[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021122107A1 - Druckbehältersystem und energieversorgungsanordnung - Google Patents

Druckbehältersystem und energieversorgungsanordnung Download PDF

Info

Publication number
WO2021122107A1
WO2021122107A1 PCT/EP2020/084889 EP2020084889W WO2021122107A1 WO 2021122107 A1 WO2021122107 A1 WO 2021122107A1 EP 2020084889 W EP2020084889 W EP 2020084889W WO 2021122107 A1 WO2021122107 A1 WO 2021122107A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pressure vessel
fuel
total
vessel system
Prior art date
Application number
PCT/EP2020/084889
Other languages
English (en)
French (fr)
Inventor
Klaus Szoucsek
Klaas Kunze
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to CN202080086998.5A priority Critical patent/CN114829829B/zh
Priority to US17/786,779 priority patent/US20230026657A1/en
Publication of WO2021122107A1 publication Critical patent/WO2021122107A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/025Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0338Pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0408Level of content in the vessel
    • F17C2250/0417Level of content in the vessel with electrical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0615Mass or weight of the content of the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0626Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0689Methods for controlling or regulating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0689Methods for controlling or regulating
    • F17C2250/0694Methods for controlling or regulating with calculations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/07Actions triggered by measured parameters
    • F17C2250/072Action when predefined value is reached
    • F17C2250/077Action when predefined value is reached when empty
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/024Improving metering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0184Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the technology disclosed here relates to a pressure vessel system and an energy supply arrangement with such a pressure vessel system.
  • a pressure vessel system has, for example, a pressure vessel for storing gaseous fuel. Furthermore, it typically has a fuel line which is connected to the pressure vessel. The fuel line can be connected to a consumer or an energy converter, for example.
  • the technology disclosed here relates to a pressure vessel system.
  • the pressure vessel system has at least one pressure vessel for storing gaseous fuel.
  • the pressure vessel system has at least one fuel line which is connected to the pressure vessel.
  • the pressure vessel system has at least one total pressure sensor for measuring a total pressure of the fuel at a position within the fuel line.
  • the pressure vessel system can also have several pressure vessels for storing gaseous fuel. In the event that there are several pressure vessels, the fuel line can be connected to each of the pressure vessels.
  • a total pressure sensor is a sensor that not only measures static pressure, but a combination of static pressure and dynamic pressure.
  • the fuel line connects in particular one or more pressure vessels with one or more consumers.
  • the position within the fuel line is thus arranged within such a line.
  • the total pressure is measured there.
  • a pressure sensor which is connected to the fuel line via a separate connection line, can typically not measure the total pressure for physical reasons, since only the static pressure is conveyed via the connection line.
  • the power of a connected consumer for example a fuel cell system or another energy converter, or a withdrawal mass flow is reduced because the gas density is very low and a pressure regulator outlet pressure threatens to become too low as a result.
  • a pressure regulator can be connected, for example, between the fuel line and a connected energy converter.
  • the power reduction can be implemented, for example, in such a way that if the measured value of a pressure sensor is less than, for example, 40 bar, a tank control device requests that a fuel cell control device reduce the power. The fuel cell control unit then reduces the output of the fuel cell and thus lowers the withdrawal flow in the tank system.
  • the fuel can be hydrogen, which can be used in fuel cells. It has been shown that when using a conventional static pressure sensor, the static pressure measured at a specific location fluctuates as a function of the mass flow. With larger mass flows, a smaller static pressure is measured. These fluctuations in measured values lead to the problem that the power reduction starts earlier than necessary in the case of a large mass flow. With a low mass flow, the power reduction is activated a little later than with a large mass flow, but still earlier than necessary.
  • the total pressure sensor can in particular be a pressure sensor for dynamic pressure. This can have a bore which is oriented in such a way that it is oriented against the direction of gas flow. Such a total pressure sensor measures the total pressure, i.e. the sum of the static and dynamic pressure. The total pressure is independent of the mass flow. This means that the power reduction is no longer activated prematurely.
  • the pressure vessel can be used, for example, to store fuel that is gaseous under ambient conditions.
  • the pressure vessel can be used, for example, in a motor vehicle that is operated with compressed (also called “Compressed Natural Gas” or CNG) or liquefied (also called “Liquid Natural Gas” or LNG) natural gas or with hydrogen.
  • compressed also called “Compressed Natural Gas” or CNG
  • liquefied also called “Liquid Natural Gas” or LNG
  • the pressure vessel is preferably fluidly connected to at least one energy converter, in particular through the fuel line already mentioned, the energy converter typically is set up to convert the chemical energy of the fuel into other forms of energy.
  • a pressure vessel can be, for example, a composite overwrapped pressure vessel.
  • the pressure vessel can be, for example, a cryogenic pressure vessel or a high-pressure gas vessel.
  • NWP nominal working pressure
  • a cryogenic pressure vessel is suitable for storing the fuel at the aforementioned operating pressures even at temperatures which are well below the operating temperature of the motor vehicle.
  • a fuel line is a removal line
  • the total pressure sensor preferably measures the total pressure when the fuel flows away from the pressure vessel.
  • a withdrawal mass flow can be monitored and a corresponding functionality, for example a power reduction of a consumer, as just described, can be controlled.
  • the extraction line can in particular be connected to a consumer or an energy converter such as a fuel cell or a gas-powered internal combustion engine.
  • a fuel line is a refueling line
  • the total pressure sensor preferably measures the total pressure when the fuel flows towards the pressure vessel. This means that a refueling process can be monitored. This can be used, for example, to determine the fill level, which is improved by determining the total pressure.
  • the refueling mass flow can, for example, be ten times as large be like the withdrawal mass flow. As a result, the proportion of dynamic pressure in the total pressure is greater and the advantages come into their own when refueling.
  • the filling level of a pressure vessel is a measure of the amount of fuel that is stored in the pressure vessel.
  • the filling level or loading state can be an absolute value, for example the fuel storage pressure or the fuel storage density of the fuel stored in the pressure vessel.
  • the level can also be a percentage value that results from the amount actually stored in the pressure vessel and the maximum and minimum storage amounts. Such a percentage value can for example be referred to as the fill level (“State of Charge” or SOC).
  • SOC State of Charge
  • the degree of filling can be, for example, a percentage value of the maximum fuel storage pressure or density or of the difference between the maximum and minimum fuel storage pressure or density.
  • the maximum fuel storage pressure is usually reached when the pressure vessel has reached the nominal operating pressure (also called "Nominal Working Pressure” or NWP; for example 700 bar) at nominal operating temperature (for example 15 ° C) under standard conditions.
  • the minimum fuel storage pressure can be a specified minimum pressure (usually container-specific) or atmospheric pressure.
  • the maximum fuel storage density or the minimum fuel storage density result under these standard conditions.
  • the maximum storage density in a hydrogen pressure vessel at 15 ° C. is, for example, approx. 40.22 g / l.
  • the filling level can be determined directly or indirectly.
  • a total pressure sensor in a withdrawal line and in a refueling line can also be combined can.
  • two such total pressure sensors can be used here.
  • the pressure vessel system preferably has an electronic control device for calculating a fill level of the pressure vessel based on the total pressure in the refueling line. In this way, a fill level can be calculated in a particularly advantageous manner, since the total pressure, which is more suitable for this, is used and not just the static pressure.
  • the total pressure sensor can measure the total pressure in both flow directions.
  • it can be designed to be rotatable, for example, so that an inlet opening can be held in both flow directions.
