[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021104304A1 - 一种资源分配的方法、装置以及设备 - Google Patents

一种资源分配的方法、装置以及设备 Download PDF

Info

Publication number
WO2021104304A1
WO2021104304A1 PCT/CN2020/131467 CN2020131467W WO2021104304A1 WO 2021104304 A1 WO2021104304 A1 WO 2021104304A1 CN 2020131467 W CN2020131467 W CN 2020131467W WO 2021104304 A1 WO2021104304 A1 WO 2021104304A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
srs resource
access network
network device
period
Prior art date
Application number
PCT/CN2020/131467
Other languages
English (en)
French (fr)
Inventor
李静
吴利华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20893476.0A priority Critical patent/EP4050952A4/en
Publication of WO2021104304A1 publication Critical patent/WO2021104304A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • H04W36/0044Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information of quality context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method, device, and device for resource allocation.
  • Sounding Reference Signal Sounding Reference Signal
  • UE user equipment
  • the SRS resources allocated to multiple UEs cannot meet the needs of all UEs, which will lead to inaccurate uplink channel and downlink channel measurement, resulting in degradation of uplink and downlink transmission performance, for example, The bit error rate of the transmitted data increases, the data is lost or the cell throughput decreases.
  • the embodiments of the present application provide a resource allocation method, device, and equipment, which improve uplink and downlink channel measurement accuracy while ensuring that all user equipment can be allocated to SRS resources, thereby improving the performance of uplink and downlink transmission. , For example, to reduce the bit error rate of transmitted data and increase cell throughput.
  • the first aspect of the embodiments of the present application provides a resource allocation method, including:
  • the access network device sends first SRS resource allocation information to the first user equipment, where the first SRS resource allocation information indicates the first SRS resource, where the period of the first SRS resource is the first period, and then the access network device sends the first SRS resource to the first user.
  • the device sends second SRS resource allocation information, the second SRS resource allocation information indicates the second SRS resource, the period of the second SRS resource is the second period, the second period is shorter than the first period, or the second SRS resource is an aperiodic SRS Resources, among them, the first user equipment is a large package user equipment.
  • the large packet user equipment when there are a large number of users in a cell, in the case of allocating periodic SRS resources to a large packet user equipment, the large packet user equipment is also allocated to at least one of semi-static SRS resources or aperiodic SRS resources .
  • the large-packet user equipment preferentially allocate resources, thereby ensuring that user equipment can be allocated to SRS resources, improving user equipment uplink and downlink (beam forming, BF) performance, and improving the accuracy of uplink and downlink channel measurement
  • the performance is further improved to the performance of uplink and downlink transmission, for example, to reduce the bit error rate of the transmitted data and increase the cell throughput.
  • the large packet user equipment is a user equipment with an average service data volume greater than or equal to a target threshold within a time range.
  • the access network device Determine whether the first user equipment is a large package user equipment according to the amount of service data within a time range of the first user equipment.
  • the user equipment is determined to determine whether the user equipment is a large package user equipment through statistics on the amount of service data within a time range of the user equipment. Secondly, since the large package user equipment is a user equipment with a relatively large amount of service data, After determining the large-packet user equipment, semi-static SRS resources or aperiodic SRS resources can be sent to it, so that the large-packet user equipment can still obtain better BF performance when there are more user equipment, and then improve the performance of uplink and downlink transmission. To improve the feasibility of this application.
  • the access network device As the target access network device, the access network device receives a handover message from the source access network device, where the handover message includes information used to indicate that the first user equipment is a large packet user equipment.
  • the access network device can indicate whether the first user equipment is a large package user equipment according to the information included in the handover message, and can also be determined as a large package user equipment in time during the movement of the first user equipment, thereby Sending semi-static SRS resources or aperiodic SRS resources in time to improve the efficiency of resource allocation, thereby enhancing the feasibility of this application.
  • the access network device The second SRS resource allocation information is sent to the second user equipment.
  • the second user equipment is a large packet user equipment.
  • the access network equipment activates the second SRS resource for the first user equipment or the second user equipment at the same time.
  • the access network device when the second SRS resource is activated for the first user equipment, the access network device Start the timer, and when the timer expires, the access network device deactivates the second SRS resource for the first user equipment, and activates the second SRS resource for the second user equipment.
  • the semi-static SRS resources when each user equipment only allocates one set of semi-static SRS resources, when the semi-static SRS resources conflict, the semi-static SRS resources can be activated in rotation among the user equipments through a timer. , To ensure the improvement of service requirements, and improve the uplink and downlink BF performance of user equipment, and secondly, it can avoid RRC signaling reconfiguration and save RRC signaling reconfiguration overhead.
  • the second SRS resource The information also indicates the third SRS resource, the period of the third SRS resource is the third period, and the third period is shorter than the first period and further includes:
  • the access network device sends second SRS resource allocation information to the second user equipment, where the second user equipment is a large packet user equipment;
  • the access network device When the access network device activates the second SRS resource for the first user equipment, activates the third SRS resource for the second user equipment, or when the access network device activates the third SRS resource for the first user equipment, it is the second user equipment Activate the second SRS resource.
  • the activated semi-static SRS resource can be used by the user equipment in conflict after being activated by the access network device, thereby reducing RRC signaling reconfiguration, thereby saving RRC signaling overhead.
  • the second aspect of the embodiments of the present application provides a resource allocation method, including:
  • the first user equipment receives the first SRS resource allocation information from the access network device, the first SRS resource allocation information indicates the first SRS resource, where the period of the first SRS resource is the first period, and the first user equipment is from the access network
  • the device receives the second SRS resource allocation information, the second SRS resource allocation information indicates the second SRS resource, the period of the second SRS resource is the second period, the second period is shorter than the first period, or the second SRS resource is an aperiodic SRS Resources, among them, the first user equipment is a large package user equipment.
  • the first user equipment when there are a large number of users in a cell, the first user equipment may receive periodic SRS resources from the access network equipment. Further, when the first user equipment is a large packet user equipment, the first user equipment may also receive The access network equipment receives at least one of semi-static SRS resources or aperiodic SRS resources, thereby ensuring that large-pack user equipments are allocated resources preferentially, thereby ensuring that user equipments can be allocated to SRS resources to improve the uplink of user equipment And downlink BF performance, and improve the uplink and downlink channel measurement accuracy, and then improve the performance of uplink and downlink transmission, for example, reduce the bit error rate of transmitted data and improve cell throughput.
  • the large packet user equipment is a user equipment whose average service data volume within a time range is greater than a target threshold.
  • an embodiment of the present application provides a resource allocation device.
  • the resource allocation device may be an access network device or a chip in an access network device.
  • the resource allocation device includes a processor, and the processor is used to execute a computer program. Or an instruction to cause the resource allocation device to execute the method of the first aspect.
  • the resource allocation device further includes the memory.
  • the processor is coupled with the memory, the memory is used to store computer programs or instructions, and the processor is used to execute the computer programs or instructions in the memory.
  • the resource allocation apparatus may further include a communication unit, and the communication unit is configured to communicate with other devices or other components in the resource allocation apparatus.
  • the resource allocation device is an access network device
  • the communication unit is a transceiver.
  • the resource allocation device is a chip in an access network device, and the communication unit is an input/output circuit or interface of the chip.
  • an embodiment of the present application provides a resource allocation device.
  • the resource allocation device may be a terminal or a chip in the terminal.
  • the resource allocation device includes a processor for executing a computer program or instruction to make the resource
  • the distribution device executes the method of the second aspect.
  • the resource allocation device further includes the memory.
  • the processor is coupled with the memory, the memory is used to store computer programs or instructions, and the processor is used to execute the computer programs or instructions in the memory.
  • the resource allocation apparatus may further include a communication unit, and the communication unit is configured to communicate with other devices or other components in the resource allocation apparatus.
  • the resource allocation device is a terminal
  • the communication unit is a transceiver.
  • the resource allocation device is a chip in a terminal
  • the communication unit is an input/output circuit or interface of the chip.
  • an embodiment of the present application provides a chip that includes a processor and an interface circuit, the interface circuit is coupled to the processor, and the processor is used to run a computer program or instruction to implement the first aspect and the first aspect.
  • the interface circuit is used to communicate with modules other than the chip.
  • an embodiment of the present application provides a computer storage medium that stores a program for implementing the method in any one of the first aspect to the second aspect.
  • the wireless resource allocation device is caused to execute the method of any one of the first aspect to the second aspect.
  • the embodiments of the present application provide a computer program product, the program product includes a program, and when the program is executed, the method in any one of the first aspect to the second aspect is executed.
  • an embodiment of the present application provides a communication system, including the terminal (or the chip in the terminal) in the method of the first aspect and the access network device (or the access network device) in the method of the second aspect.
  • the communication system includes the resource allocation device of the third aspect and the resource allocation device of the fourth aspect.
  • FIG. 1 is a schematic diagram of the system architecture of a communication system in an embodiment of the application
  • FIG. 2A is a schematic structural diagram of an access network device provided by an embodiment of this application.
  • 2B is a schematic structural diagram of a terminal provided by an embodiment of this application.
  • 2C is a schematic structural diagram of a core network network element provided by an embodiment of this application.
  • FIG. 3 is a schematic diagram of an embodiment of a method for resource allocation in an embodiment of this application.
  • FIG. 4A is a schematic diagram of resource allocation in an embodiment of this application.
  • 4B is another schematic diagram of resource allocation in an embodiment of this application.
  • FIG. 4C is another schematic diagram of resource allocation in an embodiment of this application.
  • FIG. 5 is a schematic diagram of another embodiment of a resource allocation method in an embodiment of this application.
  • 6A is a schematic diagram of an embodiment of a method for round-robin scheduling in an embodiment of the application
  • FIG. 6B is a schematic diagram of another embodiment of a round-robin scheduling method in an embodiment of this application.
  • FIG. 7 is a schematic diagram of an embodiment of a method for configuring multiple sets of resources in an embodiment of the application
  • FIG. 8 is a schematic diagram of another embodiment of a resource allocation method in an embodiment of this application.
  • Fig. 9 is a schematic structural diagram of a communication device in an embodiment of the application.
  • the embodiments of the present application provide a resource allocation method, device, and equipment, which are used to improve the uplink and downlink channel measurement accuracy under the condition that user equipment can be allocated to SRS resources, thereby improving the uplink and downlink transmission.
  • the performance for example, reduces the bit error rate of the transmitted data and improves the cell throughput.
  • FIG. 1 is a schematic diagram of a system architecture of a communication system in an embodiment of the present application.
  • the technical solution of the embodiment of the present application may be applied to the communication system as shown in FIG. 1.
  • the communication system includes a core network element 101, an access network device 111, and an access network device 112.
  • the core network element 101 may be connected to the access network device 111 and the access network device 112.
  • the terminal 121 can communicate with the access network device 111.
  • the core network network elements, base stations, and terminals included in the communication system as shown in FIG. 1 are only an example, and the interface connection relationship between the base stations is also only an example.
  • the type and number of network elements included in the communication system, and the connection relationship between the network elements are not limited thereto.
  • the communication system may be a communication system that supports fourth-generation (4G) access technology, such as long-term evolution (LTE) access technology; or, the communication system may also support fifth-generation (fifth generation) access technology.
  • 4G fourth-generation
  • 5G access technology communication system
  • NR new radio
  • the communication system can also be a communication system that supports third generation (3G) access technology, such as ( universal mobile telecommunications system, UMTS) access technology
  • the communication system can also be a second generation (2G) access technology communication system, such as global system for mobile communications (GSM) access Technology
  • GSM global system for mobile communications
  • the communication system may also be a communication system that supports multiple wireless technologies, such as a communication system that supports LTE technology and NR technology.
  • the communication system can also be applied to future-oriented communication technologies.
  • the access network device 111 and the access network device 112 in FIG. 1 may be devices used on the access network side to support the terminal to access the communication system, for example, may be a base transceiver station in a 2G access technology communication system.
  • BTS base transceiver station
  • BSC base station controller
  • node B node B
  • RNC radio network controller
  • gNB next generation nodeB
  • TRP transmission reception point
  • RNC radio network controller
  • the core network element 101 in FIG. 1 can control one or more access network devices, or perform unified management of resources in the system, or can configure resources for the terminal.
  • the core network element may be a serving general packet radio service (GPRS) support node (serving GPRS support node, SGSN) or a gateway GPRS support node (gateway GPRS support node, in a 3G access technology communication system, GGSN), the mobile management entity (MME) or serving gateway (SGW) in the 4G access technology communication system, and the access and mobility management function (Access and Mobility) in the 5G access technology communication system Management Function (AMF) network element or User Plane Function (UPF) network element, etc.
  • GPRS general packet radio service
  • MME mobile management entity
  • SGW serving gateway
  • Access and Mobility Access and Mobility
  • the terminal 121 in FIG. 1 may be a device that provides voice or data connectivity to users.
  • UE user equipment
  • mobile station mobile station
  • subscriber unit subscriber unit
  • station station
  • terminal equipment terminal equipment
  • the terminal can be a cellular phone, a personal digital assistant (PDA), a wireless modem (modem), a handheld device, a laptop computer, a cordless phone, and a wireless Local loop (wireless local loop, WLL) station, tablet computer (pad), etc.
  • PDA personal digital assistant
  • modem wireless modem
  • WLL wireless Local loop
  • tablet computer pad
  • devices that can access the communication system, communicate with the network side of the communication system, or communicate with other objects through the communication system can all be the terminals in the embodiments of the present application, such as intelligent transportation.
  • the terminal may communicate with an access network device, for example, the access network device 111 or the access network device 112. Communication between multiple terminals is also possible.
  • the terminal can be statically fixed or mobile.
  • FIG. 2A is a schematic structural diagram of an access network device in an embodiment of this application.
  • the access network device 111 and the access network device 112 shown in FIG. 1 reference may be made to the structure shown in FIG. 2A.
  • the access network device includes at least one processor 111, at least one memory 112, at least one transceiver 113, at least one network interface 114, and one or more antennas 115.
  • the processor 111, the memory 112, the transceiver 113, and the network interface 114 are connected, for example, by a bus. In the embodiment of the present application, the connection may include various interfaces, transmission lines, or buses, etc., which is not limited in this embodiment. .
  • the antenna 115 is connected to the transceiver 113.
  • the network interface 114 is used to connect the access network device to other communication devices through a communication link.
  • the network interface 114 may include a network interface between the access network device and a core network element, such as an S1 interface, and the network interface may include A network interface between an access network device and other network devices (such as other access network devices or core network elements), such as an X2 or Xn interface.
  • a core network element such as an S1 interface
  • the network interface may include A network interface between an access network device and other network devices (such as other access network devices or core network elements), such as an X2 or Xn interface.
  • the processor 111 is mainly used to process communication protocols and communication data, and to control the entire access network equipment, execute software programs, and process data of the software programs, for example, to support the access network equipment to execute the description in the embodiment action.
