[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021106198A1 - 圧縮機および冷凍サイクル装置 - Google Patents

圧縮機および冷凍サイクル装置 Download PDF

Info

Publication number
WO2021106198A1
WO2021106198A1 PCT/JP2019/046811 JP2019046811W WO2021106198A1 WO 2021106198 A1 WO2021106198 A1 WO 2021106198A1 JP 2019046811 W JP2019046811 W JP 2019046811W WO 2021106198 A1 WO2021106198 A1 WO 2021106198A1
Authority
WO
WIPO (PCT)
Prior art keywords
crankshaft
shaft portion
eccentric shaft
rotor
rolling piston
Prior art date
Application number
PCT/JP2019/046811
Other languages
English (en)
French (fr)
Inventor
克樹 鈴木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/046811 priority Critical patent/WO2021106198A1/ja
Publication of WO2021106198A1 publication Critical patent/WO2021106198A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member

Definitions

  • the present invention relates to a compressor and a refrigeration cycle device.
  • it relates to a rotary compressor.
  • compressors In refrigeration equipment, air conditioners, etc., compressors are used that suck in the gas refrigerant evaporated by the evaporator, compress it to the pressure required for condensation, and send out high-temperature and high-pressure gas refrigerant into the refrigerant circuit. ..
  • a rotary compressor is known as one of such compressors.
  • a rolling piston is provided between a cylinder that forms a compression space in a compression mechanism and an eccentric shaft that has an eccentric shaft whose central axis is deviated from the main axis of rotation in a crankshaft that is a rotation shaft.
  • a rotary compressor equipped with a cylindrical rotating component called.
  • the rotary compressor rotates the rolling piston attached to the eccentric shaft by fitting it into the eccentric shaft due to the eccentric movement of the eccentric shaft due to the rotation of the rotating shaft, thereby sliding between the cylinder and the eccentric shaft.
  • the dynamic resistance can be reduced.
  • the eccentric shaft portion protrudes from the shaft of the crankshaft on the entire circumference. Therefore, when the crankshaft is viewed from above, the circumference of the eccentric shaft portion seems to cover the circumference of the shaft.
  • the compressor usually has refrigerating machine oil to lubricate the equipment inside the compressor and prevent wear.
  • refrigerating machine oil to lubricate the equipment inside the compressor and prevent wear.
  • the difference between the inner diameter of the rolling piston and the diameter of the eccentric shaft portion is required to obtain the lubricating effect of the refrigerating machine oil.
  • Patent Document 1 does not solve the increase in the diameter of the eccentric shaft portion.
  • the diameter of the eccentric shaft portion is increased, the sliding distance is increased and the sliding loss is increased. Further, if the diameter of the eccentric shaft portion is increased, it causes the rotation of the rolling piston to be hindered. Further, since the moment of rotation in which the eccentric shaft portion and the rolling piston are integrally rotated increases, the rotation of the rolling piston decreases, and the effect is hindered. Therefore, even if the diameter of the eccentric shaft portion is reduced, there are restrictions on mounting the rolling piston as described above.
  • An object of the present invention is to obtain a compressor and a refrigeration cycle device capable of attaching a rolling piston to an eccentric shaft portion, regardless of the above-mentioned restrictions, in order to solve the above-mentioned problems.
  • a closed container as an outer shell, an electric motor portion having a stator and a rotor in the closed container, and a rolling piston are fitted in the closed container, respectively.
  • a crank shaft that has a plurality of eccentric shafts and is a rotating shaft that rotates with the rotation of the rotor, and a compression mechanism that is driven by the rotation of the crank shaft in a closed container to compress the fluid to be compressed.
  • the crank shaft supports a plurality of eccentric shaft portions, a long shaft portion that serves as an axis between the rotor and the plurality of eccentric shaft portions, and a plurality of eccentric shaft portions and the lower end side of the crank shaft. It is composed of a combination of parts divided into a short shaft portion that serves as a shaft between the cylinder head and the cylinder head.
  • a crankshaft that combines an eccentric shaft, a short shaft portion, and a long shaft portion is provided. Therefore, a rolling piston having an inner diameter corresponding to the diameter of the eccentric shaft can be fitted and attached without being disturbed by the short shaft portion and the long shaft portion. Therefore, the amount of eccentricity can be increased without expanding the entire circumference of the eccentric shaft portion to increase the diameter, and from the center of the eccentric shaft, which is a component of a force that hinders the rotation of the rolling piston. Radial distance can be reduced. Therefore, the rotation of the rolling piston can be improved, the sliding loss between the cylinder and the eccentric shaft portion can be reduced, and the compression performance can be improved with respect to the size of the container of the rotary compressor.
  • FIG. 2 is a diagram (No. 2) showing an outline of a positional relationship between a long shaft portion and an eccentric shaft portion of the crankshaft according to the first embodiment. It is a figure explaining the rotation drive part about the crankshaft in the compressor which concerns on Embodiment 2.
  • FIG. It is a figure which shows the structural example of the refrigerating cycle apparatus which concerns on Embodiment 3.
  • FIG. 1 is a diagram showing a configuration of a compressor according to the first embodiment.
  • FIG. 1 is a diagram showing an outline of a cross section in order to show the internal configuration of the rotary compressor 101.
  • hatching is attached to a portion mainly described, and hatching of other portions is omitted.
  • the rotary compressor 101 of the first embodiment is, for example, a main device of a refrigerating cycle device used in a refrigerator, a freezer, a vending machine, an air conditioner, a refrigerating device, a water heater, and the like. Then, the rotary compressor 101 sucks in a fluid to be compressed such as a refrigerant circulating in the refrigeration cycle device, compresses the fluid, and discharges the fluid in a high temperature and high pressure state. In the following, the fluid will be described as being a gaseous refrigerant.
  • the rotary compressor 101 is a two-cylinder type compressor having two cylinders 33, as will be described later. Therefore, as will be described later, the crankshaft 4 serving as the rotating shaft has a plurality of eccentric shaft portions 42. Further, the rotary compressor 101 of the first embodiment is a rolling piston type closed electric compressor.
  • a discharge pipe 6 penetrates and is fixed to the closed container 1 at the upper part of the closed container 1.
  • the discharge pipe 6 is a refrigerant pipe that discharges the compressed high-pressure gas refrigerant to the outside of the closed container 1.
  • a support leg 7 is installed in the lower part of the closed container 1.