  • the total pressure can thus be measured, for example, both during a refueling process and during a removal process.
  • the pressure vessel system also has a static pressure sensor for measuring a static pressure of the fuel at a position within the fuel line.
  • a static pressure sensor for measuring a static pressure of the fuel at a position within the fuel line.
  • the static pressure can also be measured in addition to the total pressure. This allows additional functionalities to be achieved.
  • the dynamic pressure can be calculated by subtracting the static pressure from the total pressure.
  • Total pressure sensor and static pressure sensor can in particular be arranged directly adjacent to one another. This can mean, for example, that they are no more than 10 cm apart. Then, for example, it can be said that they are on measure at the same point and any change in pressure over the distance can be neglected.
  • a combination of total pressure sensor and static pressure sensor can in principle be used at any point, for example, as described above, in a refueling line and in a withdrawal line.
  • the pressure vessel system has an electronic control device for calculating a dynamic pressure as the difference between the total pressure and the static pressure and / or for calculating a flow rate from the total pressure and the static pressure and / or from the dynamic pressure.
  • the flow velocity can be calculated particularly precisely, since both the total pressure and the dynamic pressure are known.
  • other functions can be controlled via the flow rate.
  • the control device is expediently configured for such a function or also for other functions described below, for example.
  • the pressure vessel system has an electronic control device for triggering a power reduction of an energy converter connected to the pressure vessel system based on the total pressure.
  • the power reduction can be controlled much better; in particular, premature triggering can be avoided.
  • control device can be configured to carry out the respective functionality.
  • a power reduction can be activated, for example, when a pressure in the pressure vessel is close to a predetermined lower limit.
  • a power reduction can also be triggered, for example, if the pressure upstream of a pressure regulator is less than 35 bar. In such a case, for example, a pressure loss in the pressure regulator may increase due to a low gas density, and a pressure regulator outlet pressure may become too small.
  • Temperature compensation can preferably be implemented, for example in a control device already mentioned. If, for example, the temperature fluctuates between -15 ° C and +45 ° C and it is assumed to be 15 ° C, for example, because it is not measured, then a hydrogen density can be incorrectly determined by, for example, +/- 10%. This effect can be avoided by temperature compensation, i.e. by measuring and taking the temperature into account.
  • a temperature sensor can be installed in front of a pressure regulator, the temperature sensor measuring the gas temperature of the extraction mass flow via a line protruding into the flow. This can be used, for example, to calculate a gas density, which is temperature-dependent.
  • the total pressure sensor can in particular be installed at a point at which the flow profile is as uniform as possible over the cross section. This can preferably be achieved in that there is a straight pipe section of, for example, at least 20 cm in front of the total pressure sensor.
  • the technology disclosed here also relates to an energy supply arrangement with a pressure vessel system as described herein and with an energy converter, which can expediently be designed as a fuel cell, the energy converter being connected to the fuel line.
  • the energy converter or the fuel cell can in particular be designed to convert fuel supplied from the pressure vessel via the fuel line into electrical or mechanical energy. In the case of a fuel cell, the above-mentioned advantage of better control of the power reduction can be used in particular.
  • an energy converter can be used which is set up to convert the chemical energy of the fuel into other forms of energy, for example into electrical energy and / or into kinetic energy.
  • the energy converter can be, for example, an internal combustion engine or a fuel cell system / fuel cell stack with at least one fuel cell.
  • A: flow cross-sectional area rh: mass flow Determining a hydrogen mass flow has the advantage, for example, that it can be used to improve the level calculation using a Kalman filter.
  • FIG. 1 an energy supply arrangement
  • FIG. 2 an overall pressure sensor
  • the energy supply arrangement 5 has a pressure vessel system 10 and an energy converter connected to it in the form of a fuel cell 7. It should be mentioned that instead of the fuel cell 7, for example, another energy converter, such as a gas-powered internal combustion engine, can also be connected. In any case, the connected energy converter is supplied with a gaseous fuel, for example hydrogen, from the pressure vessel system 10 as described below.
  • a gaseous fuel for example hydrogen
  • the pressure vessel system 10 has a pressure vessel 20. Gaseous fuel is stored in it.
  • the pressure vessel system 10 has a fuel line 30 which, as shown, leads from the pressure vessel 20 to the fuel cell 7. Furthermore, the pressure vessel system 10 has a total pressure sensor 40 and a static pressure sensor 50.
  • the total pressure sensor 40 is designed to measure a total pressure in the fuel line 30, ie a combination of static pressure and dynamic pressure, the latter being dependent on the flow rate is dependent.
  • the static pressure sensor 50 only measures the static pressure, that is to say the total pressure minus the dynamic pressure.
  • the pressure vessel system 10 also has an electronic control device 60 which, as shown, is connected to the two pressure sensors 40, 50.
  • the total pressure sensor 40 measures the total pressure and the static pressure sensor 50 measures the static pressure. Both values are sent to the electronic control device 60. This can calculate the mass flow from a difference between the two pressures and thereby control the extraction in an advantageous manner. In this way, it is also possible to draw conclusions about a fill level. Should the total pressure drop below a predetermined value, which can be 40 bar, for example, the electronic control device 60 will request a reduction in the power of the fuel cell 7, so that the withdrawal decreases. Since the total pressure is used and not just the static pressure, the power reduction can start later here than if, as is usual with designs in the prior art, only the static pressure is used.
  • Fig. 2 shows the total pressure sensor 40 in more detail. Its connection to the already mentioned fuel line 30 is also shown. In the fuel line 30, the gas flows as indicated by the arrows in a typical extraction operation.
  • the total pressure sensor 40 has a block 41 which is connected to the fuel line 30 and which carries further components of the total pressure sensor 40.
  • the total pressure sensor 40 has a pipe 42 which protrudes into the fuel line 30. In the fuel line 30, the pipe 42 has an opening 43 which points against the direction of flow and thus ensures that flowing gas penetrates into the pipe 42 under pressure.
  • the total pressure sensor 40 has a union nut 45 and a support ring 46, which hold further components on the block 41 and ensure stability.
  • a membrane 47 is formed on the pipe 42, which is deformed as a function of pressure.
  • an evaluation circuit 48 which records the deformation and outputs a signal dependent thereon via pins 44 that are integrated thereon and point to the right. The signal thus indicates the deformation of the diaphragm 47 and thus ultimately the total pressure. Due to the aforementioned design of the tube 42 and the opening
  • the evaluation circuit 48 is carried by a connector housing 49 in which the aforementioned pins 44 are also attached. This is clipped to the rest of the total pressure sensor 40.
  • the expression “at least one” has been partially omitted for the sake of simplicity. If a feature of the technology disclosed here is described in the singular or indefinitely (e.g. the / a pressure vessel, the / a sensor, etc.), the plurality thereof should also be disclosed at the same time (e.g. the at least one pressure vessel, the at least one sensor , Etc.).
  • the preceding description of the present invention is for illustrative purposes only and not for the purpose of limiting the invention. Various changes and modifications are possible within the scope of the invention without departing from the scope of the invention and its equivalents.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Die hier offenbarte Technologie betrifft erfindungsgemäß ein Druckbehältersystem (10) mit einem Druckbehälter (20) zur Speicherung von gasförmigem Brennstoff, einer Brennstoffleitung (30) sowie einem Gesamtdrucksensor (40) zur Messung eines Gesamtdrucks des Brennstoffs an einer Position innerhalb der Brennstoffleitung (30). Dadurch können diverse Funktionen wie beispielsweise die Steuerung einer Leistungsreduzierung genauer ausgeführt werden als bei Verwendung lediglich des statischen Drucks. Die hier offenbarte Technologie betrifft ferner eine Energieversorgungsanordnung (5) mit einem solchen Druckbehältersystem (10) und einem Energiewandler (7) wie beispielsweise einer Brennstoffzelle.

