[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021112420A1 - 신규 폴리플루오렌계 중합체 이오노머, 음이온교환막 및 이의 제조방법 - Google Patents

신규 폴리플루오렌계 중합체 이오노머, 음이온교환막 및 이의 제조방법 Download PDF

Info

Publication number
WO2021112420A1
WO2021112420A1 PCT/KR2020/015649 KR2020015649W WO2021112420A1 WO 2021112420 A1 WO2021112420 A1 WO 2021112420A1 KR 2020015649 W KR2020015649 W KR 2020015649W WO 2021112420 A1 WO2021112420 A1 WO 2021112420A1
Authority
WO
WIPO (PCT)
Prior art keywords
anion exchange
membrane
ionomer
polymer
polyfluorene
Prior art date
Application number
PCT/KR2020/015649
Other languages
English (en)
French (fr)
Inventor
이영무
첸난준
왕호현
김순표
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200093640A external-priority patent/KR20210071810A/ko
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to CN202080092005.5A priority Critical patent/CN114929775B/zh
Priority to US17/782,548 priority patent/US20230038279A1/en
Publication of WO2021112420A1 publication Critical patent/WO2021112420A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • C08J5/2262Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3326Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms alkane-based
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/42Non-organometallic coupling reactions, e.g. Gilch-type or Wessling-Zimmermann type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a novel polyfluorene-based polymer ionomer, an anion exchange membrane, and a method for preparing the same, and more particularly, to an aromatic polyfluorene-based polymer ionomer in which a piperidinium group is introduced in a repeating unit without an aryl ether bond in the polymer backbone. It relates to a technology for synthesizing an anion exchange membrane and applying it to an alkaline fuel cell and a water electrolysis device.
  • PEMFCs polymer electrolyte membrane fuel cells
  • Nafion a perfluorocarbon-based proton exchange membrane, represented by Nafion
  • Nafion membrane has excellent chemical stability and high ionic conductivity, while the price is very high and the glass transition temperature is low, so research that can replace Nafion, including the development of an aromatic hydrocarbon-based polymer electrolyte membrane, is being actively conducted.
  • alkaline membrane fuel cell using an anion exchange membrane
  • alkaline membrane fuel cells can use inexpensive non-precious metals such as nickel and manganese as electrode catalysts instead of platinum. the current situation.
  • the polymer electrolyte imparts desirable properties of the aromatic polymer skeleton, such as high glass transition temperature, impact strength, toughness, thermal/chemical/mechanical stability, and low water content compared to polyolefin-based electrolytes.
  • the stability of the cation introduced into the aromatic polymer contributes to long-term durability.
  • the introduced cation tetraalkylammonium, benzyltrimethylammonium, piperididium, and the like are known.
  • an aromatic polyfluorene-based polymer ionomer having no aryl ether bond in the polymer backbone and having a piperidinium group in the repeating unit has not been synthesized yet, and the technology for applying it to membranes and binders for alkaline fuel cells or water electrolysis It is also not known specifically.
  • Patent Document 1 Korean Patent Application Laid-Open No. 10-2018-0121961
  • Patent Document 2 International Patent Publication WO 2019/068051
  • the present invention has been devised in view of the above problems, and a first object of the present invention is to provide a novel polyfluorene-based polymer ionomer having excellent thermal and chemical stability and mechanical properties and high ionic conductivity and a method for manufacturing the same will be.
  • a second object of the present invention is to prepare an anion exchange membrane from the novel polyfluorene-based polymer ionomer to apply it to a membrane and a binder for an alkaline fuel cell or a water electrolysis device.
  • the present invention for achieving the above object provides a polyfluorene-based polymer ionomer having a repeating unit represented by the following ⁇ Formula 1>.
  • the present invention also relates to (I) fluorene or 9,9'-dimethylfluorene and 1-methyl-4-piperidone, or fluorene or 9,9'-dimethylfluorene, 1-methyl-4-piperidone and 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone selected from compounds represented by the following structural formula as a comonomer dissolving in an organic solvent to form a solution;
  • the present invention provides an anion exchange membrane comprising the polyfluorene-based polymer ionomer.
  • the present invention comprises the steps of (a) dissolving the polyfluorene-based polymer ionomer in an organic solvent to form a polymer solution; (b) obtaining a film by casting and drying the polymer solution on a glass plate; and (c) treating the obtained membrane with 1M NaOH, 1M NaCl or 1M Na 2 CO 3 , and then washing and drying the obtained membrane with ultrapure water several times; provides a method for producing an anion exchange membrane comprising.
  • the present invention provides a binder for an alkaline fuel cell comprising the polyfluorene-based polymer ionomer.
  • the present invention provides a membrane electrode assembly for an alkaline fuel cell comprising the anion exchange membrane.
  • the present invention provides an alkaline fuel cell including the anion exchange membrane.
  • the present invention provides a water electrolysis device including the anion exchange membrane.
  • an anion exchange membrane prepared from an aromatic polyfluorene-based polymer ionomer in which a piperidinium group is introduced in a repeating unit without an aryl ether bond in the polymer backbone has excellent thermal and chemical stability and mechanical properties, and has high ionic conductivity. It can be applied to membranes and binders for alkaline fuel cells or water electrolysis.
  • Example 1 is a nuclear magnetic resonance ( 1 H NMR) spectrum of (a) PFTM and (b) PFTP prepared in Example 1 of the present invention.
  • Figure 2 is a nuclear magnetic resonance ( 1 H NMR) spectrum of the PFBM prepared in Example 2 of the present invention.
  • Example 3 is a nuclear magnetic resonance ( 1 H NMR) spectrum of PFBP prepared in Example 2 of the present invention.
  • Example 4 is a graph showing the water behavior of the PFTP membrane prepared in Example 5 of the present invention, the PFBP membrane and the PBP membrane prepared in Comparative Example 3, and the PTP membrane, (a) the moisture content of OH- form in water, (b) Expansion rate of OH ⁇ form in water, (c) moisture content of Cl ⁇ form in water, and (d) moisture adsorption of ionomers with OH ⁇ /CO 3 2-mix form at different relative humidity.
  • Example 5 is a graph showing the ion conductivity according to the temperature of the OH - and Cl - type anion exchange membrane prepared in Example 5 of the present invention (the real image in the graph is the state of the PFTP membrane after measurement at 98 ° C.) .
  • Example 6 is a graph showing the CO 3 2- conductivity according to the temperature of the PFTP membrane and the PFBP membrane prepared in Example 5 of the present invention.
  • DSC 7 is a differential scanning calorimetry (DSC) graph of the OH- form anion exchange membrane (a) PBP, (b) PFBP, (c) PTP and (d) PFTP prepared from Example 5 and Comparative Example 3 of the present invention; .
  • Example 8 is an anion exchange membrane measured by varying (a) tensile strength and elongation at break measured at room temperature, (b) temperature and anion type of the I- type anion exchange membrane prepared from Example 5 and Comparative Example 3 of the present invention; A graph showing the tensile strength and elongation at break of
  • thermogravimetric analysis (TGA) graph of various polymer ionomers prepared from Examples 1 to 3 and Comparative Examples 1 and 2 of the present invention (measured from 30° C. to 800° C. at a temperature increase rate of 10° C./min in a nitrogen atmosphere; All samples were held isothermal for 5 min at 150°C to remove solvent and water before data recording).
  • TGA thermogravimetric analysis
  • DMA 10 is a dynamic mechanical analysis (DMA) graph of PFTM, PFBM, PTM and PBP according to Examples 1 and 2 and Comparative Examples 1 and 2 of the present invention.
  • DMA dynamic mechanical analysis
  • SEM scanning electron microscope
  • AFM Atomic force microscopy
  • TEM 12 is a transmission electron microscope (TEM) image of (a) PFTP, (b) PFP, (c) PFPN ionomer (I -form) prepared from Examples 1, 3 and 4 of the present invention.
  • FIG. 13 is a graph showing the performance of the fuel cell according to the type of anion exchange ionomer based on the TKK Pt/C catalyst (0.33 mg/cm 2 ) in the H 2 /O 2 condition (A/C flow rate: 1000/1000 mL /min), (a) PFTP membrane (25 ⁇ 3 ⁇ m) at 65 o C (A/C dew points: 61/65 o C without backpressure); (b) PFTP membrane (25 ⁇ 3 ⁇ m) at 80 o C (A/C dew points: 66.5/80 o C and 2.0/1.1 bar A/C backpressure); (c) Commercial membrane FAA-3-20 (20 ⁇ 2 ⁇ m) at 65 o C (A/C dew points: 63/65 o C, 1.1/1.1 bar backpressure).
  • FIG. 14 is a graph comparing fuel cell performance between PFTP membrane and PTP membrane (thickness 25 ⁇ 3 ⁇ m), PFBP and PBP ionomer based on TKK Pt/C catalyst (without backpressure);
  • RH relative humidity
  • PPD peak power density
  • Figure 16 is a detailed I-V curve showing the effect of relative humidity (RH) on the peak power density (PPD) of Figure 13 (a) by forward and reverse scanning.
  • 17 is a graph showing the relationship between intrinsic viscosity and PPD according to the ratio of fluorene in the PFBP ionomer prepared in Example 2 under the same conditions (A/C catalyst: Hispec Pt/C with 0.33 mg/cm 2 loading, flow rate: 1000/1000 mL/min, dew point: 73.5/80 o C, empty red marks are PPD without back pressure, filled red marks are PPD at 1.3/1.3 bar back pressure)
  • Figure 18 shows (a) the effect of the catalyst on the PPD under no backpressure condition, (b) the effect of the catalyst on the power density at the 1.3/1.3 bar backpressure condition of the cathode and the anode, respectively, (c) Pt-Ru/C content (d) Graph showing the effect of flow rate on power density in PFTP film and PFBP ionomer.
  • 20 is a graph showing the effect of backpressure on fuel cell performance when based on a TKK Pt/C catalyst with a relative humidity of 50%/100% (anode/cathode) at 80°C.
  • anode catalyst Hisepc Pt/C
  • A/C flow rate 1000/ according to the type of anode catalyst (Hispec Pt-Ru/C or Pt/C) under 80 o C, H 2 -air conditions; 2000 mL/min, A/C backpressure: 1.3/1.3 bar, A/C catalyst content: 0.42 mg/cm 2 ).
  • Example 22 shows the alkali stability of the PFTP membrane prepared from Example 5 according to alkaline conditions (a) the residual amount of PFTP cations according to alkaline conditions measured by 1 H NMR, (b) the half-life of PFTP at 80 o C, 1M and 5M NaOH predicted graph.
  • Example 23 is a 1 H NMR spectrum and a real image of the PFTP film prepared in Example 5, which was subjected to alkali treatment at 80° C. and 1M NaOH for 2000 hours.
  • Example 24 is a 1 H NMR spectrum and a real image of the PFTP film prepared in Example 5, which was subjected to alkali treatment at 80 ° C, 5 M NaOH for 1500 hours.
  • Example 25 is a 1 H NMR spectrum and a real image of the PFTP film prepared in Example 5, which was subjected to alkali treatment at 80 ° C and 10 M NaOH for 2000 hours.
  • Figure 26 is a PFTP Cl film produced from the Example 5 by alkaline conditions according to immersion time at 80 o C - graph showing a change in conductivity.
  • FIG. 27 is a graph showing (a) the mechanical properties of the hydrated state of the PFTP membrane (OH- form) prepared from Example 5, and (b) the thermal stability of the PFTP membrane immersed in 80 o C, 10M NaOH for 168 hours.
  • 29 is a graph showing the in-situ durability (0.2 A/cm 2 , 60 o C, flow rate 200/200 mL/min, without backpressure.) of a commercially available FAA-2-30-based membrane electrode assembly.
  • FIG. 30 shows (a) 0.2 A/cm 2 , in-situ durability of a battery in which IV measurement was performed for 1 hour at 70 o C, (b) 0 to 5 A/cm at a scan rate of 0.1 A/cm 2 at 80 o C; 1 H NMR spectrum of the PFTP-based membrane electrode assembly after IV measurement to cm 2 for 1 hour (the cell was then measured at 0.2 A/cm 2 at 60 o C for 120 hours to examine in-situ durability).
  • the present invention provides a polyfluorene-based polymer ionomer having a repeating unit represented by the following ⁇ Formula 1>.
  • A, B, C and D segments are each independently selected from compounds represented by the following structural formula, and may be the same or different,
  • a novel polyfluorene-based polymer ionomer is prepared.
  • the fluorene-based polymer tends to have relatively poor film-forming ability and mechanical properties
  • various types of rotatable within the polymer skeleton are By forming a phenyl-based block, film-forming ability and mechanical properties can be greatly improved.
  • the phenyl-based block various selections are possible from phenyl, biphenyl, terphenyl, or quarterphenyl defined in Formula 1 above.
  • polyfluorene-based polymer ionomer defined in Formula 1 has no aryl ether bond in the polymer backbone and introduces a piperidinium group in the repeating unit, so it is very stable and exhibits excellent ionic conductivity even in alkaline media.
  • the present invention also relates to (I) fluorene or 9,9'-dimethylfluorene and 1-methyl-4-piperidone, or fluorene or 9,9'-dimethylfluorene, 1-methyl-4-piperidone and 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone selected from compounds represented by the following structural formula as a comonomer dissolving in an organic solvent to form a solution;
  • fluorene or 9,9'-dimethylfluorene and 1-methyl-4-piperidone may be reacted as a monomer, or fluorene or 9,9'-dimethyl flu Orene may be reacted with 1-methyl-4-piperidone and a compound represented by the above structural formula as a comonomer, or 1,1,1,2,2,4,5,5,5 as a comonomer
  • the reaction can also be carried out using -nonafluoro-4-(trifluoromethyl)-3-pentanone.
  • a polyfluorene-based polymer ionomer in which a quaternary piperidinium salt is formed is prepared by reacting a polyfluorene-based polymer having various segments composed of the compound defined in the above structural formula, including the fluorene-based segment, with halomethane. can do.
  • the organic solvent in step (I) may be at least one selected from the group consisting of dichloromethane, chloroform, dichloroethane, dibromomethane and tetrachloroethane as a halogen-based solvent, and dichloromethane is preferably used. .
  • the strong acid catalyst of step (II) is trifluoroacetic acid, trifluoromethanesulfonic acid, pentafluoroethanesulfonic acid, heptafluoro-1-propanesulfonic acid, perfluoropropionic acid, heptafluorobutyric acid, or their It may be a mixture, and a mixture of trifluoroacetic acid/trifluoromethanesulfonic acid is preferably used.
  • organic solvent in step (IV) a mixture of N-methylpyrrolidone, dimethylacetamide, dimethylsulfoxide or dimethylformamide and trifluoroacetic acid as a cosolvent may be preferably used.
  • step (IV) the polymer is reacted with halomethane to form a quaternary piperidinium salt, wherein the halomethane may be fluoromethane, chloromethane, bromomethane or iodomethane, and iodomethane. Domethane is preferably used.
  • the present invention provides an anion exchange membrane comprising the polyfluorene-based polymer ionomer.
  • the present invention comprises the steps of (a) dissolving the above-described polyfluorene-based polymer ionomer in an organic solvent to form a polymer solution; (b) obtaining a film by casting and drying the polymer solution on a glass plate; and (c) treating the obtained membrane with 1M NaOH, 1M NaCl or 1M Na 2 CO 3 , and then washing and drying the obtained membrane with ultrapure water several times; provides a method for producing an anion exchange membrane comprising.
  • the organic solvent of step (a) may be N-methylpyrrolidone, dimethylacetamide, dimethylsulfoxide or dimethylformamide.
  • the concentration of the polymer solution is preferably 2 to 5% by weight, more preferably the concentration is 3.0 to 3.5% by weight. If the concentration of the polymer solution is less than 2% by weight, the film-forming ability may be deteriorated, and if it exceeds 5% by weight, the viscosity may become too high and the physical properties of the film after film formation may be deteriorated.
  • step (b) the organic solvent is gradually removed in an oven at 80-90° C. for 24 hours, and then the organic solvent is completely removed by heating in a vacuum oven at 120-150° C. for 24 hours.
  • the halide form of the polyfluorene-based polymer ionomer (I - form) etc.) can be prepared as an anion exchange membrane in which OH - , Cl - or CO 3 2- is converted.
  • the present invention provides a binder for an alkaline fuel cell comprising the polyfluorene-based polymer ionomer.
  • the present invention provides a membrane electrode assembly for an alkaline fuel cell comprising the anion exchange membrane.
  • the present invention provides an alkaline fuel cell including the anion exchange membrane.
  • the present invention provides a water electrolysis device including the anion exchange membrane.
  • 9,9'-dimethylfluorene (0.2914 g, 1.5 mmol) as a monomer
  • terphenyl (3.105 g, 13.5 mmol) as a comonomer
  • 1-methyl-4-piperidone (1.919 mL, 16.5 mmol, 1.1 eq) was added to a two-neck flask
  • dichloromethane 13 mL was added thereto, and the monomers were dissolved while stirring to form a solution.
  • PFBP poly(fluorene-co-biphenyl N, N-dimethylpiperidinium) copolymer ionomer
  • poly(fluorene N,N-dimethylpiperidinium) was obtained in the same manner as in Example 1, except that the prepared PFM (2 g) was dissolved in dimethyl sulfoxide (20 mL) to obtain a polymer solution.
  • a polymer ionomer was prepared (yield 80%), which was named PFP.
  • PFTP (0.9 g) prepared in Example 1 was dissolved in dimethyl sulfoxide to form a polymer solution having a concentration of 3.2 to 3.3 wt%. Then, the polymer solution was collected with a syringe, filtered through a 0.4 ⁇ m filter, and the transparent solution was cast on a 14 x 21 cm glass plate. The casting solution was dried in an oven at 85° C. for 24 hours to slowly remove the solvent, and then heated in a vacuum oven at 150° C. for 24 hours to completely remove the solvent, thereby obtaining a PFTP membrane (I - form, 20 ⁇ 5 ⁇ m).
  • PFBP, PFP, and PFPN anion exchange membranes were respectively prepared by forming a film in the same manner as described above using the PFBP, PFP, and PFPN polymer ionomers prepared from the remaining Examples 2 to 4.
  • poly (biphenyl N, N-dimethylpiperidinium) was prepared in a manner similar to Example 2 (yield greater than 90%), which was referred to as PBP. named.
  • Poly(terphenyl N, N-dimethylpiperidinium) was prepared in a manner similar to Example 1 by reacting terphenyl and 1-methyl-4-piperidone as monomers (yield greater than 90%), which is referred to as PTP. named.
  • the chemical structure of the polymer ionomer was analyzed by 1 H NMR (VNMRS 600 MHz, Varian, CA, USA). As a solvent for all ionomers, d 6 -DMSO was used (standard chemical shift was 2.5 ppm). 10% TFA was added to all NMR samples to remove the water peak (3.34 ppm) with a high chemical shift (>12 ppm).
  • IEC Ion exchange performance
  • WU moisture content
  • SR expansion coefficient
  • ionic conductivity
  • the ion exchange capacity of the polymer was calculated by H 1 NMR and was calculated by comparing the relative integral widths between the protons of the aromatic and methyl groups.
  • the moisture content (WU) and expansion rate (SR) of the membrane were measured in the form of OH - and Cl -. After ion exchange, a specific type of membrane was washed several times with ultrapure water, and then the hydrated membrane was quickly wiped with filter paper to remove water on the surface.
  • the weight (m wet ) and unidirectional length (L wet ) of the hydrated membrane were recorded, and then covered with filter paper to prevent shrinkage of the membrane and dried in a vacuum oven to maintain a constant weight.
  • the dry weight (m dry ) and length (L dry ) of the membrane were then immediately recorded.
  • In-plane and through-plane expansion rates (SR) were measured.
  • the moisture content (WU) and expansion rate (SR) are calculated according to the following equations.
  • the hydration number ( ⁇ ) representing the number of water molecules per sugar is calculated by the following formula.
  • a universal tester (UTM, AGS-J 500N, Shimadzu, Japan) was used to measure the mechanical properties of the membrane sample.
  • the tensile strength (TS) and elongation at break (EB) of the halogen-type PFBP membrane, PBP membrane, PFTP membrane, PTP membrane, and commercial membrane FAA-3-20 were measured in the dry state. All membrane samples were cut into dumbbell shapes (2 ⁇ 10 mm), and the stretching speed was set to 1 mm/min. The thickness of the film was measured with a micrometer caliper.
  • the mechanical properties of different types of PFTP membrane and PTP membrane were investigated at different temperatures.
  • the TS and EB of the PFTP membrane were investigated for the first time after the in-situ stability test.
  • the thermal stability of the polymer ionomer was measured by thermogravimetric analysis (TGA, Q500, TA Instrument, USA) coupled with a mass spectrometer (MS, ThermoStarTM GSD 301T, Pfeiffer Vacuum GmbH, Germany). Measurements were made from 30°C to 800°C in a nitrogen gas atmosphere at a temperature increase rate of 10°C/min. Mass spectroscopy (MS) was used to detect the pyrolysis material released after the polymer ionomer is pyrolyzed at a specific temperature.
  • TGA thermogravimetric analysis
  • MS mass spectrometer
  • N free (H f /H ice )/(M wet - M dry )/M wet x ⁇ (6)
  • H f is the enthalpy obtained by integrating the freezing peak calculated by the DSC program
  • H ice is the water melting enthalpy
  • M wet and M dry are the wet and dry mass of the membrane sample, respectively
  • H ice H° ice - ⁇ C p ⁇ T f (7)
  • the glass transition temperature (T g ), storage modulus (SM), and loss modulus (LM) of the polymer ionomer were measured using a dynamic mechanical analyzer (DMA, Q800, TA Instrument, DE, USA). Specifically, all membrane samples were cut into 0.9 ⁇ 2 cm shapes and fixed in tension clamps of the DMA system. The DMA test was set in a 1Hz short-frequency strain mode, a preload force of 0.01 N, and a force track of 125% in nitrogen gas. The target temperature was fixed at 450°C and heated at a temperature increase rate of 10°C/min.
  • DMA dynamic mechanical analyzer
  • the intrinsic viscosity ([ ⁇ ]) of the anion exchange polymer was measured by a viscometer at 25° C. using DMSO solvent.
  • the polymer solution was gradually diluted to 5 different concentrations and the efflux time was automatically recorded in 5 replicates.
  • the converted viscosity ( ⁇ red ), intrinsic viscosity ( ⁇ inh ) and intrinsic viscosity were calculated by the following formulas.
  • t 1 is the outflow time of the polymer solution
  • t 0 is the outflow time of the DMSO solution
  • c is the concentration of the polymer solution
  • the y-intercept was obtained by extrapolating ⁇ red and ⁇ inh to zero.
  • the intrinsic viscosity was calculated from the average value of the obtained y-intercept.
  • the molecular weight of the anion exchange polymer was measured by gel permeation chromatography (GPC, YL9112 Isocratic Pump, YL9130 Column Compartment, YL9170 RI Detector). NMP was used as a fluidized bed and a solvent, and the concentration of the polymer solution was 1 to 2 mg/mL. The polymer chain was dissociated using 5% LiBr as a cosolvent. The polymer solution was filtered before injection into the GPC system.
  • the surface and cross-sectional morphologies of the anion exchange membrane and the membrane electrode assembly were observed using a scanning electron microscope (SEM, FE-SEM S-4800, Hitachi, Japan) at 15 kV.
  • SEM scanning electron microscope
  • FE-SEM S-4800 Hitachi, Japan
  • the membrane and membrane electrode assembly samples were cut with liquid nitrogen, and all samples were coated with a thin platinum layer using ion sputtering (E-1045, Hitachi).
  • the microphase separation of the anion exchange membrane was observed using an atomic force microscope (AFM) with MultiMode 8 AFM (Veeco) equipped with a NanoScope V controller.
  • AFM atomic force microscope
  • Veeco MultiMode 8 AFM
  • the anion exchange membrane As the anion exchange membrane, the PFTP membrane prepared in Example 5 of the present invention, the PTP membrane prepared in Comparative Example 3, and a commercial FAA-2-30 membrane were adopted.
  • the anion exchange ionomer PFTP prepared from Example 1 of the present invention, PBP prepared from Comparative Example 1, PTP prepared from Comparative Example 2, PFP prepared from Example 3, PFPN prepared from Example 4, commercial FuMA -Tech Fumion ionomer was used.
  • Pt/C (Tanaka Kikdfinzoku Kogyo-TKK, 46.6 wt % Pt/C), Pt/C (Johnson Matthey HiSpec 4000, 40 wt % Pt/C), Pt-Ru/C (Johnson Matthey HiSpec 10000, 40 wt % Pt, 20 wt. % Ru) was used as catalyst.
  • An anion exchange ionomer was dissolved in DMSO to prepare a 5% polymer solution, and then the polymer solution was filtered through a 0.45 ⁇ m PTFE filter.
  • a catalyst slurry was prepared by adding a 5% AEI/DMSO solution and a catalyst to IPA/DI water (10/1), and then the slurry was sonicated for 1 hour. Then, catalyst coating membranes (CCMs) were generated by spraying on both sides of the anion exchange membrane with an airbrush. After that, CCM manufactured a complete anion exchange membrane fuel cell by assembling two gas diffusion layers, a fluorinated ethylene propylene gasket, and a graphite anode plate with a 5 cm2 flow path.
  • CCMs catalyst coating membranes
  • the anion exchange membrane fuel cell performance was measured using a fuel cell test station (CNL, Seoul, Korea). After the cell was paused, the current was scanned at a scan rate of 0.1A to record a polarization curve and a power density curve. The fuel cell performance was tested under various conditions such as temperature, relative humidity (RH), backpressure, flow rate, and supply gas.
  • RH relative humidity
  • the ex-situ durability of the PFTP membrane was measured with 1M, 5M, and 10M NaOH at 80°C for 2000 hours.
  • the degradation rate of PFTP was calculated by the chemical structure change detected by 1 H NMR and Cl-conductivity at room temperature.
  • changes in mechanical properties and thermal stability after alkali treatment at 80 °C for 168 hours in 10M NaOH were also investigated, and the in-situ durability showed different current densities (0.2 A) at 80 °C under H 2 -O 2 conditions after cells were rested. /cm 2 , 0.4 A/cm 2 ) was measured.
  • the dew points and flow rates of the anode and cathode were slightly adjusted.
  • the in-situ durability was measured twice repeatedly at different current densities.
  • the CCM Catalyst Coated Membrane
  • the mechanical property test was used for the mechanical property test and 1 H NMR analysis.
  • CCM was digested with d 6 -DMSO and carefully filtered before 1 H NMR testing.
  • Solubility of various types of polymers has been carefully tested using general purpose solvents as they are related to GPC testing and film forming.
  • solubility of the ionomer in IPA/water was studied to provide clear information on the fabrication of the membrane electrode assembly.
  • the solubility of all polymers appeared to be very different before and after quaternization.
  • PFBM, PFTM, PBM and PTM showed very poor solubility in DMSO due to low polymer polarity and ⁇ - ⁇ stacking of polymer chains.
  • the solubility of PFBT, PFTP, PBP and PTP was greatly improved due to the increased polymer polarity after quaternization or acidification.
  • the intrinsic viscosity of the ionomer was investigated using a DMSO solvent at 25 °C.
  • PTP, PBP, PFTP and PFBP ionomers exhibited high intrinsic viscosities of 2 dL/g or more.
  • M w weight average molecular weight of the polyimide
  • the intrinsic viscosity of the polyimide having excellent film-forming ability and mechanical properties is generally lower than 2 dL/g.
  • the intrinsic viscosity of the polyfluorene-based copolymer decreases as the fluorene ratio increases, thereby limiting the film-forming ability.
  • FIG. 1 shows nuclear magnetic resonance ( 1 H NMR) spectra of (a) PFTM and (b) PFTP prepared in Example 1 of the present invention
  • FIG. 2 shows the PFBM prepared in Example 2 of the present invention
  • FIG. 3 shows a nuclear magnetic resonance ( 1 H NMR) spectrum of the PFBP prepared in Example 2 of the present invention.
  • Table 1 shows the ion exchange performance (IEC), moisture content (WU), expansion rate (SR), and hydration number ( ⁇ ) of Fumion and FAA-20 as anion exchange membranes and commercial membranes prepared from Example 5 and Comparative Example 3 of the present invention. ), OH - ionic conductivity ( ⁇ ) and intrinsic viscosity ( ⁇ ) are shown.
  • the anion exchange membranes with different ion exchange performance values show very different moisture content at elevated temperatures in liquid water.
  • PFTP and PTP membranes exhibited very low moisture content ( ⁇ 60% in OH- form and ⁇ 20% in Cl- form) and swelling ( ⁇ 10% in OH- form and ⁇ 5% in Cl-form) at 80°C.
  • PFBP and PBP membranes have much higher water content (450-500% in OH- form and 230-250% in Cl - form) and expansion rate at 80°C due to their higher ion exchange performance values (>3 mmol/g). (OH - form 120-135% and Cl - form 45-50%).
  • the PFTP and PFBP membranes having higher ion exchange performance values show lower water content and expansion rate compared to the PTP and PBP membranes, respectively, due to the stiffness of the fluorene group.
  • the polyfluorene-based anion exchange copolymer exhibits higher ionic conductivity and dimensional stability.
  • the ionic conductivity of the membrane was measured in the form of Cl - , OH - and CO 3 2- in the fully hydrated state.
  • all membranes with high ion exchange performance values ( >2.7 mmol/g in OH- form) were at 80°C and 120 mS/cm or higher, exceeding the benchmark of Nafion membranes in polymer electrolyte membrane fuel cells (PEMFCs). It exhibits very high OH - conductivity.
  • PEMFCs polymer electrolyte membrane fuel cells
  • PFTP membrane has excellent ionic conductivity of 208 mS/cm and 77 mS/cm at 98° C., OH ⁇ and Cl ⁇ forms, respectively. looks like The PTP film shows a high OH- conductivity of over 150 mS/cm at high temperature.
  • the PFBP membrane also exhibits higher ionic conductivity than PBP, despite a slightly lower IEC.
  • polyfluorene-based copolymers have significantly higher conductivity than terphenyl or biphenyl-based polymers (PFTP vs. PTP, PFBP vs. PBP).
  • a suitable fluorene segment bonded to the polyarylpyreridinium (PAP) backbone is very effective in improving ionic conductivity because it optimizes fine phase separation.
  • the CO 3 2- conductivity reflects the ion conduction capacity of the anion exchange membrane and the anion exchange ionomer after carbonation, the fuel cell shows significant ionic conductivity and voltage loss. Accordingly, as shown in FIG. 6 , the CO 3 2- conductivity of the PFTP and PFBP films at high temperature is 65 mS/cm or more. This means that even if the anion exchange membrane or the anion exchange ionomer deteriorates due to carbonation of the fuel cell, it still has very high ionic conductivity.
  • Table 2 shows the PFTM membrane according to Example 1 of the present invention, the PFTP membrane prepared from Example 5 (I - form), the PFTP membrane (OH - from), and the PTP membrane prepared from Comparative Example 3 (I - form). ), PTP membrane (OH - from), PFBP membrane prepared from Example 5 ((I - form), PBP membrane prepared from Comparative Example 3 ((I - form), and commercial anion exchange membrane FAA-2-30 Strength (TS), elongation at break (EB), Young's modulus (YM), glass transition temperature (T g ), and storage modulus (SM, 80 °C) were shown.
  • TS elongation at break
  • YM Young's modulus
  • T g glass transition temperature
  • SM storage modulus
  • PFTP and PTP films exhibit excellent tensile strength (TS) and elongation at break (EB) among the films.
  • TS and Young's modulus (YM) of the PFTP film reach 84.6 MPa and 1.58 GPA at room temperature. Comparing the PTP film (TS: 71 MPa, EB: 45.7%, YM: 1.2 GPA), it can be seen that the PFTP film has high TS and YM, but also has low deformation resistance due to low EB due to the stiffness of the fluorene segment.
  • PFTP (2.73 dL/g) and PTP (4.775 dL/g) films with high intrinsic viscosity have excellent mechanical properties.
  • TS and EB of the PFTP membrane are very similar to commercial polyimide membranes (TS: ⁇ 90 MPa, EB: 30%), which are in the spotlight for gas separation, indicating that the PFTP membrane is mechanically robust in the use of an anion exchange membrane.
  • TS Peng's QAPPT membrane
  • synthesized PTP TS: 52 MPa, EB: 71%, OH - form
  • the QAPPT membrane was It showed much lower TS (35 MPa) and EB (40%).
  • PFTM before quaternization reaction showed similar TS (83.2 MPa) and lower EB (10.3%) compared to PFTP, but YM (2.25 GPA) was much higher.
  • the EB of PFTP is significantly increased after the quaternization reaction.
  • the anion exchange membranes of different ion types have a great influence on the mechanical properties.
  • OH - type PFTP and PTP membranes have lower TS but much higher EB, because hydration reduces the ⁇ - ⁇ stacking of polymer chains but increases the interaction between ammonium groups and water.
  • the mechanical properties of the PFTP membrane were also investigated at 60 o C.
  • the TS and EB of the PFTP membrane were not significantly changed at 60 o C, which corresponds to the dimensional stability, suggesting that the PFTP membrane has strong thermal resistance and good deformation resistance for fuel cell applications. Meanwhile, the thermal behavior of the anion exchange polymer was systematically and comprehensively investigated by thermogravimetric-mass spectrometry (TGA-MS) and dynamic mechanical analysis (DMA).
  • TGA-MS thermogravimetric-mass spectrometry
  • DMA dynamic mechanical analysis
  • thermogravimetric analysis (TGA) graph of various polymer ionomers prepared from Examples 1 to 3 and Comparative Examples 1 and 2 of the present invention (measured from 30° C. to 800° C. at a temperature increase rate of 10° C./min in a nitrogen atmosphere; All samples were isothermal at 150° C. for 5 minutes to remove solvent and water before data recording).
  • the decomposition temperature of the anion exchange ionomer is 200° C. or higher, which is sufficient to be applied to an anion exchange membrane fuel cell operating at 100° C. or less.
  • the first weight loss step between 200 and 350 °C corresponds to the decomposition of the ammonium group, and the weight loss above 400 °C corresponds to the decomposition of the polymer backbone.
  • FIG. 10 shows graphs of dynamic mechanical analysis (DMA) of PFTM, PFBM, PTM and PBP according to Examples 1 and 2 and Comparative Examples 1 and 2 of the present invention.
  • DMA dynamic mechanical analysis
  • FIGS. 11(c) to 11(f) atomic force microscope (AFM) images of (c) PBP, (d) PFBP, (e) PTP, (f) PFTP film (OH - form) in a hydrated state are shown. indicated. The bright regions belong to the hydrophobic phase generated by the rigid polymer backbone, and the dark regions indicate the hydrophilic phase aggregated by piperidinium and water.
  • the micro-phase separation was greatly enhanced compared to the micro-phase separation between PBP-to-PFBP and PTP-to-PFTP.
  • the PFTP membrane (see Fig. 11(e)) exhibited the maximum hydrophobic/hydrophilic phase separation along the distinct and continuous ion channels, and the size of the ion channels was 20 to 25 nm. This is the reason why the PFTP anion exchange membrane exhibits remarkably high ionic conductivity.
  • TEM 12 shows transmission electron microscope (TEM) images of (a) PFTP, (b) PFP, and (c) PFPN ionomers (I -form) prepared in Examples 1, 3 and 4 of the present invention. Similar to the atomic force microscope image, dark areas are defined as hydrophilic phases and bright areas are defined as hydrophobic phases. PFP and PFPN have enhanced micro-phase separation compared to PFTP. However, the PFP and PFPN ionomers exhibit very limited molecular weight, and thus extremely impair fuel cell performance.
  • anion exchange membranes require excellent mechanical properties and low water content (WU) along with excellent dimensional stability and gas barrier properties.
  • Anion exchange ionomers have good solubility (or dispersibility), low adsorption effect on catalysts, and good water permeability. requires
  • the type of anion exchange ionomer, type of anion exchange membrane, type of catalyst, backpressrue, relative humidity (RH), flow rate, and the effect of the supply gas on the fuel cell are systematically investigated and the application of the anion exchange membrane fuel cell Possibility was considered. All fuel cell data were tested at least three times to ensure repeatability.
  • anion exchange polymers Based on solubility measurements, most anion exchange polymers have good solubility in IPA/DI water, indicating that all anion exchange polymers have the potential to be used as anion exchange ionomers.
  • Commercial FAA-2-30 membranes and Fumion ionomers were used for comparison.
  • PFBP 1.42 W/cm 2
  • the PPD of PFTP and PTP ionomers could not be further improved even at high temperature (80 o C) at 50% anode RH due to severe dry-out in the high current density anode.
  • PFBP and PFTP ionomers are superior to other ionomers and show similar PPDs based on commercial FAA-3-20 membranes at 100%RH (see Fig. 13(c)).
  • using a low water content anion exchange ionomer or operating the fuel cell at low RH contributes to solving the anode flooding problem.
  • PFTP can be a very efficient ionomer for anion exchange membrane fuel cells operating at high RH due to its high ionic conductivity, low water content (WU) and phenyl adsorption effect.
  • the PFBP ionomer shows a higher PPD than the PFTP ionomer at high anode RH, because the phenyl adsorption effect is low and the water permeability is high, which contributes to the rapid water diffusion from the anode to the cathode at high current density.
  • an anion exchange ionomer with a low WU actually contributes to solving the cathodic flooding problem when operating at high RH.
  • anion exchange ionomers with low WU have practically limited water permeability and tend to dry out at low RH even at the cathode.
  • PFP and PFPN ionomers with low phenyl adsorption effect were expected to show good fuel cell performance, but showed poor PPD based on PFTP and FAA-2-30 anion exchange membrane (0.3 ⁇ 0.7 W/cm 2 ).
  • the molecular weight was very low during the preparation of the membrane electrode assembly, and the catalyst layer was found to be severely peeled off.
  • the PTP ionomer with very high intrinsic viscosity (4.775 dL/g) has limited solubility and power density.
  • the anion exchange ionomer needs an appropriate molecular weight to very well immobilize the catalyst with the anion exchange membrane, but good solubility is required to construct an effective three-phase interface (TPB). That is, the PFBP ionomer with low phenyl adsorption effect and high ionic conductivity and water vapor permeability has outstanding fuel cell performance at different RHs, so it can be a suitable candidate for anion exchange ionomer application.
  • the fuel cell performance between different anion exchange membranes using the optimized PFBP ionomer in both the anode and the cathode was compared as shown in FIGS. 13(d) and 14 .
  • the PFTP anion exchange membrane showed higher PPD than the PTP and commercial FAA-2-30 membranes in all cases.
  • the PPD of the FAA-2-30 membrane-based membrane electrode assembly cannot be further improved at 80°C due to the severe decomposition of the separator.
  • the PTP membrane showed similar power density to the PFTP membrane without backpressure, the performance did not improve dramatically with backpressure.
  • the PFBP ionomer has good compatibility with commercial FAA-3-20 membranes as well as PFTP-based anion exchange membranes.
  • RH has a significant effect on the power density, especially at the anode.
  • 15 is a graph showing the effect of relative humidity (RH) on peak power density (PPD) when based on a TKK Pt/C catalyst with a film thickness of 25 to 30 ⁇ m, (a) a cathode of 100% relative humidity (b) the relative humidity effect of the positive electrode having a positive electrode having a relative humidity of 50%, and the relative humidity effect of the negative electrode having the positive electrode having a relative humidity of 50%.
  • FIG. 16 shows the effect of relative humidity (RH) on the peak power density (PPD) of FIG. 15(a) by forward and reverse scanning as detailed I-V curves.
  • FIG. 17 graphically shows the relationship between intrinsic viscosity and PPD according to the ratio of fluorene in the PFBP ionomer prepared in Example 2 under the same conditions (A/C catalyst: Hisspec Pt/C with 0.33 mg/cm 2 ) loading, flow rate: 1000/1000 mL/min, dew point: 73.5/80 o C, empty red marks are PPDs without back pressure, filled red marks are PPDs at 1.3/1.3 bar back pressure).
  • A/C catalyst Hisspec Pt/C with 0.33 mg/cm 2
  • flow rate 1000/1000 mL/min
  • dew point 73.5/80 o C
  • empty red marks are PPDs without back pressure
  • filled red marks are PPDs at 1.3/1.3 bar back pressure
  • the fluorene ratio of 10-20% was 1.21 W/cm 2 without backpressure at 80°C and 1.64 W/cm 2 with backpressure, showing the highest PPD.
  • the intrinsic viscosity of the anion exchange ionomer is 1 dL/g or less, a phenomenon in which the catalyst layer is peeled off is found and the PPD decrease is severe.
  • 30% of fluorene in the PFBP anion exchange ionomer shows a very high PPD even though a part of the catalyst layer is peeled off.
  • anion exchange membrane fuel cells have made great strides in PPD, but most high-performance fuel cells are based on rather unrealistic conditions such as high feed gas flow rate, backpressure, and pure O 2 use. Therefore, the effects of catalyst type, backpressure, flow rate, and supply gas on fuel cell performance were systematically investigated under the optimized cathode RH condition.
  • Backpressure has a great effect on power density, and many researchers have realized high PPD by applying backpressure of 250 kPa or more.
  • the backpressure is similar to that of the PAP-TP-85 membrane, which has been reported in the present invention to improve the performance of PPD by 30% to 100%. Details of the TKK Pt/C-based backpressure effect can be found in FIG. 19 . Only an anion exchange membrane that is physically robust and has proven gas permeability is suitable for applying high-pressure backpressure during the performance measurement of the membrane electrode assembly, otherwise it may pose a great risk at high feed gas flow rates during fuel cell measurement.
  • FIG. 18 shows (a) the effect of the catalyst on the PPD under no backpressure condition, (b) the effect of the catalyst on the power density under the 1.3/1.3 bar backpressure condition of the cathode and the anode, respectively, (c) Pt-Ru/C content (d)
  • the effect of flow rate on power density in the PFTP film and PFBP ionomer is shown as a graph.
  • FIG. 18(a) three types of fuel cells were designed by examining the effect of catalyst types on fuel cell performance. (1) Tanaka TKK Pt/C for both anode and cathode, (2) Hispec Pt/C for both anode and cathode, (3) Hispec Pt-Ru/C for cathode and Hispec Pt/C for anode.
  • Pt-Ru/C, Hisspec Pt/C, and TKK Pt/C-based fuel cells reach PPDs of 1.42 W/cm 2 , 1.21 W/cm 2 , and 0.91 W/cm 2 , respectively, at 80° C. without backpressure. It was confirmed that the Pt-Ru/C catalyst is actually better than the Pt/C catalyst and the power density is improved by about 20%. Hisspec Pt/C showed about 30% PPD improvement compared to TKK Pt/C.
  • the PPD of the cell was dramatically improved by backpressure.
  • the PPD of the Pt-Ru/C-based cell can easily exceed 2 W/cm 2 (see FIG. 18(b) ), which is a 43% improved PPD compared to the case without backpressure.
  • TKK Pt/C showed significant PPD improvement (40% ⁇ 92%) with backpressure, and the PPD range of TKK Pt/C was 1.2 ⁇ 1.71 W/cm 2 (see FIG. 20 ).
  • the PPD did not improve as much as expected due to an unknown performance loss (about approx. 33% PPD improvement).
  • the PPD reached 2.34 W/cm 2 at 80° C. with a reasonable backpressure (1.3/1.3 bar) (see FIG. 18(c) ).
  • FIG. 21 shows the fuel cell performance (anode catalyst: Hisepc Pt/C, A/C flow rate: 1000/ according to the type of anode catalyst (Hispec Pt-Ru/C or Pt/C) under 80 o C, H 2 -air conditions. 2000 mL/min, A/C backpressure: 1.3/1.3 bar, A/C catalyst content: 0.42 mg/cm 2 ) were graphically shown.
  • the optimized cell supplied with H 2 /air reached PPD of 1.25 W/cm 2 based on Pt-Ru/C and 1 W/cm 2 of 1 W/cm 2 based on Hispec Pt/C at 80° C. as shown in FIG. 21 . did.
  • This PPD has the highest value among H 2 /air conditions among those currently being studied.
  • the high content of Pt-Ru/C significantly improved the power density, which is also well shown in FIG. 18( c ). That is, the PPD of the PFTP and PFBP-based fuel cells can be further improved by increasing the catalyst content.
  • Example 5 of the present invention exhibits high ionic conductivity and excellent dimensional stability. That is, the tradeoff between IEC or ionic conductivity and dimensional stability in these anion exchange polymers has been verified.
  • the PPD of the polyfluorene-based fuel cell can easily exceed 2 W/cm 2 as Pt-Ru/C at 80°C. Therefore, the in-situ durability problem related to the membrane electrode assembly is currently being focused on by the research community. In addition, many reports have demonstrated that ex-situ and in-situ durability are inconsistent.
  • FIG. 22 shows the alkali stability of the PFTP membrane prepared from Example 5 according to alkaline conditions (a) the residual amount of PFTP cations according to alkaline conditions measured by 1 H NMR, (b) the half-life of PFTP at 80 o C, 1M and 5M NaOH
  • FIG. 23 shows the 1 H NMR spectrum and the real image of the PFTP membrane prepared from Example 5, which was treated with alkali for 2000 hours at 80 o C, 1M NaOH
  • FIG. 24 shows 1500 at 80 o C, 5M NaOH.
  • 1 H NMR spectrum and real image of the PFTP membrane prepared from Example 5, which was subjected to alkali treatment for a period of time, are shown.
  • the PFTP membrane is very stable at 80° C. for 2000 hours in 1M NaOH and 5M NaOH.
  • NREL National Institute of Renewable Energy
  • most of the anion exchange membranes show severe deformation of the membranes, and after testing in 1M KOH at 80°C for 1000 hours, the color in certain cases Along with the change, even breakage appeared.
  • the PFTP membrane according to the present invention maintained a transparent and mechanically rigid shape after testing in 1M NaOH at 80° C. for 2000 hours (see FIG. 23 ), and no obvious piperidinium decomposition by 1 H NMR spectrum was found.
  • the mechanical properties and TGA of PFTP show a significant decrease after immersion in 10M NaOH at 80°C for 168 hours.
  • the degradation of the anion exchange polymer is related not only to the piperidinium group but also to the aging problem of the backbone, which impairs the mechanical properties.
  • QA% is the ratio of the piperidinium content remaining in the film after testing to the initial content
  • k is the decomposition constant
  • t is the period.
  • t 1/2 of PFTP is greater than 30,000 hours in 1M NaOH at 80° C. and greater than 5000 hours in 5M NaOH.
  • a commercial FAA-3-20 membrane-based single cell showed a dramatic voltage loss within 2 days at 0.2 A/cm 2 (see FIG. 29 ). Noting that water management is very important in the H 2 -O 2 condition, it was confirmed that a slight change in RH could lead to a large voltage loss during testing with these high IEC polymers.
  • This single cell is prone to dry-out because the measurement is carried out with an anion exchange ionomer that is sensitive to moisture.
  • the necropsy of these membrane electrode assemblies was performed in situ durability test for 168 hours at 0.2 A/cm 2 and the membrane and ionomer were re-disassembled with d 6 -DMSO. No degradation symptoms were detected in the 1 H NMR spectrum.
  • in-situ stability of current membranes is still not good enough compared to commercial PTFE-reinforced PNB and BTMA-HDPE membranes due to unknown voltage losses.
  • PTFE-reinforced PNB and BTMA-HDPE membranes are based on commercial preformed films or PTFE-reinforced, and support-free PFTP membranes have already demonstrated field durability of over 168 hours.
  • in-situ stability is closely related to mechanical properties and water control, and it is expected that field stability can be further improved through strengthening the anion exchange membrane and optimizing the water content of the anion exchange ionomer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 신규 폴리플루오렌계 중합체 이오노머, 음이온교환막 및 이의 제조방법에 관한 것으로, 고분자 골격 내 아릴 에테르 결합이 없으면서 반복단위 내 피페리디늄 그룹이 도입된 방향족 폴리플루오렌계 중합체 이오노머를 합성하고, 이로부터 음이온교환막을 제조함으로써 열적·화학적 안정성 및 기계적 물성이 우수하고 이온전도도가 높아 알칼리 연료전지용 막 및 바인더 또는 수전해에 응용이 가능하다.