  • the support legs 7 are legs for vertically installing the rotary compressor 101 on a horizontal surface such as a plateau.
  • the suction pipe 5 is a refrigerant pipe that allows a low-pressure gas refrigerant to flow into the closed container 1.
  • the suction muffler 51 is a muffler that reduces or eliminates noise generated by the refrigerant flowing in from the suction pipe 5.
  • the suction muffler 51 also functions as an accumulator, and has a refrigerant storage function for storing excess refrigerant and a gas-liquid separation function for retaining liquid refrigerant temporarily generated when the operating state changes. Since the suction muffler 51 has a gas-liquid separation function, it prevents a large amount of liquid refrigerant from flowing into the closed container 1 and prevents liquid compression from being performed in the rotary compressor 101.
  • the rotary compressor 101 of the first embodiment includes a compression mechanism unit 3 and an electric motor unit 2 having a motor for driving the compression mechanism unit 3 in a closed container 1 serving as an outer shell.
  • the refrigerating machine oil 8 is stored in the bottom of the closed container 1.
  • the refrigerating machine oil 8 is guided from the bottom of the closed container 1 to the inside of the rolling piston 32 via the inside of the crankshaft 4. Then, the refrigerating machine oil 8 becomes a lubricating oil that lubricates the equipment and members in the rotary compressor 101 and prevents wear due to sliding.
  • the motor unit 2 has a stator 21 and a rotor 22 that serve as motors.
  • the stator 21 generates a rotating magnetic field around the rotor 22 according to the applied voltage.
  • the rotor 22 is rotationally driven by the generated rotating magnetic field.
  • a crankshaft 4 serving as a rotation shaft is fitted into the rotor 22 and is shrink-fitted and fixed.
  • the crankshaft 4 rotates with the rotational drive of the rotor 22.
  • the crankshaft 4 has two eccentric shaft portions 42 that are opposite to each other and are eccentric with a phase shift of 180 degrees.
  • the configuration of the crankshaft 4 and the like will be described in detail later.
  • the oil separation plate 23 is fitted to the crankshaft 4 and adjusts the flow path of the refrigerant to promote the separation of the refrigerant and the refrigerating machine oil 8.
  • the compression mechanism unit 3 compresses the low-pressure refrigerant flowing into the low-pressure space of the closed container 1 from the suction pipe 5 by the rotational driving force supplied from the motor unit 2 to obtain a high-pressure refrigerant, and discharges the refrigerant upward.
  • the compression mechanism portion 3 includes a cylinder 33, a rolling piston 32, a cylinder head 34, a frame 35, a partition plate 36, and an eccentric shaft portion 42 of a crankshaft 4 described later.
  • the rolling piston 32 is fitted to the eccentric shaft portion 42 and slidably attached along the outer surface of the eccentric shaft portion 42.
  • the rolling piston 32 rotates with the rotation of the eccentric shaft of the eccentric shaft portion 42.
  • the outer surface of the hollow cylindrical cylinder 33 is fixed to the inner surface of the closed container 1.
  • the hollow portion inside the cylinder 33 is a space that serves as a compression chamber 31, and accommodates the eccentric shaft portion 42 and the rolling piston 32 of the crankshaft 4 described above.
  • the eccentric shaft portion 42 and the rolling piston 32 of the crankshaft 4 have a structure capable of eccentric rotation in the hollow portion in the cylinder 33 by the rotation of the crankshaft 4.
  • the cylinder 33 has a suction port 33a that communicates with the suction pipe 5 and allows a low-pressure refrigerant to flow in from the suction pipe 5.
  • the cylinder head 34 is a bearing that supports the lower end of the crankshaft 4. Then, the cylinder head 34 closes the end surface of the lower cylinder 33 from below and is fixed to the cylinder 33. Further, the frame 35 serves as an upper bearing that supports the side surface of the crankshaft 4. Then, the frame 35 closes the end surface of the upper cylinder 33 from above and is fixed to the cylinder 33.
  • the partition plate 36 is a plate that partitions between the two cylinders 33.
  • FIG. 2 is a diagram showing a configuration related to a compression chamber of the compressor according to the first embodiment.
  • the compression mechanism unit 3 of the first embodiment in the compression mechanism unit 3 of the first embodiment, the space surrounded by the cylinder 33, the rolling piston 32, the cylinder head 34, the frame 35, the partition plate 36, and the vane 37 becomes the compression chamber 31. ..
  • the cylinder head 34, the frame 35, and the partition plate 36 are not shown.
  • the vane 37 is pressed against the surface of the rolling piston 32 by the restoring force of an elastic body such as a spring 38 installed in the vane groove 33b of the cylinder 33. Then, the vane 37 reciprocates along the vane groove 33b following the eccentric movement due to the rotation of the rolling piston 32, and blocks the high-pressure space region and the low-pressure space region in the compression chamber 31.
  • the drive operation of the rotary compressor 101 of the first embodiment will be described.
  • the rotor 22 of the motor unit 2 rotates, so that the crankshaft 4 fitted in the rotor 22 rotates.
  • the two eccentric shaft portions 42 of the crankshaft 4 rotate.
  • each rolling piston 32 rotates while sliding along the inner wall of each cylinder inside each cylinder 33.
  • the low-pressure refrigerant flows in from the suction port 33a of the cylinder 33.
  • the refrigerant is compressed.
  • the compressed high-pressure refrigerant is discharged to the upper part in the closed container 1 and discharged to the outside of the closed container 1 from the discharge pipe 6 provided in the upper part of the closed container 1.
  • the radial component increases, so that the moment of rotation between the rolling piston 32 and the eccentric shaft portion 42 increases, and the rotation of the rolling piston 32 decreases.
  • the decrease in the rotation of the rolling piston 32 has a large effect, for example, under the condition that the supply of the refrigerating machine oil 8 is insufficient and the oil film is difficult to be formed when the compressor is driven at a low speed. Further, when the rotary compressor 101 becomes small, the efficiency is lowered under specific operating conditions.
  • FIG. 3 is a diagram illustrating a rotation drive portion centered on the crankshaft of the compressor according to the first embodiment.
  • the crankshaft 4 serving as a rotating shaft is divided into three parts, an eccentric shaft portion 42, a short shaft portion 41, and a long shaft portion 43. Will be done.
  • the rolling piston 32 is fitted to each eccentric shaft portion 42, the eccentric shaft portion 42, the short shaft portion 41, and the long shaft portion 43 are combined.
  • the short-axis portion 41 and the long-axis portion 43 have a short-axis coupling portion 41a and a long-axis coupling portion 43a, respectively, and can be coupled to the eccentric shaft portion 42.
  • FIG. 4 and 5 are diagrams showing an outline of the positional relationship between the long shaft portion and the eccentric shaft portion of the crankshaft according to the first embodiment.
