[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021108994A1 - 二次电池及含有该二次电池的装置 - Google Patents

二次电池及含有该二次电池的装置 Download PDF

Info

Publication number
WO2021108994A1
WO2021108994A1 PCT/CN2019/122732 CN2019122732W WO2021108994A1 WO 2021108994 A1 WO2021108994 A1 WO 2021108994A1 CN 2019122732 W CN2019122732 W CN 2019122732W WO 2021108994 A1 WO2021108994 A1 WO 2021108994A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
secondary battery
positive electrode
electrode active
negative
Prior art date
Application number
PCT/CN2019/122732
Other languages
English (en)
French (fr)
Inventor
董苗苗
张辰辰
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN201980068280.0A priority Critical patent/CN113302783A/zh
Priority to EP19949554.0A priority patent/EP3859850B1/en
Priority to KR1020227011666A priority patent/KR102566396B1/ko
Priority to PT199495540T priority patent/PT3859850T/pt
Priority to PCT/CN2019/122732 priority patent/WO2021108994A1/zh
Priority to HUE19949554A priority patent/HUE062085T2/hu
Priority to JP2022520024A priority patent/JP7332800B2/ja
Priority to US17/244,998 priority patent/US20210249722A1/en
Publication of WO2021108994A1 publication Critical patent/WO2021108994A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application belongs to the field of electrochemical technology. More specifically, this application relates to a secondary battery and a device containing the secondary battery.
  • secondary batteries As a new type of high-voltage, high-energy density rechargeable battery, secondary batteries have outstanding characteristics such as light weight, high energy density, no pollution, no memory effect, and long service life. They are a major trend in the development of new energy batteries.
  • the use of silicon-based materials with high gram capacity as negative electrode active materials has great advantages in improving the energy density of secondary batteries.
  • the negative electrode active material has the problem of volume expansion and contraction during the charge and discharge process.
  • the negative electrode active material containing silicon-based materials is prone to severe volume expansion and contraction during the charge and discharge process, which limits the long-term use of the battery.
  • the above problems are particularly prominent when the secondary battery is packaged in a pouch type.
  • the first aspect of the present application provides a secondary battery, which can have both good high-temperature storage performance and safety performance under the premise of higher energy density.
  • the secondary battery provided in the first aspect of the present application includes an outer packaging bag and a battery cell arranged in the outer packaging bag.
  • the battery cell includes a positive pole piece, a negative pole piece and a separator.
  • the pole piece includes a positive electrode current collector and a positive electrode film layer provided on at least one surface of the positive electrode current collector and including a positive electrode active material;
  • the negative electrode piece includes a negative electrode current collector and is provided on at least one surface of the negative electrode current collector The negative electrode film layer on top and including the negative electrode active material;
  • the positive electrode active material includes one or more of lithium nickel cobalt manganese oxide and lithium nickel cobalt aluminum oxide, and at least a part of the positive electrode active material includes single crystal particles; wherein the negative electrode active material includes silicon-based Materials and graphite materials; and the width of the seal on the outer packaging bag is 3mm-8mm.
  • the secondary battery in the present application contains specific types of positive electrode active materials and negative electrode active materials, and by controlling the seal width of the outer packaging bag within a certain range, the battery can have sufficient energy density under the premise of higher energy density.
  • the over-current capability can also ensure that the tab welding position has better tensile resistance, thereby effectively improving the high-temperature storage performance and safety performance of the battery.
  • any lower limit can be combined with any upper limit to form an unspecified range; and any lower limit can be combined with other lower limits to form an unspecified range, and any upper limit can be combined with any other upper limit to form an unspecified range.
  • every point or single value between the end points of the range is included in the range. Therefore, each point or single numerical value can be used as its own lower limit or upper limit in combination with any other point or single numerical value or in combination with other lower or upper limits to form an unspecified range.
  • the secondary battery of the present application includes an outer packaging bag and a battery cell arranged in the outer packaging bag.
  • the battery cell includes a positive pole piece, a negative pole piece and a separator.
  • the positive pole piece includes a positive current collector and A positive electrode film layer on at least one surface of the positive electrode current collector and including a positive electrode active material;
  • the negative electrode piece includes a negative electrode current collector and a negative electrode film layer provided on at least one surface of the negative electrode current collector and including a negative electrode active material
  • the positive electrode active material includes one or more of lithium nickel cobalt manganese oxide and lithium nickel cobalt aluminum oxide, and at least a part of the positive electrode active material includes single crystal particles; wherein the negative electrode active material Containing silicon-based materials and graphite materials; and wherein the width of the seal on the outer packaging bag is 3mm-8mm.
  • the sealing area on the outer packaging bag is an important factor affecting the safety performance of the battery.
  • the "seal area” refers to packing the positive pole piece, the negative pole piece, the separator film and the electrolyte in a packaging bag formed of, for example, a film, and then sealing the periphery of it. And the formation of the area combined with each other.
  • the seal width refers to the width of the area where the outer packaging is in contact with each other and joined together.
  • the width of the sealing area within a certain range can not only ensure sufficient over-current capability under the required capacity of the cell, but also ensure that the tab welding position has good tensile resistance, thereby taking into account the high energy density of the cell Under the electrical performance and safety performance.
  • the width of the seal on the outer packaging bag is 3 mm to 8 mm, preferably 3 mm to 5 mm.
  • the ratio of the width of the seal to the length of the cell is 0.01 to 0.02.
  • the packaging strength F of the seal area meeting the following conditions: 30N ⁇ F ⁇ 200N, preferably 40N ⁇ F ⁇ 100N, can ensure the integrity of the battery cell under high-temperature gas production conditions and inhibit production The role of qi.
  • the positive electrode active material includes one or more of lithium nickel cobalt manganese oxide and lithium nickel cobalt aluminum oxide, and at least a part of the positive electrode active material includes single crystal particles.
