下のアルカリ金属を含有していてもよい。
In one aspect, the zeolite catalyst may not contain an alkali metal or may contain 1 atom% or less of an alkali metal with respect to the Si atom of the zeolite skeleton.
一態様において、上記ゼオライト触媒は、Pt原子が担持された触媒であってもよい。
In one embodiment, the zeolite catalyst may be a catalyst on which a Pt atom is supported.
一態様において、上記原料組成物は、オクタヒドロインデン及びヘキサヒドロインデンの少なくとも1種以上を更に含んでいてもよい。
In one embodiment, the raw material composition may further contain at least one or more of octahydroindene and hexahydroindene.
一態様において、上記原料組成物は、分子状水素を更に含んでいてもよい。
In one aspect, the raw material composition may further contain molecular hydrogen.
一態様に係る製造方法は、テトラヒドロインデンの脱水素反応により、インダンを得る原料合成工程を更に備えていてもよい。
The production method according to one embodiment may further include a raw material synthesis step for obtaining indane by a dehydrogenation reaction of tetrahydroindene.
本発明によれば、インデンの新規製造方法として、ゼオライト触媒を用いて高い収率で長時間に亘って安定的にインデンを製造する方法を提供することができる。
According to the present invention, as a new method for producing inden, it is possible to provide a method for stably producing inden in a high yield for a long period of time using a zeolite catalyst.
以下、本発明の製造方法について詳細に説明するが、以下に記載する構成要件の説明は、本発明の一実施態様としての一例(代表例)であり、これらの内容に特定されるものではない。
Hereinafter, the production method of the present invention will be described in detail, but the description of the constituent requirements described below is an example (representative example) as an embodiment of the present invention, and is not specified in these contents. ..
本実施形態に係るインデンの製造方法は、インダンを含む原料組成物をMFI構造のゼオライト触媒に接触させて、インデンを含む反応生成物を得る脱水素工程を備える。
本実施形態に係る製造方法によれば、特定のゼオライト触媒を採用することで、高い収率で長時間に亘って安定的にインデンを製造することができる。 The method for producing indene according to the present embodiment includes a dehydrogenation step of bringing a raw material composition containing indane into contact with a zeolite catalyst having an MFI structure to obtain a reaction product containing indene.
According to the production method according to the present embodiment, by adopting a specific zeolite catalyst, indene can be stably produced in a high yield for a long period of time.
本実施形態に係る製造方法によれば、特定のゼオライト触媒を採用することで、高い収率で長時間に亘って安定的にインデンを製造することができる。 The method for producing indene according to the present embodiment includes a dehydrogenation step of bringing a raw material composition containing indane into contact with a zeolite catalyst having an MFI structure to obtain a reaction product containing indene.
According to the production method according to the present embodiment, by adopting a specific zeolite catalyst, indene can be stably produced in a high yield for a long period of time.
(ゼオライト触媒)
本実施形態に係るゼオライト触媒は、ゼオライト骨格中に、遷移金属又はポスト遷移金属から選ばれる少なくとも一種の金属原子を含み、ルイス酸性と強い固体塩基性を有する。 (Zeolite catalyst)
The zeolite catalyst according to the present embodiment contains at least one metal atom selected from a transition metal or a post-transition metal in the zeolite skeleton, and has Lewis acidity and strong solid basicity.
本実施形態に係るゼオライト触媒は、ゼオライト骨格中に、遷移金属又はポスト遷移金属から選ばれる少なくとも一種の金属原子を含み、ルイス酸性と強い固体塩基性を有する。 (Zeolite catalyst)
The zeolite catalyst according to the present embodiment contains at least one metal atom selected from a transition metal or a post-transition metal in the zeolite skeleton, and has Lewis acidity and strong solid basicity.
本実施形態に係るゼオライト触媒は、ゼオライト触媒中にはブレンステッド酸はほとんど存在しておらず、ルイス酸のみが存在している。一般的に、脱水素反応の副生成物はブレンステッド酸の存在により生成量が増減することが知られているが、本実施形態に係るゼオライト触媒ではブレンステッド酸がほとんど存在していないことから、副反応の制御が可能であり、副生成物の発生を抑制することができる。本実施形態に係るゼオライト触媒をインデンの製造に用いることで、例えば副反応が抑制されインデン選択率が向上する、分解副生成物の重合によるコークの発生が抑制されること等が考えられ、これにより長時間に亘って安定的にインデンを製造することができる。さらに、本実施形態に係るゼオライト触媒は脱水素反応の活性サイトが高分散に配置されていること等から、本実施形態に係るゼオライト触媒をインデンの製造に用いることで、インデンを高収率で製造することができる。
In the zeolite catalyst according to the present embodiment, Bronsted acid is hardly present in the zeolite catalyst, and only Lewis acid is present. In general, it is known that the amount of by-products of the dehydrogenation reaction increases or decreases depending on the presence of Bronsted acid, but since the zeolite catalyst according to the present embodiment contains almost no Bronsted acid. , Side reactions can be controlled, and the generation of by-products can be suppressed. By using the zeolite catalyst according to the present embodiment for the production of inden, for example, it is conceivable that side reactions are suppressed and the inden selectivity is improved, coke generation due to polymerization of decomposition by-products is suppressed, and the like. Therefore, inden can be stably produced over a long period of time. Further, since the zeolite catalyst according to the present embodiment has the active sites of the dehydrogenation reaction arranged in a high dispersion, the zeolite catalyst according to the present embodiment is used for the production of indene, so that the indene can be produced in a high yield. Can be manufactured.
ここで、ゼオライトとは、四面体構造をもつTO4単位(Tは中心原子)がO原子を共有して三次元的に連結し、開かれた規則的なミクロ細孔を形成している結晶性物質を意味する。
Here, zeolite is a crystal in which TO 4 units (T is the central atom) having a tetrahedral structure share an O atom and are three-dimensionally connected to form open regular micropores. It means a sex substance.
遷移金属とは、IUPAC(国際純正応用化学連合)の規定に基づく長周期型の元素の周期表における周期表第3族元素から第12族元素に属する金属を意味する。
ポスト遷移金属とは、周期表における周期表第4周期、第5周期、第6周期の遷移金属よりも後の原子番号の卑金属を意味する。 The transition metal means a metal belonging to the Group 3 to Group 12 elements of the periodic table in the periodic table of long-periodic elements based on the provisions of the IUPAC (International Union of Pure and Applied Chemistry).
The post-transition metal means a base metal having an atomic number after the transition metal of the 4th, 5th, and 6th periods of the periodic table in the periodic table.
ポスト遷移金属とは、周期表における周期表第4周期、第5周期、第6周期の遷移金属よりも後の原子番号の卑金属を意味する。 The transition metal means a metal belonging to the Group 3 to Group 12 elements of the periodic table in the periodic table of long-periodic elements based on the provisions of the IUPAC (International Union of Pure and Applied Chemistry).
The post-transition metal means a base metal having an atomic number after the transition metal of the 4th, 5th, and 6th periods of the periodic table in the periodic table.
ゼオライト骨格中に金属原子を含むとは、水熱合成の原料として金属原子を混合する方法等により、ゼオライト骨格中にケイ素(Si)と同様に金属原子が導入されていることを意味する。ゼオライト骨格中に金属原子を含んでいる状態は、例えば、XRD(X-ray Diffraction)、NMR(Nuclear Magnetic Resonance spectroscopy)、FT-IR(Fourier Transform Infrared Spectroscopy)、XPS(X-ray Photoelectron Spectroscopy)及びESCA(Electron Spectroscopy for Chemical Analysis)等の各種測定方法により把握することができる。
The inclusion of metal atoms in the zeolite skeleton means that the metal atoms are introduced into the zeolite skeleton in the same manner as silicon (Si) by a method of mixing the metal atoms as a raw material for hydrothermal synthesis. The states containing metal atoms in the zeolite skeleton include, for example, XRD (X-ray Diffraction), NMR (Nuclear Magnetic Resonance spectroscopy), FT-IR (Fourier Transform Infrared Spectroscopy), XPS (X-ray Photoelectron Spectroscopy) and It can be grasped by various measurement methods such as ESCA (Electron Spectroscopy for Chemical Analysis).
ルイス酸性とは、非共有電子対を受容し得る性質を意味し、例えば、ゼオライト触媒にピリジンを吸着させてFT-IR分析した際に、1450cm-1付近に吸収バンドが検出されることを意味する。
Lewis acidity means the property of being able to accept unshared electron pairs, and means that, for example, when pyridine is adsorbed on a zeolite catalyst and FT-IR analysis is performed, an absorption band is detected in the vicinity of 1450 cm -1. To do.
固体塩基性とは、ゼオライト触媒の表面が塩基性を示すことを意味する。固体塩基性が強いとは、ゼオライト触媒の表面の塩基性が強いことを意味し、例えば、TPD(Temperature Programmed Desorption)分析装置でCO2-TPD分析した際に、500℃以上の高温域にゼオライト触媒由来のピークが検出されることをいう。
Solid basicity means that the surface of the zeolite catalyst is basic. And strong solid basic means that strong basicity of the surface of the zeolite catalyst, for example, TPD (Temperature Programmed Desorption) upon CO 2 -TPD analyzed by the analyzer, the zeolite to a high temperature range of not lower than 500 ° C. It means that the peak derived from the catalyst is detected.
本実施形態に係るゼオライト触媒は、10員環構造のゼオライトであり、MFI構造を有する。MFI構造のゼオライトは、特に限定されるものではないが、好ましくは結晶性メタロシリケートである。なお、MFI構造のゼオライトとは、国際ゼオライト学会(International Zeolite Association)でデータベース化されている構造コ-ドでMFIに該当するゼオライトを意味する。
ゼオライトが10員環構造、特にMFI構造のゼオライトであることは、例えばX線回折等により確認することができる。 The zeolite catalyst according to this embodiment is a zeolite having a 10-membered ring structure and has an MFI structure. Zeolites having an MFI structure are not particularly limited, but are preferably crystalline metallosilicates. The zeolite having an MFI structure means a zeolite corresponding to MFI in the structure code stored in the database by the International Zeolite Association.
It can be confirmed by, for example, X-ray diffraction that the zeolite is a zeolite having a 10-membered ring structure, particularly an MFI structure.
ゼオライトが10員環構造、特にMFI構造のゼオライトであることは、例えばX線回折等により確認することができる。 The zeolite catalyst according to this embodiment is a zeolite having a 10-membered ring structure and has an MFI structure. Zeolites having an MFI structure are not particularly limited, but are preferably crystalline metallosilicates. The zeolite having an MFI structure means a zeolite corresponding to MFI in the structure code stored in the database by the International Zeolite Association.
It can be confirmed by, for example, X-ray diffraction that the zeolite is a zeolite having a 10-membered ring structure, particularly an MFI structure.
ゼオライト骨格中に含まれる金属原子は、遷移金属原子、ポスト遷移金属原子であれば特に限定されず、例えば、チタン(Ti)、バナジウム(V)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ジルコニウム(Zr)、インジウム(In)等を用いることができる。これらの中でも、脱水素反応の反応性に優れる観点からは、亜鉛(Zn)、ニッケル(Ni)、鉄(Fe)を用いるのが好ましい。ゼオライト骨格中に含まれる金属原子は、1種単独でもよいし、2種以上を用いてもよい。
The metal atom contained in the zeolite skeleton is not particularly limited as long as it is a transition metal atom or a post-transition metal atom, and for example, titanium (Ti), vanadium (V), iron (Fe), cobalt (Co), nickel ( Ni), copper (Cu), zinc (Zn), gallium (Ga), zirconium (Zr), indium (In) and the like can be used. Among these, zinc (Zn), nickel (Ni), and iron (Fe) are preferably used from the viewpoint of excellent reactivity in the dehydrogenation reaction. As the metal atom contained in the zeolite skeleton, one kind may be used alone, or two or more kinds may be used.
ゼオライト骨格中に含まれる金属原子の含有量は、特に限定されるものではないが、ケイ素(Si)原子に対して1~15atom%が好ましく、2~10atom%がより好ましい。ゼオライト骨格中に含まれる金属原子の含有量が上記範囲の下限値以上であれば、ゼオライト触媒の固体塩基性が強くなり、インダンの脱水反応の反応性に優れる。ゼオライト骨格中に含まれる金属原子の含有量が上記範囲の上限値以下であれば、金属含有量に対するインダンの脱水素反応の反応効率に優れるため、好ましい。
The content of the metal atom contained in the zeolite skeleton is not particularly limited, but is preferably 1 to 15 atom% and more preferably 2 to 10 atom% with respect to the silicon (Si) atom. When the content of the metal atom contained in the zeolite skeleton is at least the lower limit of the above range, the solid basicity of the zeolite catalyst becomes strong, and the reactivity of the dehydration reaction of indane is excellent. When the content of the metal atom contained in the zeolite skeleton is not more than the upper limit of the above range, the reaction efficiency of the dehydrogenation reaction of indane with respect to the metal content is excellent, which is preferable.
ゼオライト触媒中に含まれるアルカリ金属の含有量は、アルカリ金属を含有しないか又はSi原子に対して1atom%以下であることが好ましく、0.1atom%以下であることがより好ましい。上記上限値以下であれば、ゼオライトの結晶化を促進しつつ、インデンの脱水素反応の反応性を高く維持することができるため、好ましい。
The content of the alkali metal contained in the zeolite catalyst is preferably not containing the alkali metal or is preferably 1 atom% or less, and more preferably 0.1 atom% or less with respect to the Si atom. When it is not more than the above upper limit value, it is preferable because the reactivity of the dehydrogenation reaction of indene can be maintained high while promoting the crystallization of zeolite.
ゼオライト触媒は、成形性を向上させる観点から、本発明の趣旨を逸脱しない範囲において、成形助剤を更に含有していてもよい。成型助剤は、例えば、増粘剤、界面活性剤、保水剤、可塑剤、バインダー原料等からなる群より選択される少なくとも一種であってよい。ゼオライト触媒を成形する成形工程は、成形助剤の反応性を考慮してゼオライト触媒の製造工程の適切な段階で行ってよい。
From the viewpoint of improving moldability, the zeolite catalyst may further contain a molding aid as long as it does not deviate from the gist of the present invention. The molding aid may be, for example, at least one selected from the group consisting of thickeners, surfactants, water retention agents, plasticizers, binder raw materials and the like. The molding step of molding the zeolite catalyst may be performed at an appropriate stage in the manufacturing process of the zeolite catalyst in consideration of the reactivity of the molding aid.
ゼオライト触媒は、白金(Pt)源を用いて、担体に白金を担持させた触媒であってよい。白金源としては、例えば、テトラアンミン白金(II)酸、テトラアンミン白金(II)酸塩(例えば、硝酸塩等)、テトラアンミン白金(II)酸水酸化物溶液、ジニトロジアンミン白金(II)硝酸溶液、ヘキサヒドロキソ白金(IV)酸硝酸溶液、ヘキサヒドロキソ白金(IV)酸エタノールアミン溶液等が挙げられる。白金源としては、塩素原子を含まない金属源を用いることが好ましい。塩素原子を含まない金属源を用いることで、装置の腐食を抑制でき、より効率的にインダンの脱水素を行うことができる。
The zeolite catalyst may be a catalyst in which platinum is supported on a carrier using a platinum (Pt) source. Examples of the platinum source include tetraammine platinum (II) acid, tetraammine platinum (II) acid salt (for example, nitrate), tetraammine platinum (II) acid hydroxide solution, dinitrodiammine platinum (II) nitric acid solution, and hexahydroxo. Examples thereof include a nitric acid solution of platinum (IV) and an ethanolamine solution of hexahydroxoplatinum (IV). As the platinum source, it is preferable to use a metal source containing no chlorine atom. By using a metal source that does not contain chlorine atoms, corrosion of the device can be suppressed and indane can be dehydrogenated more efficiently.
ゼオライト触媒に白金を担持させる場合、ゼオライト触媒における白金の含有量は、ゼオライト触媒の全量基準で通常0.05~2.5wt%である。白金の担持量は、ゼオライト触媒の全量基準で、好ましくは0.1wt%以上である。また、白金の担持量は、ゼオライト触媒の全量基準で、好ましくは2.0wt%以下である。このような担持量であると、単位白金重量あたりの白金表面積が大きくなるため、より効率的な反応系が実現できる。
When platinum is supported on the zeolite catalyst, the content of platinum in the zeolite catalyst is usually 0.05 to 2.5 wt% based on the total amount of the zeolite catalyst. The amount of platinum carried is preferably 0.1 wt% or more based on the total amount of the zeolite catalyst. The amount of platinum supported is preferably 2.0 wt% or less based on the total amount of the zeolite catalyst. With such a loading amount, the platinum surface area per unit platinum weight becomes large, so that a more efficient reaction system can be realized.
ゼオライト触媒は、前処理として還元処理が行われた触媒を用いてもよい。還元処理は、例えば、還元性ガスの雰囲気下、40~600℃でゼオライト触媒を保持することで行うことができる。保持時間は、例えば0.05~24時間であってよい。還元性ガスは、例えば、水素、一酸化炭素等を含むガスであってよい。還元処理を行ったゼオライト触媒を用いることで、脱水素反応の初期の誘導期を短くすることができる。脱水素反応の初期の誘導期とは、ゼオライト触媒中の担持金属のうち、還元されて活性状態にある金属が非常に少なく、触媒の活性が低い状態を意味する。
As the zeolite catalyst, a catalyst that has been reduced as a pretreatment may be used. The reduction treatment can be carried out, for example, by holding the zeolite catalyst at 40 to 600 ° C. in an atmosphere of a reducing gas. The holding time may be, for example, 0.05 to 24 hours. The reducing gas may be, for example, a gas containing hydrogen, carbon monoxide, or the like. By using a reduction-treated zeolite catalyst, the initial induction period of the dehydrogenation reaction can be shortened. The initial induction period of the dehydrogenation reaction means a state in which, among the supported metals in the zeolite catalyst, there are very few metals in the reduced and active state, and the activity of the catalyst is low.