  • the access network device may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal device, execute software programs, and process software programs.
  • the processor 111 in FIG. 2A can integrate the functions of a baseband processor and a central processing unit. Those skilled in the art can understand that the baseband processor and the central processing unit can also be independent processors and are interconnected by technologies such as a bus.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and the various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data can be built in the processor, or can be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the memory is mainly used to store software programs and data.
  • the memory 112 may exist independently and is connected to the processor 111.
  • the memory 112 may be integrated with the processor 111, for example, integrated in one chip.
  • the memory 112 can store program codes for executing the technical solutions of the embodiments of the present application, and the processor 111 controls the execution.
  • Various types of computer program codes that are executed can also be regarded as drivers of the processor 111.
  • Figure 2A shows only one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be a storage element on the same chip as the processor, that is, an on-chip storage element, or an independent storage element, which is not limited in the embodiment of the present application.
  • the transceiver 113 may be used to support the reception or transmission of radio frequency signals between the access network device and the terminal, and the transceiver 113 may be connected to the antenna 115.
  • the transceiver 113 includes a transmitter Tx and a receiver Rx. Specifically, one or more antennas 115 can receive radio frequency signals, and the receiver Rx of the transceiver 113 is used to receive the radio frequency signals from the antennas, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital
  • the baseband signal or digital intermediate frequency signal is provided to the processor 111, so that the processor 111 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 113 is also used to receive a modulated digital baseband signal or digital intermediate frequency signal from the processor 111, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass it through a Or multiple antennas 115 transmit the radio frequency signal.
  • the receiver Rx can selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal. The order of precedence is adjustable.
  • the transmitter Tx can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal, the up-mixing processing and the digital-to-analog conversion processing
  • the order of precedence is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • the transceiver may also be referred to as a transceiver unit, transceiver, transceiver, and so on.
  • the device used to implement the receiving function in the transceiver unit can be regarded as the receiving unit
  • the device used to implement the transmitting function in the transceiver unit can be regarded as the transmitting unit, that is, the transceiver unit includes the receiving unit and the transmitting unit, and the receiving unit is also It can be called a receiver, an input port, a receiving circuit, etc.
  • a sending unit can be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • FIG. 2B is a schematic structural diagram of a terminal provided by an embodiment of this application.
  • the structure of the terminal 121 shown in FIG. 1 may refer to the structure shown in FIG. 2B.
  • the terminal includes at least one processor 211, at least one transceiver 212, and at least one memory 213.
  • the processor 211, the memory 213, and the transceiver 212 are connected.
  • the terminal may further include an output device 214, an input device 215, and one or more antennas 216.
  • the antenna 216 is connected to the transceiver 212, and the output device 214 and the input device 215 are connected to the processor 211.
  • the transceiver 212, the memory 213, and the antenna 216 can refer to the related description in FIG. 2A to implement similar functions.
  • the processor 211 may be a baseband processor or a CPU, and the baseband processor and the CPU may be integrated or separated.
  • the processor 211 can be used to implement various functions for the terminal, for example, to process communication protocols and communication data, or to control the entire terminal device, execute software programs, and process data in software programs; or to assist in completion Computing processing tasks, such as graphics and image processing or audio processing, etc.; or the processor 211 is used to implement one or more of the above-mentioned functions.
  • the output device 214 communicates with the processor 211 and can display information in a variety of ways.
  • the output device 214 may be a liquid crystal display (Liquid Crystal Display, LCD), a light emitting diode (Light Emitting Diode, LED) display device, a cathode ray tube (Cathode Ray Tube, CRT) display device, or a projector (projector) Wait.
  • the input device 215 communicates with the processor 211, and can accept user input in a variety of ways.
  • the input device 215 may be a mouse, a keyboard, a touch screen device, a sensor device, or the like.
  • FIG. 2C is a schematic structural diagram of a core network element provided by an embodiment of this application, such as the core network element 101 shown in FIG. 1.
  • the core network element includes at least one processor 1011, at least one memory 1012, and at least one network interface 1013.
  • the memory 1012, the processor 1011 and the network interface 1013 are connected.
  • the processor 1011 may be used to implement various functions for the core network elements, such as controlling one or more access network devices, or uniformly managing resources in the system, or configuring resources for the terminal.
  • the memory 1012 may be used to store program codes for executing the technical solutions of the embodiments of the present application, and be executed by the processor 1011 to implement the functions of the core network network elements in the embodiments of the present application.
  • the core network element may communicate with the access network device or terminal through the network interface 1013, for example, send data to the access network device or terminal, or receive data from the access network device or terminal, and so on.
  • FIG. 3 is a schematic diagram of an embodiment of the resource allocation method in the embodiment of the present application.
  • the access network device sends first SRS resource allocation information to the first user equipment, where the first SRS resource allocation information indicates a first SRS resource, where the period of the first SRS resource is the first period;
  • the access network device may first send the first SRS resource allocation information to the first user equipment.
  • the first SRS resource allocation information may indicate the first SRS resource, and the period of the first SRS resource is the first period.
  • the first SRS resource may be a periodic SRS resource, and the periodic SRS resource may be configured to the first user equipment through radio resource controller (RRC) signaling.
  • RRC radio resource controller
  • the periodic SRS resource can also be sent to the first user equipment periodically, and different first periods can be configured based on the number of different users in the cell. It should be understood that, In practical applications, the first period can be, but is not limited to, 5ms, 10ms, 20ms, 40ms, 320ms, or 640ms.
  • the access network device sends second SRS resource allocation information to the first user equipment, the second SRS resource allocation information indicates the second SRS resource, the period of the second SRS resource is the second period, and the second period is shorter than the first period , Or the second SRS resource is an aperiodic SRS resource, where the first user equipment is a large packet user equipment.
  • the access network device may also send second SRS resource allocation information to the first user equipment, and the second SRS resource allocation information may indicate the second SRS resource.
  • the second SRS resource is a periodic SRS resource
  • the period of the second SRS resource may be a second period, and the second period is shorter than the first period.
  • the second SRS resource may be an aperiodic SRS resource.
  • the first user equipment is a large package user equipment.
  • the second SRS resource in this application may specifically be a semi-static SRS resource.
  • the semi-static SRS resource is similar to the periodic SRS resource and can be configured to the first user equipment through RRC signaling. But unlike periodic SRS resources, after the first user equipment configures semi-static SRS resources, the resources have not yet been activated, and need to pass the media access control layer control element (MACCE) signaling pair
  • the semi-static SRS resource is activated.
  • the activated semi-static SRS resource can be equivalent to the periodic SRS resource, and the semi-static SRS resource configured in a cell is limited.
  • the second period corresponding to the semi-static SRS resource may be, but not limited to, 5 ms, 10 ms, 20 ms, or 40 ms, but the second period is smaller than the first period.
  • the second SRS resource can also be an aperiodic SRS resource.
  • the aperiodic SRS resource can be configured to the first user equipment through RRC signaling. After the first user equipment configures the aperiodic SRS resource, the aperiodic SRS resource has not yet been configured. To activate, it is necessary to trigger the aperiodic SRS resource of the first user equipment through the downlink control information (DCI) of the physical resource downlink control channel (PDCCH).
  • DCI downlink control information
  • PDCCH physical resource downlink control channel
  • PDCCHDCI can trigger the user equipment's
  • the identifier carried in the service packet is identified, and then the aperiodic SRS resource is triggered, indicating that the aperiodic SRS resource is available, and the aperiodic SRS resource can only be used once and does not need to be deactivated.
  • FIG. 4A, FIG. 4B, and FIG. 4C are schematic diagrams of resource allocation in an embodiment of this application.
  • user equipment 1 and user equipment in FIG. 4A 3 is a large packet user equipment, and the access network equipment can allocate periodic SRS resources and semi-static SRS resources to user equipment 1 and user equipment 3.
  • user equipment 1 and user equipment 3 are large-package user equipment, and the access network equipment can allocate periodic SRS resources and aperiodic SRS to user equipment 1 and user equipment 3. Resources.
  • FIG. 4A user equipment 1 and user equipment in FIG. 4A 3 is a large packet user equipment, and the access network equipment can allocate periodic SRS resources and semi-static SRS resources to user equipment 1 and user equipment 3.
  • FIG. 4B user equipment 1 and user equipment 3 are large-package user equipment, and the access network equipment can allocate periodic SRS resources and aperiodic SRS to user equipment 1 and user equipment 3. Resources.
  • the user equipment 1 is a large packet user equipment, and the access network equipment can allocate periodic SRS resources, semi-static SRS resources, and aperiodic SRS resources to the user equipment 1. It should be noted that the period corresponding to the semi-static SRS resource in FIGS. 4A to 4C may be shorter than the period corresponding to the periodic SRS resource.
  • the large packet user equipment is also allocated to at least one of semi-static SRS resources or aperiodic SRS resources to ensure that the large packet
  • the user equipment allocates resources preferentially, so as to ensure that the user equipment can be allocated to SRS resources, improve the uplink and downlink BF performance of the user equipment, and improve the accuracy of uplink and downlink channel measurement, thereby improving the uplink and downlink transmission. Performance, for example, reduces the bit error rate of transmitted data and improves cell throughput.
  • the large packet user equipment is a user equipment with an average service data volume greater than or equal to a target threshold within a time range.
  • the large packet user equipment may also be the service data stream with the maximum or minimum value in a time range, or the value obtained by calculation of the service data volume in a period of time and the target threshold value.
  • the application uses the average business data volume to determine the large package of user equipment, which should not be construed as a limitation of this application.
  • the access network device may determine whether the first user equipment is a large packet user equipment according to the amount of service data of the first user equipment within a time range.
  • the access network device may determine whether the first user equipment is a large packet user equipment through a service identification strategy. For example, first, the access network device can configure the judgment threshold in the device large packet service identification strategy as A, and A can be 1 Mbyte. It should be understood that in practical applications, A can be the access network device according to the number of users in the cell and The number of resources is configured, and the specific value of A should not be used as a limitation in this application. Then the access network device can count the average throughput of each bearer within a time range, and the average throughput can be the traffic handling priority (THP).
  • TTP traffic handling priority
  • the access network device can determine that the user equipment is a large packet user equipment, and the service attribute flag information Is "1", that is, the large packet user identification.
  • the access network equipment can determine that the user equipment is non-large Package user equipment, and the service attribute flag bit information is "0", that is, the non-large package user identification.
  • the semi-static SRS resource or aperiodic SRS resource can be sent to the large packet user equipment, so that the large packet user equipment can still obtain better BF performance when there are more user equipment, and then improve it to The performance of uplink and downlink transmission improves the feasibility of this application.
  • the access network device may receive a handover message from the source access network device, and the handover message includes information for indicating that the first user equipment is a large packet user equipment.
  • the first user equipment when the first user equipment is in a mobile state, for example, the first user equipment is in a moving vehicle, since the vehicle usually moves in real time and at a high speed, the first user equipment may be in a different cell in a short time.
  • Handover that is, if the access network device cannot determine whether the first user equipment is a large packet user equipment in time only through the aforementioned service identification strategy, when the first user equipment switches from the source access network device to the target access network device,
  • the target access network device can receive the handover message, and the handover message includes information for indicating that the first user equipment is a large-package user equipment, that is, the aforementioned large-package user identifier, and the target access network device can then base on the large-package user identifier.
  • the handover message may also include a non-large packet user identification
  • the target access network device may also determine that the first user equipment is not a large packet user equipment based on the non-large packet user identification, thereby only sending the foregoing to the first user equipment The first SRS resource allocation information.
  • FIG. 5 is a schematic diagram of another embodiment of the resource allocation method in the embodiment of the application.
  • the user equipment 1 is in the range of the cell covered by the access network device 1, so Access network device 1 can determine whether user equipment 1 is a large packet user equipment according to the service identification strategy. If the service attribute flag information is "1", it is a large packet user equipment, and if the service attribute flag information is "0", it is Non-bulk user equipment.
  • user equipment 2 is moving from the cell area covered by access network equipment 2 to the cell area covered by access network equipment 1.
  • access network equipment 2 is the source access network equipment
  • the access network device 1 is the target access network device.
  • the access network device 2 can send switching information to the access network device 1, and the access network device 1 can according to the switching information carried
  • the service attribute flag information determines whether the user equipment 2 is a large packet user equipment, if the service attribute flag information is "1", it is a large packet user equipment, and if the service attribute flag information is "0", it is a non-large packet user equipment .
  • the access network device can indicate whether the first user equipment is a large-package user equipment according to the service attribute flag information in the handover message, and can also be determined as a large-package user equipment in time during the movement of the first user equipment, thereby Sending semi-static SRS resources or aperiodic SRS resources in time to improve the efficiency of resource allocation, thereby enhancing the feasibility of this application.
  • the access network device allocates a set of semi-static SRS resources to a user equipment, and for a set of semi-static SRS resources, only one user equipment can be activated at the same time.
  • the semi-static SRS resource can be activated and used by other user equipment only after it is released after being deactivated. Therefore, when multi-user equipment is allocated the same set of semi-static SRS resources, if at least two user equipment have corresponding service requirements at the same time, only one user equipment can be activated successfully, and other users will have semi-static SRS resource conflicts with it, resulting in semi-static SRS resources.
  • the RRC signaling reconfiguration method can be used to reallocate other semi-static SRS resources to provide services to the user equipment, but the RRC signaling reconfiguration overhead will increase, thereby reducing the efficiency of resource allocation.
  • the access network device may send second SRS resource allocation information to the second user equipment.
  • the second user equipment is a large packet user equipment, and the access network device activates the second user equipment for the first user equipment or the second user equipment at the same time. 2. SRS resources.
  • the access network device activates the second SRS resource for the first user equipment
  • the access network device starts the timer, and when the timer expires, the access network device deactivates the second SRS for the first user equipment Resource, and activate the second SRS resource for the second user equipment.
  • FIG. 6A and FIG. 6B are schematic diagrams of the round-robin scheduling method embodiment in the embodiment of the present application.
  • the UE 1 is also identified as a large packet user equipment. It is allocated to semi-static SRS resource 0
  • UE 2 is allocated to semi-static SRS resource 1
  • UE 3 is allocated to semi-static SRS resource 2
  • UE N is allocated to semi-static SRS resource 0 that is, UE 1 and UE N Are allocated to the same semi-static SRS resource 0.
  • the access network equipment can determine the service requirements of UE1 and UE N by whether there is an uplink scheduling request message.
  • the access network device will activate the semi-static SRS resource 0 for the UE N, and then when the UE 1 sends an uplink scheduling request to the access network device, a conflict will occur for the semi-static SRS resource 0.
  • the access network device can activate the semi-static SRS resource 0 of the UE N through the MAC CE, and start the timer of the access network device.
  • the duration can be 1s.
  • the UE N continues to occupy the semi-static SRS resource 0.
  • the timer duration reaches 1s, it is necessary to determine whether the UE 1 currently has service requirements.
  • the access network equipment can activate the semi-static SRS resource 0 of the UE N through the MAC CE, and activate the semi-static SRS resource 0 of the UE 1 through the MAC CE, and then continue to start the timer of the access network equipment.