  • FIG. 4 shows, as an example, the positional relationship between the long shaft portion 43 and the eccentric shaft portion 42 when viewed from the upper surface side of the rotary compressor 101.
  • the rolling piston 32 is fitted to the eccentric shaft portion 42 with respect to the integrated crankshaft 4 including the eccentric shaft portion 42.
  • the rolling piston 32 is passed through the long shaft portion 43 to perform the fitting.
  • the rolling piston 32 is passed through the short shaft portion 41 to perform the fitting.
  • FIGS. 4 and 5 The diameters of the eccentric shaft portions 42 are compared. As shown in FIG. 4, a part of the outer circumference of the eccentric shaft portion 42 protrudes from the long shaft portion 43, which is a rotating shaft, so that the eccentric shaft portion 42 protrudes from the long shaft portion 43 over the entire circumference as shown in FIG.
  • the diameter of the eccentric shaft portion 42 is smaller than that of the eccentric shaft portion 42 having restrictions. This also applies to the positional relationship between the short shaft portion 41 and the lower eccentric shaft portion 42.
  • the rotary compressor 101 includes a crankshaft 4 in which an eccentric shaft portion 42, a short shaft portion 41, and a long shaft portion 43, which are divided as parts, are combined.
  • the rolling pistons 32 are fitted to the two eccentric shaft portions 42, respectively.
  • the two eccentric shaft portions 42 are fitted with the rolling piston 32 having an inner diameter corresponding to the diameter of the eccentric shaft portion 42.
  • the two eccentric shaft portions 42, the short shaft portion 41, and the long shaft portion 43 are joined by fitting to assemble the crankshaft 4.
  • the short shaft portion 41 and the long shaft portion 43 are described as one component each, but may be further divided into a plurality of components.
  • the crankshaft 4 is provided by combining the eccentric shaft portion 42, the short shaft portion 41, and the long shaft portion 43. Therefore, the rolling piston 32 having an inner diameter corresponding to the diameter of the eccentric shaft portion 42 can be fitted and attached to the short shaft portion 41 and the long shaft portion 43 without being disturbed. Therefore, the amount of eccentricity r can be increased without increasing the diameter by projecting the entire circumference of the eccentric shaft portion 42, and the sliding loss is not hindered by the rotation of the rolling piston 32. It can be reduced and the compression performance can be improved with respect to the size of the closed container 1 of the rotary compressor 101.
  • FIG. 6 is a diagram illustrating a rotationally driven portion centered on a crankshaft in the compressor according to the second embodiment.
  • the crankshaft 4 of the rotary compressor 101 is divided into three parts, a short shaft portion 41, an eccentric shaft portion 42, and a long shaft portion 43, and is configured by combining them.
  • the rotor 22 has a cavity in the central portion. Then, in the rotary compressor 101 of the first embodiment, the long shaft portion 43 of the crankshaft 4 is inserted into the cavity of the rotor 22, and the crankshaft 4 and the rotor 22 are shrink-fitted and fixed.
  • the rotary compressor 101 of the second embodiment has a rotor coupling portion 24 in which the rotor 22 is coupled to the crankshaft 4 at the rotation center portion at the lower end portion. Then, the rotor 22 and the crankshaft 4 are fixed by fitting and coupling the rotor coupling portion 24 of the rotor 22 and the long shaft portion 43 of the crankshaft 4.
  • the long shaft portion 43 of the second embodiment is shorter than the long shaft portion 43 of the first embodiment.
  • the rotor 22 has a rotor coupling portion 24, and the rotor coupling portion 24 and the long shaft portion 43 of the crankshaft 4 are coupled to each other.
  • the rotor 22 and the crankshaft 4 are integrated so that they can rotate. Therefore, in the rotor 22, the cavity into which the crankshaft 4 is inserted can be eliminated. Then, the space for installing the permanent magnet (not shown) built in the rotor 22 can be expanded to the center side of the rotor 22. Therefore, the rotor 22 can be reduced in the radial direction, and the entire closed container 1 can be reduced in the radial direction.
  • FIG. 7 is a diagram showing a configuration example of the refrigeration cycle device according to the third embodiment.
  • FIG. 7 shows an air conditioner as a refrigeration cycle device.
  • the air conditioner of FIG. 7 connects the outdoor unit 100 and the indoor unit 200 with a refrigerant pipe 300 and a refrigerant pipe 400 to form a refrigerant circuit for circulating a refrigerant.
  • the outdoor unit 100 includes the rotary compressor 101 described in the first and second embodiments. Further, the outdoor unit 100 includes a four-way valve 102, an outdoor heat exchanger 103, an expansion valve 104, and an outdoor blower 105. Further, the indoor unit 200 has an indoor heat exchanger 201.
  • the rotary compressor 101 compresses and discharges the sucked refrigerant.
  • the rotary compressor 101 may be capable of arbitrarily changing the operating frequency by, for example, an inverter circuit or the like.
  • the four-way valve 102 is a valve that switches the flow of the refrigerant between the cooling operation and the heating operation.
  • the outdoor heat exchanger 103 exchanges heat between the refrigerant and air (outdoor air). For example, it functions as an evaporator during heating operation to evaporate and vaporize the refrigerant. In addition, it functions as a condenser during cooling operation to condense and liquefy the refrigerant. Further, the outdoor blower 105 sends outdoor air to the outdoor heat exchanger 103 to promote heat exchange between the outdoor air and the refrigerant.
  • the expansion valve 104 such as a throttle device serving as a pressure reducing device decompresses and expands the refrigerant.
  • the opening degree is adjusted based on an instruction from a control device (not shown) or the like.
  • the indoor heat exchanger 201 exchanges heat between, for example, air to be air-conditioned and a refrigerant. During heating operation, it functions as a condenser and condenses and liquefies the refrigerant. In addition, it functions as an evaporator during cooling operation to evaporate and vaporize the refrigerant.
  • the indoor blower 202 sends air to be air-conditioned to the indoor heat exchanger 201 to promote heat exchange between the air and the refrigerant.
  • the outdoor unit 100 and the like can be miniaturized by having the rotary compressor 101 described in the first embodiment and the second embodiment as an apparatus. Can be done.
  • the rotary compressor 101 has been described as compressing the refrigerant, but the present invention is not limited to this. It can be a compressor that compresses other fluids such as air.
  • the rotary compressor 101 has been described as an example, but the present invention is not limited to this, and the present invention can be applied to other closed electric compressors such as a scroll compressor.
  • the refrigerating cycle device using the air conditioner as an example has been described, but it can also be used for, for example, a refrigerating device or a hot water supply device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