<ゼオライト触媒の調製方法>
本実施形態におけるゼオライト触媒は、シリカゲルの熟成工程、水熱合成工程、焼成工程を組み合わせて処理することにより調製することができる。これによりアルカリ金属、ホウ素又はアルミニウムを使用せずにゼオライト触媒を調製することができる。 <Preparation method of zeolite catalyst>
The zeolite catalyst in the present embodiment can be prepared by treating a combination of a silica gel aging step, a hydrothermal synthesis step, and a firing step. This allows the zeolite catalyst to be prepared without the use of alkali metals, boron or aluminum.
本実施形態におけるゼオライト触媒は、シリカゲルの熟成工程、水熱合成工程、焼成工程を組み合わせて処理することにより調製することができる。これによりアルカリ金属、ホウ素又はアルミニウムを使用せずにゼオライト触媒を調製することができる。 <Preparation method of zeolite catalyst>
The zeolite catalyst in the present embodiment can be prepared by treating a combination of a silica gel aging step, a hydrothermal synthesis step, and a firing step. This allows the zeolite catalyst to be prepared without the use of alkali metals, boron or aluminum.
本実施形態に係るゼオライト触媒の好適な製造例の一例としては、例えば、シリカ源と有機構造規定剤(OSDA)と、水とを混合し、100℃以下で10時間以上熟成(攪拌)し、その後、遷移金属原子又はポスト遷移金属原子を金属源として混合した後に、100℃以上にて水熱合成し、その後、500℃以上で5時間以上焼成すること等が挙げられる。
ゼオライト触媒に白金を担持させる場合、白金の担持方法は特に限定されず、例えば、含浸法、沈着法、共沈法、混練法、イオン交換法、ポアフィリング法等を用いることができる。 As an example of a suitable production example of the zeolite catalyst according to the present embodiment, for example, a silica source, an organic structure defining agent (OSDA), and water are mixed and aged (stirred) at 100 ° C. or lower for 10 hours or more. Then, after mixing the transition metal atom or the post-transition metal atom as a metal source, hydrothermal synthesis is performed at 100 ° C. or higher, and then firing is performed at 500 ° C. or higher for 5 hours or longer.
When platinum is supported on the zeolite catalyst, the method for supporting platinum is not particularly limited, and for example, an impregnation method, a deposition method, a coprecipitation method, a kneading method, an ion exchange method, a pore filling method and the like can be used.
ゼオライト触媒に白金を担持させる場合、白金の担持方法は特に限定されず、例えば、含浸法、沈着法、共沈法、混練法、イオン交換法、ポアフィリング法等を用いることができる。 As an example of a suitable production example of the zeolite catalyst according to the present embodiment, for example, a silica source, an organic structure defining agent (OSDA), and water are mixed and aged (stirred) at 100 ° C. or lower for 10 hours or more. Then, after mixing the transition metal atom or the post-transition metal atom as a metal source, hydrothermal synthesis is performed at 100 ° C. or higher, and then firing is performed at 500 ° C. or higher for 5 hours or longer.
When platinum is supported on the zeolite catalyst, the method for supporting platinum is not particularly limited, and for example, an impregnation method, a deposition method, a coprecipitation method, a kneading method, an ion exchange method, a pore filling method and the like can be used.
シリカ源としては、例えば、シリコンアルコラート、シラン、四塩化ケイ素、水ガラス等の加水分解するシリコン化合物等を用いることができる。
有機構造規定剤としては、MFI構造のゼオライトが得られれば特に制限されず、例えば、4級アルキルアンモニウム塩、アミン等を用いることができる。有機構造規定剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 As the silica source, for example, a hydrolyzable silicon compound such as silicon alcoholate, silane, silicon tetrachloride, or water glass can be used.
The organic structure defining agent is not particularly limited as long as a zeolite having an MFI structure can be obtained, and for example, a quaternary alkylammonium salt, an amine or the like can be used. As the organic structure defining agent, one kind may be used alone, or two or more kinds may be mixed and used.
有機構造規定剤としては、MFI構造のゼオライトが得られれば特に制限されず、例えば、4級アルキルアンモニウム塩、アミン等を用いることができる。有機構造規定剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 As the silica source, for example, a hydrolyzable silicon compound such as silicon alcoholate, silane, silicon tetrachloride, or water glass can be used.
The organic structure defining agent is not particularly limited as long as a zeolite having an MFI structure can be obtained, and for example, a quaternary alkylammonium salt, an amine or the like can be used. As the organic structure defining agent, one kind may be used alone, or two or more kinds may be mixed and used.
本実施形態に係るゼオライト触媒の好適な製造例の一例としては、水熱合成後に得られた合成反応物を500℃以上で5時間以上焼成する前に、合成反応物を水洗浄する工程を更に含むのが好ましい。水洗浄する工程を含むことにより、ゼオライト触媒に対するナトリウム等のアルカリの影響を小さくすることができる。
As an example of a suitable production example of the zeolite catalyst according to the present embodiment, a step of washing the synthetic reaction product with water before firing the synthetic reaction product obtained after hydrothermal synthesis at 500 ° C. or higher for 5 hours or more is further performed. It is preferable to include it. By including the step of washing with water, the influence of alkali such as sodium on the zeolite catalyst can be reduced.
上述した方法は、アルカリ金属、ホウ素又はアルミニウムを使用せずにゼオライト触媒を調製する好適な製造例の一例であるが、本実施形態の製造方法としては、本発明の趣旨を逸脱しない範囲であれば、アルカリ金属、ホウ素又はアルミニウムの使用を制限しない。例えば、水熱合成する際に、本発明の趣旨を逸脱しない範囲であれば、アルカリ金属を混合してもよい。アルカリ金属を混合することにより、ゼオライトの結晶化が促進され、遷移金属原子又はポスト遷移金属原子がゼオライト骨格中に導入されたMFI構造のゼオライト触媒を得られ易い傾向がある。
アルカリ金属としては、例えば、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)等が挙げられる。これらの中でも、ナトリウム(Na)が好ましい。アルカリ金属の混合量としては、上述したように、ゼオライト触媒中のSi原子に対して1atom%以下となる量を混合するのが好ましい。 The above-mentioned method is an example of a suitable production example for preparing a zeolite catalyst without using alkali metal, boron or aluminum, but the production method of the present embodiment does not deviate from the gist of the present invention. For example, it does not limit the use of alkali metals, boron or aluminum. For example, in hydrothermal synthesis, an alkali metal may be mixed as long as it does not deviate from the gist of the present invention. By mixing the alkali metal, crystallization of the zeolite is promoted, and there is a tendency that a zeolite catalyst having an MFI structure in which a transition metal atom or a post-transition metal atom is introduced into the zeolite skeleton can be easily obtained.
Examples of the alkali metal include sodium (Na), potassium (K), rubidium (Rb) and the like. Of these, sodium (Na) is preferred. As the mixing amount of the alkali metal, as described above, it is preferable to mix an amount of 1 atom% or less with respect to the Si atom in the zeolite catalyst.
アルカリ金属としては、例えば、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)等が挙げられる。これらの中でも、ナトリウム(Na)が好ましい。アルカリ金属の混合量としては、上述したように、ゼオライト触媒中のSi原子に対して1atom%以下となる量を混合するのが好ましい。 The above-mentioned method is an example of a suitable production example for preparing a zeolite catalyst without using alkali metal, boron or aluminum, but the production method of the present embodiment does not deviate from the gist of the present invention. For example, it does not limit the use of alkali metals, boron or aluminum. For example, in hydrothermal synthesis, an alkali metal may be mixed as long as it does not deviate from the gist of the present invention. By mixing the alkali metal, crystallization of the zeolite is promoted, and there is a tendency that a zeolite catalyst having an MFI structure in which a transition metal atom or a post-transition metal atom is introduced into the zeolite skeleton can be easily obtained.
Examples of the alkali metal include sodium (Na), potassium (K), rubidium (Rb) and the like. Of these, sodium (Na) is preferred. As the mixing amount of the alkali metal, as described above, it is preferable to mix an amount of 1 atom% or less with respect to the Si atom in the zeolite catalyst.
上記方法により、遷移金属原子又はポスト遷移金属原子をゼオライトの骨格中に導入され、活性サイトが高分散されたゼオライト触媒を得ることができる。さらに、ブレンステッド酸がほとんど存在せず、ルイス酸のみが存在する、強い固体塩基性を有するゼオライト触媒を得ることができる。
By the above method, a transition metal atom or a post-transition metal atom is introduced into the skeleton of zeolite, and a zeolite catalyst in which active sites are highly dispersed can be obtained. Furthermore, it is possible to obtain a zeolite catalyst having a strong solid basicity in which Bronsted acid is almost absent and only Lewis acid is present.
(インデンの製造方法)
本実施形態に係る製造方法では、脱水素工程において、インダンを含む原料組成物を上記のゼオライト触媒に接触させる。これにより、インダンの脱水素反応が生じ、インデンを含む反応生成物が得られる。 (Indene manufacturing method)
In the production method according to the present embodiment, in the dehydrogenation step, the raw material composition containing indane is brought into contact with the above-mentioned zeolite catalyst. As a result, a dehydrogenation reaction of indane occurs, and a reaction product containing indene is obtained.
本実施形態に係る製造方法では、脱水素工程において、インダンを含む原料組成物を上記のゼオライト触媒に接触させる。これにより、インダンの脱水素反応が生じ、インデンを含む反応生成物が得られる。 (Indene manufacturing method)
In the production method according to the present embodiment, in the dehydrogenation step, the raw material composition containing indane is brought into contact with the above-mentioned zeolite catalyst. As a result, a dehydrogenation reaction of indane occurs, and a reaction product containing indene is obtained.
<原料組成物>
原料組成物としては、少なくともインダンを含有していればよいが、オクタヒドロインデン及びヘキサヒドロインデンの少なくとも1種以上を更に含有するのが好ましい。本実施形態に係るゼオライト触媒は脱水素反応の反応性に優れるため、オクタヒドロインデン及びヘキサヒドロインデンの少なくとも1種以上を含有することにより、効率的にインデンを製造することができる。 <Raw material composition>
The raw material composition may contain at least indane, but it is preferable that at least one of octahydroindene and hexahydroindene is further contained. Since the zeolite catalyst according to the present embodiment has excellent reactivity in the dehydrogenation reaction, indene can be efficiently produced by containing at least one of octahydroindene and hexahydroindene.
原料組成物としては、少なくともインダンを含有していればよいが、オクタヒドロインデン及びヘキサヒドロインデンの少なくとも1種以上を更に含有するのが好ましい。本実施形態に係るゼオライト触媒は脱水素反応の反応性に優れるため、オクタヒドロインデン及びヘキサヒドロインデンの少なくとも1種以上を含有することにより、効率的にインデンを製造することができる。 <Raw material composition>
The raw material composition may contain at least indane, but it is preferable that at least one of octahydroindene and hexahydroindene is further contained. Since the zeolite catalyst according to the present embodiment has excellent reactivity in the dehydrogenation reaction, indene can be efficiently produced by containing at least one of octahydroindene and hexahydroindene.
オクタヒドロインデンはシス体とトランス体の2種の異性体を有し、ヘキサヒドロインデンは二重結合の位置が異なる複数の異性体を有する。ヘキサヒドロインデンは、オクタヒドロインデンから1分子の水素が脱水素された構造を持つため、容易に脱水素され、インデンを生じやすい。
インダン、オクタヒドロインデン及びヘキサヒドロインデン(以下、「インダン混合物」と称する場合がある。)の製造由来は特に限定されない。例えば、テトラヒドロインデンを脱水素反応により得てもよい。このとき、製造方法に起因するインダン混合物以外の化合物が任意に混合した状態の混合物をそのまま用いてもよいし、精製した精製物を用いてもよい。 Octahydroindene has two isomers, a cis form and a trans form, and hexahydroindene has a plurality of isomers having different double bond positions. Hexahydroindene has a structure in which one molecule of hydrogen is dehydrogenated from octahydroindene, so that it is easily dehydrogenated and indene is likely to occur.
The origin of production of indane, octahydroindene and hexahydroindene (hereinafter, may be referred to as "indane mixture") is not particularly limited. For example, tetrahydroindene may be obtained by a dehydrogenation reaction. At this time, a mixture in which compounds other than the indane mixture resulting from the production method are arbitrarily mixed may be used as it is, or a purified product may be used.
インダン、オクタヒドロインデン及びヘキサヒドロインデン(以下、「インダン混合物」と称する場合がある。)の製造由来は特に限定されない。例えば、テトラヒドロインデンを脱水素反応により得てもよい。このとき、製造方法に起因するインダン混合物以外の化合物が任意に混合した状態の混合物をそのまま用いてもよいし、精製した精製物を用いてもよい。 Octahydroindene has two isomers, a cis form and a trans form, and hexahydroindene has a plurality of isomers having different double bond positions. Hexahydroindene has a structure in which one molecule of hydrogen is dehydrogenated from octahydroindene, so that it is easily dehydrogenated and indene is likely to occur.
The origin of production of indane, octahydroindene and hexahydroindene (hereinafter, may be referred to as "indane mixture") is not particularly limited. For example, tetrahydroindene may be obtained by a dehydrogenation reaction. At this time, a mixture in which compounds other than the indane mixture resulting from the production method are arbitrarily mixed may be used as it is, or a purified product may be used.
原料組成物としてオクタヒドロインデン、ヘキサヒドロインデンを含有する場合、インダンと、オクタヒドロインデンと、ヘキサヒドロインデンとの混合割合は特に限定されず、例えば、製造方法に起因する割合に依存した混合割合であってよい。例えば、インダンと、ヘキサヒドロインデンとの混合割合(wt%)は、40~90:1~60が好ましい。
なお、インダンと、オクタヒドロインデンと、ヘキサヒドロインデンとの混合割合は、ガスクロマトグラフ分析装置用いて測定することができる。 When octahydroindene or hexahydroindene is contained as the raw material composition, the mixing ratio of indane, octahydroindene, and hexahydroindene is not particularly limited, and for example, the mixing ratio depends on the ratio due to the production method. May be. For example, the mixing ratio (wt%) of indane and hexahydroindene is preferably 40 to 90: 1 to 60.
The mixing ratio of indane, octahydroindene, and hexahydroindene can be measured using a gas chromatograph analyzer.
なお、インダンと、オクタヒドロインデンと、ヘキサヒドロインデンとの混合割合は、ガスクロマトグラフ分析装置用いて測定することができる。 When octahydroindene or hexahydroindene is contained as the raw material composition, the mixing ratio of indane, octahydroindene, and hexahydroindene is not particularly limited, and for example, the mixing ratio depends on the ratio due to the production method. May be. For example, the mixing ratio (wt%) of indane and hexahydroindene is preferably 40 to 90: 1 to 60.
The mixing ratio of indane, octahydroindene, and hexahydroindene can be measured using a gas chromatograph analyzer.
原料組成物は、インダン又はインダン混合物以外の他の化合物を更に含有していてもよい。原料組成物は、例えば、窒素、アルゴン等の不活性ガスやスチーム、分子状水素、酸素、一酸化炭素、炭酸ガス、アルカン類、オレフィン類等を更に含有していてもよい。これらの中でも、インダンの脱水素反応における反応効率を向上させる観点からは、原料組成物は、分子状水素を含むのが好ましい。
一般的に、脱水素反応では、分子状水素を共存させると熱力学的平衡制約の観点から収率が低下することが知られている。しかし、本発明者らは、本実施形態のゼオライト触媒を用いた場合には、敢えて分子状水素を共存させることで、インダン又はインダン混合物の脱水素反応における反応効率を向上させることができることを見出した。このため、原料組成物は、分子状水素を含むのが好ましい。 The raw material composition may further contain an indane or a compound other than the indane mixture. The raw material composition may further contain, for example, an inert gas such as nitrogen or argon, steam, molecular hydrogen, oxygen, carbon monoxide, carbon dioxide, alkanes, olefins and the like. Among these, the raw material composition preferably contains molecular hydrogen from the viewpoint of improving the reaction efficiency in the dehydrogenation reaction of indane.
Generally, in the dehydrogenation reaction, it is known that the coexistence of molecular hydrogen reduces the yield from the viewpoint of thermodynamic equilibrium constraint. However, the present inventors have found that when the zeolite catalyst of the present embodiment is used, the reaction efficiency in the dehydrogenation reaction of indane or an indane mixture can be improved by intentionally coexisting with molecular hydrogen. It was. Therefore, the raw material composition preferably contains molecular hydrogen.
一般的に、脱水素反応では、分子状水素を共存させると熱力学的平衡制約の観点から収率が低下することが知られている。しかし、本発明者らは、本実施形態のゼオライト触媒を用いた場合には、敢えて分子状水素を共存させることで、インダン又はインダン混合物の脱水素反応における反応効率を向上させることができることを見出した。このため、原料組成物は、分子状水素を含むのが好ましい。 The raw material composition may further contain an indane or a compound other than the indane mixture. The raw material composition may further contain, for example, an inert gas such as nitrogen or argon, steam, molecular hydrogen, oxygen, carbon monoxide, carbon dioxide, alkanes, olefins and the like. Among these, the raw material composition preferably contains molecular hydrogen from the viewpoint of improving the reaction efficiency in the dehydrogenation reaction of indane.
Generally, in the dehydrogenation reaction, it is known that the coexistence of molecular hydrogen reduces the yield from the viewpoint of thermodynamic equilibrium constraint. However, the present inventors have found that when the zeolite catalyst of the present embodiment is used, the reaction efficiency in the dehydrogenation reaction of indane or an indane mixture can be improved by intentionally coexisting with molecular hydrogen. It was. Therefore, the raw material composition preferably contains molecular hydrogen.