Description

Druckbehältersystem und Energieversorgungsanordnung
Die hier offenbarte Technologie betrifft ein Druckbehältersystem sowie eine Energieversorgungsanordnung mit einem solchen Druckbehältersystem.
Ein Druckbehältersystem weist beispielsweise einen Druckbehälter zur Speicherung von gasförmigem Brennstoff auf. Des Weiteren weist es typischerweise eine Brennstoffleitung auf, welche an dem Druckbehälter angeschlossen ist. Die Brennstoffleitung kann beispielsweise mit einem Verbraucher bzw. einem Energiewandler verbunden sein.
In bestimmten Situationen ist es erforderlich, den Druck in der Brennstoffleitung zu messen. Hierfür werden bislang typischerweise statische Drucksensoren verwendet, welche sich jedoch für einige Einsatzzwecke als nicht optimal erwiesen haben.
Es ist eine bevorzugte Aufgabe der hier offenbarten Technologie, zumindest einen Nachteil von einer vorbekannten Lösung zu verringern oder zu beheben oder eine alternative Lösung vorzuschlagen. Es ist insbesondere eine bevorzugte Aufgabe der hier offenbarten Technologie, ein Druckbehältersystem mit einer verbesserten Druckmessung vorzusehen. Weitere bevorzugte Aufgaben können sich aus den vorteilhaften Effekten der hier offenbarten Technologie ergeben. Die Aufgaben werden gelöst durch den Gegenstand der unabhängigen Patentansprüche. Die abhängigen Ansprüche stellen bevorzugte Ausgestaltungen dar.
Die hier offenbarte Technologie betrifft ein Druckbehältersystem. Das Druckbehältersystem weist mindestens einen Druckbehälter zur Speicherung von gasförmigem Brennstoff auf. Das Druckbehältersystem weist mindestens eine Brennstoffleitung auf, welche an dem Druckbehälter angeschlossen ist. Das Druckbehältersystem weist mindestens einen Gesamtdrucksensor zur Messung eines Gesamtdrucks des Brennstoffs an einer Position innerhalb der Brennstoffleitung auf.
Das Druckbehältersystem kann auch mehrere Druckbehälter zur Speicherung von gasförmigem Brennstoff aufweisen. Für den Fall, dass mehrere Druckbehälter vorhanden sind, kann die Brennstoffleitung an jedem der Druckbehälter angeschlossen sein.
Ein Gesamtdrucksensor ist ein Sensor, welcher nicht nur den statischen Druck, sondern eine Kombination aus statischem Druck und dynamischem Druck misst. Der dynamische Druck wird umso größer, je größer eine Strömungsgeschwindigkeit des Brennstoffs in der Brennstoffleitung ist. Es hat sich gezeigt, dass bei einigen Anwendungen die reine Messung des statischen Drucks dazu führt, dass bei Verwendung des entsprechend gemessenen Werts diverse Funktionen schlechter ausgeführt werden können, da der gemessene Wert des statischen Drucks letztlich zu niedrig ist im Vergleich zum Gesamtdruck, welcher eigentlich für die entsprechende Funktion verwendet werden sollte. Dieser Effekt wird umso größer, je höher die Flussgeschwindigkeit in der Brennstoffleitung ist, da der Anteil des dynamischen Drucks entsprechend größer ist.
Die Brennstoffleitung verbindet insbesondere einen oder mehrere Druckbehälter mit einem oder mehreren Verbrauchen. Innerhalb einer solchen Leitung ist somit die Position innerhalb der Brennstoffleitung angeordnet. Dort wird der Gesamtdruck gemessen. Ein Drucksensor, welcher über eine separate Anschlussleitung mit der Brennstoffleitung verbunden ist, kann typischerweise schon aus physikalischen Gründen nicht den Gesamtdruck messen, da über die Anschlussleitung nur der statische Druck vermittelt wird.
Beispielsweise kann vorgesehen sein, dass bei einem nahezu leeren Druckbehälter die Leistung eines angeschlossenen Verbrauchers, beispielsweise eines Brennstoffzellensystems oder eines anderen Energiewandlers, bzw. ein Entnahmemassenstrom reduziert wird, weil die Gasdichte sehr niedrig ist und dadurch ein Druckregler-Ausgangsdruck zu niedrig zu werden droht. Ein solcher Druckregler kann beispielsweise zwischen der Brennstoffleitung und einem angeschlossenen Energiewandler angeschlossen sein. Die Leistungsreduzierung kann beispielsweise so umgesetzt werden, dass wenn der Messwert eines Drucksensors kleiner ist als beispielsweise 40 bar, ein Tank-Steuergerät von einem Brennstoffzellensteuergerät anfordert, dass es die Leistung reduziert. Das Brennstoffzellensteuergerät reduziert dann die Leistung der Brennstoffzelle und senkt damit den Entnahmestrom im Tanksystem.
Beispielsweise kann es sich bei dem Brennstoff um Wasserstoff handeln, welcher in Brennstoffzellen verwendet werden kann. Es hat sich gezeigt, dass bei Verwendung eines konventionellen statischen Drucksensors der an einem bestimmten Ort damit gemessene statische Druck in Abhängigkeit vom Massenstrom schwankt. Bei größeren Massenströmen wird ein kleinerer statischer Druck gemessen. Diese Messwertschwankungen führen zu dem Problem, dass die Leistungsreduzierung bei einem großen Massenstrom früher als notwendig einsetzt. Bei einem niedrigen Massenstrom wird die Leistungsreduzierung etwas später als bei großem Massenstrom aktiviert, aber immer noch früher als notwendig.
Die eben beschriebenen Probleme können durch die hier offenbarte Technologie verhindert werden, da der Gesamtdruck und nicht nur der statische Druck gemessen wird.
Der Gesamtdrucksensor kann insbesondere ein Drucksensor für Staudruck sein. Dieser kann eine Bohrung haben, welche so ausgerichtet ist, dass sie entgegen der Gasströmungsrichtung orientiert ist. Ein solcher Gesamtdrucksensor misst den Gesamtdruck, also die Summe aus statischem und dynamischem Druck. Der Gesamtdruck ist unabhängig vom Massenstrom. Dadurch wird die Leistungsreduzierung nicht mehr vorzeitig aktiviert.
