[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021103996A1 - 有机发光二极管、有机发光显示基板及制备的方法和显示装置 - Google Patents

有机发光二极管、有机发光显示基板及制备的方法和显示装置 Download PDF

Info

Publication number
WO2021103996A1
WO2021103996A1 PCT/CN2020/127555 CN2020127555W WO2021103996A1 WO 2021103996 A1 WO2021103996 A1 WO 2021103996A1 CN 2020127555 W CN2020127555 W CN 2020127555W WO 2021103996 A1 WO2021103996 A1 WO 2021103996A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic light
emitting
light
electrode
Prior art date
Application number
PCT/CN2020/127555
Other languages
English (en)
French (fr)
Inventor
文官印
李彦松
杜小波
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2021103996A1 publication Critical patent/WO2021103996A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/865Intermediate layers comprising a mixture of materials of the adjoining active layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight

Definitions

  • the present disclosure relates to the field of display, and in particular, to organic light-emitting diodes, organic light-emitting display substrates, methods for preparing them, and display devices.
  • OLED Organic Light Emitting Device
  • OLED Organic Light Emitting Device
  • ETL electron transport layer
  • OLED-based display devices are prone to white screen color shift after long-term use. This is mainly due to the uneven decrease in RGB efficiency of the device after long-term use. This phenomenon is especially obvious in low gray scales. Especially for blue light devices, the decrease in brightness at low gray scales is more serious than that at high gray scales. Therefore, the luminous efficiencies of R (red), G (green), and B (blue) are inconsistent at low gray scales, which in turn leads to a color shift in the white screen.
  • the electron blocking layer of the blue light device is very thin, so the material deterioration of the blue light device after long-term use has a greater impact on the light emission, resulting in uneven RGB efficiency at low gray levels.
  • This application aims to alleviate or solve at least one of the above mentioned problems at least to a certain extent.
  • this application proposes an organic light emitting diode for display.
  • the organic light emitting diode includes: a first electrode; a hole transport layer, the hole transport layer is located on one side of the first electrode; a light emitting layer, the light emitting layer is located on the hole transport layer away from the first One side of the electrode; an electron adjustment layer, the electron adjustment layer is located on the side of the light-emitting layer away from the hole transport layer, the electron adjustment layer is configured to reduce the transport rate of electrons; the electron transport layer, the The electron transport layer is located on a side of the electron adjustment layer away from the light-emitting layer; and a second electrode is located on a side of the electron transport layer away from the electron adjustment layer.
  • the organic light-emitting diode can moderately reduce the electron transmission rate, prevent the balance of electrons and holes from being broken due to the difficulty of injecting holes into the light-emitting layer after long-term use, and thus can alleviate the impact of material degradation on light emission after long-term use of the light-emitting device .
  • multi-level grayscale display when the organic light emitting diode is used for display, multi-level grayscale display can be realized, and the grayscale includes L0 ⁇ L255.
  • the material forming the electron adjustment layer is configured to reduce the transmission rate of the electrons when the gray scale is less than or equal to L16. As a result, it is possible to alleviate the color shift that occurs in the white screen at low gray levels.
  • the material forming the electron adjustment layer is configured to maintain the transmission rate of the electrons not to decrease when the gray scale is greater than L16. As a result, it is possible to avoid shadowing the luminous efficiency of the device under high gray levels.
  • the material forming the electron adjustment layer includes at least one of an azole compound, a quinine derivative, an oxaline derivative, and a diazanthene derivative. As a result, the performance of the electron adjustment layer can be further improved.
  • the organic light emitting diode further includes at least one of the following structures: an electron injection layer, the electron injection layer is located between the second electrode and the electron transport layer; a hole blocking layer, so The hole blocking layer is located between the light emitting layer and the electron adjustment layer; the electron blocking layer is located between the light emitting layer and the hole transport layer; the hole transport auxiliary layer, so The hole transport auxiliary layer is located between the hole transport layer and the first electrode; a metal reflective layer, where the metal reflective layer is located on the side of the first electrode away from the light-emitting layer; and a light extraction layer The light extraction layer is located on a side of the second electrode away from the light-emitting layer.
  • the performance of the organic light emitting diode can be further improved.
  • the hole transport auxiliary layer is formed by P-type doping the material forming the hole transport layer.
  • the light-emitting layer is a blue light-emitting layer.
  • the performance of the organic light emitting diode can be further improved.
  • the present application proposes an organic light-emitting display substrate.
  • the organic light-emitting display substrate includes a plurality of organic light-emitting diodes whose light-emitting colors are not all the same, and at least one of the plurality of organic light-emitting diodes is the aforementioned one. Therefore, the organic light-emitting display substrate has all the features and advantages of the organic light-emitting diode described above, and will not be repeated here. In general, after the organic light emitting display substrate is used for a period of time, it can alleviate the problem of color shift that easily occurs in a white image at low gray levels.
  • the organic light emitting display substrate includes: a red organic light emitting diode, a green organic light emitting diode, and a blue organic light emitting diode.
  • the light emitting layers of the organic light emitting diode and the blue organic light emitting diode are arranged in the same layer, and the red organic light emitting diode, the green organic light emitting diode and the blue organic light emitting diode share an electron transport layer and a hole transport layer.
  • the performance of the organic light-emitting display substrate can be improved.
  • the orthographic projection of the electron adjustment layer of the blue organic light emitting diode on the first electrode covers the following area: the positive of the light emitting layer of the red organic light emitting diode on the first electrode Projection, an orthographic projection of the light-emitting layer of the green organic light-emitting diode on the first electrode, and an orthographic projection of the light-emitting layer of the blue organic light-emitting diode on the first electrode.
  • the performance of the organic light-emitting display substrate can be improved.
  • the orthographic projection of the electron adjustment layer of the blue organic light emitting diode on the second electrode coincides with the orthographic projection of the light emitting layer of the blue organic light emitting diode on the second electrode.
  • the present application proposes a method for preparing the aforementioned organic light-emitting display substrate.
  • the method includes: forming a plurality of organic light-emitting diodes with different light-emitting colors, and forming at least one of said organic light-emitting diodes.
  • an electron adjustment layer is formed between the light emitting layer and the electron transport layer. The method can easily obtain the aforementioned organic light-emitting display substrate, and after the prepared organic light-emitting display substrate is used for a period of time, the problem that the white picture is prone to color shift in low grayscale can be alleviated.
  • the light emitting method includes forming a first electrode; forming a blue light emitting layer, a red light emitting layer, and a green light emitting layer on one side of the first electrode, the blue light emitting layer, the red light emitting layer, and The green light-emitting layer is arranged in the same layer; using a fine metal mask, the electron adjustment layer is formed on the side of the blue light-emitting layer away from the first electrode.
  • the electron transmission rate of the blue light-emitting diode can be regulated.
  • the light emitting method includes forming a first electrode; forming a blue light emitting layer, a red light emitting layer, and a green light emitting layer on one side of the first electrode, the blue light emitting layer, the red light emitting layer, and The green light-emitting layer is arranged in the same layer; the electron adjustment layer is formed on the side of the blue light-emitting layer away from the first electrode, and the orthographic projection of the electron adjustment layer on the first electrode covers the following areas: The orthographic projection of the red light-emitting layer on the first electrode, the orthographic projection of the green light-emitting layer on the first electrode, and the orthographic projection of the blue light-emitting layer on the first electrode.
  • this application proposes a display device.
  • the display device includes the aforementioned organic light-emitting display substrate.
  • the display device has all the retreat features and advantages of the display substrate described above, and will not be repeated here. In general, after the display device is used for a period of time, it can alleviate the problem of color shift that easily occurs in the white picture at low gray levels.
  • Fig. 1 shows a schematic structural diagram of an organic light emitting diode according to an embodiment of the present application
  • Fig. 2 shows a schematic structural diagram of an organic light emitting diode according to another embodiment of the present application
  • Fig. 3 shows a schematic structural diagram of an organic light emitting display substrate according to an embodiment of the present application