原料組成物としてインダン混合物以外の成分を含有するとき、原料組成物におけるインダン又はインダン混合物のモル分率は、0.1以上とすることが好ましく、0.2以上とすることがより好ましい。原料組成物におけるインダン又はインダン混合物のモル分率の上限は、特に限定されないが、例えば0.95以下であってよく、好ましくは0.9以下である。インダン又はインダン混合物以外の成分を含有させることにより、脱水素反応が進行し易くなり、触媒の活性低下が抑制される傾向がある。しかし、インダン又はインダン混合物以外の成分を加熱するために多量のエネルギーを要するため、工業的には、適切な量とする必要がある。原料組成物におけるインダン又はインダン混合物のモル分率が上記範囲であると、脱水素反応に必要となるエネルギーがより抑制され、インダンを効率良く脱水素させることができる。
When the raw material composition contains a component other than the indane mixture, the mole fraction of the indane or the indane mixture in the raw material composition is preferably 0.1 or more, and more preferably 0.2 or more. The upper limit of the molar fraction of indane or the indane mixture in the raw material composition is not particularly limited, but may be, for example, 0.95 or less, preferably 0.9 or less. By containing a component other than indan or an indan mixture, the dehydrogenation reaction tends to proceed easily and the decrease in the activity of the catalyst tends to be suppressed. However, since a large amount of energy is required to heat a component other than indane or an indane mixture, it is necessary to make an appropriate amount industrially. When the mole fraction of indane or an indane mixture in the raw material composition is within the above range, the energy required for the dehydrogenation reaction is further suppressed, and the indane can be efficiently dehydrogenated.
原料組成物として分子状水素を含有する場合、原料組成物において、インダン又はインダン混合物に対する分子状水素のモル比(分子状水素/インダン又はインダン混合物)は、10.0以下であることが好ましく、7.0以下であることより好ましい。これにより、熱力学的平衡制約の影響が小さくなり、脱水素反応がより効率良く進行する傾向がある。また、原料組成物におけるインダン又はインダン混合物に対する分子状水素のモル比(分子状水素/インダン又はインダン混合物)は、0.01以上であることが好ましく、0.05以上であることがより好ましい。これにより、分子状水素の存在によって、触媒上でのコーク生成を抑制することができ、触媒の耐久性が向上し、インデンを高収率で得ることができる。
When molecular hydrogen is contained as the raw material composition, the molar ratio of molecular hydrogen to the indan or indan mixture (molecular hydrogen / indan or indan mixture) is preferably 10.0 or less in the raw material composition. It is more preferable that it is 7.0 or less. As a result, the influence of the thermodynamic equilibrium constraint is reduced, and the dehydrogenation reaction tends to proceed more efficiently. The molar ratio of molecular hydrogen to the indane or indane mixture in the raw material composition (molecular hydrogen / indane or indane mixture) is preferably 0.01 or more, more preferably 0.05 or more. As a result, the presence of molecular hydrogen can suppress the formation of cork on the catalyst, improve the durability of the catalyst, and obtain indene in a high yield.
原料組成物として分子状水素を含有する場合、インダン又はインダン混合物、及び分子状水素以外の他の化合物の合計含有量は、例えば、インダン又はインダン混合物に対して10.0倍モル以下であってよく、インダン又はインダン混合物に対して5.0倍モル以下が好ましく、0であってもよい。
When molecular hydrogen is contained as the raw material composition, the total content of the indane or the indane mixture and other compounds other than the molecular hydrogen is, for example, 10.0 times mol or less with respect to the indane or the indane mixture. It is preferably 5.0 times or less the molar amount of indane or an indane mixture, and may be 0.
<脱水素工程>
脱水素工程では、例えば、ゼオライト触媒が充填された反応器を用い、当該反応器に原料ガスを流通させることにより脱水素反応を実施してよい。反応器としては、固体触媒による気相反応に用いられる種々の反応器を用いることができる。反応器としては、例えば、固定床断熱型反応器、ラジアルフロー型反応器、管型反応器等が挙げられる。 <Dehydrogenation process>
In the dehydrogenation step, for example, a reactor filled with a zeolite catalyst may be used, and the dehydrogenation reaction may be carried out by flowing a raw material gas through the reactor. As the reactor, various reactors used for the gas phase reaction using a solid catalyst can be used. Examples of the reactor include a fixed bed adiabatic reactor, a radial flow reactor, a tubular reactor and the like.
脱水素工程では、例えば、ゼオライト触媒が充填された反応器を用い、当該反応器に原料ガスを流通させることにより脱水素反応を実施してよい。反応器としては、固体触媒による気相反応に用いられる種々の反応器を用いることができる。反応器としては、例えば、固定床断熱型反応器、ラジアルフロー型反応器、管型反応器等が挙げられる。 <Dehydrogenation process>
In the dehydrogenation step, for example, a reactor filled with a zeolite catalyst may be used, and the dehydrogenation reaction may be carried out by flowing a raw material gas through the reactor. As the reactor, various reactors used for the gas phase reaction using a solid catalyst can be used. Examples of the reactor include a fixed bed adiabatic reactor, a radial flow reactor, a tubular reactor and the like.
脱水素反応の反応形式は、例えば、固定床式、移動床式又は流動床式であってよい。これらのうち、設備コストの観点から固定床式が好ましい。
The reaction type of the dehydrogenation reaction may be, for example, a fixed bed type, a moving bed type or a fluidized bed type. Of these, the fixed floor type is preferable from the viewpoint of equipment cost.
原料組成物をゼオライト触媒に接触させる際の温度(脱水素反応の反応温度、又は、反応器内の温度ということもできる。)は、反応効率の観点から、例えば350~800℃であってよく、400~700℃であってよく、450℃~650℃であってよい。反応温度が350℃以上であれば、インダン又はインダン混合物の平衡転化率が低くなりすぎないため、インデンの収率が一層向上する傾向がある。反応温度が800℃以下であれば、コークの生成速度が抑制され、ゼオライト触媒の高い活性をより長期にわたって維持することができる。
The temperature at which the raw material composition is brought into contact with the zeolite catalyst (which may also be the reaction temperature of the dehydrogenation reaction or the temperature inside the reactor) may be, for example, 350 to 800 ° C. from the viewpoint of reaction efficiency. , 400 to 700 ° C., and may be 450 ° C. to 650 ° C. When the reaction temperature is 350 ° C. or higher, the equilibrium conversion rate of indane or an indane mixture does not become too low, so that the yield of indene tends to be further improved. When the reaction temperature is 800 ° C. or lower, the rate of cork formation is suppressed, and the high activity of the zeolite catalyst can be maintained for a longer period of time.
原料組成物をゼオライト触媒に接触させる際の圧力(脱水素反応の反応圧力、又は、反応器内の圧力ということもできる。)は、例えば0.01~4.0MPaであってよく、0.03~0.5MPaであってよく、0.05~0.3MPaであってよい。反応圧力が上記範囲にあれば脱水素反応が進行し易くなり、一層優れた反応効率が得られる傾向がある。
The pressure at which the raw material composition is brought into contact with the zeolite catalyst (which can also be referred to as the reaction pressure of the dehydrogenation reaction or the pressure inside the reactor) may be, for example, 0.01 to 4.0 MPa, and may be 0. It may be 03 to 0.5 MPa, and may be 0.05 to 0.3 MPa. If the reaction pressure is within the above range, the dehydrogenation reaction tends to proceed easily, and a more excellent reaction efficiency tends to be obtained.
脱水素工程を、原料を連続的に供給する連続式の反応形式で行う場合、質量空間速度(以下、「WHSV」と称する場合がある。)は、0.01h-1以上であってよく、0.1h-1以上であってもよい。上記下限値以上のWHSVであると、インダンの転化率をより高くすることができる。また、WHSVは100h-1以下であってよく、20h-1以下であってもよい。上記上限値以下のWHSVであると、反応器サイズをより小さくできる。ここで、WHSVとは、連続式の反応装置における、ゼオライト触媒の質量Wに対する原料の供給速度(供給量/時間)Fの比(F/W)である。なお、原料及び触媒の使用量は、反応条件、触媒の活性等に応じて更に好ましい範囲を適宜選定してよく、WHSVは上記範囲に限定されない。
When the dehydrogenation step is carried out in a continuous reaction format in which the raw materials are continuously supplied, the mass space velocity (hereinafter, may be referred to as “WHSV”) may be 0.01 h -1 or more. It may be 0.1h -1 or more. When the WHSV is equal to or higher than the above lower limit value, the conversion rate of indane can be further increased. Further, the WHSV may be 100h -1 or less, and may be 20h -1 or less. When the WHSV is equal to or less than the above upper limit value, the reactor size can be further reduced. Here, WHSV is the ratio (F / W) of the supply rate (supply amount / hour) F of the raw material to the mass W of the zeolite catalyst in the continuous reactor. The amount of the raw material and the catalyst used may be appropriately selected in a more preferable range depending on the reaction conditions, the activity of the catalyst, and the like, and WHSV is not limited to the above range.
<テトラヒドロインデンの脱水素工程>
本実施形態に係る製造方法は、テトラヒドロインデンの脱水素反応により、インダン又はインダン混合物を得る原料合成工程を更に備えていてもよい。
テトラヒドロインデンを脱水素反応によりインダン混合物を得る第1の脱水素工程と、得られたインダン混合物を脱水素反応によりインデンを得る第2の脱水素工程とを有する製造方法、つまり、テトラヒドロインデンを有する原料からインデンを製造する製造方法が、本実施形態に係る好ましい製造例として挙げられる。 <Dehydrogenation process of tetrahydroindene>
The production method according to the present embodiment may further include a raw material synthesis step of obtaining indane or an indane mixture by a dehydrogenation reaction of tetrahydroindene.
It has a production method having a first dehydrogenation step of obtaining an indane mixture by dehydrogenating tetrahydroindene and a second dehydrogenation step of obtaining indene from the obtained indane mixture by a dehydrogenation reaction, that is, having tetrahydroindene. A production method for producing indene from a raw material is mentioned as a preferable production example according to the present embodiment.
本実施形態に係る製造方法は、テトラヒドロインデンの脱水素反応により、インダン又はインダン混合物を得る原料合成工程を更に備えていてもよい。
テトラヒドロインデンを脱水素反応によりインダン混合物を得る第1の脱水素工程と、得られたインダン混合物を脱水素反応によりインデンを得る第2の脱水素工程とを有する製造方法、つまり、テトラヒドロインデンを有する原料からインデンを製造する製造方法が、本実施形態に係る好ましい製造例として挙げられる。 <Dehydrogenation process of tetrahydroindene>
The production method according to the present embodiment may further include a raw material synthesis step of obtaining indane or an indane mixture by a dehydrogenation reaction of tetrahydroindene.
It has a production method having a first dehydrogenation step of obtaining an indane mixture by dehydrogenating tetrahydroindene and a second dehydrogenation step of obtaining indene from the obtained indane mixture by a dehydrogenation reaction, that is, having tetrahydroindene. A production method for producing indene from a raw material is mentioned as a preferable production example according to the present embodiment.
第1及び第2の脱水素工程における製造条件(温度、圧力等の条件)としては、特に制限はなく、目的に応じて適宜調整することができる。製造条件は、特に制限されるものではないが、例えば、第1の脱水素工程における製造条件は比較的温和な条件で、そして第2の脱水素工程における製造条件は第1の脱水素工程に比べて過酷な条件で製造することが好ましい。上記製造条件であれば、インダン、オクタヒドロインデン及びヘキサヒドロインデンが好適な割合で混合されているインダン混合物を第1の脱水素工程で得て、そのインダン混合物を用いて第2の脱水素工程でインデンを効率よくかつ高収率に製造することができる傾向がある。
第1の脱水素工程において、テトラヒドロインデンを有する原料を脱水素触媒に接触させる際の温度は、特に制限されるものではないが、例えば、150~300℃であるとよい。
第1の脱水素工程において、テトラヒドロインデンを有する原料を脱水素触媒に接触させる際の圧力は、特に制限されるものではないが、例えば、0.01~5.0MPaであるとよい。
第1の脱水素工程において、WHSVは、特に制限されるものではないが、例えば、0.1~10h-1であるとよい。 The production conditions (conditions such as temperature and pressure) in the first and second dehydrogenation steps are not particularly limited and can be appropriately adjusted according to the purpose. The production conditions are not particularly limited, but for example, the production conditions in the first dehydrogenation step are relatively mild conditions, and the production conditions in the second dehydrogenation step are the first dehydrogenation step. It is preferable to manufacture under harsher conditions. Under the above production conditions, an indane mixture in which indane, octahydroindene and hexahydroindene are mixed in a suitable ratio is obtained in the first dehydrogenation step, and the indane mixture is used in the second dehydrogenation step. Indane tends to be produced efficiently and in high yield.
In the first dehydrogenation step, the temperature at which the raw material having tetrahydroindene is brought into contact with the dehydrogenation catalyst is not particularly limited, but may be, for example, 150 to 300 ° C.
In the first dehydrogenation step, the pressure at which the raw material having tetrahydroindene is brought into contact with the dehydrogenation catalyst is not particularly limited, but may be, for example, 0.01 to 5.0 MPa.
In the first dehydrogenation step, the WHSV is not particularly limited, but may be, for example, 0.1 to 10 h- 1 .
第1の脱水素工程において、テトラヒドロインデンを有する原料を脱水素触媒に接触させる際の温度は、特に制限されるものではないが、例えば、150~300℃であるとよい。
第1の脱水素工程において、テトラヒドロインデンを有する原料を脱水素触媒に接触させる際の圧力は、特に制限されるものではないが、例えば、0.01~5.0MPaであるとよい。
第1の脱水素工程において、WHSVは、特に制限されるものではないが、例えば、0.1~10h-1であるとよい。 The production conditions (conditions such as temperature and pressure) in the first and second dehydrogenation steps are not particularly limited and can be appropriately adjusted according to the purpose. The production conditions are not particularly limited, but for example, the production conditions in the first dehydrogenation step are relatively mild conditions, and the production conditions in the second dehydrogenation step are the first dehydrogenation step. It is preferable to manufacture under harsher conditions. Under the above production conditions, an indane mixture in which indane, octahydroindene and hexahydroindene are mixed in a suitable ratio is obtained in the first dehydrogenation step, and the indane mixture is used in the second dehydrogenation step. Indane tends to be produced efficiently and in high yield.
In the first dehydrogenation step, the temperature at which the raw material having tetrahydroindene is brought into contact with the dehydrogenation catalyst is not particularly limited, but may be, for example, 150 to 300 ° C.
In the first dehydrogenation step, the pressure at which the raw material having tetrahydroindene is brought into contact with the dehydrogenation catalyst is not particularly limited, but may be, for example, 0.01 to 5.0 MPa.
In the first dehydrogenation step, the WHSV is not particularly limited, but may be, for example, 0.1 to 10 h- 1 .
第1の脱水素工程で使用する脱水素触媒としては、テトラヒドロインデンの脱水素反応を触媒する固体触媒を特に制限なく用いることができる。例えば、脱水素触媒としては、脱水素反応の触媒として用いられるクロム/Al2O3系触媒、白金/Al2O3系触媒、Fe-K系触媒、白金/SnO2-Al2O3触媒、白金-スズ/マグネシアアルミナ触媒、酸化的脱水素反応の触媒としてよく用いられるBi-Mo系触媒等を用いることができる。
As the dehydrogenation catalyst used in the first dehydrogenation step, a solid catalyst that catalyzes the dehydrogenation reaction of tetrahydroindene can be used without particular limitation. For example, the dehydrogenation catalyst, chromium / Al 2 O 3 catalyst used as a catalyst for the dehydrogenation reaction, platinum / Al 2 O 3 catalyst, Fe-K catalyst, platinum / SnO 2 -Al 2 O 3 catalyst , Platinum-tin / magnesia alumina catalyst, Bi-Mo catalyst often used as a catalyst for oxidative dehydrogenation reaction, etc. can be used.
上記第1及び第2の脱水素工程を有する製造方法によれば、インダン、オクタヒドロインデン及びヘキサヒドロインデンが混合されているインダン混合物を用いてインデンを製造することができるため、テトラヒドロインデンからインデンを高効率かつ高収率に製造することができる。
According to the production method having the first and second dehydrogenation steps, indene can be produced using an indane mixture in which indane, octahydroindene and hexahydroindene are mixed, and therefore indene can be produced from tetrahydroindene. Can be produced with high efficiency and high yield.
より具体的な製造方法としては、反応器の下流側に上述のゼオライト触媒を充填し、反応器の上流側にテトラヒドロインデンをインダン又はインダン混合物に変換するための脱水素触媒を充填することが挙げられる。本実施形態のゼオライト触媒は、インダン又はインダン混合物からインデンへの脱水素反応の反応活性に優れるため、当該製造方法によれば、テトラヒドロインデンからインデンを効率良く製造することができる。
As a more specific production method, the downstream side of the reactor is filled with the above-mentioned zeolite catalyst, and the upstream side of the reactor is filled with a dehydrogenation catalyst for converting tetrahydroindene into indane or an indane mixture. Be done. Since the zeolite catalyst of the present embodiment is excellent in the reaction activity of the dehydrogenation reaction from indane or an indane mixture to indene, indene can be efficiently produced from tetrahydroindene according to the production method.
以上説明したように、本実施形態に係る製造方法によれば、特定のゼオライト触媒を用いることで、インダンを含む原料組成物から高い収率で長時間に亘って安定的にインデンを製造することができる。これにより、インデンを製造する際に必要となる触媒再生の回数を減少し、生産効率を向上させることができるため、工業的に非常に有用である。
As described above, according to the production method according to the present embodiment, indene can be stably produced from a raw material composition containing indane in a high yield for a long period of time by using a specific zeolite catalyst. Can be done. As a result, the number of times of catalyst regeneration required for producing inden can be reduced and the production efficiency can be improved, which is very useful industrially.
以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the Examples.