Der Druckbehälter kann beispielsweise zur Speicherung von unter Umgebungsbedingungen gasförmigem Brennstoff dienen. Der Druckbehälter kann beispielsweise in einem Kraftfahrzeug eingesetzt werden, das mit komprimiertem (auch „Compressed Natural Gas“ oder CNG genannt) oder verflüssigtem (auch „Liquid Natural Gas“ oder LNG genannt) Erdgas oder mit Wasserstoff betrieben wird. Der Druckbehälter ist bevorzugt mit mindestens einem Energiewandler fluidverbunden, insbesondere durch die bereits erwähnte Brennstoffleitung, wobei der Energiewandler typischerweise eingerichtet ist, die chemische Energie des Brennstoffs in andere Energieformen umzuwandeln.
Ein Druckbehälter kann beispielsweise ein Composite Overwrapped Pressure Vessel sein. Der Druckbehälter kann beispielsweise ein kryogener Druckbehälter oder ein Hochdruckgasbehälter sein. Hochdruckgasbehälter sind ausgebildet, bei Umgebungstemperaturen Brennstoff dauerhaft bei einem nominalen Betriebsdruck (auch „Nominal Working Pressure“ oder NWP genannt) von ca. 350 barü (= Überdruck gegenüber dem Atmosphärendruck), ferner bevorzugt von ca. 700 barü oder mehr zu speichern. Ein kryogener Druckbehälter ist geeignet, den Brennstoff bei den vorgenannten Betriebsdrücken auch bei Temperaturen zu speichern, die deutlich unter der Betriebstemperatur des Kraftfahrzeugs liegen.
Gemäß einer Ausführung ist eine Brennstoffleitung eine Entnahmeleitung, und der Gesamtdrucksensor misst bevorzugt den Gesamtdruck bei Fluss des Brennstoffs vom Druckbehälter weg. Dadurch kann beispielsweise ein Entnahmemassenstrom überwacht und eine entsprechende Funktionalität, beispielsweise eine Leistungsreduzierung eines Verbrauchers wie eben beschrieben, gesteuert werden. Die Entnahmeleitung kann insbesondere mit einem Verbraucher bzw. einem Energiewandler wie beispielsweise einer Brennstoffzelle oder einem gasbetriebenen Verbrennungsmotor verbunden sein.
Gemäß einer Ausführung ist eine Brennstoffleitung eine Betankungsleitung, und der Gesamtdrucksensor misst bevorzugt den Gesamtdruck bei Fluss des Brennstoffs zum Druckbehälter hin. Dadurch kann ein Betankungsvorgang überwacht werden. Dies kann beispielsweise zu einer Füllstandsermittlung genutzt werden, welche durch die Ermittlung des Gesamtdrucks verbessert wird. Der Betankungsmassenstrom kann beispielsweise zehnmal so groß sein wie der Entnahmemassenstrom. Dadurch ist der Anteil des dynamischen Drucks am Gesamtdruck größer und die Vorteile kommen bei einer Betankung besonders vorteilhaft zur Geltung.
Der Füllstand eines Druckbehälters ist ein Maß für die Menge an Brennstoff, die im Druckbehälter gespeichert ist. Der Füllstand bzw. Beladungszustand kann ein Absolutwert sein, zum Beispiel der Brennstoffspeicherdruck bzw. die Brennstoffspeicherdichte des im Druckbehälter gespeicherten Brennstoffs. Der Füllstand kann aber auch ein Prozentwert sein, der sich aus der im Druckbehälter tatsächlich gespeicherten Menge und maximalen und minimalen Speichermengen ergibt. Ein solcher Prozentwert kann beispielsweise als Füllgrad (englisch „State of Charge“ oder SOC) bezeichnet werden. Der Füllgrad kann zum Beispiel ein Prozentwert vom maximalen Brennstoffspeicherdruck bzw. -dichte oder von der Differenz zwischen maximalem und minimalen Brennstoffspeicherdruck bzw. -dichte sein. Der maximale Brennstoffspeicherdruck ist in der Regel erreicht, wenn der Druckbehälter unter Normbedingungen den nominalen Betriebsdruck (auch „Nominal Working Pressure“ oder NWP genannt; zum Beispiel 700 bar) bei nominaler Betriebstemperatur (zum Beispiel 15 °C) erreicht hat. Der minimale Brennstoffspeicherdruck kann ein festgelegter Mindestdruck (in der Regel behälterspezifisch) oder der Atmosphärendruck sein. Gleichsam ergeben sich die maximale Brennstoffspeicherdichte bzw. die minimale Brennstoffspeicherdichte bei diesen Normbedingungen. Bei einem 70 MPA- Druckbehältersystem beträgt die maximale Speicherdichte in einem Wasserstoffdruckbehälter bei 15 °C beispielsweise ca. 40,22 g/l. Der Füllzustand kann direkt oder indirekt bestimmbar sein.
Es sei erwähnt, dass die Anordnung eines Gesamtdrucksensors in einer Entnahmeleitung und in einer Betankungsleitung auch kombiniert werden können. Dabei können also beispielsweise zwei solcher Gesamtdrucksensoren verwendet werden.
Bevorzugt weist das Druckbehältersystem eine elektronische Steuerungsvorrichtung zur Berechnung eines Füllstands des Druckbehälters basierend auf dem Gesamtdruck in der Betankungsleitung auf. Dadurch kann ein Füllstand in besonders vorteilhafter Weise berechnet werden, da der hierfür besser geeignete Gesamtdruck und nicht nur der statische Druck verwendet wird.
Es kann vorgesehen sein, dass der Gesamtdrucksensor den Gesamtdruck in beiden Flussrichtungen messen kann. Hierzu kann er beispielsweise drehbar ausgeführt sein, so dass eine Eingangsöffnung in beide Flussrichtungen gehalten werden kann. Somit kann der Gesamtdruck beispielsweise sowohl während eines Betankungsvorgangs wie auch während eines Entnahmevorgangs gemessen werden.
Gemäß einer Ausführung weist das Druckbehältersystem ferner einen statischen Drucksensor zur Messung eines statischen Drucks des Brennstoffs an einer Position innerhalb der Brennstoffleitung auf. Dadurch kann zusätzlich zum Gesamtdruck auch der statische Druck gemessen werden. Dadurch können zusätzliche Funktionalitäten erzielt werden. Insbesondere kann durch Subtraktion des statischen Drucks vom Gesamtdruck der dynamische Druck errechnet werden.