Description

신규 폴리플루오렌계 중합체 이오노머, 음이온교환막 및 이의 제조방법
본 발명은 신규 폴리플루오렌계 중합체 이오노머, 음이온교환막 및 이의 제조방법에 관한 것으로, 보다 상세하게는 고분자 골격 내 아릴 에테르 결합이 없으면서 반복단위 내 피페리디늄 그룹이 도입된 방향족 폴리플루오렌계 중합체 이오노머를 합성하고, 이로부터 음이온교환막을 제조하여 알칼리 연료전지 및 수전해 장치에 응용하는 기술에 관한 것이다.
지금까지 고분자 전해질막 연료전지(polymer electrolyte membrane fuel cell, PEMFC)는 비교적 높은 전류밀도를 갖고 친환경성이라는 장점 때문에 많은 연구가 진행되어 왔다. 특히, 나피온으로 대표되는 과불소화탄소 계열의 프로톤 교환막이 고분자 전해질막으로 주로 사용되었다. 그런데 나피온막은 우수한 화학적 안정성 및 높은 이온전도도를 갖는 반면, 가격이 매우 높고 유리전이온도가 낮아 방향족 탄화수소계 고분자 전해질막 등의 개발을 비롯하여 나피온을 대체할 수 있는 연구가 활발하게 수행되고 있다.
이러한 연구들 중에서 최근에는 음이온교환막을 이용하는 알칼리막 연료전지(alkaline membrane fuel cell, AMFC)가 주목을 받고 있다. 특히, 알칼리막 연료전지는 백금 대신에 니켈, 망간 등 저가의 비귀금속을 전극촉매로 사용할 수 있고, 고분자 전해질막 연료전지에 비하여 우수한 성능과 더불어 가격 경쟁력 또한 월등히 높은 것으로 알려져 지속적인 연구가 이루어지고 있는 실정이다.
알칼리막 연료전지에 적용하기 위한 음이온교환막으로서 폴리아릴에테르술폰 계열의 방향족 고분자 구조에 4급 염을 도입한 합성방법이 알려지게 되고, 고분자 주사슬을 따라 아릴 에테르(C-O) 결합을 갖는 반복단위를 형성하게 됨으로써 고분자의 용해도가 향상되는 등의 장점이 있었다. 그러나 한편으로는 고분자 주사슬의 아릴 에테르 결합으로 인하여 연료전지의 작동 시 전해질막의 하이드록실 라디칼 분해 거동을 수반하여 장기 안정성이 떨어지는 문제점이 발생하였으므로, 고분자 주사슬의 분해를 방지하는 것이 알칼리막 연료전지의 내구성을 향상시키기 위한 해결과제가 되었다.
상기 음이온교환막을 알칼리막 연료전지에 사용 시 화학적 안정성을 해결하기 위한 수단으로 아릴 에테르 결합이 없는 방향족 고분자를 제조하는 것이 공지된 바 있다. 이에 따라 고분자 전해질은 높은 유리전이온도, 충격강도, 강인성, 열적/화학적/기계적 안정성, 폴리올레핀계 전해질에 비하여 낮은 함수율 등과 같이 바람직한 방향족 고분자 골격의 특성을 부여한다. 또한, 알칼리에 안정한 방향족 고분자 골격 구조에 더하여, 방향족 고분자에 도입된 양이온의 안정성이 장기 내구성에 기여하는 것인바, 도입되는 양이온으로서는 테트라알킬암모늄, 벤질트리메틸암모늄, 피페리디듐 등이 알려져 있다.
그러나 아직까지 고분자 골격 내 아릴 에테르 결합이 없으면서 반복단위 내 피페리디늄 그룹이 도입된 방향족 폴리플루오렌계 중합체 이오노머가 합성된바 없고, 이를 알칼리 연료전지용 막 및 바인더 또는 수전해 분야에 응용하는 기술에 대해서도 구체적으로 알려진 바 없다.
그러므로 본 발명자 등은, 열적·화학적 안정성 및 기계적 물성이 우수한 방향족 고분자 이온교환막의 응용분야를 확대하기 위하여 연구를 거듭한 결과, 고분자 골격 내 아릴 에테르 결합이 없으면서 반복단위 내 피페리디늄 그룹이 도입된 방향족 폴리플루오렌계 중합체 이오노머를 합성하고, 이로부터 음이온교환막을 제조함으로써 알칼리 연료전지용 막 및 바인더 또는 수전해 장치에 응용할 수 있음을 발견하여 본 발명을 완성하였다.
[선행기술문헌]
[특허문헌]
특허문헌 1 한국공개특허공보 제10-2018-0121961호
특허문헌 2 국제공개특허공보 WO 2019/068051
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 제1 목적은 열적·화학적 안정성 및 기계적 물성이 우수하고 이온전도도가 높은 신규 폴리플루오렌계 중합체 이오노머 및 그 제조방법을 제공하고자 하는 것이다.
또한, 본 발명의 제2 목적은 상기 신규 폴리플루오렌계 중합체 이오노머로부터 음이온교환막을 제조함으로써 알칼리 연료전지용 막 및 바인더 또는 수전해 장치에 응용하고자 하는 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명은, 하기 <화학식 1>로 표시되는 반복단위를 갖는 폴리플루오렌계 중합체 이오노머를 제공한다.
[화학식 1]
Figure PCTKR2020015649-appb-I000001
(상기 화학식 1에서, A, B, C 및 D 세그먼트는 각각 독립적으로 하기 구조식으로 표시되는 화합물로부터 선택되는 것으로서, 동일하거나 상이할 수도 있고,
Figure PCTKR2020015649-appb-I000002
(R=H 또는 CH3),
Figure PCTKR2020015649-appb-I000003
,
Figure PCTKR2020015649-appb-I000004
,
Figure PCTKR2020015649-appb-I000005
,
Figure PCTKR2020015649-appb-I000006
,
Figure PCTKR2020015649-appb-I000007
,
Figure PCTKR2020015649-appb-I000008
,
Figure PCTKR2020015649-appb-I000009
,
Figure PCTKR2020015649-appb-I000010
,
Figure PCTKR2020015649-appb-I000011
,
Figure PCTKR2020015649-appb-I000012
(R=H 또는 CH3)
적어도 하나는
Figure PCTKR2020015649-appb-I000013
(R=H 또는 CH3)이며, x, y, z 및 m은 중합체 이오노머의 반복단위 내 몰비로서 x+y+z+m=1이다)
또한, 본 발명은 (I) 플루오렌 또는 9,9‘-디메틸플루오렌 및 1-메틸-4-피페리돈, 또는 플루오렌 또는 9,9‘-디메틸플루오렌, 1-메틸-4-피페리돈 및 공단량체로서 하기 구조식으로 표시되는 화합물로부터 선택되는 것 또는 1,1,1,2,2,4,5,5,5-노나플루오로-4-(트리플루오로메틸)-3-펜타논을 유기용매에 용해시켜 용액을 형성하는 단계;
Figure PCTKR2020015649-appb-I000014
,
Figure PCTKR2020015649-appb-I000015
,
Figure PCTKR2020015649-appb-I000016
,
Figure PCTKR2020015649-appb-I000017
,
Figure PCTKR2020015649-appb-I000018
,
Figure PCTKR2020015649-appb-I000019
,
Figure PCTKR2020015649-appb-I000020
,
Figure PCTKR2020015649-appb-I000021
,
Figure PCTKR2020015649-appb-I000022
,
Figure PCTKR2020015649-appb-I000023
(R=H 또는 CH3)
(II) 상기 용액에 강산 촉매를 서서히 부가, 교반 및 반응시켜 점성 용액을 얻는 단계; (III) 상기 점성 용액을 침전, 세척 및 건조하여 고체상의 중합체를 수득하는 단계; (IV) 상기 고체상의 중합체를 유기용매에 용해시킨 중합체 용액에 K2CO3 및 과량의 할로메탄을 부가 및 반응시켜 4급 피페리디늄 염을 형성하는 단계; 및 (V) 중합체 용액을 침전, 세척 및 건조하는 단계;를 포함하는 폴리플루오렌계 중합체 이오노머의 제조방법을 제공한다.
또한, 본 발명은 상기 폴리플루오렌계 중합체 이오노머를 포함하는 음이온교환막을 제공한다.
또한, 본 발명은 (a) 상기 폴리플루오렌계 중합체 이오노머를 유기용매에 용해시켜 고분자용액을 형성하는 단계; (b) 상기 고분자용액을 유리판에 캐스팅 및 건조함으로써 막을 수득하는 단계; 및 (c) 상기 수득한 막을 1M NaOH, 1M NaCl 또는 1M Na2CO3로 처리한 후, 초순수로 수회 세척 및 건조하는 단계;를 포함하는 음이온교환막의 제조방법을 제공한다.
또한, 본 발명은 상기 폴리플루오렌계 중합체 이오노머를 포함하는 알칼리 연료전지용 바인더를 제공한다.
또한, 본 발명은 상기 음이온교환막을 포함하는 알칼리 연료전지용 막전극접합체를 제공한다.
또한, 본 발명은 상기 음이온교환막을 포함하는 알칼리 연료전지를 제공한다.
또한, 본 발명은 상기 음이온교환막을 포함하는 수전해 장치를 제공한다.
본 발명에 따라, 고분자 골격 내 아릴 에테르 결합이 없으면서 반복단위 내 피페리디늄 그룹이 도입된 방향족 폴리플루오렌계 중합체 이오노머로부터 제조되는 음이온교환막은 열적·화학적 안정성 및 기계적 물성이 우수하고 이온전도도가 높아 알칼리 연료전지용 막 및 바인더 또는 수전해에 응용이 가능하다.
도 1은 본 발명의 실시예 1로부터 제조된 (a) PFTM 및 (b) PFTP의 핵자기공명(1H NMR) 스펙트럼.
도 2는 본 발명의 실시예 2로부터 제조된 PFBM의 핵자기공명(1H NMR) 스펙트럼.
도 3은 본 발명의 실시예 2로부터 제조된 PFBP의 핵자기공명(1H NMR) 스펙트럼.
도 4는 본 발명의 실시예 5로부터 제조한 PFTP 막, PFBP 막 및 비교예 3으로부터 제조한 PBP 막, PTP 막의 water behavior를 나타낸 그래프로서, (a) 수중에서 OH- form의 함수율, (b) 수중에서 OH- form의 팽창률, (c ) 수중에서 Cl- form의 함수율 및 (d) 상이한 상대습도에서 OH-/CO3 2- mix form을 갖는 이오노머의 수분 흡착량.
도 5는 본 발명의 실시예 5로부터 제조된 OH- 및 Cl- 형태의 음이온교환막의 온도에 따른 이온전도도를 나타낸 그래프(그래프 안의 실물 이미지는 98℃에서 측정한 후 PFTP 막의 상태를 촬영한 것).
도 6은 본 발명의 실시예 5로부터 제조된 PFTP 막 및 PFBP 막의 온도에 따른 CO3 2- 전도도를 나타낸 그래프.
도 7은 본 발명의 실시예 5 및 비교예 3으로부터 제조된 OH- 형태의 음이온교환막 (a) PBP, (b) PFBP, (c) PTP 및 (d) PFTP의 시차주사열량분석(DSC) 그래프.
도 8은 본 발명의 실시예 5 및 비교예 3으로부터 제조된 I- 형태의 음이온교환막의 (a) 상온에서 측정한 인장강도 및 파단신율, (b) 온도 및 음이온 형태를 달리하여 측정한 음이온교환막의 인장강도 및 파단신율을 나타낸 그래프.
도 9는 본 발명의 실시예 1 내지 3 및 비교예 1, 2로부터 제조된 다양한 중합체 이오노머의 열중량분석(TGA) 그래프(질소 분위기 하에서 10℃/min의 승온속도 30℃부터 800℃까지 측정, 모든 샘플은 데이터를 기록하기 전에 용매와 물을 제거하기 위하여 150℃에서 5분 동안 등온상태를 유지).
도 10은 본 발명의 실시예 1, 2 및 비교예 1, 2에 따른 PFTM, PFBM, PTM 및 PBP의 동적기계분석(DMA) 그래프.
도 11은 본 발명의 실시예 5 및 비교예 3으로부터 제조된 (a) PFTP 막의 평면(in-plane) 및 (b) PFTP 막의 단면(cross section) 주사전자현미경(SEM) 이미지와, (c) PBP, (d) PFBP, (e) PTP, (f) PFTP 막(OH- form)의 수화상태에서의 원자현미경(AFM) 이미지.
도 12는 본 발명의 실시예 1, 3 및 4로부터 제조된 (a) PFTP, (b) PFP, (c) PFPN 이오노머(I- form)의 투과전자현미경(TEM) 이미지.
도 13은 H2/O2 조건에서 TKK Pt/C 촉매(0.33 mg/cm2)를 기반으로 음이온교환 이오노머의 종류에 따른 연료전지의 성능을 나타낸 그래프(A/C flow rate: 1000/1000 mL/min)로서, (a) 65oC에서 PFTP 막(25±3μm) (A/C dew points: 61/65oC without backpressure); (b) 80oC에서 PFTP 막(25±3μm) (A/C dew points: 66.5/80oC 및 2.0/1.1 bar A/C backpressure); (c) 65oC 에서 상용막 FAA-3-20(20±2μm) (A/C dew points: 63/65oC, 1.1/1.1 bar backpressure). (d) 80℃, H2/O2 조건에서 TKK Pt/C 촉매(0.33 mg/cm2)를 기반으로 음이온교환 이오노머의 종류에 따른 연료전지의 성능을 나타낸 그래프 (A/C flow rate: 1000/1000 mL/min, A/C dew points: 66.5/80oC, 2.0/1.1 bar A/C backpressure).
도 14는 TKK Pt/C 촉매를 기반으로(without backpressure) PFTP 막 및 PTP 막(두께 25±3 ㎛), PFBP 및 PBP 이오노머 간의 연료전지 성능 비교 그래프,
도 15는 막 두께 25~30μm로서 TKK Pt/C 촉매를 기반으로 할 때 peak power density(PPD)에 영향을 미치는 상대습도(RH)의 효과를 나타낸 그래프 (a) 상대습도 100%의 음극을 구비한 양극의 상대습도 효과, (b) 상대습도 50%의 양극을 구비한 음극의 상대습도 효과.
도 16은 forward 및 reverse scanning에 의하여 도 13(a)의 peak power density(PPD)에 영향을 미치는 상대습도(RH)의 효과를 나타낸 상세 I-V 곡선.
도 17은 동일 조건에서 실시예 2로부터 제조한 PFBP 이오노머에서 플루오렌의 비율에 따른 고유 점성도와 PPD의 관계를 나타낸 그래프(A/C 촉매: Hispec Pt/C with 0.33 mg/cm2 loading, 유량: 1000/1000 mL/min, dew point: 73.5/80oC, 비어있는 붉은 표시는 back pressure가 없을 때의 PPD, 채워진 붉은 표시는 1.3/1.3 bar back pressure에서 PPD이다)
도 18은 (a) backpressure를 가하지 않은 조건에서 PPD에 대한 촉매의 영향, (b) 음극 및 양극 각각 1.3/1.3 bar backpressure조건에서 전력밀도에 대한 촉매의 영향, (c) Pt-Ru/C 함량에 따른 전력밀도의 영향, (d) PFTP막과 PFBP 이오노머에서 전력밀도에 대한 유량의 영향을 나타낸 그래프.
도 19는 박막(15~17μm) 및 합리적인 backpressure 기반에서 연료전지 성능에 영향을 미치는 상대습도(RH)의 효과를 재조사한 그래프.
도 20은 80℃에서 상대습도 50%/100%(양극/음극)를 구비한 TKK Pt/C 촉매를 기반으로 할 때 연료전지 성능에 영향을 미치는 backpressure의 효과를 나타낸 그래프.
도 21은 80oC, H2-air 조건에서 음극 촉매의 종류(Hispec Pt-Ru/C or Pt/C)에 따른 연료전지 성능(양극 촉매: Hisepc Pt/C, A/C 유량: 1000/2000 mL/min, A/C backpressure: 1.3/1.3 bar, A/C 촉매 함량: 0.42 mg/cm2)을 나타낸 그래프.
도 22는 알칼리 조건에 따른 실시예 5로부터 제조한 PFTP 막의 알칼리 안정성 (a) 1H NMR로 측정된 알칼리 조건에 따른 PFTP 양이온 잔량, (b) 80oC, 1M and 5M NaOH 에서 PFTP의 반감기를 예측한 그래프.
도 23은 80oC, 1M NaOH에서 2000시간 동안 알칼리 처리를 한 실시예 5로부터 제조한 PFTP 막의 1H NMR 스펙트럼 및 실물 이미지.
도 24는 80oC, 5M NaOH에서 1500시간 동안 알칼리 처리를 한 실시예 5로부터 제조한 PFTP 막의 1H NMR 스펙트럼 및 실물 이미지.
도 25는 80oC, 10M NaOH에서 2000시간 동안 알칼리 처리를 한 실시예 5로부터 제조한 PFTP 막의 1H NMR 스펙트럼 및 실물 이미지.
도 26은 80oC에서 침지 시간에 따른 알칼리 조건 별 실시예 5로부터 제조한PFTP막의 Cl- 전도도 변화를 나타낸 그래프.
도 27은 (a) 실시예 5로부터 제조한 PFTP 막(OH- form)의 수화 상태의 기계적 특성 및 (b) 80oC, 10M NaOH에서 168시간 동안 침지한 PFTP 막의 열적 안정성을 나타낸 그래프.
도 28은 (a) 0.2 A/cm2에서 168시간 동안 측정된 막전극접합체의 in-situ 안정성, (b) 0.2 A/cm2에서 168시간 동안 측정된 PFTP 기반 막전극접합체의 1H NMR 스펙트럼 및 실물 이미지, (c) 0.4 A/cm2 에서 100시간 동안 측정된 막전극접합체의 in-situ 안정성, (d) 0.4 A/cm2에서 100시간 동안 측정된 PFTP 기반 막전극접합체의 물리적 특성과 실물 이미지.
도 29는 상용화된 FAA-2-30 기반 막전극접합체의 In-situ 내구성(0.2 A/cm2 , 60oC, 유량 200/200 mL/min, without backpressure.)을 나타낸 그래프.
도 30은 (a) 0.2 A/cm2, 70oC에서 1시간 동안 I-V 측정이 진행된 전지의 In-situ 내구성, (b) 80oC에서 스캔 속도 0.1 A/cm2로 0에서 5 A/cm2까지 1시간 동안 I-V측정 후 PFTP 기반 막전극접합체의 1H NMR 스펙트럼(이어서, 셀은 in-situ 내구성을 고찰하기 위해 60oC에서 120시간 동안 0.2 A/cm2로 측정하였음).
이하에서는 본 발명에 따른 신규 폴리플루오렌계 중합체 이오노머, 음이온교환막 및 이의 제조방법에 관하여 상세히 설명하기로 한다.
본 발명에서는 하기 <화학식 1>로 표시되는 반복단위를 갖는 폴리플루오렌계 중합체 이오노머를 제공한다.
[화학식 1]
Figure PCTKR2020015649-appb-I000024
(상기 화학식 1에서, A, B, C 및 D 세그먼트는 각각 독립적으로 하기 구조식으로 표시되는 화합물로부터 선택되는 것으로서, 동일하거나 상이할 수도 있고,
Figure PCTKR2020015649-appb-I000025
(R=H 또는 CH3),
Figure PCTKR2020015649-appb-I000026
,
Figure PCTKR2020015649-appb-I000027
,
Figure PCTKR2020015649-appb-I000028
,
Figure PCTKR2020015649-appb-I000029
,
Figure PCTKR2020015649-appb-I000030
,
Figure PCTKR2020015649-appb-I000031
,
Figure PCTKR2020015649-appb-I000032
,
Figure PCTKR2020015649-appb-I000033
,
Figure PCTKR2020015649-appb-I000034
,
Figure PCTKR2020015649-appb-I000035
(R=H 또는 CH3)
적어도 하나는
Figure PCTKR2020015649-appb-I000036
(R=H 또는 CH3)이며, x, y, z 및 m은 중합체 이오노머의 반복단위 내 몰비로서 x+y+z+m=1이다)
상기 화학식 1에서 보는 바와 같이, 본 발명에서는 신규한 폴리플루오렌계 중합체 이오노머를 제조하는 것인데, 일반적으로 플루오렌계 중합체는 필름 형성능 및 기계적 물성이 상대적으로 떨어지는 경향이 있으므로, 고분자 골격 내 회전 가능한 다양한 페닐계 블록을 형성시킴으로써 필름 형성능 및 기계적 물성을 크게 향상 시킬 수 있다. 이때, 페닐계 블록으로서는 상기 화학식 1에서 정의한 페닐, 바이페닐, 터페닐, 또는 쿼터페닐 등에서 다양하게 선택 가능하다.
또한, 상기 화학식 1에서 한정한 폴리플루오렌계 중합체 이오노머는 고분자 골격 내 아릴 에테르 결합이 없으면서 반복단위 내 피페리디늄 그룹이 도입됨으로써 알칼리 미디어에서도 매우 안정하면서 우수한 이온전도도를 나타낸다.
또한, 본 발명은 (I) 플루오렌 또는 9,9‘-디메틸플루오렌 및 1-메틸-4-피페리돈, 또는 플루오렌 또는 9,9‘-디메틸플루오렌, 1-메틸-4-피페리돈 및 공단량체로서 하기 구조식으로 표시되는 화합물로부터 선택되는 것 또는 1,1,1,2,2,4,5,5,5-노나플루오로-4-(트리플루오로메틸)-3-펜타논을 유기용매에 용해시켜 용액을 형성하는 단계;
Figure PCTKR2020015649-appb-I000037
,
Figure PCTKR2020015649-appb-I000038
,
Figure PCTKR2020015649-appb-I000039
,
Figure PCTKR2020015649-appb-I000040
,
Figure PCTKR2020015649-appb-I000041
,
Figure PCTKR2020015649-appb-I000042
,
Figure PCTKR2020015649-appb-I000043
,
Figure PCTKR2020015649-appb-I000044
,
Figure PCTKR2020015649-appb-I000045
,
Figure PCTKR2020015649-appb-I000046
(R=H 또는 CH3)
(II) 상기 용액에 강산 촉매를 서서히 부가, 교반 및 반응시켜 점성 용액을 얻는 단계; (III) 상기 점성 용액을 침전, 세척 및 건조하여 고체상의 중합체를 수득하는 단계; (IV) 상기 고체상의 중합체를 유기용매에 용해시킨 중합체 용액에 K2CO3 및 과량의 할로메탄을 부가 및 반응시켜 4급 피페리디늄 염을 형성하는 단계; 및 (V) 중합체 용액을 침전, 세척 및 건조하는 단계;를 포함하는 폴리플루오렌계 중합체 이오노머의 제조방법을 제공한다.
먼저, 폴리플루오렌계 중합체를 제조하기 위하여 단량체로서 플루오렌 또는 9,9‘-디메틸플루오렌과 1-메틸-4-피페리돈을 반응시킬 수 있고, 또는 플루오렌 또는 9,9‘-디메틸플루오렌과 1-메틸-4-피페리돈 및 공단량체로서 상기 구조식으로 표시되는 화합물로부터 선택되는 것을 반응시킬 수 있고, 또는 공단량체로서 1,1,1,2,2,4,5,5,5-노나플루오로-4-(트리플루오로메틸)-3-펜타논을 사용하여 반응시킬 수도 있다.
이어서, 플루오렌계 세그먼트를 포함하여 상기 구조식에서 한정한 화합물로 이루어진 다양한 세그먼트를 갖는 폴리플루오렌계 중합체를 할로메탄과 반응시킴으로써 목적물인 4급 피페리디늄 염이 형성된 폴리플루오렌계 중합체 이오노머를 제조할 수 있다.
이때, 상기 (I) 단계의 유기용매는 할로겐계 용매로서 디클로로메탄, 클로로포름, 디클로로에탄, 디브로모메탄 및 테트라클로로에탄으로 이루어진 군으로부터 선택된 1종 이상의 것일 수 있고, 디클로로메탄을 바람직하게 사용한다.
또한, 상기 (II) 단계의 강산 촉매는 트리플루오로아세트산, 트리플루오로메탄술폰산, 펜타플루오로에탄술폰산, 헵타플루오로-1-프로판술폰산, 퍼플루오로프로피온산, 헵타플루오로부티르산, 또는 이들의 혼합물일 수 있고, 트리플루오로아세트산/트리플루오로메탄술폰산의 혼합물을 바람직하게 사용한다.
또한, 상기 (IV) 단계의 유기용매로서는 N-메틸피롤리돈, 디메틸아세트아미드, 디메틸술폭시드 또는 디메틸포름아미드에 공용매인 트리플루오로아세트산이 혼합된 것을 바람직하게 사용할 수 있다.
또한, 상기 (IV) 단계에서는 4급 피페리디늄 염을 형성하기 위하여 중합체를 할로메탄과 반응시키는바, 상기 할로메탄은 플루오로메탄, 클로로메탄, 브로모메탄 또는 아이오도메탄일 수 있고, 아이오도메탄을 바람직하게 사용한다.
또한, 본 발명은 상기 폴리플루오렌계 중합체 이오노머를 포함하는 음이온교환막을 제공한다.
또한, 본 발명은 (a) 상술한 폴리플루오렌계 중합체 이오노머를 유기용매에 용해시켜 고분자용액을 형성하는 단계; (b) 상기 고분자용액을 유리판에 캐스팅 및 건조함으로써 막을 수득하는 단계; 및 (c) 상기 수득한 막을 1M NaOH, 1M NaCl 또는 1M Na2CO3로 처리한 후, 초순수로 수회 세척 및 건조하는 단계;를 포함하는 음이온교환막의 제조방법을 제공한다.
이때, 상기 (a) 단계의 유기용매는 N-메틸피롤리돈, 디메틸아세트아미드, 디메틸술폭시드 또는 디메틸포름아미드일 수 있다.
또한, 상기 고분자용액의 농도는 2~5 중량%인 것이 바람직하고, 그 농도가 3.0~3.5 중량%인 것이 더욱 바람직하다. 고분자용액의 농도가 2 중량% 미만이면 막의 형성능이 떨어질 수 있고, 5 중량%를 초과하면 점도가 너무 높아져 제막 후 막이 물성이 저하될 수 있다.
또한, 상기 (b) 단계의 건조는 80~90℃ 오븐에서 24시간 동안 유기용매를 서서히 제거한 후, 120~150℃ 진공오븐에서 24시간 동안 가열함으로써 유기용매를 완전히 제거하는 것이 바람직하다.
이어서, 상기 (a) 내지 (b) 단계를 거쳐 수득한 폴리플루오렌계 중합체 이오노머 막을 1M NaOH, 1M NaCl 또는 1M Na2CO3로 처리함으로써, 폴리플루오렌계 중합체 이오노머의 할라이드 형태(I- form 등)를 OH-, Cl- 또는 CO3 2- 형태로 전환시킨 음이온교환막을 제조할 수 있다.
또한, 본 발명은 상기 폴리플루오렌계 중합체 이오노머를 포함하는 알칼리 연료전지용 바인더를 제공한다.
또한, 본 발명은 상기 음이온교환막을 포함하는 알칼리 연료전지용 막전극접합체
또한, 본 발명은 상기 음이온교환막을 포함하는 알칼리 연료전지를 제공한다.
또한, 본 발명은 상기 음이온교환막을 포함하는 수전해 장치를 제공한다.
이하 본 발명에 따른 실시예 및 비교예를 첨부된 도면과 함께 구체적으로 설명한다.
[실시예 1] 폴리플루오렌계 공중합체 이오노머의 제조(PFTP)
단량체로서 9,9‘-디메틸플루오렌(0.2914 g, 1.5 mmol), 공단량체로서 터페닐(3.105 g, 13.5 mmol), 및 1-메틸-4-피페리돈(1.919 mL, 16.5 mmol, 1.1 eq)을 2구 플라스크에 투입한 후, 디클로로메탄(13 mL)을 부가하여 교반하면서 단량체들을 용해시켜 용액을 형성하였다. 상기 용액의 온도를 1℃로 냉각시킨 후, 트리플루오로아세트산(1.8 mL, ~1.5 eq) 및 트리플루오로메탄술폰산(12 mL, 9 eq)의 혼합물을 상기 용액에 서서히 부가, 교반 및 24시간 반응시켜 점성 용액을 얻었다. 상기 점성 용액을 2M NaOH 용액에 침전, 탈이온수로 수회 세척 및 80℃ 오븐에서 건조하여 고체상의 폴리(플루오렌-co-터페닐 N-메틸피페리딘) 공중합체를 제조하였으며(수율 95% 초과), 이를 PFTM이라고 명명하였다.
다음으로, 상기 제조한 PFTM(4 g)을 80℃에서 디메틸술폭시드(40 mL) 및 공용매인 트리플루오로아세트산(0.5 mL)의 혼합물에 용해시켜 중합체 용액을 얻은 후, 상온으로 냉각시켰다. 이어서, 상기 중합체 용액에 K2CO3(2.5 g) 및 아이오도메탄(2 mL, 3 eq)을 부가 및 48시간 반응시켜 4급 피페리디늄 염을 형성하였다. 다음으로, 중합체 용액을 에틸아세테이트에 침전, 여과, 탈이온수로 수회 세척 및 80℃진공오븐에서 24시간 건조하여 고체상의 폴리(플루오렌-co-터페닐 N, N-디메틸피페리디늄) 공중합체 이오노머를 제조하였으며(수율 90% 초과), 이를 PFTP라고 명명하였다.
[실시예 2] 폴리플루오렌계 공중합체 이오노머의 제조(PFBP)
단량체로서 9,9‘-디메틸플루오렌(0.2914 g, 1.5 mmol), 공단량체로서 바이페닐(2.079 g, 13.5 mmol), 및 1-메틸-4-피페리돈(1.919 mL, 16.5 mmol, 1.1 eq)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리(플루오렌-co-바이페닐 N-메틸피페리딘) 공중합체를 제조하였으며(수율 95% 초과), 이를 PFBM이라고 명명하였다.
다음으로, 상기 제조한 PFBM(4 g)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리(플루오렌-co-바이페닐 N, N-디메틸피페리디늄) 공중합체 이오노머를 제조하였으며(수율 90% 초과), 이를 PFBP라고 명명하였다.
[실시예 3] 폴리플루오렌계 중합체 이오노머의 제조(PFP)
단량체로서 9,9‘-디메틸플루오렌(1.94 g, 10 mmol)을 사용하고, 1-메틸-4-피페리돈(1.28 mL, 11 mmol, 1.1 eq), 디클로로메탄(8.7 mL), 트리플루오로아세트산(1.2 mL, ~1.5 eq) 및 트리플루오로메탄술폰산(8 mL, 9 eq)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리(플루오렌 N-메틸피페리딘) 중합체를 제조하였으며(수율 70%), 이를 PFM이라고 명명하였다.
다음으로, 상기 제조한 PFM(2 g)을 디메틸술폭시드(20 mL)에 용해시켜 중합체 용액을 얻은 것을 제외하고는 실시예 1과 동일한 방법으로 폴리(플루오렌 N, N-디메틸피페리디늄) 중합체 이오노머를 제조하였으며(수율 80%), 이를 PFP라고 명명하였다.
[실시예 4] 폴리플루오렌계 공중합체 이오노머의 제조(PFPN)
단량체로서 9,9‘-디메틸플루오렌, 공단량체로서 1,1,1,2,2,4,5,5,5-노나플루오로-4-(트리플루오로메틸)-3-펜타논, 및 1-메틸-4-피페리돈을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리(플루오렌 N-메틸피페리딘-co-노나플루오라이드) 공중합체를 제조하였으며(반복단위 내 플루오렌 세그먼트와 노나플루오라이드 세그먼트의 몰 비는 0.85 : 0.15), 이를 PFMN이라고 명명하였다.
다음으로, 상기 제조한 PFMN으로부터 실시예 1과 동일한 방법으로 폴리(플루오렌 N, N-디메틸피페리디늄-co-노나플루오라이드) 공중합체 이오노머를 제조하였으며(수율 72%), 이를 PFPN이라고 명명하였다.
[실시예 5] 폴리플루오렌계 중합체 이오노모로부터 음이온교환막의 제조
상기 실시예 1로부터 제조한 PFTP(0.9 g)를 디메틸술폭시드에 용해시켜 3.2~3.3 중량% 농도의 고분자용액을 형성하였다. 이어서, 상기 고분자용액을 시린지로 수집하여 0.4 ㎛ 필터로 여과하고, 투명한 용액을 14 x 21 cm 유리판에 캐스팅하였다. 상기 캐스팅 용액을 85℃ 오븐에서 24시간 건조하여 용매를 서서히 제거한 후, 150℃ 진공오븐에서 24시간 가열하여 용매를 완전히 제거함으로써 PFTP 막(I- 형태, 20±5 ㎛)을 얻었다. 상기 수득한 PFTP 막을 1M NaOH, 1M NaCl 및 1M Na2CO3에 각각 침지하여(60℃, 24시간) OH-, Cl-, CO3 2-로 전환시키고 초순수로 수회 세척 및 건조함으로써 PFTP 음이온교환막을 제조하였다.
나머지 실시예 2 내지 4로부터 제조한 PFBP, PFP, PFPN 중합체 이오노머를 사용하여서도 상술한 것과 동일한 방법으로 제막함으로써 각각 PFBP, PFP, PFPN 음이온교환막을 제조하였다.
[비교예 1] 플루오렌 세그먼트가 없는 중합체 이오노머의 제조(PBP)
단량체로서 바이페닐, 및 1-메틸-4-피페리돈을 반응시켜 실시예 2와 유사한 방법으로 폴리(바이페닐 N, N-디메틸피페리디늄)을 제조하였으며(수율 90% 초과), 이를 PBP라고 명명하였다.
[비교예 2] 플루오렌 세그먼트가 없는 중합체 이오노머의 제조(PTP)
단량체로서 터페닐, 및 1-메틸-4-피페리돈을 반응시켜 실시예 1과 유사한 방법으로 폴리(터페닐 N, N-디메틸피페리디늄)을 제조하였으며(수율 90% 초과), 이를 PTP라고 명명하였다.
[비교예 3] 플루오렌 세그먼트가 없는 중합체 이오노머로부터 음이온교환막의 제조
비교예 1 및 2로부터 제조한 PBP, PTP 중합체 이오노머를 사용하여 실시예 5와 동일한 방법으로 제막함으로써 각각 PBP, PTP 음이온교환막을 제조하였다.
[기기분석 및 측정시험]
1. 핵자기공명분석(1H NMR)
중합체 이오노머의 화학구조는 1H NMR(VNMRS 600 MHz, Varian, CA, USA)로 분석하였는바, 모든 이오노머의 용매로서 d6-DMSO를 사용하였다(standard chemical shift는 2.5 ppm). 10% TFA를 모든 NMR 샘플에 첨가하여 높은 chemical shift(>12 ppm)로 수분 피크(3.34 ppm)를 제거하였다.
2. 이온교환성능(IEC), 함수율(WU), 팽창률(SR) 및 이온전도도(σ)
다른 연구에서 잘 보고되어 있듯이, CH3I의 높은 반응성으로 인해 모든 이오노머는 4개의 작용기를 가지고 있다. 따라서 폴리머의 이온교환능은 H1 NMR에 의해 계산되었으며 방향족과 메틸기의 양성자 사이의 상대적 적분 넓이를 비교하여 계산되었다. 막의 함수율(WU)과 팽창률(SR)은 OH-와 Cl- 형태로 측정되었다. 이온교환 후 초순수로 특정 형태의 막을 수회 세척한 후 여과지로 수화된 막을 빠르게 닦아 표면상의 물을 제거했다. 수화된 막의 무게(mwet)와 단방향 길이(Lwet)를 기록한 다음, 막이 수축되지 않도록 여과지를 덮어 진공 오븐에 건조하여 일정한 무게를 유지하도록 했다. 이어서 막의 건조 중량(mdry)과 길이(Ldry)를 즉시 기록하였다. 평면 내(in-plane) 및 관통면(through-plane)의 팽창률(SR)을 측정했다. 함수율(WU)과 팽창률(SR)은 다음 식에 따라 계산한다.
WU(%)=[(mwet - mdry)/mdry] x 100 (1)
SR(%)=[(Lwet - Ldry)/Ldry] x 100 (2)
이오노머의 이온전도도는 0.1~100kHz 주파수 범위에서 AC 임피던스 분석기(VSP 및 VMP3 Booster, Bio-Logic SAS, Grenoble, France)에 의해 four-probe법으로 측정되었다. 서로 다른 형태의 모든 막 샘플을 1×3 cm 직사각형 모양(폭=1cm)으로 잘라낸 다음 fuel cell test station(CNL, Energy Co., Seoul, Seoul, Seoul, Seoul, Korea)의 2개의 Pt wire 전극 사이에 고정시켰다. 두 전해질 사이의 거리(L)는 1 cm이다. 막 샘플의 두께(d)는 마이크로미터 캘리퍼스에 의해 측정되었다. 평면 내 이온전도율(In-plane Ion conductivity)은 상승된 온도에서 완전 수화 조건(RH=100%)에서 측정하고, 막저항(R)을 기록하였다. 이온전도도는 다음 식으로 계산한다.
σ = d/RLW (3)
OH-당 물 분자 수를 나타내는 수화 수(Hydration number, λ)는 다음 식으로 계산한다.
λ = Wu x 10/IEC x 18 (4)
3. 기계적 물성 및 열적 안정성
막 샘플의 기계적 물성을 측정하기 위해 만능시험기(UTM, AGS-J 500N, Shimadzu, Japan)를 사용하였다. 할로겐 형태의 PFBP 막, PBP 막, PFTP 막, PTP 막 및 상용막 FAA-3-20의 인장강도(TS)와 신장률(Elongation at break, EB)을 건조 상태로 측정했다. 모든 막 샘플을 아령 모양(2×10mm)으로 자르고, 스트레칭 속도는 1mm/min으로 설정했다. 막의 두께는 마이크로미터 캘리퍼스에 의해 측정되었다. 또한 다른 형태의 PFTP 막 및 PTP 막도 다른 온도에서 기계적 물성을 조사하였다. 이에 더하여, in-situ 안정성 테스트 후 PFTP 막의 TS와 EB를 최초로 조사하였다.
중합체 이오노머의 열 안정성은 질량분석기(MS, ThermoStarTM GSD 301T, Pfeiffer Vacuum GmbH, Germany)와 연결된 열중량분석법(TGA, Q500, TA Instrument, USA)을 통해 측정되었다. 질소기체 분위기에서 승온속도 10℃/min로 30℃에서 800℃까지 측정하였다. 질량분광기(MS)는 특정 온도에서 중합체 이오노머가 열분해 된 후 방출되는 열분해 물질을 검출하는 데 사용되었다. 시차주사열량계(DSC, Q20, TA Instrument, DE, USA)를 이용하여 중합체 이오노머내의 OH-기에 존재하는 free water(Nfree water)와 bound water(Nbound water)를 결정하였다. 질소유량 50mL/min의 조건하에서 알루미늄 팬으로 DSC 분석을 실시하였으며, 승온속도 3℃/min로 가열하며 -55에서 20℃까지 점차 증가시키며 분석하였다. Nfree와 Nbound는 다음과 같은 식에 의해 계산되었다.
λ= Nfree + Nbound (5)
Nfree = (Hf/Hice)/(Mwet - Mdry)/Mwet x λ (6)
(상기 식에서, Hf는 DSC 프로그램에 의해 계산된 freezing peak를 적분하여 얻은 엔탈피, Hice는 물 용융 엔탈피, Mwet과 Mdry는 각각 막 샘플의 습질량 및 건질량)
Hice = H°ice - △Cp△Tf (7)
(상기 식에서, △Cp는 액체 물과 얼음의 비열 차, △Tf는 어는점 내림)
동적기계분석기(DMA, Q800, TA Instrument, DE, USA)을 사용하여 중합체 이오노머의 유리전이온도(Tg), 저장탄성률(SM), 손실탄성률(LM)을 측정하였다. 구체적으로, 모든 막 샘플을 0.9×2cm 모양으로 잘라 DMA 시스템의 장력 클램프(tension clamps)에 고정시켰다. DMA 시험은 1Hz 단주파수 strain mode, 0.01 N의 preload force 및 질소 기체에서 125%의 force track으로 설정하였다. 목표온도는 450℃로 고정하고 승온속도 10℃/min로 가열하였다.
4. 극한점도, 분자량
음이온교환 중합체(중합체 이오노머)의 극한점도([η])는 25℃에서, DMSO 용매를 사용하여 점도계에 의해 측정되었다. 점도계는 Schott Viscosystem(AVS 370, Germany), Ubbelohde viscometer(SI Analytics, Type 530 13: Capillary No. Ic, K=0.03) 및 piston burette(TITRONIC universal)로 구성된다. 중합체 용액을 5개의 상이한 농도로 점차 희석시켰고, 유출시간(efflux time)을 자동적으로 5회 반복하여 기록하였다. 환산점도(ηred), 고유점도(ηinh) 및 극한점도는 다음 식으로 계산하였다.
ηred = [(t1/t0) - 1]/C (8)
ηinh = (lnt t1/t0)/C (9)
(상기 식에서, t1은 중합체 용액의 유출시간, t0는 DMSO 용액의 유출시간, c는 중합체용액의 농도)
η대 c의 플롯에서, ηred 및 ηinh을 0으로 외삽함으로써 y 절편을 구하였다. 극한점도는 상기 얻어진 y 절편의 평균값으로부터 계산하였다.
음이온교환 중합체의 분자량은 겔투과크로마토그래피(GPC, YL9112 Isocratic Pump, YL9130 Column Compartment, YL9170 RI Detector)로 측정하였다. 유동상 및 용매로서 NMP를 사용하였으며, 중합체용액의 농도는 1 내지 2 mg/mL이다. 5% LiBr을 공용매로 사용하여 고분자사슬을 해리하였다. GPC 시스템으로 주입하기 전에 중합체용액을 여과하였다.
5. 모폴로지
음이온교환막과 막전극접합체(MEA)의 표면 및 단면 모폴로지는 15kV에서 주사전자현미경(SEM, FE-SEM S-4800, Hitachi, Japan)을 이용하여 관찰하였다. 단면의 모폴로지를 관찰하기 위하여 막 및 막전극접합체 샘플을 액체질소로 절단하고, 모든 샘플은 이온 스퍼터(E-1045, Hitachi)를 이용하여 박막 백금층으로 코팅하였다. 원자현미경(AFM)을 이용하여 NanoScope V 제어기를 구비한 MultiMode 8 AFM(Veeco)로 음이온교환막의 microphase separation을 관찰하였다. 음이온교환막은 건조상태에서 I- 형태의 것으로 시험하였다. 아울러 120 kV에서 투과전자현미경(TEM, JEM2100F, JEOL, Japan)을 이용하여 음이온교환막의 내부 microphase separation을 관찰하였다. I- 이온으로 염색한 음이온교환 이오노머(중합체 이오노머)를 DMSO/IPA/DI water 용액에 용해시키고, 중합체 용액을 copper grid 위에 적하하여 TEM 측정 전에 오븐에서 건조하였다.
6. 단전지 제작 및 연료전지 성능 시험
음이온교환막으로 본 발명의 실시예 5로부터 제조한 PFTP 막, 비교예 3으로부터 제조한 PTP 막, 상용 FAA-2-30 막을 채택하였다. 음이온교환 이오노머로는 본 발명의 실시예 1로부터 제조한 PFTP, 비교예 1로부터 제조한 PBP, 비교예 2로부터 제조한 PTP, 실시예 3으로부터 제조한 PFP, 실시예 4로부터 제조한 PFPN, 상용 FuMA-Tech Fumion 이오노머를 사용하였다. Pt/C(Tanaka Kikdfinzoku Kogyo-TKK, 46.6wt% Pt/C), Pt/C(Johnson Matthey HiSpec 4000, 40wt% Pt/C), Pt-Ru/C(Johnson Matthey HiSpec 10000, 40wt% Pt, 20wt% Ru)를 촉매로 사용하였다. 음이온교환 이오노머를 DMSO에 녹여 5% 중합체용액을 준비한 다음 중합체용액을 0.45μm PTFE 필터로 여과하였다. 촉매 슬러리는 IPA/DI수(10/1)에 5% AEI/DMSO 용액과 촉매를 첨가하여 제조하였고, 그 이후 슬러리를 1시간 동안 초음파 처리(sonication)하였다. 그 다음, 에어브러쉬로 음이온교환막 양쪽에 분사하여 촉매 코팅막(CCMs)을 생성하였다. 그 후 CCM은 2개의 가스확산층(Gas Diffusion Layer), 불소화 에틸렌프로필렌 개스킷(Fluorinated Ethylene Propylene gasket), 5cm2 유로를 가진 흑연 양극판으로 조립해 완전한 음이온교환막 연료전지를 제작하였다.
음이온교환막 연료전지 성능 측정은 fuel cell test station(CNL, Seoul, Korea)을 사용하여 수행되었다. 셀을 잠시 휴지시킨 후 0.1A의 스캔 속도로 전류를 스캔하여 양극화 곡선(polarization curve)과 전력 밀도 곡선(power density curve)을 기록하였다. 연료전지 성능은 온도, 상대습도(RH), 역압(backpressure), 유량, 공급가스 등 다양한 조건에서 시험되었다.
7. Ex-situ 및 in-situ 내구성
PFTP 막의 ex-situ 내구성은 2000시간 동안 80℃에서 1M, 5M, 10M NaOH로 측정하였다. PFTP의 분해율은 상온에서 1H NMR과 Cl-전도도에 의해 검출된 화학구조 변화에 의해 계산되었다. 또한 10M NaOH에서 168시간 동안 80℃에서 알칼리 처리 후 기계적 물성과 열 안정성 변화도 조사하였으며, in-situ 내구성은 셀을 휴식시킨 후 H2-O2 조건 하에서 80℃에서 서로 다른 전류 밀도(0.2 A/cm2, 0.4 A/cm2)로 측정하였다. 내구성 시험 중 물 관리를 최적화하기 위해 양극과 음극의 dew point와 유량을 약간 조절하였다. 중요한 것은 현장 in-situ 내구성을 서로 다른 전류 밀도에서 두 번 반복적으로 측정했다는 점이다. in-situ 내구성 측정 후, 막전극접합체 시험에서 절단된 CCM (Catalyst Coated Membrane)은 기계적 물성 시험과 1H NMR 분석에 사용되었다. CCM은 d6-DMSO로 분해되어 1H NMR 시험 전에 조심스럽게 여과되었다.
[결과 및 고찰]
(용해도, 극한점도, 분자량)
다양한 형태의 중합체 용해도는 GPC 시험 및 제막과 관련되어 있으므로 범용 용매를 사용하여 조심스럽게 시험하였다. 또한, 막전극접합체 제작에 명확한 정보를 제공하기 위하여 IPA/water 하에서 이오노머의 용해도를 고찰하였다. 모든 중합체의 용해도는 4급화 전과 후에 매우 상이한 것으로 나타났다. 특히, PFBM, PFTM, PBM 및 PTM은 낮은 고분자 극성 및 고분자 사슬의 π-π stacking으로 인하여 DMSO에서 매우 저조한 용해도를 나타내었다. 반면, PFBT, PFTP, PBP 및 PTP의 용해도는 4급화 또는 산성화 이후 증가한 고분자 극성 때문에 그 용해도가 크게 향상되었다. 아울러 이러한 모든 이오노머는 IPA/water 용액에서 양호한 용해도를 보이는데, 이는 이오노머 제조를 위한 효율적인 용액임을 의미한다. 이와는 반대로, 산성화 되지 않은 PFM 및 PFMN은 상대적으로 낮은 극성 및 π-π stacking으로 인하여 THF, CH2Cl2, CHCl3 등을 포함한 많은 용매에서 양호한 용해도를 나타내었다. 특히, 플루오렌 함량이 많은 폴리플루오렌계 공중합체는 산 없이 용매에서 향상된 용해도를 나타내었다. 또한, PFBP 및 PFTP 이오노머는 IPA/water 하에서 PBP 및 PTP 이오노머보다 더 나은 용해도를 나타내었는바, 이는 플루오렌 세그먼트가 이러한 이오노머의 용해도를 향상시킬 수 있음을 의미한다.
한편, 이오노머의 극한점도는 25℃에서, DMSO 용매를 사용하여 조사하였다. PTP, PBP, PFTP 및 PFBP 이오노머는 2 dL/g 이상의 높은 극한점도를 나타내었다. 종래 연구에 의하면, 폴리이미드의 중량평균분자량(Mw)이 100 kg/mol 이상이더라도 뛰어난 필름 형성능 및 기계적 물성을 갖는 폴리이미드의 극한점도는 일반적으로 2 dL/g보다 낮은 것으로 조사된바 있다. 폴리플루오렌계 공중합체의 극한점도는 플루오렌 비율이 높아질수록 감소하여 필름 형성능이 제한된다.
(구조 분석)
본 발명의 실시예로부터 제조한 중합체 이오노머의 화학 구조는 핵자기공명(1H NMR) 분석으로 확인하였다. 그 중, 도 1에는 본 발명의 실시예 1로부터 제조된 (a) PFTM 및 (b) PFTP의 핵자기공명(1H NMR) 스펙트럼을, 도 2에는 본 발명의 실시예 2로부터 제조된 PFBM의 핵자기공명(1H NMR) 스펙트럼을, 도 3에는 본 발명의 실시예 2로부터 제조된 PFBP의 핵자기공명(1H NMR) 스펙트럼을 나타내었다.
4급화 전, 일부 중합체의 용해도를 증가시키기 위하여 10% 트리플루오로아세트산(TFA)을 d6-DMSO에 추가하였고, 1H NMR 분석에서 H2O 피크(3.34 ppm)의 negative effect를 제거하였다. TFA의 chemical shift는 13 ppm 부근에서 큰 피크로 나타나 더 나은 관측을 위하여 숨겨졌다. 전형적으로, 피페리디늄 고리에서 프로톤(a 및 b)은 4급화 전에 TFA에 의해서 상이한 피크로 스필릿되고, 동일한 적분 면적을 갖는 4개의 스플릿 피크는 3.50 ppm, 3.20 ppm, 2.90 ppm, 2.30 ppm 부근에서 관측되었다. N-CH3의 chemical shift는 2.77 ppm 부근에서 나타난다. 4급화 이후, 스플릿 현상은 사라지고, 피페리디늄 고리에서 a, b 및 c 프로톤의 chemical shift는 3.35 ppm, 3.14 ppm 및 2.86 ppm으로 이동한다.
폴리플루오렌계 공중합체에서 플루오렌 비율(x)은 식 d/a=6x/2(x+y)=6x/2로 계산된다(상기 식에서, d는 플루오렌 세그먼트 내 6개의 메틸 프로톤, a는 피페리디늄 고리 내 2개의 프로톤). 그러므로 도 1 및 도 2에서 보는 것처럼 PFTM에서 x1은 0.137, PFBM에서 x2는 0.14로 계산될 수 있다.
(음이온교환막의 물리적 특성)
하기 표 1에는 본 발명의 실시예 5 및 비교예 3으로부터 제조한 음이온교환막, 상용막으로서 Fumion, FAA-20의 이온교환성능(IEC), 함수율(WU), 팽창률(SR), 수화 수(λ), OH- 이온전도도(σ) 및 극한점도(η) 등을 나타내었다.
IEC(mmol/g) WU(%)a SR(%)a λ Nfree Nbound σ(mS/cm)a η(dL/g)b
Theo
(OH-)
Theo
(I-)
NMR
(I-)
PBP 3.52 2.54 2.54 330±10 107±5 52 18 34 58±2 5.23
PFP 3.09 2.31 2.31 78±12 - 14.02 - - NE 0.25
PFBP 3.43 2.49 2.49 310±5 94±5 50.35 29 21 63±3 2.34
PFPN 2.86 2.25 2.25 46±12 - 8.94 - - NE 0.38
PTP 2.78 2.13 2.13 49±5 12±1 9.79 0 9.79 48±2 4.875
PFTP 2.82 2.16 2.16 45±5 9.6±1 8.86 0 8.86 66±4 2.76
Fumion NE 56±5 20.25 NE - - 26.7±2 -
FAA-20 1.72 7.0(Cl-
form)
<2.0Cl-
form)
NE - - 40±2 -
a: 30℃ in water, b: 25℃ in DMSO, -: 시험 불가, NE: 미평가, Nfree: number of free water, Nbound: number of bound water
상기 표 1 및 도 4(a) 내지 4(c)에서 보는 바와 같이, 상이한 이온교환성능 값을 음이온교환막은 액상 수중의 상승된 온도에서 매우 상이한 함수율을 나타낸다. PFTP 및 PTP 막은 80℃에서 매우 낮은 함수율(OH- form에서 ~60% 및 Cl- form에서 ~20%)과 팽창률(OH- form에서 ~10% 및 Cl- form에서 <5%)을 나타내었다. 이에 비하여, PFBP 및 PBP 막은 그들의 보다 높은 이온교환성능 값(>3 mmol/g)으로 인하여 80℃에서 훨씬 높은 함수율(OH- form에서 450~500% 및 Cl- form에서 230~250%)과 팽창률(OH- form에서 120~135% 및 Cl- form에서 45~50%)을 나타내었다. 아울러 보다 높은 이온교환성능 값을 갖는 PFTP 및 PFBP 막은 플루오렌 그룹의 강성도로 인하여 각각 PTP 및 PBP 막에 비하여 더 낮은 함수율 및 팽창률을 나타낸다. 요컨대, 폴리플루오렌계 음이온교환 공중합체는 보다 높은 이온전도도 및 치수안정성을 나타낸다.
한편, 동적증기흡착(dynamic vapor sorption, DVS) 분석을 통하여 상이한 상대습도 조건에서 음이온교환 중합체의 수분흡착거동을 조사하였으며, 그 결과를 도 4(d)에 나타내었다. 두 개의 수화-탈수 사이클을 기록하였고, 상이한 상대습도에서 서로 잘 매치되었다. 상대습도는 일정한 시차를 두고 DVS 분석기에서 자동으로 증가하였다. 상이한 상대습도에서 음이온교환 중합체의 DVS 거동은 완전히 다르며 초순수에서보다 훨씬 낮다. 전형적으로, 초순수에서 높은 함수율을 갖는 PFBP 및 PBP 막은 OH-(CO3 2-) form에서 단지 50% 미만의 수증기흡착 및 상대습도 90%에서는 20% 정도의 수증기흡착을 나타낸다. 이러한 결과는 음이온교환막 또는 음이온교환 이노모머의 수분 수송 거동은 동적 수증기 및 평형 상태의 액상 수중 간에, 특히 연료전지 시스템에서 매우 상이할 수 있음을 의미한다.
(이온전도도)
막의 이온전도도는 완전히 수화된 상태에서 Cl-, OH- 및 CO3 2- 형태로 측정되었다. 도 5에 나타낸 것처럼, 이온교환성능 값이 높은 모든 막(OH- 형태에서 >2.7 mmol/g)은 80℃, 고분자 전해질막 연료전지(PEMFCs)에서 Nafion 막의 벤치마크를 초과하는 120 mS/cm 이상의 매우 높은 OH- 전도성을 나타낸다. 아울러 음이온교환 중합체의 OH- 전도도에 대한 CO2 피독의 영향이 불가피하기 때문에, 도 5 및 도 6에 나타낸 것과 같이, 음이온교환막의 Cl- 및 CO3 2- 전도성도 조사하였다.
특히, Cl- 전도도는 현재 이온전도도에 대한 표준 평가 접근법으로 검토되고 있다바, 이들 음이온교환막 중 PFTP 막은 98℃, OH-와 Cl- 형태에서 각각 208 mS/cm와 77 mS/cm의 뛰어난 이온전도성을 보인다. PTP 막은 높은 온도에서 150 mS/cm 이상의 높은 OH- 전도성을 보인다. 이와 비슷하게 PFBP 막 또한 IEC가 약간 낮은데도 PBP보다 높은 이온 전도성을 보인다. 확실히, 폴리플루오렌계 공중합체는 터페닐 또는 바이페닐계 중합체보다 전도도가 상당히 높다(PFTP 대 PTP, PFBP 대 PBP). 폴리아릴피레리디늄(PAP) 골격에 결합된 적절한 플루오렌 세그먼트는 미세 상 분리를 최적화시키기 때문에 이온전도도 향상에 굉장히 효과적이다.
그러나 PFBP와 PBP막의 OH- 전도도는 90℃ 이상에서 측정할 수 없었으며 WU(함수율)가 커서 시험 후 상당한 변형이 발견되었으나, Cl-형태에서는 문제가 발견되지 않았다. 또한 높은 온도(>90℃)에서는 PFBP와 PBP의 Cl-전도성을 더 이상 개선할 수 없다. 특히 이들 PAP 기반 음이온교환 중합체의 분자량과 WU도 이온전도도에 상당한 영향을 미치고 있으며, 매우 높은 WU와 SR은 이온전도도에 해로울 것으로 보인다.
도 7에 나타낸 본 발명의 실시예 5 및 비교예 3으로부터 제조된 OH- 형태의 음이온교환막 (a) PBP, (b) PFBP, (c) PTP 및 (d) PFTP의 시차주사열량분석(DSC) 결과, 팽창한 막은 bound water와 free water라는 두 가지 유형의 물을 함유한 것으로 나타났다. Bound water는 공중합체에서 이온종과 결합한 물 분자로 정의된다. 도 7과 표 1에서 볼 수 있듯이, PFBP 및 PBP 막은 합리적인 free water및 bound water와 함께 PFTP 및 PTP 막보다 훨씬 높은 λ값을 보인다. 반면 PFTP와 PTP막에서는 free water를 측정할 수 없어 bound water만이 PFTP와 PTP막의 DMP 그룹으로 둘러싸여 있음을 암시한다. 반면, CO3 2- 전도도는 carbonation 후의 음이온교환막과 음이온교환 이오노머의 이온전도용량을 반영하기 때문에 연료전지의 상당한 이온전도도와 전압의 손실을 보여준다. 따라서 도 6에 나타낸 바와 같이, 높은 온도에서는 PFTP와 PFBP 막의 CO3 2- 전도도는 65 mS/cm 이상이다. 이는 음이온교환막이나 음이온교환 이오노머가 연료전지의 carbonation 현상으로 악화되더라도 여전히 매우 높은 이온 전도성을 갖는다는 것을 의미한다.
(기계적 물성 및 열적 안정성)
하기 표 2에는 본 발명의 실시예 1에 따른 PFTM의 막, 실시예 5로부터 제조한 PFTP 막(I- form), PFTP 막(OH- from), 비교예 3으로부터 제조한 PTP 막(I- form), PTP 막(OH- from), 실시예 5로부터 제조한 PFBP 막((I- form), 비교예 3으로부터 제조한 PBP 막((I- form) 및 상용 음이온교환막 FAA-2-30의 인장강도(TS), 파단신율(EB), 영률(YM), 유리전이온도(Tg), 저장탄성률(SM, 80℃)을 나타내었다.
샘플 TS(Mpa) EB(%) YM(Gpa) Tg(℃) SM(Mpa)
PFTM 83.2±3 10.3±2 2.152 349, 406 1610
PFTP(I-) 84.6±2 25.6±3 1.582 - -
PFTP(OH-) 48.5±5 30.2±2 0.521 - -
PTP(I-) 71.1±5 45.7±3 0.1201 392 1780
PTP(OH-) 52±5 71±3 0.368 - -
PFBP(I-) 52.9±4 13.6±2 1.052 320, 378 2050
PBP(I-) 46±4 14.8±2 0.987 357 1050
FAA-2-30 47±2 12.5±2 0.876 - -
또한, 도 8에는 본 발명의 실시예 5 및 비교예 3으로부터 제조된 I- 형태의 음이온교환막의 (a) 상온에서 측정한 인장강도 및 파단신율, (b) 온도 및 음이온 형태를 달리하여 측정한 음이온교환막의 인장강도 및 파단신율을 그래프로 나타내었다.
도 8과 표 2에 나타난 바와 같이, PFTP와 PTP 막은 막들 가운데서 뛰어난 인장강도(TS)와 파단신율(EB)을 나타낸다. 특히 PFTP 막의 TS와 영률(YM)은 상온에서 84.6MPa, 1.58GPA에 도달한다. PTP 막(TS:71 MPa, EB: 45.7%, YM: 1.2 GPA) 비교하면, PFTP 막은 TS와 YM이 높지만 플루오렌 세그먼트의 강성으로 인해 EB가 낮기 때문에 변형 저항 또한 낮다는 것을 알 수 있다. 확실히, 높은 고유 점성도를 가진 PFTP(2.73dL/g)와 PTP(4.775dL/g) 막은 우수한 기계적 물성을 갖고 있다. 특히, PFTP 막의 TS와 EB는 기체분리용으로 각광받는 막인 상용 polyimide 막(TS: ~90 MPa, EB: 30%)과 매우 유사하여, 음이온교환막의 용도에 있어 PFTP 막이 기계적으로 견고함을 나타낸다. Peng 연구진의 QAPPT 분리막(표3)과 합성한 PTP(TS: 52 MPa, EB: 71%, OH- form)를 비교했을 때, 두 분리막의 구조가 유사함에도 불구하고 QAPPT 막은 QAPP의 낮은 분자량으로 인해 훨씬 낮은 TS(35MPa)와 EB(40%)를 보였다. 더욱이, 도 8(b)와 같이, 4급화 반응 전의 PFTM은 PFTP와 비교했을 때 유사한 TS(83.2 MPa)와 더욱 낮아진 EB(10.3%)를 보이지만, YM(2.25 GPA)이 훨씬 높다. 실제로, PFTP의 EB는 4급화 반응 후에 현저하게 증가한다. 특히, 서로 다른 이온 형태의 음이온교환막은 기계적 물성에 큰 영향을 미친다. 일반적으로 OH- 형태의 PFTP와 PTP막은 TS는 낮지만 EB는 훨씬 높은데, 이는 수화 현상이 고분자 사슬의 π-π 적층을 감소시키지만 암모늄군과 물 사이의 상호작용을 증가시키기 때문이다. 또한 PFTP 막의 기계적 물성성도 60oC에서 조사하였다. PFTP 막의 TS와 EB는 60oC에서 확연히 변경되지 않았으며, 이는 치수안정성에 상응하는 결과로, PFTP 막이 열적 내성이 강하고 연료전지 용도에 좋은 우수한 변형 저항성을 가지고 있음을 알려준다. 한편, 음이온교환 중합체의 열적 거동은 열중량-질량 분석(TGA-MS)과 동적기계분석(DMA)에 의해 체계적이고 종합적으로 조사하였다.
도 9에는 본 발명의 실시예 1 내지 3 및 비교예 1, 2로부터 제조된 다양한 중합체 이오노머의 열중량분석(TGA) 그래프(질소 분위기 하에서 10℃/min의 승온속도 30℃부터 800℃까지 측정, 모든 샘플은 데이터를 기록하기 전에 용매와 물을 제거하기 위하여 150℃에서 5분 동안 등온상태를 유지)를 나타내었다. 도 9에서 보는 바와 같이, 음이온교환 이오노머의 분해온도는 200℃이상으로 100℃ 이하에서 작동하는 음이온교환막 연료전지에 적용하기에 충분하다. 200~350℃ 사이의 첫 번째 중량 감소 단계는 암모늄 그룹의 분해에 해당하며, 400℃ 이상에서 중량 감소는 고분자 골격의 분해에 해당한다.
또한, 도 10에는 본 발명의 실시예 1, 2 및 비교예 1, 2에 따른 PFTM, PFBM, PTM 및 PBP의 동적기계분석(DMA) 그래프를 나타내었다. PTM(392℃)과 PBP(357℃)는 PFBM과 PFTM보다 높은 단일 Tg를 나타낸다. 그러나 PFBM과 PFTM 공중합체는 2개의 Tg를 나타내며, 이는 공중합체가 2개의 다른 세그먼트(블록)를 가지고 있음을 나타낸다. 한편, 이 고분자들은 80℃에서 1000MPa 이상의 매우 높은 저장탄성률을 보이며, 폴리플루오렌계 공중합체는 PTM, PBP보다 높은 저장탄성률을 보여 이 공중합체가 더욱 우수한 열역학적 특성을 갖고 있음을 시사했다.
(모폴로지 분석)
도 11에는 본 발명의 실시예 5 및 비교예 3으로부터 제조된 (a) PFTP 막의 평면(in-plane) 및 (b) PFTP 막의 단면(cross section) 주사전자현미경(SEM) 이미지를 나타내었는바, PFTP 막은 치밀한 모폴로지를 가지며 그 두께가 얇은 것을 확인할 수 있다. 또한, 도 11(c) 내지 11(f)에는 (c) PBP, (d) PFBP, (e) PTP, (f) PFTP 막(OH- form)의 수화상태에서의 원자현미경(AFM) 이미지를 나타내었다. 밝은 영역은 강성의 고분자 골격에 의해 생겨나는 소수성 상에 속하고, 어두운 영역은 피페리디늄과 물에 의해 응집되는 친수성 상을 나타낸다. 폴리아릴피페리디늄 골격에 플루오렌 세그먼트(블록)가 도입된 후, PBP 대 PFBP 및 PTP 대 PFTP 사이의 마이크로 상분리에 비하여 그 마이크로 상분리가 크게 증진되었다. 특히, PFTP 막(도 11(e) 참조)은 뚜렷하고 연속적인 이온 채널을 따라 최대의 소수성/친수성 상분리를 나타내었는바, 이온 채널의 크기는 20 내지 25 nm이다. 이는 PFTP 음이온교환막이 현저히 높은 이온전도도를 나타내는 이유이다.
도 12에는 본 발명의 실시예 1, 3 및 4로부터 제조된 (a) PFTP, (b) PFP, (c) PFPN 이오노머(I- form)의 투과전자현미경(TEM) 이미지를 나타내었다. 원자현미경 이미지와 유사하게 어두운 영역은 친수성 상으로, 밝은 영역은 소수성 상으로 정해진다. PFP 및 PFPN은 PFTP에 비하여 증진된 마이크로 상분리를 갖는다. 다만, PFP 및 PFPN 이오노머는 매우 제한적인 분자량을 나타내므로 연료전지 성능을 극히 저해한다.
(연료전지 성능)
일반적으로 음이온교환막은 우수한 치수안정성 및 기체 배리어 특성과 함께 우수한 기계적 물성과 낮은 함수율(WU)을 필요로 하며, 음이온교환 이오노머는 양호한 용해성(또는 분산성), 촉매에 대한 낮은 흡착 효과 및 양호한 수투과도를 필요로 한다. 본 발명에서는 음이온교환 이오노머의 종류, 음이온교환막의 종류, 촉매의 종류, 역압(backpressrue), 상대습도(RH), 유량, 연료전지에 대한 공급기체의 영향을 체계적으로 조사하여 음이온교환막 연료전지의 응용 가능성을 고찰하였다. 모든 연료전지 데이터는 반복재현성을 보장하기 위해 최소한 세 번 이상 시험하였다. 용해도 측정에 기초하여 대부분의 음이온교환 중합체는 IPA/DI water에서 용해도가 양호하며, 이는 모든 음이온교환 중합체가 음이온교환 이오노머로 사용될 가능성이 있음을 나타낸다. 상용 FAA-2-30 막과 Fumion 이오노머가 비교를 위해 사용되었다.
1. 음이온교환 이오노머의 종류에 따른 영향
도 13에는 H2/O2 조건에서 TKK Pt/C 촉매(0.33 mg/cm2)를 기반으로 음이온교환 이오노머의 종류에 따른 연료전지의 성능을 나타내었다[(a) 65oC에서 PFTP 막(25±3μm) (A/C dew points: 61/65oC without backpressure); (b) 80oC에서 PFTP 막(25±3μm) (A/C dew points: 66.5/80oC 및 2.0/1.1 bar A/C backpressure); (c) 65oC 에서 상용막 FAA-3-20(20±2μm) (A/C dew points: 63/65oC, 1.1/1.1 bar backpressure). (d) 80℃, H2/O2 조건에서 TKK Pt/C 촉매(0.33 mg/cm2)를 기반으로 음이온교환 이오노머의 종류에 따른 연료전지의 성능(A/C flow rate: 1000/1000 mL/min, A/C dew points: 66.5/80oC, 2.0/1.1 bar A/C backpressure)].
도 13(a)에서 보는 것처럼, 음이온교환막이 PFTP일 때, PFBP와 PFTP 아이노머는 높은 양극 RH(85%)에서 음이온교환 이오노머 중 peak power density(PPD)(>1 W/cm2)가 우수하다. 이는 아마도 플루오렌계 음이온교환 중합체의 페닐 흡착 효과가 낮기 때문일 것이다. 그럼에도 불구하고 낮은 양극 RH(50%)에서 수투과도(PFBP 및 PBP)를 가진 음이온교환 이오노머는 도 13(b)와 같이 낮은 수증기 투과성(PFTP, PTP, Fumion)의 음이온교환 이오노머보다 훨씬 높은 PPD(PFBP: 1.42 W/cm2)를 나타낸다. 더욱이 PFTP와 PTP 이오노머의 PPD는 높은 전류 밀도의 양극 내 심한 dry out으로 인해 50% 양극 RH에서 고온(80oC)에서도 더 이상 개선될 수 없었다. 반면 PFBP와 PFTP 이오노머는 다른 이오노머보다 우수하며 100%RH에서 상용 FAA-3-20 막에 기반해 유사한 PPD를 보여준다(도 13(c) 참조). 실제로 낮은 함수량의 음이온교환 이오노머를 사용하거나 낮은 RH에서 연료전지를 운용하는 것은 양극의 flooding 문제를 해결하는 데 기여한다. 즉, PFTP는 높은 이온전도도, 낮은 함수율(WU) 및 페닐 흡착 효과로 인해 높은 RH에서 작동하는 음이온교환막 연료전지에 매우 효율적인 이오노머가 될 수 있다. 또한 PFBP 이오노머는 높은 양극 RH에서 PFTP 이오노머보다 높은 PPD를 보여주는데, 이는 페닐 흡착 효과가 낮고 수투과도가 높기 때문에 높은 전류 밀도에서 양극에서 음극으로 빠른 물 확산에 기여하기 때문이다. 이 경우, 낮은 WU를 갖는 음이온교환 이오노머는 높은 RH에서 작동할 경우 음극 flooding 문제를 해결하는 데 실제로 기여한다. 그러나 낮은 WU를 갖는 음이온교환 이오노머는 사실상 제한된 수투과도를 가지고 있으며 음극에 있더라도 낮은 RH에서는 건조해지기 쉽다.
페닐 흡착 효과가 낮은 PFP와 PFPN 이오노머는 양호한 연료전지 성능을 보일 것으로 예상했으나, PFTP와 FAA-2-30 음이온교환막(0.3~0.7 W/cm2)을 기준으로 저조한 PPD를 보였다. 막전극접합체 준비과정에서 PFP와 PFPN의 경우 분자량이 매우 낮아 촉매층이 심하게 벗겨지는 것으로 밝혀졌다. 반면, 고유 점성도가 매우 높은 PTP 이오노머(4.775 dL/g)는 용해도와 전력밀도가 제한적이다. 이러한 결과는 음이온교환 이오노머가 촉매를 음이온교환막과 매우 잘 고정시키려면 적절한 분자량이 필요하지만, 효과적인 삼상계면(TPB)을 구성하기 위해서는 양호한 용해성이 필요하다는 것을 강하게 나타낸다. 즉 페닐 흡착 효과가 낮고 이온전도도 및 수증기 투과성이 높은 PFBP 이오노머는 서로 다른 RH에서 연료전지 성능이 두드러져 음이온교환 이오노머 응용에 적합한 후보군이 될 수 있다.
이를 근거로 도 13(d) 및 도 14와 같이 양극과 음극 모두에서 최적화된 PFBP 이오노머를 이용한 서로 다른 음이온교환막 간의 연료전지 성능을 비교했다. 예상대로 PFTP 음이온교환막은 모든 경우에서 PTP 및 상용 FAA-2-30 막보다 높은 PPD를 보였다. FAA-2-30 막 기반 막전극접합체의 PPD는 분리막의 분해 정도가 심해 80℃에서는 더 이상 개선될 수 없다. PTP 막은 backpressure가 없는 PFTP 막과 유사한 출력밀도를 보이는 반면, backpressure로는 극적으로 성능이 향상되지 않았다. PFBP 이오노머는 PFTP 기반 음이온교환막 뿐만 아니라 상용 FAA-3-20 막과의 호환성 또한 양호하다.
2. 상대습도(RH)와 분자량의 영향
RH는 특히 양극에서 전력밀도에 상당한 영향을 미친다. 도 15는 막 두께 25~30μm로서 TKK Pt/C 촉매를 기반으로 할 때 peak power density(PPD)에 영향을 미치는 상대습도(RH)의 효과를 나타낸 그래프로서, (a) 상대습도 100%의 음극을 구비한 양극의 상대습도 효과, (b) 상대습도 50%의 양극을 구비한 음극의 상대습도 효과를 나타내었다.
또한, 도 16에는 forward 및 reverse scanning에 의하여 도 15(a)의 peak power density(PPD)에 영향을 미치는 상대습도(RH)의 효과를 상세 I-V 곡선으로 나타내었다.
음극의 50% RH 및 양극의 100% RH는 이전에 backpressure가 없는 TKK Pt/C 기반 셀의 최적 조건으로 결정되었다(도 15 및 16 참조). 그러나 음극의 50% RH는 backpressure에 의해 높은 전류밀도에서 건조되기 쉽다. 따라서 backpressure와 얇은 막에 의한 RH 효과는 backpressure와 막 두께가 전극의 습도 환경에 영향을 미쳐 연료전지의 전기적 성능에 영향을 주기 때문에 재조사되었다. 도 19에서와 같이, 음극의 RH 75% 및 양극의 100%를 backpressure와 얇은 막으로 최적의 조건으로 설정해 양극의 dry-out을 방지할 수 있다.
또한, 도 17에는 동일 조건에서 실시예 2로부터 제조한 PFBP 이오노머에서 플루오렌의 비율에 따른 고유 점성도와 PPD의 관계를 그래프로 나타내었다(A/C 촉매: Hispec Pt/C with 0.33 mg/cm2 loading, 유량: 1000/1000 mL/min, dew point: 73.5/80oC, 비어있는 붉은 표시는 back pressure가 없을 때의 PPD, 채워진 붉은 표시는 1.3/1.3 bar back pressure에서 PPD이다). 도 17에서 보는 바와 같이, 고유 점성도, PPD, 플루오렌 비율의 관계를 조사하였다. 음이온교환 이오노머의 고유 점성도는 공중합체의 플루오렌 비율에 따라 감소하였다. 10~20%의 플루오렌 비율은 80℃에서 backpressure가 없을 때 1.21 W/cm2, backpressure를 가했을 때 1.64 W/cm2로 가장 높은 PPD를 보였다. 다만, 음이온교환 이오노머의 고유 점성도가 1dL/g 이하일 때 촉매층이 벗겨지는 현상이 발견되며 PPD 감소가 심하다. 실제로 PFBP 음이온교환 이오노머에서 30%의 플루오렌은 촉매층의 일부가 벗겨졌음에도 불구하고 매우 높은 PPD를 보인다.
3. 촉매의 종류, backpressue, 유량의 영향
현재 음이온교환막 연료전지는 PPD에서 많은 도약을 이루었지만, 대부분의 고성능 연료전지는 높은 공급기체 유량, backpressure, 순수한 O2 사용 등 다소 비현실적인 조건에 기초하고 있다. 따라서 연료전지 성능에 대한 촉매의 종류, backpressure, 유량, 공급가스의 영향을 최적화된 음극 RH 조건에서 체계적으로 조사하였다. Backpressure는 전력밀도에 큰 영향을 미치고 있으며, 종래 많은 연구자들이 250 kPa 이상 고압의 backpressure을 적용하여 높은 PPD를 실현하였다. 원칙적으로 backpressure는 본 발명에서 PPD의 성능 향상 효과가 30%~100%로 종래 보고된 PAP-TP-85 막과 유사하다. TKK Pt/C 기반의 backpressure 효과에 대한 자세한 내용은 도 19에서 확인할 수 있다. 물리적으로 견고하고 검증된 기체투과도를 가진 음이온교환막만이 막전극접합체 성능 측정 중 고압의 backpressure를 가하기에 적합하며, 그렇지 않은 경우 연료전지 측정 시 높은 공급기체 유량에서 큰 위험이 될 수 있다.
도 18에는 (a) backpressure를 가하지 않은 조건에서 PPD에 대한 촉매의 영향, (b) 음극 및 양극 각각 1.3/1.3 bar backpressure조건에서 전력밀도에 대한 촉매의 영향, (c) Pt-Ru/C 함량에 따른 전력밀도의 영향, (d) PFTP막과 PFBP 이오노머에서 전력밀도에 대한 유량의 영향을 그래프로 나타내었다. 도 18(a)에서 보듯이, 연료전지 성능에 대한 촉매 종류의 영향을 조사하여 연료전지의 세 가지 유형을 설계하였다. (1) 양극과 음극 모두에 Tanaka TKK Pt/C, (2) 양극과 음극 모두에 Hispec Pt/C, (3) 음극에 Hispec Pt-Ru/C 양극에 Hispec Pt/C. Pt-Ru/C, Hispec Pt/C, TKK Pt/C 기반 연료 전지는 backpressure 없이 80℃에서 각각 1.42 W/cm2, 1.21 W/cm2, 0.91 W/cm2의 PPD에 도달한다. Pt-Ru/C 촉매가 Pt/C 촉매보다 실제로 더 우수하며 약 20% 가량 전력밀도가 향상되는 것이 확인되었다. Hispec Pt/C는 TKK Pt/C에 비해 약 30% PPD가 개선된 것으로 나타났다.
단전지의 PPD는 backpressure에 의해 극적으로 개선되었다. Pt-Ru/C 기반 셀의 PPD는 backpressure가 없는 경우에 비해 43% 개선된 PPD인 2 W/cm2(도 18(b) 참조)를 쉽게 넘어설 수 있다. TKK Pt/C는 backpressure로 현저한 PPD 개선(40%~92%)을 보이며, TKK Pt/C의 PPD 범위는 1.2~1.71 W/cm2이다(도 20 참조). 그러나 Hispec Pt/C 기반 셀의 한계 전류밀도는 Pt-Ru/C와 비슷한 5.5 A/cm2 임에도 불구하고, 알려지지 않은 성능 손실로 인해 PPD가 예상만큼 크게 개선되지 않았다 (backpressure가 없는 셀에 비해 약 33% PPD 개선). Pt-Ru/C 중량을 0.33에서 0.42 mg/cm2로 약간 증가시킨 후 PPD는 80℃에서 합리적인 backpressure(1.3/1.3bar)로 2.34 W/cm2에 도달하였다(도 18(c) 참조).
최근 대부분의 음이온교환막 연료전지는 높은 유량(>1000 mL/min)과 높은 Pt-Ru/C 함량을 사용한다는 점이 눈에 띈다. 따라서 유량을 300 mL/min(도 18(d) 참조)으로 줄인 결과, PPD가 여전히 2.15 W/cm2에 도달함을 확인했다. Backpressure가 있는 연료전지 조건은 그렇지 않은 경우에 비해 훨씬 복잡하다. 실제로 유량이 100/100 mL/min인 연료전지는 유량이 1000/1000 mL/min인 전지보다 비슷하거나 더 높은 PPD를 나타낸다.
4. 공급기체의 영향
H2/air로 작동하는 음이온교환막 연료전지는 아직까지 많이 조사되지 않았다. 도 21에는 80oC, H2-air 조건에서 음극 촉매의 종류(Hispec Pt-Ru/C or Pt/C)에 따른 연료전지 성능(양극 촉매: Hisepc Pt/C, A/C 유량: 1000/2000 mL/min, A/C backpressure: 1.3/1.3 bar, A/C 촉매 함량: 0.42 mg/cm2)을 그래프로 나타내었다.
본 발명에 따라 H2/air로 공급되는 최적화된 셀은 도 21에서 보는 바와 같이 80℃에서 Pt-Ru/C 기준 1.25 W/cm2 및 Hispec Pt/C 기준 1 W/cm2 이상의 PPD에 도달하였다. 이러한 PPD는 현재 연구되고 있는 것들 중에서 H2/air조건 중 가장 높은 값을 갖는다. 또한, Pt-Ru/C의 높은 함량은 전력 밀도를 상당히 개선시킨 것으로 보고된바 있으며, 이는 도 18(c)에서도 잘 나타나 있다. 즉, PFTP 및 PFBP 기반 연료전지의 PPD는 촉매 함량을 증가시키면 더욱 개선될 수 있다.
5. Ex-situin-situ 내구성
상술한 바와 같은 결과는 본 발명의 실시예 5로부터 제조한 PFTP 막이 높은 이온전도성을 보이며 치수안정성이 우수하다는 것을 보여준다. 즉, 이러한 음이온교환 중합체에서 IEC 또는 이온전도도 및 치수안정성 사이의 트레이드오프는 검증이 되었다. 폴리플루오렌계 연료전지의 PPD는 80℃에서 Pt-Ru/C로 2 W/cm2를 쉽게 초과할 수 있다. 따라서 막전극접합체와 관련된 in-situ 내구성 문제가 현재 연구계에 의해 집중받고 있다. 또한, 많은 보고서에서 ex-situin-situ 내구성이 일치하지 않는 것으로 입증되었다.
도 22에는 알칼리 조건에 따른 실시예 5로부터 제조한 PFTP 막의 알칼리 안정성 (a) 1H NMR로 측정된 알칼리 조건에 따른 PFTP 양이온 잔량, (b) 80oC, 1M and 5M NaOH 에서 PFTP의 반감기를 예측한 그래프를, 도 23에는 80oC, 1M NaOH에서 2000시간 동안 알칼리 처리를 한 실시예 5로부터 제조한 PFTP 막의 1H NMR 스펙트럼 및 실물 이미지를, 도 24에는 80oC, 5M NaOH에서 1500시간 동안 알칼리 처리를 한 실시예 5로부터 제조한 PFTP 막의 1H NMR 스펙트럼 및 실물 이미지를 나타내었다.
도 22(a), 도 23 및 도 24에서 보는 바와 같이, PFTP 막은 1M NaOH, 5M NaOH에서 2000 시간 동안 80℃에서 매우 안정적이다. 최근 미국의 국립신재생에너지연구소(NREL)에 의한 최첨단 음이온교환막의 high-throughput 시험에 따르면, 대부분의 음이온교환막은 막의 심한 변형을 보이며 1000시간 동안 80℃에서 1M KOH에서 시험된 이후 특정 경우에 색상 변화와 함께 파단까지 나타났다. 그러나 본 발명에 따른 PFTP 막은 2000시간 동안 80℃에서 1M NaOH에서 시험한 후 투명하고 기계적으로 단단한 형태를 유지하며(도 23 참조), 1H NMR 스펙트럼에 의한 명백한 피페리디늄 분해는 발견되지 않았다. 2000시간 동안 80℃에서 5M NaOH에서 약 20%의 성능저하가 발견되었다. 그러나 PFTP는 실제로 80℃에서 10M NaOH에서 불안정하며, 168 시간 내에서 디메틸피페리디늄(DMP) 그룹의 명백한 분해가 검출되었다(도 25 및 도 26 참조). 80℃에서 10M NaOH에서 2000 시간 후, 60% 이상의 DMP 그룹이 분해되었고, 1000 시간 이후로는 Cl- 전도도가 너무 낮아서 기록할 수 없었다. 이온전도도와 양이온 그룹의 화학구조의 변화가 항상 일치하는 것은 아니며, 대개 이온전도도 손실은 암모늄 그룹의 분해보다 다소 높다. 도 27에서 보는 바와 같이. PFTP의 기계적 물성과 TGA는 80℃에서 168시간 동안 10M NaOH에 담근 후 현저한 감소를 보인다. 음이온교환 중합체의 성능저하는 피페리디늄 그룹뿐만 아니라 기계적 물성을 손상시키는 골격의 노화 문제와도 관련이 있다.
도 22(b)는 ln(QA%)=k×t의 식으로부터 80℃에서 1M 및 5M NaOH의 PFTP의 반감기 시간(t1/2) 예측을 보여준다. 여기서 QA%는 초기 함량에 대한 시험 후 막에 남아 있는 피페리디늄 함량의 비율, k는 분해 상수이며, t는 주기이다. PFTP의 t1/2는 80℃에서 1M NaOH에서 30,000 시간 이상이고, 5M NaOH에서 5000 시간 이상이다.
도 28 및 도 29는 H2-O2에서 구동되는 낮은 기체 유량(100~200 mL/min)에서 전류밀도(0.2 A/cm2 및 0.4 A/cm2)에 따라 측정된 in-situ 내구성을 보여준다. PFTP는 0.2 A/cm2에서 100 시간으로 거의 안정적이지만, 100 시간이 지나면 셀의 전압 손실이 갑자기 증가한다. 셀을 다시 가습했을 때, 168 시간 동안 시험한 후 전압이 0.6 V로 회복되었으나 10%~20%의 손실이 발견되었다(도 28(a) 참조). 반면, 셀은 도 28(c)에서 보는 바와 같이, 0.2 A/cm2에 비해 0.4 A/cm2에서 전압 손실이 더 많이 발생하기 때문에 dry-out이 쉽게 일어나는 것을 발견했다. 이와는 대조적으로 상용 FAA-3-20막 기반 단일 셀은 0.2 A/cm2에서 2일 이내에 극적인 전압 손실을 보였다(도 29 참조). 물 관리는 H2-O2 조건에서 매우 중요하다는 점에 주목해, 미세한 RH변화는 이러한 높은 IEC 고분자를 이용한 시험 중 큰 전압 손실을 초래할 수 있음을 확인했다. 이러한 단일 셀은 수분에 민감한 음이온교환 이오노머로 측정이 진행되기 때문에 dry-out이 일어나기 쉽다. 이들 막전극접합체의 검시는 0.2A/cm2에서 168 시간에 대한 in-situ 내구성 시험을 거쳐 d6-DMSO로 막과 이오노머를 재분해 하였을 때 도 28(b)와 같이 측정한 막전극접합체의 1H NMR 스펙트럼에서 어떤 저하 증상도 검출되지 않았다. 그러나 흥미롭게도, 약 20 사이클(~1시간) 동안 0.1 A/cm2의 스캔 속도로 전류를 0에서 5 A/cm2로 스캔하는 I-V 측정 후 1H NMR결과와 음이온교환막이 I-V 측정을 진행하는 동안 5 A/cm2 이상의 높은 전류 밀도에서 분해가 쉽게 일어남을 보여주는 in-situ 내구성 시험(도 30 참조)에 의해 DMP 그룹의 분해가 검출되었다. 한편, 막전극접합체의 기계적 특성도 120시간 동안 0.4 A/cm2에서 시험한 후 조사하였다. 도 28(d)에서 보는 바와 같이, 120시간 동안 in-situ 내구성 시험 후 PFTP막의 인장강도, 파단신율, 영률은 일반 상태의 PFTP 막에 120시간 동안 현장 내구성 시험 후 ~25%, ~70%, ~20%의 손실을 보였다.
사실, 현재 막의 in-situ 안정성은 알려지지 않은 전압 손실로 인해 상용 PTFE-강화 PNB 및 BTMA-HDPE 막에 비해 아직 충분히 좋지 않다. 하지만 PTFE-강화 PNB와 BTMA-HDPE 막은 상업적 사전 형성 필름 또는 PTFE 강화에 기반하고 있으며, 지지체가 없는 PFTP 막은 168시간 이상의 현장 내구성을 이미 보이고 있다. 본 발명에 의하면, in-situ 안정성은 기계적 물성 및 물 조절과 밀접한 관련이 있으며, 음이온교환막 강화와 음이온교환 이오노머의 물 함량 최적화 등을 통해 현장 안정성이 더욱 향상될 수 있을 것으로 기대한다.

Claims (15)

  1. 하기 [화학식 1]로 표시되는 반복단위를 갖는 폴리플루오렌계 중합체 이오노머.
    [화학식 1]
    Figure PCTKR2020015649-appb-I000047
    (상기 화학식 1에서, A, B, C 및 D 세그먼트는 각각 독립적으로 하기 구조식으로 표시되는 화합물로부터 선택되는 것으로서, 동일하거나 상이할 수도 있고,
    Figure PCTKR2020015649-appb-I000048
    (R=H 또는 CH3),
    Figure PCTKR2020015649-appb-I000049
    ,
    Figure PCTKR2020015649-appb-I000050
    ,
    Figure PCTKR2020015649-appb-I000051
    ,
    Figure PCTKR2020015649-appb-I000052
    ,
    Figure PCTKR2020015649-appb-I000053
    ,
    Figure PCTKR2020015649-appb-I000054
    ,
    Figure PCTKR2020015649-appb-I000055
    ,
    Figure PCTKR2020015649-appb-I000056
    ,
    Figure PCTKR2020015649-appb-I000057
    ,
    Figure PCTKR2020015649-appb-I000058
    (R=H 또는 CH3)
    적어도 하나는
    Figure PCTKR2020015649-appb-I000059
    (R=H 또는 CH3)이며, x, y, z 및 m은 중합체 이오노머의 반복단위 내 몰비로서 x+y+z+m=1이다)
  2. (I) 플루오렌 또는 9,9‘-디메틸플루오렌 및 1-메틸-4-피페리돈, 또는 플루오렌 또는 9,9‘-디메틸플루오렌, 1-메틸-4-피페리돈 및 공단량체로서 하기 구조식으로 표시되는 화합물로부터 선택되는 것 또는 1,1,1,2,2,4,5,5,5-노나플루오로-4-(트리플루오로메틸)-3-펜타논을 유기용매에 용해시켜 용액을 형성하는 단계;
    Figure PCTKR2020015649-appb-I000060
    ,
    Figure PCTKR2020015649-appb-I000061
    ,
    Figure PCTKR2020015649-appb-I000062
    ,
    Figure PCTKR2020015649-appb-I000063
    ,
    Figure PCTKR2020015649-appb-I000064
    ,
    Figure PCTKR2020015649-appb-I000065
    ,
    Figure PCTKR2020015649-appb-I000066
    ,
    Figure PCTKR2020015649-appb-I000067
    ,
    Figure PCTKR2020015649-appb-I000068
    ,
    Figure PCTKR2020015649-appb-I000069
    (R=H 또는 CH3)
    (II) 상기 용액에 강산 촉매를 서서히 부가, 교반 및 반응시켜 점성 용액을 얻는 단계;
    (III) 상기 점성 용액을 침전, 세척 및 건조하여 고체상의 중합체를 수득하는 단계;
    (IV) 상기 고체상의 중합체를 유기용매에 용해시킨 중합체 용액에 K2CO3 및 과량의 할로메탄을 부가 및 반응시켜 4급 피페리디늄 염을 형성하는 단계; 및
    (V) 중합체 용액을 침전, 세척 및 건조하는 단계;를 포함하는 폴리플루오렌계 중합체 이오노머의 제조방법.
  3. 제2항에 있어서, 상기 (I) 단계의 유기용매는 디클로로메탄, 클로로포름, 디클로로에탄, 디브로모메탄 및 테트라클로로에탄으로 이루어진 군으로부터 선택된 1종 이상의 것을 특징으로 하는 폴리플루오렌계 중합체 이오노머의 제조방법.
  4. 제2항에 있어서, 상기 (II) 단계의 강산 촉매는 트리플루오로아세트산, 트리플루오로메탄술폰산, 펜타플루오로에탄술폰산, 헵타플루오로-1-프로판술폰산, 퍼플루오로프로피온산, 헵타플루오로부티르산, 또는 이들의 혼합물인 것을 특징으로 하는 폴리플루오렌계 중합체 이오노머의 제조방법.
  5. 제2항에 있어서, 상기 (IV) 단계의 유기용매는 N-메틸피롤리돈, 디메틸아세트아미드, 디메틸술폭시드 또는 디메틸포름아미드에 공용매인 트리플루오로아세트산이 혼합된 것을 특징으로 하는 폴리플루오렌계 중합체 이오노머의 제조방법.
  6. 제2항에 있어서, 상기 (IV) 단계의 할로메탄은 플루오로메탄, 클로로메탄, 브로모메탄 또는 아이오도메탄인 것을 특징으로 하는 폴리플루오렌계 중합체 이오노머의 제조방법.
  7. 제1항 기재의 폴리플루오렌계 중합체 이오노머를 포함하는 음이온교환막.
  8. (a) 제1항 기재의 폴리플루오렌계 중합체 이오노머를 유기용매에 용해시켜 고분자용액을 형성하는 단계;
    (b) 상기 고분자용액을 유리판에 캐스팅 및 건조함으로써 막을 수득하는 단계; 및
    (c) 상기 수득한 막을 1M NaOH, 1M NaCl 또는 1M Na2CO3로 처리한 후, 초순수로 수회 세척 및 건조하는 단계;를 포함하는 음이온교환막의 제조방법.
  9. 제8항에 있어서, 상기 유기용매는 N-메틸피롤리돈, 디메틸아세트아미드, 디메틸술폭시드 또는 디메틸포름아미드인 것을 특징으로 하는 음이온교환막의 제조방법.
  10. 제8항에 있어서, 상기 고분자용액의 농도는 2~5 중량%인 것을 특징으로 하는 음이온교환막의 제조방법.
  11. 제8항에 있어서, 상기 (b) 단계의 건조는 80~90℃ 오븐에서 24시간 동안 유기용매를 서서히 제거한 후, 120~150℃ 진공오븐에서 24시간 동안 가열함으로써 유기용매를 완전히 제거하는 것을 특징으로 하는 음이온교환막의 제조방법.
  12. 제1항에 따른 폴리플루오렌계 중합체 이오노머를 포함하는 알칼리 연료전지용 바인더.
  13. 제7항에 따른 음이온교환막을 포함하는 알칼리 연료전지용 막전극접합체.
  14. 제7항에 따른 음이온교환막을 포함하는 알칼리 연료전지.
  15. 제7항에 따른 음이온교환막을 포함하는 수전해 장치.
PCT/KR2020/015649 2019-12-06 2020-11-09 신규 폴리플루오렌계 중합체 이오노머, 음이온교환막 및 이의 제조방법 WO2021112420A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080092005.5A CN114929775B (zh) 2019-12-06 2020-11-09 基于聚芴的离聚物、阴离子交换膜和用于制备其的方法
US17/782,548 US20230038279A1 (en) 2019-12-06 2020-11-09 Novel polyfluorene-based ionomer, anion exchange membrane, method for preparing the polyfluorene-based ionomer and method for fabricating the anion exchange membrane

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0161187 2019-12-06
KR20190161187 2019-12-06
KR1020200093640A KR20210071810A (ko) 2019-12-06 2020-07-28 신규 폴리플루오렌계 중합체 이오노머, 음이온교환막 및 이의 제조방법
KR10-2020-0093640 2020-07-28

Publications (1)

Publication Number Publication Date
WO2021112420A1 true WO2021112420A1 (ko) 2021-06-10

Family

ID=76222352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015649 WO2021112420A1 (ko) 2019-12-06 2020-11-09 신규 폴리플루오렌계 중합체 이오노머, 음이온교환막 및 이의 제조방법

Country Status (3)

Country Link
US (1) US20230038279A1 (ko)
CN (1) CN114929775B (ko)
WO (1) WO2021112420A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659180A (zh) * 2021-08-11 2021-11-16 中国科学院山西煤炭化学研究所 含扭转芳基与酮单体阴离子交换膜、粘合剂及制备和应用
CN113773472A (zh) * 2021-08-06 2021-12-10 常州大学 一种基于聚芴的侧链型阴离子交换膜及其制备方法
CN113782761A (zh) * 2021-09-17 2021-12-10 大连理工大学 一种亲疏水刚性大体积共调节的阴离子交换膜及其制备方法
CN114044884A (zh) * 2021-11-18 2022-02-15 常州大学 一种基于聚芴的高温磷酸质子交换膜及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104829814A (zh) * 2015-04-27 2015-08-12 南阳师范学院 一种含季铵化哌啶基团的聚合物、制备方法及阴离子交换膜、制备方法
WO2019068051A2 (en) * 2017-09-28 2019-04-04 Yushan Yan POLY (ARYL PIPERIDINIUM) POLYMERS COMPRISING THOSE HAVING STATIC CATIONIC PENDANT GROUPS FOR USE AS ANION AND IONOMER EXCHANGING MEMBRANES

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0176336B1 (ko) * 1996-12-31 1999-04-01 박원훈 아세틸렌기를 함유한 플로렌계 교대 공중합체 및 이를 이용한 전계발광소자
CN107910576A (zh) * 2017-11-03 2018-04-13 武汉大学 一类高化学稳定性的阴离子聚合物膜的制备方法
CN109384908B (zh) * 2018-11-06 2020-06-16 浙江大学 主链含溴代烷基芴的聚合物及其在阴离子交换膜中的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104829814A (zh) * 2015-04-27 2015-08-12 南阳师范学院 一种含季铵化哌啶基团的聚合物、制备方法及阴离子交换膜、制备方法
WO2019068051A2 (en) * 2017-09-28 2019-04-04 Yushan Yan POLY (ARYL PIPERIDINIUM) POLYMERS COMPRISING THOSE HAVING STATIC CATIONIC PENDANT GROUPS FOR USE AS ANION AND IONOMER EXCHANGING MEMBRANES

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MAURYA SANDIP, NOH SANGTAIK, MATANOVIC IVANA, PARK EUN JOO, NARVAEZ VILLARRUBIA CLAUDIA, MARTINEZ ULISES, HAN JUNYOUNG, BAE CHULSU: "Rational design of polyaromatic ionomers for alkaline membrane fuel cells with >1 W cm −2 power density", ENERGY & ENVIRONMENTAL SCIENCE, RSC PUBL., CAMBRIDGE, vol. 11, no. 11, 7 November 2018 (2018-11-07), Cambridge, pages 3283 - 3291, XP055818429, ISSN: 1754-5692, DOI: 10.1039/C8EE02192A *
OLSSON JOEL S.; PHAM THANH HUONG; JANNASCH PATRIC: "Tuning poly(arylene piperidinium) anion-exchange membranes by copolymerization, partial quaternization and crosslinking", JOURNAL OF MEMBRANE SCIENCE, ELSEVIER BV, NL, vol. 578, 1 January 1900 (1900-01-01), NL, pages 183 - 195, XP085618788, ISSN: 0376-7388, DOI: 10.1016/j.memsci.2019.01.036 *
WANG JUNHUA; ZHAO YUN; SETZLER BRIAN P.; ROJAS-CARBONELL SANTIAGO; BEN YEHUDA CHAYA; AMEL ALINA; PAGE MILES; WANG LAN; HU KEDA; SH: "Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells", NATURE ENERGY, NATURE PUBLISHING GROUP UK, LONDON, vol. 4, no. 5, 8 April 2019 (2019-04-08), London, pages 392 - 398, XP036782812, DOI: 10.1038/s41560-019-0372-8 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113773472A (zh) * 2021-08-06 2021-12-10 常州大学 一种基于聚芴的侧链型阴离子交换膜及其制备方法
CN113659180A (zh) * 2021-08-11 2021-11-16 中国科学院山西煤炭化学研究所 含扭转芳基与酮单体阴离子交换膜、粘合剂及制备和应用
CN113782761A (zh) * 2021-09-17 2021-12-10 大连理工大学 一种亲疏水刚性大体积共调节的阴离子交换膜及其制备方法
CN113782761B (zh) * 2021-09-17 2022-09-06 大连理工大学 一种亲疏水刚性大体积共调节的阴离子交换膜及其制备方法
CN114044884A (zh) * 2021-11-18 2022-02-15 常州大学 一种基于聚芴的高温磷酸质子交换膜及制备方法
CN114044884B (zh) * 2021-11-18 2023-05-23 常州大学 一种基于聚芴的高温磷酸质子交换膜及制备方法

Also Published As

Publication number Publication date
CN114929775B (zh) 2024-06-11
US20230038279A1 (en) 2023-02-09
CN114929775A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
WO2021112420A1 (ko) 신규 폴리플루오렌계 중합체 이오노머, 음이온교환막 및 이의 제조방법
WO2014200286A2 (ko) 술포네이트계 화합물 및 이를 이용한 고분자 전해질막
WO2014073934A1 (ko) 부분 가지형 블록 공중합체를 포함하는 이온전도성 고분자 및 이의 용도
WO2016089153A1 (ko) 고분자 전해질막
KR20210071810A (ko) 신규 폴리플루오렌계 중합체 이오노머, 음이온교환막 및 이의 제조방법
WO2015056907A1 (ko) 분리막 및 그를 포함하는 리튬-황 전지
WO2012134254A2 (ko) 고분자 전해질 및 이의 제조 방법
WO2014081235A1 (ko) 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자 및 이의 용도
WO2018199458A1 (ko) 이온 교환막, 이의 제조 방법 및 이를 포함하는 에너지 저장 장치
WO2016175502A1 (ko) 과불소계 이오노머 나노입자 분산액 및 이의 제조방법
WO2013137691A1 (ko) 고분자 전해질 조성물, 전해질 막, 막-전극 접합체 및 연료전지
WO2022071704A1 (ko) 전극
WO2016089155A1 (ko) 고분자 전해질막
WO2022270934A1 (ko) 음이온교환 복합막, 그 제조방법 및 이를 포함하는 알칼리 연료전지
WO2017171290A1 (ko) 블록 중합체 및 이를 포함하는 고분자 전해질막
WO2016068605A1 (ko) 브랜처용 불소계 화합물, 이를 이용한 고분자 및 이를 이용한 고분자 전해질막
WO2010076911A1 (ko) 퍼플루오로싸이클로부탄기를 포함하는 후술폰화된 공중합체, 이의 제조방법 및 이의 용도
WO2024039146A1 (ko) 음이온 교환막 및 이의 제조방법
WO2012008753A2 (ko) 가교구조를 포함하는 술폰화된 폴리(아릴렌 에테르) 공중합체 및 이를 포함하는 고분자 전해질막
WO2024014848A1 (ko) 신규한 고내구성 가교 폴리(아릴 피페리디늄) 공중합체 이오노머, 음이온교환막 및 그 제조방법
WO2018012877A1 (ko) 고분자, 및 이를 포함하는 전해질과 리튬 전지
WO2022225357A1 (ko) 신규 지방족 사슬 함유 폴리(알킬-아릴 피페리디늄) 중합체 이오노머, 음이온교환막, 복합막 및 이의 제조방법
WO2022131665A1 (ko) 신규 폴리플루오렌계 가교 공중합체 및 그 제조방법, 이를 이용한 알칼리 연료전지용 음이온교환막
WO2023140628A1 (ko) 신규 폴리(스피로비스인덴-아릴 피페리디늄) 공중합체 이오노머, 음이온교환막 및 이의 제조방법
WO2016089123A1 (ko) 고분자, 이의 제조방법 및 이를 포함하는 전해질막

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20897581

Country of ref document: EP

Kind code of ref document: A1