外殻となる密閉容器と、密閉容器内において、固定子および回転子を有する電動機部と、密閉容器内において、ローリングピストンがそれぞれ嵌め合わされた複数の偏芯軸部を有し、回転子の回転とともに回転する回転軸となるクランクシャフトと、密閉容器内において、クランクシャフトの回転により駆動して、圧縮対象の流体を圧縮する圧縮機構部とを備え、クランクシャフトは、複数の偏芯軸部、回転子と複数の偏芯軸部との間の軸となる長軸部および複数の偏芯軸部とクランクシャフトの下端側を支持するシリンダヘッドとの間の軸となる短軸部に分かれた部品の組み合わせで構成されるものである。

Description

圧縮機および冷凍サイクル装置
 この発明は、圧縮機および冷凍サイクル装置に係るものである。特に、ロータリ圧縮機に関するものである。
 冷凍装置、空気調和装置などにおいては、蒸発器で蒸発したガス冷媒を吸入し、凝縮するために必要な圧力まで圧縮して冷媒回路中に高温高圧のガス冷媒を送り出す圧縮機が使用されている。このような圧縮機の1つとして、ロータリ圧縮機が知られている。
 従来、圧縮機構部において圧縮空間を形成するシリンダと、回転軸となるクランクシャフトにおいて回転の主となる軸とは中心軸がずれた偏芯軸を有する偏芯軸部との間に、ローリングピストンと呼ばれる円筒状の自転部品を備えるロータリ圧縮機がある。ロータリ圧縮機は、回転軸の回転による偏芯軸部の偏芯運動により、偏芯軸部に嵌め合わせにより取り付けられたローリングピストンを自転させることで、シリンダと偏芯軸部との間の摺動抵抗を低減することができる。ここで、ローリングピストンの偏芯軸部への取り付けに係る制約上、偏芯軸部は、全周において、クランクシャフトの軸よりも突出している。このため、クランクシャフトを上部からみたときには、偏芯軸部の円周が軸の円周を覆うように見えることになる。
 また、通常、圧縮機は、圧縮機内の機器間を潤滑して、摩耗を防ぐため、冷凍機油を有する。複数のシリンダを有し、クランクシャフトが複数の偏芯軸部を有するロータリ圧縮機の場合、冷凍機油の潤滑効果を得るためには、ローリングピストンの内径と偏芯軸部の直径との差は、μm単位のオーダの隙間でならなければならない。
 ロータリ圧縮機の容器の大きさに対して圧縮性能を上げるには、偏芯軸部を回転軸の中心からずらして偏芯量を大きくする。このため、偏芯軸部の全周を突出させて偏芯量を大きくすると、偏芯軸部の径が拡大する。ここで、2つの偏芯軸部を複数の部品に分離して構成し、偏芯軸部間に挟む仕切り板などの部材を挿入してから2つの偏芯軸部を連結する圧縮機が提案されている(たとえば、特許文献1参照)。このため、偏芯軸部の径の拡大に関係なく、部材が有する挿入に係る貫通穴は小さくなる。
特開2005-337210号公報
 しかしながら、上述した特許文献1の技術は、偏芯軸部の径が拡大することを解決するものではない。偏芯軸部の径が拡大すると、摺動距離が増大し、摺動損失が大きくなる。また、偏芯軸部の径が拡大すると、ローリングピストンの自転を阻害させる原因になる。さらに、偏芯軸部とローリングピストンとが一体となって回転するモーメントが増大するので、ローリングピストンの自転性が低下し、効果が阻害される。このため、偏芯軸部の径を小さくしようとしても、前述したように、ローリングピストンを取り付ける際の制約がある。
 この発明は、上記のような課題を解決するため、上述した制約に関係なく、偏芯軸部にローリングピストンを取り付けることができる圧縮機および冷凍サイクル装置を得ることを目的とする。
 上述した課題を解決するため、この発明の圧縮機は、外殻となる密閉容器と、密閉容器内において、固定子および回転子を有する電動機部と、密閉容器内において、ローリングピストンがそれぞれ嵌め合わされた複数の偏芯軸部を有し、回転子の回転とともに回転する回転軸となるクランクシャフトと、密閉容器内において、クランクシャフトの回転により駆動して、圧縮対象の流体を圧縮する圧縮機構部とを備え、クランクシャフトは、複数の偏芯軸部、回転子と複数の偏芯軸部との間の軸となる長軸部および複数の偏芯軸部とクランクシャフトの下端側を支持するシリンダヘッドとの間の軸となる短軸部に分かれた部品の組み合わせで構成されるものである。
 この発明の圧縮機によれば、偏芯軸、短軸部および長軸部を組み合わせたクランクシャフトを備えるようにした。このため、偏芯軸の径に対応した内径のローリングピストンを、短軸部および長軸部に邪魔されることなく、嵌め合わせて取り付けることができる。このため、偏芯軸部の全周を突出させて直径を拡大しなくても偏芯量を大きくすることができ、ローリングピストンの自転性を阻害する力の成分である偏芯軸の中心からの半径距離を縮小することができる。このため、ローリングピストンの自転性を向上させることができ、シリンダと偏芯軸部における摺動損失を低減し、ロータリ圧縮機の容器の大きさに対して圧縮性能を向上させることができる。
実施の形態1に係る圧縮機の構成を示す図である。 実施の形態1に係る圧縮機の圧縮室に係る構成を示す図である。 実施の形態1に係る圧縮機のクランクシャフトを中心とする回転駆動部分について説明する図である。 実施の形態1に係るクランクシャフトの長軸部と偏芯軸部との位置関係の概略を示す図(その1)である。 実施の形態1に係るクランクシャフトの長軸部と偏芯軸部との位置関係の概略を示す図(その2)である。 実施の形態2に係る圧縮機におけるクランクシャフトを中心とする回転駆動部分について説明する図である。 実施の形態3に係る冷凍サイクル装置の構成例を表す図である。