Gesamtdrucksensor und statischer Drucksensor können insbesondere unmittelbar benachbart zueinander angeordnet sein. Dies kann beispielsweise bedeuten, dass sie einen Abstand von höchstens 10 cm haben. Dann kann beispielsweise davon gesprochen werden, dass sie an der gleichen Stelle messen und eine etwaige Veränderung des Drucks über den Abstand kann vernachlässigt werden.
Eine Kombination aus Gesamtdrucksensor und statischem Drucksensor kann grundsätzlich an jeder Stelle verwendet werden, beispielsweise also wie weiter oben beschrieben in einer Betankungsleitung und in einer Entnahmeleitung.
Gemäß einer Ausführung weist das Druckbehältersystem eine elektronische Steuerungsvorrichtung zur Berechnung eines dynamischen Drucks als Differenz aus dem Gesamtdruck und dem statischen Druck und/oder zur Berechnung einer Strömungsgeschwindigkeit aus dem Gesamtdruck und dem statischen Druck und/oder aus dem dynamischen Druck auf. Mittels einer solchen Vorgehensweise kann die Strömungsgeschwindigkeit besonders genau berechnet werden, da sowohl der Gesamtdruck wie auch der dynamische Druck bekannt sind. Über die Strömungsgeschwindigkeit können beispielsweise andere Funktionen gesteuert werden. Die Steuerungsvorrichtung ist zweckmäßig für eine derartige Funktion oder auch andere, beispielsweise nachfolgend beschriebene Funktionen konfiguriert.
Gemäß einer Ausführung weist das Druckbehältersystem eine elektronische Steuerungsvorrichtung zur Auslösung einer Leistungsreduzierung eines an dem Druckbehältersystem angeschlossenen Energiewandlers basierend auf dem Gesamtdruck auf. Wie bereits erwähnt kann durch die Verwendung des Gesamtdrucks anstatt des statischen Drucks die Leistungsreduzierung wesentlich besser gesteuert werden, insbesondere kann eine vorzeitige Auslösung vermieden werden.
Es sei erwähnt, dass die beschriebenen Funktionalitäten beispielsweise auch in einer einzigen Steuerungsvorrichtung implementiert sein können. Insbesondere kann die Steuerungsvorrichtung dazu konfiguriert sein, die jeweilige Funktionalität auszuführen.
Eine Leistungsreduzierung kann beispielsweise aktiviert werden, wenn ein Druck im Druckbehälter nahe an einer vorgegebenen Untergrenze ist. Ebenso kann beispielsweise eine Leistungsreduzierung ausgelöst werden, wenn der Druck vor einem Druckregler kleiner als 35 bar ist. In einem solchen Fall kann beispielsweise ein Druckverlust im Druckregler steigen aufgrund einer geringen Gasdichte, und ein Druckregler-Ausgangsdruck kann zu klein werden.
Bevorzugt kann eine Temperaturkompensation implementiert sein, beispielsweise in einer bereits erwähnten Steuerungsvorrichtung. Wenn die Temperatur beispielsweise zwischen -15 °C und +45 °C schwankt und sie bei beispielsweise 15 °C angenommen wird, weil sie nicht gemessen wird, dann kann eine Wasserstoff-Dichte um beispielsweise +/- 10 % falsch ermittelt werden. Dieser Effekt kann durch eine Temperaturkompensation, d.h. durch ein Messen und Berücksichtigen der Temperatur, vermieden werden. Beispielsweise kann ein Temperatursensor vor einem Druckregler eingebaut werden, wobei der Temperatursensor über eine in die Strömung ragende Leitung die Gastemperatur des Entnahmemassenstroms misst. Diese kann man verwenden, beispielsweise um eine Gasdichte zu berechnen, welche temperaturabhängig ist.
Der Gesamtdrucksensor kann insbesondere an einer Stelle eingebaut werden, an welcher das Strömungsprofil über den Querschnitt möglichst gleichmäßig ist. Dies kann bevorzugt dadurch erreicht werden, dass sich eine gerade Rohrstrecke von beispielsweise mindestens 20 cm vor dem Gesamtdrucksensor befindet. Die hier offenbarte Technologie betrifft ferner eine Energieversorgungsanordnung mit einem Druckbehältersystem wie hierin beschrieben sowie mit einem Energiewandler, welcher zweckmäßig als Brennstoffzelle ausgeführt sein kann, wobei der Energiewandler an die Brennstoffleitung angeschlossen ist. Der Energiewandler bzw. die Brennstoffzelle kann insbesondere dazu ausgebildet sein, von dem Druckbehälter über die Brennstoffleitung gelieferten Brennstoff in elektrische oder mechanische Energie umzusetzen. Bei einer Brennstoffzelle kann insbesondere der oben genannte Vorteil einer besseren Steuerung der Leistungsreduzierung genutzt werden. Allgemeiner kann ein Energiewandler verwendet werden, welcher eingerichtet ist, die chemische Energie des Brennstoffs in andere Energieformen umzuwandeln, beispielsweise in elektrische Energie und/oder in Bewegungsenergie. Der Energiewandler kann beispielsweise eine Brennkraftmaschine oder ein Brennstoffzellensystem/Brennstoffzellenstapel mit mindestens einer Brennstoffzelle sein.
Eine Massenstromdichte bzw. ein Massenstrom kann beispielsweise durch folgende Formeln berechnet werden: p_dyn = p/2 * nL2 v = ((2-p_dyn)/p) rh =p v-A
Dabei sind: p_dyn: dynamischer Druck v: Strömungsgeschwindigkeit p: Gasdichte
A: Strömungsquerschnittsfläche rh: Massenstrom Die Ermittlung eines Wasserstoffmassenstroms hat beispielsweise den Vorteil, dass sie für die Verbesserung der Füllstandsberechnung mittels Kalman-Filter verwendet werden kann.
Die hier offenbarte Technologie wird nun anhand der Figuren beschrieben. Dabei zeigen:
Fig. 1 :eine Energieversorgungsanordnung, und Fig. 2: einen Gesamtdrucksensor.
Fig. 1 zeigt eine Energieversorgungsanordnung 5 gemäß einem Ausführungsbeispiel in einer rein schematischen Darstellung. Die Energieversorgungsanordnung 5 weist ein Druckbehältersystem 10 sowie einen daran angeschlossenen Energiewandler in Form einer Brennstoffzelle 7 auf. Es sei erwähnt, dass anstelle der Brennstoffzelle 7 beispielsweise auch ein anderer Energiewandler wie beispielsweise ein gasbetriebener Verbrennungskraftmotor angeschlossen sein kann. Jedenfalls wird der angeschlossene Energiewandler von dem Druckbehältersystem 10 wie nachfolgend beschrieben mit einem gasförmigen Brennstoff, beispielsweise Wasserstoff, versorgt.
Das Druckbehältersystem 10 weist einen Druckbehälter 20 auf. Darin wird gasförmiger Brennstoff gespeichert. Das Druckbehältersystem 10 weist eine Brennstoffleitung 30 auf, welche wie gezeigt vom Druckbehälter 20 zur Brennstoffzelle 7 führt. Des Weiteren weist das Druckbehältersystem 10 einen Gesamtdrucksensor 40 sowie einen statischen Drucksensor 50 auf. Der Gesamtdrucksensor 40 ist dazu ausgebildet, einen Gesamtdruck in der Brennstoffleitung 30 zu messen, d.h. eine Kombination aus statischem Druck und dynamischem Druck, wobei letzterer von der Flussgeschwindigkeit abhängig ist. Der statische Drucksensor 50 misst dagegen lediglich den statischen Druck, also den Gesamtdruck abzüglich des dynamischen Drucks.
Das Druckbehältersystem 10 weist ferner eine elektronische Steuerungsvorrichtung 60 auf, welche wie gezeigt mit den beiden Drucksensoren 40, 50 verbunden ist.
Während eines Entnahmebetriebs, d.h. während die Brennstoffzelle 7 aus dem Druckbehälter 20 versorgt wird, misst der Gesamtdrucksensor 40 den Gesamtdruck und der statische Drucksensor 50 misst den statischen Druck. Beide Werte werden an die elektronische Steuerungsvorrichtung 60 gesendet. Diese kann aus einer Differenz zwischen den beiden Drücken den Massenstrom berechnen und dadurch die Entnahme in vorteilhafter Weise steuern. Auch ein Rückschluss auf einen Füllstand ist auf diese Weise möglich. Sollte der Gesamtdruck unter einen vorgegebenen Wert sinken, welcher beispielsweise bei 40 bar liegen kann, so wird die elektronische Steuerungsvorrichtung 60 eine Leistungsreduzierung der Brennstoffzelle 7 anfordern, so dass die Entnahme zurückgeht. Da der Gesamtdruck verwendet wird und nicht nur der statische Druck kann die Leistungsreduzierung hier später einsetzen als wenn, wie bei Ausführungen im Stand der Technik üblich, nur der statische Druck verwendet wird.
Fig. 2 zeigt den Gesamtdrucksensor 40 detaillierter. Dabei ist auch sein Anschluss an die bereits erwähnte Brennstoffleitung 30 gezeigt. In der Brennstoffleitung 30 strömt das Gas wie durch die Pfeile angezeigt in einem typischen Entnahmebetrieb. Der Gesamtdrucksensor 40 weist einen Block 41 auf, welcher mit der Brennstoffleitung 30 verbunden ist und welcher weitere Komponenten des Gesamtdrucksensors 40 trägt. Der Gesamtdrucksensor 40 weist ein Rohr 42 auf, welches in die Brennstoffleitung 30 hineinsteht. In der Brennstoffleitung 30 weist das Rohr 42 eine Öffnung 43 auf, welche entgegen der Strömungsrichtung weist und somit dafür sorgt, dass strömendes Gas unter Druck in das Rohr 42 eindringt.
Außenliegend weist der Gesamtdrucksensor 40 eine Überwurfmutter 45 sowie einen Stützring 46 auf, welche weitere Komponenten am Block 41 halten und für Stabilität sorgen.
Gegenüberliegend zur Brennstoffleitung 30 ist an dem Rohr 42 eine Membran 47 ausgebildet, welche sich druckabhängig verformt. Unmittelbar angrenzend daran ist eine Auswerteschaltung 48 angeordnet, welche die Verformung aufnimmt und über daran integrierte, nach rechts weisende Pins 44 ein davon abhängiges Signal ausgibt. Somit zeigt das Signal die Verformung der Membran 47 und somit letztlich den Gesamtdruck an. Aufgrund der bereits erwähnten Ausbildung des Rohrs 42 und der Öffnung
43 wird hier nicht nur der statische Druck, sondern der Gesamtdruck gemessen. Würde die Öffnung 43 nicht gerichtet sein, sondern lediglich seitlich an die Brennstoffleitung 30 angrenzen, würde lediglich der statische Druck gemessen werden.
Die Auswerteschaltung 48 wird von einem Steckergehäuse 49 getragen, in welchem auch die bereits erwähnten Pins 44 befestigt sind. Dieses ist mit dem Rest des Gesamtdrucksensors 40 verklipst.
Aus Gründen der Leserlichkeit wurde vereinfachend der Ausdruck „mindestens ein(e)“ teilweise weggelassen. Sofern ein Merkmal der hier offenbarten Technologie in der Einzahl bzw. unbestimmt beschrieben ist (z.B. der/ein Druckbehälter, der/ein Sensor, etc.) so soll gleichzeitig auch deren Mehrzahl mit offenbart sein (z.B. der mindestens eine Druckbehälter, der mindestens eine Sensor, etc.). Die vorhergehende Beschreibung der vorliegenden Erfindung dient nur zu illustrativen Zwecken und nicht zum Zwecke der Beschränkung der Erfindung. Im Rahmen der Erfindung sind verschiedene Änderungen und Modifikationen möglich, ohne den Umfang der Erfindung sowie ihrer Äquivalente zu verlassen.
Bezugszeichenliste:
5: Energieversorgungsanordnung
7: Brennstoffzelle
10: Druckbehältersystem
20: Druckbehälter
30: Brennstoffleitung
40: Gesamtdrucksensor
41 : Block
42: Rohr
43: Öffnung
44: Pins
45: Überwurfmutter
46: Stützring
47: Membran
48: Auswerteschaltung
49: Steckergehäuse
50: statischer Drucksensor
60: elektronische Steuerungsvorrichtung

Claims

Ansprüche
1. Druckbehältersystem (10), umfassend
- mindestens einen Druckbehälter (20) zur Speicherung von gasförmigem Brennstoff,
- mindestens eine Brennstoffleitung (30), welche an dem Druckbehälter (20) angeschlossen ist,
- mindestens einen Gesamtdrucksensor (40) zur Messung eines Gesamtdrucks des Brennstoffs an einer Position innerhalb der Brennstoffleitung (30).
2. Druckbehältersystem (10) nach Anspruch 1 ,
- wobei eine Brennstoffleitung (30) eine Entnahmeleitung ist, und
- wobei der Gesamtdrucksensor (40) den Gesamtdruck bei Fluss des Brennstoffs vom Druckbehälter (20) weg misst.
3. Druckbehältersystem (10) nach einem der Ansprüche 1 oder 2,
- wobei eine Brennstoffleitung (30) eine Betankungsleitung ist, und
- wobei der Gesamtdrucksensor (40) den Gesamtdruck bei Fluss des Brennstoffs zum Druckbehälter (20) hin misst.
4. Druckbehältersystem (10) nach Anspruch 3,
- welches eine elektronische Steuerungsvorrichtung (60) zur Berechnung eines Füllstands des Druckbehälters (10) basierend auf dem Gesamtdruck in der Betankungsleitung aufweist.
5. Druckbehältersystem (10) nach einem der vorhergehenden Ansprüche,
- wobei der Gesamtdrucksensor (40) den Gesamtdruck in beiden Flussrichtungen messen kann.
6. Druckbehältersystem (10) nach einem der vorhergehenden Ansprüche,
- welche einen statischen Drucksensor (50) zur Messung eines statischen Drucks des Brennstoffs an einer Position innerhalb der Brennstoffleitung (30) aufweist.
7. Druckbehältersystem (10) nach Anspruch 6,
- wobei der Gesamtdrucksensor (40) und der statische Drucksensor (50) unmittelbar benachbart zueinander sind.
8. Druckbehältersystem (10) nach einem der Ansprüche 6 oder 7,
- welches eine elektronische Steuerungsvorrichtung (60) zur Berechnung eines dynamischen Drucks als Differenz aus dem Gesamtdruck und dem statischen Druck, und/oder zur Berechnung einer Strömungsgeschwindigkeit aus dem Gesamtdruck und dem statischen Druck und/oder aus dem dynamischen Druck, aufweist.
9. Druckbehältersystem (10) nach einem der vorhergehenden Ansprüche,
- welche eine elektronische Steuerungsvorrichtung (60) zur Auslösung einer Leistungsreduzierung eines an dem Druckbehältersystem (10) angeschlossenen Energiewandlers (7) basierend auf dem Gesamtdruck aufweist.
10. Energieversorgungsanordnung, umfassend
- ein Druckbehältersystem (10) nach einem der vorhergehenden Ansprüche,
- einen Energiewandler (7), welcher an die Brennstoffleitung (30) angeschlossen ist.
PCT/EP2020/084889 2019-12-17 2020-12-07 Druckbehältersystem und energieversorgungsanordnung WO2021122107A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080086998.5A CN114829829B (zh) 2019-12-17 2020-12-07 压力容器系统和能量供应装置
US17/786,779 US20230026657A1 (en) 2019-12-17 2020-12-07 Pressure Vessel System and Energy Supply Arrangement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019134643.6 2019-12-17
DE102019134643.6A DE102019134643A1 (de) 2019-12-17 2019-12-17 Druckbehältersystem und Energieversorgungsanordnung

Publications (1)

Publication Number Publication Date
WO2021122107A1 true WO2021122107A1 (de) 2021-06-24

Family

ID=73748120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/084889 WO2021122107A1 (de) 2019-12-17 2020-12-07 Druckbehältersystem und energieversorgungsanordnung

Country Status (4)

Country Link
US (1) US20230026657A1 (de)
CN (1) CN114829829B (de)
DE (1) DE102019134643A1 (de)
WO (1) WO2021122107A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5564306A (en) * 1994-05-25 1996-10-15 Marcum Fuel Systems, Inc. Density compensated gas flow meter
RU87519U1 (ru) * 2009-05-20 2009-10-10 Дочернее открытое акционерное общество "Оргэнергогаз" Открытого акционерного общества "Газпром" Устройство для измерения расхода газа на агнкс
DE102018106786A1 (de) * 2018-03-22 2019-09-26 Zentis Gmbh & Co. Kg Verfahren zum Betrieb eines Containers sowie Container
EP3772590A1 (de) * 2019-08-06 2021-02-10 Ettem Engineering S.A. Ltd Steuerbare pitot-vorrichtung und verfahren

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2519624A (en) * 1948-01-05 1950-08-22 Rolls Royce Fuel control system for aircraft gas-turbine power plants
US2809492A (en) * 1952-12-23 1957-10-15 Simmonds Aerocessories Inc Apparatus for measuring and/or controlling fuel/air ratio of gas turbines without direct gravimetric fuel metering
US4524034A (en) * 1982-04-13 1985-06-18 Ellison Benjamin L Carburetor
US4823615A (en) * 1987-11-04 1989-04-25 Preso Industries Self-averaging pitot tube probe and method for measuring fluid flow
US5146941A (en) * 1991-09-12 1992-09-15 Unitech Development Corp. High turndown mass flow control system for regulating gas flow to a variable pressure system
US5661232A (en) * 1996-03-06 1997-08-26 Micro Motion, Inc. Coriolis viscometer using parallel connected Coriolis mass flowmeters
JP3648724B2 (ja) * 1999-07-22 2005-05-18 東京瓦斯株式会社 ガスメータおよび流量計
US6283142B1 (en) * 2000-02-04 2001-09-04 Robert Bosch Corporation Dual fuel delivery module system for bifurcated automotive fuel tanks
JP4130644B2 (ja) * 2003-05-20 2008-08-06 日本アプライドフロー株式会社 流量計測装置
DE102005058298A1 (de) * 2005-12-07 2007-06-21 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung von Tanklecks
DE102006009295A1 (de) * 2006-03-01 2007-09-06 Daimlerchrysler Ag Abgasturbolader für eine Brennkraftmaschine
EP2040964B1 (de) * 2006-07-11 2012-10-31 Continental Teves AG & Co. oHG Kraftfahrzeugbremssystem mit einem niederdruckspeicher
WO2009040112A2 (en) * 2007-09-25 2009-04-02 Eads Deutschland Gmbh Method for operating a gas turbine engine, power supplying device for conducting such method and aircraft using such method
US8365777B2 (en) * 2008-02-20 2013-02-05 Air Products And Chemicals, Inc. Compressor fill method and apparatus
WO2012000816A1 (de) * 2010-07-01 2012-01-05 Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh+Co. Kg Verfahren und vorrichtung zur messung eines volumenstroms einer in einen behälter einströmenden flüssigkeit und/oder eines in den behälter eingeströmten volumens der flüssigkeit
CN202720007U (zh) * 2012-08-06 2013-02-06 辽宁毕托巴科技有限公司 双向探针式流量计
KR20150041687A (ko) * 2013-10-08 2015-04-17 서중원 가스주입장치
US9653740B2 (en) * 2014-11-12 2017-05-16 Toyota Jidosha Kabushiki Kaisha Fuel cell system
CN204439269U (zh) * 2015-03-25 2015-07-01 山东鼎安检测技术有限公司 一种t型皮托管
WO2016172083A1 (en) * 2015-04-20 2016-10-27 Woodward, Inc. Gas flow fuel metering
DE102015218235A1 (de) * 2015-09-23 2017-03-23 Bayerische Motoren Werke Aktiengesellschaft Servicevorrichtung für ein Druckbehältersystem
JP6531747B2 (ja) * 2016-11-16 2019-06-19 トヨタ自動車株式会社 燃料ガス貯蔵供給システム
DE102017209352A1 (de) * 2017-06-01 2018-12-06 Bayerische Motoren Werke Aktiengesellschaft Fortbewegungsmittel und Verfahren zur Verwendung einer Tankstelle zur Aufnahme gasförmiger Traktionsenergieträger
DE102018220684A1 (de) * 2018-11-30 2020-06-04 Robert Bosch Gmbh Druckmesseinrichtung und Füllstandsmesseinrichtung zum Messen eines Druckes bzw. eines Füllstands in einem Hochdrucktanksystem, insbesondere für ein Kraftfahrzeug
CN209639791U (zh) * 2019-04-12 2019-11-15 江阴威尔胜仪表制造有限公司 一种双向流v锥流量计

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5564306A (en) * 1994-05-25 1996-10-15 Marcum Fuel Systems, Inc. Density compensated gas flow meter
RU87519U1 (ru) * 2009-05-20 2009-10-10 Дочернее открытое акционерное общество "Оргэнергогаз" Открытого акционерного общества "Газпром" Устройство для измерения расхода газа на агнкс
DE102018106786A1 (de) * 2018-03-22 2019-09-26 Zentis Gmbh & Co. Kg Verfahren zum Betrieb eines Containers sowie Container
EP3772590A1 (de) * 2019-08-06 2021-02-10 Ettem Engineering S.A. Ltd Steuerbare pitot-vorrichtung und verfahren

Also Published As

Publication number Publication date
CN114829829A (zh) 2022-07-29
CN114829829B (zh) 2023-11-28
US20230026657A1 (en) 2023-01-26
DE102019134643A1 (de) 2021-06-17

Similar Documents

Publication Publication Date Title
DE102011052658B4 (de) Verfahren und System zum Kalibrieren eines Drucksensors in einem Gasspeichersystem
EP3019846B1 (de) Vorrichtung und verfahren zur kontinuierlichen messung des dynamischen kraftstoffverbrauchs einer brennkraftmaschine
DE102016219639A1 (de) Verfahren zur Messung des Wasserstoffverbrauchs in einem Brennstoffzellensystem
DE102016214577A1 (de) Druckbehältersystem umfassend mindestens einen ersten Druckbehälter und einen zweiten Druckbehälter zum Speichern eines Brennstoffs, insbesondere von Wasserstoff, für ein Fahrzeug
DE102011111609B4 (de) Verfahren, um zu verhindern, dass ein Druck in Behältern unter einen zulässigen Mindestdruck fällt
EP2115400A2 (de) Verfahren und vorrichtung zur kontinuierlichen messung eines dynamischen fluidverbrauchs
DE102020123039A1 (de) Verfahren zur Überwachung eines Druckbehältersystems, Druckbehältersystem und Kraftfahrzeug
DE102015012220A1 (de) Verfahren zum Detektieren von Leckagen
WO2007042388A1 (de) Verfahren zur diagnose eines absperrventils
EP3722652A1 (de) Speicherbehälter für tiefkaltes flüssiggas
EP3215742B1 (de) Verfahren und vorrichtung zum betreiben einer pumpe
EP1437578A1 (de) Verfahren zur kontinuierlichen messung eines dynamischen Fluidverbrauchs
AT3350U2 (de) Vorrichtung zur kontinuierlichen messung des dynamischen kraftstoffverbrauchs eines verbrauchers
DE102016203797A1 (de) Verfahren und System zur Druckminderung in einem Kraftfahrzeug
EP2539788B1 (de) Vorrichtung und verfahren zur füllstandsmessung
WO2021122107A1 (de) Druckbehältersystem und energieversorgungsanordnung
DE102012220292B4 (de) Verfahren zum Bestimmen der in einem Drucktank oder Kryodrucktank eines Kraftfahrzeugs verfügbaren Kraftstoff-Restmenge
DE102019132504A1 (de) Gasdrucksensor und Gasversorgungsanordnung
AT522357B1 (de) Messsystem zur Messung eines Massendurchflusses, einer Dichte, einer Temperatur und/oder einer Strömungsgeschwindigkeit
DE102018220684A1 (de) Druckmesseinrichtung und Füllstandsmesseinrichtung zum Messen eines Druckes bzw. eines Füllstands in einem Hochdrucktanksystem, insbesondere für ein Kraftfahrzeug
DE102007014325B4 (de) Verfahren und Vorrichtung zur Überwachung eines Drucksignals, insbesondere eines Raildrucksignals eines Common-Rails-Systems
DE102004005446A1 (de) Mit Brennstoff betreibbare Vorrichtung zur Wandlung von Energie, insbesondere Brennstoffzellenvorrichtung
DE102018209047A1 (de) Vorrichtung zur Temperaturdruckentlastung eines Brennstofftanks
DE202014102808U1 (de) Tankanordnung zur Füllstandmessung für kryogene Fluide
DE102014019030A1 (de) Kraftstoffzufuhrvorrichtung zum Versorgen einer Verbrennungseinrichtung und Verfahren zum Versorgen einer Verbrennungseinrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20820895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20820895

Country of ref document: EP

Kind code of ref document: A1