  • the timer duration It can be 1s, and when the duration of the timer reaches 1s, continue to repeat the foregoing similar steps until UE1 and UEN complete the service requirements. It should be understood that in actual applications, the timer may also be 2s, 4s, and 8s, and therefore the timer duration should not be understood as a limitation of this application.
  • the semi-static SRS resources can be activated in rotation among the user equipments through a timer, thereby ensuring service requirements and improving , And improve the uplink and downlink BF performance of the user equipment, and secondly, it can avoid RRC signaling reconfiguration and save RRC signaling reconfiguration overhead.
  • the user equipment is configured with multiple sets of semi-static SRS resources:
  • the access network device may first send the second SRS resource to the second user equipment Allocation information, the second user equipment is a large packet user equipment, and secondly, when the access network equipment activates the second SRS resource for the first user equipment, activates the third SRS resource for the second user equipment, or when the access network equipment When the third SRS resource is activated for the first user equipment, the second SRS resource is activated for the second user equipment.
  • Figure 7 is a schematic diagram of an embodiment of a method for configuring multiple sets of resources in an embodiment of this application.
  • UE1 to UE3 that are also identified as large packet user equipment can support allocation
  • the access network equipment can determine the service requirements of UE1 to UE3 through whether there is an uplink scheduling request message. If UE1 to UE3 have service requirements, but UE3 has passed the access
  • the network device sends an uplink scheduling request to activate the semi-static SRS resource 3, and the UE 1 sends an uplink scheduling request to the access network device first.
  • the access network device activates the semi-static SRS resource 1 for the UE 1 and then the UE 2 sends it to the access network device.
  • the access network device activates semi-static SRS resource 1 for UE 2, it will conflict with the semi-static SRS resource 1 activated by UE 1.
  • the access network device can activate other semi-static SRS resources for UE 2. If the static SRS resource, for example, the semi-static SRS resource 2 is idle and not activated, the access network device can activate the semi-static SRS resource 2 to the UE 2 through the MAC CE. Therefore, it can be realized that the activated semi-static SRS resource can be used by the user equipment in conflict after being activated by the access network device, thereby reducing RRC signaling reconfiguration, thereby saving RRC signaling overhead.
  • the access network device can use the aforementioned round-robin scheduling method for the semi-static SRS resources at this time.
  • FIG. 8 is a schematic diagram of an embodiment of the resource allocation method in the embodiment of the present application.
  • a first user equipment receives first SRS resource allocation information from an access network device, where the first SRS resource allocation information indicates a first SRS resource, where a period of the first SRS resource is a first period;
  • the first user equipment receives the first SRS resource allocation information from the access network device.
  • the first SRS resource allocation information may indicate the first SRS resource, and the period of the first SRS resource is the first period.
  • the first SRS resource may be a periodic SRS resource
  • the first user equipment may receive the periodic SRS resource from the access network device through RRC signaling. After the first user equipment is configured to the periodic SRS resource, the resource has been activated , There is no need for triggering by other signaling. Further, the first user equipment may also receive periodic SRS resources periodically, and the first period corresponding to the periodic SRS resources configured by the first user equipment in different cells is different. It is understood that in practical applications, the first period can be, but is not limited to, 5 ms, 10 ms, 20 ms, 40 ms, 320 ms, or 640 ms.
  • the first user equipment receives second SRS resource allocation information from the access network device, the second SRS resource allocation information indicates the second SRS resource, the period of the second SRS resource is the second period, and the second period is shorter than the first period , Or the second SRS resource is an aperiodic SRS resource, where the first user equipment is a large packet user equipment.
  • the first user equipment when the first user equipment is a large packet user equipment, the first user equipment may also receive second SRS resource allocation information from the access network device, and the second SRS resource allocation information may indicate the second SRS resource.
  • the second SRS resource is a periodic SRS resource
  • the period of the second SRS resource may be a second period, and the second period is shorter than the first period.
  • the second SRS resource may also be an aperiodic SRS resource.
  • the first user equipment when there are a large number of users in a cell, the first user equipment may receive periodic SRS resources from the access network equipment. Further, when the first user equipment is a large packet user equipment, the first user equipment may also receive The access network equipment receives at least one of semi-static SRS resources or aperiodic SRS resources, thereby ensuring that large-pack user equipments are allocated resources preferentially, thereby ensuring that user equipments can be allocated to SRS resources to improve the uplink of user equipment And downlink BF performance, and improve the uplink and downlink channel measurement accuracy, and then improve the performance of uplink and downlink transmission, for example, reduce the bit error rate of transmitted data and improve cell throughput.
  • the large-package user equipment is a user equipment whose average service data volume within a time range is greater than or equal to a target threshold. It should be understood that, in practical applications, the large packet user equipment may also be the service data stream with the maximum or minimum value in a time range, or the value obtained by calculation of the service data volume in a period of time and the target threshold value.
  • the application uses the average business data volume to determine the large package of user equipment, which should not be construed as a limitation of this application.
  • FIG. 9 it is a schematic structural diagram of a communication device 900 provided by an embodiment of this application.
  • the communication device 900 can execute the method described in the foregoing method embodiment, and reference may be made to the description of the foregoing method embodiment.
  • the communication device 900 may be used in a communication device, a circuit, a hardware component, or a chip.
  • the communication device 900 may be a terminal, a chip in a terminal, an access network device, or a chip in an access network device.
  • the communication device 900 includes a processing unit 901 and a communication unit 902. Optionally, the communication device 900 further includes a storage unit 903.
  • the processing unit 901 may be a device with processing functions, and may include one or more processors.
  • the processor may be a general-purpose processor or a special-purpose processor.
  • the processor can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control devices (such as base stations, terminals, or chips, etc.), execute software programs, and process data in the software programs.
  • the communication unit 902 may be a device having signal input (reception) or output (transmission), and is used for signal transmission with other network equipment or other devices in the equipment.
  • the storage unit 903 may be a device with a storage function, and may include one or more memories.
  • processing unit 901, the communication unit 902, and the storage unit 903 are connected through a communication bus.
  • the storage unit 903 may exist independently and is connected to the processing unit 901 through a communication bus.
  • the storage unit 903 may also be integrated with the processing unit 901.
  • the communication device 900 may be a terminal in the embodiment of the present application.
  • the schematic diagram of the terminal may be as shown in FIG. 2B.
  • the communication unit 902 of the device 900 may include an antenna and a transceiver of the terminal, for example, the transceiver 212 and the antenna 216 in FIG. 2B.
  • the communication unit 902 may also include an output device and an input device, such as the output device 214 and the input device 215 in FIG. 2B.
  • the communication device 900 may be a chip in the terminal in the embodiment of the present application.
  • the communication unit 902 may be an input or output interface, pin or circuit, or the like.
  • the storage unit 903 can be a register, a cache or RAM, etc.
  • the storage unit 903 can be integrated with the processing unit 901; the storage unit 903 can be a ROM or other types of static storage devices that can store static information and instructions, and the storage unit 903 can be integrated with the processing unit 901.
  • the processing unit 901 is independent.
  • the transceiver may be integrated on the communication device 900, for example, the communication unit 902 integrates the transceiver 212 shown in FIG. 2B.
  • the processing unit 901 can complete the method executed by the terminal in the foregoing embodiment.
  • the processing unit 901 may include instructions, and the instructions may be executed on the processor, so that the communication device 900 executes the method of the terminal in the foregoing embodiment.
  • instructions are stored on the storage unit 903, and the instructions may be executed on the processing unit 901, so that the communication device 900 executes the method of the terminal in the foregoing embodiment.
  • the storage unit 903 may also store data.
  • the processing unit 901 may also store instructions and/or data.
  • the communication unit 902 may receive the first SRS resource allocation information from the access network device, the first SRS resource allocation information indicates the first SRS resource, where the period of the first SRS resource is the first period; the communication unit 902 may access The network device receives the second SRS resource allocation information, the second SRS resource allocation information indicates the second SRS resource, the period of the second SRS resource is the second period, the second period is shorter than the first period, or the second SRS resource is aperiodic SRS resources, where the first user equipment is a large packet user equipment, and the storage unit 902 may store the first SRS resource allocation information and the second SRS resource allocation information.
  • the communication apparatus 900 may be the access network device in the embodiment of the present application.
  • the schematic diagram of the access network equipment may be as shown in FIG. 2A.
  • the communication unit 902 of the apparatus 900 may include an antenna and a transceiver of an access network device, such as the antenna 115 and the transceiver 113 in FIG. 2A.
  • the communication unit 902 may also include a network interface, such as the network interface 114 in FIG. 2A.
  • the communication device 900 may be a chip in the access network device in the embodiment of the present application.
  • the communication unit 902 may be an input or output interface, pin or circuit, or the like.
  • the storage unit 903 can be a register, a cache, a RAM, etc., and stores
  • the unit 903 may be integrated with the processing unit 901; the storage unit 903 may be a ROM or other types of static storage devices that can store static information and instructions, and the storage unit 903 may be independent of the processing unit 901.
  • the transceiver may be integrated on the communication device 900, for example, the communication unit 902 integrates the transceiver 113 shown in FIG. 2A.
  • the processing unit 901 can complete the method executed by the access network device in the foregoing embodiment.
  • the processing unit 901 may include instructions, and the instructions may be executed on the processor, so that the communication apparatus 900 executes the method for accessing network equipment in the foregoing embodiment.
  • instructions are stored on the storage unit 903, and the instructions can be executed on the processing unit 901, so that the communication device 900 executes the method for accessing network equipment in the foregoing embodiment.
  • the storage unit 903 may also store data.
  • the processing unit 901 may also store instructions and/or data.
  • the communication unit 902 may send first SRS resource allocation information to the first user equipment, where the first SRS resource allocation information indicates the first SRS resource, where the period of the first SRS resource is the first period; the communication unit 902 may send the first SRS resource allocation information to the first user equipment.
  • the user equipment sends second SRS resource allocation information, the second SRS resource allocation information indicates the second SRS resource, the period of the second SRS resource is the second period, the second period is shorter than the first period, or the second SRS resource is aperiodic SRS resources, where the first user equipment is a large package user equipment.
  • the processing unit 901 may also determine whether the first user equipment is a large package user equipment according to the amount of service data within a time range of the first user equipment.
  • the communication unit 902 may also receive a handover message from the access network device from the source access network device, where the handover message includes instructions for indicating that the first user equipment is a large packet. Information about the user's device.
  • the communication unit 902 may send second SRS resource allocation information to the second user equipment.
  • the second user equipment is a large packet user equipment.
  • the communication unit 902 may also activate the second user equipment for the first user equipment or the second user equipment at the same time. 2. SRS resources.
  • the processing unit 901 may determine that the second SRS resource is activated for the first user equipment, the communication unit 902 starts the timer. Further, the processing unit 901 may determine that after the timer expires, the communication unit 902 sends the communication unit to the first user equipment. Activate the second SRS resource, and activate the second SRS resource for the second user equipment.
  • the communication unit 902 may send the second SRS resource to the second user equipment Allocation information, the second user equipment is a large packet user equipment, and further, when the communication unit 902 activates the second SRS resource for the first user equipment, it activates the third SRS resource for the second user equipment, or the access network equipment is the first user equipment.
  • the communication unit 902 activates the third SRS resource, it activates the second SRS resource for the second user equipment.
  • the terminal may have functional units (means) corresponding to the steps of the terminal method or process, and the access network device may have the same function as the access network device method or process.
  • the functional unit corresponding to the step.
  • One or more of the above modules or units can be implemented by software, hardware or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions to implement the above method flow.
  • the processor in this application may include but is not limited to at least one of the following: central processing unit (CPU), microprocessor, digital signal processor (DSP), microcontroller (microcontroller unit, MCU), or Various computing devices such as artificial intelligence processors that run software.
  • Each computing device may include one or more cores for executing software instructions for calculation or processing.
  • the processor can be a single semiconductor chip, or it can be integrated with other circuits to form a semiconductor chip. For example, it can form an SoC (on-chip) with other circuits (such as codec circuits, hardware acceleration circuits, or various bus and interface circuits). System), or it can be integrated into the ASIC as a built-in processor of an ASIC, and the ASIC integrated with the processor can be packaged separately or together with other circuits.
  • the processor may further include necessary hardware accelerators, such as field programmable gate array (FPGA), PLD (programmable logic device), Or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • PLD
  • the memory in the embodiment of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory , RAM) or other types of dynamic storage devices that can store information and instructions, or electrically erasable programmable read-only memory (EEPROM).
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory can also be a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.) , Disk storage media or other magnetic storage devices, or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • the bus may also include a power bus, a control bus, and a status signal bus.
  • a power bus may also include a power bus, a control bus, and a status signal bus.
  • various buses are marked as buses in the figure.
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the terminal may have functional units (means) corresponding to the steps of the terminal method or process, and the access network device may have the same function as the access network device method or process.
  • the functional unit corresponding to the step.
  • One or more of the above modules or units can be implemented by software, hardware or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions to implement the above method flow.
  • the processor in this application may include but is not limited to at least one of the following: central processing unit (CPU), microprocessor, digital signal processor (DSP), microcontroller (microcontroller unit, MCU), or Various computing devices such as artificial intelligence processors that run software.
  • Each computing device may include one or more cores for executing software instructions for calculation or processing.
  • the processor can be a single semiconductor chip, or it can be integrated with other circuits to form a semiconductor chip. For example, it can form an SoC (on-chip) with other circuits (such as codec circuits, hardware acceleration circuits, or various bus and interface circuits). System), or it can be integrated into the ASIC as a built-in processor of an ASIC, and the ASIC integrated with the processor can be packaged separately or together with other circuits.
  • the processor can also include necessary hardware accelerators, such as field programmable gate array (FPGA) and PLD (programmable logic device) , Or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • the memory in the embodiment of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory , RAM) or other types of dynamic storage devices that can store information and instructions, or electrically erasable programmable read-only memory (EEPROM).
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory can also be a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.) , Disk storage media or other magnetic storage devices, or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • the bus may also include a power bus, a control bus, and a status signal bus.
  • a power bus may also include a power bus, a control bus, and a status signal bus.
  • various buses are marked as buses in the figure.
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the embodiment of the present application also provides a system, which includes the aforementioned apparatus and one or more network devices.
  • the embodiment of this application defines the one-way communication link from the access network to the terminal as the downlink, the data transmitted on the downlink is the downlink data, and the transmission direction of the downlink data is called the downlink direction; and the one from the terminal to the access network
  • the unidirectional communication link is the uplink, the data transmitted on the uplink is the uplink data, and the transmission direction of the uplink data is called the uplink direction.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium, (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state hard disk).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种资源分配的方法、装置以及设备,用于保证用户设备均能被分配到SRS资源的情况下,提升上行以及下行的信道测量准确性,从而提升成上下行传输的性能,例如,降低传输数据的误码率以及提升小区吞吐量。本申请实施例方法包括:接入网设备向第一用户设备发送第一SRS资源分配信息,第一SRS资源分配信息指示第一SRS资源,其中第一SRS资源的周期为第一周期,然后接入网设备向第一用户设备发送第二SRS资源分配信息,第二SRS资源分配信息指示第二SRS资源,第二SRS资源的周期为第二周期,第二周期比第一周期短,或者第二SRS资源为非周期SRS资源,其中,第一用户设备为大包用户设备。