 以下、発明の実施の形態に係る圧縮機および冷凍サイクル装置について図面などを参照しながら説明する。以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。また、以下の説明において、図における上方を「上側」とし、下方を「下側」として説明する。さらに、理解を容易にするために、方向を表す用語(たとえば「右」、「左」、「前」、「後」など)などを適宜用いるが、説明のためのものであって、これらの用語は本願に係る発明を限定するものではない。そして、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
実施の形態1.
 図1は、実施の形態1に係る圧縮機の構成を示す図である。図1は、ロータリ圧縮機101の内部構成を示すため、断面の概略を示す図である。ここで、図1に示す実施の形態1のロータリ圧縮機101には、主に説明する部分に対してハッチングを付し、他の部分のハッチングを省略している。
 実施の形態1のロータリ圧縮機101は、たとえば、冷蔵庫、冷凍庫、自動販売機、空気調和装置、冷凍装置、給湯機などに用いられる冷凍サイクル装置の主要機器となる。そして、ロータリ圧縮機101は、冷凍サイクル装置を循環する冷媒などの圧縮対象となる流体を吸入し、その流体を圧縮して高温高圧の状態として吐出する。以下においては、流体が、気体の冷媒であるものとして説明する。ロータリ圧縮機101は、後述するように、2つのシリンダ33を有する2シリンダ型の圧縮機である。このため、後述するように、回転軸となるクランクシャフト4は、偏芯軸部42を複数有する。また、実施の形態1のロータリ圧縮機101は、ローリングピストン式の密閉型電動圧縮機である。
 密閉容器1の上部には、吐出管6が、密閉容器1に貫通して固定されている。吐出管6は、圧縮された高圧のガス冷媒を密閉容器1の外部に吐出させる冷媒配管である。また、密閉容器1の下部には、支持脚7が設置されている。支持脚7は、台地などの水平面上に、ロータリ圧縮機101を、縦置きにより設置する脚となる。
 吸入管5は、低圧のガス冷媒を密閉容器1の内部に流入させる冷媒配管である。また、吸入マフラ51は、吸入管5から流入する冷媒により発生する騒音を低減または除去する消音器である。また、吸入マフラ51は、アキュムレータとしても機能し、余剰冷媒を貯留する冷媒貯留機能と、運転状態が変化する際に一時的に発生する液冷媒を滞留させることによる気液分離機能とを有する。吸入マフラ51が気液分離機能を有することにより、密閉容器1の内部に大量の液冷媒が流入されることを防ぎ、ロータリ圧縮機101において液圧縮が行われないようにする。
 また、図1に示すように、実施の形態1のロータリ圧縮機101は、外殻となる密閉容器1内に、圧縮機構部3と、圧縮機構部3を駆動するモータを有する電動機部2とを収容する。そして、密閉容器1内の底部には冷凍機油8が貯留されている。冷凍機油8は、密閉容器1内の底部からクランクシャフト4の内部を経由してローリングピストン32の内部に導かれる。そして、冷凍機油8は、ロータリ圧縮機101内の機器および部材間を潤滑させ、摺動による摩耗を防ぐ潤滑油となる。
 電動機部2は、モータとなる固定子21と回転子22とを有する。固定子21は、印加される電圧にしたがって、回転子22の周囲に回転磁界を発生させる。回転子22は、発生した回転磁界により、回転駆動する。また、回転子22には、回転軸となるクランクシャフト4が嵌入され、焼き嵌め固定される。クランクシャフト4は、回転子22の回転駆動とともに回転する。クランクシャフト4は、後述するように、互いに反対向きになり、180度位相をずらして偏心した2つの偏芯軸部42を上下に有する。クランクシャフト4の構成などについては、後に詳細に説明する。油分離板23は、クランクシャフト4に嵌合し、冷媒の流路を調整して、冷媒と冷凍機油8との分離を促進する。
 また、圧縮機構部3は、電動機部2から供給された回転駆動力により、吸入管5から密閉容器1の低圧空間に流入した低圧冷媒を圧縮して高圧冷媒とし、上方に吐出する。圧縮機構部3は、シリンダ33、ローリングピストン32、シリンダヘッド34、フレーム35、仕切り板36および後述するクランクシャフト4の偏芯軸部42を有する。
 ローリングピストン32は、偏芯軸部42の外側面に沿って、偏芯軸部42に嵌合されて摺動自在に取り付けられている。ローリングピストン32は、偏芯軸部42の偏芯軸の回転とともに回転する。中空円筒形状のシリンダ33の外側面は、密閉容器1内側面に固定されている。シリンダ33内部の中空部分は、圧縮室31となる空間となっており、前述したクランクシャフト4の偏芯軸部42およびローリングピストン32が収容されている。そして、クランクシャフト4の偏芯軸部42およびローリングピストン32が、クランクシャフト4の回転により、シリンダ33内の中空部分において、偏芯回転できる構造となっている。シリンダ33は、吸入管5と連通し、吸入管5から低圧冷媒が流入する吸入口33aを有する。
 シリンダヘッド34は、クランクシャフト4の下端部を支持する軸受となる。そして、シリンダヘッド34は、下側のシリンダ33の端面を下方から閉塞して、シリンダ33に固定される。また、フレーム35は、クランクシャフト4の側面を支える上方側の軸受けとなる。そして、フレーム35は、上側のシリンダ33の端面を上方から閉塞して、シリンダ33に固定される。仕切り板36は、2つのシリンダ33の間を仕切る板である。
 図2は、実施の形態1に係る圧縮機の圧縮室に係る構成を示す図である。図2に示すように、実施の形態1の圧縮機構部3において、シリンダ33、ローリングピストン32、シリンダヘッド34、フレーム35、仕切り板36およびベーン37により囲まれた空間は、圧縮室31となる。ここで、図2では、シリンダヘッド34、フレーム35および仕切り板36は図示していない。ベーン37は、シリンダ33が有するベーン溝33bに設置されたバネ38などの弾性体の復元力によって、ローリングピストン32の表面に押しつけられる。そして、ベーン37は、ローリングピストン32の回転による偏芯運動に追従して、ベーン溝33bに沿って往復運動し、圧縮室31内の高圧空間領域と低圧空間領域とを遮断する。