  • the positive electrode active material in the form of single crystal particles can improve the overall compaction density and ductility of the positive electrode piece, while reducing the contact area between the positive electrode active material and the electrolyte, reducing the occurrence of interface side reactions, reducing gas production, and further improving lithium Cycle performance of ion batteries.
  • the mass ratio of the single crystal particles in the positive electrode active material is ⁇ 30%; more preferably, 10%-20%.
  • the excessive mass proportion of single crystal particles in the positive electrode active material will affect the cycle performance of the battery.
  • the average particle size of the positive electrode active material is 8 ⁇ m to 12 ⁇ m, preferably 8.5 ⁇ m to 10 ⁇ m.
  • the positive electrode active material includes Li a Ni b Co c M d M'e O f A g or Li a Ni b Co with at least a part of the surface provided with a coating layer.
  • One or more of A is selected from one or more of N, F, S, and Cl.
  • the positive electrode active material may also include lithium nickel oxide, lithium manganese oxide, lithium iron phosphate, lithium manganese phosphate, lithium iron manganese phosphate, lithium cobalt oxide and modified compounds thereof, but the application is not limited For these materials, other conventionally known materials that can be used as positive active materials for lithium-ion batteries can also be used. These positive electrode active materials may be used alone or in combination of two or more kinds. Preferably, the positive electrode active material may be selected from LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.805 Co 0.1 Mn 0.095 O 2 and combinations thereof.
  • the mass ratio of the silicon-based material in the negative electrode active material is ⁇ 40%; more preferably, the mass ratio of the silicon-based material in the negative electrode active material The proportion is 15% to 30%.
  • the negative electrode active material particles During the charging and discharging process of the secondary battery, ions undergo solid-phase conduction inside the negative electrode active material particles.
  • the smaller the negative electrode active material particles the shorter the diffusion path of the active ions inside, which can reduce the occurrence of side reactions. Thereby improving the high-temperature storage gas production performance of the battery.
  • the larger the particles of the negative electrode active material the more beneficial it is to increase the gram capacity of the negative electrode active material, thereby effectively increasing the energy density of the battery. Therefore, it is very important to design the average particle size of the negative electrode active material reasonably, which can realize the battery to a certain extent while taking into account the high energy density and high temperature storage performance.
  • the average particle size of the negative electrode active material is 7 ⁇ m to 15 ⁇ m, preferably 9 ⁇ m to 12 ⁇ m.
  • the porosity of the positive and negative electrode film layers can be designed to ensure better electron and ion transmission of the battery cell.
  • ions undergo liquid phase conduction (including liquid phase diffusion and electromigration) in the porous electrode film layer. Therefore, the porosity of the pole piece film will affect the transmission of electrons and ions.
  • the greater the porosity of the pole piece membrane layer the better the wettability of the electrolyte, the higher the liquid phase diffusion rate, and the easier it is for ions to be reduced during high-rate charging, thereby avoiding the formation of metal dendrites.
  • the porosity of the positive electrode layer satisfies P n: 6% ⁇ P n ⁇ 15%.
  • the porosity P negative of the negative electrode film layer satisfies: 15% ⁇ P negative ⁇ 25 %.
  • the compaction density of the positive and negative electrode film layers can also be designed to ensure that the secondary battery has an improved cycle life.
  • the compaction density of the positive and negative film layers are both high, the side reactions of the battery core can be reduced, thereby increasing the volume energy density of the battery.
  • the compaction density of the positive and negative film layers cannot be too high. If the compaction density of the negative electrode film layer is too high, the electrolyte cannot be completely infiltrated, and then during the discharge process, the lithium ions cannot be embedded in the negative electrode active material through the electrolyte medium, and there is not enough electrolyte to repair the SEI film, resulting in secondary batteries. Cycle life is reduced.
  • the compaction density of the positive electrode film layer is too high, the electrolyte cannot be completely infiltrated into the positive electrode film layer, and lithium ions cannot be extracted during the charging process, thereby reducing the cycle life of the lithium ion battery. More importantly, the positive electrode particles may be broken during the compaction process, leading to the formation of new contact interfaces and new side reaction products.
  • the packing density of the positive electrode layer satisfies PD n 3.3g / cm 3 ⁇ PD positive ⁇ 3.6g / cm 3, preferably from 3.4g / cm 3 ⁇ PD positive ⁇ 3.5g / cm 3; a negative 1.6 ⁇ PD packing density layer satisfies negative ⁇ 1.75g / cm 3, preferably 1.65 ⁇ PD negative ⁇ 1.7.
  • a secondary battery includes an outer packaging bag, and a battery cell and an electrolyte provided in the outer packaging bag, and the battery cell includes a positive pole piece, a negative pole piece, and a separator.
  • the positive and negative pole pieces are immersed in the electrolyte, and the ions use the electrolyte as the medium to move between the positive and negative electrodes to realize the charge and discharge of the battery.
  • the positive and negative electrode layers need to be separated by a separator.
  • the specific types and composition of the separator and the electrolyte are not specifically limited, and can be selected according to actual needs.
  • the isolation film may be selected from polyethylene film, polypropylene film, polyvinylidene fluoride film and their multilayer composite film.
  • a lithium salt solution dissolved in an organic solvent is usually used.
  • the lithium salt is, for example, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 and other inorganic lithium salts, or LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN(CF 3 SO 2 ) 2 , LiC(CF 3 SO 2 ) 3 , LiC n F 2n+1 SO 3 (n ⁇ 2) and other organic lithium salts.
  • the organic solvent used in the non-aqueous electrolyte is, for example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate.
  • chain esters such as methyl propionate, cyclic esters such as ⁇ -butyrolactone, dimethoxyethane, diethyl ether, diglyme, triglyme and other chains
  • chain esters such as methyl propionate, cyclic esters such as ⁇ -butyrolactone, dimethoxyethane, diethyl ether, diglyme, triglyme and other chains
  • cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, nitriles such as acetonitrile and propionitrile, or mixtures of these solvents.
  • a lithium ion secondary battery is taken as an example to briefly describe the secondary battery of the present application.
  • the battery positive pole piece is prepared according to the conventional method in the field.
  • a conductive agent for example, Super P, etc.
  • a binder for example, PVDF