Description

一种资源分配的方法、装置以及设备
本申请要求于2019年11月25日提交中国专利局、申请号为201911169914.X、发明名称为“一种资源分配的方法、装置以及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种资源分配的方法、装置以及设备。
背景技术
随着通信技术的发展,通信技术的应用越来越广泛,而通信技术与人们的生活息息相关。当用户需要进行业务时,探测参考信号(Sounding Reference Signal,SRS)可以测量上行信道质量,具体地,SRS可以对用户设备(user equipment,UE)进行频率选择性调度、功率控制以及定时提前的功能,然后UE可以根据被分配到的SRS资源完成所需业务。
然而当一个小区内UE数量较多时,为多个UE被分配的SRS资源无法满足所有UE的需求,由此会导致上行信道以及下行信道测量不准确,从而上下行传输的性能下降,例如,导致传输数据的误码率增加,数据丢失或者小区吞吐量降低。
发明内容
本申请实施例提供了一种资源分配的方法、装置以及设备,在保证用户设备均能被分配到SRS资源的情况下,提升上行以及下行的信道测量准确性,从而提升成上下行传输的性能,例如,降低传输数据的误码率以及提升小区吞吐量。
本申请实施例的第一方面提供了一种资源分配的方法,包括:
接入网设备向第一用户设备发送第一SRS资源分配信息,第一SRS资源分配信息指示第一SRS资源,其中第一SRS资源的周期为第一周期,其次接入网设备向第一用户设备发送第二SRS资源分配信息,第二SRS资源分配信息指示第二SRS资源,第二SRS资源的周期为第二周期,第二周期比第一周期短,或者第二SRS资源为非周期SRS资源,在这其中,第一用户设备为大包用户设备。
本申请实施例中,当一个小区内用户数量较多时,在给大包用户设备分配周期SRS资源的情况下,还给大包用户设备分配到半静态SRS资源或非周期SRS资源中至少一种,保证大包用户设备优先分配资源,从而可以保证用户设备在均能被分配到SRS资源的情况下,提升用户设备上行以及下行(beam forming,BF)性能,并且提升上行以及下行的信道测量准确性,进而提升成上下行传输的性能,例如,降低传输数据的误码率以及提升小区吞吐量。
结合本申请实施例的第一方面,在本申请实施例的第一方面的第一种实现方式中,大包用户设备为一时间范围内平均业务数据量大于或者等于目标阈值的用户设备。
结合本申请实施例的第一方面或本申请实施例的第一方面的第一种实现方式中的任意一种,本申请实施例的第一方面的第二种实现方式中,接入网设备根据第一用户设备一时间范围内的业务数据量确定第一用户设备是否为大包用户设备。
本申请实施例中,通过对用户设备一时间范围内的业务数据量的统计,确定用户设备是否为大包用户设备,其次,由于大包用户设备为业务数据量相对较大的用户设备,在确 定大包用户设备后可以向其发送半静态SRS资源或非周期SRS资源,让大包用户设备在用户设备较多的情况下仍能得到较好的BF性能,进而提升成上下行传输的性能,提升本申请的可行性。
结合本申请实施例的第一方面或本申请实施例的第一方面的第一种实现方式中的任意一种,本申请实施例的第一方面的第三种实现方式中,接入网设备为目标接入网设备,接入网设备从源接入网设备接收切换消息,其中,切换消息包括用于指示第一用户设备为大包用户设备的信息。
本申请实施例中,接入网设备可以根据切换消息中包括的信息指示第一用户设备是否为大包用户设备,在第一用户设备移动过程中也能及时被确定为大包用户设备,从而及时发送半静态SRS资源或非周期SRS资源,提升资源分配的效率,从而提升本申请的可行性。
结合本申请实施例的第一方面至本申请实施例的第一方面的第三种实现方式中的任意一种,本申请实施例的第一方面的第四种实现方式中,接入网设备向第二用户设备发送第二SRS资源分配信息,第二用户设备为大包用户设备,其次,接入网设备在同一时间,为第一用户设备或者第二用户设备激活第二SRS资源。
结合本申请实施例的第一方面的第四种实现方式,本申请实施例的第一方面的第五种实现方式中,当为第一用户设备激活第二SRS资源时,则接入网设备开启定时器,当定时器超期后,则接入网设备为第一用户设备去激活第二SRS资源,且为第二用户设备激活第二SRS资源。
本申请实施例中,本实施例可以在每个用户设备仅分配一套半静态SRS资源的情况下,当半静态SRS资源发生冲突时,通过定时器使得半静态SRS资源在用户设备间轮转激活,保证业务需求从而提升,并且提升用户设备的上行以及下行BF性能,其次还可以避免RRC信令重配,节省RRC信令重配开销。
结合本申请实施例的第一方面至本申请实施例的第一方面的第三种实现方式中的任意一种,本申请实施例的第一方面的第六种实现方式中,第二SRS资源信息还指示第三SRS资源,第三SRS资源的周期为第三周期,第三周期比第一周期短还包括:
接入网设备向第二用户设备发送第二SRS资源分配信息,第二用户设备为大包用户设备;
接入网设备为第一用户设备激活第二SRS资源时,为第二用户设备激活第三SRS资源,或者,接入网设备为第一用户设备激活第三SRS资源时,为第二用户设备激活第二SRS资源。
本申请实施例中,可以实现被激活的半静态SRS资源可以被接入网设备激活后给发生冲突的用户设备使用,减少RRC信令重配,从而节省RRC信令开销。
本申请实施例的第二方面提供了一种资源分配的方法,包括:
第一用户设备从接入网设备接收第一SRS资源分配信息,第一SRS资源分配信息指示第一SRS资源,其中第一SRS资源的周期为第一周期,另外第一用户设备从接入网设备接收第二SRS资源分配信息,第二SRS资源分配信息指示第二SRS资源,第二SRS资源的周期为第二周期,第二周期比第一周期短,或者第二SRS资源为非周期SRS资源,在这其中,第一用户设备为大包用户设备。
本申请实施例中,当一个小区内用户数量较多时,第一用户设备可以从接入网设备接收周期SRS资源,进一步当第一用户设备为大包用户设备时,第一用户设备还可以从接入网设备接收半静态SRS资源或非周期SRS资源中至少一种,从而保证大包用户设备优先分配资源,从而可以保证用户设备在均能被分配到SRS资源的情况下,提升用户设备上行以及下行BF性能,并且提升上行以及下行的信道测量准确性,进而提升成上下行传输的性能,例如,降低传输数据的误码率以及提升小区吞吐量。
结合本申请实施例的第二方面,在本申请实施例的第二方面的第一种实现方式中,大包用户设备为一时间范围内平均业务数据量大于目标阈值的用户设备。
第三方面,本申请实施例提供了一种资源分配装置,该资源分配装置可以是接入网设备或者接入网设备中的芯片,该资源分配装置包括处理器,该处理器用于执行计算机程序或指令,使得该资源分配装置执行第一方面的方法。
可选的,该资源分配装置还包括该存储器。处理器与存储器耦合,该存储器用于存储计算机程序或指令,处理器用于执行存储器中的计算机程序或指令。
可选的,该资源分配装置还可以包括通信单元,该通信单元用于与其他设备或者该资源分配装置中的其他组件通信。例如,资源分配装置是接入网设备,该通信单元为收发器。例如,资源分配装置是接入网设备中的芯片,该通信单元为芯片的输入/输出电路或者接口。
第四方面,本申请实施例提供了一种资源分配装置,该资源分配装置可以是终端或者终端中的芯片,该资源分配装置包括处理器,该处理器用于执行计算机程序或指令,使得该资源分配装置执行第二方面的方法。
可选的,该资源分配装置还包括该存储器。处理器与存储器耦合,该存储器用于存储计算机程序或指令,处理器用于执行存储器中的计算机程序或指令。
可选的,该资源分配装置还可以包括通信单元,该通信单元用于与其他设备或者该资源分配装置中的其他组件通信。例如,资源分配装置是终端,该通信单元为收发器。例如,资源分配装置是终端中的芯片,该通信单元为芯片的输入/输出电路或者接口。
第五方面,本申请实施例提供了一种芯片,该芯片包括处理器和接口电路,该接口电路和该处理器耦合,该处理器用于运行计算机程序或指令,以实现如第一方面和第二方面中任一方面的方法,该接口电路用于与该芯片之外的其它模块进行通信。
第六方面,本申请实施例提供了一种计算机存储介质,存储有用于实现上述第一方面至第二方面中任一方面的方法的程序。当该程序在无线资源分配装置中运行时,使得该无线资源分配装置执行第一方面至第二方面中任一方面的方法。
第其方面,本申请实施例提供了一种计算机程序产品,该程序产品包括程序,当该程序被运行时,使得上述第一方面至第二方面中任一方面的方法被执行。
第八方面,本申请实施例提供了一种通信系统,包括上述第一方面的方法中的终端(或者终端中的芯片)和上述第二方面的方法中的接入网设备(或者接入网设备中的芯片)。或者,该通信系统包括第三方面的资源分配装置和第四方面的资源分配装置。
从以上技术方案可以看出,本申请实施例具有以下优点:
当一个小区内用户设备数量较多时,对大包用户以及非大包用户进行分类,并对大包用户分配非周期SRS资源或周期长短不相同的SRS资源,在保证用户设备均能被分配到SRS 资源的情况下,提升上行以及下行的信道测量准确性,从而提升成上下行传输的性能,例如,降低传输数据的误码率以及提升小区吞吐量。
附图说明
图1为本申请实施例中通信系统的系统架构示意图;
图2A为本申请实施例提供的一种接入网设备的结构示意图;
图2B为本申请实施例提供的一种终端的结构示意图;
图2C为本申请实施例提供的一种核心网网元的结构示意图;
图3为本申请实施例中资源分配的方法一个实施例的示意图;
图4A为本申请实施例中资源分配的一个示意图;
图4B为本申请实施例中资源分配的另一示意图;
图4C为本申请实施例中资源分配的另一示意图;
图5为本申请实施例中资源分配的方法另一实施例的示意图;
图6A为本申请实施例中轮转调度的方法一个实施例的示意图;
图6B为本申请实施例中轮转调度的方法另一实施例的示意图;
图7为本申请实施例中配置多套资源的方法一个实施例的示意图;
图8为本申请实施例中资源分配的方法另一实施例的示意图;
图9为本申请实施例中通信装置的结构示意图。
具体实施方式
本申请实施例提供了一种资源分配的方法、装置以及设备,用于在保证用户设备均能被分配到SRS资源的情况下,提升上行以及下行的信道测量准确性,从而提升成上下行传输的性能,例如,降低传输数据的误码率以及提升小区吞吐量。
为了更好地理解本申请实施例公开的一种资源分配的方法、装置以及设备,下面将结合本申请中的附图,对本申请中的技术方案进行说明。
首先对本发明实施例所使用的通信系统的系统架构进行描述。请参阅图1,图1为本申请实施例中通信系统的系统架构示意图,本申请实施例的技术方案可以适用于如图1所示的通信系统。该通信系统包括核心网网元101、接入网设备111和接入网设备112。核心网网元101可以与接入网设备111和接入网设备112连接。终端121可以与接入网设备111进行通信。需要说明的是,在如图1所述的通信系统所包含的核心网网元、基站和终端仅是一种示例,所述基站之间的接口连接关系也仅是一种示例,在本申请实施例中,所述通信系统包含的网元的类型、数量,以及网元之间的连接关系不限于此。
该通信统可以是支持第四代(fourth generation,4G)接入技术的通信系统,例如长期演进(long term evolution,LTE)接入技术;或者,该通信系统也可以是支持第五代(fifth generation,5G)接入技术通信系统,例如新无线(new radio,NR)接入技术;或者,该通信系统也可以是支持第三代(third generation,3G)接入技术的通信系统,例如(universal mobile telecommunications system,UMTS)接入技术;或者该通信系统也可以是第二代(second generation,2G)接入技术的通信系统,例如全球移动通讯系统(global system for mobile communications,GSM)接入技术;或者,该通信系统还可以是支持多种无线技术的通信系统,例如支持LTE技术和NR技术的通信系统。另外,该 通信系统也可以适用于面向未来的通信技术。
图1中的接入网设备111和接入网设备112可以是接入网侧用于支持终端接入通信系统的设备,例如,可以是2G接入技术通信系统中的基站收发信台(base transceiver station,BTS)和基站控制器(base station controller,BSC)、3G接入技术通信系统中的节点B(node B)和无线网络控制器(radio network controller,RNC)、4G接入技术通信系统中的演进型基站(evolved nodeB,eNB)、5G接入技术通信系统中的下一代基站(next generation nodeB,gNB)、发送接收点(transmission reception point,TRP)、中继节点(relay node)、接入点(access point,AP)等等。