 次に、実施の形態1のロータリ圧縮機101の駆動動作について説明する。実施の形態1のロータリ圧縮機101は、電動機部2の回転子22が回転することで、回転子22に嵌入されたクランクシャフト4が回転する。このとき、クランクシャフト4が有する2つの偏芯軸部42が回転する。2つの偏芯軸部42が回転することで、各シリンダ33の内部で、それぞれのローリングピストン32が、各シリンダの内壁に沿って摺動しながら回転する。
 ローリングピストン32の回転によって、圧縮室31内の容積が広がる過程においては、シリンダ33の吸入口33aから低圧冷媒が流入する。ローリングピストン32がさらに回転を続け、圧縮室31内の容積が狭まっていくと、冷媒が圧縮されていく。圧縮された高圧冷媒は、密閉容器1内の上部へ吐出され、密閉容器1の上部に設けられた吐出管6から密閉容器1の外部に吐出される。
 ここで、ローリングピストン32の自転運動について説明する。ローリングピストン32の自転運動において、運動に係る主となる力のうち、シリンダ33とローリングピストン32の接触による力が、偏芯軸部42とローリングピストン32との接触による力を上回るとき、クランクシャフト4から、直接、冷凍機油8が供給される。そして、ローリングピストン32の自転運動により、冷凍機油8が潤沢で摩擦係数の低い偏芯軸部42とローリングピストン32との間で摺動が行われる。偏芯軸部42とローリングピストン32との摺動により、シリンダ33とローリングピストン32の摩擦係数の高い面での摺動の肩代わりをすることで損失を低減することができる。このため、偏芯軸部42の径が大きくなると、半径成分が増大することで、ローリングピストン32と偏芯軸部42の間での回転のモーメントが増大し、ローリングピストン32の自転性が低下する。ローリングピストン32の自転性の低下は、たとえば、圧縮機を低速駆動させたときに、冷凍機油8の供給が不十分かつ油膜が形成されづらい条件において影響が大きい。また、ロータリ圧縮機101が小さくなると、特定の運転条件における効率低下を招く。
 図3は、実施の形態1に係る圧縮機のクランクシャフトを中心とする回転駆動部分について説明する図である。図3に示すように、実施の形態1のロータリ圧縮機101は、回転軸となるクランクシャフト4が、2つの偏芯軸部42、短軸部41および長軸部43の3つの部品に分割される。そして、ローリングピストン32を各偏芯軸部42に嵌め合わせた後、偏芯軸部42、短軸部41および長軸部43を組み合わせる。ここで、短軸部41および長軸部43は、それぞれ、短軸結合部41aおよび長軸結合部43aを有し、偏芯軸部42と結合することができる。
 図4および図5は、実施の形態1に係るクランクシャフトの長軸部と偏芯軸部との位置関係の概略を示す図である。図4は、ロータリ圧縮機101の上面側からみたときの長軸部43と偏芯軸部42との位置関係を、例として示している。
 たとえば、偏芯軸部42を含め、一体化したクランクシャフト4に対し、ローリングピストン32を偏芯軸部42に嵌め合わせる場合について説明する。上側の偏芯軸部42にローリングピストン32を嵌め合わせるには、長軸部43にローリングピストン32を通過させて、嵌め合わせが行われる。また、下側の偏芯軸部42にローリングピストン32を嵌め合わせるには、短軸部41にローリングピストン32を通過させて、嵌め合わせが行われる。
 ここで、偏芯軸部42の偏芯軸が、クランクシャフト4が回転する軸の中心からのずれを示す偏芯量rについて、偏芯量rが同じときの、図4と図5との偏芯軸部42の径を比較する。図4に示すように、偏芯軸部42の外周の一部が、回転軸である長軸部43からからはみ出すなどした方が、図5に示す、全周において長軸部43から突出させる制約がある偏芯軸部42よりも、偏芯軸部42の径が小さくなる。これは、短軸部41と下側の偏芯軸部42との位置関係についても同様である。
 しかしながら、長軸部43と偏芯軸部42とがあらかじめ一体で構成されているとき、図4の長軸部43と偏芯軸部42との位置関係では、ローリングピストン32の内径は、偏芯軸部42の径の長さだけでなく突出した長軸部43分を加えることになる。このため、ローリングピストン32と偏芯軸部42との隙間が広くなってしまうことから、図4の位置関係が採用できなかった。
 そこで、実施の形態1におけるロータリ圧縮機101は、部品として分割された偏芯軸部42、短軸部41および長軸部43を組み合わせたクランクシャフト4を備える。クランクシャフト4を結合し、組み立てる際には、まず、2つの偏芯軸部42に対し、それぞれローリングピストン32を嵌め合わせる。このとき、短軸部41および長軸部43によってローリングピストン32の挿入が邪魔されないので、2つの偏芯軸部42には、偏芯軸部42の直径に対応した内径のローリングピストン32を嵌め合わせることができる。そして、ローリングピストン32を嵌め合わせた後で、2つの偏芯軸部42と短軸部41および長軸部43を嵌め合いにより結合し、クランクシャフト4を組み立てる。ここで、短軸部41および長軸部43は、それぞれ1つの部品として説明するが、さらに複数の部品に分割されていてもよい。
 以上のように、実施の形態1のロータリ圧縮機101によれば、偏芯軸部42、短軸部41および長軸部43を組み合わせたクランクシャフト4を備える。このため、偏芯軸部42の直径に対応した内径のローリングピストン32を、短軸部41および長軸部43に邪魔されることなく、嵌め合わせて取り付けることができる。このため、偏芯軸部42の全周を突出させて直径を拡大しなくても、偏芯量rを大きくすることができ、ローリングピストン32の自転が阻害されることなく、摺動損失を低減し、ロータリ圧縮機101の密閉容器1の大きさに対して圧縮性能を向上させることができる。
実施の形態2.
 図6は、実施の形態2に係る圧縮機におけるクランクシャフトを中心とする回転駆動部分について説明する図である。前述した実施の形態1では、ロータリ圧縮機101のクランクシャフト4を、短軸部41、偏芯軸部42および長軸部43の3つの部品に分割し、組み合わせて構成するものであった。一方、回転子22は、中心部分に空洞を有する。そして、実施の形態1のロータリ圧縮機101では、クランクシャフト4の長軸部43を回転子22の空洞に挿通し、クランクシャフト4と回転子22とを焼き嵌めて固定した。
 実施の形態2のロータリ圧縮機101は、回転子22が、下端部における回転中心部分に、クランクシャフト4と結合する回転子結合部24を有する。そして、回転子22の回転子結合部24とクランクシャフト4の長軸部43とを嵌め合わせて結合することで、回転子22とクランクシャフト4とを固定する。ここで、実施の形態2のロータリ圧縮機101では、回転子22の空洞に長軸部43を挿通する必要がない。このため、実施の形態2の長軸部43は、実施の形態1の長軸部43よりも短い。
 以上のように、実施の形態2のロータリ圧縮機101によれば、回転子22は、回転子結合部24を有し、回転子結合部24とクランクシャフト4の長軸部43とを結合させて、回転子22とクランクシャフト4とを一体化して回転できるようにした。このため、回転子22において、クランクシャフト4が挿入される空洞を廃止することができる。そして、回転子22が内蔵する永久磁石(図示せず)を設置する空間を、回転子22の中心側に拡張することができる。したがって、半径方向に回転子22を縮小することができ、密閉容器1全体の径方向の縮小を行うことができる。
実施の形態3.
 図7は、実施の形態3に係る冷凍サイクル装置の構成例を表す図である。ここで、図7では、冷凍サイクル装置として空気調和装置を示している。図7の空気調和装置は、室外機100と室内機200とを、冷媒配管300および冷媒配管400により配管接続し、冷媒を循環させる冷媒回路を構成する。室外機100は、実施の形態1および実施の形態2において説明したロータリ圧縮機101を有する。また、室外機100は、四方弁102、室外熱交換器103、膨張弁104および室外送風機105を有する。また、室内機200は、室内熱交換器201を有する。
 ロータリ圧縮機101は、前述したように、吸入した冷媒を圧縮して吐出する。ここで、特に限定するものではないが、ロータリ圧縮機101を、たとえば、インバータ回路などにより、運転周波数を任意に変化できるようにしてもよい。四方弁102は、冷房運転時と暖房運転時とによって冷媒の流れを切り換える弁である。
 室外熱交換器103は、冷媒と空気(室外の空気)との熱交換を行う。たとえば、暖房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。また、冷房運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。また、室外送風機105は、室外熱交換器103に室外の空気を送り込み、室外の空気と冷媒との熱交換を促す。
 減圧装置となる絞り装置などの膨張弁104は冷媒を減圧して膨張させるものである。たとえば電子式膨張弁などで構成した場合には、制御装置(図示せず)などの指示に基づいて開度調整を行う。室内熱交換器201は、たとえば空調対象となる空気と冷媒との熱交換を行う。暖房運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。また、冷房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。室内送風機202は、空調対象となる空気を室内熱交換器201に送り込み、その空気と冷媒との熱交換を促す。
 以上のように、実施の形態3の冷凍サイクル装置によれば、実施の形態1および実施の形態2で説明したロータリ圧縮機101を機器として有することで、室外機100などの小型化をはかることができる。
 前述した実施の形態1~実施の形態3においては、ロータリ圧縮機101が冷媒を圧縮するものとして説明したが、これに限定するものではない。空気など、他の流体を圧縮する圧縮機とすることができる。
 また、前述した実施の形態2では、ロータリ圧縮機101を例に説明したが、これに限定するものではなく、スクロール圧縮機など、他の密閉型電動圧縮機にも適用することができる。
 また、前述した実施の形態3では、空気調和装置を例にした冷凍サイクル装置について説明したが、たとえば、冷凍装置または給湯装置などにも用いることができる。
 1 密閉容器、2 電動機部、3 圧縮機構部、4 クランクシャフト、5 吸入管、6 吐出管、7 支持脚、8 冷凍機油、21 固定子、22 回転子、23 油分離板、24 回転子結合部、31 圧縮室、32 ローリングピストン、33 シリンダ、33a 吸入口、33b ベーン溝、34 シリンダヘッド、35 フレーム、36 仕切り板、37 ベーン、38 バネ、41 短軸部、41a 短軸結合部、42 偏芯軸部、43 長軸部、43a 長軸結合部、51 吸入マフラ、100 室外機、101 ロータリ圧縮機、102 四方弁、103 室外熱交換器、104 膨張弁、105 室外送風機、200 室内機、201 室内熱交換器、202 室内送風機、300,400 冷媒配管。