  • other additives such as PTC thermistor materials can also be added.
  • these materials are mixed together and dispersed in a solvent (such as NMP), stirred evenly and evenly coated on the positive electrode current collector, and dried to obtain the positive electrode sheet.
  • a solvent such as NMP
  • Materials such as metal foil such as aluminum foil or porous metal plate can be used as the positive electrode current collector.
  • aluminum foil is used.
  • the negative pole piece of the present application can be prepared by a well-known method in the art.
  • the negative active material, optional conductive agent (such as Super P, etc.), binder (such as SBR, etc.), other optional additives (such as PTC thermistor material) and other materials are mixed together and dispersed in a solvent (such as In deionized water), the mixture is uniformly stirred and coated on the negative electrode current collector, and the negative electrode piece containing the negative electrode film layer is obtained after drying.
  • a metal foil such as copper foil or a porous metal plate can be used.
  • copper foil is used.
  • the proportion of active material in the positive and negative film layer should not be too low, otherwise it will lead to too low capacity; the proportion of active material should not be too high, otherwise it will lead to conductive agent and binder Decrease, the conductivity of the pole piece and the degree of adhesion with the current collector are reduced, which in turn leads to a decrease in the electrical performance of the cell.
  • the current collector when preparing the positive and negative pole pieces, can be coated on both sides or on one side. When the electrode current collector is coated on both sides, each parameter is measured for a certain single-sided electrode film layer.
  • the present application can allow the secondary battery to improve the high-temperature storage performance and cycle life of the battery under the premise of a higher energy density. Therefore, it is of great significance for the manufacture of batteries.
  • the second aspect of the present application provides a device, which includes any one or more of the secondary batteries described in the first aspect of the present application.
  • the secondary battery may be used as a power source of the device.
  • the device may be, but not limited to, mobile devices (such as mobile phones, laptop computers, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, Electric golf carts, electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc.
  • the positive electrode active material see Table 1 for the ingredients
  • the conductive agent Super P
  • the binder PVDF
  • NMP solvent
  • the positive electrode slurry is uniformly and transparently obtained; the positive electrode slurry is uniformly coated on the positive electrode current collector aluminum foil; the positive electrode current collector coated with the positive electrode slurry is dried at room temperature and then transferred to an oven for drying, and then subjected to cold pressing, Slitting and other processes to obtain the positive pole piece.
  • the compacted density of the positive electrode film is 3.45g/cm3, and the areal density is 0.313g/1540.25mm2.
  • the negative electrode active material (see Table 1 for ingredients), conductive agent (Super P), CMC-Na (sodium carboxymethyl cellulose), and binder (styrene butadiene rubber) are carried out at a mass ratio of 94.5: 1.5: 1.5: 2.5 Mix it with the solvent (deionized water) under the action of a vacuum mixer to prepare a negative electrode slurry.
  • the negative electrode slurry is evenly coated on the copper foil of the negative electrode current collector, and the negative electrode current collector coated with the negative electrode slurry is kept at room temperature. After air-drying, it is transferred to an oven for drying, and then undergoes processes such as cold pressing and slitting to obtain the negative pole piece.
  • the compacted density of the negative electrode film is 1.70g/cm3, and the areal density is 0.125g/1540.25mm2.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • Test the strength of the seal area with a tensile machine Take samples with a length of 8mm on the seal area of the outer packaging bag of each embodiment and comparative example, and take 5 groups of each. Place the samples in the middle of the clamp, and clamp the upper and lower ends with clamps respectively. Stretch at a speed of 50mm/min and stretch until the seal area breaks. Record the tensile value. The average value of the 5 sets of samples is the seal strength.
  • Step 1) Weigh the mass of the negative electrode film with a standard balance, and measure the coating area of the negative film with a ruler, and then calculate the mass per unit area (g/cm 2 ) of the positive/negative film.
  • Step 2): According to the positive/negative film laminate density D positive/negative the mass per unit area of the positive/negative electrode film layer (g/cm 2 )/the thickness of the positive/negative electrode film layer (cm), calculate the positive/negative electrode
  • the film compaction density D is positive/ negative , and the thickness of the negative positive/negative film layer can be measured by a micrometer.
  • the average particle size of the positive/negative electrode active material (unit: micron)
  • Porosity P (V1-V2)/V1*100%, where V1 is the apparent volume of the sample, and V2 is the true volume of the sample.
  • Each sample was charged to 4.2V at a constant current of 1/3C at room temperature, and then charged to a current of 0.05C at a constant voltage of 4.2V, and the volume of the battery V 0 was tested; then each sample was placed in a thermostat at 60°C and stored for 50 After days, the battery was taken out to test its volume and recorded as V 50 .
  • the volume expansion rate (%) of the lithium ion battery after high temperature storage for 50 days (V 50 -V 0 )/V 0 ⁇ 100%.
  • each sample was checked every 5 days to determine whether the battery leaked by checking the appearance of the battery. A total of 10 times were checked, and the proportion of the number of leaking batteries was counted.
  • the lithium-ion batteries prepared in the examples and comparative examples were fully charged at a rate of 1/3C and fully discharged at a rate of 1/3C, and the actual discharge energy was recorded at this time; at 25°C, an electronic balance was used to The lithium ion battery is weighed; the ratio of the actual discharge energy of 1/3C of the lithium ion battery to the weight of the lithium ion battery is the actual energy density of the lithium ion battery.
  • Table 1 Parameters and battery performance of lithium ion secondary batteries according to Examples 1-9 and Comparative Examples 1-3 of the present application
  • Examples 1-9 and Comparative Examples 1-3 show that when the positive and negative electrodes contain specific active materials, the seal width of the outer packaging bag is controlled within the range of 3mm-8mm, and the obtained battery not only has a higher energy density, but also Moreover, the high-temperature storage performance and safety performance of the battery are effectively improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请涉及一种二次电池,包括外包装袋以及设置在外包装袋内的电芯,所述电芯包括正极极片、负极极片和隔离膜,所述正极极片包括正极集流体以及设置在所述正极集流体的至少一个表面上且包括正极活性材料的正极膜层;所述负极极片包括负极集流体以及设置在所述负极集流体的至少一个表面上且包括负极活性材料的负极膜层;其特征在于:所述正极活性材料包括锂镍钴锰氧化物及锂镍钴铝氧化物中的一种或几种,且所述正极活性材料中至少一部分包括单晶颗粒;所述负极活性材料包含硅基材料和石墨材料;并且所述外包装袋上的封印宽度为3mm~8mm。

Description

二次电池及含有该二次电池的装置 技术领域
本申请属于电化学技术领域,更具体地,本申请涉及一种二次电池及含有该二次电池的装置。
背景技术
二次电池作为新型高电压、高能量密度的可充电电池,具有重量轻、能量密度高、无污染、无记忆效应、使用寿命长等突出特点,是新能源电池发展的一大趋势。
目前,使用克容量高的硅基材料作为负极活性材料在提升二次电池的能量密度方面具有极大的优势。但是,在充放电过程中负极活性材料存在体积膨胀收缩的问题,尤其是含有硅基材料的负极活性材料在充放电过程中容易发生剧烈的体积膨胀和收缩,限制了电池的长期使用。在二次电池采用袋式外包装时,以上问题显得尤为突出。
有鉴于此,确有必要提供一种能够解决上述问题的二次电池。
发明内容
鉴于背景技术中存在的问题,本申请第一方面提供一种二次电池,所述二次电池在较高能量密度的前提下,能够同时兼具较好的高温存储性能和安全性能。
为实现上述发明目的,本申请第一方面提供的二次电池,包括外包装袋以及设置在外包装袋内的电芯,所述电芯包括正极极片、负极极片和隔离膜,所述正极极片包括正极集流体以及设置在所述正极集流体的至少一个表面上且包括正极活性材料的正极膜层;所述负极极片包括负极集流体以及设置在所述负极集流体的至少一个表面上且包括负极活性材料的负极膜层;其中
所述正极活性材料包括锂镍钴锰氧化物及锂镍钴铝氧化物中的一种或几种,且所述正极活性材料中至少一部分包括单晶颗粒;其中所述负极活性材料包含硅基材料和石墨材料;并且所述外包装袋上的封印宽度为3mm~8mm。
相对于现有技术,本申请至少包括如下有益效果:
在本申请的二次电池包含特定种类的正极活性材料和负极活性材料,且通过将外包装袋的封印宽度控制在一定范围内,可以使电池在拥有较高能量密度的前提下既能有足够的过流能力,又能够保证极耳焊接位具有较好的抗拉伸能力,从而有效改善电池的高温存储性能和安全性能。
具体实施方式
为了使本申请的发明目的、技术方案和有益技术效果更加清晰,以下结合具体实施例对本申请进行详细说明。应当理解的是,本说明书中描述的实施例仅仅是为了解释本申请,并非为了限定本申请。
为了简便,本文仅明确地公开了一些数值范围。然而,任意下限可以与任何上限组合形成未明确记载的范围;以及任意下限可以与其它下限组合形成未明确记载的范围,同样任意上限可以与任意其它上限组合形成未明确记载的范围。此外,尽管未明确记载,但是范围端点间的每个点或单个数值都包含在该范围内。因而,每个点或单个数值可以作为自身的下限或上限与任意其它点或单个数值组合或与其它下限或上限组合形成未明确记载的范围。
在本文的描述中,需要说明的是,除非另有说明,“以上”、“以下”为包含本数,“一种或几种”中“几种”的含义是两种及两种以上。
本申请的上述发明内容并不意欲描述本申请中的每个公开的实施方式或每种实现方式。如下描述更具体地举例说明示例性实施方式。在整篇申请中的多处,通过一系列实施例提供了指导,这些实施例可以以各种组合形式使用。在各个实例中,列举仅作为代表性组,不应解释为穷举。
本申请的二次电池,包括外包装袋以及设置在外包装袋内的电芯,所述电芯包括正极极片、负极极片和隔离膜,所述正极极片包括正极集流体 以及设置在所述正极集流体的至少一个表面上且包括正极活性材料的正极膜层;所述负极极片包括负极集流体以及设置在所述负极集流体的至少一个表面上且包括负极活性材料的负极膜层;其中,所述正极活性材料包括锂镍钴锰氧化物及锂镍钴铝氧化物中的一种或几种,且所述正极活性材料中至少一部分包括单晶颗粒;其中所述负极活性材料包含硅基材料和石墨材料;并且其中所述外包装袋上的封印宽度为3mm~8mm。
发明人通过大量研究发现,当二次电池的负极活性材料中含有特定种类的正极活性材料和负极活性材料,并同时将外包装袋的封印宽度控制在特定范围内,可以使电池在具有较高能量密度的前提下,同时兼顾较好的高温存储性能和安全性能。
在本申请的二次电池中,外包装袋上的封印区域是影响电池的安全性能的一个重要因素。在本申请的涉及二次电池的上下文中,“封印区域”是指通过将正极极片、负极极片、隔离膜和电解液装入由例如薄膜形成的包装袋中,然后将其四周进行密封而形成的彼此结合到一起的区域。在封印区域中,封印宽度是指外包装相互接触并结合到一起的区域的宽度。将封印区域的宽度控制在一定范围内,既可以保证在电芯要求容量下足够的过流能力,又能够保证极耳焊接位具有较好的抗拉伸能力,从而兼顾电芯在高能量密度下的电性能和安全性能。优选地,在本申请的二次电池中,外包装袋上的封印宽度为3mm~8mm,优选为3mm~5mm。
在本申请的二次电池中,优选地,所述封印宽度与所述电芯的长度的比值为0.01~0.02。
本申请的发明人还发现,满足如下条件的封印区域的封装强度F:30N≤F≤200N,优选40N≤F≤100N,能够保证电芯在高温产气情况下的完整性并起到抑制产气的作用。
在本申请的二次电池中,正极活性材料包括锂镍钴锰氧化物及锂镍钴铝氧化物中的一种或几种,且所述正极活性材料中至少一部分包括单晶颗粒。单晶颗粒形式的正极活性材料可以提高正极极片整体的压实密度和延展性,同时降低正极活性材料与电解液之间的接触面积,减少界面副反应的发生,降低产气量,进一步改善锂离子电池的循环性能。
在本申请的实施方式中,优选地,所述单晶颗粒在所述正极活性材料中的质量占比≤30%;更优选为10%~20%。单晶颗粒在正极活性材料中的质量占比过大会影响电池的循环性能。
在本申请的一些实施方式中,所述正极活性材料的平均粒径为8μm~12μm,优选为8.5μm~10μm。
在本申请的实施方式中,优选地,所述正极活性材料包括通式为Li aNi bCo cM dM’ eO fA g或表面至少一部分设置有包覆层的Li aNi bCo cM dM’ eO fA g中的一种或几种,其中,0.8≤a≤1.2,0.5≤b<1,0<c<1,0<d<1,0≤e≤0.1,1≤f≤2,0≤g≤1,M选自Mn、Al中的一种或几种,M’选自Zr、Al、Zn、Cu、Cr、Mg、Fe、V、Ti、B中的一种或几种,A选自N、F、S、Cl中的一种或几种。除了上述材料之外,正极活性材料还可以包括锂镍氧化物、锂锰氧化物、磷酸铁锂、磷酸锰锂、磷酸锰铁锂、钴酸锂及其改性化合物,但本申请并不限定于这些材料,还可以使用其他可被用作锂离子电池正极活性物质的传统公知的材料。这些正极活性物质可以仅单独使用一种,也可以将两种以上组合使用。优选地,正极活性材料可选自LiNi 0.8Co 0.1Mn 0.1O 2、LiNi 0.805Co 0.1Mn 0.095O 2及其组合。