  • Fig. 4 shows a schematic structural diagram of an organic light emitting display substrate according to another embodiment of the present application.
  • Figure 5 shows a graph of current density test results of an organic light emitting diode according to a comparative example of the present application
  • Fig. 6 shows a graph of current density test results of an organic light emitting diode according to an embodiment of the present application.
  • this application proposes an organic light emitting diode for display.
  • the organic light emitting diode includes a first electrode 100, a second electrode 200, and a light emitting layer 300, a hole transport layer 400, and an electron transport layer 500 located between the first electrode 100 and the second electrode 200.
  • the hole transport layer 400 is located between the light emitting layer 300 and the first electrode 100
  • the electron transport layer 500 is located between the light emitting layer 300 and the second electrode 200.
  • the organic light-emitting diode can moderately reduce the electron transmission rate, prevent the balance of electrons and holes from being broken due to the difficulty of injecting holes into the light-emitting layer after long-term use, and thus can alleviate the impact of material degradation on light emission after long-term use of the light-emitting device .
  • the first electrode and the second electrode are only used to distinguish two electrodes in the organic light emitting diode.
  • One of the first electrode and the second electrode is an anode and the other is a cathode, and the two electrodes can be interchanged, and their positions are not particularly limited.
  • the first electrode may be an anode
  • the second electrode may be a cathode.
  • the electron transport layer 500 and the electron adjustment layer 600 are located between the cathode and the light emitting layer.
  • the light emitting direction of the organic light emitting diode is not particularly limited.
  • the light emitting direction of the organic light emitting diode may be emitted from the side of the second electrode 200, for example, above the marked position in FIG. 1.
  • the aforementioned defects such as color shift in the white screen at low grayscale are mainly caused by the breakdown of the balance of holes and electrons in the light-emitting layer at low grayscale after long-term use.
  • the electron stability of the hole transport layer of the organic light-emitting device is poor, and the electron blocking layer is very thin.
  • the balance of holes and electrons in the light-emitting layer at low gray scales is more likely to be broken after long-term use of blue light devices. That is to say, after the device is used for a long time, it is difficult to inject holes into the light-emitting layer, resulting in the breakdown of the balance of electrons and holes, and the luminous efficiency of the blue device is seriously reduced at low gray levels.
  • the commonly used blue light-emitting layers are mostly composed of a single type of light-emitting material, while the light-emitting layers of colors such as red and green are mostly formed of composite materials. Therefore, the balance between holes and electrons in the blue light-emitting layer is more easily broken. As a result, the luminous efficiency attenuation of the light-emitting layer of different colors is inconsistent at low gray levels.
  • the mixed light using the light emitted by the light-emitting layers of multiple colors will appear color shift. And this phenomenon can be alleviated to a certain extent under high gray scale, mainly because the device receives a larger voltage under high gray scale, so the problem of hole injection difficulty can be alleviated. Therefore, the above-mentioned white screen color shift mainly occurs during low grayscale display. Moreover, for the sake of improving the overall luminous efficiency of the device, it is impossible to replace the hole transport layer material with a slower transport rate and better electron stability.
  • the specific color of the light-emitting layer 300 is not particularly limited.
  • it may be a blue light-emitting layer or a light-emitting layer with other light-emitting colors.
  • the blue light-emitting layer has a more serious problem of difficulty in hole injection at low voltage compared to light-emitting layers of other colors
  • organic light-emitting diodes of other colors with less serious problems can also have the electron-adjusting layer according to the embodiments of the present application. . Therefore, when it and the blue light-emitting layer form a display panel together, organic light-emitting diodes of different colors can have better structural consistency, thereby facilitating the simplification of the production process.
  • the following takes the light-emitting layer as a blue light-emitting layer as an example to describe in detail each structure of the organic light-emitting diode according to the embodiments of the present application:
  • the organic light emitting diode can realize multi-level gray scale display when used for display, and the gray scale may specifically include L0 to L255 gray scales.
  • the material for forming the electron adjustment layer 600 can be selected so that the material for forming the electron adjustment layer 600 can reduce the transmission rate of electrons when the gray scale is less than or equal to L16.
  • the above-mentioned problem of difficulty in hole injection is more significant. Therefore, reducing the transmission rate of electrons when the grayscale is less than or equal to L16 can alleviate the above-mentioned problem of white screen color shift at low grayscale. And it can also prevent the reduction of the electron transmission rate under excessive gray scales, which will lead to a significant drop in the luminous efficiency of the device.
  • the material forming the electron adjustment layer can reduce the transmission rate of electrons when the gray scale is less than or equal to L16, and keep the transmission rate of electrons from decreasing when the gray scale is greater than L16. Therefore, the problem of the color shift of the white screen under low gray scale can be alleviated, and the current efficiency of the device under high gray scale is not affected.
  • the material forming the electron adjustment layer may specifically include at least one of an azole compound, a quinine derivative, an oxaline derivative, and a diazanthene derivative. The above-mentioned materials can better reduce the electron velocity at low gray levels without significantly affecting the overall efficiency of the device.
  • the organic light emitting diode may further include other structures commonly used in organic light emitting diodes to improve device performance.
  • the hole transport auxiliary layer may be a P-doped hole transport auxiliary layer. More specifically, the hole auxiliary layer may be formed of a hole transport layer material subjected to P-type doping.
  • the material of the hole-assisted transport layer and the hole-transport layer are the same, the difference between the two is that the hole-assisted transport layer is processed by P-type doping.
  • the interface state between the first electrode and the hole transport layer can be improved, and the ability of holes to be injected into the light emitting layer can be improved.
  • the above structure can improve the hole transport ability and block electrons, reducing the probability of recombination of electrons in positions other than the blue light-emitting layer 300.
  • the specific materials for forming the hole transport layer 400 and the hole transport auxiliary layer 10 are not particularly limited, and those skilled in the art can select commonly used hole transport materials.
  • the blue light-emitting layer 300 facing the second electrode 200 there may also be a structure of a hole blocking layer 700 and an electron injection layer 800.
  • a hole blocking layer 700 and an electron injection layer 800 As a result, the electron transport capability can be improved, and the probability of recombination of electrons and holes at the position between the light-emitting layer and the second electrode can be reduced.
  • the materials of the hole transport layer 400, the electron blocking layer 900, the hole transport auxiliary layer 10, the hole blocking layer 700, and the electron injection layer 800 are not particularly limited. Those skilled in the art can use the specific light emission of the organic light-emitting diode. Requirements and specific materials of the blue light-emitting layer 300 are selected.
  • the light emitting direction of the organic light emitting diode may be the direction on the side of the second electrode 200, as shown in the upper side in FIG. 2.
  • a metal reflective layer 20 can also be provided on the side of the first electrode 100 away from the light-emitting layer.
  • the metal reflective layer has a higher light reflectivity and is located at the first electrode 100 away from the blue light-emitting layer 300. In order to reflect part of the light emitted from the light-emitting layer and propagated toward the side of the first electrode 100.
  • the light extraction layer 30 may be provided on the side of the second electrode 200 away from the rigid layer.
  • the specific structure of the light extraction layer 30 is not particularly limited, and those skilled in the art can use a commonly used light extraction layer structure.
  • the present application proposes an organic light-emitting display substrate.
  • the organic light-emitting display substrate includes a plurality of organic light-emitting diodes whose light-emitting colors are not all the same, and at least one of the plurality of organic light-emitting diodes is as described above. Therefore, the organic light-emitting display substrate has all the features and advantages of the organic light-emitting diode described above, and will not be repeated here. For example, after the display substrate is used for a period of time, the picture under low gray scale can maintain a better color, and the color cast of the white picture can be greatly alleviated.
  • the specific number and color of the organic light emitting diodes included on the organic light emitting display substrate are not particularly limited, as long as the organic light emitting diodes that emit blue light described above are provided.