[触媒合成例1]
<触媒Aの調製>
(1)熟成工程
ステンレス製耐圧容器の内部に、オルトケイ酸テトラエチル(TEOS)4.0g、20~25wt%テトラプロピルアンモニウムヒドロキシド水溶液(TPAOH、有機構造規定剤)4.6gを加え、密閉し、80℃にて24時間撹拌(熟成)を行った。撹拌後の混合物の状態は液状であった。TPAOHは、ゼオライト構造を構築する規定剤として、また、水溶液を塩基性とするために加えられている。これにより、塩基性水溶液中でTEOSが縮重合された。 [Catalyst synthesis example 1]
<Preparation of catalyst A>
(1) Aging step To the inside of a stainless steel pressure-resistant container, 4.0 g of tetraethyl orthosilicate (TEOS) and 4.6 g of a 20 to 25 wt% tetrapropylammonium hydroxide aqueous solution (TPAOH, organic structure defining agent) are added and sealed. Stirring (aging) was performed at 80 ° C. for 24 hours. The state of the mixture after stirring was liquid. TPAOH has been added as a regulator to build the zeolite structure and to make the aqueous solution basic. As a result, TEOS was polycondensed in the basic aqueous solution.
<触媒Aの調製>
(1)熟成工程
ステンレス製耐圧容器の内部に、オルトケイ酸テトラエチル(TEOS)4.0g、20~25wt%テトラプロピルアンモニウムヒドロキシド水溶液(TPAOH、有機構造規定剤)4.6gを加え、密閉し、80℃にて24時間撹拌(熟成)を行った。撹拌後の混合物の状態は液状であった。TPAOHは、ゼオライト構造を構築する規定剤として、また、水溶液を塩基性とするために加えられている。これにより、塩基性水溶液中でTEOSが縮重合された。 [Catalyst synthesis example 1]
<Preparation of catalyst A>
(1) Aging step To the inside of a stainless steel pressure-resistant container, 4.0 g of tetraethyl orthosilicate (TEOS) and 4.6 g of a 20 to 25 wt% tetrapropylammonium hydroxide aqueous solution (TPAOH, organic structure defining agent) are added and sealed. Stirring (aging) was performed at 80 ° C. for 24 hours. The state of the mixture after stirring was liquid. TPAOH has been added as a regulator to build the zeolite structure and to make the aqueous solution basic. As a result, TEOS was polycondensed in the basic aqueous solution.
(2)水熱合成工程
ゼオライト骨格中に導入する金属元素(本合成例では亜鉛)の金属塩(本合成例では硝酸亜鉛6水和物)をイオン交換水0.5gに溶解した。
その後、熟成工程で得られた混合物に加え、室温(25~30℃)で均一化するまで撹拌を行った。これにより、シリカと亜鉛イオンが共存するゲルが得られた。ゲル化した混合物をオーブンに投入し、20rpmで回転させながら175℃で24時間水熱合成を行った。 (2) Hydrothermal Synthesis Step A metal salt (zinc nitrate hexahydrate in this synthesis example) of a metal element (zinc in this synthesis example) to be introduced into the zeolite skeleton was dissolved in 0.5 g of ion-exchanged water.
Then, the mixture was added to the mixture obtained in the aging step, and the mixture was stirred at room temperature (25 to 30 ° C.) until homogenized. As a result, a gel in which silica and zinc ions coexist was obtained. The gelled mixture was placed in an oven, and hydrothermal synthesis was carried out at 175 ° C. for 24 hours while rotating at 20 rpm.
ゼオライト骨格中に導入する金属元素(本合成例では亜鉛)の金属塩(本合成例では硝酸亜鉛6水和物)をイオン交換水0.5gに溶解した。
その後、熟成工程で得られた混合物に加え、室温(25~30℃)で均一化するまで撹拌を行った。これにより、シリカと亜鉛イオンが共存するゲルが得られた。ゲル化した混合物をオーブンに投入し、20rpmで回転させながら175℃で24時間水熱合成を行った。 (2) Hydrothermal Synthesis Step A metal salt (zinc nitrate hexahydrate in this synthesis example) of a metal element (zinc in this synthesis example) to be introduced into the zeolite skeleton was dissolved in 0.5 g of ion-exchanged water.
Then, the mixture was added to the mixture obtained in the aging step, and the mixture was stirred at room temperature (25 to 30 ° C.) until homogenized. As a result, a gel in which silica and zinc ions coexist was obtained. The gelled mixture was placed in an oven, and hydrothermal synthesis was carried out at 175 ° C. for 24 hours while rotating at 20 rpm.
(3)焼成工程
水熱合成工程後の混合物を遠沈管に投入し、遠心分離によりゲル状のサンプルを得た。その後、このゲル状のサンプルを、イオン交換水を用いて洗浄した。
洗浄は、ゲル状のサンプルにイオン交換水を加えて洗浄した後、遠心分離を行った。遠心分離後の上澄み液のpHを測定し、pHが7~8の範囲に属するまで洗浄・遠心分離を繰り返した。
洗浄後のゲル状のサンプルを90℃のオーブンにて乾燥させた。
乾燥後のサンプルをマッフル炉に投入し、550℃で8時間、空気環境下で焼成を行い、ゼオライト触媒を得た。これにより、ゼオライト中の有機物であるテトラプロピルアンモニウムイオン(カチオン)が除去されたことになる。 (3) Firing step The mixture after the hydrothermal synthesis step was put into a centrifuge tube and centrifuged to obtain a gel-like sample. Then, this gel-like sample was washed with ion-exchanged water.
For washing, ion-exchanged water was added to the gel-like sample for washing, and then centrifugation was performed. The pH of the supernatant after centrifugation was measured, and washing and centrifugation were repeated until the pH belonged to the range of 7 to 8.
The washed gel-like sample was dried in an oven at 90 ° C.
The dried sample was put into a muffle furnace and calcined at 550 ° C. for 8 hours in an air environment to obtain a zeolite catalyst. As a result, the tetrapropylammonium ion (cation), which is an organic substance in the zeolite, has been removed.
水熱合成工程後の混合物を遠沈管に投入し、遠心分離によりゲル状のサンプルを得た。その後、このゲル状のサンプルを、イオン交換水を用いて洗浄した。
洗浄は、ゲル状のサンプルにイオン交換水を加えて洗浄した後、遠心分離を行った。遠心分離後の上澄み液のpHを測定し、pHが7~8の範囲に属するまで洗浄・遠心分離を繰り返した。
洗浄後のゲル状のサンプルを90℃のオーブンにて乾燥させた。
乾燥後のサンプルをマッフル炉に投入し、550℃で8時間、空気環境下で焼成を行い、ゼオライト触媒を得た。これにより、ゼオライト中の有機物であるテトラプロピルアンモニウムイオン(カチオン)が除去されたことになる。 (3) Firing step The mixture after the hydrothermal synthesis step was put into a centrifuge tube and centrifuged to obtain a gel-like sample. Then, this gel-like sample was washed with ion-exchanged water.
For washing, ion-exchanged water was added to the gel-like sample for washing, and then centrifugation was performed. The pH of the supernatant after centrifugation was measured, and washing and centrifugation were repeated until the pH belonged to the range of 7 to 8.
The washed gel-like sample was dried in an oven at 90 ° C.
The dried sample was put into a muffle furnace and calcined at 550 ° C. for 8 hours in an air environment to obtain a zeolite catalyst. As a result, the tetrapropylammonium ion (cation), which is an organic substance in the zeolite, has been removed.
得られたゼオライト触媒について、次の測定を行った。
(a)シンクロトロンXRD分析
シンクロトロンXRD装置にてXRD分析を行った。
(b)固体NMR分析
NMR(日本電子株式会社製、ECA-600)にて29Si MAS NMR測定を行った。
(c)FT-IR分析
FT-IR(日本分光株式会社製、FT/IR-4600)にて構造解析を行った。このとき、前処理として、450℃で1時間真空排気を行った。
(d)CO2-TPD分析
TPD分析装置(マイクロトラック・ベル株式会社製、BELCAT II)にてCO2-TPD分析を行った。ゼオライト触媒約30mgを、ヘリウムガスを流量50mL/minで流通させながら500℃1時間の前処理を行った。その後、40℃未満まで冷却し、1vol%CO2/Heガスを流量50mL/minで流通させてゼオライト触媒にCO2を吸着させた後、ヘリウムガスを流量50mL/minにて5分間流通させた。その後、ヘリウムガスを30mL/minにて流通させながら、800℃まで昇温速度10℃/minにて昇温させ、CO2の離脱をTCD(Thermal Conductivity Detector)とMASSにて分析を行った。MASSは、マイクロトラック・ベル株式会社製、BELMassを用いた。
塩基量の測定は、CO2-TPDによるピーク面積から算出した。
(e)NH3-TPD分析
TPD分析装置(マイクロトラック・ベル株式会社製、BELCAT II)にてNH3-TPD分析を行った。ゼオライト触媒約30mgを、ヘリウムガスを流量50mL/minで流通させながら500℃1時間の前処理を行った。その後、100℃まで冷却し、1vol%NH3/Heガスを流量50mL/minで流通させてゼオライト触媒にNH3を吸着させた後、ヘリウムガスを流量50mL/minにて15分間流通させた。その後、ヘリウムガスを30mL/minにて流通させながら、700℃まで昇温速度10℃/minにて昇温させ、NH3の離脱をTCDとMASSにて分析を行った。MASSは、マイクロトラック・ベル株式会社製、BELMassを用いた。
ルイス酸量の測定は、NH3-TPDによるピーク面積から算出した。 The following measurements were carried out on the obtained zeolite catalyst.
(A) Synchrotron XRD analysis XRD analysis was performed with a synchrotron XRD apparatus.
(B) Solid-state NMR analysis 29 Si MAS NMR measurement was performed by NMR (ECA-600, manufactured by JEOL Ltd.).
(C) FT-IR analysis Structural analysis was performed by FT-IR (FT / IR-4600, manufactured by JASCO Corporation). At this time, as a pretreatment, vacuum exhaust was performed at 450 ° C. for 1 hour.
(D) CO 2 -TPD analyzer TPD analyzer (Microtrac Bell Co., BELCAT II) was CO 2 -TPD analyzed by. About 30 mg of the zeolite catalyst was pretreated at 500 ° C. for 1 hour while flowing helium gas at a flow rate of 50 mL / min. Then, it was cooled to less than 40 ° C., 1 vol% CO 2 / He gas was circulated at a flow rate of 50 mL / min to adsorb CO 2 on the zeolite catalyst, and then helium gas was circulated at a flow rate of 50 mL / min for 5 minutes. .. Then, while helium gas was circulated at 30 mL / min, the temperature was raised to 800 ° C. at a heating rate of 10 ° C./min, and CO 2 desorption was analyzed by TCD (Thermal Conductivity Detector) and MASS. As MASS, BELMass manufactured by Microtrack Bell Co., Ltd. was used.
Measurement of amount of base, was calculated from the peak area due to CO 2 -TPD.
(E) NH 3 -TPD analyzer TPD analyzer (Microtrac Bell Co., BELCAT II) was NH 3 -TPD analyzed by. About 30 mg of the zeolite catalyst was pretreated at 500 ° C. for 1 hour while flowing helium gas at a flow rate of 50 mL / min. Then, the mixture was cooled to 100 ° C., 1 vol% NH 3 / He gas was circulated at a flow rate of 50 mL / min to adsorb NH 3 on a zeolite catalyst, and then helium gas was circulated at a flow rate of 50 mL / min for 15 minutes. Then, while helium gas was circulated at 30 mL / min, the temperature was raised to 700 ° C. at a heating rate of 10 ° C./min, and the withdrawal of NH 3 was analyzed by TCD and MASS. As MASS, BELMass manufactured by Microtrack Bell Co., Ltd. was used.
Measurement of the Lewis acid amount was calculated from the peak area by NH 3 -TPD.
(a)シンクロトロンXRD分析
シンクロトロンXRD装置にてXRD分析を行った。
(b)固体NMR分析
NMR(日本電子株式会社製、ECA-600)にて29Si MAS NMR測定を行った。
(c)FT-IR分析
FT-IR(日本分光株式会社製、FT/IR-4600)にて構造解析を行った。このとき、前処理として、450℃で1時間真空排気を行った。
(d)CO2-TPD分析
TPD分析装置(マイクロトラック・ベル株式会社製、BELCAT II)にてCO2-TPD分析を行った。ゼオライト触媒約30mgを、ヘリウムガスを流量50mL/minで流通させながら500℃1時間の前処理を行った。その後、40℃未満まで冷却し、1vol%CO2/Heガスを流量50mL/minで流通させてゼオライト触媒にCO2を吸着させた後、ヘリウムガスを流量50mL/minにて5分間流通させた。その後、ヘリウムガスを30mL/minにて流通させながら、800℃まで昇温速度10℃/minにて昇温させ、CO2の離脱をTCD(Thermal Conductivity Detector)とMASSにて分析を行った。MASSは、マイクロトラック・ベル株式会社製、BELMassを用いた。
塩基量の測定は、CO2-TPDによるピーク面積から算出した。
(e)NH3-TPD分析
TPD分析装置(マイクロトラック・ベル株式会社製、BELCAT II)にてNH3-TPD分析を行った。ゼオライト触媒約30mgを、ヘリウムガスを流量50mL/minで流通させながら500℃1時間の前処理を行った。その後、100℃まで冷却し、1vol%NH3/Heガスを流量50mL/minで流通させてゼオライト触媒にNH3を吸着させた後、ヘリウムガスを流量50mL/minにて15分間流通させた。その後、ヘリウムガスを30mL/minにて流通させながら、700℃まで昇温速度10℃/minにて昇温させ、NH3の離脱をTCDとMASSにて分析を行った。MASSは、マイクロトラック・ベル株式会社製、BELMassを用いた。
ルイス酸量の測定は、NH3-TPDによるピーク面積から算出した。 The following measurements were carried out on the obtained zeolite catalyst.
(A) Synchrotron XRD analysis XRD analysis was performed with a synchrotron XRD apparatus.
(B) Solid-state NMR analysis 29 Si MAS NMR measurement was performed by NMR (ECA-600, manufactured by JEOL Ltd.).
(C) FT-IR analysis Structural analysis was performed by FT-IR (FT / IR-4600, manufactured by JASCO Corporation). At this time, as a pretreatment, vacuum exhaust was performed at 450 ° C. for 1 hour.
(D) CO 2 -TPD analyzer TPD analyzer (Microtrac Bell Co., BELCAT II) was CO 2 -TPD analyzed by. About 30 mg of the zeolite catalyst was pretreated at 500 ° C. for 1 hour while flowing helium gas at a flow rate of 50 mL / min. Then, it was cooled to less than 40 ° C., 1 vol% CO 2 / He gas was circulated at a flow rate of 50 mL / min to adsorb CO 2 on the zeolite catalyst, and then helium gas was circulated at a flow rate of 50 mL / min for 5 minutes. .. Then, while helium gas was circulated at 30 mL / min, the temperature was raised to 800 ° C. at a heating rate of 10 ° C./min, and CO 2 desorption was analyzed by TCD (Thermal Conductivity Detector) and MASS. As MASS, BELMass manufactured by Microtrack Bell Co., Ltd. was used.
Measurement of amount of base, was calculated from the peak area due to CO 2 -TPD.
(E) NH 3 -TPD analyzer TPD analyzer (Microtrac Bell Co., BELCAT II) was NH 3 -TPD analyzed by. About 30 mg of the zeolite catalyst was pretreated at 500 ° C. for 1 hour while flowing helium gas at a flow rate of 50 mL / min. Then, the mixture was cooled to 100 ° C., 1 vol% NH 3 / He gas was circulated at a flow rate of 50 mL / min to adsorb NH 3 on a zeolite catalyst, and then helium gas was circulated at a flow rate of 50 mL / min for 15 minutes. Then, while helium gas was circulated at 30 mL / min, the temperature was raised to 700 ° C. at a heating rate of 10 ° C./min, and the withdrawal of NH 3 was analyzed by TCD and MASS. As MASS, BELMass manufactured by Microtrack Bell Co., Ltd. was used.
Measurement of the Lewis acid amount was calculated from the peak area by NH 3 -TPD.
(a)シンクロトロンXRD分析
シンクロトロンXRD分析の結果を図1に示す。Zn含浸担持触媒(金属が導入されていないMFI型ゼオライトにZnを含浸担持した触媒をいう。)では、点線で示す位置に、ZnO結晶に起因するピークが見られたが、本実施例におけるゼオライト触媒では、ZnO結晶に由来するピークは見られなかった。
(b)固体NMR分析
29Si MAS NMR分析の結果を図2に示す。Si、O、Znで構成されるゼオライトを29Si MAS NMRで測定すると、Si原子の4つの結合が-O-Siのみの場合には-110~-120ppmにピークが現れ、Si原子の4つの結合のうち少なくとも1つの結合が-O-Znである場合には-100ppm付近にピークが現れる(「Synthesis and Characterization OF Zincosilicates with the SOD Topology」M.A.Camblor,R.F.Lobe,H.Koller,M.E.Davis,Chemistry of Materials,6,P.2193-2199(1994))。本実施例におけるゼオライト触媒では、この-100ppmのピークが見られた。
(c)FT-IR分析
450℃で1時間真空排気して前処理を行った後、室温でのFT-IR分析の結果を図3に示す。Zn同士が近くに存在すれば、前処理によりZn-O-Znとなる。ZnO結晶やZn含浸担持触媒では、FT-IR分析において、3600~3700cm-1の領域に吸収バンドを有さない。しかし、本実施例におけるゼオライト触媒においては、ZnのZn-OH振動に由来する3640cm-1付近の吸収バンドが見られ、ゼオライト骨格内に取り込まれて、Zn同士は孤立しているとみられる。
また、前処理後に150℃まで冷却し、ピリジンを導入し、真空排気しながら250℃まで昇温させた後にFT-IR分析を行った。その結果を図4に示す。ブレンステッド酸が存在する場合、ゼオライト触媒にピリジンを吸着させてFT-IRで測定すると、1560cm-1付近にC6H5N-Hの振動に由来する吸収バンドが見られることが知られている。しかしながら、本実施例におけるゼオライト触媒では、当該吸収バンドが見られなかった。
ルイス酸が存在する場合、ゼオライト触媒にピリジンを吸着させてFT-IRで測定すると、1450cm-1付近に吸収バンドが見られることが知られている。そして、本実施例におけるゼオライト触媒では、1450cm-1付近に吸収バンドが見られた。このことから、本実施例におけるゼオライト触媒は、ブレンステッド酸を有さず、ルイス酸のみを有することが判明した。
(d)CO2-TPD分析
CO2-TPD分析の結果を図5に示す。CO2-TPD分析において、一般的なアルミニウムを含むゼオライト触媒では、100℃付近の低温域にピークは示すものの、500℃以上の高温域ではピークは見られない。また、Zn含浸担持触媒では、100℃付近にのみピークが見られる。しかしながら、本実施例におけるゼオライト触媒では、500℃以上の高温域においてもピークが見られ、このゼオライト触媒の固体塩基性が強いことが確認された。なお、CO2-TPDによる500℃以上の高温域のピーク面積から算出した固体塩基量は、0~0.035mmol/gであった。
(e)NH3-TPD分析
NH3-TPD分析の結果を図6に示す。NH3-TPD分析において、Zn含浸担持触媒では200℃付近にブロードなピークが見られた。また、本実施例におけるゼオライト触媒では、150℃~500℃までの大きいブロードのピークが見られた。FT-IR分析において、本実施例におけるゼオライト触媒には、ブレンステッド酸を有さず、ルイス酸のみを有することが確認されているため、このピークはルイス酸に吸着したNH3の離脱に由来すると考えられる。また、ピーク面積から算出した酸量は、0.01~0.2mmol/gであった。 (A) Synchrotron XRD analysis The results of the synchrotron XRD analysis are shown in FIG. In the Zn-impregnated supported catalyst (a catalyst in which Zn is impregnated and supported on MFI-type zeolite having no metal introduced), a peak due to ZnO crystals was observed at the position indicated by the dotted line, but the zeolite in this example was observed. In the catalyst, no peak derived from ZnO crystals was observed.