在本申请的二次电池中,优选地,所述硅基材料在所述负极活性材料中的质量占比≤40%;更优选地,所述硅基材料在所述负极活性材料中的质量占比为15%~30%。
在二次电池的充放电过程中,离子在负极活性材料颗粒内部发生固相传导,通常负极活性材料颗粒越小,活性离子在其内部的扩散路径就越短,这样可以减少副反应的发生,从而提高电池的高温存储产气性能。而负极活性物质的颗粒越大,越有利于提升负极活性物质的克容量,从而有效提升电池的能量密度。因此合理的设计负极活性材料的平均粒径非常重要,其可在一定程度上实现电池同时兼顾较高能量密度以及高温存储性能。优选地,所述负极活性材料的平均粒径为7μm~15μm,优选为9μm~12μm。
在本申请的二次电池中,可以对正负极膜层的孔隙率进行设计,以保证电芯较好的电子和离子传输。在电池的充放电过程中,离子在多孔极片膜层发生液相传导(包括液相扩散与电迁移)。因此,极片膜层的孔隙率会对电子和离子的传输造成影响。通常,极片膜层的孔隙率越大,电解液的浸润性越好,液相扩散速度越高,在大倍率充电中,离子更容易得到还原,从而避免金属枝晶的形成。而孔隙率过大,电池的能量密度等会有很明显的影响;孔隙率过小,不利于电解液的浸润,液相的扩散速率也会受到影响,从而影响电池的循环性能。因此,对极片膜层的孔隙率也有一定的要求,需要满足一定的范围才能既保证被电解液充分浸润又能防止产生过多的副反应。优选地,所述正极膜层的孔隙率P 满足:6%≤P ≤15%。所述负极膜层的孔隙率P 满足:15%≤P ≤25%。
在本申请的二次电池中,还可以对正负极膜层的压实密度进行设计,以保证二次电池具有改善的循环寿命。在二次电池中,正负极膜层的压实密度均较高时,可以减少电芯副反应发生,从而提高电池体积能量密度。但是正负极膜层的压实密度不能过高。如果负极膜层的压实密度过高,导致电解液不能完全浸润,继而放电过程中锂离子无法通过电解液的介质嵌入负极活性材料中,没有足够的电解液修复SEI膜,导致二次电池的循环寿命降低。同样的,如果正极膜层的压实密度过高,电解液无法完全浸润到正极膜层中,锂离子在充电过程中无法脱出,进而使锂离子电池的循环寿命降低。更重要的是,正极颗粒在压实过程中可能破碎,导致新的接触界面和新的副反应产物生成。优选地,所述正极膜层的压实密度PD 满足3.3g/cm 3≤PD ≤3.6g/cm 3,优选为3.4g/cm 3≤PD ≤3.5g/cm 3;所述负极膜层的压实密度满足1.6≤PD ≤1.75g/cm 3,优选为1.65≤PD ≤1.7。
本说明书中涉及的各种参数具有本领域公知的通用含义,可以按本领域公知的方法进行测量。例如,可以按照在本申请的实施例中给出的方法进行测试。
根据本申请的二次电池的构造和制备方法本身是公知的。通常,二次电池包括外包装袋以及设置在外包装袋内的电芯和电解液,所述电芯包括正极极片、负极极片和隔离膜。正负极极片浸在电解液中,离子以电解液 为介质在正负极之间运动,实现电池的充放电。为避免正负极通过电解液发生短路,需要用隔离膜将正负极膜层分隔。
在根据本申请的二次电池中,隔离膜以及电解液的具体种类及组成均不受到具体的限制,可根据实际需求进行选择。
具体地,所述隔离膜可选自聚乙烯膜、聚丙烯膜、聚偏氟乙烯膜以及它们的多层复合膜。
当电池为锂离子电池时,作为非水电解液,通常使用在有机溶剂中溶解的锂盐溶液。锂盐例如是LiClO 4、LiPF 6、LiBF 4、LiAsF 6、LiSbF 6等无机锂盐、或者LiCF 3SO 3、LiCF 3CO 2、Li 2C 2F 4(SO 3) 2、LiN(CF 3SO 2) 2、LiC(CF 3SO 2) 3、LiC nF 2n+1SO 3(n≥2)等有机锂盐。非水电解液中使用的有机溶剂例如是碳酸亚乙酯、碳酸亚丙酯、碳酸亚丁酯、碳酸亚乙烯酯等环状碳酸酯,碳酸二甲酯、碳酸二乙酯、碳酸甲基乙酯等链状碳酸酯,丙酸甲酯等链状酯,γ-丁内酯等环状酯,二甲氧基乙烷、二乙醚、二甘醇二甲醚、三甘醇二甲醚等链状醚,四氢呋喃、2-甲基四氢呋喃等环状醚,乙腈、丙腈等腈类,或者这些溶剂的混合物。
以下,以锂离子二次电池为例来简要说明本申请的二次电池。
首先,按照本领域常规方法制备电池正极极片。通常,在上述正极活性材料中,需要添加导电剂(例如Super P等)、粘结剂(例如PVDF)等。视需要,也可以添加其他添加剂,例如PTC热敏电阻材料等。通常将这些材料混合在一起分散于溶剂(例如NMP)中,搅拌均匀后均匀涂覆在正极集流体上,烘干后即得到正极极片。可以使用铝箔等金属箔或多孔金属板等材料作为正极集流体。优选使用铝箔。
本申请的负极极片可以采用本领域的公知方法进行制备。通常,将负极活性材料以及可选的导电剂(例如Super P等)、粘结剂(例如SBR等)、其他可选添加剂(例如PTC热敏电阻材料)等材料混合在一起分散于溶剂(例如去离子水)中,搅拌均匀后均匀涂覆在负极集流体上,烘干后即得到含有负极膜层的负极极片。可以使用铜箔等金属箔或多孔金属板等材料作为负极集流体。优选使用铜箔。
在上述正负极极片中,正负极膜层中活性材料的占比不宜过低,否则会导致容量过低;活性材料的占比也不宜过高,否则会导致导电剂和粘结剂减少,极片导电性和与集流体的粘合程度降低,进而导致电芯电性能下降。
值得注意的是,在制备正负极极片时,集流体可以双面涂布也可以单面涂布。当电极集流体双面涂布时,各参数都是针对某个单面电极膜层测定的。
最后,将正极膜层、隔离膜、负极膜层按顺序叠好,使隔离膜处于正负极膜层之间起到隔离的作用,然后卷绕得到裸电芯;将裸电芯置于外包装中,干燥后注入电解液,经过真空封装、静置、化成、整形等工序,获得二次电池。
与传统的二次电池相比,本申请可以允许二次电池在具有较高能量密度的前提下,改善电池的高温存储性能和循环寿命。因此,对于制造电芯具有非常重要的意义。
本申请第二方面提供一种装置,其包括本申请第一方面所述的任意一种或几种二次电池。所述二次电池可以用作所述装置的电源。优选地,所述装置可以但不限于是移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等。
以下结合实施例进一步说明本申请的有益效果。
实施例
为了使本申请的发明目的、技术方案和有益技术效果更加清晰,以下结合实施例进一步详细描述本申请。但是,应当理解的是,本申请的实施例仅仅是为了解释本申请,并非为了限制本申请,且本申请的实施例并不局限于说明书中给出的实施例。实施例中未注明具体实验条件或操作条件的按常规条件制作,或按材料供应商推荐的条件制作。
一、用于测试的电池的制备
实施例1-17和对比例1-8的电池均按照下述方法进行制备:
A)正极极片的制备:
将正极活性材料(成分详见表1)、导电剂(Super P)、粘结剂(PVDF)等按96:2:2比例进行混合,加入溶剂(NMP),在真空搅拌机作用下搅拌至体系成均一透明状,获得正极浆料;将正极浆料均匀涂覆于正极集流体铝箔上;将涂覆有正极浆料的正极集流体在室温晾干后转移至烘箱干燥,然后经过冷压、分切等工序得到正极极片。正极膜片的压实密度为3.45g/cm3,面密度为0.313g/1540.25mm2。
B)负极膜层的制备:
将负极活性材料(成分详见表1)、导电剂(Super P)、CMC-Na(羧甲基纤维素钠)、粘接剂(丁苯橡胶)按质量比94.5:1.5:1.5:2.5进行混合,与溶剂(去离子水)在真空搅拌机作用下混合均匀制备成负极浆料,将负极浆料均匀涂覆在负极集流体铜箔上,将涂覆有负极浆料的负极集流体在室温晾干后转移至烘箱干燥,然后经过冷压、分切等工序得到负极极片。负极膜片的压实密度为1.70g/cm3,面密度为0.125g/1540.25mm2。
C)电解液的制备:
将碳酸亚乙酯(EC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)按照体积比1:1:1进行混合,接着将充分干燥的电解质(成分详见表1)按照1mol/L的比例溶解于混合有机溶剂中,配制成电解液。
D)隔离膜:
选用12微米的聚乙烯薄膜。
E)电池的组装:
将上述正极膜层、隔离膜、负极膜层按顺序叠好,使隔离膜处于正、负极膜层之间起到隔离的作用,然后卷绕得到电芯;将电芯置于外包装袋中,将上述制备好的电解液注入到干燥后的电芯中,经过真空封装、静置、化成、整形等工序,获得锂离子二次电池。锂离子二次电池的外包装尺寸:厚*宽*长=10.8mm*102.8mm*308.4mm。
二、参数的测定
1.封印宽度
通过飞林尺测量封印区的长度和宽度。
2.封印强度
用拉力机测试封印区强度:在各实施例和对比例的外包装袋封印区上取长度为8mm的样品,各取5组,将样品置于夹具中间,上下端分别用夹具夹紧,以50mm/min的速度进行拉伸,并拉伸至封印区断裂,记录拉力值,5组样品测试的平均值即为封印强度。
3.电芯的长度
通过万分尺测量组装好的二次电池中的电芯的长度。
4.正/负极膜层的压实密度D 正/负(单位g/cm 3)
步骤1):分别通过标准天平称量负极膜层质量、通过直尺测量负极膜层涂布面积,然后可计算正/负极膜层单位面积质量(g/cm 2)。
步骤2):根据正/负极膜层压实密度D 正/负=正/负极膜层单位面积的质量(g/cm 2)/正/负极膜层厚度(cm),计算得出正/负极膜层压实密度D 正/ ,其负正/负极膜层厚度可通过万分尺测量。
5.正/负极活性材料的平均粒径(单位微米)
使用激光衍射粒度分布测量仪(Malvem Mastersizer 3000),依据粒度分布激光衍射法GB/T19077-2016,测量出粒径分布,得到平均粒径。
6.正/负极膜层孔隙率P
按照GB/T24586,采用气体置换法测量。孔隙率P=(V1-V2)/V1*100%,其中V1是样品的表观体积,V2是样品的真实体积。
三、电池性能测试
将上述实施例1-9与对比例1-3按照下列方法测试各项电池性能。
1.锂离子电池在60℃下的存储性能
在各实施例和对比例中分别取10组样品,进行下述测试:
将各样品在室温下以1/3C恒流充电至4.2V,然后恒压4.2V充电至电流为0.05C,测试电池的体积V 0;之后将各样品放入60℃的恒温箱,储存50天后,取出电池测试其体积并记为V 50
锂离子电池高温存储50天后的体积膨胀率(%)=(V 50-V 0)/V 0×100%。
取各样品体积膨胀率的平均值,并记录数据。
2.电池漏液个数:
在上述测试60℃下存储性能的过程中,每隔5天查看一次各样品,通过检查电池外观判断是否漏液,共查看10次,统计漏液电池的数量占比。
3.实际能量密度测试
在25℃下,将实施例和对比例制备得到的锂离子电池以1/3C倍率满充、以1/3C倍率满放,记录此时的实际放电能量;在25℃下,使用电子天平对该锂离子电池进行称重;锂离子电池1/3C实际放电能量与锂离子电池重量的比值即为锂离子电池的实际能量密度。
四、各实施例、对比例测试结果
按照上述方法分别制备实施例1-9和对比例1-3的电池,并测量各项性能参数,结果见下表。
表1:根据本申请的实施例1-9和对比例1-3的锂离子二次电池的参数及其电池性能
Figure PCTCN2019122732-appb-000001
从表1的测试结果可以看出:
实施例1-9和对比例1-3可知,当正、负极包含特定的活性材料时,将外包装袋的封印宽度控制在3mm-8mm的范围内,获得的电池不仅拥有较高能量密度,而且有效改善了电池的高温存储性能和安全性能。
还需补充说明的是,根据上述说明书的揭示和指导,本申请所属领域的技术人员还可以对上述实施方式进行适当的变更和修改。因此,本申请并不局限于上面揭示和描述的具体实方式,对本申请的一些修改和变更也落入本申请的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本申请构成任何限制。