图1中的核心网网元101可以控制一个或者多个接入网设备,或者对系统中的资源进行统一管理,或者可以给终端配置资源。例如核心网网元可以是3G接入技术通信系统中的服务通用分组无线服务技术(general packet radio service,GPRS)支持节点(serving GPRS support node,SGSN)或者网关GPRS支持节点(gateway GPRS support node,GGSN),4G接入技术通信系统中的移动管理实体(mobile management entity,MME)或者服务网关(serving gateway,SGW),5G接入技术通信系统中的接入和移动性管理功能(Access and Mobility Management Function,AMF)网元或者用户面性能(User Plane Function,UPF)网元等等。
图1中的终端121可以是一种向用户提供语音或者数据连通性的设备,例如也可以称为用户设备(user equipment,UE),移动台(mobile station),用户单元(subscriber unit),站台(station),终端设备(terminal equipment,TE)等。终端可以为蜂窝电话(cellular phone),个人数字助理(personal digital assistant,PDA),无线调制解调器(modem),手持设备(handheld),膝上型电脑(laptop computer),无绳电话(cordless phone),无线本地环路(wireless local loop,WLL)台,平板电脑(pad)等。随着无线通信技术的发展,可以接入通信系统、可以与通信系统的网络侧进行通信,或者通过通信系统与其它物体进行通信的设备都可以是本申请实施例中的终端,譬如,智能交通中的终端和汽车、智能家居中的家用设备、智能电网中的电力抄表仪器、电压监测仪器、环境监测仪器、智能安全网络中的视频监控仪器、收款机等等。在本申请实施例中,终端可以与接入网设备,例如接入网设备111或者接入网设备112进行通信。多个终端之间也可以进行通信。终端可以是静态固定的,也可以是移动的。
具体地,下面将分别对通信系统中的接入网设备、终端以及核心网网元进行详细描述。
图2A为本申请实施例中一种接入网设备的结构示意图,图1所示的接入网设备111以及接入网设备112的结构可以参考图2A所示的结构。
接入网设备包括至少一个处理器111、至少一个存储器112、至少一个收发器113、至少一个网络接口114和一个或多个天线115。处理器111、存储器112、收发器113和网络接口114相连,例如通过总线相连,在本申请实施例中,所述连接可包括各类接口、传输线或总线等,本实施例对此不做限定。天线115与收发器113相连。网络接口114用于使得接入网设备通过通信链路,与其它通信设备相连,例如网络接口114可以包括接入网设备与核心网网元之间的网络接口,例如S1接口,网络接口可以包括接入网设备和其他网络设备(例如其他接入网设备或者核心网网元)之间的网络接口,例如X2或者Xn接口。
处理器111主要用于对通信协议以及通信数据进行处理,以及对整个接入网设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持接入网设备执行实施例中所描述的动作。接入网设备可以可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图2A中的处理器111可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
存储器主要用于存储软件程序和数据。存储器112可以是独立存在,与处理器111相连。可选的,存储器112可以和处理器111集成在一起,例如集成在一个芯片之内。其中,存储器112能够存储执行本申请实施例的技术方案的程序代码,并由处理器111来控制执行,被执行的各类计算机程序代码也可被视为是处理器111的驱动程序。
图2A仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以为与处理器处于同一芯片上的存储元件,即片内存储元件,或者为独立的存储元件,本申请实施例对此不做限定。
收发器113可以用于支持接入网设备与终端之间射频信号的接收或者发送,收发器113可以与天线115相连。收发器113包括发射机Tx和接收机Rx。具体地,一个或多个天线115可以接收射频信号,该收发器113的接收机Rx用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器111,以便处理器111对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器113中的发射机Tx还用于从处理器111接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线115发送所述射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。
收发器也可以称为收发单元、收发器、收发装置等。可选的,可以将收发单元中用于实现接收功能的器件视为接收单元,将收发单元中用于实现发送功能的器件视为发送单元,即收发单元包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
图2B为本申请实施例提供的一种终端的结构示意图。图1所示的终端121的结构可以 参考图2B所示的结构。
终端包括至少一个处理器211、至少一个收发器212和至少一个存储器213。处理器211、存储器213和收发器212相连。可选的,终端还可以包括输出设备214、输入设备215和一个或多个天线216。天线216与收发器212相连,输出设备214、输入设备215与处理器211相连。
收发器212、存储器213以及天线216可以参考图2A中的相关描述,实现类似功能。
处理器211可以是基带处理器,也可以是CPU,基带处理器和CPU可以集成在一起,或者分开。
处理器211可以用于为终端实现各种功能,例如用于对通信协议以及通信数据进行处理,或者用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据;或者用于协助完成计算处理任务,例如对图形图像处理或者音频处理等等;或者处理器211用于实现上述功能中的一种或者多种。
输出设备214和处理器211通信,可以以多种方式来显示信息。例如,输出设备214可以是液晶显示器(Liquid Crystal Display,LCD)、发光二级管(Light Emitting Diode,LED)显示设备、阴极射线管(Cathode Ray Tube,CRT)显示设备、或投影仪(projector)等。输入设备215和处理器211通信,可以以多种方式接受用户的输入。例如,输入设备215可以是鼠标、键盘、触摸屏设备或传感设备等。
图2C为本申请实施例提供的一种核心网网元的结构示意图,例如图1所示的核心网网元101。
核心网网元包括至少一个处理器1011,至少一个存储器1012以及至少一个网络接口1013。存储器1012,处理器1011和网络接口1013相连。
处理器1011可以用于为核心网网元实现各种功能,例如控制一个或者多个接入网设备,或者对系统中的资源进行统一管理,或者给终端配置资源。
存储器1012可以用于存储执行本申请实施例的技术方案的程序代码,由处理器1011执行,以实现本申请实施例中核心网网元的功能。
核心网网元可以通过网络接口1013与接入网设备或者终端进行通信,例如向接入网设备或者终端发送数据,或者从接入网设备或者终端接收数据等等。
进一步地,下面将以接入网设备为执行主体对本申请实施例使用的资源分配的方法进行详细描述,请参阅图3,图3为本申请实施例中资源分配的方法一个实施例的示意图。
101、接入网设备向第一用户设备发送第一SRS资源分配信息,第一SRS资源分配信息指示第一SRS资源,其中第一SRS资源的周期为第一周期;
本实施例中,接入网设备可以先向第一用户设备发送第一SRS资源分配信息,该第一SRS资源分配信息可以指示第一SRS资源,而第一SRS资源的周期为第一周期。
具体地,第一SRS资源可以为周期SRS资源,周期SRS资源可以通过无线资源控制器(radio resource controller,RRC)信令向第一用户设备配置,在为第一用户设备配置周期SRS资源之后,该资源已经被激活,可以不需要其他信令的触发,进一步地,周期SRS资源还可以周期性地向第一用户设备发送,并且可以基于小区不同用户数配置不同的第一周期,应理解,在实际应用中,第一周期可以但不限于为5ms、10ms、20ms、40ms、320ms 或者640ms。
102、接入网设备向第一用户设备发送第二SRS资源分配信息,第二SRS资源分配信息指示第二SRS资源,第二SRS资源的周期为第二周期,第二周期比第一周期短,或者第二SRS资源为非周期SRS资源,其中第一用户设备为大包用户设备。
本实施例中,接入网设备还可以向第一用户设备发送第二SRS资源分配信息,该第二SRS资源分配信息可以指示第二SRS资源。当第二SRS资源为周期SRS资源时,第二SRS资源的周期可以为第二周期,而第二周期比第一周期短。或者,第二SRS资源可以为非周期SRS资源。而其中的第一用户设备为大包用户设备。
具体地,第二SRS资源为周期SRS资源时,本申请中第二SRS资源可以具体为半静态SRS资源,半静态SRS资源与周期SRS资源类似,可以通过RRC信令向第一用户设备配置,但与周期SRS资源不同的是,在第一用户设备配置半静态SRS资源之后,该资源还未被激活,需要通过媒体接入控制层控制单元(media access control-control element,MACCE)信令对半静态SRS资源进行激活,被激活的半静态SRS资源可以等同于周期SRS资源,而一个小区内所被配置的半静态SRS资源是有限的,当半静态SRS资源被第一用户设备实用完成后,还需要通过MACCE信令对半静态SRS资源进行去激活,半静态SRS资源被去激活资源才可以被释放,然后供其他用户设备使用。应理解,在实际应用中,半静态SRS资源对应的第二周期可以但不限于为5ms、10ms、20ms或者40ms,但第二周期小于第一周期。
其次,第二SRS资源还可以为非周期SRS资源,非周期SRS资源可以通过RRC信令向第一用户设备配置,在第一用户设备配置非周期SRS资源之后,该非周期SRS资源还未被激活,需要通过物理资源下行控制信道(physical downlink control channel,PDCCH)的下行控制信息(downlink control information,DCI)对第一用户设备的非周期SRS资源进行触发,具体地,PDCCHDCI可以对用户设备的业务包携带的标识进行识别,然后触发非周期SRS资源,指示该非周期SRS资源可用,并且非周期SRS资源仅能使用一次也不需要去激活。
为了便于理解,请参阅图4A、图4B以及图4C,图4A、图4B以及图4C分别为本申请实施例中资源分配的示意图,如图4A所示,图4A中用户设备1以及用户设备3为大包用户设备,接入网设备可以向用户设备1以及用户设备3分配周期SRS资源以及半静态SRS资源。其次,在另一种可能性中,如图4B所示,用户设备1以及用户设备3为大包用户设备,接入网设备可以向用户设备1以及用户设备3分配周期SRS资源以及非周期SRS资源。进一步地,在另一种可能性中,如图4C所示,用户设备1为大包用户设备,接入网设备可以向用户设备1分配周期SRS资源、半静态SRS资源以及非周期SRS资源,需要说明的是,图4A至图4C中半静态SRS资源对应的周期可以比周期SRS资源对应的周期长度短。因此,当一个小区内用户数量较多时,在给大包用户设备分配周期SRS资源的情况下,还给大包用户设备分配到半静态SRS资源或非周期SRS资源中至少一种,保证大包用户设备优先分配资源,从而可以保证用户设备在均能被分配到SRS资源的情况下,提升用户设备上行以及下行BF性能,并且提升上行以及下行的信道测量准确性,进而提升成上下行传输的性能,例如,降低传输数据的误码率以及提升小区吞吐量。
可选地,大包用户设备为一时间范围内平均业务数据量大于或者等于目标阈值的用户 设备。
应理解,在实际应用中,大包用户设备还可以为一时间范围内最大值或者最小值的业务数据流,或者一段时间范围内的业务数据量通过运算得到的值与目标阈值的比较,本申请采用平均业务数据量对大包用户设备进行确定,不应理解为本申请的限定。
进一步地,接入网设备可以根据第一用户设备一时间范围内的业务数据量确定第一用户设备是否为大包用户设备。
示例性地,接入网设备可以通过业务识别策略确定第一用户设备是否为大包用户设备。例如,首先接入网设备可以可以配置设备大包业务识别策略中的判断门限为A,A可以为1Mbyte,应理解,在实际应用中,A可以为接入网设备根据小区内的用户数量以及资源数量进行配置,A的具体取值不应作为本申请的限定。然后接入网设备可以统计每个承载在一时间范围内的平均吞吐量,该平均吞吐量可以为话务处理优先级(Traffic Handling Priority,THP)。当THP大于或者等于判断门限A时,即用户设备一时间范围内的业务数据量大于或者等于判断门限A时,接入网设备可以确定该用户设备为大包用户设备,并且业务属性标志位信息为“1”,即大包用户标识,反之,当THP小于判断门限A时,即用户设备一时间范围内的业务数据量小于判断门限A时,接入网设备可以确定该用户设备为非大包用户设备,并且业务属性标志位信息为“0”,即非大包用户标识。因此,在向用户设备分配资源信息之前,通过对用户设备一时间范围内的业务数据量的统计,确定用户设备是否为大包用户设备,其次,由于大包用户设备为业务数据量相对较大的用户设备,在确定大包用户设备后可以向其发送半静态SRS资源或非周期SRS资源,让大包用户设备在用户设备较多的情况下仍能得到较好的BF性能,进而提升成上下行传输的性能,提升本申请的可行性。
可选地,当接入网设备为目标接入网设备时,接入网设备可以从源接入网设备接收切换消息,切换消息包括用于指示第一用户设备为大包用户设备的信息。
具体地,当第一用户设备处于移动的状态,例如第一用户设备处于正在移动的交通工具中,由于交通工具通常为实时并且高速移动,而第一用户设备可能在短时间内在不同的小区内切换,即接入网设备若仅通过前述的业务识别策略无法及时确定第一用户设备是否为大包用户设备,因此在第一用户设备从源接入网设备切换至目标接入网设备时,目标接入网设备可以接收到切换消息,而切换消息包括用于指示第一用户设备为大包用户设备的信息,即前述大包用户标识,目标接入网设备就可以根据该大包用户标识确定第一用户设备为大包用户设备,从而向该第一用户设备发送前述第一以及第二SRS资源分配信息。其次,切换消息中还可以包括非大包用户标识,目标接入网设备也可以根据该非大包用户标识确定第一用户设备不为大包用户设备,从而仅向该第一用户设备发送前述第一SRS资源分配信息。
为了便于理解,请参阅图5,图5为本申请实施例中资源分配的方法另一实施例的示意图,如图所示,用户设备1处于接入网设备1所覆盖的小区范围内,因此接入网设备1可以根据业务识别策略确定用户设备1是否为大包用户设备,若业务属性标志位信息为“1”则为大包用户设备,若业务属性标志位信息为“0”则为非大包用户设备。其次,用户设备2正由接入网设备2所覆盖的小区范围往接入网设备1所覆盖的小区范围移动,对于用户 设备2而言,接入网设备2为源接入网设备,而接入网设备1为目标接入网设备,一次在移动到图示位置时,接入网设备2可以向接入网设备1发送切换信息,而接入网设备1可以根据切换信息中携带的业务属性标志位信息确定用户设备2是否为大包用户设备,若业务属性标志位信息为“1”则为大包用户设备,若业务属性标志位信息为“0”则为非大包用户设备。由此,接入网设备可以根据切换消息中的业务属性标志位信息指示第一用户设备是否为大包用户设备,在第一用户设备移动过程中也能及时被确定为大包用户设备,从而及时发送半静态SRS资源或非周期SRS资源,提升资源分配的效率,从而提升本申请的可行性。
应理解,由于可分配的半静态SRS资源数量有限,接入网设备向一个用户设备分配一套半静态SRS资源,并且对于一套半静态SRS资源在同一时刻只能激活一个用户设备,直到该半静态SRS资源被去激活后释放才能被其他用户设备所激活使用。因此多用户设备被分配同一套半静态SRS资源时,若至少两个用户设备同时有对应的业务需求时,只有一个用户设备能激活成功,其他用户与其会产生半静态SRS资源冲突,从而造成半静态SRS资源激活失败,目前可以采用RRC信令重配的方式重新分配其他半静态SRS资源,为用户设备提供服务,但RRC信令重配开销会提升,从而降低资源分配的效率。
需要说明的是,因此可以采取轮转调度,或者支持用户设备配置多套半静态SRS资源的方法解决前述半静态SRS资源冲突问题,下面分别对两种方法进行说明:
一、轮转调度:
首先接入网设备可以向第二用户设备发送第二SRS资源分配信息,第二用户设备为大包用户设备,且接入网设备在同一时间,为第一用户设备或者第二用户设备激活第二SRS资源。
进一步地,当接入网设备为第一用户设备激活第二SRS资源时,则接入网设备开启定时器,当定时器超期后,则接入网设备为第一用户设备去激活第二SRS资源,且为第二用户设备激活第二SRS资源。
为了便于理解,请参阅图6A以及图6B,图6A以及图6B均为本申请实施例中轮转调度的方法实施例的示意图,如图6A所示,同被识别为大包用户设备的UE 1被分配到半静态SRS资源0,UE 2被分配到半静态SRS资源1,UE 3被分配到半静态SRS资源2,UE N被分配到半静态SRS资源0,也就是说UE 1与UE N被分配到同一份半静态SRS资源0,首先接入网设备可以通过是否有上行调度请求消息判断UE1与UE N的业务需求,若UE 1与UE N均有业务需求,但UE N优先向接入网设备发送上行调度请求,接入网设备就会为UE N激活半静态SRS资源0,而后UE 1再向接入网设备发送上行调度请求时,对于半静态SRS资源0就会产生冲突。
进一步地,在发生资源冲突后,请参阅图6B,如图6B所示,接入网设备可以通过MAC CE激活UE N的半静态SRS资源0,并启动接入网设备的定时器,定时器时长可以为1s,在定时器工作期间,UE N持续占用半静态SRS资源0,当定时器的时长到达1s时,还需要先判断UE 1目前是否还有业务需求,若有UE 1目前还有业务需求,接入网设备可以通过MAC CE去激活UE N的半静态SRS资源0,并且通过MAC CE激活UE 1的半静态SRS资源0,然后继续启动接入网设备的定时器,定时器时长可以为1s,当定时器的时长到达1s时, 继续重复前述类似步骤,直至UE 1与UE N完成业务需求。应理解,在实际应用中,定时器还可以为2s,4s和8s,因此定时器时长不应理解为本申请的限定。
本实施例可以在每个用户设备仅分配一套半静态SRS资源的情况下,当半静态SRS资源发生冲突时,通过定时器使得半静态SRS资源在用户设备间轮转激活,保证业务需求从而提升,并且提升用户设备的上行以及下行BF性能,其次还可以避免RRC信令重配,节省RRC信令重配开销。
二、用户设备配置多套半静态SRS资源:
当第二SRS资源信息还指示第三SRS资源,第三SRS资源的周期为第三周期,第三周期比第一周期短时,接入网设备首先可以向第二用户设备发送第二SRS资源分配信息,第二用户设备为大包用户设备,其次,当接入网设备为第一用户设备激活第二SRS资源时,为第二用户设备激活第三SRS资源,或者,当接入网设备为第一用户设备激活第三SRS资源时,为第二用户设备激活第二SRS资源。
为了便于理解,请参阅图7,图7为本申请实施例中配置多套资源的方法一个实施例的示意图,如图所示,同被识别为大包用户设备的UE 1至UE3可支持分配多套的短周期半静态SRS资源,首先接入网设备可以通过是否有上行调度请求消息判断UE 1至UE3的业务需求,若UE 1至UE3均有业务需求,但UE 3已通过向接入网设备发送上行调度请求激活半静态SRS资源3,而UE 1优先向接入网设备发送上行调度请求,接入网设备为UE 1激活半静态SRS资源1,而后UE 2再向接入网设备发送上行调度请求时,若接入网设备为UE 2激活半静态SRS资源1,此时会与UE 1激活的半静态SRS资源1产生冲突,此时接入网设备可以为UE 2激活其他半静态SRS资源,例如半静态SRS资源2为空闲未被激活状态,则接入网设备可以通过MAC CE向UE 2激活半静态SRS资源2。由此可以实现被激活的半静态SRS资源可以被接入网设备激活后给发生冲突的用户设备使用,减少RRC信令重配,从而节省RRC信令开销。
应理解,在实际应用中,若为同小区的用户设备配置多套半静态SRS资源,而同小区内的用户设备数量较多,可分配的半静态SRS资源数量有限,可能出现有限的半静态SRS资源已全被占用的情况,这时接入网设备可以对半静态SRS资源采用前述的轮转调度方法。
结合上述介绍,下面将以第一用户设备为执行主体对本申请实施例使用的资源分配的方法进行详细描述,请参阅图8,图8为本申请实施例中资源分配的方法一个实施例的示意图。
201、第一用户设备从接入网设备接收第一SRS资源分配信息,第一SRS资源分配信息指示第一SRS资源,其中第一SRS资源的周期为第一周期;
本实施例中,第一用户设备从接入网设备接收第一SRS资源分配信息,该第一SRS资源分配信息可以指示第一SRS资源,而第一SRS资源的周期为第一周期。
具体地,第一SRS资源可以为周期SRS资源,第一用户设备可以通过RRC信令从接入网设备接收周期SRS资源,当第一用户设备被配置到周期SRS资源之后,该资源已经被激活,不需要其他信令的触发,进一步地,第一用户设备还可以周期性地接收周期SRS资源,在不同的小区第一用户设备被配置的周期SRS资源对应的第一周期也不相同,应理解,在实际应用中,第一周期可以但不限于为5ms、10ms、20ms、40ms、320ms或者640ms。
202、第一用户设备从接入网设备接收第二SRS资源分配信息,第二SRS资源分配信息指示第二SRS资源,第二SRS资源的周期为第二周期,第二周期比第一周期短,或者第二SRS资源为非周期SRS资源,其中,第一用户设备为大包用户设备。
本实施例中,当第一用户设备为大包用户设备时,第一用户设备还可以从接入网设备接收第二SRS资源分配信息,该第二SRS资源分配信息可以指示第二SRS资源。当第二SRS资源为周期SRS资源时,第二SRS资源的周期可以为第二周期,而第二周期比第一周期短。其次,第二SRS资源还可以为非周期SRS资源。
本申请实施例中,当一个小区内用户数量较多时,第一用户设备可以从接入网设备接收周期SRS资源,进一步当第一用户设备为大包用户设备时,第一用户设备还可以从接入网设备接收半静态SRS资源或非周期SRS资源中至少一种,从而保证大包用户设备优先分配资源,从而可以保证用户设备在均能被分配到SRS资源的情况下,提升用户设备上行以及下行BF性能,并且提升上行以及下行的信道测量准确性,进而提升成上下行传输的性能,例如,降低传输数据的误码率以及提升小区吞吐量。
可选地,大包用户设备为一时间范围内平均业务数据量大于或者等于目标阈值的用户设备。应理解,在实际应用中,大包用户设备还可以为一时间范围内最大值或者最小值的业务数据流,或者一段时间范围内的业务数据量通过运算得到的值与目标阈值的比较,本申请采用平均业务数据量对大包用户设备进行确定,不应理解为本申请的限定。
上文结合图3至图8详细描述了根据本申请实施例的资源分配的方法。下面将结合图9描述根据本申请实施例的通信装置。应理解,方法实施例所描述的技术特征同样适用于以下装置实施例。
如图9所示,为本申请实施例提供的一种通信装置900的结构示意图。通信装置900可以执行上述方法实施例中描述的方法,可以参考上述方法实施例的说明。通信装置900可以用于通信设备、电路、硬件组件或者芯片中,例如通信装置900可以是终端、终端中的芯片、接入网设备或者接入网设备中的芯片。
通信装置900包括处理单元901和通信单元902。可选的,通信装置900还包括存储单元903。
处理单元901可以是具有处理功能的装置,可以包括一个或者多个处理器。处理器可以是通用处理器或者专用处理器等。处理器可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
通信单元902可以是具有信号的输入(接收)或者输出(发送)的装置,用于与其他网络设备或者设备中的其他器件进行信号的传输。
存储单元903可以是具有存储功能的装置,可以包括一个或者多个存储器。
可选的,处理单元901、通信单元902和存储单元903通过通信总线相连。
可选的,存储单元903可以独立存在,通过通信总线与处理单元901相连。存储单元903也可以与处理单元901集成在一起。
通信装置900可以是本申请实施例中的终端。终端的示意图可以如图2B所示。可选的,装置900的通信单元902可以包括终端的天线和收发器,例如图2B中的收发器212和天线 216。可选的,通信单元902还可以包括输出设备和输入设备,例如图2B中的输出设备214和输入设备215。
通信装置900可以是本申请实施例中的终端中的芯片。通信单元902可以是输入或者输出接口、管脚或者电路等。存储单元903可以是寄存器、缓存或者RAM等,存储单元903可以和处理单元901集成在一起;存储单元903可以是ROM或者可存储静态信息和指令的其他类型的静态存储设备,存储单元903可以与处理单元901相独立。可选的,随着无线通信技术的发展,收发器可以被集成在通信装置900上,例如通信单元902集成了图2B所示的收发器212。
当通信装置900是终端或者终端中的芯片时,处理单元901可以完成上述实施例中终端执行的方法。