  • the organic light emitting diodes that emit blue light described above there may be a red organic light emitting diode, a green organic light emitting diode, and a blue organic light emitting diode, or, according to other embodiments of the present application, it may also include red, green, yellow, blue organic light emitting diodes, and so on.
  • the display substrate including a red organic light emitting diode, a green organic light emitting diode, and a blue organic light emitting diode as an example to describe each structure of the organic light emitting display substrate in detail.
  • the light-emitting layers of multiple organic light-emitting diodes on the organic light-emitting display substrate can be arranged in the same layer, as shown in the figure, the light-emitting layer 300A of the blue organic light-emitting diode, The light emitting layer 300B of the green organic light emitting diode, and the light emitting layer 300C of the red organic light emitting diode. Structures such as the hole transport layer 400 and the electron transport layer 500 can be shared by the three types of light-emitting organic light-emitting diodes.
  • the first electrode may be a pixel anode of the organic light-emitting display substrate, and organic light-emitting diodes with different light-emitting colors correspond to different first electrodes, such as 100A, 100B, and 100C as shown in the figure. .
  • a plurality of organic light emitting diodes may share a cathode, such as the second electrode 200 shown in FIG. 4.
  • the front projection of the electron adjustment layer of the blue organic light-emitting diode on the first electrode can be made to cover the following position: the light-emitting layer 300C of the red organic light-emitting diode is The orthographic projection on the first electrode 100, the orthographic projection of the light emitting layer 300B of the green organic light emitting diode on the first electrode, and the orthographic projection of the light emitting layer 300C of the blue organic light emitting diode on the first electrode.
  • the electronic adjustment layer of the blue organic light-emitting diode can cover the area where the green organic light-emitting diode and the red organic light-emitting diode are located. Therefore, when the electron adjustment layer 600 is formed, there is no need to specifically control the position of the electron adjustment layer 600. Although this solution will simultaneously reduce the electron transmission rate of green organic light-emitting diodes and red organic light-emitting diodes at low gray levels, as mentioned earlier, the electron adjustment layer only plays a role in reducing the electron transmission rate at low gray levels, so It will not significantly affect the luminous efficiency of the display substrate.
  • the electron adjustment layer 600 may be formed only in the area where the blue organic light emitting diode is located.
  • the orthographic projection of the electron adjustment layer 600 of the blue organic light-emitting diode on the second electrode (or the first electrode 100) can be the same as the light-emitting layer 300A of the blue organic light-emitting diode on the second electrode (or the first electrode 100).
  • the area of the orthographic projection on 100) coincides with each other. In this way, only the electron transfer rate of the blue organic light emitting diode can be controlled, thereby avoiding affecting the efficiency of light emitting diodes of other colors.
  • organic light emitting display substrate except for the light emitting layer, the first electrode, and the electron adjustment layer, other structures in the organic light emitting diode described above can be multiple
  • the organic light-emitting diodes are shared, as long as the light-emitting condition of each organic light-emitting diode can be individually controlled, which will not be repeated here.
  • the present application proposes a method for preparing the foregoing organic light-emitting display substrate.
  • the method includes the step of forming a plurality of organic light-emitting diodes that do not all emit the same color. And when at least one organic light emitting diode is formed, an electron adjustment layer is formed between the light emitting layer and the electron transport layer. For example, when forming a blue organic light emitting diode, an electron adjustment layer may be formed between the blue light emitting layer and the electron transport layer.
  • the method includes forming a first electrode; forming a blue light-emitting layer, a red light-emitting layer, and a green light-emitting layer on one side of the first electrode, and the blue light-emitting layer, the red light-emitting layer and the green light-emitting layer are the same.
  • the method may include the following steps: forming a first electrode, for example, the first electrode may be formed on a substrate by a method including but not limited to depositing metal. Subsequently, structures such as a hole transport auxiliary layer, a hole transport layer, and an electron blocking layer can be sequentially formed. Except for the first electrode, the above-mentioned structures of multiple organic light emitting diodes can be shared. Then the light-emitting layer can be formed.
  • a blue light-emitting layer, a red light-emitting layer, and a green light-emitting layer, a blue light-emitting layer, a red light-emitting layer, and a green light-emitting layer can be formed at corresponding positions through a fine metal mask (FMM mask).
  • the layer can be set in the same layer.
  • a hole blocking layer, an electron adjustment layer, an electron transport layer, and an electron injection layer are formed on the side of the light emitting layer away from the first electrode, and the second electrode is formed.
  • the second electrode, the hole blocking layer, the electron transport layer, and the electron injection layer can be shared by a plurality of organic light emitting diodes.
  • a light extraction layer can be formed on the side of the second electrode away from the electron injection layer.
  • the electron adjustment layer may also cover the light-emitting layers of multiple organic light-emitting diodes.
  • the electron adjustment layer can also be shared by multiple organic light emitting diodes, not just in the area where the blue organic light emitting diodes are located.
  • the orthographic projection of the electron adjustment layer formed in this step on the first electrode covers the following positions: the orthographic projection of the red light-emitting layer on the first electrode, the orthographic projection of the green light-emitting layer on the first electrode, and the blue Orthographic projection of the color light-emitting layer on the first electrode.
  • the structure diagram of the finally obtained organic light emitting display substrate may be as shown in FIG. 3. Therefore, there is no need to introduce a mask when forming the electron adjustment layer to limit the position of the electron adjustment layer, thereby reducing the number of times the method uses the mask, thereby simplifying the production process and reducing the production cost.
  • the electronic adjustment layer may be provided only at the position corresponding to the blue organic light emitting diode.
  • a fine metal mask for forming the blue light-emitting layer (or a mask consistent with the shape of the mask for forming the blue light-emitting layer) can be used, and then the electron adjustment layer is formed in a specific area .
  • the structure diagram of the finally obtained organic light emitting display substrate may be as shown in FIG. 4.
  • the electron adjustment layer can be formed only in the region where the blue organic light-emitting diode is located, thereby avoiding affecting the luminous efficiency of the red organic light-emitting diode and the green organic light-emitting diode at low gray levels.
  • this application proposes a display device.
  • the display device includes the aforementioned organic light-emitting display substrate.
  • the display device may be a display panel, a display screen of an electronic device such as a computer, a mobile phone, a pad, a notebook computer, or a device such as a TV or a display screen.
  • the display device has all the features and advantages of the display substrate described above, and will not be repeated here. In general, after the display device is used for a period of time, it can alleviate the problem of color shift that easily occurs in the white picture at low gray levels.
  • the preparation includes a metal reflective layer, an anode, a P-doped-blue hole transport auxiliary layer, a hole transport layer, an electron blocking layer, a blue light-emitting layer, a hole blocking layer, an electron adjustment layer, an electron transport layer, and an electron injection layer And the cathode, the diode of the light extraction layer.
  • the electron adjustment layer is an azole compound.
  • the rest of the structure is the same as in Example 1, except that the electron regulation layer uses quinine derivatives.
  • Example 2 The rest of the structure is the same as in Example 1, except that the electron regulation layer uses oxaline derivatives.
  • the rest of the structure is the same as that of Embodiment 1, except that the electron regulation layer uses a diazaanthracene derivative.
  • the rest of the structure is the same as in embodiment 1, except that there is no electron adjustment layer between the hole blocking layer and the electron transport layer.
  • the current efficiency of the organic light-emitting diodes prepared in Examples 1-4 and Comparative Example 1 was tested (testing current efficiency under different current densities). Referring to FIG. 5, before and after use of the diode of Comparative Example 1 (after the diode is continuously lit until the brightness decays to 95% of the initial brightness), the current efficiency curve of the device changes significantly, and the current efficiency decays severely after use. Referring to Figure 6, the current efficiency of the diode prepared in Example 1 was tested. After use (continuously lighting the diode until the brightness decays to 95% of the initial brightness), although the current efficiency also has a small decrease, the degree of attenuation is better than that of Comparative Example 1. Significantly improved. The same test was performed on the devices obtained in Examples 2-4, and the test results were similar to those in Example 1. The current efficiency attenuation of the devices after use was improved compared with the comparative example.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

有机发光二极管、有机发光显示基板及制备的方法和显示装置。该有机发光二极管包括:第一电极(100);空穴传输层(400),所述空穴传输层(400)位于所述第一电极(100)的一侧;发光层(300),所述发光层(300)位于所述空穴传输层(400)远离所述第一电极(100)的一侧;电子调节层(600),所述电子调节层(600)位于所述发光层(300)远离所述空穴传输层(400)的一侧,所述电子调节层(600)被配置为可降低电子的传输速率;电子传输层(500),所述电子传输层(500)位于所述电子调节层(600)远离所述发光层(300)的一侧;以及第二电极(200),所述第二电极(200)位于所述电子传输层(500)远离所述电子调节层(600)的一侧。

Description

有机发光二极管、有机发光显示基板及制备的方法和显示装置 技术领域
本公开涉及显示领域,具体地,涉及有机发光二极管、有机发光显示基板及制备的方法和显示装置。
背景技术
由于有机电致发光器件(Organic Light Emitting Device,OLED)具有高效率、高亮度、低驱动电压、响应速度快以及能实现大面积光电显示等优点,被越来越多的应用于显示领域。并且随着电子技术的发展,手机等电子设备对显示组件功耗的要求也愈发严格,因此要求电致发光器件(EL器件,如OLED)具有较高的发光效率。为此,目前的EL器件中多采用电子迁移率较快的电子传输材料形成电子传输层(ETL)。
然而,目前的有机发光二极管、有机发光显示基板及制备方法和显示装置仍有待改进。
申请内容
在相关技术中,基于OLED的显示装置长期使用后容易出现白画面色偏的现象。这主要是由于器件在长期使用过后出现RGB效率下降不均一的现象导致的。这一现象在低灰阶下尤为明显。特别是蓝光器件,在低灰阶亮度下降的比高灰阶尤其严重。因此,导致在低灰阶下R(红色)、G(绿色)、B(蓝色)发光效率不一致,进而导致白画面出现色偏现象。发明人经过研究发现,这主要是由于采用高传输速率的空穴传输材料之后,空穴传输层的电子稳定性较差,容易在空穴传输层和发光层的界面处发生缓慢裂解。由此导致长期使用后低灰阶下空穴较难注入到发光层,打破了空穴和电子的平衡,使得器件电子过剩,器件低灰阶下效率下降严重。特别是蓝光器件的电子阻挡层很薄,因此蓝光器件长期使用之后材料劣化对发光的影响更大,导致低灰阶下RGB效率下降不均一。
本申请旨在至少一定程度上缓解或解决上述提及问题中至少一个。
有鉴于此,在本申请的一个方面,本申请提出了一种用于显示的有机发光二极管。该有机发光二极管包括:第一电极;空穴传输层,所述空穴传输层位于所述第一电极的一侧;发光层,所述发光层位于所述空穴传输层远离所述第一电极的一侧;电子调节层,所述电子调节层位于所述发光层远离所述空穴传输层的一侧,所述电子调节层被配置为可降低电子的传输速率;电子传输层,所述电子传输层位于所述电子调节层远离所述发光层的一侧;以及第二电极,所述第二电极位于所述电子传输层远离所述电子调节层的一侧。由此,该有机发光二极管可适度降低电子的传输速率,防止长期使用后由于空穴难以注入发光层而 导致电子与空穴平衡被打破,进而可以缓解发光器件长期使用之后材料劣化对发光的影响。
根据本申请的实施例,所述有机发光二极管用于显示时可实现多级的灰阶显示,所述灰阶包括L0~L255。
根据本申请的实施例,形成所述电子调节层的材料被配置为可在所述灰阶小于等于L16时降低所述电子的传输速率。由此,可缓解低灰阶下白画面发生色偏的不良。
根据本申请的实施例,形成所述电子调节层的材料被配置为可在所述灰阶大于L16时保持所述电子的传输速率不降低。由此,可避免在高灰阶下影线该器件的发光效率。
根据本申请的实施例,形成所述电子调节层的材料包括唑类化合物、奎琳衍生物、喔啉衍生物以及二氮蒽衍生物的至少之一。由此,可进一步提高电子调节层的性能。
根据本申请的实施例,该有机发光二极管进一步包括以下结构的至少之一:电子注入层,所述电子注入层位于所述第二电极以及所述电子传输层之间;空穴阻挡层,所述空穴阻挡层位于所述发光层以及所述电子调节层之间;电子阻挡层,所述电子阻挡层位于所述发光层以及所述空穴传输层之间;空穴传输辅助层,所述空穴传输辅助层位于所述空穴传输层以及所述第一电极之间;金属反射层,所述金属反射层位于所述第一电极远离所述发光层的一侧;以及光取出层,所述光取出层位于所述第二电极远离所述发光层的一侧。由此,可进一步提高该有机发光二极管的性能。
根据本申请的实施例,所述空穴传输辅助层是通过对形成所述空穴传输层的材料进行P型掺杂而形成的。由此可改善第一电极和空穴传输层之间的界面状态,进而提高空穴注入发光层的能力。
根据本申请的实施例,所述发光层为蓝色发光层。由此,可进一步提高该有机发光二极管的性能。
在本申请的又一个方面,本申请提出了一种有机发光显示基板。该有机发光显示基板包括多个发光颜色不全部相同的有机发光二极管,多个所述有机发光二极管中的至少之一为前面所述的。由此,该有机发光显示基板具有前面描述的有机发光二极管所具有的全部特征以及优点,在此不再赘述。总的来说,该有机发光显示基板在使用一段时间后,可缓解低灰阶下白画面易发生色偏的问题。
根据本申请的实施例,有机发光显示基板包括:红色有机发光二极管、绿色有机发光二极管以及蓝色有机发光二极管,所述蓝色有机发光二极管为前面所述的,所述红色有机发光二极管、绿色有机发光二极管以及蓝色有机发光二极管的发光层同层设置,且所述红色有机发光二极管、绿色有机发光二极管以及蓝色有机发光二极管共用电子传输层以及空穴传输层。由此,可提高该有机发光显示基板的性能。
根据本申请的实施例,所述蓝色有机发光二极管的电子调节层在所述第一电极上的正 投影覆盖以下区域:所述红色有机发光二极管的发光层在所述第一电极上的正投影、所述绿色有机发光二极管的发光层在所述第一电极上的正投影以及所述蓝色有机发光二极管的发光层在所述第一电极上的正投影。由此,可提高该有机发光显示基板的性能。
根据本申请的实施例,所述蓝色有机发光二极管的电子调节层在所述第二电极上的正投影与所述蓝色有机发光二极管的发光层在所述第二电极上的正投影重合。
在本申请的又一个方面,本申请提出了一种制备前面所述的有机发光显示基板的方法,该方法包括:形成多个发光颜色不全部相同的有机发光二极管,并在形成至少一个所述有机发光二极管时,在发光层和电子传输层之间形成电子调节层。该方法可简便地获得前面所述的有机发光显示基板,且制备的有机发光显示基板在使用一段时间后,可缓解低灰阶下白画面易发生色偏的问题。
根据本申请的实施例,该发方法包括形成第一电极;在所述第一电极的一侧形成蓝色发光层、红色发光层以及绿色发光层,所述蓝色发光层、红色发光层以及绿色发光层同层设置;利用精细金属掩膜,在所述蓝色发光层远离所述第一电极的一侧形成所述电子调节层。由此,可对蓝色发光二极管的电子传输速率进行调控。
根据本申请的实施例,该发方法包括形成第一电极;在所述第一电极的一侧形成蓝色发光层、红色发光层以及绿色发光层,所述蓝色发光层、红色发光层以及绿色发光层同层设置;在所述蓝色发光层远离所述第一电极的一侧形成所述电子调节层,所述电子调节层在在所述第一电极上的正投影覆盖以下区域:所述红色发光层在所述第一电极上的正投影、所述绿色发光层在所述第一电极上的正投影以及所述蓝色发光层在所述第一电极上的正投影。由此,可简化该方法的制程,减少掩膜板的使用次数。
在本申请的又一个方面,本申请提出了一种显示装置。该显示装置包括前面所述的有机发光显示基板。该显示装置具有前面描述的显示基板所具有的全部退特征以及优点,在此不再赘述。总的来说,该显示装置在使用一段时间后,可缓解低灰阶下白画面易发生色偏的问题。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1显示了根据本申请一个实施例的有机发光二极管的结构示意图;
图2显示了根据本申请另一个实施例的有机发光二极管的结构示意图;
图3显示了根据本申请一个实施例的有机发光显示基板的结构示意图;
图4显示了根据本申请另一个实施例的有机发光显示基板的结构示意图;
图5显示了根据本申请一个对比例的有机发光二极管的电流密度测试结果图;
图6显示了根据本申请一个实施例的有机发光二极管的电流密度测试结果图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的一个方面,本申请提出了一种用于显示的有机发光二极管。参考图1,该有机发光二极管包括可第一电极100、第二电极200,以及位于第一电极100和第二电极200之间的发光层300、空穴传输层400和电子传输层500。空穴传输层400位于发光层300和第一电极100之间,电子传输层500位于发光层300和第二电极200之间。在发光层300和电子传输层500之间具有电子调节层600。并且,电子调节层600被配置为可降低电子的传输速率。由此,该有机发光二极管可适度降低电子的传输速率,防止长期使用后由于空穴难以注入发光层而导致电子与空穴平衡被打破,进而可以缓解发光器件长期使用之后材料劣化对发光的影响。
需要说明的是,在本申请中,第一电极、第二电极仅为了区分有机发光二极管中的两个电极。第一电极和第二电极一个为阳极,另一个为阴极,且两个电极可进行互换,其位置不受特别限定。例如,第一电极可以为阳极,第二电极可为阴极。电子传输层500和电子调节层600位于阴极和发光层之间。该有机发光二极管的出光方向不受特别限制,例如,该有机发光二极管的出光方向可以为自第二电极200一侧射出,例如图1中所标记处的上方。
为方便理解,下面首先对根据本申请实施例的有机发光二极管可实现上述有益效果的原理进行简单说明:
如前所述,前述的低灰阶下白画面发生色偏等不良主要是由于长期使用后低灰阶下发光层空穴和电子的平衡被打破而导致的。有机发光器件的空穴传输层的电子稳定性不佳,电子阻挡层很薄,特别是蓝光器件在长期使用后低灰阶下发光层空穴和电子的平衡更容易被打破。也即是说,器件在长期使用之后,由于空穴难以注入至发光层,导致电子和空穴的平衡被打破导致蓝光器件的发光效率在低灰阶下下降严重。发明人经过研究发现,蓝光器件在低灰阶下发光效率下降显著一方面是由于蓝光器件的电子阻挡层较薄,另一方面,与蓝色发光层的活性材料有关。目前常用的蓝色发光层多由单一类型的发光材料构成,而红色、绿色等颜色的发光层多由复合材料形成。因此,蓝色发光层的空穴和电子之间的平衡更加容易被打破。由此造成在低灰阶下不同颜色的发光层发光效率衰减不一致。进一步 地,此时利用多种颜色的发光层发出的光的混合光就会出现色偏的现象。而这一现象在高灰阶下可得到一定程度的缓解,主要是由于高灰阶下器件受到的电压较大,因此空穴注入困难的问题可以得到缓解。因此,上述白画面色偏主要发生在低灰阶显示时。并且,出于提高器件整体发光效率的考虑,也无法替换传输速率较慢、电子稳定性较好的空穴传输层材料。因此,如能够在蓝色发光层和电子传输层之间加设一层材料控制电子的传输速率,则可以在很大程度上缓解上述问题:虽然在使用一段时间后,器件仍会由于空穴传输层材料的缓慢裂解而导致低电压下空穴注入困难,但由于低电压下电子的传输速率被减慢,因此此时发光层的空穴和电子仍旧可以保持平衡。由此,由于电子和空穴平衡被打破而导致的色偏等问题均可得到一定程度的缓解甚至解决。
需要特别说明的是,发光层300的具体颜色不受特别限制,例如可以是蓝色发光层,也可以是具有其他发光颜色的发光层。虽然蓝色发光层相对于其他颜色的发光层而言低电压下空穴注入困难的问题更加严重,但问题不很严重的其他颜色的有机发光二极管也可具有根据本申请实施例的电子调节层。由此,当其与蓝色发光层共同构成显示面板时,不同颜色的有机发光二极管可以具有更好的结构一致性,进而便于简化生产工艺。
为了描述简便,下面以该发光层为蓝色发光层为例,对根据本申请实施例的有机发光二极管的各个结构进行详细描述:
根据本申请的实施例,该有机发光二极管用于显示时可实现多级的灰阶显示,灰阶可具体包括L0~L255个灰阶。发明人发现,可通过对形成电子调节层600的材料进行选择,令形成电子调节层600的材料可在灰阶小于等于L16时降低电子的传输速率。发明人发现,在灰阶小于等于L16时,上述空穴注入困难的问题较为显著。因此在灰阶小于等于L16时降低电子的传输速率可缓解上述低灰阶下白画面色偏的问题。并且也可防止在过多的灰阶下减低电子传输速率而导致器件发光效率的大幅下降。
根据本申请的一些实施例,优选形成电子调节层的材料可在灰阶小于等于L16时降低电子的传输速率,并在灰阶大于L16时保持电子的传输速率不降低。由此,既可缓解低灰阶下白画面色偏的问题,又不影响高灰阶下器件的电流效率。根据本申请的实施例,形成电子调节层的材料具体可包括唑类化合物、奎琳衍生物、喔啉衍生物以及二氮蒽衍生物的至少之一。上述材料可以较好地在低灰阶下降低电子速率,同时不会显著影响器件的整体效率。
根据本申请的实施例,该有机发光二极管还可进一步包括有机发光二极管中常用的其他提高器件性能的结构。例如,参考图2,在空穴传输层400和蓝色发光层300之间还可具有电子阻挡层900,为了进一步提高空穴传输能力,在第一电极100和空穴传输层之间还可具有空穴传输辅助层10。根据本申请的具体实施例,空穴传输辅助层可以为P掺杂的空穴 传输辅助层。更具体地,空穴辅助层可以是由经过P型掺杂的空穴传输层材料形成的。也即是说,空穴辅助传输层和空穴传输层的材料形同,二者的区别是空穴辅助传输层是经过P型掺杂处理的。由此可改善第一电极和空穴传输层之间的界面状态,进而提高空穴注入发光层的能力。总的来说,上述结构可提升空穴传输的能力,并在对电子进行阻挡,降低电子在蓝色发光层300以外的位置处于空穴发生复合的概率。形成空穴传输层400和空穴传输辅助层10的具体材料不受特别限制,本领域技术人员可以选择常用的空穴传输材料。
类似地,在蓝色发光层300朝向第二电极200的一侧,也可具有空穴阻挡层700、电子注入层800的结构。由此,可提高电子传输能力,降低电子和空穴在发光层和第二电极之间的位置处发生复合的概率。空穴传输层400、电子阻挡层900、空穴传输辅助层10、空穴阻挡层700和电子注入层800的材料均不受特别限制,本领域近技术人员可根据对有机发光二极管的具体发光要求,以及蓝色发光层300的具体材料进行选择。
如前所述,根据本申请实施例的有机发光二极管的出光方向可以为第二电极200一侧的方向,如图2中所示出的上方。为了提高该有机发光二极管的出光效率,还可以在第一电极100远离发光层的一侧设置金属反射层20,金属反射层具有较高的反光率,位于第一电极100远离蓝色发光层300的一侧以便对发光层发出的、朝向第一电极100一侧传播的部分光线进行反射。类似地,为了提高出光效率,可以在第二电极200远离发刚层的一侧设置光取出层30。光取出层30的具体结构不受特别限制,本领域技术人员可以采用常用的光取出层结构。
在本申请的又一个方面,本申请提出了一种有机发光显示基板。根据本申请的实施例,该有机发光显示基板包括多个发光颜色不全部相同的有机发光二极管,多个有机发光二极管中的至少之一为前面所述的。由此,该有机发光显示基板具有前面描述的有机发光二极管所具有的全部特征以及优点,在此不再赘述。例如,该显示基板在使用一段时间后,在低灰阶下的画面可保持较好的颜色,白画面出现色偏的不良可大幅得到缓解。
根据本申请的具体实施例,该有机发光显示基板上包含的有机发光二极管的具体数量和颜色均不受特别限制,只要具有前面描述的发蓝光的有机发光二极管即可。例如,可具有红色有机发光二极管、绿色有机发光二极管以及蓝色有机发光二极管,或者,根据本申请的另一些实施例,也可包括红色、绿色、黄色、蓝色的有机发光二极管等等。为了简化描述,下面以该显示基板包括红色有机发光二极管、绿色有机发光二极管以及蓝色有机发光二极管为例,对该有机发光显示基板的各个结构进行详细描述。
参考图3和图4,根据本申请的实施例,有机发光显示基板上的多个有机发光二极管的发光层可以同层设置,如图中所示出的蓝色有机发光二极管的发光层300A、绿色有机发光二极管的发光层300B、和红色有机发光二极管的发光层300C。空穴传输层400、电子传输 层500等结构可以为三种发光类型的有机发光二极管共用的。
本领域技术人员能够理解的是,为例实现可控的彩色显示,该有机发光显示基板上发光颜色不同的多个有机发光二极管需要是单独可控的。因此,红色有机发光二极管、绿色有机发光二极管以及蓝色有机发光二极管不能够同时共用一个第一电极和一个第二电极。例如,如图4所示出的,第一电极可以为该有机发光显示基板的像素阳极,不同发光颜色的有机发光二极管对应不同的第一电极,如图中所示出的100A、100B和100C。此时多个有机发光二极管可以共用一个阴极,例如图4中所示出的第二电极200。
根据本申请的一些实施例,参考图3,为了简化生产工艺,可以令蓝色有机发光二极管的电子调节层在第一电极上的正投影,覆盖以下位置:红色有机发光二极管的发光层300C在第一电极100上的正投影、绿色有机发光二极管的发光层300B在第一电极上的正投影以及蓝色有机发光二极管的发光层300C在第一电极上的正投影。也即是说,蓝色有机发光二极管的电子调节层可以覆盖绿色有机发光二极管和红色有机发光二极管所在的区域。由此,在形成电子调节层600时,无需对电子调节层600的位置进行特别控制。虽然这一方案会同步降低低灰阶下绿色有机发光二极管和红色有机发光二极管的电子传输速率,但如前所述,该电子调节层仅在低灰阶下发挥降低电子传输速率的作用,因此不会显著影响显示基板的发光效率。并且,虽然此时不同发光颜色的有机发光二极管的电子传输速率均有所降低,但此时发光层界面处的电子和空穴仍旧处于平衡状态,因此也不会由于多种颜色的有机发光二极管的电子传输速率均降低而出现不同发光颜色的二极管的发光效率降幅不一致的问题。
或者,根据本申请的另一些实施例,参考图4,也可以仅在和蓝色有机发光二极管所在的区域形成电子调节层600。也即是说,蓝色有机发光二极管的电子调节层600在第二电极(或第一电极100)上的正投影可以与蓝色有机发光二极管的发光层300A在第二电极(或第一电极100)上的正投影所在区域相重合。由此,可仅对蓝色有机发光二极管的电子传输速率进行控制,进而可避免影响其他颜色的发光二极管的效率。
此处需要特别说明的是,在根据本申请实施例的有机发光显示基板中,除去发光层、第一电极和电子调节层之外,前面描述的有机发光二极管中的其他结构均可被多个有机发光二极管共用,只要能够实现单独控制每一个有机发光二极管的发光情况即可,在此不再一一赘述。
在本申请的又一个方面,本申请提出了一种制备前面的有机发光显示基板的方法。根据本申请的实施例,该方法包括形成多个发光颜色不全部相同的有机发光二极管的步骤。并在形成至少一个有机发光二极管时,在发光层和电子传输层之间形成电子调节层。例如可以在形成蓝色有机发光二极管时,在蓝色发光层和电子传输层之间形成电子调节层。
根据本申请的实施例,该发方法包括形成第一电极;在第一电极的一侧形成蓝色发光层、红色发光层以及绿色发光层,蓝色发光层、红色发光层以及绿色发光层同层设置;利用精细金属掩膜,在蓝色发光层远离第一电极的一侧形成电子调节层。该方法可简便地获得前面所述的有机发光显示基板,且制备的有机发光显示基板在使用一段时间后,可缓解低灰阶下白画面易发生色偏的问题。
根据本申请的实施例,该发方法可包括以下步骤:形成第一电极,例如可通过包括但不限于沉积金属的方式,在基板上形成第一电极。随后,可依次进行形成空穴传输辅助层、空穴传输层、电子阻挡层等结构。除第一电极以外,多个有机发光二极管的上述结构均可共用。随后可进行形成发光层的操作,例如可通过精细金属掩膜(FMM mask),在对应位置分别形成蓝色发光层、红色发光层以及绿色发光层,蓝色发光层、红色发光层以及绿色发光层可以同层设置。随后,在发光层远离第一电极一侧形成空穴阻挡层、电子调节层、电子传输层以及电子注入层等结构,并形成第二电极。第二电极和空穴阻挡层、电子传输层以及电子注入层可被多个有机发光二极管共用。最后可在第二电极远离电子注入层的一侧形成光取出层。
在本申请的一些实施例中,电子调节层也可以覆盖多个有机发光二极管的发光层。也即是说,电子调节层也可被多个有机发光二极管共用,而不仅仅位于蓝色有机发光二极管所在的区域。换句话说,该步骤中形成的电子调节层在第一电极上的正投影,覆盖以下位置:红色发光层在第一电极上的正投影、绿色发光层在第一电极上的正投影以及蓝色发光层在第一电极上的正投影。最终获得的有机发光显示基板的结构示意图可以为图3中所示出的。由此,在形成电子调节层时无需引入掩膜来限定电子调节层的位置,进而可以减少该方法使用掩膜的次数,从而可以简化生产工艺,降低生产成本。
或者,根据本申请的另一些实施例,也可仅在蓝色有机发光二极管对应的位置处设置电子调节层。具体地,在形成电子调节层时,可采用形成蓝色发光层的精细金属掩膜(或是与形成蓝色发光层的掩膜形状一致的掩膜),进而在特定的区域形成电子调节层。最终获得的有机发光显示基板的结构示意图可以如图4中所示出的。由此,可仅在蓝色有机发光二极管所在区域形成电子调节层,进而可以避免影响低灰阶下红色有机发光二极管和绿色有机发光二极管的发光效率。
在本申请的又一个方面,本申请提出了一种显示装置。该显示装置包括前面所述的有机发光显示基板。例如,该显示装置可以是显示面板,电脑、手机、PAD、笔记本电脑等电子设备的显示屏,或是电视或展示屏等装置。该显示装置具有前面描述的显示基板所具有的全部特征以及优点,在此不再赘述。总的来说,该显示装置在使用一段时间后,可缓解低灰阶下白画面易发生色偏的问题。
下面通过具体的实施例对本申请进行说明,本领域技术人员能够理解的是,下面的具体的实施例仅仅是为了说明的目的,而不以任何方式限制本申请的范围。另外,在下面的实施例中,除非特别说明,所采用的材料和设备均是市售可得的。如果在后面的实施例中,未对具体的处理条件和处理方法进行明确描述,则可以采用本领域中公知的条件和方法进行处理。
实施例1
制备包括金属反射层、阳极、P掺杂-蓝色空穴传输辅助层、空穴传输层、电子阻挡层、蓝色发光层、空穴阻挡层、电子调节层、电子传输层、电子注入层和阴极、光取出层的二极管。其中电子调节层为唑类化合物。
实施例2
其余结构同实施例1,所不同的是,电子调节层采用奎琳衍生物。
实施例3
其余结构同实施例1,所不同的是,电子调节层采用喔啉衍生物。
实施例4
其余结构同实施例1,所不同的是,电子调节层采用二氮蒽衍生物。
对比例1
其余结构同实施例1,所不同的是,空穴阻挡层和电子传输层之间不设置电子调节层。
对实施例1-4以及对比例1制备的有机发光二极管的电流效率进行测试(测试不同电流密度(current density)下的电流效率(Efficiency))。参考图5,对比例1的二极管在使用前和使用后(持续点亮二极管至亮度衰减至初始亮度的95%之后),器件的电流效率曲线发生显著改变,使用后电流效率衰减严重。参考图6,对实施例1制备的二极管的电流效率进行测试,使用后(持续点亮二极管至亮度衰减至初始亮度的95%之后)虽然电流效率也有小幅衰减,但衰减程度较对比例1有大幅改善。对实施例2-4获得器件进行相同的测试,测试结果与实施例1相似,使用后器件的电流效率衰减情况均与对比例相比有所好转。
在本申请的描述中,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请而不是要求本申请必须以特定的方位构造和操作,因此不能理解为对本申请的限制。术语“第一”、“第二”等仅为了区分不同特征,而不能够理解为对其重要性或是个数的限制。术语“一个实施例”、“另一个实施例”等的描述意指结合该实施例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。 此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (16)

  1. 一种用于显示的有机发光二极管,包括:
    第一电极;
    空穴传输层,所述空穴传输层位于所述第一电极的一侧;
    发光层,所述发光层位于所述空穴传输层远离所述第一电极的一侧;
    电子调节层,所述电子调节层位于所述发光层远离所述空穴传输层的一侧,所述电子调节层被配置为可降低电子的传输速率;
    电子传输层,所述电子传输层位于所述电子调节层远离所述发光层的一侧;以及
    第二电极,所述第二电极位于所述电子传输层远离所述电子调节层的一侧。
  2. 根据权利要求1所述的有机发光二极管,所述有机发光二极管用于显示时可实现多级的灰阶显示,所述灰阶包括L0~L255。
  3. 根据权利要求2所述的有机发光二极管,形成所述电子调节层的材料被配置为可在所述灰阶小于等于L16时降低所述电子的传输速率。
  4. 根据权利要求3所述的有机发光二极管,形成所述电子调节层的材料被配置为可在所述灰阶大于L16时保持所述电子的传输速率不降低。
  5. 根据权利要求3或4所述的有机发光二极管,形成所述电子调节层的材料包括唑类化合物、奎琳衍生物、喔啉衍生物以及二氮蒽衍生物的至少之一。
  6. 根据权利要求1所述的有机发光二极管,进一步包括以下结构的至少之一:
    电子注入层,所述电子注入层位于所述第二电极以及所述电子传输层之间;
    空穴阻挡层,所述空穴阻挡层位于所述发光层以及所述电子调节层之间;
    电子阻挡层,所述电子阻挡层位于所述发光层以及所述空穴传输层之间;
    空穴传输辅助层,所述空穴传输辅助层位于所述空穴传输层以及所述第一电极之间;
    金属反射层,所述金属反射层位于所述第一电极远离所述发光层的一侧;以及
    光取出层,所述光取出层位于所述第二电极远离所述发光层的一侧。
  7. 根据权利要求6所述的有机发光二极管,所述空穴传输辅助层是通过对形成所述空穴传输层的材料进行P型掺杂而形成的。
  8. 根据权利要求1所述的有机发光二极管,所述发光层为蓝色发光层。
  9. 一种有机发光显示基板,所述有机发光显示基板包括:多个发光颜色不全部相同的有机发光二极管,多个所述有机发光二极管中的至少之一为权利要求1-8任一项所述的。
  10. 根据权利要求9所述的有机发光显示基板,所述有机发光显示基板包括:
    红色有机发光二极管、绿色有机发光二极管以及蓝色有机发光二极管,所述蓝色有机发光二极管为权利要求1-8任一项所述的,所述红色有机发光二极管、绿色有机发光二极管以及蓝色有机发光二极管的发光层同层设置,且所述红色有机发光二极管、绿色有机发光二极管以及蓝色有机发光二极管共用空穴传输层以及电子传输层。
  11. 根据权利要求10所述的有机发光显示基板,所述蓝色有机发光二极管的电子调节层在所述第一电极上的正投影覆盖以下区域:
    所述红色有机发光二极管的发光层在所述第一电极上的正投影、所述绿色有机发光二极管的发光层在所述第一电极上的正投影以及所述蓝色有机发光二极管的发光层在所述第一电极上的正投影。
  12. 根据权利要求10所述的有机发光显示基板,所述蓝色有机发光二极管的电子调节层在所述第二电极上的正投影与所述蓝色有机发光二极管的发光层在所述第二电极上的正投影重合。
  13. 一种制备权利要求9-12任一项所述的有机发光显示基板的方法,所述方法包括:
    形成多个发光颜色不全部相同的有机发光二极管,并在形成至少一个所述有机发光二极管时,在发光层和电子传输层之间形成电子调节层。
  14. 根据权利要求13所述的方法,所述方法包括:
    形成第一电极;
    在所述第一电极的一侧形成蓝色发光层、红色发光层以及绿色发光层,所述蓝色发光层、红色发光层以及绿色发光层同层设置;
    利用精细金属掩膜,在所述蓝色发光层远离所述第一电极的一侧形成所述电子调节层。
  15. 根据权利要求13所述的方法,所述方法包括:
    形成第一电极;
    在所述第一电极的一侧形成蓝色发光层、红色发光层以及绿色发光层,所述蓝色发光层、红色发光层以及绿色发光层同层设置;
    在所述蓝色发光层远离所述第一电极的一侧形成所述电子调节层,所述电子调节层在在所述第一电极上的正投影,覆盖以下区域:
    所述红色发光层在所述第一电极上的正投影、所述绿色发光层在所述第一电极上的正投影以及所述蓝色发光层在所述第一电极上的正投影。
  16. 一种显示装置,包括权利要求9-12任一项所述的有机发光显示基板。
PCT/CN2020/127555 2019-11-28 2020-11-09 有机发光二极管、有机发光显示基板及制备的方法和显示装置 WO2021103996A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911190675.6A CN110854282B (zh) 2019-11-28 2019-11-28 有机发光二极管、有机发光显示基板及制备方法和显示装置
CN201911190675.6 2019-11-28

Publications (1)

Publication Number Publication Date
WO2021103996A1 true WO2021103996A1 (zh) 2021-06-03

Family

ID=69606321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127555 WO2021103996A1 (zh) 2019-11-28 2020-11-09 有机发光二极管、有机发光显示基板及制备的方法和显示装置

Country Status (2)

Country Link
CN (1) CN110854282B (zh)
WO (1) WO2021103996A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110854282B (zh) * 2019-11-28 2024-04-09 京东方科技集团股份有限公司 有机发光二极管、有机发光显示基板及制备方法和显示装置
WO2021189498A1 (zh) * 2020-03-27 2021-09-30 京东方科技集团股份有限公司 显示装置、显示面板及其制造方法
CN112151690B (zh) * 2020-09-28 2024-04-09 京东方科技集团股份有限公司 有机发光二极管及其制备方法、显示面板及显示装置
WO2024124469A1 (zh) * 2022-12-15 2024-06-20 京东方科技集团股份有限公司 显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101627487A (zh) * 2007-02-21 2010-01-13 株式会社半导体能源研究所 发光元件,发光器件,电子器件和喹喔啉衍生物
US20150357593A1 (en) * 2014-06-06 2015-12-10 Japan Display Inc. Organic electroluminescent display device
CN108666435A (zh) * 2018-07-27 2018-10-16 京东方科技集团股份有限公司 Oled显示面板、显示装置及显示面板的制造方法
CN109004092A (zh) * 2018-06-29 2018-12-14 云谷(固安)科技有限公司 有机电致发光器件和有机电致发光装置
CN110854282A (zh) * 2019-11-28 2020-02-28 京东方科技集团股份有限公司 有机发光二极管、有机发光显示基板及制备方法和显示装置
CN212365991U (zh) * 2019-11-28 2021-01-15 京东方科技集团股份有限公司 有机发光二极管、有机发光显示基板和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101627487A (zh) * 2007-02-21 2010-01-13 株式会社半导体能源研究所 发光元件,发光器件,电子器件和喹喔啉衍生物
US20150357593A1 (en) * 2014-06-06 2015-12-10 Japan Display Inc. Organic electroluminescent display device
CN109004092A (zh) * 2018-06-29 2018-12-14 云谷(固安)科技有限公司 有机电致发光器件和有机电致发光装置
CN108666435A (zh) * 2018-07-27 2018-10-16 京东方科技集团股份有限公司 Oled显示面板、显示装置及显示面板的制造方法
CN110854282A (zh) * 2019-11-28 2020-02-28 京东方科技集团股份有限公司 有机发光二极管、有机发光显示基板及制备方法和显示装置
CN212365991U (zh) * 2019-11-28 2021-01-15 京东方科技集团股份有限公司 有机发光二极管、有机发光显示基板和显示装置

Also Published As

Publication number Publication date
CN110854282B (zh) 2024-04-09
CN110854282A (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
WO2021103996A1 (zh) 有机发光二极管、有机发光显示基板及制备的方法和显示装置
KR102277563B1 (ko) 백색 유기 발광 소자
US10504973B2 (en) OLED display panel and manufacturing method and display device thereof
KR101801244B1 (ko) 유기전계발광소자
CN109904211A (zh) 一种阵列基板、其制作方法、显示面板及显示装置
US9679953B2 (en) WOLED back panel and method of manufacturing the same
WO2016123916A1 (zh) 一种显示基板及其制备方法和一种显示设备
TW201901953A (zh) 有機電致發光器件和有機電致發光裝置
CN103022049A (zh) 阵列基板及其制作方法、显示装置
WO2021233130A1 (zh) 显示基板及其制造方法和显示面板
KR102196085B1 (ko) 유기 발광 디스플레이 장치와 이의 제조 방법
WO2016155147A1 (zh) 蓝光有机电致发光器件及制备方法、显示面板和显示装置
JP2011204373A (ja) 有機el装置およびその製造方法
WO2018188153A1 (zh) Woled显示装置
WO2020232911A1 (zh) 电致发光显示装置
CN111180601B (zh) Oled显示器件、显示基板及其制备方法
US20200027930A1 (en) Display Substrate and Manufacturing Method Thereof, Display Panel and Display Device
US7659664B2 (en) System for displaying image
KR20140031031A (ko) 유기 발광 표시 장치
CN108448001A (zh) 一种发光器件、电致发光显示面板及显示装置
KR101816425B1 (ko) 유기 발광 표시 장치
CN212365991U (zh) 有机发光二极管、有机发光显示基板和显示装置
WO2019006793A1 (zh) 一种白光oled器件
CN202930382U (zh) 阵列基板及显示装置
WO2021147862A1 (zh) 显示面板、其驱动方法及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892518

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20892518

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.02.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20892518

Country of ref document: EP

Kind code of ref document: A1