Claims (13)

  1. 一种二次电池,包括外包装袋以及设置在外包装袋内的电芯,所述电芯包括正极极片、负极极片和隔离膜,所述正极极片包括正极集流体以及设置在所述正极集流体的至少一个表面上且包括正极活性材料的正极膜层;所述负极极片包括负极集流体以及设置在所述负极集流体的至少一个表面上且包括负极活性材料的负极膜层;其特征在于:
    所述正极活性材料包括锂镍钴锰氧化物及锂镍钴铝氧化物中的一种或几种,且所述正极活性材料中至少一部分包括单晶颗粒;
    所述负极活性材料包含硅基材料和石墨材料;并且
    所述外包装袋上的封印宽度为3mm~8mm。
  2. 如权利要求1所述的二次电池,其特征在于,所述外包装袋上的封印宽度为3mm~5mm。
  3. 如权利要求1或2所述的二次电池,其特征在于,所述外包装袋的封装强度为30N~200N,优选为40N~100N。
  4. 如权利要求1-3任一项所述的二次电池,其特征在于,所述封印宽度与所述电芯的长度的比值为0.01~0.02。
  5. 如权利要求1-4任一项所述的二次电池,其特征在于,所述正极活性材料的平均粒径为8μm~12μm,优选为8.5μm~10μm;和/或,
    所述负极活性材料的平均粒径为7μm~15μm,优选为9μm~12μm。
  6. 如权利要求1-5任一项所述的二次电池,其特征在于,
    所述正极膜层的压实密度PD 满足3.3g/cm 3≤PD ≤3.6g/cm 3,优选为3.4g/cm 3≤PD ≤3.5g/cm 3;和/或,
    所述负极膜层的压实密度在1.6≤PD ≤1.75g/cm 3,优选为1.65≤PD ≤1.7。
  7. 如权利要求1-6任一项所述的二次电池,其特征在于,所述正极膜层的孔隙率P 满足:6%≤P ≤15%;和/或,所述负极膜层的孔隙率P 满足:15%≤P ≤25%。
  8. 如权利要求1-7任一项所述的二次电池,其特征在于,所述单晶颗粒在所述正极活性材料中的质量占比≤30%,优选为10%~20%。
  9. 如权利要求1所述的二次电池,其特征在于,所述石墨材料选自人造石墨、天然石墨中的一种或几种。
  10. 根据权利要求1所述的二次电池,其特征在于:所述硅基材料在所述负极活性材料中的质量占比≤40%;优选地,所述硅基材料在所述负极活性材料中的质量占比为15%~30%。
  11. 根据权利要求1所述的二次电池,其特征在于:所述正极活性材料包括通式为Li aNi bCo cM dM’ eO fA g或表面至少一部分设置有包覆层的Li aNi bCo cM dM’ eO fA g中的一种或几种,其中,0.8≤a≤1.2,0.5≤b<1,0<c<1,0<d<1,0≤e≤0.1,1≤f≤2,0≤g≤1,M选自Mn、Al中的一种或几种,M’选自Zr、Al、Zn、Cu、Cr、Mg、Fe、V、Ti、B中的一种或几种,A选自N、F、S、Cl中的一种或几种。
  12. 根据权利要求1所述的二次电池,其特征在于,所述正极活性材料还包括锂镍氧化物、锂锰氧化物、磷酸铁锂、磷酸锰锂、磷酸锰铁锂、钴酸锂及其改性化合物中的一种或几种。
  13. 一种装置,其特征在于,包括根据权利要求1-12任一项所述的二次电池。
PCT/CN2019/122732 2019-12-03 2019-12-03 二次电池及含有该二次电池的装置 WO2021108994A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201980068280.0A CN113302783A (zh) 2019-12-03 2019-12-03 二次电池及含有该二次电池的装置
EP19949554.0A EP3859850B1 (en) 2019-12-03 2019-12-03 Secondary battery and device containing same
KR1020227011666A KR102566396B1 (ko) 2019-12-03 2019-12-03 이차 전지 및 이를 포함하는 장치
PT199495540T PT3859850T (pt) 2019-12-03 2019-12-03 Bateria secundária e dispositivo que a contém
PCT/CN2019/122732 WO2021108994A1 (zh) 2019-12-03 2019-12-03 二次电池及含有该二次电池的装置
HUE19949554A HUE062085T2 (hu) 2019-12-03 2019-12-03 Akkumulátor és az azt tartalmazó készülék
JP2022520024A JP7332800B2 (ja) 2019-12-03 2019-12-03 二次電池及び該二次電池を備える装置
US17/244,998 US20210249722A1 (en) 2019-12-03 2021-04-30 Secondary battery and apparatus containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/122732 WO2021108994A1 (zh) 2019-12-03 2019-12-03 二次电池及含有该二次电池的装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/244,998 Continuation US20210249722A1 (en) 2019-12-03 2021-04-30 Secondary battery and apparatus containing the same

Publications (1)

Publication Number Publication Date
WO2021108994A1 true WO2021108994A1 (zh) 2021-06-10

Family

ID=76221292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122732 WO2021108994A1 (zh) 2019-12-03 2019-12-03 二次电池及含有该二次电池的装置

Country Status (8)

Country Link
US (1) US20210249722A1 (zh)
EP (1) EP3859850B1 (zh)
JP (1) JP7332800B2 (zh)
KR (1) KR102566396B1 (zh)
CN (1) CN113302783A (zh)
HU (1) HUE062085T2 (zh)
PT (1) PT3859850T (zh)
WO (1) WO2021108994A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022268153A1 (zh) * 2021-06-24 2022-12-29 江苏正力新能电池技术有限公司 一种电极组件及二次电池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115863543B (zh) * 2021-09-26 2024-09-10 比亚迪股份有限公司 一种磷酸铁锂正极材料的制备方法、正极极片及锂离子电池
CN114597495A (zh) * 2022-03-21 2022-06-07 珠海冠宇电池股份有限公司 一种电池及电子设备
CN115832183A (zh) * 2022-05-05 2023-03-21 宁德时代新能源科技股份有限公司 正极极片及其制备方法、二次电池、电池模块、电池包及用电装置
CN116666733B (zh) * 2023-07-28 2024-02-06 宁德时代新能源科技股份有限公司 电池单体、电池和用电装置
CN118117036A (zh) * 2024-04-30 2024-05-31 宁德时代新能源科技股份有限公司 一种电池单体、电池、用电装置及电芯