Claims (4)

  1.  外殻となる密閉容器と、
     前記密閉容器内において、固定子および回転子を有する電動機部と、
     前記密閉容器内において、ローリングピストンがそれぞれ嵌め合わされた複数の偏芯軸部を有し、前記回転子の回転とともに回転する回転軸となるクランクシャフトと、
     前記密閉容器内において、前記クランクシャフトの回転により駆動して、圧縮対象の流体を圧縮する圧縮機構部とを備え、
     前記クランクシャフトは、前記複数の偏芯軸部、前記回転子と前記複数の偏芯軸部との間の軸となる長軸部および前記複数の偏芯軸部と前記クランクシャフトの下端側を支持するシリンダヘッドとの間の軸となる短軸部に分かれた部品の組み合わせで構成される圧縮機。
  2.  前記回転子は、回転中心部分に、前記クランクシャフトの前記長軸部と結合する結合部を有する請求項1に記載の圧縮機。
  3.  前記圧縮機構部は、
     前記偏芯軸部の回転に伴って回転する前記ローリングピストンと、
     前記偏芯軸部および前記ローリングピストンを収容するシリンダと、
     前記シリンダの上端側で固定され、前記クランクシャフトを支持するフレームと、
     前記シリンダ内に配置され、前記ローリングピストンに押圧されるベーンとを有し、
     前記シリンダ、前記シリンダヘッド、前記フレーム、前記ベーンおよび前記ローリングピストンとで囲まれて前記流体を圧縮する圧縮室を有する請求項1または請求項2に記載の圧縮機。
  4.  請求項1~請求項3のいずれか一項に記載の圧縮機、凝縮器、減圧装置および蒸発器が配管接続され、冷媒の循環が行われる冷媒回路を有する冷凍サイクル装置。
PCT/JP2019/046811 2019-11-29 2019-11-29 圧縮機および冷凍サイクル装置 WO2021106198A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/046811 WO2021106198A1 (ja) 2019-11-29 2019-11-29 圧縮機および冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/046811 WO2021106198A1 (ja) 2019-11-29 2019-11-29 圧縮機および冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2021106198A1 true WO2021106198A1 (ja) 2021-06-03

Family

ID=76128665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046811 WO2021106198A1 (ja) 2019-11-29 2019-11-29 圧縮機および冷凍サイクル装置

Country Status (1)

Country Link
WO (1) WO2021106198A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024201636A1 (ja) * 2023-03-27 2024-10-03 日本キヤリア株式会社 ロータリー圧縮機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219890A (ja) * 1986-11-05 1988-09-13 Riken Corp ロ−タリ式圧縮機用組合せクランクシヤフト
JPH01148474A (ja) * 1987-12-03 1989-06-09 Toshiba Corp クランクシャフトの製造方法
JP2012154266A (ja) * 2011-01-27 2012-08-16 Sanyo Electric Co Ltd ロータリコンプレッサ及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219890A (ja) * 1986-11-05 1988-09-13 Riken Corp ロ−タリ式圧縮機用組合せクランクシヤフト
JPH01148474A (ja) * 1987-12-03 1989-06-09 Toshiba Corp クランクシャフトの製造方法
JP2012154266A (ja) * 2011-01-27 2012-08-16 Sanyo Electric Co Ltd ロータリコンプレッサ及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024201636A1 (ja) * 2023-03-27 2024-10-03 日本キヤリア株式会社 ロータリー圧縮機

Similar Documents

Publication Publication Date Title
JP4875484B2 (ja) 多段圧縮機
US20100326128A1 (en) Fluid machine
WO2017221398A1 (ja) ロータリ圧縮機および冷凍サイクル装置
WO2023084722A1 (ja) 圧縮機及び冷凍サイクル装置
JP6568841B2 (ja) 密閉形回転圧縮機及び冷凍空調装置
WO2021106198A1 (ja) 圧縮機および冷凍サイクル装置
CN218816980U (zh) 一种转子式压缩机及空调器
CN111836965B (zh) 旋转压缩机以及制冷循环装置
EP1865274A1 (en) Vapor-compression refrigeration circuit and automotive air-conditioning system using the refrigeration circuit
US12025130B2 (en) Rotary compressor and refrigeration cycle apparatus
WO2023152799A1 (ja) 圧縮機及び該圧縮機を備えた冷凍サイクル装置
CN218816979U (zh) 一种压缩机及空调器
WO2024232007A1 (ja) 圧縮機及び冷凍サイクル装置
WO2023187909A1 (ja) 密閉型圧縮機および冷凍サイクル装置
JP7357178B1 (ja) 圧縮機および空気調和装置
WO2023012852A1 (ja) 密閉型圧縮機および冷凍サイクル装置
JP2000104690A (ja) 回転式圧縮機
WO2024209552A1 (ja) 回転子、電動機、密閉型圧縮機、および冷凍サイクル装置
CN112412789B (zh) 压缩机及冷冻循环装置
CN221568841U (zh) 压缩机及空调器
JP2002250292A (ja) 密閉型回転圧縮機及び冷凍・空調装置
WO2024147173A1 (ja) 圧縮機
WO2022004028A1 (ja) ロータリ圧縮機および冷凍サイクル装置
JP5925136B2 (ja) 冷媒圧縮機及びヒートポンプ機器
WO2022118384A1 (ja) 圧縮機及び冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP