[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021106324A1 - 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池 - Google Patents

非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池 Download PDF

Info

Publication number
WO2021106324A1
WO2021106324A1 PCT/JP2020/035249 JP2020035249W WO2021106324A1 WO 2021106324 A1 WO2021106324 A1 WO 2021106324A1 JP 2020035249 W JP2020035249 W JP 2020035249W WO 2021106324 A1 WO2021106324 A1 WO 2021106324A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
electrolyte secondary
transition metal
Prior art date
Application number
PCT/JP2020/035249
Other languages
English (en)
French (fr)
Inventor
良憲 青木
政一 東郷
毅 小笠原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP20892342.5A priority Critical patent/EP4067310A4/en
Priority to JP2021561180A priority patent/JPWO2021106324A1/ja
Priority to CN202080082480.4A priority patent/CN114762150A/zh
Priority to US17/779,733 priority patent/US20230032577A1/en
Publication of WO2021106324A1 publication Critical patent/WO2021106324A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery.
  • Patent Document 1 the general formula Li x Ni y Co z M m O 2 (where, M is an element selected Ba, Sr, from B, 0.9 ⁇ x ⁇ 1.1,0 It is composed of a lithium transition metal composite oxide represented by .5 ⁇ y ⁇ 0.95, 0.05 ⁇ z ⁇ 0.5, 0.0005 ⁇ m ⁇ 0.02), and has a BET specific surface area value of 0.
  • a positive electrode active material for a non-aqueous electrolyte secondary battery having a thickness of 8 m 2 / g or less is disclosed.
  • Patent Document 2 has an ⁇ -NaFeO 2 structure and contains one or more selected from the group consisting of Mn, Ni, and Co as a transition metal element, and is a lithium transition metal composite oxide.
  • a positive electrode active material for a non-aqueous electrolyte secondary battery in which an alkaline earth metal and W are present on the particle surface is disclosed.
  • Patent Documents 1 and 2 still have room for improvement in charge / discharge cycle characteristics.
  • the layered structure includes a Li layer in which Li reversibly enters and exits, and the ratio of metal elements other than Li present in the Li layer is relative to the total molar amount of metal elements other than Li in the lithium transition metal composite oxide. It is 0.7 mol% or more and 3.0 mol% or less, and the ratio m of the half-value width m of the diffraction peak on the (003) plane to the half-value width n of the diffraction peak on the (104) plane of the X-ray diffraction pattern by X-ray diffraction. / N is 0.75 ⁇ m / n ⁇ 1.0.
  • 850 is a dry mixture of a transition metal oxide, a Li compound, and at least one of a Ca compound and an Sr compound. It is characterized by including a step of firing at ° C. or lower.
  • the non-aqueous electrolyte secondary battery is characterized by comprising a positive electrode containing the positive electrode active material for the non-aqueous electrolyte secondary battery, a negative electrode, and a non-aqueous electrolyte.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery which is one aspect of the present disclosure, it is possible to provide a high-capacity non-aqueous electrolyte secondary battery in which a decrease in battery capacity due to charging / discharging is suppressed.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery contains a lithium transition metal composite oxide having a high Ni content, and contributes to the improvement of the charge / discharge cycle characteristics of the battery.
  • FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery which is an example of the embodiment.
  • FIG. 2 is an X-ray diffraction pattern of Examples 2 and 3 and SrO and CaO.
  • the layered structure of the lithium transition metal composite oxide contained in the positive electrode active material includes a transition metal layer containing Ni and the like, a Li layer, and an oxygen layer, and Li ions present in the Li layer reversibly enter and exit. Then, the charge / discharge reaction of the battery proceeds.
  • a lithium transition metal composite oxide having a high Ni content is used, a large amount of Li ions are extracted from the Li layer when the battery is charged, so that the layered structure collapses, leading to a decrease in battery capacity.
  • the lithium transition metal composite oxide having a high Ni content has high activity near the particle surface and tends to have an unstable structure, so that a surface deterioration layer is likely to be formed or eroded due to a reaction with an electrolytic solution or the like. , Leads to a decrease in battery capacity.
  • the present inventors first made the transition metal layer contain a predetermined amount of Mn that does not cause a change in the oxidation number during charging and discharging, and the Li layer contained a predetermined amount of Mn.
  • the present inventors have found that erosion of the structurally deteriorated layer can be suppressed by protecting the surface of the lithium transition metal composite oxide with a compound containing at least one of Ca and Sr. Lithium transition metal composite oxides with a high Ni content do not have a sufficient effect on either strengthening the skeleton of the layered structure or protecting the surface, and by applying both, charging and discharging due to the synergistic effect. The cycle characteristics can be specifically improved.
  • a cylindrical battery in which a wound electrode body is housed in a cylindrical battery case is illustrated, but the electrode body is not limited to the wound type, and a plurality of positive electrodes and a plurality of negative electrodes are interposed via a separator. It may be a laminated type in which one sheet is alternately laminated one by one.
  • the battery case is not limited to a cylindrical shape, and may be, for example, a square shape, a coin shape, or the like, or may be a battery case made of a laminated sheet including a metal layer and a resin layer.
  • FIG. 1 is a cross-sectional view of the non-aqueous electrolyte secondary battery 10 which is an example of the embodiment.
  • the non-aqueous electrolyte secondary battery 10 includes an electrode body 14, a non-aqueous electrolyte (not shown), and a battery case 15 that houses the electrode body 14 and the non-aqueous electrolyte.
  • the electrode body 14 has a winding structure in which a positive electrode 11 and a negative electrode 12 are wound via a separator 13.
  • the battery case 15 is composed of a bottomed cylindrical outer can 16 and a sealing body 17 that closes the opening of the outer can 16.
  • the electrode body 14 includes a long positive electrode 11, a long negative electrode 12, two long separators 13, a positive electrode tab 20 bonded to the positive electrode 11, and a negative electrode bonded to the negative electrode 12. It is composed of tabs 21.
  • the negative electrode 12 is formed to have a size one size larger than that of the positive electrode 11 in order to prevent the precipitation of lithium. That is, the negative electrode 12 is formed longer than the positive electrode 11 in the longitudinal direction and the width direction (short direction).
  • the two separators 13 are formed to have a size at least one size larger than that of the positive electrode 11, and are arranged so as to sandwich the positive electrode 11, for example.
  • the non-aqueous electrolyte secondary battery 10 includes insulating plates 18 and 19 arranged above and below the electrode body 14, respectively.
  • the positive electrode tab 20 attached to the positive electrode 11 extends to the sealing body 17 side through the through hole of the insulating plate 18, and the negative electrode tab 21 attached to the negative electrode 12 passes through the outside of the insulating plate 19. It extends to the bottom side of the outer can 16.
  • the positive electrode tab 20 is connected to the lower surface of the bottom plate 23 of the sealing body 17 by welding or the like, and the cap 27 of the sealing body 17 electrically connected to the bottom plate 23 serves as the positive electrode terminal.
  • the negative electrode tab 21 is connected to the inner surface of the bottom of the outer can 16 by welding or the like, and the outer can 16 serves as a negative electrode terminal.
  • the outer can 16 is, for example, a bottomed cylindrical metal container.
  • a gasket 28 is provided between the outer can 16 and the sealing body 17, and the internal space of the battery case 15 is sealed.
  • the outer can 16 has a grooved portion 22 that supports the sealing body 17, for example, formed by pressing a side surface portion from the outside.
  • the grooved portion 22 is preferably formed in an annular shape along the circumferential direction of the outer can 16, and the sealing body 17 is supported on the upper surface thereof.
  • the sealing body 17 has a structure in which a bottom plate 23, a lower valve body 24, an insulating member 25, an upper valve body 26, and a cap 27 are laminated in this order from the electrode body 14 side.
  • Each member constituting the sealing body 17 has, for example, a disk shape or a ring shape, and each member except the insulating member 25 is electrically connected to each other.
  • the lower valve body 24 and the upper valve body 26 are connected to each other at the central portion thereof, and an insulating member 25 is interposed between the peripheral portions thereof.
  • the positive electrode 11, the negative electrode 12, the separator 13, and the non-aqueous electrolyte constituting the non-aqueous electrolyte secondary battery 10 will be described in detail, and in particular, the positive electrode active material contained in the positive electrode mixture layer 31 constituting the positive electrode 11 will be described in detail.
  • the positive electrode 11 has a positive electrode current collector 30 and a positive electrode mixture layer 31 formed on both sides of the positive electrode current collector 30.
  • a metal foil stable in the potential range of the positive electrode 11, such as aluminum or an aluminum alloy, or a film in which the metal is arranged on the surface layer can be used.
  • the positive electrode mixture layer 31 includes a positive electrode active material, a conductive material, and a binder. The thickness of the positive electrode mixture layer 31 is, for example, 10 ⁇ m to 150 ⁇ m on one side of the positive electrode current collector 30.
  • the positive electrode 11 is formed by applying a positive electrode slurry containing a positive electrode active material, a conductive material, a binder, and the like to the surface of the positive electrode current collector 30, drying the coating film, and then compressing the positive electrode mixture layer 31 into a positive electrode. It can be manufactured by forming it on both sides of the current collector 30.
  • Examples of the conductive material contained in the positive electrode mixture layer 31 include carbon materials such as carbon black, acetylene black, ketjen black, and graphite.
  • Examples of the binder contained in the positive electrode mixture layer 31 include fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimides, acrylic resins, and polyolefins. These resins may be used in combination with carboxymethyl cellulose (CMC) or a salt thereof, polyethylene oxide (PEO) and the like.
  • the positive electrode active material contained in the positive electrode mixture layer 31 is Ca present on or at the grain boundary of the primary particles including the lithium transition metal composite oxide having a layered structure and the secondary particle surface of the lithium transition metal composite oxide.
  • Compound A which contains at least one of Sr.
  • Examples of the layered structure of the lithium transition metal composite oxide include a layered structure belonging to the space group R-3m and a layered structure belonging to the space group C2 / m. Among these, a layered structure belonging to the space group R-3m is preferable in terms of increasing capacity, stability of crystal structure, and the like.
  • the layered structure of the lithium transition metal composite oxide includes a transition metal layer, a Li layer, and an oxygen layer.
  • the positive electrode active material may contain a lithium transition metal composite oxide other than that represented by the above general formula, or other compounds, as long as the object of the present disclosure is not impaired.
  • the mole fraction of metal elements contained in the lithium transition metal composite oxide can be determined by inductively coupled plasma emission spectrometry (ICP-AES), electron probe microanalyzer (EPMA), energy dispersive X-ray analyzer (EDX), etc. Can be measured by ICP-AES, electron probe microanalyzer (EPMA), energy dispersive X-ray analyzer (EDX), etc. Can be measured by ICP-AES, electron probe microanalyzer (EPMA), energy dispersive X-ray analyzer (EDX), etc. Can be measured by ICP-AES), electron probe microanalyzer (EPMA), energy dispersive X-ray analyzer (EDX), etc. Can be measured by ICP-AES), electron probe microanalyzer (EPMA), energy dispersive X-ray analyzer (EDX), etc. Can be measured by ICP-AES), electron probe microanalyzer (EPMA), energy dispersive X-ray analyzer (EDX), etc. Can be measured by
  • a indicating the ratio of Li in the lithium transition metal composite oxide satisfies 0.95 ⁇ a ⁇ 1.05 and 0.97 ⁇ a ⁇ 1.03.
  • the battery capacity may decrease as compared with the case where a satisfies the above range.
  • a is 1.05 or more, the charge / discharge cycle characteristics may be deteriorated as compared with the case where a satisfies the above range.
  • X which indicates the ratio of Ni to the total number of moles of metal elements other than Li in the lithium transition metal composite oxide, satisfies 0.7 ⁇ x ⁇ 0.95 and 0.8 ⁇ x ⁇ 0.95. Is preferable.
  • x By setting x to 0.7 or more, a high-capacity battery can be obtained.
  • x is 0.8 or more, the effect of improving the cycle characteristics by stabilizing the structure of the lithium transition metal composite oxide can be easily obtained.
  • x exceeds 0.95, a sufficient amount of Mn and M cannot be contained, so that the layered structure of the lithium transition metal composite oxide becomes unstable.
  • Y which indicates the content of Mn with respect to the total number of moles of metal elements other than Li in the lithium transition metal composite oxide, preferably satisfies 0 ⁇ y ⁇ 0.3, and 0.01 ⁇ y ⁇ 0.15. It is more preferable to meet. Since Mn does not change in oxidation number during charging and discharging, it is considered that the structure of the transition metal layer is stabilized by being contained in the transition metal layer. On the other hand, when y is more than 0.3, the Ni content is reduced and the battery capacity is lowered. Mn may be uniformly dispersed in the layered structure of the lithium transition metal composite oxide, for example, or may be present in a part of the layered structure.
  • M is at least one element selected from Al, Co, Fe, Ti, Si, Nb, Mo, W, and Zn
  • z which indicates the content of M with respect to the total number of moles of the metal element excluding Li in the lithium transition metal composite oxide, satisfies 0 ⁇ z ⁇ 0.3.
  • the lithium transition metal composite oxide is a particle having a volume-based median diameter (D50) of, for example, 3 ⁇ m to 30 ⁇ m, preferably 5 ⁇ m to 25 ⁇ m, and particularly preferably 7 ⁇ m to 15 ⁇ m.
  • D50 means a particle size in which the cumulative frequency is 50% from the smallest particle size in the volume-based particle size distribution, and is also called a median diameter.
  • the particle size distribution of the lithium transition metal composite oxide can be measured using a laser diffraction type particle size distribution measuring device (for example, MT3000II manufactured by Microtrac Bell Co., Ltd.) and water as a dispersion medium.
  • the lithium transition metal composite oxide is, for example, secondary particles formed by aggregating a plurality of primary particles.
  • the particle size of the primary particles constituting the secondary particles is, for example, 0.05 ⁇ m to 1 ⁇ m.
  • the particle size of the primary particles is measured as the diameter of the circumscribed circle in the particle image observed by a scanning electron microscope (SEM).
  • Compound A is present on the surface or grain boundaries of the primary particles of the lithium transition metal composite oxide.
  • the surface of the primary particles includes the surface of the secondary particles.
  • the grain boundaries of the primary particles are the interfaces between the primary particles.
  • the presence of compound A on the surface or grain boundary of the primary particle means a state in which the compound A is in contact with the surface or grain boundary of the primary particle, or a state in which the compound A is in a range of 10 nm or less from the surface or grain boundary of the primary particle.
  • Compound A may be uniformly dispersed over the entire surface and interface of the lithium transition metal composite oxide, or may be present in a part thereof, for example.
  • Compound A contains at least one of Ca and Sr.
  • Compound A may contain a Ca compound or an Sr compound.
  • Ca compounds include CaO, Ca (OH) 2 , and CaCO 3 .
  • Sr compound examples include SrO, Sr (OH) 2 , and SrCO 3 .
  • the total amount of Ca and Sr in compound A may be 1 mol% or less with respect to the total amount of metal elements excluding Li in the lithium transition metal composite oxide. Thereby, the charge / discharge cycle characteristics can be further improved.
  • the layered structure of the lithium transition metal composite oxide includes a Li layer in which Li reversibly enters and exits, and the proportion of metal elements other than Li present in the Li layer is a metal excluding Li in the lithium transition metal composite oxide. It is 0.7 mol% or more and 3.0 mol% or less with respect to the total molar amount of the element.
  • the ratio of metal elements other than Li in the Li layer is less than 0.7 mol%, the stability of the layered structure in the state where Li ions in the Li layer are extracted is lowered, the structure is broken, and the battery capacity is reduced. It leads to a decline.
  • the metal element present in the Li layer is mainly Ni, but other metal elements may be contained.
  • the ratio of metal elements other than Li in the Li layer can be obtained from the result of the Riet belt analysis of the X-ray diffraction pattern by the X-ray diffraction measurement of the positive electrode active material.
  • PDXL2 Rivest Cipher Co., Ltd.
  • Rietveld analysis software can be used for Rietveld analysis of the X-ray diffraction pattern.
  • the X-ray diffraction pattern is obtained by a powder X-ray diffraction method under the following conditions using a powder X-ray diffractometer (manufactured by Rigaku Co., Ltd., trade name "RINT-TTR", radiation source Cu-K ⁇ ).
  • the positive electrode active material has a crystallite size s calculated by Scherrer equation from the half width n of the diffraction peak on the (104) plane of the X-ray diffraction pattern by the above X-ray diffraction, and the crystallite size s is 400 ⁇ ⁇ s ⁇ 800 ⁇ . It is preferable to have.
  • the crystallinity size s of the lithium transition metal composite oxide is smaller than 400 ⁇ , the crystallinity may decrease, leading to a decrease in battery capacity. Further, when the crystallite size s of the lithium transition metal composite oxide exceeds 800 ⁇ , the diffusibility of Li may be deteriorated and the output characteristics of the battery may be deteriorated. Scherrer's equation is expressed by the following equation.
  • s K ⁇ / Bcos ⁇
  • s the crystallite size
  • the wavelength of the X-ray
  • B the half width of the diffraction peak of the (104) plane
  • the diffraction angle (rad)
  • K the Scherrer constant.
  • K is 0.9.
  • the ratio m / n of the half width m of the diffraction peak on the (003) plane to the half width n of the diffraction peak on the (104) plane of the X-ray diffraction pattern by the above X-ray diffraction is 0.75 ⁇ m. / N ⁇ 1.0.
  • the layered structure can be in a state of having an appropriate strain in the plane direction, so that a battery having a high capacity and improved charge / discharge cycle characteristics can be obtained.
  • m / n is less than 0.75, the distortion of the layered structure is too large and the layered structure becomes brittle. Further, when m / n exceeds 1.0, the battery capacity decreases.
  • the method for producing the positive electrode active material is, for example, a first step of obtaining a transition metal oxide containing Ni, Mn and an arbitrary metal element, and a mixing of the transition metal oxide obtained in the first step and a Li compound. It includes a second step of obtaining a mixture and a third step of firing the mixture.
  • the first step for example, while stirring a solution of a metal salt containing Ni, Mn and an arbitrary metal element (Co, Al, Nb, etc.), an alkaline solution such as sodium hydroxide is added dropwise, and the pH is adjusted to the alkaline side.
  • a transition metal hydroxide containing Ni, Mn and an arbitrary metal element is precipitated (co-precipitated), and the transition metal hydroxide is fired.
  • the firing temperature is not particularly limited, but is, for example, in the range of 300 ° C. to 600 ° C.
  • the transition metal oxide obtained in the first step and at least one of the Li compound, the Ca compound and the Sr compound are dry-mixed to obtain a mixture.
  • the Li compound include Li 2 CO 3 , LiOH, Li 2 O 2 , Li 2 O, LiNO 3 , LiNO 2 , Li 2 SO 4 , LiOH ⁇ H 2 O, LiH, LiF and the like.
  • the Ca compound include Ca (OH) 2 , CaO, CaCO 3 , CaSO 4 , Ca (NO 3 ) 2, and the like.
  • the mixing ratio of the transition metal oxide obtained in the first step and the Li compound is such that each of the above parameters can be easily adjusted within the above-defined range.
  • a metal element other than Li a molar of Li.
  • the ratio is preferably in the range of 1: 0.98 to 1: 1.1.
  • the mixing ratio of the transition metal oxide obtained in the first step with the Ca compound or the Sr compound makes it easy to adjust each of the above parameters to the above-specified range, and for example, a metal other than Li.
  • the molar ratio of element: Ca and Sr is preferably in the range of 1: 0.0003 to 1: 0.03.
  • the transition metal oxide obtained in the first step when the transition metal oxide obtained in the first step, the Li compound, and the Ca compound or the Sr compound are mixed, another metal raw material may be added if necessary.
  • the other metal raw material is an oxide containing a metal element other than the metal element constituting the transition metal oxide obtained in the first step.
  • the mixture obtained in the second step is calcined at 850 ° C. or lower for a predetermined time to obtain a positive electrode active material according to the present embodiment.
  • compound A containing at least one of Ca and Sr may aggregate in a specific portion, and a sufficient effect may not be obtained.
  • the calcination of the mixture in the third step is obtained by, for example, a first calcination step of calcination in a calcination furnace at a first calcination rate to a first set temperature of 450 ° C. to 680 ° C. under an oxygen stream and a first calcination step.
  • a multi-step firing step including a second firing step in which the fired product is fired in a firing furnace under an oxygen stream at a second firing rate up to a second set temperature of more than 680 ° C and 850 ° C or less.
  • the first temperature rise rate is in the range of 1.5 ° C./min to 5.5 ° C./min
  • the second temperature rise rate is slower than the first temperature rise rate, 0.1 ° C./min to 3 It is in the range of .5 ° C./min.
  • a plurality of the first temperature rising rate and the second temperature rising rate may be set for each temperature region as long as they are within the above-specified range.
  • the holding time of the first set temperature in the first firing step is preferably 5 hours or less, more preferably 3 hours or less, in terms of adjusting each of the above parameters of the lithium transition metal composite oxide to the above-defined range.
  • the holding time of the first set temperature is the time for maintaining the first set temperature after reaching the first set temperature.
  • the holding time of the second set temperature in the second firing step is preferably 1 hour to 10 hours, preferably 1 hour to 5 hours, in terms of adjusting each of the above parameters of the lithium transition metal composite oxide to the above-defined range. preferable.
  • the holding time of the second set temperature is the time for maintaining the second set temperature after reaching the second set temperature.
  • the mole fraction of the metal element contained in the positive electrode active material obtained above was measured by inductively coupled plasma (ICP) emission spectroscopic analysis, and was measured by the general formula Li a Ni x M n y M z Ca ⁇ Sr ⁇ O 2-.
  • M can be represented by at least one element selected from Al, Co, Fe, Ti, Si, Nb, Mo, W, and Zn).
  • Ca and Sr are contained in the compound A existing on the surface of the lithium transition metal composite oxide.
  • the negative electrode 12 has a negative electrode current collector 40 and a negative electrode mixture layer 41 formed on both sides of the negative electrode current collector 40.
  • a metal foil stable in the potential range of the negative electrode 12 such as copper or a copper alloy, a film in which the metal is arranged on the surface layer, or the like can be used.
  • the negative electrode mixture layer 41 contains a negative electrode active material and a binder. The thickness of the negative electrode mixture layer 41 is, for example, 10 ⁇ m to 150 ⁇ m on one side of the negative electrode current collector 40.
  • the negative electrode 12 is formed by applying a negative electrode mixture slurry containing a negative electrode active material, a binder, and the like to the surface of the negative electrode current collector 40, drying the coating film, and then rolling the negative electrode mixture layer 41 into a negative electrode current collector. It can be produced by forming it on both sides of the body 40.
  • the negative electrode active material contained in the negative electrode mixture layer 41 is not particularly limited as long as it can reversibly occlude and release lithium ions, and a carbon material such as graphite is generally used.
  • the graphite may be any of natural graphite such as scaly graphite, massive graphite and earthy graphite, and artificial graphite such as massive artificial graphite and graphitized mesophase carbon microbeads.
  • a metal alloying with Li such as Si and Sn, a metal compound containing Si and Sn and the like, a lithium titanium composite oxide and the like may be used. Further, those provided with a carbon film may be used.
  • Si-containing compounds represented by SiO x (0.5 ⁇ x ⁇ 1.6) or lithium silicate phases represented by Li 2y SiO (2 + y) (0 ⁇ y ⁇ 2) contain fine particles of Si. Dispersed Si-containing compounds and the like may be used in combination with graphite.
  • the binder contained in the negative electrode mixture layer 41 a fluororesin such as PTFE or PVdF, PAN, polyimide, acrylic resin, polyolefin or the like may be used as in the case of the positive electrode 11, but styrene is preferable. -Butadiene rubber (SBR) is used. Further, the negative electrode mixture layer 41 may contain CMC or a salt thereof, polyacrylic acid (PAA) or a salt thereof, polyvinyl alcohol (PVA) and the like.
  • PAN polyacrylic acid
  • PVA polyvinyl alcohol
  • a porous sheet having ion permeability and insulating property is used.
  • the porous sheet include a microporous thin film, a woven fabric, and a non-woven fabric.
  • polyolefins such as polyethylene and polypropylene, cellulose and the like are suitable.
  • the separator 13 may have a single-layer structure or a laminated structure. Further, the surface of the separator 13 may be provided with a resin layer having high heat resistance such as an aramid resin and a filler layer containing a filler of an inorganic compound.
  • the non-aqueous electrolyte includes, for example, a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • a non-aqueous solvent for example, esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and a mixed solvent of two or more of these can be used.
  • the non-aqueous solvent may contain a halogen substituent in which at least a part of hydrogen in these solvents is substituted with a halogen atom such as fluorine.
  • halogen substituent examples include a fluorinated cyclic carbonate such as fluoroethylene carbonate (FEC), a fluorinated chain carbonate, and a fluorinated chain carboxylic acid ester such as methyl fluoropropionate (FMP).
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylic acid ester
  • esters examples include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and methylpropyl carbonate.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and methylpropyl carbonate.
  • Ethylpropyl carbonate chain carbonate such as methyl isopropyl carbonate, cyclic carboxylic acid ester such as ⁇ -butyrolactone (GBL), ⁇ -valerolactone (GVL), methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP) ), Chain carboxylic acid ester such as ethyl propionate (EP), and the like.
  • ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahexyl, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4.
  • -Cyclic ethers such as dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineole, crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , Dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxy toluene, benzyl ethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxy Chain ethers such as ethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl
  • the electrolyte salt is preferably a lithium salt.
  • the lithium salt LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiMnCl 4, LiSCN, LiCF 3 SO 3, LiCF 3 CO 2, Li (P (C 2 O 4) F 4), LiPF 6-x (C n F 2n + 1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, lithium chloroborane, lithium lower aliphatic carboxylate, Li 2 B 4 O 7 , borates such as Li (B (C 2 O 4 ) F 2 ), LiN (SO 2 CF 3 ) 2 , LiN (C 1 F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2 ) ⁇ l , M is an integer of 0 or more ⁇ and other imide salts.
  • lithium salt these may be used individually by 1 type, or a plurality of types may be mixed and used. Of these, LiPF 6 is preferably used from the viewpoint of ionic conductivity, electrochemical stability, and the like.
  • concentration of the lithium salt is, for example, 0.8 mol to 1.8 mol per 1 L of the non-aqueous solvent. Further, a vinylene carbonate or a propane sultone-based additive may be further added.
  • Example 1 The contents of Sr and Ca are 1.0, respectively, with respect to the total amount of Ni, Mn, and Co of the transition metal oxide represented by the general formula Ni 0.82 Mn 0.03 Co 0.15 O 2.
  • the transition metal oxide is mixed with Sr (OH) 2 and Ca (OH) 2 so as to be mol% and 0.1 mol%, and the total amount of Ni, Mn, Co, Sr, and Ca and Li are added.
  • molar ratio of 1 a mixture of 1.03 so as to lithium hydroxide monohydrate (LiOH ⁇ H 2 O). The mixture is calcined from room temperature to 650 ° C.
  • Example 1 Li 0.99 Ni 0.82 Mn 0.03 Co 0.15 Sr 0.01 Ca 0.001 O 2 .
  • X-ray diffraction measurement was performed on the positive electrode active material of Example 1.
  • the ratio of the metal elements other than Li present in the Li layer to the total molar amount of the metal elements other than Li in the lithium transition metal composite oxide was 0.87 mol%.
  • the ratio m / n of the half width m of the diffraction peak on the (003) plane to the half width n of the diffraction peak on the (104) plane of the X-ray diffraction pattern by X-ray diffraction was 0.978.
  • the above positive electrode active material was mixed at a ratio of 95 parts by mass, acetylene black as a conductive material at a ratio of 3 parts by mass, and polyvinylidene fluoride as a binder at a ratio of 2 parts by mass, and this was mixed with N-methyl-2-pyrrolidone (NMP). Mixing was performed to prepare a positive electrode slurry. Next, the slurry is applied to a positive electrode current collector made of aluminum foil having a thickness of 15 ⁇ m, the coating film is dried, and then the coating film is rolled by a rolling roller and cut into a predetermined electrode size to form a positive electrode core. A positive electrode having a positive electrode mixture layer formed on both sides of the above was obtained. An exposed portion where the surface of the positive electrode core was exposed was provided on a part of the positive electrode.
  • NMP N-methyl-2-pyrrolidone
  • Ethylene carbonate (EC), methyl ethyl carbonate (MEC), and dimethyl carbonate (DMC) were mixed in a volume ratio of 3: 3: 4.
  • a non-aqueous electrolyte was prepared by dissolving lithium hexafluorophosphate (LiPF 6) in the mixed solvent at a concentration of 1.2 mol / liter.
  • test cell An aluminum lead is attached to the exposed portion of the positive electrode, and a nickel lead is attached to a lithium metal foil as a negative electrode.
  • the positive electrode and the negative electrode are spirally wound via a polyolefin separator, and then press-molded in the radial direction to form a flat shape.
  • a wound electrode body was produced. This electrode body was housed in an exterior body made of an aluminum laminated sheet, and after injecting the non-aqueous electrolytic solution, the opening of the exterior body was sealed to obtain a test cell.
  • Capacity retention rate (%) (30th cycle discharge capacity ⁇ 1st cycle discharge capacity) x 100 ⁇ Cycle test>
  • the test cell is constantly charged at a constant current of 0.2 It at a constant current of 0.2 It until the battery voltage reaches 4.3 V under a temperature environment of 25 ° C., and then charged at a constant voltage at 4.3 V until the current value becomes 1/100 It. went. Then, constant current discharge was performed with a constant current of 0.2 It until the battery voltage became 2.5 V. This charge / discharge cycle was repeated 30 cycles.
  • Examples 2 and 4 Except for the raw materials used, the raw material mixing ratio, the total amount of metal elements other than Li and the molar ratio of Li to 1: 1.05, and the firing temperature of the second stage being changed to 750 ° C to synthesize the positive electrode active material. Test cells were prepared in the same manner as in Example 1 and evaluated.
  • Test cells were prepared in the same manner as in Example 4 except that the positive electrode active material was synthesized by changing the raw material mixing ratio and the oxygen flow rate of 95% oxygen concentration (flow rate of 10 L / min per 1 kg of the mixture). The evaluation was done.
  • Example 5 The positive electrode active material is synthesized by firing from room temperature to 650 ° C at a temperature rise rate of 5 ° C./min and the raw material to be used, and then firing from 650 ° C. to 750 ° C. at a temperature rise rate of 3 ° C./min. Test cells were prepared in the same manner as in Example 2 except for the above, and their evaluation was performed.
  • Test cells were prepared and evaluated in the same manner as in Example 1 except that the raw materials used, the raw material mixing ratio, and the firing temperature of the second stage were changed to 730 ° C. to synthesize the positive electrode active material. ..
  • Test cells were prepared in the same manner as in Example 1 except that the positive electrode active material was synthesized by changing the raw material mixing ratio, and their evaluation was performed.
  • Test cells were prepared in the same manner as in Example 2 except that the raw materials used and the raw material compounding ratio were changed to synthesize the positive electrode active material, and their evaluations were performed.
  • Example 2 except that the raw material compounding ratio, the total amount of metal elements other than Li and the molar ratio of Li are 1: 0.95, and the firing temperature of the second stage is changed to 850 ° C. to synthesize the positive electrode active material. Test cells were prepared in the same manner and evaluated.
  • Example 4 The test cell was the same as in Example 2 except that the raw material to be used, the raw material mixing ratio, and the positive electrode active material were synthesized by changing the oxygen concentration to 95% under an oxygen stream (flow rate of 0.1 L / min per 1 kg of the mixture). Were prepared and evaluated.
  • Test cells were prepared in the same manner as in Example 6 except that the raw materials used and the raw material compounding ratio were changed to synthesize the positive electrode active material, and their evaluations were performed.
  • Test cells were prepared and evaluated in the same manner as in Example 1 except that the raw materials used, the raw material mixing ratio, and the firing temperature of the second stage were changed to 730 ° C. to synthesize the positive electrode active material. ..
  • Test cells were prepared in the same manner as in Example 7 except that the raw material compounding ratio and the total amount of metal elements other than Li and the molar ratio of Li were changed to 1: 1.1 to synthesize the positive electrode active material. , The evaluation was done.
  • Tables 1 to 3 show the capacity retention rates of Examples and Comparative Examples. The evaluation results of the capacity retention rates shown in Tables 1 to 3 are relatively expressed with the capacity retention rates of the test cells of Comparative Examples 1, 2 and 5 as 100%, respectively. Further, Tables 1 to 3 exclude the ratio m / n of the half-value width m of the diffraction peak of the (003) plane to the half-value width n of the diffraction peak of the (104) plane of the X-ray diffraction pattern by X-ray diffraction, and Li. The ratio of metal elements other than Li present in the Li layer to the total number of moles of metal elements is also shown.
  • Examples 1 to 8 had a higher capacity retention rate than Comparative Examples 1 to 7.
  • FIG. 2 shows X-ray diffraction patterns of Examples 2 and 3 and SrO and CaO.
  • Non-aqueous electrolyte secondary battery 11 Positive electrode 12 Negative electrode 13 Separator 14 Electrode body 15 Battery case 16 Exterior can 17 Sealing body 18, 19 Insulating plate 20 Positive electrode tab 21 Negative electrode tab 22 Grooving part 23 Bottom plate 24 Lower valve body 25 Insulating member 26 Valve body 27 Cap 28 Gasket 30 Positive electrode current collector 31 Positive electrode mixture layer 40 Negative electrode current collector 41 Negative electrode mixture layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

非水電解質二次電池用正極活物質は、層状構造を有する所定のリチウム遷移金属複合酸化物と、リチウム遷移金属複合酸化物の一次粒子の表面又は粒界に存在する、Ca及びSrの少なくとも一方を含有する化合物Aと、を含む。層状構造はLiが可逆的に出入りするLi層を含み、且つ、Li層に存在するLi以外の金属元素の割合がリチウム遷移金属複合酸化物中のLiを除く金属元素の総モル量に対して0.7モル%以上3.0モル%以下であり、X線回折によるX線回折パターンの(104)面の回折ピークの半値幅nに対する(003)面の回折ピークの半値幅mの比m/nが、0.75≦m/n≦1.0である。

Description

非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
 本開示は、非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池に関する。
 近年、Ni含有量の多いリチウム遷移金属複合酸化物が、高エネルギー密度の正極活物質として注目されている。例えば、特許文献1には、一般式LiNiCo(式中、MはBa、Sr、Bから選択される元素であり、0.9≦x≦1.1、0.5≦y≦0.95、0.05≦z≦0.5、0.0005≦m≦0.02)で表されるリチウム遷移金属複合酸化物からなり、かつBET比表面積値が0.8m/g以下である非水電解質二次電池用正極活物質が開示されている。
 また、特許文献2には、α-NaFeO構造を有し、遷移金属元素としてMn、Ni、及びCoからなる群から選択される1種又は2種以上を含み、リチウム遷移金属複合酸化物の粒子表面にアルカリ土類金属とWが存在する非水電解質二次電池用正極活物質が開示されている。
特開2003-100295号公報 特開2018-129221号公報
 非水電解質二次電池の正極活物質にNi含有量の多いリチウム遷移金属複合酸化物を用いた場合、充電時のLiの引き抜き量が多いため、充放電を繰り返すことにより層状の結晶構造が壊れ、容量が低下するという課題がある。なお、特許文献1,2に開示された技術は、充放電サイクル特性について未だ改良の余地がある。
 本開示の一態様である非水電解質二次電池用正極活物質は、層状構造を有する、一般式LiNiMn2-b(式中、0.95<a<1.05、0.7≦x≦0.95、0<y≦0.3、0≦z≦0.3、0≦b<0.05、x+y+z=1、Mは、Al、Co、Fe、Ti、Si、Nb、Mo、W及びZnから選ばれる少なくとも1種の元素)で表されるリチウム遷移金属複合酸化物と、リチウム遷移金属複合酸化物の一次粒子の表面又は粒界に存在する、Ca及びSrの少なくとも一方を含有する化合物Aと、を含む。層状構造はLiが可逆的に出入りするLi層を含み、且つ、Li層に存在するLi以外の金属元素の割合がリチウム遷移金属複合酸化物中のLiを除く金属元素の総モル量に対して0.7モル%以上3.0モル%以下であり、X線回折によるX線回折パターンの(104)面の回折ピークの半値幅nに対する(003)面の回折ピークの半値幅mの比m/nが、0.75≦m/n≦1.0であることを特徴とする。
 本開示の一態様である非水電解質二次電池用正極活物質の製造方法は、遷移金属酸化物と、Li化合物と、Ca化合物及びSr化合物の少なくともいずれか一方とを乾式混合した混合物を850℃以下で焼成する工程を含むことを特徴とする。
 本開示の一態様である非水電解質二次電池は、上記非水電解質二次電池用正極活物質を含む正極と、負極と、非水電解質とを備えることを特徴とする。
 本開示の一態様である非水電解質二次電池用正極活物質によれば、充放電に伴う電池容量の低下を抑制した高容量の非水電解質二次電池を提供することができる。非水電解質二次電池用正極活物質はNi含有量が多いリチウム遷移金属複合酸化物を含み、電池の充放電サイクル特性の向上に寄与する。
図1は、実施形態の一例である非水電解質二次電池の断面図である。 図2は、実施例2、3とSrO、CaOのX線回折図形である。
 正極活物質に含まれるリチウム遷移金属複合酸化物の層状構造には、Ni等を含有する遷移金属層、Li層、酸素層が存在し、Li層に存在するLiイオンが可逆的に出入りすることで、電池の充放電反応が進行する。Ni含有量の多いリチウム遷移金属複合酸化物を用いた場合、電池の充電時にLi層から多くのLiイオンが引き抜かれるため層状構造が崩れて電池容量の低下につながる。また、Ni含有量の多いリチウム遷移金属複合酸化物は、粒子表面近傍の活性が高く、構造が不安定になりやすいため、電解液との反応等により、表面劣化層の生成や浸食が起こりやすく、電池容量の低下につながる。
 そこで、本発明者らは、上記課題を解決するために鋭意検討した結果、先ず、遷移金属層に充放電中に酸化数変化が生じないMnを所定量含有させつつ、Li層に所定量のLi以外の金属元素を含有させ、さらに、X線回折パターンの(003)面の半値幅m/(104)面の半値幅nの比が所定範囲内になるような、面方向に適度な歪みを持った層状構造にすることで、リチウム遷移金属複合酸化物の構造を維持しつつ電池容量を高くできることを見出した。さらに、本発明者らは、Ca及びSrの少なくとも一方を含む化合物でリチウム遷移金属複合酸化物の表面を保護することで、構造劣化層の侵食を抑制できることを見出した。Ni含有量の多いリチウム遷移金属複合酸化物は層状構造の骨格の強化、及び、表面の保護のいずれか一方では十分な効果が得られず、両方を適用することでその相乗効果により、充放電サイクル特性を特異的に改善することができる。
 以下、本開示に係る非水電解質二次電池の実施形態の一例について詳細に説明する。以下では、巻回型の電極体が円筒形の電池ケースに収容された円筒形電池を例示するが、電極体は、巻回型に限定されず、複数の正極と複数の負極がセパレータを介して交互に1枚ずつ積層されてなる積層型であってもよい。また、電池ケースは円筒形に限定されず、例えば角形、コイン形等であってもよく、金属層及び樹脂層を含むラミネートシートで構成された電池ケースであってもよい。
 図1は、実施形態の一例である非水電解質二次電池10の断面図である。図1に例示するように、非水電解質二次電池10は、電極体14と、非水電解質(図示せず)と、電極体14及び非水電解質を収容する電池ケース15とを備える。電極体14は、正極11と負極12とがセパレータ13を介して巻回された巻回構造を有する。電池ケース15は、有底円筒形状の外装缶16と、外装缶16の開口部を塞ぐ封口体17とで構成されている。
 電極体14は、長尺状の正極11と、長尺状の負極12と、長尺状の2枚のセパレータ13と、正極11に接合された正極タブ20と、負極12に接合された負極タブ21とで構成される。負極12は、リチウムの析出を防止するために、正極11よりも一回り大きな寸法で形成される。即ち、負極12は、正極11より長手方向及び幅方向(短手方向)に長く形成される。2枚のセパレータ13は、少なくとも正極11よりも一回り大きな寸法で形成され、例えば正極11を挟むように配置される。
 非水電解質二次電池10は、電極体14の上下にそれぞれ配置された絶縁板18,19を備える。図1に示す例では、正極11に取り付けられた正極タブ20が絶縁板18の貫通孔を通って封口体17側に延び、負極12に取り付けられた負極タブ21が絶縁板19の外側を通って外装缶16の底部側に延びている。正極タブ20は封口体17の底板23の下面に溶接等で接続され、底板23と電気的に接続された封口体17のキャップ27が正極端子となる。負極タブ21は外装缶16の底部内面に溶接等で接続され、外装缶16が負極端子となる。
 外装缶16は、例えば有底円筒形状の金属製容器である。外装缶16と封口体17との間にはガスケット28が設けられ、電池ケース15の内部空間が密閉される。外装缶16は、例えば側面部を外部からプレスして形成された、封口体17を支持する溝入部22を有する。溝入部22は、外装缶16の周方向に沿って環状に形成されることが好ましく、その上面で封口体17を支持する。
 封口体17は、電極体14側から順に、底板23、下弁体24、絶縁部材25、上弁体26、及びキャップ27が積層された構造を有する。封口体17を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材25を除く各部材は互いに電気的に接続されている。下弁体24と上弁体26は各々の中央部で互いに接続され、各々の周縁部の間には絶縁部材25が介在している。異常発熱で電池の内圧が上昇すると、下弁体24が上弁体26をキャップ27側に押し上げるように変形して破断し、下弁体24と上弁体26の間の電流経路が遮断される。さらに内圧が上昇すると、上弁体26が破断し、キャップ27の開口部からガスが排出される。
 以下、非水電解質二次電池10を構成する正極11、負極12、セパレータ13及び非水電解質について、特に正極11を構成する正極合材層31に含まれる正極活物質について詳説する。
 [正極]
 正極11は、正極集電体30と、正極集電体30の両面に形成された正極合材層31とを有する。正極集電体30には、アルミニウム、アルミニウム合金など、正極11の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合材層31は、正極活物質、導電材、及び結着材を含む。正極合材層31の厚みは、例えば正極集電体30の片側で10μm~150μmである。正極11は、正極集電体30の表面に正極活物質、導電材、及び結着材等を含む正極スラリーを塗布し、塗膜を乾燥させた後、圧縮して正極合材層31を正極集電体30の両面に形成することにより作製できる。
 正極合材層31に含まれる導電材としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料が例示できる。正極合材層31に含まれる結着材としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素樹脂、ポリアクリロニトリル(PAN)、ポリイミド、アクリル樹脂、ポリオレフィンなどが例示できる。これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩、ポリエチレンオキシド(PEO)などが併用されてもよい。
 正極合材層31に含まれる正極活物質は、層状構造を有するリチウム遷移金属複合酸化物と、リチウム遷移金属複合酸化物の二次粒子表面を含む一次粒子表面上又は粒界に存在する、Ca及びSrの少なくとも一方を含有する化合物Aと、を含む。
 リチウム遷移金属複合酸化物の層状構造は、例えば、空間群R-3mに属する層状構造、空間群C2/mに属する層状構造等が挙げられる。これらの中では、高容量化、結晶構造の安定性等の点で、空間群R-3mに属する層状構造であることが好ましい。リチウム遷移金属複合酸化物の層状構造は、遷移金属層、Li層、酸素層を含む。
 リチウム遷移金属複合酸化物は、一般式LiNiMn2-b(式中、0.95<a<1.05、0.7≦x≦0.95、0<y≦0.3、0≦z≦0.3、0≦b<0.05、x+y+z=1、Mは、Al、Co、Fe、Ti、Si、Nb、Mo、W、及びZnから選ばれる少なくとも1種の元素)で表すことができる。なお、正極活物質には、本開示の目的を損なわない範囲で、上記の一般式で表される以外のリチウム遷移金属複合酸化物、或いはその他の化合物が含まれてもよい。リチウム遷移金属複合酸化物に含有される金属元素のモル分率は、誘導結合プラズマ発光分光分析装置(ICP-AES)、電子線マイクロアナライザー(EPMA)、エネルギー分散型X線分析装置(EDX)等により測定することができる。
 リチウム遷移金属複合酸化物中のLiの割合を示すaは、0.95≦a<1.05を満たし、0.97≦a≦1.03を満たすことが好ましい。aが0.95未満の場合、aが上記範囲を満たす場合と比較して、電池容量が低下する場合がある。aが1.05以上の場合、aが上記範囲を満たす場合と比較して、充放電サイクル特性の低下につながる場合がある。
 リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル数に対するNiの割合を示すxは、0.7≦x≦0.95を満たし、0.8≦x≦0.95を満たすことが好ましい。xを0.7以上とすることで、高容量の電池が得られる。また、xが0.8以上の場合、リチウム遷移金属複合酸化物の構造の安定化によるサイクル特性向上の効果が得やすい。また、xが0.95超の場合は、十分な量のMn、Mを含有することができないので、リチウム遷移金属複合酸化物の層状構造が不安定になる。
 リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル数に対するMnの含有量を示すyは、0<y≦0.3を満たすことが好ましく、0.01≦y≦0.15を満たすことがより好ましい。Mnは、充放電中にも酸化数変化が生じないため、遷移金属層に含有されることで遷移金属層の構造が安定化すると考えられる。一方、yが0.3超の場合は、Niの含有量が少なくなって電池容量が低下してしまう。Mnは、例えば、リチウム遷移金属複合酸化物の層状構造内に均一に分散していてもよいし、層状構造内の一部に存在していてもよい。
 M(Mは、Al、Co、Fe、Ti、Si、Nb、Mo、W、及びZnから選ばれる少なくとも1種の元素)は、任意成分である。リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル数に対するMの含有量を示すzは、0≦z≦0.3を満たすことが好ましい。
 リチウム遷移金属複合酸化物は、体積基準のメジアン径(D50)が、例えば3μm~30μm、好ましくは5μm~25μm、特に好ましくは7μm~15μmの粒子である。D50は、体積基準の粒度分布において頻度の累積が粒径の小さい方から50%となる粒径を意味し、中位径とも呼ばれる。リチウム遷移金属複合酸化物の粒度分布は、レーザー回折式の粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製、MT3000II)を用い、水を分散媒として測定できる。
 リチウム遷移金属複合酸化物は、例えば、複数の一次粒子が凝集してなる二次粒子である。二次粒子を構成する一次粒子の粒径は、例えば0.05μm~1μmである。一次粒子の粒径は、走査型電子顕微鏡(SEM)により観察される粒子画像において外接円の直径として測定される。
 化合物Aは、リチウム遷移金属複合酸化物の一次粒子の表面又は粒界に存在する。これにより、電解液との反応等によるリチウム遷移金属複合酸化物表面の構造劣化層の生成、侵食を抑制できる。ここで、一次粒子の表面には二次粒子の表面を含む。また、一次粒子の粒界とは、一次粒子同士の界面である。化合物Aが一次粒子の表面又は粒界に存在するとは、一次粒子の表面若しくは粒界に接していている状態、又は、一次粒子の表面若しくは粒界から10nm以下の範囲にある状態をいう。化合物Aは、例えば、リチウム遷移金属複合酸化物の表面及び界面の全体に均一に分散していてもよいし、一部に存在していてもよい。
 化合物Aは、Ca及びSrの少なくとも一方を含有する。化合物Aは、Ca化合物、又は、Sr化合物を含んでもよい。Ca化合物は、例えば、CaO、Ca(OH)、及びCaCOを例示することができる。Sr化合物は、例えば、SrO、Sr(OH)、SrCOを例示することができる。
 化合物A中のCa及びSrの総量は、リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル量に対して、1モル%以下であってもよい。これにより、充放電サイクル特性をより向上させることができる。
 リチウム遷移金属複合酸化物の層状構造は、Liが可逆的に出入りするLi層を含み、且つ、Li層に存在するLi以外の金属元素の割合がリチウム遷移金属複合酸化物中のLiを除く金属元素の総モル量に対して0.7モル%以上3.0モル%以下である。Li層におけるLi以外の金属元素の割合が、0.7モル%未満の場合、Li層中のLiイオンが引き抜かれた状態での層状構造の安定性が低下し、構造が壊れ、電池容量の低下につながる。また、Li層におけるLi以外の金属元素の割合が3.0モル%を超える場合、Li層中のLiイオンの拡散性が低下し、電池容量の低下と共に電池の反応抵抗が高くなる。Li層に存在する金属元素は、主にNiであるが、他の金属元素を含んでもよい。
 Li層におけるLi以外の金属元素の割合は、正極活物質のX線回折測定によるX線回折パターンのリートベルト解析結果から得られる。X線回折パターンのリートベルト解析には、例えば、リートベルト解析ソフトであるPDXL2(株式会社リガク)を使用することができる。
 X線回折パターンは、粉末X線回折装置(株式会社リガク製、商品名「RINT-TTR」、線源Cu-Kα)を用いて、以下の条件による粉末X線回折法によって得られる。
測定範囲:15-120°
スキャン速度:4°/min
解析範囲:30-120°
バックグラウンド:B-スプライン
プロファイル関数:分割型擬Voigt関数
束縛条件:Li(3a)+Ni(3a)=1
     Ni(3a)+Ni(3b)=α(αは各々のNi含有割合)
ICSD No.:98-009-4814
 正極活物質は、上記X線回折によるX線回折パターンの(104)面の回折ピークの半値幅nからシェラーの式(Scherrer equation)により算出される結晶子サイズsが、400Å≦s≦800Åであることが好ましい。リチウム遷移金属複合酸化物の上記結晶子サイズsが400Åより小さい場合、結晶性が低下して、電池容量の低下につながる場合がある。また、リチウム遷移金属複合酸化物の上記結晶子サイズsが800Åを越える場合、Liの拡散性が悪くなり、電池の出力特性が低下する場合がある。シェラーの式は、下式で表される。
 s=Kλ/Bcosθ
 上式において、sは結晶子サイズ、λはX線の波長、Bは(104)面の回折ピークの半値幅、θは回折角(rad)、KはScherrer定数である。本実施形態においてKは0.9とする。
 正極活物質は、上記X線回折によるX線回折パターンの(104)面の回折ピークの半値幅nに対する(003)面の回折ピークの半値幅mの比m/nが、0.75≦m/n≦1.0である。この範囲であれば、層状構造を面方向に適度な歪みを持った状態にすることができるので、高容量で充放電サイクル特性が向上した電池を得ることができる。m/nが0.75未満の場合、層状構造の歪みが大きすぎて層状構造が脆くなる。また、m/nが1.0超の場合、電池容量が低下する。
 正極活物質の上記X線回折測定によるX線回折パターンには、CaO及びSrOに由来するピークが存在しないことが好ましい。CaO及びSrOがX線回折測定で検出される程度含有されている場合、電池容量の低下等が生じる場合がある。
 次に、リチウム遷移金属複合酸化物及び化合物Aを含む正極活物質の製造方法の一例について説明する。
 正極活物質の製造方法は、例えば、Ni、Mn及び任意の金属元素を含む遷移金属酸化物を得る第1工程と、第1工程で得られた遷移金属酸化物とLi化合物とを混合して混合物を得る第2工程と、当該混合物を焼成する第3工程と、を備える。
 第1工程においては、例えば、Ni、Mn及び任意の金属元素(Co、Al、Nb等)を含む金属塩の溶液を撹拌しながら、水酸化ナトリウム等のアルカリ溶液を滴下し、pHをアルカリ側(例えば8.5~12.5)に調整することにより、Ni、Mn及び任意の金属元素を含む遷移金属水酸化物を析出(共沈)させ、当該遷移金属水酸化物を焼成することにより、Ni、Mn及び任意の金属元素を含む遷移金属酸化物を得る。焼成温度は、特に制限されるものではないが、例えば、300℃~600℃の範囲である。
 第2工程においては、第1工程で得られた遷移金属酸化物と、Li化合物とCa化合物及びSr化合物の少なくともいずれか一方とを乾式混合して、混合物を得る。Li化合物としては、例えば、LiCO、LiOH、Li、LiO、LiNO、LiNO、LiSO、LiOH・HO、LiH、LiF等が挙げられる。Ca化合物としては、Ca(OH)、CaO、CaCO、CaSO、Ca(NO等が挙げられる。Sr化合物としては、Sr(OH)、Sr(OH)・8HO、SrO、SrCO、SrSO、Sr(NO等が挙げられる。第1工程で得られた遷移金属酸化物とLi化合物との混合割合は、上記各パラメータを上記規定した範囲に調整することを容易とする点で、例えば、Liを除く金属元素:Liのモル比が、1:0.98~1:1.1の範囲となる割合とすることが好ましい。また、第1工程で得られた遷移金属酸化物とCa化合物又はSr化合物との混合割合は、上記各パラメータを上記規定した範囲に調整することを容易とする点で、例えば、Liを除く金属元素:Ca及びSrのモル比が、1:0.0003~1:0.03の範囲となる割合とすることが好ましい。第2工程では、第1工程で得られた遷移金属酸化物とLi化合物とCa化合物又はSr化合物とを混合する際、必要に応じて他の金属原料を添加してもよい。他の金属原料は、第1工程で得られた遷移金属酸化物を構成する金属元素以外の金属元素を含む酸化物等である。
 第3工程においては、第2工程で得られた混合物を850℃以下で所定時間焼成し、本実施形態に係る正極活物質を得る。850℃を越える温度で焼成すると、Ca及びSrの少なくとも一方を含有する化合物Aが特定の部分に凝集し、十分な効果が得られない場合がある。第3工程における混合物の焼成は、例えば焼成炉内で、酸素気流下、450℃~680℃の第1設定温度まで第1昇温速度で焼成する第1焼成工程と、第1焼成工程により得られた焼成物を、焼成炉内で、酸素気流下、680℃超850℃以下の第2設定温度まで第2昇温速度で焼成する第2焼成工程とを含む、多段階焼成工程を備える。ここで、第1昇温速度は1.5℃/min~5.5℃/minの範囲であり、第2昇温速度は、第1昇温速度より遅く、0.1℃/min~3.5℃/minの範囲である。なお、第1昇温速度、第2昇温速度は、上記規定した範囲内であれば、温度領域毎に複数設定してもよい。第1焼成工程における第1設定温度の保持時間は、リチウム遷移金属複合酸化物の上記各パラメータを上記規定した範囲に調整する点で、5時間以下が好ましく、3時間以下がより好ましい。第1設定温度の保持時間とは、第1設定温度に達した後、第1設定温度を維持する時間である。第2焼成工程における第2設定温度の保持時間は、リチウム遷移金属複合酸化物の上記各パラメータを上記規定した範囲に調整する点で、1時間~10時間が好ましく、1時間~5時間がより好ましい。第2設定温度の保持時間とは、第2設定温度に達した後、第2設定温度を維持する時間である。混合物の焼成の際には、上記各パラメータを上記規定した範囲に調整する点で、例えば、酸素濃度60%以上の酸素気流中で行い、酸素気流の流量を、焼成炉10cmあたり、0.2mL/min~4mL/minの範囲及び混合物1kgあたり0.3L/min以上とすることができる。
 上記で得られた正極活物質に含有される金属元素のモル分率は、誘導結合プラズマ(ICP)発光分光分析により測定され、一般式LiNiMnCaαSrβ2-b(式中、0.95<a<1.05、0.7≦x≦0.95、0<y≦0.3、0≦z≦0.3、α+β>0、0≦b<0.05、x+y+z=1、Mは、Al、Co、Fe、Ti、Si、Nb、Mo、W、及びZnから選ばれる少なくとも1種の元素)で表すことができる。なお、Ca及びSrはリチウム遷移金属複合酸化物の表面に存在する化合物Aに含有されている。
 [負極]
 負極12は、負極集電体40と、負極集電体40の両面に形成された負極合材層41とを有する。負極集電体40には、銅、銅合金等の負極12の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルムなどを用いることができる。負極合材層41は、負極活物質、及び結着材を含む。負極合材層41の厚みは、例えば負極集電体40の片側で10μm~150μmである。負極12は、負極集電体40の表面に負極活物質、結着材等を含む負極合材スラリーを塗布し、塗膜を乾燥させた後、圧延して負極合材層41を負極集電体40の両面に形成することにより作製できる。
 負極合材層41に含まれる負極活物質としては、リチウムイオンを可逆的に吸蔵、放出できるものであれば特に限定されず、一般的には黒鉛等の炭素材料が用いられる。黒鉛は、鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛、黒鉛化メソフェーズカーボンマイクロビーズ等の人造黒鉛のいずれであってもよい。また、負極活物質として、Si、Sn等のLiと合金化する金属、Si、Sn等を含む金属化合物、リチウムチタン複合酸化物などを用いてもよい。また、これらに炭素被膜を設けたものを用いてもよい。例えば、SiO(0.5≦x≦1.6)で表されるSi含有化合物、又はLi2ySiO(2+y)(0<y<2)で表されるリチウムシリケート相中にSiの微粒子が分散したSi含有化合物などが、黒鉛と併用されてもよい。
 負極合材層41に含まれる結着材には、正極11の場合と同様に、PTFE、PVdF等の含フッ素樹脂、PAN、ポリイミド、アクリル樹脂、ポリオレフィンなどを用いてもよいが、好ましくはスチレン-ブタジエンゴム(SBR)が用いられる。また、負極合材層41には、CMC又はその塩、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコール(PVA)などが含まれていてもよい。
 [セパレータ]
 セパレータ13には、例えば、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータ13の材質としては、ポリエチレン、ポリプロピレン等のポリオレフィン、セルロースなどが好適である。セパレータ13は、単層構造であってもよく、積層構造を有していてもよい。また、セパレータ13の表面には、アラミド樹脂等の耐熱性の高い樹脂層、無機化合物のフィラーを含むフィラー層が設けられていてもよい。
 [非水電解質]
 非水電解質は、例えば、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。ハロゲン置換体としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステルなどが挙げられる。
 上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル(EP)等の鎖状カルボン酸エステルなどが挙げられる。
 上記エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等の鎖状エーテルなどが挙げられる。
 電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiMnCl、LiSCN、LiCFSO、LiCFCO、Li(P(C)F)、LiPF6-x(C2n+1(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li、Li(B(C)F)等のホウ酸塩類、LiN(SOCF、LiN(C2l+1SO)(C2m+1SO){l,mは0以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPFを用いることが好ましい。リチウム塩の濃度は、例えば非水溶媒1L当り0.8モル~1.8モルである。また、さらにビニレンカーボネートやプロパンスルトン系添加剤を添加してもよい。
 <実施例>
 以下、実施例及び比較例により本開示をさらに説明するが、本開示は以下の実施例に限定されるものではない。
 [正極活物質の作製]
 <実施例1>
 一般式Ni0.82Mn0.03Co0.15で表される遷移金属酸化物のNi、Mn、及びCoの総量に対して、Sr及びCaの含有量が、各々、1.0モル%及び0.1モル%となるように、遷移金属酸化物とSr(OH)及びCa(OH)を混合し、さらにNi、Mn、Co、Sr、及びCaの総量と、Liのモル比が1:1.03となるように水酸化リチウム一水和物(LiOH・HO)を混合した。当該混合物を酸素濃度95%の酸素気流下(混合物1kgあたり5L/minの流量)、昇温速度2℃/minで、室温から650℃まで焼成した後、昇温速度1℃/minで、650℃から800℃まで焼成した。この焼成物を水洗により不純物を除去し、実施例1の正極活物質を得た。ICP-AESにより、実施例1の正極活物質の組成を分析した結果、Li0.99Ni0.82Mn0.03Co0.15Sr0.01Ca0.001であった。また、実施例1の正極活物質について、X線回折測定を行った。リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル量に対するLi層に存在するLi以外の金属元素の割合は、0.87モル%であった。X線回折によるX線回折パターンの(104)面の回折ピークの半値幅nに対する(003)面の回折ピークの半値幅mの比m/nは、0.978であった。
 [正極の作製]
 上記の正極活物質を95質量部、導電材としてアセチレンブラックを3質量部、結着材としてポリフッ化ビニリデンを2質量部の割合で混合し、これをN-メチル-2-ピロリドン(NMP)と混合して正極スラリーを調製した。次いで、当該スラリーを厚み15μmのアルミニウム箔からなる正極集電体に塗布し、塗膜を乾燥した後、圧延ローラーにより、塗膜を圧延して、所定の電極サイズに切断して、正極芯体の両面に正極合材層が形成された正極を得た。なお、正極の一部に正極芯体の表面が露出した露出部を設けた。
 [非水電解質の調製]
 エチレンカーボネート(EC)と、メチルエチルカーボネート(MEC)と、ジメチルカーボネート(DMC)とを、3:3:4の体積比で混合した。当該混合溶媒に対して、六フッ化リン酸リチウム(LiPF)を1.2モル/リットルの濃度となるように溶解させて、非水電解質を調製した。
 [試験セルの作製]
 上記正極の露出部にアルミニウムリードを、負極としてリチウム金属箔にニッケルリードをそれぞれ取り付け、ポリオレフィン製のセパレータを介して正極と負極を渦巻き状に巻回した後、径方向にプレス成形して扁平状の巻回型電極体を作製した。この電極体をアルミラミネートシートで構成される外装体内に収容し、上記非水電解液を注入した後、外装体の開口部を封止して試験セルを得た。
 [容量維持率の評価]
 上記試験セルについて、下記サイクル試験を行なった。サイクル試験の1サイクル目の放電容量と、30サイクル目の放電容量を求め、下記式により容量維持率を算出した。
  容量維持率(%)=(30サイクル目放電容量÷1サイクル目放電容量)×100
 <サイクル試験>
 試験セルを、25℃の温度環境下、0.2Itの定電流で電池電圧が4.3Vになるまで定電流充電を行い、4.3Vで電流値が1/100Itになるまで定電圧充電を行った。その後、0.2Itの定電流で電池電圧が2.5Vになるまで定電流放電を行った。この充放電サイクルを30サイクル繰り返した。
 <実施例2、4>
 使用する原料、原料配合比、Li以外の金属元素の総量とLiのモル比が1:1.05、及び二段目の焼成温度を750℃に変更して正極活物質を合成したこと以外は実施例1と同様にして試験セルをそれぞれ作製し、その評価を行った。
 <実施例3>
 原料配合比、及び酸素濃度95%の酸素気流下(混合物1kgあたり10L/minの流量)に変更して正極活物質を合成したこと以外は実施例4と同様にして試験セルをそれぞれ作製し、その評価を行った。
 <実施例5>
 使用する原料、原料配合比、及び昇温速度5℃/minで、室温から650℃まで焼成した後、昇温速度3℃/minで、650℃から750℃まで焼成して正極活物質を合成したこと以外は実施例2と同様にして試験セルをそれぞれ作製し、その評価を行った。
 <実施例6~8>
 使用する原料、原料配合比、及び二段目の焼成温度を730℃に変更して正極活物質を合成したこと以外は実施例1と同様にして試験セルをそれぞれ作製し、その評価を行った。
 <比較例1>
 原料配合比を変更して正極活物質を合成したこと以外は実施例1と同様にして試験セルをそれぞれ作製し、その評価を行った。
 <比較例2>
 使用する原料、原料配合比を変更して正極活物質を合成したこと以外は実施例2と同様にして試験セルをそれぞれ作製し、その評価を行った。
 <比較例3>
 原料配合比、Li以外の金属元素の総量とLiのモル比が1:0.95、及び二段目の焼成温度を850℃に変更して正極活物質を合成したこと以外は実施例2と同様にして試験セルをそれぞれ作製し、その評価を行った。
 <比較例4>
 使用する原料、原料配合比、酸素濃度95%の酸素気流下(混合物1kgあたり0.1L/minの流量)に変更して正極活物質を合成したこと以外は実施例2と同様にして試験セルをそれぞれ作製し、その評価を行った。
 <比較例5>
 使用する原料、原料配合比を変更して正極活物質を合成したこと以外は実施例6と同様にして試験セルをそれぞれ作製し、その評価を行った。
 <比較例6>
 使用する原料、原料配合比、及び二段目の焼成温度を730℃に変更して正極活物質を合成したこと以外は実施例1と同様にして試験セルをそれぞれ作製し、その評価を行った。
 <比較例7>
 原料配合比、及びLi以外の金属元素の総量とLiのモル比が1:1.1、に変更して正極活物質を合成したこと以外は実施例7と同様にして試験セルをそれぞれ作製し、その評価を行った。
 実施例及び比較例の容量維持率を表1~3に示す。表1~3に示した容量維持率の評価結果は、各々、比較例1,2,5の試験セルの容量維持率を100%として、相対的に表したものである。また、表1~3にX線回折によるX線回折パターンの(104)面の回折ピークの半値幅nに対する(003)面の回折ピークの半値幅mの比m/n、及び、Liを除く金属元素の総モル数に対するLi層に存在するLi以外の金属元素の割合、を併せて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~3に示すように、実施例1~8は、比較例1~7よりも容量維持率が高かった。なお、実施例のいずれについても、X線回折パターンにSrO及びCaOに由来するピークは存在しなかった。一例として図2に実施例2、3とSrO、CaOのX線回折図形を示した。
10  非水電解質二次電池
11  正極
12  負極
13  セパレータ
14  電極体
15  電池ケース
16  外装缶
17  封口体
18,19  絶縁板
20  正極タブ
21  負極タブ
22  溝入部
23  底板
24  下弁体
25  絶縁部材
26  上弁体
27  キャップ
28  ガスケット
30  正極集電体
31  正極合材層
40  負極集電体
41  負極合材層

Claims (6)

  1.  層状構造を有する、一般式LiNiMn2-b(式中、0.95<a<1.05、0.7≦x≦0.95、0<y≦0.3、0≦z≦0.3、0≦b<0.05、x+y+z=1、Mは、Al、Co、Fe、Ti、Si、Nb、Mo、W及びZnから選ばれる少なくとも1種の元素)で表されるリチウム遷移金属複合酸化物と、
     前記リチウム遷移金属複合酸化物の一次粒子の表面又は粒界に存在する、Ca及びSrの少なくとも一方を含有する化合物Aと、を含み、
     前記層状構造はLiが可逆的に出入りするLi層を含み、且つ、前記Li層に存在するLi以外の金属元素の割合が前記リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル量に対して0.7モル%以上3.0モル%以下であり、
     X線回折によるX線回折パターンの(104)面の回折ピークの半値幅nに対する(003)面の回折ピークの半値幅mの比m/nが、0.75≦m/n≦1.0である、非水電解質二次電池用正極活物質。
  2.  前記化合物A中のCa及びSrの総量は、前記リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル量に対して、1モル%以下である、請求項1に記載の非水電解質二次電池用正極活物質。
  3.  X線回折によるX線回折パターンの(104)面の回折ピークの半値幅nからシェラーの式により算出される結晶子サイズsが、400Å≦s≦800Åの範囲である、請求項1又は2に記載の非水電解質二次電池用正極活物質。
  4.  X線回折測定によるX線回折パターンにCaO及びSrOに由来するピークが存在しない、請求項1~3のいずれか1項に記載の非水電解質二次電池用正極活物質。
  5.  請求項1~4のいずれか1項に記載の非水電解質二次電池用正極活物質の製造方法であって、
     遷移金属酸化物と、Li化合物と、Ca化合物及びSr化合物の少なくともいずれか一方とを乾式混合した混合物を850℃以下で焼成する工程を含む、非水電解質二次電池用正極活物質の製造方法。
  6.  請求項1~4のいずれか1項に記載の非水電解質二次電池用正極活物質を含む正極と、負極と、非水電解質とを備える、非水電解質二次電池。
PCT/JP2020/035249 2019-11-29 2020-09-17 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池 WO2021106324A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20892342.5A EP4067310A4 (en) 2019-11-29 2020-09-17 POSITIVE ELECTRODE ACTIVE MATERIAL FOR SECONDARY BATTERY WITH ANHYDROUS ELECTROLYTE, METHOD FOR MANUFACTURE OF POSITIVE ELECTRODE ACTIVE MATERIAL FOR SECONDARY BATTERY WITH ANHYDROUS ELECTROLYTE AND SECONDARY BATTERY WITH ANHYDROUS ELECTROLYTE
JP2021561180A JPWO2021106324A1 (ja) 2019-11-29 2020-09-17
CN202080082480.4A CN114762150A (zh) 2019-11-29 2020-09-17 非水电解质二次电池用正极活性物质、非水电解质二次电池用正极活性物质的制造方法和非水电解质二次电池
US17/779,733 US20230032577A1 (en) 2019-11-29 2020-09-17 Positive-electrode active material for nonaqueous-electrolyte secondary battery, method for producing positive-electrode active material for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-216951 2019-11-29
JP2019216951 2019-11-29

Publications (1)

Publication Number Publication Date
WO2021106324A1 true WO2021106324A1 (ja) 2021-06-03

Family

ID=76130491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035249 WO2021106324A1 (ja) 2019-11-29 2020-09-17 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池

Country Status (5)

Country Link
US (1) US20230032577A1 (ja)
EP (1) EP4067310A4 (ja)
JP (1) JPWO2021106324A1 (ja)
CN (1) CN114762150A (ja)
WO (1) WO2021106324A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054041A1 (ja) * 2021-09-30 2023-04-06 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2023162709A1 (ja) * 2022-02-25 2023-08-31 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極、及び非水電解質二次電池
WO2023162698A1 (ja) * 2022-02-25 2023-08-31 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2023218315A1 (ja) * 2022-05-13 2023-11-16 株式会社半導体エネルギー研究所 二次電池及びその作製方法、及び車両
WO2024004577A1 (ja) * 2022-06-29 2024-01-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2024004676A1 (ja) * 2022-06-29 2024-01-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024004626A1 (ja) * 2022-06-29 2024-01-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
WO2024004720A1 (ja) * 2022-06-29 2024-01-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024004686A1 (ja) * 2022-06-29 2024-01-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024004687A1 (ja) * 2022-06-29 2024-01-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114287073B (zh) * 2019-08-30 2024-08-09 松下控股株式会社 非水电解质二次电池用正极活性物质和非水电解质二次电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100295A (ja) 2001-06-07 2003-04-04 Kawatetsu Mining Co Ltd リチウム二次電池用正極材料及びその製造方法
JP2013030284A (ja) * 2011-07-26 2013-02-07 Mitsubishi Chemicals Corp 非水系電解液電池
JP5615926B2 (ja) * 2010-08-03 2014-10-29 日立マクセル株式会社 非水二次電池用負極および非水二次電池
JP5682796B2 (ja) * 2012-01-12 2015-03-11 トヨタ自動車株式会社 リチウム二次電池
JP2016110889A (ja) * 2014-12-09 2016-06-20 三星エスディアイ株式会社Samsung SDI Co., Ltd. 正極活物質、およびリチウムイオン二次電池
JP2018129221A (ja) 2017-02-09 2018-08-16 株式会社Gsユアサ 非水電解質二次電池用正極活物質、その製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
JP2018530122A (ja) * 2015-10-02 2018-10-11 シオン・パワー・コーポレーション 高エネルギーリチウムイオン電池のための非水性電解質

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3233352B2 (ja) * 1998-12-24 2001-11-26 株式会社東芝 非水溶媒二次電池の製造方法
JP5598726B2 (ja) * 2011-05-31 2014-10-01 トヨタ自動車株式会社 リチウム二次電池
CN105594031B (zh) * 2013-10-03 2018-04-06 株式会社杰士汤浅国际 锂二次电池用正极活性物质、其制造方法、锂二次电池用电极、锂二次电池和蓄电装置
EP3734722A4 (en) * 2017-12-26 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. POSITIVE ELECTRODE ACTIVE SUBSTANCE FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
CN114287073B (zh) * 2019-08-30 2024-08-09 松下控股株式会社 非水电解质二次电池用正极活性物质和非水电解质二次电池
WO2021100305A1 (ja) * 2019-11-19 2021-05-27 パナソニックIpマネジメント株式会社 非水電解質二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100295A (ja) 2001-06-07 2003-04-04 Kawatetsu Mining Co Ltd リチウム二次電池用正極材料及びその製造方法
JP5615926B2 (ja) * 2010-08-03 2014-10-29 日立マクセル株式会社 非水二次電池用負極および非水二次電池
JP2013030284A (ja) * 2011-07-26 2013-02-07 Mitsubishi Chemicals Corp 非水系電解液電池
JP5682796B2 (ja) * 2012-01-12 2015-03-11 トヨタ自動車株式会社 リチウム二次電池
JP2016110889A (ja) * 2014-12-09 2016-06-20 三星エスディアイ株式会社Samsung SDI Co., Ltd. 正極活物質、およびリチウムイオン二次電池
JP2018530122A (ja) * 2015-10-02 2018-10-11 シオン・パワー・コーポレーション 高エネルギーリチウムイオン電池のための非水性電解質
JP2018129221A (ja) 2017-02-09 2018-08-16 株式会社Gsユアサ 非水電解質二次電池用正極活物質、その製造方法、非水電解質二次電池用正極、及び非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4067310A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054041A1 (ja) * 2021-09-30 2023-04-06 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2023162709A1 (ja) * 2022-02-25 2023-08-31 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極、及び非水電解質二次電池
WO2023162698A1 (ja) * 2022-02-25 2023-08-31 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2023218315A1 (ja) * 2022-05-13 2023-11-16 株式会社半導体エネルギー研究所 二次電池及びその作製方法、及び車両
WO2024004577A1 (ja) * 2022-06-29 2024-01-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2024004676A1 (ja) * 2022-06-29 2024-01-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024004626A1 (ja) * 2022-06-29 2024-01-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
WO2024004720A1 (ja) * 2022-06-29 2024-01-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024004686A1 (ja) * 2022-06-29 2024-01-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024004687A1 (ja) * 2022-06-29 2024-01-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池

Also Published As

Publication number Publication date
EP4067310A4 (en) 2023-05-03
US20230032577A1 (en) 2023-02-02
EP4067310A1 (en) 2022-10-05
JPWO2021106324A1 (ja) 2021-06-03
CN114762150A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
WO2021106324A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
WO2022130982A1 (ja) 非水電解質二次電池用正極、及び非水電解質二次電池
WO2021241075A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
JP7522109B2 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2022070649A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
JP7573183B2 (ja) 非水電解質二次電池
WO2021152996A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
CN114287073B (zh) 非水电解质二次电池用正极活性物质和非水电解质二次电池
WO2020262100A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
WO2020262101A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
EP4099441B1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2021095360A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2022138031A1 (ja) 非水電解質二次電池用正極、及び非水電解質二次電池
WO2022138840A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2022138846A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2024004687A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024004686A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024004720A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2022138919A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2024004710A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892342

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561180

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020892342

Country of ref document: EP

Effective date: 20220629