在一种可能的设计中,处理单元901可以包括指令,所述指令可以在所述处理器上被运行,使得所述通信装置900执行上述实施例中终端的方法。
在又一种可能的设计中,存储单元903上存有指令,所述指令可在所述处理单元901上被运行,使得所述通信装置900执行上述实施例中终端的方法。可选的,所述存储单元903中还可以存储有数据。可选的,处理单元901中也可以存储指令和/或数据。
例如,通信单元902可以从接入网设备接收第一SRS资源分配信息,第一SRS资源分配信息指示第一SRS资源,其中第一SRS资源的周期为第一周期;通信单元902可以从接入网设备接收第二SRS资源分配信息,第二SRS资源分配信息指示第二SRS资源,第二SRS资源的周期为第二周期,第二周期比第一周期短,或者第二SRS资源为非周期SRS资源,其中第一用户设备为大包用户设备,存储单元902可以存储第一SRS资源分配信息以及第二SRS资源分配信息。
其余可以参考上述实施例中终端的方法,在此不再赘述。
通信装置900可以是本申请实施例中的接入网设备。接入网设备的示意图可以如图2A所示。可选的,装置900的通信单元902可以包括接入网设备的天线和收发器,例如图2A中的天线115和收发器113。可选的,通信单元902还可以包括网络接口,例如图2A中的网络接口114。
通信装置900可以是本申请实施例中的接入网设备中的芯片。通信单元902可以是输入或者输出接口、管脚或者电路等。存储单元903可以是寄存器、缓存或者RAM等,存储
单元903可以和处理单元901集成在一起;存储单元903可以是ROM或者可存储静态信息和指令的其他类型的静态存储设备,存储单元903可以与处理单元901相独立。可选的,随着无线通信技术的发展,收发器可以被集成在通信装置900上,例如通信单元902集成了图2A所示的收发器113。
当通信装置900是接入网设备或者接入网设备中的芯片时,处理单元901可以完成上述实施例中接入网设备执行的方法。
在一种可能的设计中,处理单元901可以包括指令,所述指令可以在所述处理器上被运行,使得所述通信装置900执行上述实施例中接入网设备的方法。
在又一种可能的设计中,存储单元903上存有指令,所述指令可在所述处理单元901上被运行,使得所述通信装置900执行上述实施例中接入网设备的方法。可选的,所述存 储单元903中还可以存储有数据。可选的,处理单元901中也可以存储指令和/或数据。
例如,通信单元902可以向第一用户设备发送第一SRS资源分配信息,第一SRS资源分配信息指示第一SRS资源,其中第一SRS资源的周期为第一周期;通信单元902可以向第一用户设备发送第二SRS资源分配信息,第二SRS资源分配信息指示第二SRS资源,第二SRS资源的周期为第二周期,第二周期比第一周期短,或者第二SRS资源为非周期SRS资源,其中第一用户设备为大包用户设备。
例如,处理单元901还可以根据第一用户设备一时间范围内的业务数据量确定第一用户设备是否为大包用户设备。
例如,当接入网设备为目标接入网设备时,通信单元902还可以从接入网设备从源接入网设备接收切换消息,其中,切换消息包括用于指示第一用户设备为大包用户设备的信息。
例如,通信单元902可以向第二用户设备发送第二SRS资源分配信息,第二用户设备为大包用户设备,通信单元902还可以在同一时间,为第一用户设备或者第二用户设备激活第二SRS资源。
例如,处理单元901可以确定为第一用户设备激活第二SRS资源时,则通信单元902开启定时器,进一步地,处理单元901可以确定定时器超期后,则通信单元902为第一用户设备去激活第二SRS资源,且为第二用户设备激活第二SRS资源。
例如,当第二SRS资源信息还指示第三SRS资源,第三SRS资源的周期为第三周期,第三周期比第一周期短时,通信单元902可以向第二用户设备发送第二SRS资源分配信息,第二用户设备为大包用户设备,进一步地,通信单元902为第一用户设备激活第二SRS资源时,为第二用户设备激活第三SRS资源,或者,接入网设备为第一用户设备激活第三SRS资源时,为第二用户设备激活第二SRS资源。
其余可以参考上述实施例中接入网设备的方法,在此不再赘述。
上面介绍了本申请实施例的方法流程图,要理解的是,终端可以存在与终端方法或者流程的步骤对应的功能单元(means),接入网设备可以存在与接入网设备方法或者流程的步骤对应的功能单元。以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令以实现以上方法流程。
本申请中的处理器可以包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。该处理器可以是个单独的半导体芯片,也可以跟其他电路一起集成为一个半导体芯片,例如,可以跟其他电路(如编解码电路、硬件加速电路或各种总线和接口电路)构成一个SoC(片上系统),或者也可以作为一个ASIC的内置处理器集成在所述ASIC当中,该集成了处理器的ASIC可以单独封装或者也可以跟其他电路封装在一起。该处理器除了包括用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gatearray,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
本申请实施例中的存储器,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
该总线除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
上面介绍了本申请实施例的方法流程图,要理解的是,终端可以存在与终端方法或者流程的步骤对应的功能单元(means),接入网设备可以存在与接入网设备方法或者流程的步骤对应的功能单元。以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令以实现以上方法流程。
本申请中的处理器可以包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。该处理器可以是个单独的半导体芯片,也可以跟其他电路一起集成为一个半导体芯片,例如,可以跟其他电路(如编解码电路、硬件加速电路或各种总线和接口电路)构成一个SoC(片上系统),或者也可以作为一个ASIC的内置处理器集成在所述ASIC当中,该集成了处理器的ASIC可以单独封装或者也可以跟其他电路封装在一起。该处理器除了包括用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
本申请实施例中的存储器,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据 结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
该总线除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本申请实施例提供的方法,本申请实施例还提供一种系统,其包括前述的装置和一个或多于一个的网络设备。
本申请实施例定义接入网到终端的单向通信链路为下行链路,在下行链路上传输的数据为下行数据,下行数据的传输方向称为下行方向;而终端到接入网的单向通信链路为上行链路,在上行链路上传输的数据为上行数据,上行数据的传输方向称为上行方向。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质 中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种资源分配方法,其特征在于,包括:
    接入网设备向第一用户设备发送第一SRS资源分配信息,所述第一SRS资源分配信息指示第一SRS资源,其中第一SRS资源的周期为第一周期;
    所述接入网设备向所述第一用户设备发送第二SRS资源分配信息,所述第二SRS资源分配信息指示第二SRS资源,所述第二SRS资源的周期为第二周期,所述第二周期比所述第一周期短,或者所述第二SRS资源为非周期SRS资源;
    其中,所述第一用户设备为大包用户设备。
  2. 根据权利要求1所述的方法,其特征在于,所述大包用户设备为一时间范围内平均业务数据量大于或者等于目标阈值的用户设备。
  3. 根据权利要求1或者2所述的方法,其特征在于,所述方法还包括:
    所述接入网设备根据所述第一用户设备一时间范围内的业务数据量确定所述第一用户设备是否为大包用户设备。
  4. 根据权利要求1或者2所述的方法,其特征在于,所述接入网设备为目标接入网设备,所述方法还包括:
    所述接入网设备从源接入网设备接收切换消息,其中,所述切换消息包括用于指示所述第一用户设备为大包用户设备的信息。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述方法还包括:
    所述接入网设备向第二用户设备发送所述第二SRS资源分配信息,所述第二用户设备为大包用户设备;
    所述接入网设备在同一时间,为所述第一用户设备或者所述第二用户设备激活所述第二SRS资源。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    当为所述第一用户设备激活所述第二SRS资源时,则所述接入网设备开启定时器;
    当所述定时器超期后,则所述接入网设备为所述第一用户设备去激活所述第二SRS资源,且为所述第二用户设备激活所述第二SRS资源。
  7. 根据权利1至4任一项所述的方法,其特征在于,所述第二SRS资源分配信息还指示第三SRS资源,所述第三SRS资源的周期为第三周期,所述第三周期比所述第一周期短,所述方法还包括:
    所述接入网设备向第二用户设备发送所述第二SRS资源分配信息,所述第二用户设备为大包用户设备;
    所述接入网设备为所述第一用户设备激活所述第二SRS资源时,为所述第二用户设备激活所述第三SRS资源,或者,所述接入网设备为所述第一用户设备激活所述第三SRS资源时,为所述第二用户设备激活所述第二SRS资源。
  8. 一种资源分配方法,其特征在于,包括:
    第一用户设备从接入网设备接收第一SRS资源分配信息,所述第一SRS资源分配信息指示第一SRS资源,其中第一SRS资源的周期为第一周期;
    所述第一用户设备从所述接入网设备接收第二SRS资源分配信息,所述第二SRS资源 分配信息指示第二SRS资源,所述第二SRS资源的周期为第二周期,所述第二周期比所述第一周期短,或者所述第二SRS资源为非周期SRS资源;
    其中,所述第一用户设备为大包用户设备。
  9. 根据权利要求8所述的方法,其特征在于,所述大包用户设备为一时间范围内平均业务数据量大于目标阈值的用户设备。
  10. 一种装置,其特征在于,所述装置用于执行权利要求1至7任一项所述的方法。
  11. 一种装置,其特征在于,所述装置用于执行权利要求8或者9所述的方法。
  12. 一种计算机程序产品,其特征在于,所述程序产品包括程序,当该程序被运行时,使得权利要求1至7任一项所述的方法,或,权利要求8或9任一项所述的方法被执行。
  13. 一种资源分配装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得权利要求1至7任一项所述的方法,或,权利要求8或9任一项所述的方法被执行。
  14. 一种芯片,其特征在于,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行计算机程序或指令,使得权利要求1至7任一项所述的方法,或,权利要求8或9任一项所述的方法被执行。
  15. 一种计算机可读存储介质,其特征在于,存储有用于实现权利要求1至7任一项所述的方法,或,权利要求8或9任一项所述的方法的程序或者指令。
  16. 一种通信系统,其特征在于,包括用于执行权利要求1-7任一项所述的方法的接入网设备和用于执行权利要求8或者9任一项所述的方法的用户设备。
PCT/CN2020/131467 2019-11-25 2020-11-25 一种资源分配的方法、装置以及设备 WO2021104304A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20893476.0A EP4050952A4 (en) 2019-11-25 2020-11-25 METHOD, APPARATUS AND DEVICE FOR RESOURCE ALLOCATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911169914.X 2019-11-25
CN201911169914.XA CN112838917A (zh) 2019-11-25 2019-11-25 一种资源分配的方法、装置以及设备

Publications (1)

Publication Number Publication Date
WO2021104304A1 true WO2021104304A1 (zh) 2021-06-03

Family

ID=75922366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131467 WO2021104304A1 (zh) 2019-11-25 2020-11-25 一种资源分配的方法、装置以及设备

Country Status (3)

Country Link
EP (1) EP4050952A4 (zh)
CN (1) CN112838917A (zh)
WO (1) WO2021104304A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013162439A2 (en) * 2012-04-24 2013-10-31 Telefonaktiebolaget L M Ericsson (Publ) Reducing periodic reporting in discontinuous receive (drx) mode
CN104869656A (zh) * 2014-02-26 2015-08-26 中国移动通信集团广西有限公司 一种用户调度方法及基站
CN110086511A (zh) * 2018-01-25 2019-08-02 电信科学技术研究院有限公司 一种波束赋形的方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024364B (zh) * 2016-11-04 2023-09-05 华为技术有限公司 一种上行测量参考信号传输方法、装置和系统
CN110351032B (zh) * 2018-04-02 2022-04-26 华为技术有限公司 资源配置方法及装置
US11088791B2 (en) * 2018-05-21 2021-08-10 Qualcomm Incorporated Choosing an SRS resource set when multiple sets are configured

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013162439A2 (en) * 2012-04-24 2013-10-31 Telefonaktiebolaget L M Ericsson (Publ) Reducing periodic reporting in discontinuous receive (drx) mode
CN104869656A (zh) * 2014-02-26 2015-08-26 中国移动通信集团广西有限公司 一种用户调度方法及基站
CN110086511A (zh) * 2018-01-25 2019-08-02 电信科学技术研究院有限公司 一种波束赋形的方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON, ST-ERICSSON: "Further Details on SRS for Release 10", 3GPP DRAFT; R1-101746, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Beijing, china; 20100412, 6 April 2010 (2010-04-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP050419159 *
See also references of EP4050952A4

Also Published As

Publication number Publication date
EP4050952A4 (en) 2022-12-07
EP4050952A1 (en) 2022-08-31
CN112838917A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
US11399361B2 (en) V2X sidelink communication
US11109289B2 (en) Scheduling method and base station
WO2022012212A1 (zh) 一种资源调度方法、通信装置及系统
WO2021057473A1 (zh) 一种共生网络中载波的调度方法、装置及存储介质
CN110891314A (zh) 一种通信方法、资源分配方法及装置
JP7278417B2 (ja) 保留中srキャンセル方法および装置
CN109842915B (zh) 一种通信方法和装置以及系统
JP6863485B2 (ja) データ指示方法、装置及び通信システム
WO2021159989A1 (zh) 用户设备能力传输方法、信息传输方法及相关产品
WO2021031301A1 (zh) 信号发送和接收方法以及装置
WO2020088400A1 (zh) 资源调度方法、装置及设备
WO2020078468A1 (zh) 通信方法和通信装置
US20220272668A1 (en) Wireless communication resource allocation method and apparatus, and communication device
US20240056926A1 (en) Communication method and apparatus for obtaining load information
US20240015702A1 (en) Method for reselecting sidelink resource and apparatus for the same
WO2020024299A1 (zh) 资源使用状况的上报方法及通信装置
WO2020221313A1 (zh) 通信方法及装置
US20230354092A1 (en) Method for buffer status report, method for configuring buffer status report and apparatuses thereof
WO2020199034A1 (zh) 用于中继通信的方法和装置
WO2021104304A1 (zh) 一种资源分配的方法、装置以及设备
WO2022253150A1 (zh) 数据传输方法及装置
WO2019129164A1 (zh) 一种传输时间处理方法及相关设备
KR20230146656A (ko) 사이드링크 불연속 수신 커맨드 트리거 방법, 장치, 및 시스템
EP4138475A1 (en) Method, apparatus and system for determining resource
WO2023184427A1 (zh) 基于ai的csi处理能力确定方法、装置、介质、产品及芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893476

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020893476

Country of ref document: EP

Effective date: 20220527

NENP Non-entry into the national phase

Ref country code: DE