(B) Solid-state NMR analysis 29 The results of Si MAS NMR analysis are shown in FIG. When a zeolite composed of Si, O, and Zn is measured by 29 Si MAS NMR, a peak appears at -110 to -120 ppm when the four bonds of Si atoms are only -O-Si, and four Si atoms are present. When at least one of the bonds is -O-Zn, a peak appears around -100 ppm ("Synthesis and Chemistry OF Zincosilicates with the SOD Topology" MA Camblor, RF Love, H. Koller, ME Davis, Chemistry of Materials, 6, P.2193-2199 (1994)). In the zeolite catalyst in this example, this peak of -100 ppm was observed.
(C) FT-IR analysis The result of FT-IR analysis at room temperature is shown in FIG. 3 after performing pretreatment by vacuum exhausting at 450 ° C. for 1 hour. If Zns are close to each other, they become Zn—O—Zn by pretreatment. ZnO crystals and Zn-impregnated supported catalysts do not have an absorption band in the region of 3600 to 3700 cm -1 in FT-IR analysis. However, in the zeolite catalyst of this example, an absorption band around 3640 cm -1 derived from the Zn-OH vibration of Zn is observed, and it is considered that the Zns are isolated from each other by being incorporated into the zeolite skeleton.
Further, after the pretreatment, the mixture was cooled to 150 ° C., pyridine was introduced, the temperature was raised to 250 ° C. while evacuating, and then FT-IR analysis was performed. The result is shown in FIG. In the presence of Bronsted acid, it is known that when pyridine is adsorbed on a zeolite catalyst and measured by FT-IR, an absorption band derived from the vibration of C 6 H 5 N H is observed near 1560 cm -1. There is. However, the absorption band was not found in the zeolite catalyst in this example.
In the presence of Lewis acid, it is known that an absorption band is observed in the vicinity of 1450 cm -1 when pyridine is adsorbed on a zeolite catalyst and measured by FT-IR. Then, in the zeolite catalyst of this example, an absorption band was observed in the vicinity of 1450 cm -1. From this, it was found that the zeolite catalyst in this example does not have Bronsted acid and has only Lewis acid.
(D) CO 2- TPD analysis The results of CO 2- TPD analysis are shown in FIG. In CO 2 -TPD analysis, the zeolite catalyst comprising a common aluminum, while indicating the peak in the low temperature range around 100 ° C., no peak was observed in a high temperature range of not lower than 500 ° C.. Further, in the Zn-impregnated supported catalyst, a peak is observed only at around 100 ° C. However, in the zeolite catalyst of this example, a peak was observed even in a high temperature range of 500 ° C. or higher, confirming that the zeolite catalyst has strong solid basicity. Note that solid base amount calculated from the peak area of the high temperature region of 500 ° C. or higher due to CO 2 -TPD was 0 ~ 0.035mmol / g.
(E) NH 3- TPD analysis The results of NH 3- TPD analysis are shown in FIG. In the NH 3- TPD analysis, a broad peak was observed around 200 ° C. in the Zn-impregnated supported catalyst. Further, in the zeolite catalyst in this example, a large broad peak from 150 ° C. to 500 ° C. was observed. In FT-IR analysis, it was confirmed that the zeolite catalyst in this example did not have Bronsted acid and had only Lewis acid, so this peak was derived from the withdrawal of NH 3 adsorbed on Lewis acid. It is thought that. The amount of acid calculated from the peak area was 0.01 to 0.2 mmol / g.
シンクロトロンXRD分析の結果を図1に示す。Zn含浸担持触媒(金属が導入されていないMFI型ゼオライトにZnを含浸担持した触媒をいう。)では、点線で示す位置に、ZnO結晶に起因するピークが見られたが、本実施例におけるゼオライト触媒では、ZnO結晶に由来するピークは見られなかった。
(b)固体NMR分析
29Si MAS NMR分析の結果を図2に示す。Si、O、Znで構成されるゼオライトを29Si MAS NMRで測定すると、Si原子の4つの結合が-O-Siのみの場合には-110~-120ppmにピークが現れ、Si原子の4つの結合のうち少なくとも1つの結合が-O-Znである場合には-100ppm付近にピークが現れる(「Synthesis and Characterization OF Zincosilicates with the SOD Topology」M.A.Camblor,R.F.Lobe,H.Koller,M.E.Davis,Chemistry of Materials,6,P.2193-2199(1994))。本実施例におけるゼオライト触媒では、この-100ppmのピークが見られた。
(c)FT-IR分析
450℃で1時間真空排気して前処理を行った後、室温でのFT-IR分析の結果を図3に示す。Zn同士が近くに存在すれば、前処理によりZn-O-Znとなる。ZnO結晶やZn含浸担持触媒では、FT-IR分析において、3600~3700cm-1の領域に吸収バンドを有さない。しかし、本実施例におけるゼオライト触媒においては、ZnのZn-OH振動に由来する3640cm-1付近の吸収バンドが見られ、ゼオライト骨格内に取り込まれて、Zn同士は孤立しているとみられる。
また、前処理後に150℃まで冷却し、ピリジンを導入し、真空排気しながら250℃まで昇温させた後にFT-IR分析を行った。その結果を図4に示す。ブレンステッド酸が存在する場合、ゼオライト触媒にピリジンを吸着させてFT-IRで測定すると、1560cm-1付近にC6H5N-Hの振動に由来する吸収バンドが見られることが知られている。しかしながら、本実施例におけるゼオライト触媒では、当該吸収バンドが見られなかった。
ルイス酸が存在する場合、ゼオライト触媒にピリジンを吸着させてFT-IRで測定すると、1450cm-1付近に吸収バンドが見られることが知られている。そして、本実施例におけるゼオライト触媒では、1450cm-1付近に吸収バンドが見られた。このことから、本実施例におけるゼオライト触媒は、ブレンステッド酸を有さず、ルイス酸のみを有することが判明した。
(d)CO2-TPD分析
CO2-TPD分析の結果を図5に示す。CO2-TPD分析において、一般的なアルミニウムを含むゼオライト触媒では、100℃付近の低温域にピークは示すものの、500℃以上の高温域ではピークは見られない。また、Zn含浸担持触媒では、100℃付近にのみピークが見られる。しかしながら、本実施例におけるゼオライト触媒では、500℃以上の高温域においてもピークが見られ、このゼオライト触媒の固体塩基性が強いことが確認された。なお、CO2-TPDによる500℃以上の高温域のピーク面積から算出した固体塩基量は、0~0.035mmol/gであった。
(e)NH3-TPD分析
NH3-TPD分析の結果を図6に示す。NH3-TPD分析において、Zn含浸担持触媒では200℃付近にブロードなピークが見られた。また、本実施例におけるゼオライト触媒では、150℃~500℃までの大きいブロードのピークが見られた。FT-IR分析において、本実施例におけるゼオライト触媒には、ブレンステッド酸を有さず、ルイス酸のみを有することが確認されているため、このピークはルイス酸に吸着したNH3の離脱に由来すると考えられる。また、ピーク面積から算出した酸量は、0.01~0.2mmol/gであった。 (A) Synchrotron XRD analysis The results of the synchrotron XRD analysis are shown in FIG. In the Zn-impregnated supported catalyst (a catalyst in which Zn is impregnated and supported on MFI-type zeolite having no metal introduced), a peak due to ZnO crystals was observed at the position indicated by the dotted line, but the zeolite in this example was observed. In the catalyst, no peak derived from ZnO crystals was observed.
(B) Solid-state NMR analysis 29 The results of Si MAS NMR analysis are shown in FIG. When a zeolite composed of Si, O, and Zn is measured by 29 Si MAS NMR, a peak appears at -110 to -120 ppm when the four bonds of Si atoms are only -O-Si, and four Si atoms are present. When at least one of the bonds is -O-Zn, a peak appears around -100 ppm ("Synthesis and Chemistry OF Zincosilicates with the SOD Topology" MA Camblor, RF Love, H. Koller, ME Davis, Chemistry of Materials, 6, P.2193-2199 (1994)). In the zeolite catalyst in this example, this peak of -100 ppm was observed.
(C) FT-IR analysis The result of FT-IR analysis at room temperature is shown in FIG. 3 after performing pretreatment by vacuum exhausting at 450 ° C. for 1 hour. If Zns are close to each other, they become Zn—O—Zn by pretreatment. ZnO crystals and Zn-impregnated supported catalysts do not have an absorption band in the region of 3600 to 3700 cm -1 in FT-IR analysis. However, in the zeolite catalyst of this example, an absorption band around 3640 cm -1 derived from the Zn-OH vibration of Zn is observed, and it is considered that the Zns are isolated from each other by being incorporated into the zeolite skeleton.
Further, after the pretreatment, the mixture was cooled to 150 ° C., pyridine was introduced, the temperature was raised to 250 ° C. while evacuating, and then FT-IR analysis was performed. The result is shown in FIG. In the presence of Bronsted acid, it is known that when pyridine is adsorbed on a zeolite catalyst and measured by FT-IR, an absorption band derived from the vibration of C 6 H 5 N H is observed near 1560 cm -1. There is. However, the absorption band was not found in the zeolite catalyst in this example.
In the presence of Lewis acid, it is known that an absorption band is observed in the vicinity of 1450 cm -1 when pyridine is adsorbed on a zeolite catalyst and measured by FT-IR. Then, in the zeolite catalyst of this example, an absorption band was observed in the vicinity of 1450 cm -1. From this, it was found that the zeolite catalyst in this example does not have Bronsted acid and has only Lewis acid.
(D) CO 2- TPD analysis The results of CO 2- TPD analysis are shown in FIG. In CO 2 -TPD analysis, the zeolite catalyst comprising a common aluminum, while indicating the peak in the low temperature range around 100 ° C., no peak was observed in a high temperature range of not lower than 500 ° C.. Further, in the Zn-impregnated supported catalyst, a peak is observed only at around 100 ° C. However, in the zeolite catalyst of this example, a peak was observed even in a high temperature range of 500 ° C. or higher, confirming that the zeolite catalyst has strong solid basicity. Note that solid base amount calculated from the peak area of the high temperature region of 500 ° C. or higher due to CO 2 -TPD was 0 ~ 0.035mmol / g.
(E) NH 3- TPD analysis The results of NH 3- TPD analysis are shown in FIG. In the NH 3- TPD analysis, a broad peak was observed around 200 ° C. in the Zn-impregnated supported catalyst. Further, in the zeolite catalyst in this example, a large broad peak from 150 ° C. to 500 ° C. was observed. In FT-IR analysis, it was confirmed that the zeolite catalyst in this example did not have Bronsted acid and had only Lewis acid, so this peak was derived from the withdrawal of NH 3 adsorbed on Lewis acid. It is thought that. The amount of acid calculated from the peak area was 0.01 to 0.2 mmol / g.
以上の結果より、得られたゼオライト触媒は、ブレンステッド酸を有さずルイス酸のみを有し、固体塩基性が強い、MFI構造のゼオライト触媒であることが確認された。
From the above results, it was confirmed that the obtained zeolite catalyst is a zeolite catalyst having an MFI structure, which does not have Bronsted acid but has only Lewis acid and has strong solid basicity.
(4)白金担持工程
次に、焼成後のゼオライト触媒1gに対して、白金含有量4.557wt%のジニトロジアミン白金(II)硝酸溶液(田中貴金属工業製、[Pt(NH3)2(NO2)2]/HNO3)0.22gを添加して、白金の担持量が1.0wt%になるよう白金を含浸担持した。その後130℃で一晩乾燥させ、550℃で3h、空気中で焼成し、白金が担持されたゼオライト触媒である、触媒Aを調製した。 (4) Platinum-supporting step Next, a dinitrodiamine platinum (II) nitric acid solution having a platinum content of 4.557 wt% with respect to 1 g of the calcined zeolite catalyst (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., [Pt (NH 3 ) 2 (NO) 2 ) 2 ] / HNO 3 ) 0.22 g was added, and platinum was impregnated and supported so that the amount of platinum supported was 1.0 wt%. Then, it was dried overnight at 130 ° C. and calcined in air at 550 ° C. for 3 hours to prepare catalyst A, which is a platinum-supported zeolite catalyst.
次に、焼成後のゼオライト触媒1gに対して、白金含有量4.557wt%のジニトロジアミン白金(II)硝酸溶液(田中貴金属工業製、[Pt(NH3)2(NO2)2]/HNO3)0.22gを添加して、白金の担持量が1.0wt%になるよう白金を含浸担持した。その後130℃で一晩乾燥させ、550℃で3h、空気中で焼成し、白金が担持されたゼオライト触媒である、触媒Aを調製した。 (4) Platinum-supporting step Next, a dinitrodiamine platinum (II) nitric acid solution having a platinum content of 4.557 wt% with respect to 1 g of the calcined zeolite catalyst (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., [Pt (NH 3 ) 2 (NO) 2 ) 2 ] / HNO 3 ) 0.22 g was added, and platinum was impregnated and supported so that the amount of platinum supported was 1.0 wt%. Then, it was dried overnight at 130 ° C. and calcined in air at 550 ° C. for 3 hours to prepare catalyst A, which is a platinum-supported zeolite catalyst.
[触媒合成例2]
<触媒Bの調製>
市販のMFI型ゼオライト(HZSM-5、SiO2/Al2O3=1500(mol/mol)、東ソー製)10gを1M硝酸ナトリウム水溶液250mL中で50℃にてイオン交換を4回実施後、室温で水洗浄を行った。その後、130℃で一晩乾燥させ、550℃で3h焼成を行った。次いで、ジニトロジアンミン白金(II)硝酸溶液(田中貴金属工業製、[Pt(NH3)2(NO2)2]/HNO3)を用いて、白金の担持量が1.0wt%になるよう白金を含浸担持し、130℃で一晩乾燥させ、550℃で3h焼成し、触媒Bを調製した。 [Catalyst synthesis example 2]
<Preparation of catalyst B>
10 g of commercially available MFI-type zeolite (HZSM-5, SiO 2 / Al 2 O 3 = 1500 (mol / mol), manufactured by Tosoh) was subjected to ion exchange at 50 ° C. in 250 mL of a 1 M sodium nitrate aqueous solution four times, and then at room temperature. Was washed with water. Then, it was dried overnight at 130 ° C. and calcined at 550 ° C. for 3 hours. Next, using a dinitrodiammine platinum (II) nitric acid solution (manufactured by Tanaka Kikinzoku Kogyo, [Pt (NH 3 ) 2 (NO 2 ) 2 ] / HNO 3 ), platinum was supported so that the amount of platinum supported was 1.0 wt%. Was impregnated and supported, dried at 130 ° C. overnight, and calcined at 550 ° C. for 3 hours to prepare catalyst B.
<触媒Bの調製>
市販のMFI型ゼオライト(HZSM-5、SiO2/Al2O3=1500(mol/mol)、東ソー製)10gを1M硝酸ナトリウム水溶液250mL中で50℃にてイオン交換を4回実施後、室温で水洗浄を行った。その後、130℃で一晩乾燥させ、550℃で3h焼成を行った。次いで、ジニトロジアンミン白金(II)硝酸溶液(田中貴金属工業製、[Pt(NH3)2(NO2)2]/HNO3)を用いて、白金の担持量が1.0wt%になるよう白金を含浸担持し、130℃で一晩乾燥させ、550℃で3h焼成し、触媒Bを調製した。 [Catalyst synthesis example 2]
<Preparation of catalyst B>
10 g of commercially available MFI-type zeolite (HZSM-5, SiO 2 / Al 2 O 3 = 1500 (mol / mol), manufactured by Tosoh) was subjected to ion exchange at 50 ° C. in 250 mL of a 1 M sodium nitrate aqueous solution four times, and then at room temperature. Was washed with water. Then, it was dried overnight at 130 ° C. and calcined at 550 ° C. for 3 hours. Next, using a dinitrodiammine platinum (II) nitric acid solution (manufactured by Tanaka Kikinzoku Kogyo, [Pt (NH 3 ) 2 (NO 2 ) 2 ] / HNO 3 ), platinum was supported so that the amount of platinum supported was 1.0 wt%. Was impregnated and supported, dried at 130 ° C. overnight, and calcined at 550 ° C. for 3 hours to prepare catalyst B.
[触媒合成例3]
<触媒Cの調製>
市販のMFI型ゼオライト(HZSM-5、SiO2/Al2O3=40(mol/mol)、東ソー製)10gを1M硝酸ナトリウム水溶液250mL中で50℃にてイオン交換を4回実施後、室温で水洗浄を行い、130℃で一晩乾燥させた。続いて1M硝酸亜鉛六水和物の水溶液250mL中で50℃にて再度イオン交換を4回実施後、室温で水洗浄を行った。その後、130℃で一晩乾燥させ、550℃で3h焼成を行った。次いで、ジニトロジアンミン白金(II)硝酸溶液(田中貴金属工業製、[Pt(NH3)2(NO2)2]/HNO3)を用いて、白金の担持量が1.0wt%になるよう白金を含浸担持し、130℃で一晩乾燥させ、550℃で3h焼成し、触媒Cを調製した。 [Catalyst synthesis example 3]
<Preparation of catalyst C>
10 g of commercially available MFI-type zeolite (HZSM-5, SiO 2 / Al 2 O 3 = 40 (mol / mol), manufactured by Tosoh) was subjected to ion exchange at 50 ° C. in 250 mL of a 1 M sodium nitrate aqueous solution four times, and then at room temperature. Was washed with water and dried at 130 ° C. overnight. Subsequently, ion exchange was carried out four times again at 50 ° C. in 250 mL of an aqueous solution of 1M zinc nitrate hexahydrate, and then water washing was performed at room temperature. Then, it was dried overnight at 130 ° C. and calcined at 550 ° C. for 3 hours. Next, using a dinitrodiammine platinum (II) nitric acid solution (manufactured by Tanaka Kikinzoku Kogyo, [Pt (NH 3 ) 2 (NO 2 ) 2 ] / HNO 3 ), platinum was supported so that the amount of platinum supported was 1.0 wt%. Was impregnated and supported, dried at 130 ° C. overnight, and calcined at 550 ° C. for 3 hours to prepare catalyst C.
<触媒Cの調製>
市販のMFI型ゼオライト(HZSM-5、SiO2/Al2O3=40(mol/mol)、東ソー製)10gを1M硝酸ナトリウム水溶液250mL中で50℃にてイオン交換を4回実施後、室温で水洗浄を行い、130℃で一晩乾燥させた。続いて1M硝酸亜鉛六水和物の水溶液250mL中で50℃にて再度イオン交換を4回実施後、室温で水洗浄を行った。その後、130℃で一晩乾燥させ、550℃で3h焼成を行った。次いで、ジニトロジアンミン白金(II)硝酸溶液(田中貴金属工業製、[Pt(NH3)2(NO2)2]/HNO3)を用いて、白金の担持量が1.0wt%になるよう白金を含浸担持し、130℃で一晩乾燥させ、550℃で3h焼成し、触媒Cを調製した。 [Catalyst synthesis example 3]
<Preparation of catalyst C>
10 g of commercially available MFI-type zeolite (HZSM-5, SiO 2 / Al 2 O 3 = 40 (mol / mol), manufactured by Tosoh) was subjected to ion exchange at 50 ° C. in 250 mL of a 1 M sodium nitrate aqueous solution four times, and then at room temperature. Was washed with water and dried at 130 ° C. overnight. Subsequently, ion exchange was carried out four times again at 50 ° C. in 250 mL of an aqueous solution of 1M zinc nitrate hexahydrate, and then water washing was performed at room temperature. Then, it was dried overnight at 130 ° C. and calcined at 550 ° C. for 3 hours. Next, using a dinitrodiammine platinum (II) nitric acid solution (manufactured by Tanaka Kikinzoku Kogyo, [Pt (NH 3 ) 2 (NO 2 ) 2 ] / HNO 3 ), platinum was supported so that the amount of platinum supported was 1.0 wt%. Was impregnated and supported, dried at 130 ° C. overnight, and calcined at 550 ° C. for 3 hours to prepare catalyst C.
[触媒合成例4]
<触媒Dの調製>
水酸化ナトリウム、オルトケイ酸テトラエチル(TEOS)、テトラプロピルアンモニウムヒドロキシド(TPAOH)、エタノール、イオン交換水を混合(TEOS:TPAOH:イオン交換水=1:0.12:70(mol比))して調製したゲルを80℃で24h攪拌(熟成)を行った。得られた混合物を175℃で24時間水熱合成を行った後、繰り返し水で洗浄した。その後、130℃で一晩乾燥させ、550℃で3h焼成を行った。これにより、アルミニウムを含まないシリカライトを得た。なお、得られたシリカライトについてはX線回折測定(X線源:CuKα、装置:リガク社製、RINT 2500)により、MFI構造を有することを確認した。
次いで、ジニトロジアンミン白金(II)硝酸溶液(田中貴金属工業製、[Pt(NH3)2(NO2)2]/HNO3)を用いて、白金の担持量が1.0wt%になるよう白金を含浸担持し、130℃で一晩乾燥させ、550℃で3h焼成し、触媒Dを調製した。 [Catalyst synthesis example 4]
<Preparation of catalyst D>
Sodium hydroxide, tetraethyl orthosilicate (TEOS), tetrapropylammonium hydroxide (TPAOH), ethanol, and ion-exchanged water are mixed (TEOS: TPAOH: ion-exchanged water = 1: 0.12: 70 (mol ratio)). The prepared gel was stirred (aged) at 80 ° C. for 24 hours. The obtained mixture was hydrothermally synthesized at 175 ° C. for 24 hours and then repeatedly washed with water. Then, it was dried overnight at 130 ° C. and calcined at 550 ° C. for 3 hours. As a result, an aluminum-free silica light was obtained. The obtained silica light was confirmed to have an MFI structure by X-ray diffraction measurement (X-ray source: CuKα, apparatus: manufactured by Rigaku, RINT 2500).
Next, using a dinitrodiammine platinum (II) nitric acid solution (manufactured by Tanaka Kikinzoku Kogyo, [Pt (NH 3 ) 2 (NO 2 ) 2 ] / HNO 3 ), platinum was supported so that the amount of platinum supported was 1.0 wt%. Was impregnated and supported, dried at 130 ° C. overnight, and calcined at 550 ° C. for 3 hours to prepare catalyst D.
<触媒Dの調製>
水酸化ナトリウム、オルトケイ酸テトラエチル(TEOS)、テトラプロピルアンモニウムヒドロキシド(TPAOH)、エタノール、イオン交換水を混合(TEOS:TPAOH:イオン交換水=1:0.12:70(mol比))して調製したゲルを80℃で24h攪拌(熟成)を行った。得られた混合物を175℃で24時間水熱合成を行った後、繰り返し水で洗浄した。その後、130℃で一晩乾燥させ、550℃で3h焼成を行った。これにより、アルミニウムを含まないシリカライトを得た。なお、得られたシリカライトについてはX線回折測定(X線源:CuKα、装置:リガク社製、RINT 2500)により、MFI構造を有することを確認した。
次いで、ジニトロジアンミン白金(II)硝酸溶液(田中貴金属工業製、[Pt(NH3)2(NO2)2]/HNO3)を用いて、白金の担持量が1.0wt%になるよう白金を含浸担持し、130℃で一晩乾燥させ、550℃で3h焼成し、触媒Dを調製した。 [Catalyst synthesis example 4]
<Preparation of catalyst D>
Sodium hydroxide, tetraethyl orthosilicate (TEOS), tetrapropylammonium hydroxide (TPAOH), ethanol, and ion-exchanged water are mixed (TEOS: TPAOH: ion-exchanged water = 1: 0.12: 70 (mol ratio)). The prepared gel was stirred (aged) at 80 ° C. for 24 hours. The obtained mixture was hydrothermally synthesized at 175 ° C. for 24 hours and then repeatedly washed with water. Then, it was dried overnight at 130 ° C. and calcined at 550 ° C. for 3 hours. As a result, an aluminum-free silica light was obtained. The obtained silica light was confirmed to have an MFI structure by X-ray diffraction measurement (X-ray source: CuKα, apparatus: manufactured by Rigaku, RINT 2500).
Next, using a dinitrodiammine platinum (II) nitric acid solution (manufactured by Tanaka Kikinzoku Kogyo, [Pt (NH 3 ) 2 (NO 2 ) 2 ] / HNO 3 ), platinum was supported so that the amount of platinum supported was 1.0 wt%. Was impregnated and supported, dried at 130 ° C. overnight, and calcined at 550 ° C. for 3 hours to prepare catalyst D.
[触媒合成例5]
<触媒Eの調製>
触媒合成例4の方法で得られたシリカライト1.25gに対し、硝酸亜鉛六水和物(キシダ化学製、Zn(NO3)2・6H2O)0.57gを0.71mLの水に溶解した水溶液を混合し、触媒が調製された後の最終的な亜鉛の含有量が9.0wt%になるよう亜鉛を含浸担持した。その後、130℃で一晩乾燥させ、550℃で3h焼成を行った。
次いで、ジニトロジアンミン白金(II)硝酸溶液(田中貴金属工業製、[Pt(NH3)2(NO2)2]/HNO3)を用いて、白金の担持量が1.0wt%になるよう白金を含浸担持し、130℃で一晩乾燥させ、550℃で3h焼成し、触媒Eを調製した。 [Catalyst synthesis example 5]
<Preparation of catalyst E>
To silicalite 1.25g obtained by the process of Catalyst Preparation Example 4, zinc nitrate hexahydrate (Kishida Chemical Ltd., Zn (NO 3) 2 · 6H 2 O) and 0.57g of water 0.71mL The dissolved aqueous solution was mixed, and zinc was impregnated and supported so that the final zinc content after the catalyst was prepared was 9.0 wt%. Then, it was dried overnight at 130 ° C. and calcined at 550 ° C. for 3 hours.
Next, using a dinitrodiammine platinum (II) nitric acid solution (manufactured by Tanaka Kikinzoku Kogyo, [Pt (NH 3 ) 2 (NO 2 ) 2 ] / HNO 3 ), platinum was supported so that the amount of platinum supported was 1.0 wt%. Was impregnated and supported, dried at 130 ° C. overnight, and calcined at 550 ° C. for 3 hours to prepare catalyst E.
<触媒Eの調製>
触媒合成例4の方法で得られたシリカライト1.25gに対し、硝酸亜鉛六水和物(キシダ化学製、Zn(NO3)2・6H2O)0.57gを0.71mLの水に溶解した水溶液を混合し、触媒が調製された後の最終的な亜鉛の含有量が9.0wt%になるよう亜鉛を含浸担持した。その後、130℃で一晩乾燥させ、550℃で3h焼成を行った。
次いで、ジニトロジアンミン白金(II)硝酸溶液(田中貴金属工業製、[Pt(NH3)2(NO2)2]/HNO3)を用いて、白金の担持量が1.0wt%になるよう白金を含浸担持し、130℃で一晩乾燥させ、550℃で3h焼成し、触媒Eを調製した。 [Catalyst synthesis example 5]
<Preparation of catalyst E>
To silicalite 1.25g obtained by the process of Catalyst Preparation Example 4, zinc nitrate hexahydrate (Kishida Chemical Ltd., Zn (NO 3) 2 · 6H 2 O) and 0.57g of water 0.71mL The dissolved aqueous solution was mixed, and zinc was impregnated and supported so that the final zinc content after the catalyst was prepared was 9.0 wt%. Then, it was dried overnight at 130 ° C. and calcined at 550 ° C. for 3 hours.
Next, using a dinitrodiammine platinum (II) nitric acid solution (manufactured by Tanaka Kikinzoku Kogyo, [Pt (NH 3 ) 2 (NO 2 ) 2 ] / HNO 3 ), platinum was supported so that the amount of platinum supported was 1.0 wt%. Was impregnated and supported, dried at 130 ° C. overnight, and calcined at 550 ° C. for 3 hours to prepare catalyst E.
[触媒合成例6]
<触媒Fの調製>
市販のγ-アルミナ(住友化学株式会社製)10.0gと、硝酸マグネシウム六水和物(和光純薬工業株式会社製、Mg(NO3)2・6H2O)12.5gを100mLの水に溶解した水溶液とを混合した。得られた混合液を、エバポレータを用いて、50℃で180分間撹拌し、その後減圧下で水を除去した。その後、130℃で一晩乾燥させ、550℃で3h焼成を行い、続けて800℃で3h焼成を行った。得られた焼成物と硝酸マグネシウム六水和物(和光純薬工業株式会社製、Mg(NO3)2・6H2O)12.5gを100mLの水に溶解した水溶液とを混合し、エバポレータを用いて50℃で180分間撹拌し、その後減圧下で水を除去した。その後、130℃で一晩乾燥させ、550℃で3h焼成を行い、続けて800℃で3h焼成を行った。これにより、スピネル型構造を有するアルミナ-マグネシア担体を得た。なお、得られたアルミナ-マグネシア担体は、X線回折測定(X線源:CuKα、装置:リガク社製、RINT 2500)により、2θ=36.9、44.8、59.4、65.3degにMgスピネルに由来する回折ピークが確認された。
次いで、ジニトロジアンミン白金(II)硝酸溶液(田中貴金属工業株式会社製、[Pt(NH3)2(NO2)2]/HNO3)を用いて、白金の含有量が1.0wt%になるよう白金を含浸担持し、130℃で一晩乾燥させ、550℃で3h焼成を行い、触媒Fを調製した。 [Catalyst synthesis example 6]
<Preparation of catalyst F>
And commercial γ- alumina (manufactured by Sumitomo Chemical Co., Ltd.) 10.0 g, water magnesium nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd., Mg (NO 3) 2 · 6H 2 O) and 12.5g 100 mL Was mixed with the aqueous solution dissolved in. The obtained mixed solution was stirred at 50 ° C. for 180 minutes using an evaporator, and then water was removed under reduced pressure. Then, it was dried overnight at 130 ° C., calcined at 550 ° C. for 3 hours, and subsequently calcined at 800 ° C. for 3 hours. The resulting fired product and magnesium nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd., Mg (NO 3) 2 · 6H 2 O) and 12.5g were mixed and an aqueous solution dissolved in water of 100 mL, an evaporator It was stirred at 50 ° C. for 180 minutes and then the water was removed under reduced pressure. Then, it was dried overnight at 130 ° C., calcined at 550 ° C. for 3 hours, and subsequently calcined at 800 ° C. for 3 hours. As a result, an alumina-magnesia carrier having a spinel-type structure was obtained. The obtained alumina-magnesia carrier was measured by X-ray diffraction measurement (X-ray source: CuKα, apparatus: Rigaku, RINT 2500), and 2θ = 36.9, 44.8, 59.4, 65.3 deg. A diffraction peak derived from Mg spinel was confirmed in.
Then, using a dinitrodiammine platinum (II) nitric acid solution (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., [Pt (NH 3 ) 2 (NO 2 ) 2 ] / HNO 3 ), the platinum content becomes 1.0 wt%. It was impregnated with platinum and supported, dried at 130 ° C. overnight, and calcined at 550 ° C. for 3 hours to prepare catalyst F.
<触媒Fの調製>
市販のγ-アルミナ(住友化学株式会社製)10.0gと、硝酸マグネシウム六水和物(和光純薬工業株式会社製、Mg(NO3)2・6H2O)12.5gを100mLの水に溶解した水溶液とを混合した。得られた混合液を、エバポレータを用いて、50℃で180分間撹拌し、その後減圧下で水を除去した。その後、130℃で一晩乾燥させ、550℃で3h焼成を行い、続けて800℃で3h焼成を行った。得られた焼成物と硝酸マグネシウム六水和物(和光純薬工業株式会社製、Mg(NO3)2・6H2O)12.5gを100mLの水に溶解した水溶液とを混合し、エバポレータを用いて50℃で180分間撹拌し、その後減圧下で水を除去した。その後、130℃で一晩乾燥させ、550℃で3h焼成を行い、続けて800℃で3h焼成を行った。これにより、スピネル型構造を有するアルミナ-マグネシア担体を得た。なお、得られたアルミナ-マグネシア担体は、X線回折測定(X線源:CuKα、装置:リガク社製、RINT 2500)により、2θ=36.9、44.8、59.4、65.3degにMgスピネルに由来する回折ピークが確認された。
次いで、ジニトロジアンミン白金(II)硝酸溶液(田中貴金属工業株式会社製、[Pt(NH3)2(NO2)2]/HNO3)を用いて、白金の含有量が1.0wt%になるよう白金を含浸担持し、130℃で一晩乾燥させ、550℃で3h焼成を行い、触媒Fを調製した。 [Catalyst synthesis example 6]
<Preparation of catalyst F>
And commercial γ- alumina (manufactured by Sumitomo Chemical Co., Ltd.) 10.0 g, water magnesium nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd., Mg (NO 3) 2 · 6H 2 O) and 12.5
Then, using a dinitrodiammine platinum (II) nitric acid solution (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., [Pt (NH 3 ) 2 (NO 2 ) 2 ] / HNO 3 ), the platinum content becomes 1.0 wt%. It was impregnated with platinum and supported, dried at 130 ° C. overnight, and calcined at 550 ° C. for 3 hours to prepare catalyst F.
[インデンの製造I]
触媒合成例1~6で得られた触媒A~Fを用いて、インデンの製造を行った。 [Manufacturing of Inden I]
Indene was produced using the catalysts A to F obtained in Catalyst Synthesis Examples 1 to 6.
触媒合成例1~6で得られた触媒A~Fを用いて、インデンの製造を行った。 [Manufacturing of Inden I]
Indene was produced using the catalysts A to F obtained in Catalyst Synthesis Examples 1 to 6.
(実施例1)
1.0gの触媒Aを管型反応器に充填し、反応管を固定床流通式反応装置に接続した。分子状水素を30mL/min、窒素を30mL/minで流通させながら、反応管を500℃まで昇温した後、1.0h保持した。その後、原料であるインダン、オクタヒドロインデン及びヘキサヒドロインデン(インダン:オクタヒドロインデン:ヘキサヒドロインデン=51:5:44(wt%)、インダン混合物)及び水素をそれぞれ反応器に供給し、反応温度500℃、常圧にてインダン混合物の脱水素反応を行った。反応器に供給される組成を、インダン混合物:水素(H2)=1.0:3.0(モル比)とした。WHSVは、3.0h-1とした。 (Example 1)
A tube reactor was filled with 1.0 g of catalyst A and the reaction tube was connected to a fixed bed flow reactor. The temperature of the reaction tube was raised to 500 ° C. while flowing molecular hydrogen at 30 mL / min and nitrogen at 30 mL / min, and then maintained for 1.0 h. Then, the raw materials indane, octahydroindene, hexahydroindene (indane: octahydroindene: hexahydroindene = 51: 5: 44 (wt%), indane mixture) and hydrogen are supplied to the reactor, respectively, and the reaction temperature is changed. The dehydrogenation reaction of the indane mixture was carried out at 500 ° C. and normal pressure. The composition supplied to the reactor was an indane mixture: hydrogen (H 2 ) = 1.0: 3.0 (molar ratio). The WHSV was set to 3.0 h -1 .
1.0gの触媒Aを管型反応器に充填し、反応管を固定床流通式反応装置に接続した。分子状水素を30mL/min、窒素を30mL/minで流通させながら、反応管を500℃まで昇温した後、1.0h保持した。その後、原料であるインダン、オクタヒドロインデン及びヘキサヒドロインデン(インダン:オクタヒドロインデン:ヘキサヒドロインデン=51:5:44(wt%)、インダン混合物)及び水素をそれぞれ反応器に供給し、反応温度500℃、常圧にてインダン混合物の脱水素反応を行った。反応器に供給される組成を、インダン混合物:水素(H2)=1.0:3.0(モル比)とした。WHSVは、3.0h-1とした。 (Example 1)
A tube reactor was filled with 1.0 g of catalyst A and the reaction tube was connected to a fixed bed flow reactor. The temperature of the reaction tube was raised to 500 ° C. while flowing molecular hydrogen at 30 mL / min and nitrogen at 30 mL / min, and then maintained for 1.0 h. Then, the raw materials indane, octahydroindene, hexahydroindene (indane: octahydroindene: hexahydroindene = 51: 5: 44 (wt%), indane mixture) and hydrogen are supplied to the reactor, respectively, and the reaction temperature is changed. The dehydrogenation reaction of the indane mixture was carried out at 500 ° C. and normal pressure. The composition supplied to the reactor was an indane mixture: hydrogen (H 2 ) = 1.0: 3.0 (molar ratio). The WHSV was set to 3.0 h -1 .
反応開始時から2、4及び6時間が経過した時点で、脱水素反応の生成物を管型反応器から採取した。なお、反応開始時とは、原料の供給が開始された時間である。採取された生成物を、水素炎検出器を備えたガスクロマトグラフ(FID-GC)を用いて分析した。前記ガスクロマトグラフに基づき、採取された反応生成物の各成分(単位:wt%)を定量し、インデンの収率を算出した。結果を図9に示す。
ここで図9は、実施例及び比較例のインデン製造における、反応開始時から2、4及び6時間が経過した時点のインデン収率を示すグラフである。 When 2, 4 and 6 hours had passed from the start of the reaction, the product of the dehydrogenation reaction was collected from the tubular reactor. The reaction start time is the time when the supply of the raw material is started. The collected product was analyzed using a gas chromatograph (FID-GC) equipped with a hydrogen flame detector. Based on the gas chromatograph, each component (unit: wt%) of the collected reaction product was quantified, and the yield of indene was calculated. The results are shown in FIG.
Here, FIG. 9 is a graph showing the indene yield at the time when 2, 4 and 6 hours have passed from the start of the reaction in the indene production of Examples and Comparative Examples.
ここで図9は、実施例及び比較例のインデン製造における、反応開始時から2、4及び6時間が経過した時点のインデン収率を示すグラフである。 When 2, 4 and 6 hours had passed from the start of the reaction, the product of the dehydrogenation reaction was collected from the tubular reactor. The reaction start time is the time when the supply of the raw material is started. The collected product was analyzed using a gas chromatograph (FID-GC) equipped with a hydrogen flame detector. Based on the gas chromatograph, each component (unit: wt%) of the collected reaction product was quantified, and the yield of indene was calculated. The results are shown in FIG.
Here, FIG. 9 is a graph showing the indene yield at the time when 2, 4 and 6 hours have passed from the start of the reaction in the indene production of Examples and Comparative Examples.
インデン収率は、下記式(1)で定義される。
rY=(m1/m0)×100 (1)
式(1)におけるrYはインデン収率(wt%)である。m0は、原料中に存在するインダン混合物の総質量である。m1は、生成物に含まれるインデンの質量である。 The indene yield is defined by the following formula (1).
rY = (m 1 / m 0 ) x 100 (1)
RY in the formula (1) is the indene yield (wt%). m 0 is the total mass of the indane mixture present in the raw material. m 1 is the mass of indene contained in the product.
rY=(m1/m0)×100 (1)
式(1)におけるrYはインデン収率(wt%)である。m0は、原料中に存在するインダン混合物の総質量である。m1は、生成物に含まれるインデンの質量である。 The indene yield is defined by the following formula (1).
rY = (m 1 / m 0 ) x 100 (1)
RY in the formula (1) is the indene yield (wt%). m 0 is the total mass of the indane mixture present in the raw material. m 1 is the mass of indene contained in the product.
(比較例1)
触媒Aに代えて触媒Bを用いた以外は、実施例1と同様に行った。結果を図9に示す。 (Comparative Example 1)
The procedure was the same as in Example 1 except that the catalyst B was used instead of the catalyst A. The results are shown in FIG.
触媒Aに代えて触媒Bを用いた以外は、実施例1と同様に行った。結果を図9に示す。 (Comparative Example 1)
The procedure was the same as in Example 1 except that the catalyst B was used instead of the catalyst A. The results are shown in FIG.
(比較例2)
触媒Aに代えて触媒Cを用いた以外は、実施例1と同様に行った。結果を図9に示す。 (Comparative Example 2)
The procedure was the same as in Example 1 except that the catalyst C was used instead of the catalyst A. The results are shown in FIG.
触媒Aに代えて触媒Cを用いた以外は、実施例1と同様に行った。結果を図9に示す。 (Comparative Example 2)
The procedure was the same as in Example 1 except that the catalyst C was used instead of the catalyst A. The results are shown in FIG.
(比較例3)
触媒Aに代えて触媒Dを用いた以外は、実施例1と同様に行った。結果を図9に示す。 (Comparative Example 3)
The procedure was the same as in Example 1 except that the catalyst D was used instead of the catalyst A. The results are shown in FIG.
触媒Aに代えて触媒Dを用いた以外は、実施例1と同様に行った。結果を図9に示す。 (Comparative Example 3)
The procedure was the same as in Example 1 except that the catalyst D was used instead of the catalyst A. The results are shown in FIG.
(比較例4)
触媒Aに代えて触媒Eを用いた以外は、実施例1と同様に行った。結果を図9に示す。 (Comparative Example 4)
The procedure was the same as in Example 1 except that the catalyst E was used instead of the catalyst A. The results are shown in FIG.
触媒Aに代えて触媒Eを用いた以外は、実施例1と同様に行った。結果を図9に示す。 (Comparative Example 4)
The procedure was the same as in Example 1 except that the catalyst E was used instead of the catalyst A. The results are shown in FIG.
(比較例5)
触媒Aに代えて触媒Fを用いた以外は、実施例1と同様に行った。結果を図9に示す。 (Comparative Example 5)
The procedure was the same as in Example 1 except that the catalyst F was used instead of the catalyst A. The results are shown in FIG.
触媒Aに代えて触媒Fを用いた以外は、実施例1と同様に行った。結果を図9に示す。 (Comparative Example 5)
The procedure was the same as in Example 1 except that the catalyst F was used instead of the catalyst A. The results are shown in FIG.
(実施例2)
反応開始時から2、4及び6時間が経過した時点で脱水素反応の生成物を管型反応器から採取したことに変えて、反応開始時から24時間まで、約2時間経過した時点毎で、脱水素反応の生成物を管型反応器から採取した以外は、実施例1と同様に行った。結果を図10に示す。
図10は、実施例及び比較例のインデン製造における、反応開始時から24時間までのインデン収率を示すグラフである。 (Example 2)
When 2, 4 and 6 hours have passed from the start of the reaction, the product of the dehydrogenation reaction was collected from the tubular reactor, and from the start of the reaction to 24 hours, every 2 hours. The same procedure as in Example 1 was carried out except that the product of the dehydrogenation reaction was collected from a tubular reactor. The results are shown in FIG.
FIG. 10 is a graph showing the indene yield from the start of the reaction to 24 hours in the indene production of Examples and Comparative Examples.
反応開始時から2、4及び6時間が経過した時点で脱水素反応の生成物を管型反応器から採取したことに変えて、反応開始時から24時間まで、約2時間経過した時点毎で、脱水素反応の生成物を管型反応器から採取した以外は、実施例1と同様に行った。結果を図10に示す。
図10は、実施例及び比較例のインデン製造における、反応開始時から24時間までのインデン収率を示すグラフである。 (Example 2)
When 2, 4 and 6 hours have passed from the start of the reaction, the product of the dehydrogenation reaction was collected from the tubular reactor, and from the start of the reaction to 24 hours, every 2 hours. The same procedure as in Example 1 was carried out except that the product of the dehydrogenation reaction was collected from a tubular reactor. The results are shown in FIG.
FIG. 10 is a graph showing the indene yield from the start of the reaction to 24 hours in the indene production of Examples and Comparative Examples.
(比較例6)
反応開始時から2、4及び6時間が経過した時点で脱水素反応の生成物を管型反応器から採取したことに変えて、反応開始時から24時間まで、約2時間経過した時点毎で、脱水素反応の生成物を管型反応器から採取した以外は、比較例5と同様に行った。結果を図10に示す。 (Comparative Example 6)
When 2, 4 and 6 hours have passed from the start of the reaction, the product of the dehydrogenation reaction was collected from the tubular reactor, and from the start of the reaction to 24 hours, every 2 hours. , The same procedure as in Comparative Example 5 was carried out except that the product of the dehydrogenation reaction was collected from the tubular reactor. The results are shown in FIG.
反応開始時から2、4及び6時間が経過した時点で脱水素反応の生成物を管型反応器から採取したことに変えて、反応開始時から24時間まで、約2時間経過した時点毎で、脱水素反応の生成物を管型反応器から採取した以外は、比較例5と同様に行った。結果を図10に示す。 (Comparative Example 6)
When 2, 4 and 6 hours have passed from the start of the reaction, the product of the dehydrogenation reaction was collected from the tubular reactor, and from the start of the reaction to 24 hours, every 2 hours. , The same procedure as in Comparative Example 5 was carried out except that the product of the dehydrogenation reaction was collected from the tubular reactor. The results are shown in FIG.
ここで実施例1及び2は、ゼオライト骨格中に遷移金属が導入されたゼオライト触媒を用いたインデン収率を示す実験例である。
比較例としては、ゼオライト骨格中に遷移金属が導入されておらず、アルミニウムの含有量が小さいゼオライト触媒(比較例1)、ゼオライト骨格中に遷移金属が導入されておらず、アルミニウムの含有量が大きいゼオライト触媒(比較例2)、シリカライトを担体とした触媒(比較例3)、シリカライトを担体とした触媒に遷移金属を含浸担持した触媒(比較例4)、スピネル型構造を有するアルミナ-マグネシアを担体とした触媒(比較例5及び6)について、実施例に準じた方法にてインデン収率を求めた。 Here, Examples 1 and 2 are experimental examples showing the indene yield using a zeolite catalyst in which a transition metal is introduced into the zeolite skeleton.
As a comparative example, a transition metal is not introduced in the zeolite skeleton and the aluminum content is small (Comparative Example 1), and a transition metal is not introduced in the zeolite skeleton and the aluminum content is high. A large zeolite catalyst (Comparative Example 2), a catalyst using silicalite as a carrier (Comparative Example 3), a catalyst using a silicalite as a carrier impregnated with a transition metal (Comparative Example 4), and an alumina having a spinel-type structure. For catalysts using magnesia as a carrier (Comparative Examples 5 and 6), the inden yield was determined by a method similar to that of Examples.
比較例としては、ゼオライト骨格中に遷移金属が導入されておらず、アルミニウムの含有量が小さいゼオライト触媒(比較例1)、ゼオライト骨格中に遷移金属が導入されておらず、アルミニウムの含有量が大きいゼオライト触媒(比較例2)、シリカライトを担体とした触媒(比較例3)、シリカライトを担体とした触媒に遷移金属を含浸担持した触媒(比較例4)、スピネル型構造を有するアルミナ-マグネシアを担体とした触媒(比較例5及び6)について、実施例に準じた方法にてインデン収率を求めた。 Here, Examples 1 and 2 are experimental examples showing the indene yield using a zeolite catalyst in which a transition metal is introduced into the zeolite skeleton.
As a comparative example, a transition metal is not introduced in the zeolite skeleton and the aluminum content is small (Comparative Example 1), and a transition metal is not introduced in the zeolite skeleton and the aluminum content is high. A large zeolite catalyst (Comparative Example 2), a catalyst using silicalite as a carrier (Comparative Example 3), a catalyst using a silicalite as a carrier impregnated with a transition metal (Comparative Example 4), and an alumina having a spinel-type structure. For catalysts using magnesia as a carrier (Comparative Examples 5 and 6), the inden yield was determined by a method similar to that of Examples.
図9に示すように、実施例1のゼオライト骨格中に遷移金属が導入されたゼオライト触媒を使用して反応を行ったところ、比較例1~5の骨格中に遷移金属が導入されていない触媒と比較して、インデン収率が高いことが確認できた。
さらに比較例1~5の触媒では反応時間の経過とともにインデン収率の低下が見られたが、実施例1の触媒では、反応時間の経過に対して安定したインデン生成を示すことが確認できた。
また、図10に示すように、実施例2の触媒で24時間反応させても高いインデン収率を維持しており、実施例2の触媒は、触媒寿命が顕著に長いことが確認できた。 As shown in FIG. 9, when the reaction was carried out using the zeolite catalyst in which the transition metal was introduced into the zeolite skeleton of Example 1, the catalyst in which the transition metal was not introduced into the skeleton of Comparative Examples 1 to 5 was carried out. It was confirmed that the inden yield was higher than that of the above.
Further, in the catalysts of Comparative Examples 1 to 5, the indene yield decreased with the lapse of the reaction time, but it was confirmed that the catalyst of Example 1 showed stable indene formation with the lapse of the reaction time. ..
Further, as shown in FIG. 10, a high indene yield was maintained even after the reaction with the catalyst of Example 2 for 24 hours, and it was confirmed that the catalyst of Example 2 had a remarkably long catalyst life.
さらに比較例1~5の触媒では反応時間の経過とともにインデン収率の低下が見られたが、実施例1の触媒では、反応時間の経過に対して安定したインデン生成を示すことが確認できた。
また、図10に示すように、実施例2の触媒で24時間反応させても高いインデン収率を維持しており、実施例2の触媒は、触媒寿命が顕著に長いことが確認できた。 As shown in FIG. 9, when the reaction was carried out using the zeolite catalyst in which the transition metal was introduced into the zeolite skeleton of Example 1, the catalyst in which the transition metal was not introduced into the skeleton of Comparative Examples 1 to 5 was carried out. It was confirmed that the inden yield was higher than that of the above.
Further, in the catalysts of Comparative Examples 1 to 5, the indene yield decreased with the lapse of the reaction time, but it was confirmed that the catalyst of Example 1 showed stable indene formation with the lapse of the reaction time. ..
Further, as shown in FIG. 10, a high indene yield was maintained even after the reaction with the catalyst of Example 2 for 24 hours, and it was confirmed that the catalyst of Example 2 had a remarkably long catalyst life.
[インデンの製造II]
固定床流通式反応装置を用い、管型反応器2本を直列に接続し、テトラヒドロインデンを原料として、反応器の上流側において後述する第1の脱水素工程用触媒を用いてインダンを含む原料組成物を得て(第1の脱水素工程)、反応器の下流側において触媒合成例1で得られた触媒Aを用いてインデンの製造(第2の脱水素工程)を行った。 [Manufacturing of Inden II]
A raw material containing indan using a fixed-bed flow reactor, two tubular reactors connected in series, using tetrahydroinden as a raw material, and using a catalyst for the first dehydrogenation step described later on the upstream side of the reactor. The composition was obtained (first dehydrogenation step), and inden was produced (second dehydrogenation step) using the catalyst A obtained in Catalyst Synthesis Example 1 on the downstream side of the reactor.
固定床流通式反応装置を用い、管型反応器2本を直列に接続し、テトラヒドロインデンを原料として、反応器の上流側において後述する第1の脱水素工程用触媒を用いてインダンを含む原料組成物を得て(第1の脱水素工程)、反応器の下流側において触媒合成例1で得られた触媒Aを用いてインデンの製造(第2の脱水素工程)を行った。 [Manufacturing of Inden II]
A raw material containing indan using a fixed-bed flow reactor, two tubular reactors connected in series, using tetrahydroinden as a raw material, and using a catalyst for the first dehydrogenation step described later on the upstream side of the reactor. The composition was obtained (first dehydrogenation step), and inden was produced (second dehydrogenation step) using the catalyst A obtained in Catalyst Synthesis Example 1 on the downstream side of the reactor.
(実施例3)
<第1の脱水素工程用触媒の調製>
市販のγ-アルミナ(住友化学株式会社製)10.0gに対し、スズ酸ナトリウム(キシダ化学株式会社製、Na2SnO3・3H2O)6.1gを60mlの水に溶解した水溶液を混合した。得られた混合液を、エバポレータを用いて、50℃で120分間撹拌し、その後減圧下で水を除去した。その後、130℃で一晩乾燥させ、550℃で3時間焼成を行ったのち、繰り返し水で洗浄し、アルミナ-酸化スズ担体を得た。
上記アルミナ-酸化スズ担体にジニトロジアンミン白金(II)硝酸溶液(田中貴金属工業株式会社製、[Pt(NH3)2(NO2)2]/HNO3)を用いて、白金の含有量が1.0wt%になるよう白金を含浸担持し、130℃で一晩乾燥させ、550℃で3時間焼成を行い、第1の脱水素工程用触媒を得た。 (Example 3)
<Preparation of catalyst for the first dehydrogenation process>
To commercial γ- alumina (Sumitomo Chemical Co., Ltd.) 10.0 g, Sodium stannate (Kishida Chemical Co., Ltd., Na 2 SnO 3 · 3H 2 O) an aqueous solution prepared by dissolving 6.1g of water 60ml mixing did. The obtained mixed solution was stirred at 50 ° C. for 120 minutes using an evaporator, and then water was removed under reduced pressure. Then, it was dried overnight at 130 ° C., calcined at 550 ° C. for 3 hours, and then repeatedly washed with water to obtain an alumina-tin oxide carrier.
Using a dinitrodiammine platinum (II) nitric acid solution (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., [Pt (NH 3 ) 2 (NO 2 ) 2 ] / HNO 3 ) on the above alumina-tin oxide carrier, the platinum content is 1. Platinum was impregnated and supported so as to be 0.0 wt%, dried at 130 ° C. overnight, and calcined at 550 ° C. for 3 hours to obtain a catalyst for the first dehydrogenation step.
<第1の脱水素工程用触媒の調製>
市販のγ-アルミナ(住友化学株式会社製)10.0gに対し、スズ酸ナトリウム(キシダ化学株式会社製、Na2SnO3・3H2O)6.1gを60mlの水に溶解した水溶液を混合した。得られた混合液を、エバポレータを用いて、50℃で120分間撹拌し、その後減圧下で水を除去した。その後、130℃で一晩乾燥させ、550℃で3時間焼成を行ったのち、繰り返し水で洗浄し、アルミナ-酸化スズ担体を得た。
上記アルミナ-酸化スズ担体にジニトロジアンミン白金(II)硝酸溶液(田中貴金属工業株式会社製、[Pt(NH3)2(NO2)2]/HNO3)を用いて、白金の含有量が1.0wt%になるよう白金を含浸担持し、130℃で一晩乾燥させ、550℃で3時間焼成を行い、第1の脱水素工程用触媒を得た。 (Example 3)
<Preparation of catalyst for the first dehydrogenation process>
To commercial γ- alumina (Sumitomo Chemical Co., Ltd.) 10.0 g, Sodium stannate (Kishida Chemical Co., Ltd., Na 2 SnO 3 · 3H 2 O) an aqueous solution prepared by dissolving 6.1g of water 60ml mixing did. The obtained mixed solution was stirred at 50 ° C. for 120 minutes using an evaporator, and then water was removed under reduced pressure. Then, it was dried overnight at 130 ° C., calcined at 550 ° C. for 3 hours, and then repeatedly washed with water to obtain an alumina-tin oxide carrier.
Using a dinitrodiammine platinum (II) nitric acid solution (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., [Pt (NH 3 ) 2 (NO 2 ) 2 ] / HNO 3 ) on the above alumina-tin oxide carrier, the platinum content is 1. Platinum was impregnated and supported so as to be 0.0 wt%, dried at 130 ° C. overnight, and calcined at 550 ° C. for 3 hours to obtain a catalyst for the first dehydrogenation step.
<第1及び第2の脱水素工程に係る脱水素反応>
管型反応器2本を直列に接続し、反応器の上流側(1段目)に上記第1の脱水素工程用の脱水素触媒を1.0g、反応器の下流側(2段目)に触媒Aを1.0g充填し、反応管を固定床流通式反応装置に接続した。分子状水素を30mL/min、窒素を30mL/minを1段目入口から流通させながら、1段目の反応管を180℃、2段目の反応管を500℃まで昇温した後、1.0h保持し、触媒の水素前処理を完了した。
原料としてテトラヒドロインデン(3a,4,7,7a-テトラヒドロインデン;東京化成工業株式会社製)を用い、3.0g/hで1段目入口から供給した。1段目の反応温度を180℃、反応圧力を0.9MPa、水素や窒素などの希釈ガス不使用とし、原料のみを供給した(第1の脱水素工程)。1段目の生成油をそのまま2段目に供給し、2段目の反応温度を500℃、反応圧力を常圧とし、さらに2段目入口から分子状水素をテトラヒドロインデンの3倍モル量添加し、反応を行い、インデンを製造した(第2の脱水素工程)。反応は12時間行い、1段目出口組成及び2段目出口組成を2~3時間ごとに測定した。 <Dehydrogenation reaction related to the first and second dehydrogenation steps>
Two tubular reactors are connected in series, 1.0 g of the dehydrogenation catalyst for the first dehydrogenation step is applied to the upstream side (first stage) of the reactor, and the downstream side (second stage) of the reactor. Was filled with 1.0 g of catalyst A, and the reaction tube was connected to a fixed bed flow reactor. After heating the temperature of the first-stage reaction tube to 180 ° C and the second-stage reaction tube to 500 ° C while flowing molecular hydrogen at 30 mL / min and nitrogen at 30 mL / min from the first-stage inlet, 1. It was held for 0 h, and the hydrogen pretreatment of the catalyst was completed.
Tetrahydroindene (3a, 4,7,7a-tetrahydroindene; manufactured by Tokyo Chemical Industry Co., Ltd.) was used as a raw material and supplied at 3.0 g / h from the first stage entrance. The reaction temperature of the first stage was 180 ° C., the reaction pressure was 0.9 MPa, no diluting gas such as hydrogen or nitrogen was used, and only the raw materials were supplied (first dehydrogenation step). The product oil of the first stage is supplied as it is to the second stage, the reaction temperature of the second stage is set to 500 ° C., the reaction pressure is set to normal pressure, and molecular hydrogen is added from the inlet of the second stage in an amount three times as much as that of tetrahydroinden. Then, the reaction was carried out to produce an inden (second dehydrogenation step). The reaction was carried out for 12 hours, and the first-stage outlet composition and the second-stage outlet composition were measured every 2 to 3 hours.
管型反応器2本を直列に接続し、反応器の上流側(1段目)に上記第1の脱水素工程用の脱水素触媒を1.0g、反応器の下流側(2段目)に触媒Aを1.0g充填し、反応管を固定床流通式反応装置に接続した。分子状水素を30mL/min、窒素を30mL/minを1段目入口から流通させながら、1段目の反応管を180℃、2段目の反応管を500℃まで昇温した後、1.0h保持し、触媒の水素前処理を完了した。
原料としてテトラヒドロインデン(3a,4,7,7a-テトラヒドロインデン;東京化成工業株式会社製)を用い、3.0g/hで1段目入口から供給した。1段目の反応温度を180℃、反応圧力を0.9MPa、水素や窒素などの希釈ガス不使用とし、原料のみを供給した(第1の脱水素工程)。1段目の生成油をそのまま2段目に供給し、2段目の反応温度を500℃、反応圧力を常圧とし、さらに2段目入口から分子状水素をテトラヒドロインデンの3倍モル量添加し、反応を行い、インデンを製造した(第2の脱水素工程)。反応は12時間行い、1段目出口組成及び2段目出口組成を2~3時間ごとに測定した。 <Dehydrogenation reaction related to the first and second dehydrogenation steps>
Two tubular reactors are connected in series, 1.0 g of the dehydrogenation catalyst for the first dehydrogenation step is applied to the upstream side (first stage) of the reactor, and the downstream side (second stage) of the reactor. Was filled with 1.0 g of catalyst A, and the reaction tube was connected to a fixed bed flow reactor. After heating the temperature of the first-stage reaction tube to 180 ° C and the second-stage reaction tube to 500 ° C while flowing molecular hydrogen at 30 mL / min and nitrogen at 30 mL / min from the first-stage inlet, 1. It was held for 0 h, and the hydrogen pretreatment of the catalyst was completed.
Tetrahydroindene (3a, 4,7,7a-tetrahydroindene; manufactured by Tokyo Chemical Industry Co., Ltd.) was used as a raw material and supplied at 3.0 g / h from the first stage entrance. The reaction temperature of the first stage was 180 ° C., the reaction pressure was 0.9 MPa, no diluting gas such as hydrogen or nitrogen was used, and only the raw materials were supplied (first dehydrogenation step). The product oil of the first stage is supplied as it is to the second stage, the reaction temperature of the second stage is set to 500 ° C., the reaction pressure is set to normal pressure, and molecular hydrogen is added from the inlet of the second stage in an amount three times as much as that of tetrahydroinden. Then, the reaction was carried out to produce an inden (second dehydrogenation step). The reaction was carried out for 12 hours, and the first-stage outlet composition and the second-stage outlet composition were measured every 2 to 3 hours.
12時間のあいだ、1段目出口組成はインデン52wt%、インデン1wt%、オクタヒドロインデン6wt%、ヘキサヒドロインデン40wt%、未同定物1wt%と安定していた。1段目出口で原料テトラヒドロインデンは検出されず、転化率100%であった。2段目出口のインデン及びヘキサヒドロインデンの経時変化を図11に示す。12時間のあいだ、1段目出口組成は安定しており、2段目出口のインデン収率も安定していた。2段目反応出口ではヘキサヒドロインデンが大幅に減少し、インデンが生成していたことから、ヘキサヒドロインデンは脱水素されやすく、インデン収率向上に寄与していると考えられる。
For 12 hours, the first-stage outlet composition was stable at 52 wt% for indene, 1 wt% for indene, 6 wt% for octahydroindene, 40 wt% for hexahydroindene, and 1 wt% for unidentified material. The raw material tetrahydroindene was not detected at the exit of the first stage, and the conversion rate was 100%. The time course of indene and hexahydroindene at the exit of the second stage is shown in FIG. For 12 hours, the composition of the first-stage outlet was stable, and the indene yield of the second-stage outlet was also stable. Since hexahydroindene was significantly reduced and indene was generated at the second stage reaction outlet, it is considered that hexahydroindene is easily dehydrogenated and contributes to the improvement of indene yield.
本出願は、2019年12月24日に出願された日本特許出願である特願2019-233192号に基づく優先権を主張し、当該日本特許出願のすべての記載内容を援用する。
This application claims priority based on Japanese Patent Application No. 2019-233192, which is a Japanese patent application filed on December 24, 2019, and incorporates all the contents of the Japanese patent application.
Claims (7)
- インダンを含む原料組成物をMFI構造のゼオライト触媒に接触させて、インデンを含む反応生成物を得る脱水素工程を備え、
前記ゼオライト触媒が、ゼオライト骨格中に、遷移金属又はポスト遷移金属から選ばれる少なくとも一種の金属原子を含み、ルイス酸性と強い固体塩基性を有する、
インデンの製造方法。 A dehydrogenation step is provided in which the raw material composition containing indane is brought into contact with a zeolite catalyst having an MFI structure to obtain a reaction product containing indene.
The zeolite catalyst contains at least one metal atom selected from a transition metal or a post-transition metal in the zeolite skeleton, and has Lewis acidity and strong solid basicity.
Indene manufacturing method. - 前記金属原子は、Zn原子、Fe原子、Ni原子から選択される1種以上であり、前記金属原子の含有量は、Si原子に対して1~15atom%である、請求項1に記載のインデンの製造方法。 The inden according to claim 1, wherein the metal atom is one or more selected from Zn atom, Fe atom, and Ni atom, and the content of the metal atom is 1 to 15 atom% with respect to the Si atom. Manufacturing method.
- 前記ゼオライト触媒は、アルカリ金属を含有しないか又は前記ゼオライト骨格のSi原子に対して1atom%以下のアルカリ金属を含有する、請求項1又は請求項2に記載のインデンの製造方法。 The method for producing an inden according to claim 1 or 2, wherein the zeolite catalyst does not contain an alkali metal or contains 1 atom% or less of an alkali metal with respect to the Si atom of the zeolite skeleton.
- 前記ゼオライト触媒は、Pt原子が担持されている、請求項1~3のいずれか一項に記載のインデンの製造方法。 The method for producing indene according to any one of claims 1 to 3, wherein the zeolite catalyst is supported by a Pt atom.
- 前記原料組成物は、オクタヒドロインデン及びヘキサヒドロインデンの少なくとも1種以上を更に含む、請求項1~4のいずれか一項に記載のインデンの製造方法。 The method for producing indene according to any one of claims 1 to 4, wherein the raw material composition further contains at least one of octahydroindene and hexahydroindene.
- 前記原料組成物は、分子状水素を更に含む、請求項1~5のいずれか一項に記載のインデンの製造方法。 The method for producing indene according to any one of claims 1 to 5, wherein the raw material composition further contains molecular hydrogen.
- テトラヒドロインデンの脱水素反応により、インダンを得る原料合成工程を更に備える、請求項1~6のいずれか一項に記載のインデンの製造方法。
The method for producing indene according to any one of claims 1 to 6, further comprising a raw material synthesis step of obtaining indane by a dehydrogenation reaction of tetrahydroindene.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019233192A JP2021100924A (en) | 2019-12-24 | 2019-12-24 | Method for producing indene |
JP2019-233192 | 2019-12-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021132239A1 true WO2021132239A1 (en) | 2021-07-01 |
Family
ID=76576086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/047943 WO2021132239A1 (en) | 2019-12-24 | 2020-12-22 | Method for producing indene |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021100924A (en) |
WO (1) | WO2021132239A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61291528A (en) * | 1985-06-17 | 1986-12-22 | ザ スタンダ−ド オイル カンパニ− | Manufacture of indenes |
JP2000063298A (en) * | 1998-08-18 | 2000-02-29 | Nippon Petrochem Co Ltd | Production of indene |
JP2003327551A (en) * | 2002-05-10 | 2003-11-19 | San Petrochemical:Kk | Method for producing indane |
JP2018202396A (en) * | 2017-05-31 | 2018-12-27 | 古河電気工業株式会社 | Alkane dehydrogenation catalyst structure and method for producing the same and apparatus for producing alkene having the dehydrogenation catalyst structure |
JP2018202395A (en) * | 2017-05-31 | 2018-12-27 | 古河電気工業株式会社 | Alkane dehydrogenation catalyst structure and method for producing the same and apparatus for producing alkene having the dehydrogenation catalyst structure |
-
2019
- 2019-12-24 JP JP2019233192A patent/JP2021100924A/en active Pending
-
2020
- 2020-12-22 WO PCT/JP2020/047943 patent/WO2021132239A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61291528A (en) * | 1985-06-17 | 1986-12-22 | ザ スタンダ−ド オイル カンパニ− | Manufacture of indenes |
JP2000063298A (en) * | 1998-08-18 | 2000-02-29 | Nippon Petrochem Co Ltd | Production of indene |
JP2003327551A (en) * | 2002-05-10 | 2003-11-19 | San Petrochemical:Kk | Method for producing indane |
JP2018202396A (en) * | 2017-05-31 | 2018-12-27 | 古河電気工業株式会社 | Alkane dehydrogenation catalyst structure and method for producing the same and apparatus for producing alkene having the dehydrogenation catalyst structure |
JP2018202395A (en) * | 2017-05-31 | 2018-12-27 | 古河電気工業株式会社 | Alkane dehydrogenation catalyst structure and method for producing the same and apparatus for producing alkene having the dehydrogenation catalyst structure |
Also Published As
Publication number | Publication date |
---|---|
JP2021100924A (en) | 2021-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pan et al. | Efficient and selective conversion of methanol to para-xylene over stable H [Zn, Al] ZSM-5/SiO2 composite catalyst | |
RU2656602C1 (en) | One-step method of obtaining butadiene | |
US9713804B2 (en) | Catalyst composition for the dehydrogenation of alkanes | |
EP3558869B1 (en) | Process to convert synthesis gas to olefins using a bifunctional chromium / zinc oxide-sapo-34 catalyst | |
JP2014024005A (en) | Zeolite catalyst, process for producing zeolite catalyst and process for producing lower olefin | |
JP5668422B2 (en) | Method for producing aluminosilicate | |
US4918249A (en) | Silicometallate molecular sieves and their use as catalysts in oxidation of alkanes | |
Abutalib et al. | Pairing Ga/Al-Zeolites with tailored acidity as tandem catalysts for the conversion of alcohols to olefins | |
JP6862966B2 (en) | Metal-containing zeolite | |
Sasidharan et al. | Fabrication, characterization and catalytic oxidation of propylene over TS-1/Au membranes | |
WO2021132239A1 (en) | Method for producing indene | |
JP5131624B2 (en) | Paraffin catalytic cracking process | |
JP2021102561A (en) | Manufacturing method of isoprene | |
WO2022270400A1 (en) | Method for producing cyclopentadiene | |
WO2022270401A1 (en) | Method for producing cyclopentadiene | |
JP7577653B2 (en) | Method for producing the compound or its salt | |
JP2023014129A (en) | Zinc oxide modified mfi type zeolite and method for manufacturing aromatic compound using the same | |
US8921634B2 (en) | Conversion of methane to aromatic compounds using UZM-44 aluminosilicate zeolite | |
JP7029346B2 (en) | Indene manufacturing method | |
RU2585289C1 (en) | Methane aromatisation catalyst, method for production thereof and method of converting methane to produce aromatic hydrocarbons | |
CN113993976A (en) | Production of C using hybrid catalyst comprising high acidity microporous component2To C5Process for paraffinic hydrocarbons | |
JP2021041333A (en) | Catalyst for ethylene production and ethylene production method | |
JP7320216B2 (en) | Method for producing α-olefin | |
WO2023007676A1 (en) | 1,3-butadiene synthesis catalyst, method for producing same, and method for producing 1,3-butadiene | |
JP2022165039A (en) | Method for producing aromatic hydrocarbon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20905455 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20905455 Country of ref document: EP Kind code of ref document: A1 |