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191424586A (en) 1914-12-24 1915-06-24 William Lister Improvements in Tension Apparatus for Yarn Winding Frames and the like.
CN103155207A (zh) * 2010-10-14 2013-06-12 凸版印刷株式会社 锂离子电池用外包装材料
KR20160060526A (ko) * 2014-11-20 2016-05-30 주식회사 폴 이차전지의 리드탭용 실부재
CN106558657A (zh) * 2015-09-29 2017-04-05 昭和电工包装株式会社 蓄电装置的外装件用密封剂膜、蓄电装置用外装件及蓄电装置
CN108807974A (zh) * 2018-06-29 2018-11-13 宁德时代新能源科技股份有限公司 锂离子电池
CN209461494U (zh) * 2018-12-28 2019-10-01 浙江天能能源科技股份有限公司 一种具有多重缓冲带结构的软包电池
CN110387090A (zh) * 2018-04-19 2019-10-29 北京国能电池科技股份有限公司 电池包装壳材料、电池壳体、制备方法和电池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102630355A (zh) * 2009-11-03 2012-08-08 安维亚系统公司 用于锂离子电池的高容量阳极材料
WO2011115464A2 (ko) * 2010-03-19 2011-09-22 주식회사 엘지화학 파우치형 케이스 및 이를 포함하는 전지팩
KR20130037091A (ko) * 2011-10-05 2013-04-15 삼성에스디아이 주식회사 음극 활물질 및 이를 채용한 리튬 전지
KR20130059472A (ko) * 2011-11-28 2013-06-07 삼성에스디아이 주식회사 음극 활물질 및 이를 채용한 리튬 전지
WO2014002950A1 (ja) * 2012-06-25 2014-01-03 Necエナジーデバイス株式会社 電池パック
JP2015187916A (ja) * 2012-08-10 2015-10-29 株式会社豊田自動織機 リチウムイオン二次電池用負極活物質、及び、リチウムイオン二次電池
JP6601410B2 (ja) * 2014-10-21 2019-11-06 日本電気株式会社 フィルム外装電池およびそれを備えた電池モジュール
WO2016152877A1 (ja) * 2015-03-24 2016-09-29 日本電気株式会社 リチウムイオン二次電池
KR20170101120A (ko) * 2016-02-26 2017-09-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 축전 장치, 전지 제어 유닛 및 전자 기기
US10883458B2 (en) * 2017-07-03 2021-01-05 Vitesco Technologies USA, LLC. Asymmetric spring valve disk
CN107359335B (zh) * 2017-07-12 2018-11-06 湖南金富力新能源股份有限公司 镍钴锰酸锂正极材料及其制备方法和应用
KR102457285B1 (ko) * 2018-01-15 2022-10-19 에스케이온 주식회사 리튬 이차 전지
CN112004779B (zh) * 2018-03-29 2023-02-07 尤米科尔公司 用于制备可再充电锂离子蓄电池的正极材料的方法
CN108847489B (zh) * 2018-05-04 2019-04-09 宁德时代新能源科技股份有限公司 负极极片及电池
CN109286020B (zh) * 2018-08-21 2021-03-30 宁德时代新能源科技股份有限公司 负极极片及二次电池
CN109449447B (zh) * 2018-10-17 2021-01-15 宁德时代新能源科技股份有限公司 二次电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191424586A (en) 1914-12-24 1915-06-24 William Lister Improvements in Tension Apparatus for Yarn Winding Frames and the like.
CN103155207A (zh) * 2010-10-14 2013-06-12 凸版印刷株式会社 锂离子电池用外包装材料
KR20160060526A (ko) * 2014-11-20 2016-05-30 주식회사 폴 이차전지의 리드탭용 실부재
CN106558657A (zh) * 2015-09-29 2017-04-05 昭和电工包装株式会社 蓄电装置的外装件用密封剂膜、蓄电装置用外装件及蓄电装置
CN110387090A (zh) * 2018-04-19 2019-10-29 北京国能电池科技股份有限公司 电池包装壳材料、电池壳体、制备方法和电池
CN108807974A (zh) * 2018-06-29 2018-11-13 宁德时代新能源科技股份有限公司 锂离子电池
CN209461494U (zh) * 2018-12-28 2019-10-01 浙江天能能源科技股份有限公司 一种具有多重缓冲带结构的软包电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022268153A1 (zh) * 2021-06-24 2022-12-29 江苏正力新能电池技术有限公司 一种电极组件及二次电池

Also Published As

Publication number Publication date
EP3859850B1 (en) 2023-05-24
US20210249722A1 (en) 2021-08-12
EP3859850A1 (en) 2021-08-04
CN113302783A (zh) 2021-08-24
KR20220062046A (ko) 2022-05-13
KR102566396B1 (ko) 2023-08-22
JP2022550792A (ja) 2022-12-05
JP7332800B2 (ja) 2023-08-23
EP3859850A4 (en) 2021-12-15
PT3859850T (pt) 2023-06-06
HUE062085T2 (hu) 2023-09-28

Similar Documents

Publication Publication Date Title
WO2021217639A1 (zh) 二次电池、其制备方法和含有该二次电池的装置
CN113410469B (zh) 一种负极极片和二次电池以及电动汽车
US20220059864A1 (en) Negative electrode plate and secondary battery
KR102511721B1 (ko) 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021109133A1 (zh) 二次电池及含有它的装置
WO2021108994A1 (zh) 二次电池及含有该二次电池的装置
WO2021217587A1 (zh) 二次电池、其制备方法及含有该二次电池的装置
WO2020135767A1 (zh) 正极活性材料、正极极片、电化学储能装置及装置
WO2021057483A1 (zh) 二次电池及含有该二次电池的电池模组、电池包、装置
US20220052341A1 (en) Secondary battery, and battery module, battery pack and apparatus comprising the same
WO2021217635A1 (zh) 二次电池、其制备方法及含有该二次电池的装置
JP7106762B2 (ja) 正極シート及びその製造方法、並びにリチウムイオン二次電池
CN107293727A (zh) 一种正极材料、包含该正极材料的锂离子电池及其制备方法
WO2021088718A1 (zh) 二次电池及含有该二次电池的电池模组、电池包、装置
CN109273771A (zh) 二次电池
WO2022141302A1 (zh) 二次电池及其制备方法、含有该二次电池的电池模块、电池包和装置
WO2021217586A1 (zh) 二次电池及其制备方法、含有该二次电池的装置
CN114583104B (zh) 一种正极片和电池
WO2022116964A1 (zh) 一种电极组件及包含其的电化学装置、电子装置
CN105493319B (zh) 负极活性物质、使用该负极活性物质的负极、以及锂离子二次电池
WO2024217031A1 (zh) 一种二次电池和用电设备
JP2019021418A (ja) 非水電解質二次電池の制御装置および制御方法、当該制御装置を有する非水電解質二次電池システム、並びに非水電解質二次電池の製造方法
CN202839842U (zh) 一种倍率型锂离子电池
WO2024020964A1 (zh) 二次电池、其制备方法及含有该二次电池的装置
WO2021217585A1 (zh) 二次电池、其制备方法及含有该二次电池的装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019949554

Country of ref document: EP

Effective date: 20210430

ENP Entry into the national phase

Ref document number: 2022520024

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227011666

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE