WO2021100843A1 - 電動工具、制御方法、及びプログラム - Google Patents
電動工具、制御方法、及びプログラム Download PDFInfo
- Publication number
- WO2021100843A1 WO2021100843A1 PCT/JP2020/043350 JP2020043350W WO2021100843A1 WO 2021100843 A1 WO2021100843 A1 WO 2021100843A1 JP 2020043350 W JP2020043350 W JP 2020043350W WO 2021100843 A1 WO2021100843 A1 WO 2021100843A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic flux
- unit
- control
- motor
- control unit
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25F—COMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
- B25F5/00—Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/22—Current control, e.g. using a current control loop
Definitions
- This disclosure generally relates to power tools, control methods, and programs. More specifically, the present disclosure relates to a power tool including a power tool, a control method for the power tool, and a program.
- Patent Document 1 describes an electric tool capable of controlling the rotation speed of an electric motor.
- This electric tool includes a brushless DC motor (motor), a battery voltage detection unit, a rotation position detection unit, and a control unit.
- the battery voltage detection unit detects the voltage of the battery used to drive the brushless DC motor.
- the rotation position detection unit detects the rotation position of the brushless DC motor.
- the control unit controls the drive output to the brushless DC motor by the signal from the rotation position detection unit.
- the control unit sends the brushless DC motor to the brushless DC motor so that the rotation speed or energizing current of the brushless DC motor becomes the target value corresponding to the battery voltage detected by the battery voltage detection unit. Control the energization angle or advance angle.
- the present disclosure has been made in view of the above reasons, and an object of the present disclosure is to provide a power tool, a control method, and a program capable of improving the efficiency of drive control.
- the electric tool of one aspect of the present disclosure includes an electric motor, a driving force transmission mechanism, and a control unit.
- the motor has a permanent magnet and a coil.
- the driving force transmission mechanism is driven by the electric motor.
- the control unit controls the drive of the motor.
- the drive control includes a weakening magnetic flux control in which a weakening magnetic flux current for generating a second magnetic flux that weakens the first magnetic flux of the permanent magnet is passed through the coil.
- the control unit has an adjustment unit that adjusts the strength of the second magnetic flux based on specific conditions.
- the specific condition includes, at least, that the remaining capacity of the battery for supplying electric power to the electric motor is lower than a predetermined value.
- the control method of the present disclosure is a control method of an electric tool including an electric motor having a permanent magnet and a coil.
- the control method includes a main step of driving and controlling the electric motor that drives the driving force transmission mechanism.
- the main step includes a sub-step in which a weakening magnetic flux current for generating a second magnetic flux that weakens the first magnetic flux of the permanent magnet is passed through the coil.
- the sub-step includes an adjustment step that adjusts the strength of the second magnetic flux based on specific conditions.
- the specific condition includes, at least, that the remaining capacity of the battery for supplying electric power to the electric motor is lower than a predetermined value.
- the program of one aspect of the present disclosure is a program for causing one or more processors to execute the above control method.
- FIG. 1 is a block configuration diagram of a power tool according to an embodiment.
- FIG. 2 is a schematic view of the same power tool.
- FIG. 3 is a diagram for explaining the characteristics related to the drive control of the power tool of the same.
- FIG. 4 is a flowchart for explaining the operation of the energy saving mode in the same power tool.
- the power tool 1 (see FIGS. 1 and 2) according to the present embodiment is, for example, a tool used in a factory, a construction site, or the like.
- the power tool 1 will be described on the assumption that it is an impact driver used for tightening a work object (fastening member such as a bolt or a screw).
- the type of the power tool 1 is not particularly limited, and a drill driver, an impact wrench, or the like may be used.
- the electric tool 1 includes an electric motor 15 (for example, an AC electric motor), a driving force transmission mechanism 18, and a control unit 4.
- the electric motor 15 has a permanent magnet 131 and a coil 141.
- the electric motor 15 is, for example, a brushless motor.
- the electric motor 15 of the present embodiment is a synchronous electric motor, and more specifically, a permanent magnet synchronous electric motor (PMSM (Permanent Magnet Synchronous Motor)).
- PMSM Permanent Magnet Synchronous Motor
- the driving force transmission mechanism 18 is driven by the electric motor 15.
- the control unit 4 controls the drive of the electric motor 15.
- the control unit 4 independently controls the exciting current (d-axis current) and the torque current (q-axis current) supplied to the motor 15 (vector control).
- the drive control of the control unit 4 includes a weakening magnetic flux control by vector control.
- the control unit 4 causes the weakening magnetic flux current (d-axis current) for generating the second magnetic flux (weakening magnetic flux) that weakens the magnetic flux (first magnetic flux) of the permanent magnet 131 to the coil 141 to flow through the coil 141.
- the weakening magnetic flux current is a negative exciting current.
- control unit 4 of the present embodiment has an adjustment unit A1 (see FIG. 1) that adjusts the strength of the second magnetic flux based on a specific condition.
- the specific condition includes at least that the remaining capacity of the battery 320 (see FIG. 2) that supplies electric power to the electric motor 15 is lower than a predetermined value.
- control unit 4 since the control unit 4 has the adjustment unit A1, it is possible to improve the efficiency of drive control in consideration of the remaining capacity of the battery 320.
- the electric tool 1 includes an electric motor 15, a power supply unit 32, a driving force transmission mechanism 18, an impact mechanism 17, a chuck 23, a trigger switch 29, a control unit 4, and a bit rotation measurement.
- a unit 25, a torque measuring unit 26, and a motor rotation measuring unit 27 are provided.
- the power tool 1 further includes a tip tool (bit).
- the control unit 4 will be described in detail in the next column.
- the impact mechanism 17 has an output shaft 21.
- the output shaft 21 is a portion that rotates by a driving force transmitted from the electric motor 15.
- the chuck 23 is fixed to the output shaft 21 and is a portion to which the tip tool can be detachably attached.
- the electric tool 1 is a tool that drives the tip tool with the driving force of the electric motor 15.
- the tip tool is, for example, a screwdriver or a drill.
- the tip tool according to the application is selectively attached to the chuck 23 and used.
- the tip tool may be mounted directly on the output shaft 21.
- the motor 15 (AC motor) is a drive source for driving the tip tool.
- the electric motor 15 includes a rotor 13 having a permanent magnet 131 and a stator 14 having a coil 141.
- the rotor 13 includes an output shaft 16 (see FIG. 2) that outputs rotational power.
- the rotor 13 rotates with respect to the stator 14 due to the electromagnetic interaction between the coil 141 and the permanent magnet 131.
- the power supply unit 32 is a so-called battery pack including one or a plurality of batteries 320 (for example, a secondary battery) that supply electric power to the electric motor 15.
- the power supply unit 32 is detachably attached to the lower end of the grip portion in the body of the power tool 1, for example.
- the driving force transmission mechanism 18 is driven by the electric motor 15.
- the driving force transmission mechanism 18 adjusts the rotational power of the electric motor 15 to output a desired torque.
- the driving force transmission mechanism 18 has a driving shaft 22 (see FIG. 2) which is an output unit.
- the drive shaft 22 of the drive force transmission mechanism 18 is connected to the impact mechanism 17.
- the impact mechanism 17 converts the rotational power of the electric motor 15 received via the driving force transmission mechanism 18 into pulsed torque to generate an impact force.
- the impact mechanism 17 includes a hammer 19, an anvil 20, an output shaft 21, and a spring 24.
- the hammer 19 is attached to the drive shaft 22 of the drive force transmission mechanism 18 via a cam mechanism.
- the anvil 20 is coupled to the hammer 19 and rotates integrally with the hammer 19.
- the spring 24 pushes the hammer 19 toward the anvil 20.
- the anvil 20 is integrally formed with the output shaft 21.
- the anvil 20 may be formed separately from the output shaft 21 and fixed to the output shaft 21.
- the trigger switch 29 is an operation unit that accepts an operation for controlling the rotation of the electric motor 15. By pulling the trigger switch 29, the motor 15 can be switched on and off. Further, the rotation speed (rotation speed) of the output shaft 21, that is, the rotation speed (rotation speed) of the motor 15 can be adjusted by the pull-in amount of the operation of pulling the trigger switch 29. The larger the pull-in amount, the faster the rotation speed of the electric motor 15.
- the control unit 4 rotates or stops the electric motor 15 according to the pull-in amount of the operation of pulling the trigger switch 29, and also controls the rotation speed of the electric motor 15. In the power tool 1, the tip tool is attached to the chuck 23. Then, the rotation speed of the tip tool is controlled by controlling the rotation speed of the electric motor 15 by operating the trigger switch 29.
- the tip tool can be replaced according to the application, but it is not essential that the tip tool can be replaced.
- the power tool 1 may be a power tool that can be used only with a specific tip tool.
- the torque measuring unit 26 measures the operating torque of the motor 15.
- the torque measuring unit 26 is, for example, a magnetostrictive strain sensor capable of detecting torsional strain.
- the magnetostrictive strain sensor detects a change in the magnetostriction according to the strain generated by applying torque to the output shaft 16 of the motor 15 with a coil installed in the non-rotating portion of the motor 15, and a voltage signal proportional to the strain. Is output.
- the bit rotation measuring unit 25 measures the rotation angle of the output shaft 21.
- the rotation angle of the output shaft 21 is equal to the rotation angle of the tip tool (bit).
- bit rotation measuring unit 25 for example, a photoelectric encoder or a magnetic encoder can be adopted.
- the motor rotation measuring unit 27 measures the rotation angle of the electric motor 15.
- a photoelectric encoder or a magnetic encoder can be adopted.
- Control unit 4 includes a computer system having one or more processors and memories.
- the processor of the computer system executes the program recorded in the memory of the computer system, at least a part of the functions of the control unit 4 are realized.
- the program may be recorded in a memory, provided through a telecommunication line such as the Internet, or may be recorded and provided on a non-temporary recording medium such as a memory card.
- the control unit 4 is configured to control the drive of the motor 15.
- the drive control of the control unit 4 includes a weakening magnetic flux control and a normal control.
- the control unit 4 has a first mode as a mode of weakening magnetic flux control and a second mode as a mode of normal control as operation modes.
- the control unit 4 causes a weakened magnetic flux current to flow from the inverter circuit unit 51 (see FIG. 1), which will be described later, to the coil 141 of the motor 15. That is, the control unit 4 causes the coil 141 to flow a weakening magnetic flux current for generating a second magnetic flux that weakens the magnetic flux (first magnetic flux) of the permanent magnet 131 in the coil 141 by the weakening magnetic flux control.
- control unit 4 weakens the coil 141 from the inverter circuit unit 51 so that the magnetic flux current does not flow. That is, in normal control, the current flowing through the coil 141 is only the torque current (q-axis current).
- the normal control is performed so that the command value (target value) of the weakening magnetic flux (current) (target value) cid1 (see FIG. 1) is set to zero (0) and the weakening magnetic flux (current) converges to this command value cid1.
- the weakening magnetic flux control can be said to be a control performed so that the command value cid1 of the weakening magnetic flux (current) is made larger than zero (0) and the weakening magnetic flux (current) converges to this command value cid1.
- the weakening magnetic flux current minus exciting current
- the control unit 4 includes a command value generation unit 41, a speed control unit 42, a current control unit 43, a first coordinate converter 44, a second coordinate converter 45, and a magnetic flux. It has a control unit 46, an estimation unit 47, and a step-out detection unit 48. Further, the power tool 1 further includes an inverter circuit unit 51 and a plurality of (two in FIG. 1) current sensors 61 and 62. The control unit 4 is used together with the inverter circuit unit 51, and controls the operation of the electric motor 15 by feedback control.
- Each of the plurality of current sensors 61 and 62 includes, for example, a Hall element current sensor or a shunt resistance element.
- the plurality of current sensors 61 and 62 measure the current supplied from the battery 320 to the motor 15 via the inverter circuit unit 51.
- a three-phase current (U-phase current, V-phase current, and W-phase current) is supplied to the motor 15, and the plurality of current sensors 61 and 62 measure at least two-phase currents.
- the current sensor 61 measures the U-phase current and outputs the measured current value i u 1
- the current sensor 62 measures the V-phase current and outputs the measured current value i v 1.
- the estimation unit 47 calculates the angular velocity ⁇ 1 (angular velocity of the output shaft 16) of the motor 15 by time-differentiating the rotation angle ⁇ 1 of the motor 15 measured by the motor rotation measurement unit 27.
- the second coordinate converter 45 uses the current measured values i u 1 and i v 1 measured by the plurality of current sensors 61 and 62 based on the rotation angle ⁇ 1 of the motor 15 measured by the motor rotation measuring unit 27. The coordinates are converted and the current measurement values id1 and iq1 are calculated. That is, the second coordinate converter 45, a current measurement value i u 1, i v 1 corresponding to the two-phase currents of the three phases, the current measurement value id1 corresponding to the magnetic field component (d-axis current), It is converted to the current measured value iq1 corresponding to the torque component (q-axis current).
- the command value generation unit 41 generates the command value c ⁇ 1 of the angular velocity of the motor 15.
- the command value generation unit 41 generates, for example, the command value c ⁇ 1 according to the pull-in amount of the operation of pulling the trigger switch 29 (see FIG. 2). That is, the command value generation unit 41 increases the command value c ⁇ 1 of the angular velocity as the pull-in amount increases.
- the speed control unit 42 generates the command value ciq1 based on the difference between the command value c ⁇ 1 generated by the command value generation unit 41 and the angular velocity ⁇ 1 calculated by the estimation unit 47.
- the command value ciq1 is a command value that specifies the magnitude of the torque current (q-axis current) of the motor 15.
- the speed control unit 42 determines the command value ciq1 so as to reduce the difference between the command value c ⁇ 1 and the angular velocity ⁇ 1.
- the magnetic flux control unit 46 includes an angular velocity ⁇ 1 calculated by the estimation unit 47, a command value cvq1 (described later) generated by the current control unit 43, and a current measurement value.
- the command value cid1 is determined based on iq1 (q-axis current).
- the command value cid1 is a command value that specifies the magnitude of the weakening magnetic flux (magnetic flux in the d-axis direction) of the motor 15.
- the command value cid1 generated by the magnetic flux control unit 46 is a command value for setting the weakening magnetic flux to zero (0).
- the current control unit 43 generates the command value cvd1 based on the difference between the command value cyd1 generated by the magnetic flux control unit 46 and the current measurement value id1 calculated by the second coordinate converter 45.
- the command value cvd1 is a command value that specifies the magnitude of the d-axis voltage of the motor 15.
- the current control unit 43 determines the command value cvd1 so as to reduce the difference between the command value cid1 and the current measurement value id1.
- the current control unit 43 generates the command value cvq1 based on the difference between the command value iq1 generated by the speed control unit 42 and the current measurement value iq1 calculated by the second coordinate converter 45.
- the command value cvq1 is a command value that specifies the magnitude of the q-axis voltage of the motor 15.
- the current control unit 43 generates the command value cvq1 so as to reduce the difference between the command value xiq1 and the current measurement value iq1.
- the first coordinate converter 44 converts the command values cvd1 and cvq1 into coordinates based on the rotation angle ⁇ 1 of the electric motor 15 measured by the motor rotation measuring unit 27, and converts the command values cv u 1, cv v 1, and cv w. 1 is calculated. That is, the first coordinate converter 44 sets the command value cvd1 corresponding to the magnetic field component (d-axis voltage) and the command value cvq1 corresponding to the torque component (q-axis voltage) to the command value corresponding to the three-phase voltage. Convert to cv u 1, cv v 1, cv w 1.
- the command value cv u 1 corresponds to the U-phase voltage
- the command value cv v 1 corresponds to the V-phase voltage
- the command value cv w 1 corresponds to the W-phase voltage.
- the inverter circuit unit 51 supplies the three-phase voltage according to the command values cv u 1, cv v 1, and cv w 1 to the motor 15.
- the control unit 4 controls the electric power supplied to the electric motor 15 by PWM-controlling the inverter circuit unit 51.
- the motor 15 is driven by the electric power (three-phase voltage) supplied from the inverter circuit section 51 to generate rotational power.
- control unit 4 controls the weakening magnetic flux current so that the weakening magnetic flux current flowing through the coil 141 of the electric motor 15 has a magnitude corresponding to the command value cid1 generated by the magnetic flux control unit 46. Further, the control unit 4 controls the angular velocity of the motor 15 so that the angular velocity of the motor 15 corresponds to the command value c ⁇ 1 generated by the command value generation unit 41.
- the step-out detection unit 48 detects the step-out of the motor 15 based on the current measurement values id1 and iq1 acquired from the second coordinate converter 45 and the command values cvd1 and cvq1 acquired from the current control unit 43. To do. When step-out is detected, the step-out detection unit 48 transmits a stop signal cs1 to the inverter circuit unit 51 to stop the power supply from the inverter circuit unit 51 to the motor 15.
- the control unit 4 operates in the first mode in which a weakening magnetic flux current is passed through the coil 141 of the motor 15 when the switching condition is satisfied. That is, when the switching condition is satisfied, the control of the control unit 4 becomes the weak magnetic flux control.
- the switching condition includes, for example, a high-speed range condition that the motor 15 is operating in the high-speed range.
- the fact that the electric motor 15 operates in the high speed range generally means that the rotational speed of the electric motor 15 is relatively high.
- the definition that "the motor 15 is operating in the high speed range" is defined as the duty of PWM (Pulse Width Modulation) control of the control unit 4 with respect to the inverter circuit unit 51 when the rotation speed of the motor 15 is equal to or higher than a predetermined rotation speed.
- the degree of modulation is equal to or higher than the specified value.
- the duty of the PWM control is a value obtained by dividing the ON period in one cycle of the PWM signal by the length of one cycle.
- the rotation speed of the electric motor 15 is substantially proportional to the duty.
- the above-mentioned specified value is, for example, about 0.9 or 0.95.
- the switching condition includes, for example, a torque current condition that the torque current value (q-axis current value) flowing through the coil 141 of the motor 15 is equal to or less than a predetermined current value.
- the control unit 4 uses the current measurement value iq1 as the torque current value in order to determine whether or not the switching condition is satisfied. However, the control unit 4 may use the command value iq1 of the torque current value as the torque current value.
- the switching condition includes both the high-speed range condition and the torque current condition, but only one of them may be included.
- the switching condition may include only the torque current condition, for example.
- the control unit 4 is in a low load region R1 (see FIG. 3) in which the load (torque) received from the outside by the output shaft 16 of the motor 15 via the output shaft 21 and the drive shaft 22 is relatively low (including no load).
- the weakening magnetic flux is controlled. Thereby, the rotation speed of the electric motor 15 can be increased. That is, the control unit 4 performs the weakening magnetic flux control when the load received from the outside by the output shaft 16 of the electric motor 15 is smaller than a predetermined magnitude.
- the control unit 4 operates in the second mode in which the weakening magnetic flux current is not passed when the switching condition is not satisfied. That is, when the switching condition is not satisfied, the control of the control unit 4 becomes normal control.
- the control unit 4 can obtain a relatively large torque by performing normal control in the high load region R2 (see FIG. 3) where the electric motor 15 requires a relatively large torque current.
- the weakening magnetic flux control and the normal control may be manually switched by operating an operation unit different from the trigger switch 29.
- the weakening magnetic flux control and the normal control may be switched by a tap operation or the like on the display unit A4 (see FIG. 1) described later.
- the characteristic C1 in FIG. 3 shows the magnitude of the load (torque) received from the outside and the rotation speed (rpm) of the motor 15 in an electric tool (comparative example) that does not have the adjustment unit A1 described later. ) Is shown.
- the characteristic C2 in FIG. 3 shows the relationship between the magnitude of the load and the magnitude (absolute value) of the current flowing through the motor 15 in the above comparative example.
- the rotation speed of the motor 15 is normally controlled not only in the high load region R2 but also in the low load region R1 by performing weak magnetic flux control in the low load region R1 (see the solid line D1). Compared to the case (see broken line B1), it increases.
- the magnitude of the current in the low load region R1 is weaker than that in the case where not only the high load region R2 but also the low load region R1 is normally controlled (see the broken line B2). It increases by the amount of current generated (see solid line D2).
- the work efficiency of the user is improved by increasing the rotation speed of the electric motor 15, while the energy consumption in the electric tool 1 may increase. Therefore, for example, the remaining capacity of the battery 320 in the power supply unit 32 may decrease faster.
- the control unit 4 of the present embodiment has an adjustment unit A1 (see FIG. 1) that adjusts the strength of the second magnetic flux based on a specific condition.
- the magnetic flux control unit 46 corresponds to the adjustment unit A1.
- the magnetic flux control unit 46 has a function as an adjustment unit A1.
- the adjusting unit A1 may be provided separately from the magnetic flux control unit 46.
- the "specific condition” includes at least that the remaining capacity of the battery 320 is lower than the predetermined value (hereinafter, may be referred to as “remaining capacity condition”).
- the predetermined value is, for example, 20% of the fully charged capacity, but is not particularly limited.
- the specific condition is to accept consent information indicating that the user of the power tool 1 has consented to the execution of the adjustment by the adjustment unit A1 (hereinafter, may be referred to as "agreement condition"). Is further included.
- the power tool 1 further includes an operation unit P1.
- the operation unit P1 is arranged on the body of the power tool 1.
- the operation unit P1 is configured to be able to receive, for example, an operation input from a user.
- the power tool 1 includes a touch panel type liquid crystal display (display unit A4: see FIG. 1), and the display unit A4 also functions as an operation unit P1.
- the adjustment unit A1 determines that the consent condition is satisfied if the operation input by tapping the display unit A4 or the like affirms the execution of the adjustment.
- the operation unit P1 may be composed of, for example, a push button switch or a DIP switch, and if the switch is in a specific state (for example, an on state), the adjustment unit A1 is said to satisfy the consent condition. You may judge.
- the operation mode in which the adjusting unit A1 adjusts the strength of the second magnetic flux based on a specific condition may be referred to as an "energy saving mode". That is, the first mode when the switching condition is satisfied includes an energy saving mode and a non-energy saving mode. During the first mode, the energy-saving mode and the non-energy-saving mode are selectively switched.
- the adjusting unit A1 (magnetic flux control unit 46) increases the magnitude of the current with a substantially constant inclination with respect to an increase in the load, for example, along the solid line D2 of the characteristic C2 in FIG. Perform normal weakening flux control.
- the adjustment unit A1 executes adjustment control along the one-dot chain line F2 between the solid line D2 and the broken line B2 of the characteristic C2 (the inclination is substantially the same as the solid line D2) in FIG.
- the rotation speed of the motor 15 also becomes a characteristic along the one-dot chain line F1 between the solid line D1 and the broken line B1 of the characteristic C1.
- the adjustment unit A1 acquires the remaining amount information (for example, periodically) regarding the remaining capacity of the battery 320.
- the remaining amount information includes, for example, information regarding the battery voltage of the battery 320.
- the adjusting unit A1 monitors the battery voltage of the battery 320 input to the inverter circuit unit 51.
- the control unit 4 stores in advance characteristic data indicating the relationship between the remaining capacity of the battery 320 and the battery voltage in its own memory.
- the adjusting unit A1 converts the acquired battery voltage of the battery 320 into the remaining capacity with reference to the above characteristic data, and determines whether or not the remaining capacity is lower than a predetermined value (20%), that is, the remaining capacity condition is satisfied. Determine if it is. Then, if both the consent condition and the remaining capacity condition are satisfied, the adjusting unit A1 executes the energy saving mode.
- the adjusting unit A1 weakens the strength of the second magnetic flux based on a specific condition.
- the adjusting unit A1 is configured to weaken the strength of the second magnetic flux as the remaining capacity of the battery 320 decreases.
- the magnetic flux control unit 46 which is the adjustment unit A1 adjusts the magnitude of the second magnetic flux, that is, the weakening magnetic flux (magnetic flux in the d-axis direction) as the remaining capacity decreases in the energy saving mode. Adjust the specified command value cid1 (see FIG. 1). In short, in the energy saving mode, the adjusting unit A1 reduces the effect of the weakening magnetic flux control as the remaining capacity decreases (for example, the alternate long and short dash line F2 keeps its inclination substantially constant while the broken line B2 from the solid line D2 side. (To gradually approach).
- the control unit 4 stores in advance data in which the remaining capacity of the battery 320 and the command value are associated with each other in its own memory, and the adjustment unit A1 determines the command value cid1 with reference to the data.
- the control unit 4 of the present embodiment further includes a notification unit A2 for notifying adjustment information regarding adjustment by the adjustment unit A1.
- the notification unit A2 displays a character message indicating that the energy saving mode is being executed as adjustment information on the display unit A4 to notify the user.
- An example of a text message is "Operating in energy saving mode".
- the adjustment information may be communicated by the output of a voice message instead of (or in addition to) the output of a text message.
- the adjustment information may be notified by changing the lighting state of the indicator lamp provided on the body of the power tool 1.
- the change in the lighting state may include a change from turning off to lighting, a change from lighting to blinking, and the like.
- the adjustment information may include information on the current degree of adjustment in addition to the above message. Specifically, for example, in FIG. 3, the adjustment information defines a plurality of adjustment levels such that the alternate long and short dash line F2 approaches from the solid line D2 to the broken line B2 in a plurality of steps, and the adjustment level currently being set. May include information about. Further, the adjustment information may further include information that serves as a guideline for the current remaining capacity of the battery 320.
- the display unit A4 displays a confirmation message for obtaining the consent of the user to switch in advance.
- An example of a confirmation message is "The battery level has dropped below 20%, so the energy saving mode will start. Are you sure?"
- the control unit 4 gives an answer from the user regarding the execution of the energy saving mode. Accept.
- the adjusting unit A1 determines whether to execute the energy saving mode or maintain the non-energy saving mode according to the answer. That is, the above-mentioned consent condition is satisfied by tapping the object of "Yes".
- the adjustment unit A1 switches from the energy saving mode to the non-energy saving mode when at least one of the consent condition and the remaining capacity condition is not satisfied during the energy saving mode. Specifically, the adjustment unit A1 switches from the energy-saving mode to the non-energy-saving mode when an operation input is made to the display unit A4 to stop the execution of the adjustment. Further, the adjusting unit A1 switches from the energy saving mode to the non-energy saving mode when, for example, the battery 320 is charged and the remaining capacity of the battery 320 exceeds a predetermined value. For example, the notification unit A2 displays a character message (such as "operating in the non-energy saving mode") indicating that the non-energy saving mode is being executed as adjustment information on the display unit A4 to notify the user. ..
- the notification unit A2 may display a confirmation message on the display unit A4 in advance for obtaining the consent of the user to switch.
- An example of a confirmation message is "The battery level is 20% or more, so cancel the energy saving mode. Are you sure?"
- the control unit 4 gives an answer from the user regarding the cancellation of the energy saving mode. Accept.
- the adjusting unit A1 determines whether to cancel the energy saving mode or maintain the energy saving mode according to the answer.
- the control unit 4 further has a setting unit A3 for setting valid or invalidity regarding adjustment by the adjustment unit A1.
- the setting unit A3 sets whether to enable or disable the energy saving mode according to the operation input received from the user through the display unit A4.
- the setting unit A3 stores the setting information regarding the validity or invalidity of the energy saving mode in the memory of the control unit 4. If the setting information specifies that the energy saving mode is invalid, the adjustment unit A1 maintains the non-energy saving mode even if the remaining capacity condition is satisfied.
- the adjustment unit A1 of the control unit 4 is operating in the non-energy saving mode (step S1). If the remaining capacity of the battery 320 is lower than the predetermined value (step S2: Yes), the adjusting unit A1 determines that the remaining capacity condition is satisfied (step S3). Then, the notification unit A2 notifies the user of a confirmation message for obtaining consent for switching to the energy saving mode through the display unit A4 (step S4). If the remaining capacity of the battery 320 is equal to or greater than a predetermined value (step S2: No), the non-energy saving mode is maintained.
- the adjustment unit A1 starts the energy saving mode (step S6) if consent is obtained from the user by tapping the display unit A4 or the like (step S5: YES). Then, the notification unit A2 notifies the adjustment information through the display unit A4 (step S7). Through the adjustment information, the user can know that the user is currently operating in the energy saving mode, the degree of adjustment during setting, and the like, so that the convenience is improved.
- the adjusting unit A1 controls so that the strength of the second magnetic flux is weakened as the remaining capacity decreases.
- the adjustment unit A1 does not obtain the consent of the user (step S5: No), for example, the remaining capacity becomes zero (0), or the display unit A4 is instructed to save energy mode. Unless there is an operation input, the non-energy saving mode is maintained (step S10).
- step S8: Yes if the power supply unit 32 of the power tool 1 is charged via, for example, an outlet and a charging adapter, and the remaining capacity of the battery 320 exceeds a predetermined value (step S8: Yes), the adjusting unit A1 saves energy.
- the mode is canceled (step S9).
- the notification unit A2 notify the user in advance of a confirmation message for obtaining consent for canceling the energy saving mode. If the remaining capacity of the battery 320 is lower than the predetermined value (step S8: No), the adjusting unit A1 maintains the energy saving mode.
- the control unit 4 has the adjustment unit A1 and performs the weakening magnetic flux control in consideration of the remaining capacity of the battery 320. Therefore, for example, the possibility that the remaining capacity of the battery 320 becomes zero (0) when the work is nearing completion, the work is interrupted, and the battery 320 is additionally charged is reduced. In short, considering the total working time including the charging time, the power tool 1 of the present embodiment can reduce the working time. Further, since the degree of decrease of the battery 320 after the remaining capacity of the battery 320 becomes lower than the predetermined value is suppressed, the number of screws that can be worked (for example, in the case of screw tightening work) increases. As a result, the efficiency of drive control can be improved.
- the control method of the power tool 1 includes a main step of controlling the drive of the electric motor 15 that drives the driving force transmission mechanism 18.
- the main step includes a sub-step in which a weakening magnetic flux current for generating a second magnetic flux that weakens the first magnetic flux of the permanent magnet 131 is passed through the coil 141.
- the sub-step includes an adjustment step that adjusts the strength of the second magnetic flux based on specific conditions.
- the specific condition includes, at least, that the remaining capacity of the battery 320 that supplies electric power to the electric motor 15 is lower than a predetermined value.
- the control unit 4 of the power tool 1 in the present disclosure includes a computer system.
- the main configuration of a computer system is a processor and memory as hardware.
- the processor executes the program recorded in the memory of the computer system, the function as the control unit 4 in the present disclosure is realized.
- the program may be pre-recorded in the memory of the computer system, may be provided through a telecommunications line, and may be recorded on a non-temporary recording medium such as a memory card, optical disk, hard disk drive, etc. that can be read by the computer system. May be provided.
- a processor in a computer system is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI).
- IC semiconductor integrated circuit
- LSI large scale integrated circuit
- the integrated circuit such as IC or LSI referred to here has a different name depending on the degree of integration, and includes an integrated circuit called a system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration).
- an FPGA Field-Programmable Gate Array
- a plurality of electronic circuits may be integrated on one chip, or may be distributed on a plurality of chips.
- the plurality of chips may be integrated in one device, or may be distributed in a plurality of devices.
- the computer system referred to here includes a microprocessor having one or more processors and one or more memories. Therefore, the microprocessor is also composed of one or a plurality of electronic circuits including a semiconductor integrated circuit or a large-scale integrated circuit.
- control unit 4 it is not an essential configuration that a plurality of functions in the control unit 4 are integrated in one housing.
- the components of the control unit 4 may be dispersedly provided in a plurality of housings.
- a plurality of functions in the control unit 4 may be integrated in one housing as in the basic example.
- at least a part of the functions of the control unit 4, for example, a part of the functions of the control unit 4 may be realized by a cloud (cloud computing) or the like.
- the power supply unit 32 is a battery pack that is detachably attached to the body of the power tool 1, but may be built in the body of the power tool 1.
- the battery voltage of the power supply unit 32 input to the inverter circuit unit 51 is monitored, but it may be determined whether or not the remaining capacity condition is satisfied based on the cumulative battery current.
- the battery voltage input to the inverter circuit unit 51 is monitored to acquire the remaining amount information.
- the control unit 4 may acquire the remaining amount information from the power supply unit 32.
- the notification unit A2 notifies that the execution of the energy saving mode has started and ended during the first mode, but in addition, the first mode is changed to the second mode, and the second mode is changed to the second mode. You may also notify that the mode has been switched to one mode.
- the adjusting unit A weakens the strength of the second magnetic flux based on a specific condition.
- the adjusting unit A1 may stop the generation of the second magnetic flux based on a specific condition. That is, the adjusting unit A1 may set the command value cid1 to zero (0) based on a specific condition. Specifically, the adjusting unit A1 may immediately set the command value cid1 to zero (0) if the remaining capacity falls below a predetermined value (20%). In this case, the adjustment unit A1 executes the adjustment control so that the alternate long and short dash line F2 coincides with the broken line B2 in FIG.
- the adjusting unit A1 may switch from the first mode (weak magnetic flux control) to the second mode (normal control) if the remaining capacity falls below a predetermined value (20%). Further, the adjusting unit A1 adjusts the command value cid1 so that the magnetic flux gradually weakens as the remaining capacity decreases until the remaining capacity falls below a value lower than a predetermined value (for example, 10%), and the value falls below 10%.
- a predetermined value for example, 10%
- the command value cid1 may be set to zero (0).
- the adjusting unit A1 releases the energy saving mode (even if the remaining capacity is lower than a predetermined value) triggered by the power supply unit 32 being electrically connected to the outlet and starting to receive power while operating in the energy saving mode. You may.
- the magnitude of the torque current increases proportionally with an increase in the load (torque) with a substantially constant slope, and the magnitude of the weakening magnetic flux current is substantially fixed. Is.
- the magnitude of the weakening magnetic flux current may change instead of being fixed with respect to an increase in load (torque).
- the notification unit A2 notifies the user of the confirmation message for obtaining the consent to switch to the energy saving mode through the display unit A4 (step S4), and the adjustment unit A1 obtains the consent from the user. In that case, the energy saving mode was started.
- the configuration of notifying the user of the confirmation message and obtaining the consent is not an essential configuration. For example, if the remaining capacity of the battery 320 is lower than the predetermined value, the adjusting unit A1 may determine that the remaining capacity condition is satisfied and immediately start the energy saving mode.
- the electric tool (1) includes an electric motor (15), a driving force transmission mechanism (18), and a control unit (4).
- the motor (15) has a permanent magnet (131) and a coil (141).
- the driving force transmission mechanism (18) is driven by the electric motor (15).
- the control unit (4) controls the drive of the electric motor (15).
- the drive control includes a weakening magnetic flux control in which a weakening magnetic flux current for generating a second magnetic flux that weakens the first magnetic flux of the permanent magnet (131) in the coil (141) is passed through the coil (141).
- the control unit (4) has an adjustment unit (A1) that adjusts the strength of the second magnetic flux based on a specific condition.
- the specific condition includes, at least, that the remaining capacity of the battery (320) that supplies power to the electric motor (15) is lower than a predetermined value. According to the first aspect, it is possible to improve the efficiency of drive control.
- the power tool (1) according to the second aspect further includes a notification unit (A2) for notifying adjustment information regarding adjustment by the adjustment unit (A1) in the first aspect.
- a notification unit (A2) for notifying adjustment information regarding adjustment by the adjustment unit (A1) in the first aspect.
- the user of the power tool (1) can know the adjustment information, and the convenience is improved.
- the adjusting unit (A1) weakens the strength of the second magnetic flux or the second aspect is based on a specific condition. Stop the generation of magnetic flux. According to the third aspect, it is possible to further improve the efficiency of drive control.
- the adjusting unit (A1) increases the strength of the second magnetic flux as the remaining capacity of the battery (320) decreases. Weaken. According to the fourth aspect, it is possible to further improve the efficiency of drive control.
- the specific condition is adjusted by the user of the power tool (1) by the adjusting unit (A1). It further includes accepting consent information indicating that you have agreed to the execution of. According to the fifth aspect, it is possible to improve the efficiency of drive control while improving the convenience.
- the control unit (4) receives the output shaft (16) of the electric motor (15) from the outside.
- the weakening magnetic flux control is performed. According to the sixth aspect, it is possible to further improve the efficiency of drive control.
- the control unit (4) sets the validity or invalidity of the adjustment by the adjustment unit (A1). It further has a setting unit (A3). According to the seventh aspect, it is possible to improve the efficiency of drive control while improving the convenience.
- the control method according to the eighth aspect is a control method of an electric tool (1) including an electric motor (15) having a permanent magnet (131) and a coil (141).
- the control method includes a main step of driving and controlling the electric motor (15) that drives the driving force transmission mechanism (18).
- the main step includes a sub-step in which a weakening magnetic flux current for generating a second magnetic flux that weakens the first magnetic flux of the permanent magnet (131) in the coil (141) is passed through the coil (141).
- the sub-step includes an adjustment step that adjusts the strength of the second magnetic flux based on specific conditions.
- the specific condition includes, at least, that the remaining capacity of the battery (320) that supplies power to the electric motor (15) is lower than a predetermined value. According to the eighth aspect, it is possible to provide a control method capable of improving the efficiency of drive control.
- the program according to the ninth aspect is a program for causing one or more processors to execute the control method in the eighth aspect. According to the ninth aspect, it is possible to provide a function capable of improving the efficiency of drive control.
- the configurations according to the second to seventh aspects are not essential configurations for the power tool (1) and can be omitted as appropriate.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Portable Power Tools In General (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
本開示は、駆動制御の高効率化を図ることを目的とする。電動工具(1)は、電動機(15)と、駆動力伝達機構と、制御部(4)と、を備える。電動機(15)は、永久磁石(131)及びコイル(141)を有する。駆動力伝達機構は、電動機(15)によって駆動される。制御部(4)は、電動機(15)の駆動制御を行う。駆動制御は、永久磁石(131)の第1磁束を弱める第2磁束をコイル(141)に発生させるための弱め磁束電流をコイル(141)に流させる弱め磁束制御を含む。制御部(4)は、特定の条件に基づいて第2磁束の強さを調節する調節部(A1)を有する。特定の条件は、少なくとも、電動機(15)へ電力供給する電池の残容量が所定値より低いことを含む。
Description
本開示は、一般に、電動工具、制御方法、及びプログラムに関する。より詳細には、本開示は、電動機を備える電動工具、当該電動工具の制御方法、及びプログラムに関する。
特許文献1には、電動機の回転数を制御可能な電動工具が記載されている。この電動工具は、ブラシレスDCモータ(電動機)と、バッテリ電圧検出部と、回転位置検出部と、制御部と、を備える。バッテリ電圧検出部は、ブラシレスDCモータの駆動に用いるバッテリの電圧を検出する。回転位置検出部は、ブラシレスDCモータの回転位置を検出する。制御部は、回転位置検出部からの信号により、ブラシレスDCモータへの駆動出力を制御する。制御部は、ブラシレスDCモータへの駆動出力制御時に、ブラシレスDCモータの回転数若しくは通電電流が、バッテリ電圧検出部にて検出されたバッテリ電圧に対応した目標値になるよう、ブラシレスDCモータへの通電角若しくは進角を制御する。
ところで、電動工具は、より効率的な駆動制御が望まれる場合がある。
本開示は上記事由に鑑みてなされ、駆動制御の高効率化を図ることができる、電動工具、制御方法、及びプログラムを提供することを目的とする。
本開示の一態様の電動工具は、電動機と、駆動力伝達機構と、制御部と、を備える。前記電動機は、永久磁石及びコイルを有する。前記駆動力伝達機構は、前記電動機によって駆動される。前記制御部は、前記電動機の駆動制御を行う。前記駆動制御は、前記永久磁石の第1磁束を弱める第2磁束を前記コイルに発生させるための弱め磁束電流を前記コイルに流させる弱め磁束制御を含む。前記制御部は、特定の条件に基づいて前記第2磁束の強さを調節する調節部を有する。前記特定の条件は、少なくとも、前記電動機へ電力供給する電池の残容量が所定値より低いことを含む。
本開示の一態様の制御方法は、永久磁石及びコイルを有した電動機を備える電動工具の制御方法である。前記制御方法は、駆動力伝達機構を駆動する前記電動機の駆動制御を行う主ステップを含む。前記主ステップは、前記永久磁石の第1磁束を弱める第2磁束を前記コイルに発生させるための弱め磁束電流を前記コイルに流させる副ステップを含む。前記副ステップは、特定の条件に基づいて前記第2磁束の強さを調節する調節ステップを含む。前記特定の条件は、少なくとも、前記電動機へ電力供給する電池の残容量が所定値より低いことを含む。
本開示の一態様のプログラムは、1以上のプロセッサに上記制御方法を実行させるためのプログラムである。
(1)概要
以下の実施形態において説明する各図は、模式的な図であり、各図中の各構成要素の大きさ及び厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。
以下の実施形態において説明する各図は、模式的な図であり、各図中の各構成要素の大きさ及び厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。
本実施形態に係る電動工具1(図1及び図2参照)は、例えば、工場又は建築現場等で使用される工具である。ここでは一例として、電動工具1は、作業対象(ボルト又はねじ等の締結部材)を締め付けるために使用されるインパクトドライバであることを想定して説明する。ただし、電動工具1の種類は、特に限定されず、ドリルドライバ又はインパクトレンチ等でもよい。
電動工具1は、電動機15(例えば交流電動機)と、駆動力伝達機構18と、制御部4と、を備えている。電動機15は、永久磁石131及びコイル141を有している。電動機15は、例えばブラシレスモータである。本実施形態の電動機15は、同期電動機であり、より詳細には、永久磁石同期電動機(PMSM(Permanent Magnet Synchronous Motor))である。
駆動力伝達機構18は、電動機15によって駆動される。制御部4は、電動機15の駆動制御を行う。ここでは制御部4は、電動機15に供給される励磁電流(d軸電流)とトルク電流(q軸電流)とを独立に制御する(ベクトル制御)。
制御部4の駆動制御は、ベクトル制御による弱め磁束制御を含む。弱め磁束制御では、制御部4は、永久磁石131の磁束(第1磁束)を弱める第2磁束(弱め磁束)をコイル141に発生させるための弱め磁束電流(d軸電流)をコイル141に流させる。弱め磁束電流は、マイナスの励磁電流である。これにより、電動機15の回転数、すなわち出力軸16(回転軸)の回転数は増加する。
ここで本実施形態の制御部4は、特定の条件に基づいて第2磁束の強さを調節する調節部A1(図1参照)を有している。特定の条件は、少なくとも、電動機15へ電力供給する電池320(図2参照)の残容量が所定値より低いことを含む。
この構成によれば、制御部4が調節部A1を有しているため、電池320の残容量を考慮して、駆動制御の高効率化を図ることができる。
(2)詳細
(2.1)全体構成
以下、本実施形態に係る電動工具1の全体構成について、図1~図4を参照しながら詳しく説明する。なお、以下では、電動工具1を利用して作業対象を締め付ける作業を行う者を単に「使用者」と呼ぶことがある。
(2.1)全体構成
以下、本実施形態に係る電動工具1の全体構成について、図1~図4を参照しながら詳しく説明する。なお、以下では、電動工具1を利用して作業対象を締め付ける作業を行う者を単に「使用者」と呼ぶことがある。
電動工具1は、図2に示すように、電動機15と、電源部32と、駆動力伝達機構18と、インパクト機構17と、チャック23と、トリガスイッチ29と、制御部4と、ビット回転測定部25と、トルク測定部26と、モータ回転測定部27と、を備えている。また電動工具1は、先端工具(ビット)を更に備えている。なお、制御部4については、次の欄で詳しく説明する。
インパクト機構17は、出力軸21を有している。出力軸21は、電動機15から伝達された駆動力により回転する部分である。チャック23は、出力軸21に固定されており、先端工具が着脱自在に取り付けられる部分である。電動工具1は、先端工具を電動機15の駆動力で駆動する工具である。先端工具は、例えば、ドライバ又はドリル等である。複数種類の先端工具のうち用途に応じた先端工具が、選択的にチャック23に取り付けられて用いられる。先端工具は、出力軸21に直接に装着されてもよい。
電動機15(交流電動機)は、先端工具を駆動する駆動源である。電動機15は、図1に示すように、永久磁石131を有する回転子13と、コイル141を有する固定子14と、を含んでいる。回転子13は、回転動力を出力する出力軸16(図2参照)を含む。コイル141と永久磁石131との電磁的相互作用により、回転子13は、固定子14に対して回転する。
電源部32は、電動機15へ電力供給する1又は複数の電池320(例えば2次電池)を含んだ、いわゆる電池パックである。電源部32は、例えば、電動工具1の器体における把持部の下端に取外し可能に装着される。駆動力伝達機構18は、電動機15によって駆動される。駆動力伝達機構18は、電動機15の回転動力を調整して所望のトルクを出力する。駆動力伝達機構18は、出力部である駆動軸22(図2参照)を有している。
駆動力伝達機構18の駆動軸22は、インパクト機構17に接続されている。インパクト機構17は、駆動力伝達機構18を介して受け取った電動機15の回転動力をパルス状のトルクに変換してインパクト力を発生する。インパクト機構17は、ハンマ19と、アンビル20と、出力軸21と、ばね24と、を備えている。ハンマ19は、駆動力伝達機構18の駆動軸22にカム機構を介して取り付けられている。アンビル20はハンマ19に結合されており、ハンマ19と一体に回転する。ばね24は、ハンマ19をアンビル20側に押している。アンビル20は、出力軸21と一体に形成されている。なお、アンビル20は、出力軸21とは別体に形成されて出力軸21に固定されていてもよい。
出力軸21に規定の大きさ以上の負荷(トルク)がかかっていないときには、カム機構により連結された駆動軸22とハンマ19とが一体に回転し、さらにハンマ19とアンビル20とが一体に回転するので、アンビル20と一体に形成された出力軸21が回転する。一方で、出力軸21に規定の大きさ以上の負荷がかかった時には、ハンマ19がカム機構による規制を受けながらばね24に抗して後退する(つまり、アンビル20から離れる)。そして、ハンマ19とアンビル20との結合が外れた時点で、ハンマ19は回転しながら前進してアンビル20に回転方向の打撃衝撃を与え、出力軸21を回転させる。
トリガスイッチ29は、電動機15の回転を制御するための操作を受け付ける操作部である。トリガスイッチ29を引く操作により、電動機15のオン及びオフを切替可能である。また、トリガスイッチ29を引く操作の引込み量で、出力軸21の回転数(回転速度)、つまり電動機15の回転数(回転速度)を調整可能である。上記引込み量が大きいほど、電動機15の回転速度が速くなる。制御部4は、トリガスイッチ29を引く操作の引込み量に応じて、電動機15を回転又は停止させ、また、電動機15の回転速度を制御する。この電動工具1では、先端工具がチャック23に取り付けられる。そして、トリガスイッチ29への操作によって電動機15の回転速度が制御されることで、先端工具の回転速度が制御される。
電動工具1は、チャック23を備えているため、先端工具を用途に応じて交換可能であるが、先端工具が交換可能であることは必須ではない。例えば、電動工具1は、特定の先端工具のみ用いることができる電動工具であってもよい。
トルク測定部26は、電動機15の動作トルクを測定する。トルク測定部26は、例えば、ねじり歪みの検出が可能な磁歪式歪センサである。磁歪式歪センサは、電動機15の出力軸16にトルクが加わることにより発生する歪みに応じた透磁率の変化を、電動機15の非回転部分に設置したコイルで検出し、歪みに比例した電圧信号を出力する。
ビット回転測定部25は、出力軸21の回転角を測定する。ここでは、出力軸21の回転角は、先端工具(ビット)の回転角に等しい。ビット回転測定部25としては、例えば、光電式エンコーダ又は磁気式エンコーダを採用することができる。
モータ回転測定部27は、電動機15の回転角を測定する。モータ回転測定部27としては、例えば、光電式エンコーダ又は磁気式エンコーダを採用することができる。
(2.2)制御部
制御部4は、1以上のプロセッサ及びメモリを有するコンピュータシステムを含んでいる。コンピュータシステムのメモリに記録されたプログラムを、コンピュータシステムのプロセッサが実行することにより、制御部4の少なくとも一部の機能が実現される。プログラムは、メモリに記録されていてもよいし、インターネット等の電気通信回線を通して提供されてもよく、メモリカード等の非一時的記録媒体に記録されて提供されてもよい。
制御部4は、1以上のプロセッサ及びメモリを有するコンピュータシステムを含んでいる。コンピュータシステムのメモリに記録されたプログラムを、コンピュータシステムのプロセッサが実行することにより、制御部4の少なくとも一部の機能が実現される。プログラムは、メモリに記録されていてもよいし、インターネット等の電気通信回線を通して提供されてもよく、メモリカード等の非一時的記録媒体に記録されて提供されてもよい。
制御部4は、電動機15の駆動制御を行うように構成される。ここでは、制御部4の駆動制御は、弱め磁束制御と、通常制御と、を含む。言い換えると、制御部4は、弱め磁束制御のモードとしての第1モード、及び通常制御のモードとしての第2モードを、動作モードとして有している。
制御部4は、第1モードでは、後述するインバータ回路部51(図1参照)から電動機15のコイル141に弱め磁束電流を流させる。すなわち、制御部4は、弱め磁束制御により、永久磁石131の磁束(第1磁束)を弱める第2磁束をコイル141に発生させるための弱め磁束電流をコイル141に流させる。
制御部4は、第2モードでは、インバータ回路部51からコイル141に弱め磁束電流を流させない。つまり、通常制御においてコイル141に流れる電流は、トルク電流(q軸電流)のみとなる。
通常制御は、弱め磁束(電流)の指令値(目標値)cid1(図1参照)をゼロ(0)にし、弱め磁束(電流)がこの指令値cid1に収束するように行う制御と言える。一方、弱め磁束制御は、弱め磁束(電流)の指令値cid1をゼロ(0)より大きくし、弱め磁束(電流)がこの指令値cid1に収束するように行う制御と言える。弱め磁束(電流)の指令値cid1がゼロ(0)より大きくなると、電動機15に弱め磁束電流(マイナスの励磁電流)が流れ、弱め磁束が発生する。
制御部4は、図1に示すように、指令値生成部41と、速度制御部42と、電流制御部43と、第1の座標変換器44と、第2の座標変換器45と、磁束制御部46と、推定部47と、脱調検出部48と、を有している。また電動工具1は、インバータ回路部51と、複数(図1では2つ)の電流センサ61、62と、を更に備えている。制御部4は、インバータ回路部51と共に用いられ、フィードバック制御により電動機15の動作を制御する。
複数の電流センサ61、62はそれぞれ、例えば、ホール素子電流センサ又はシャント抵抗素子を含んでいる。複数の電流センサ61、62は、電池320からインバータ回路部51を介して電動機15に供給される電流を測定する。ここで、電動機15には、3相電流(U相電流、V相電流及びW相電流)が供給されており、複数の電流センサ61、62は、少なくとも2相の電流を測定する。図1では、電流センサ61がU相電流を測定して電流測定値iu1を出力し、電流センサ62がV相電流を測定して電流測定値iv1を出力する。
推定部47は、モータ回転測定部27で測定された電動機15の回転角θ1を時間微分して、電動機15の角速度ω1(出力軸16の角速度)を算出する。
第2の座標変換器45は、複数の電流センサ61、62で測定された電流測定値iu1、iv1を、モータ回転測定部27で測定された電動機15の回転角θ1に基づいて座標変換し、電流測定値id1、iq1を算出する。すなわち、第2の座標変換器45は、3相のうち2相の電流に対応する電流測定値iu1、iv1を、磁界成分(d軸電流)に対応する電流測定値id1と、トルク成分(q軸電流)に対応する電流測定値iq1とに変換する。
指令値生成部41は、電動機15の角速度の指令値cω1を生成する。指令値生成部41は、例えば、トリガスイッチ29(図2参照)を引く操作の引込み量に応じた指令値cω1を生成する。すなわち、指令値生成部41は、上記引込み量が大きいほど、角速度の指令値cω1を大きくする。
速度制御部42は、指令値生成部41で生成された指令値cω1と推定部47で算出された角速度ω1との差分に基づいて、指令値ciq1を生成する。指令値ciq1は、電動機15のトルク電流(q軸電流)の大きさを指定する指令値である。速度制御部42は、指令値cω1と角速度ω1との差分を小さくするように指令値ciq1を決定する。
磁束制御部46は、弱め磁束制御の場合(第1モードの場合)、推定部47で算出された角速度ω1と、電流制御部43で生成される指令値cvq1(後述する)と、電流測定値iq1(q軸電流)とに基づいて、指令値cid1を決定する。指令値cid1は、電動機15の弱め磁束(d軸方向の磁束)の大きさを指定する指令値である。通常制御の場合(第2モードの場合)、磁束制御部46で生成される指令値cid1は、弱め磁束をゼロ(0)にするための指令値となる。
電流制御部43は、磁束制御部46で生成された指令値cid1と第2の座標変換器45で算出された電流測定値id1との差分に基づいて、指令値cvd1を生成する。指令値cvd1は、電動機15のd軸電圧の大きさを指定する指令値である。電流制御部43は、指令値cid1と電流測定値id1との差分を小さくするように指令値cvd1を決定する。
また、電流制御部43は、速度制御部42で生成された指令値ciq1と第2の座標変換器45で算出された電流測定値iq1との差分に基づいて、指令値cvq1を生成する。指令値cvq1は、電動機15のq軸電圧の大きさを指定する指令値である。電流制御部43は、指令値ciq1と電流測定値iq1との差分を小さくするように指令値cvq1を生成する。
第1の座標変換器44は、指令値cvd1、cvq1を、モータ回転測定部27で測定された電動機15の回転角θ1に基づいて座標変換し、指令値cvu1、cvv1、cvw1を算出する。すなわち、第1の座標変換器44は、磁界成分(d軸電圧)に対応する指令値cvd1と、トルク成分(q軸電圧)に対応する指令値cvq1とを、3相電圧に対応する指令値cvu1、cvv1、cvw1に変換する。指令値cvu1はU相電圧に、指令値cvv1はV相電圧に、指令値cvw1はW相電圧に対応する。
インバータ回路部51は、指令値cvu1、cvv1、cvw1に応じた3相電圧を電動機15に供給する。制御部4は、インバータ回路部51をPWM制御することにより、電動機15に供給される電力を制御する。
電動機15は、インバータ回路部51から供給された電力(3相電圧)により駆動され、回転動力を発生させる。
この結果、制御部4は、電動機15のコイル141に流れる弱め磁束電流が、磁束制御部46で生成された指令値cid1に対応した大きさとなるように弱め磁束電流を制御する。また、制御部4は、電動機15の角速度が、指令値生成部41で生成された指令値cω1に対応した角速度となるように電動機15の角速度を制御する。
脱調検出部48は、第2の座標変換器45から取得した電流測定値id1、iq1と、電流制御部43から取得した指令値cvd1、cvq1と、に基づいて、電動機15の脱調を検出する。脱調が検出された場合は、脱調検出部48は、インバータ回路部51に停止信号cs1を送信して、インバータ回路部51から電動機15への電力供給を停止させる。
以下、動作モードについて説明する。
制御部4は、切替条件が満たされる場合に、電動機15のコイル141に弱め磁束電流を流す第1モードで動作する。すなわち、切替条件が満たされる場合に、制御部4の制御は、弱め磁束制御となる。
切替条件は、例えば、電動機15が高速域で動作しているという高速域条件を含む。電動機15が高速域で動作しているとは、概略的には、電動機15の回転速度が比較的大きいということである。「電動機15が高速域で動作している」という定義は、電動機15の回転速度が所定の回転速度以上で、かつ、インバータ回路部51に対する制御部4のPWM(Pulse Width Modulation)制御のデューティ(変調度)が規定値以上であることである。PWM制御のデューティは、PWM信号の1周期中のオン期間を1周期の長さで割った値である。電動機15の回転速度は、デューティに略比例する。上記規定値は、例えば、0.9又は0.95程度である。
また切替条件は、例えば、電動機15のコイル141に流れるトルク電流値(q軸電流値)が所定の電流値以下であるというトルク電流条件を含む。制御部4は、切替条件を満たすか否かを判定するために、トルク電流値として電流測定値iq1を用いる。ただし、制御部4は、トルク電流値として、トルク電流値の指令値ciq1を用いてもよい。
ここでは切替条件は、高速域条件及びトルク電流条件の両方を含むものとするが、いずれか一方のみを含んでもよい。切替条件は例えばトルク電流条件のみを含んでもよい。
制御部4は、出力軸21及び駆動軸22等を介して電動機15の出力軸16が外部から受ける負荷(トルク)が比較的低い(無負荷も含む)低負荷領域R1(図3参照)において切替条件が満たされて、弱め磁束制御を行う。それにより、電動機15の回転速度を増加させることができる。つまり、制御部4は、電動機15の出力軸16が外部から受ける負荷が所定の大きさよりも小さい場合に、弱め磁束制御を行う。
制御部4は、切替条件が満たされない場合、弱め磁束電流を流させない第2モードで動作する。すなわち、切替条件が満たされない場合、制御部4の制御は、通常制御となる。制御部4は、電動機15に比較的大きなトルク電流が必要となる高負荷領域R2(図3参照)において、通常制御を行うことで、比較的大きなトルクを得ることができる。
なお、弱め磁束制御及び通常制御は、トリガスイッチ29とは別の操作部への操作により手動で切り替え可能であってもよい。弱め磁束制御及び通常制御は、後述する表示部A4(図1参照)へのタップ操作等によって切り替え可能であってもよい。
(2.3)調節部
ところで、図3の特性C1は、後述する調節部A1を備えていない電動工具(比較例)における、外部から受ける負荷(トルク)の大きさと電動機15の回転数(rpm)との関係を示す。また図3の特性C2は、上記比較例における、負荷の大きさと電動機15に流される電流の大きさ(絶対値)との関係を示す。
ところで、図3の特性C1は、後述する調節部A1を備えていない電動工具(比較例)における、外部から受ける負荷(トルク)の大きさと電動機15の回転数(rpm)との関係を示す。また図3の特性C2は、上記比較例における、負荷の大きさと電動機15に流される電流の大きさ(絶対値)との関係を示す。
電動機15の回転数は、図3に示すように、低負荷領域R1では、弱め磁束制御を行うことで(実線D1参照)、仮に高負荷領域R2だけでなく低負荷領域R1も通常制御を行う場合に比べて(破線B1参照)増加している。
ここで特性C2が示すように、電流の大きさは、低負荷領域R1において、仮に高負荷領域R2だけでなく低負荷領域R1も通常制御を行う場合に比べて(破線B2参照)、弱め磁束電流の発生分だけ、増加している(実線D2参照)。
要するに、弱め磁束制御では、電動機15の回転数が増加することで使用者の作業効率が向上される一方で、電動工具1における消費エネルギーが増加してしまう可能性がある。そのため、例えば電源部32における電池320の残容量の減りが早くなる可能性がある。
そこで本実施形態の制御部4は、特定の条件に基づいて第2磁束の強さを調節する調節部A1(図1参照)を有している。ここでは磁束制御部46が、調節部A1に相当する。言い換えると、磁束制御部46は、調節部A1としての機能を有している。ただし、調節部A1は、磁束制御部46とは別に設けられてもよい。
また「特定の条件」は、少なくとも、電池320の残容量が所定値より低いこと(以下、「残容量条件」と呼ぶことがある)を含む。ここでは所定値は、例えば、満充電の容量に対して20%の容量とするが、特に限定されない。
本実施形態では一例として、特定の条件は、電動工具1の使用者が調節部A1による調節の実行に同意したことを示す同意情報を受け付けること(以下、「同意条件」と呼ぶことがある)を更に含む。
電動工具1は、図1に示すように、操作部P1を更に備えている。操作部P1は、電動工具1の器体に配置される。操作部P1は、例えば、使用者からの操作入力を受け付け可能に構成されている。ここでは電動工具1は、タッチパネル式の液晶ディスプレイ(表示部A4:図1参照)を備えていて、表示部A4が、操作部P1としての機能を兼ねている。調節部A1は、表示部A4へのタップ操作等による操作入力が、調節の実行を肯定するものであれば、同意条件が満たされたと判定する。ただし、操作部P1は、例えば押し釦スイッチ又はディップスイッチ等によって構成されてもよく、当該スイッチが特定の状態(例えばオン状態)になっていれば、調節部A1は、同意条件が満たされたと判定してもよい。
以下、調節部A1が特定の条件に基づいて第2磁束の強さを調節する動作モードを「省エネモード」と呼ぶことがある。つまり、切替条件を満たすときの第1モードは、省エネモードと、非省エネモードとを含む。第1モード中に、省エネモードと非省エネモードとが選択的に切り替わる。
調節部A1(磁束制御部46)は、非省エネモードでは、例えば、図3でいえば特性C2の実線D2に沿うような、負荷の増加に対して略一定の傾きで電流の大きさが増加する、通常の弱め磁束制御を実行する。一方、調節部A1は、省エネモードでは、図3でいえば特性C2の実線D2と破線B2との間の一点鎖線F2に沿うような(傾きは実線D2と略同じ)調節制御を実行する。これに伴い、省エネモードでは、電動機15の回転数についても、特性C1の実線D1と破線B1との間における一点鎖線F1に沿うような特性となる。
調節部A1は、電池320の残容量に関する残量情報を(例えば定期的に)取得している。残量情報は、例えば電池320の電池電圧に関する情報を含む。調節部A1は、インバータ回路部51に入力される電池320の電池電圧を監視している。制御部4は、自身のメモリに、電池320の残容量と電池電圧との関係を示す特性データを予め記憶している。
調節部A1は、上記特性データを参照して、取得した電池320の電池電圧を残容量に換算して、残容量が所定値(20%)より低いか否か、すなわち残容量条件が満たされているか否かを判定する。そして、同意条件と残容量条件の両方が満たされていれば、調節部A1は、省エネモードを実行する。調節部A1は、特定の条件に基づいて、第2磁束の強さを弱める。ここでは一例として、調節部A1は、電池320の残容量が低下するほど、第2磁束の強さを弱めるように構成される。具体的には、調節部A1である磁束制御部46は、省エネモードにおいて、残容量が低下するほど、第2磁束、すなわち弱め磁束(d軸方向の磁束)が弱まるように、その大きさを指定する指令値cid1(図1参照)を調節する。要するに、調節部A1は、省エネモードにおいて、残容量が低下するほど、弱め磁束制御の効果が減る方向に(例えば、一点鎖線F2が、その傾きを略一定に保ちながら、実線D2側から破線B2へ段階的に近づくように)制御する。制御部4は、自身のメモリに、電池320の残容量と指令値とが対応付けされたデータを予め記憶していて、調節部A1は、そのデータを参照して指令値cid1を決定する。
また本実施形態の制御部4は、図1に示すように、調節部A1による調節に関する調節情報を報知する報知部A2を更に備えている。報知部A2は、例えば、調節情報として、省エネモードを実行中である旨を示す文字メッセージを表示部A4上に表示させて使用者に報知する。文字メッセージの例としては「省エネモードで動作中です」等が挙げられる。調節情報は、文字メッセージの出力の代わりに(又は加えて)、音声メッセージの出力によって報知されてもよい。また調節情報は、電動工具1の器体に備え付けされている表示灯の点灯状態等を変更させることで報知されてもよい。点灯状態の変更は、消灯から点灯への変更、又は、点灯から点滅への変更等を含み得る。
また調節情報は、上記メッセージに加えて、現在の調節の度合いに関する情報を含んでもよい。具体的には、調節情報は、例えば図3でいえば、一点鎖線F2が実線D2から破線B2へ向かって複数段階で近づくような複数の調節レベルが規定されていて、現在設定中の調節レベルに関する情報を含んでもよい。さらに調節情報は、電池320の現在の残容量の目安となる情報を更に含んでもよい。
また報知部A2は、省エネモードを開始する際に、事前に使用者から切り替えの同意を得るための確認メッセージを表示部A4に表示させる。確認メッセージの例としては、「電池残量が20%を切りましたので、省エネモードを開始します。よろしいですか?」等が挙げられる。そして、確認メッセージと共に表示部A4上に表示される「はい」及び「いいえ」を示すオブジェクトのいずれかが、タップ操作されることで、制御部4は、使用者から省エネモードの実行に関する回答を受け付ける。調節部A1は、その回答に応じて、省エネモードを実行するか、非省エネモードを維持するかを決定する。つまり、「はい」のオブジェクトへのタップ操作によって、上述した同意条件が満たされることになる。
調節部A1は、省エネモード中に、同意条件と残容量条件のうちの少なくとも一方が満たされなくなれば、省エネモードから非省エネモードへ切り替える。具体的には、調節部A1は、表示部A4に対して調節の実行を中止するような操作入力がなされると、省エネモードから非省エネモードへ切り替える。また調節部A1は、例えば電池320が充電されて電池320の残容量が所定値以上になれば、省エネモードから非省エネモードへ切り替える。報知部A2は、例えば、調節情報として、非省エネモードを実行中である旨を示す文字メッセージ(「非省エネモードで動作中です」等)を表示部A4上に表示させて使用者に報知する。
なお、報知部A2は、省エネモードから非省エネモードへ切り替える際に、事前に使用者から切り替えの同意を得るための確認メッセージを、表示部A4に表示させてもよい。確認メッセージの例としては、「電池残量が20%以上になりましたので、省エネモードを解除します。よろしいですか?」等が挙げられる。そして、確認メッセージと共に表示部A4上に表示される「はい」及び「いいえ」を示すオブジェクトのいずれかが、タップ操作されることで、制御部4は、使用者から省エネモードの解除に関する回答を受け付ける。調節部A1は、その回答に応じて、省エネモードを解除するか、省エネモードを維持するかを決定する。
また制御部4は、図1に示すように、調節部A1による調節に関する有効又は無効を設定する設定部A3を更に有している。具体的には、設定部A3は、使用者から表示部A4を通じて受け付ける操作入力に応じて、省エネモードの有効又は無効を設定する。設定部A3は、省エネモードの有効又は無効に関する設定情報を制御部4のメモリに記憶する。調節部A1は、設定情報が省エネモードの無効を指定するものであれば、たとえ残容量条件が満たされても非省エネモードを維持する。
(2.4)省エネモードの動作
以下、電動工具1における省エネモードに関する動作について図4を参照しながら説明する。なお、以下では一例として、使用者が電動工具1を使用中であって、さらに電動工具1が第1モード(弱め磁束制御)における非省エネモードで動作中である場合を想定する。そして、調節部A1は、電池320の残容量に関する残量情報を一定の間隔で取得しているものとする。また省エネモードは、有効に設定されているものとする。
以下、電動工具1における省エネモードに関する動作について図4を参照しながら説明する。なお、以下では一例として、使用者が電動工具1を使用中であって、さらに電動工具1が第1モード(弱め磁束制御)における非省エネモードで動作中である場合を想定する。そして、調節部A1は、電池320の残容量に関する残量情報を一定の間隔で取得しているものとする。また省エネモードは、有効に設定されているものとする。
制御部4の調節部A1は、非省エネモードで動作している(ステップS1)。調節部A1は、電池320の残容量が所定値よりも低ければ(ステップS2:Yes)、残容量条件が満たされたと判定する(ステップS3)。そして、報知部A2は、省エネモードへの切り替えの同意を得るための確認メッセージを、表示部A4を通じて使用者に通知する(ステップS4)。電池320の残容量が所定値以上であれば(ステップS2:No)、非省エネモードを維持する。
調節部A1は、確認メッセージの通知後、表示部A4へのタップ操作等によって、使用者から同意が得られれば(ステップS5:YES)、省エネモードを開始する(ステップS6)。そして、報知部A2は、表示部A4を通じて、調節情報を報知する(ステップS7)。使用者は、調節情報を通じて、現在が省エネモードで動作中である旨、又は設定中の調節の度合い等を知ることができるため、利便性が向上される。
以降、調節部A1は、残容量が低下するにつれて、第2磁束の強さを弱めていくように制御する。調節部A1は、確認メッセージの通知後、使用者から同意が得られなければ(ステップS5:No)、例えば残容量がゼロ(0)になるか、表示部A4に対して省エネモードを指示する操作入力が無い限り、非省エネモードを維持する(ステップS10)。
その後、例えばコンセント及び充電用のアダプタ等を介して、電動工具1の電源部32が充電されて電池320の残容量が所定値以上になれば(ステップS8:Yes)、調節部A1は、省エネモードを解除する(ステップS9)。ただし、報知部A2は、上述のように、事前に使用者から省エネモードの解除に関する同意を得るための確認メッセージを通知することが望ましい。電池320の残容量が所定値よりも低ければ(ステップS8:No)、調節部A1は、省エネモードを維持する。
このように本実施形態においては、制御部4が調節部A1を有していて、電池320の残容量を考慮した弱め磁束制御を行う。そのため、例えば作業完了まで間近な状態で電池320の残容量がゼロ(0)になってしまって、作業を中断して追加的に電池320の充電を行うという可能性が低減される。要するに、充電時間も含めたトータルの作業時間を考慮すると、本実施形態の電動工具1は、作業時間の削減を図ることができる。また電池320の残容量が所定値より低くなってからの電池320の減り度合いが抑制されるため、(例えばねじ締め作業であれば)作業可能なねじの本数が増加する。その結果、駆動制御の高効率化を図ることができる。
(3)変形例
上記実施形態は、本開示の様々な実施形態の一つに過ぎない。上記実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。また、上記実施形態に係る電動工具1の制御部4と同様の機能は、この制御方法、コンピュータプログラム、又はコンピュータプログラムを記録した非一時的記録媒体等で具現化されてもよい。具体的には、一の態様に係る電動工具1の制御方法は、駆動力伝達機構18を駆動する電動機15の駆動制御を行う主ステップを含む。主ステップは、永久磁石131の第1磁束を弱める第2磁束をコイル141に発生させるための弱め磁束電流をコイル141に流させる副ステップを含む。副ステップは、特定の条件に基づいて第2磁束の強さを調節する調節ステップを含む。特定の条件は、少なくとも、電動機15へ電力供給する電池320の残容量が所定値より低いことを含む。
上記実施形態は、本開示の様々な実施形態の一つに過ぎない。上記実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。また、上記実施形態に係る電動工具1の制御部4と同様の機能は、この制御方法、コンピュータプログラム、又はコンピュータプログラムを記録した非一時的記録媒体等で具現化されてもよい。具体的には、一の態様に係る電動工具1の制御方法は、駆動力伝達機構18を駆動する電動機15の駆動制御を行う主ステップを含む。主ステップは、永久磁石131の第1磁束を弱める第2磁束をコイル141に発生させるための弱め磁束電流をコイル141に流させる副ステップを含む。副ステップは、特定の条件に基づいて第2磁束の強さを調節する調節ステップを含む。特定の条件は、少なくとも、電動機15へ電力供給する電池320の残容量が所定値より低いことを含む。
以下、上記実施形態の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。以下では、上記実施形態を「基本例」と呼ぶこともある。
本開示における電動工具1の制御部4は、コンピュータシステムを含んでいる。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを主構成とする。コンピュータシステムのメモリに記録されたプログラムをプロセッサが実行することによって、本開示における制御部4としての機能が実現される。プログラムは、コンピュータシステムのメモリに予め記録されてもよく、電気通信回線を通じて提供されてもよく、コンピュータシステムで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブ等の非一時的記録媒体に記録されて提供されてもよい。コンピュータシステムのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1ないし複数の電子回路で構成される。ここでいうIC又はLSI等の集積回路は、集積の度合いによって呼び方が異なっており、システムLSI、VLSI(Very Large Scale Integration)、又はULSI(Ultra Large Scale Integration)と呼ばれる集積回路を含む。さらに、LSIの製造後にプログラムされる、FPGA(Field-Programmable Gate Array)、又はLSI内部の接合関係の再構成若しくはLSI内部の回路区画の再構成が可能な論理デバイスについても、プロセッサとして採用することができる。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散して設けられていてもよい。ここでいうコンピュータシステムは、1以上のプロセッサ及び1以上のメモリを有するマイクロコントローラを含む。したがって、マイクロコントローラについても、半導体集積回路又は大規模集積回路を含む1ないし複数の電子回路で構成される。
また、制御部4における複数の機能が、1つのハウジング内に集約されていることは必須の構成ではない。制御部4の構成要素は、複数のハウジングに分散して設けられていてもよい。反対に、制御部4における複数の機能が、基本例のように、1つのハウジング内に集約されてもよい。さらに、制御部4の少なくとも一部の機能、例えば、制御部4の一部の機能がクラウド(クラウドコンピューティング)等によって実現されてもよい。
基本例では、電源部32は、電動工具1の器体に対して取外し可能に装着される電池パックであるが、電動工具1の器体内に内蔵されていてもよい。
基本例では、インバータ回路部51に入力される電源部32の電池電圧を監視しているが、累積の電池電流に基づいて、残容量条件が満たされているか否かを判定してもよい。
基本例では、インバータ回路部51に入力される電池電圧を監視して残量情報を取得している。しかし、電源部32(電池パック)自身が電池320の残容量を監視していれば、制御部4は、残量情報を電源部32から取得してもよい。
基本例では、報知部A2は、第1モード中に省エネモードの実行を開始及び終了した旨を報知しているが、その他にも、第1モードから第2モードへ、及び第2モードから第1モードへ切り替わった旨も報知してもよい。
基本例では、調節部Aは、特定の条件に基づいて、第2磁束の強さを弱めている。しかし、調節部A1は、特定の条件に基づいて、第2磁束の発生を停止してもよい。すなわち、調節部A1は、特定の条件に基づいて、指令値cid1をゼロ(0)にしてもよい。具体的には、調節部A1は、残容量が所定値(20%)を下回れば、直ちに指令値cid1をゼロ(0)にしてもよい。この場合、調節部A1は、図3でいえば、一点鎖線F2が破線B2に一致するような調節制御を実行する。なお、この場合、調節部A1は、残容量が所定値(20%)を下回れば、第1モード(弱め磁束制御)から第2モード(通常制御)に切り替えてもよい。また調節部A1は、残容量が所定値よりも低い値(例えば10%)を下回るまでは、残容量が低下するほど弱め磁束が徐々に弱まるように指令値cid1を調節し、10%を下回れば指令値cid1をゼロ(0)にしてもよい。
調節部A1は、省エネモードで動作中において、電源部32がコンセントに電気的に接続されて給電を受け始めたことをトリガとして、(たとえ残容量が所定値より低くても)省エネモードを解除してもよい。
基本例では、省エネモードでの動作中において、負荷(トルク)の増加に対して、トルク電流の大きさは、略一定の傾きで比例的に増加し、弱め磁束電流の大きさは、略固定である。しかし、弱め磁束電流の大きさは、負荷(トルク)の増加に対して、固定でなくて変化してもよい。
基本例では、報知部A2は、省エネモードへの切り替えの同意を得るための確認メッセージを、表示部A4を通じて使用者に通知し(ステップS4)、調節部A1は、使用者から同意が得られた場合に、省エネモードを開始していた。しかし、本開示の電動工具1では、使用者へ確認メッセージを通知して同意を得る構成は、必須の構成ではない。例えば、調節部A1は、電池320の残容量が所定値よりも低ければ、残容量条件が満たされたと判定して、即座に省エネモードを開始してもよい。
(4)まとめ
以上説明したように、第1の態様に係る電動工具(1)は、電動機(15)と、駆動力伝達機構(18)と、制御部(4)と、を備える。電動機(15)は、永久磁石(131)及びコイル(141)を有する。駆動力伝達機構(18)は、電動機(15)によって駆動される。制御部(4)は、電動機(15)の駆動制御を行う。駆動制御は、永久磁石(131)の第1磁束を弱める第2磁束をコイル(141)に発生させるための弱め磁束電流をコイル(141)に流させる弱め磁束制御を含む。制御部(4)は、特定の条件に基づいて第2磁束の強さを調節する調節部(A1)を有する。特定の条件は、少なくとも、電動機(15)へ電力供給する電池(320)の残容量が所定値より低いことを含む。第1の態様によれば、駆動制御の高効率化を図ることができる。
以上説明したように、第1の態様に係る電動工具(1)は、電動機(15)と、駆動力伝達機構(18)と、制御部(4)と、を備える。電動機(15)は、永久磁石(131)及びコイル(141)を有する。駆動力伝達機構(18)は、電動機(15)によって駆動される。制御部(4)は、電動機(15)の駆動制御を行う。駆動制御は、永久磁石(131)の第1磁束を弱める第2磁束をコイル(141)に発生させるための弱め磁束電流をコイル(141)に流させる弱め磁束制御を含む。制御部(4)は、特定の条件に基づいて第2磁束の強さを調節する調節部(A1)を有する。特定の条件は、少なくとも、電動機(15)へ電力供給する電池(320)の残容量が所定値より低いことを含む。第1の態様によれば、駆動制御の高効率化を図ることができる。
第2の態様に係る電動工具(1)は、第1の態様において、調節部(A1)による調節に関する調節情報を報知する報知部(A2)を更に備える。第2の態様によれば、例えば電動工具(1)の使用者は調節情報を知ることができ、利便性が向上される。
第3の態様に係る電動工具(1)は、第1の態様又は第2の態様において、調節部(A1)は、特定の条件に基づいて、第2磁束の強さを弱める、又は第2磁束の発生を停止する。第3の態様によれば、より駆動制御の高効率化を図ることができる。
第4の態様に係る電動工具(1)に関して、第1の態様又は第2の態様において、調節部(A1)は、電池(320)の残容量が低下するほど、第2磁束の強さを弱める。第4の態様によれば、より駆動制御の高効率化を図ることができる。
第5の態様に係る電動工具(1)に関して、第1の態様~第4の態様のいずれか1つにおいて、特定の条件は、電動工具(1)の使用者が調節部(A1)による調節の実行に同意したことを示す同意情報を受け付けることを更に含む。第5の態様によれば、利便性を向上させつつ、より駆動制御の高効率化を図ることができる。
第6の態様に係る電動工具(1)に関して、第1の態様~第5の態様のいずれか1つにおいて、制御部(4)は、電動機(15)の出力軸(16)が外部から受ける負荷が所定の大きさよりも小さい場合に、弱め磁束制御を行う。第6の態様によれば、より駆動制御の高効率化を図ることができる。
第7の態様に係る電動工具(1)に関して、第1の態様~第6の態様のいずれか1つにおいて、制御部(4)は、調節部(A1)による調節に関する有効又は無効を設定する設定部(A3)を更に有する。第7の態様によれば、利便性を向上させつつ、より駆動制御の高効率化を図ることができる。
第8の態様に係る制御方法は、永久磁石(131)及びコイル(141)を有した電動機(15)を備える電動工具(1)の制御方法である。制御方法は、駆動力伝達機構(18)を駆動する電動機(15)の駆動制御を行う主ステップを含む。主ステップは、永久磁石(131)の第1磁束を弱める第2磁束をコイル(141)に発生させるための弱め磁束電流をコイル(141)に流させる副ステップを含む。副ステップは、特定の条件に基づいて第2磁束の強さを調節する調節ステップを含む。特定の条件は、少なくとも、電動機(15)へ電力供給する電池(320)の残容量が所定値より低いことを含む。第8の態様によれば、駆動制御の高効率化を図ることが可能な制御方法を提供できる。
第9の態様に係るプログラムは、1以上のプロセッサに、第8の態様における制御方法を実行させるためのプログラムである。第9の態様によれば、駆動制御の高効率化を図ることが可能な機能を提供できる。
第2~第7の態様に係る構成については、電動工具(1)に必須の構成ではなく、適宜省略可能である。
1 電動工具
131 永久磁石
141 コイル
15 電動機
16 出力軸
18 駆動力伝達機構
320 電池
4 制御部
A1 調節部
A2 報知部
A3 設定部
131 永久磁石
141 コイル
15 電動機
16 出力軸
18 駆動力伝達機構
320 電池
4 制御部
A1 調節部
A2 報知部
A3 設定部
Claims (9)
- 永久磁石及びコイルを有する電動機と、
前記電動機によって駆動される駆動力伝達機構と、
前記電動機の駆動制御を行う制御部と、
を備え、
前記駆動制御は、前記永久磁石の第1磁束を弱める第2磁束を前記コイルに発生させるための弱め磁束電流を前記コイルに流させる弱め磁束制御を含み、
前記制御部は、特定の条件に基づいて前記第2磁束の強さを調節する調節部を有し、
前記特定の条件は、少なくとも、前記電動機へ電力供給する電池の残容量が所定値より低いことを含む、
電動工具。 - 前記調節部による調節に関する調節情報を報知する報知部を更に備える、
請求項1に記載の電動工具。 - 前記調節部は、前記特定の条件に基づいて、前記第2磁束の強さを弱める、又は前記第2磁束の発生を停止する、
請求項1又は請求項2に記載の電動工具。 - 前記調節部は、前記電池の残容量が低下するほど、前記第2磁束の強さを弱める、
請求項1又は請求項2に記載の電動工具。 - 前記特定の条件は、前記電動工具の使用者が前記調節部による調節の実行に同意したことを示す同意情報を受け付けることを更に含む、
請求項1~4のいずれか1項に記載の電動工具。 - 前記制御部は、前記電動機の出力軸が外部から受ける負荷が所定の大きさよりも小さい場合に、前記弱め磁束制御を行う、
請求項1~5のいずれか1項に記載の電動工具。 - 前記制御部は、前記調節部による調節に関する有効又は無効を設定する設定部を更に有する、
請求項1~6のいずれか1項に記載の電動工具。 - 永久磁石及びコイルを有した電動機を備える電動工具の制御方法であって、
駆動力伝達機構を駆動する前記電動機の駆動制御を行う主ステップを含み、
前記主ステップは、前記永久磁石の第1磁束を弱める第2磁束を前記コイルに発生させるための弱め磁束電流を前記コイルに流させる副ステップを含み、
前記副ステップは、特定の条件に基づいて前記第2磁束の強さを調節する調節ステップを含み、
前記特定の条件は、少なくとも、前記電動機へ電力供給する電池の残容量が所定値より低いことを含む、
制御方法。 - 1以上のプロセッサに請求項8に記載の制御方法を実行させるためのプログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019211831A JP2021083294A (ja) | 2019-11-22 | 2019-11-22 | 電動工具、制御方法、及びプログラム |
JP2019-211831 | 2019-11-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021100843A1 true WO2021100843A1 (ja) | 2021-05-27 |
Family
ID=75966116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/043350 WO2021100843A1 (ja) | 2019-11-22 | 2020-11-20 | 電動工具、制御方法、及びプログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021083294A (ja) |
WO (1) | WO2021100843A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3960382A4 (en) * | 2019-04-24 | 2022-06-01 | Panasonic Intellectual Property Management Co., Ltd. | POWER TOOL |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112023000351T5 (de) * | 2022-01-14 | 2024-08-29 | Milwaukee Electric Tool Corporation | Feldschwächung steuerndes elektrowerkzeug |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07107772A (ja) * | 1993-08-10 | 1995-04-21 | Toyota Motor Corp | 永久磁石型同期モータの駆動制御装置 |
JP2000228892A (ja) * | 1999-02-08 | 2000-08-15 | Hitachi Ltd | 同期電動機の制御装置 |
US20070267990A1 (en) * | 2006-05-22 | 2007-11-22 | Black & Decker Inc. | Electronically commutated motor and control system employing phase angle control of phase current |
JP2010064544A (ja) * | 2008-09-09 | 2010-03-25 | Honda Motor Co Ltd | 電動パワーステアリング装置 |
JP2018183875A (ja) * | 2015-11-26 | 2018-11-22 | 株式会社マキタ | 電動工具 |
-
2019
- 2019-11-22 JP JP2019211831A patent/JP2021083294A/ja active Pending
-
2020
- 2020-11-20 WO PCT/JP2020/043350 patent/WO2021100843A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07107772A (ja) * | 1993-08-10 | 1995-04-21 | Toyota Motor Corp | 永久磁石型同期モータの駆動制御装置 |
JP2000228892A (ja) * | 1999-02-08 | 2000-08-15 | Hitachi Ltd | 同期電動機の制御装置 |
US20070267990A1 (en) * | 2006-05-22 | 2007-11-22 | Black & Decker Inc. | Electronically commutated motor and control system employing phase angle control of phase current |
JP2010064544A (ja) * | 2008-09-09 | 2010-03-25 | Honda Motor Co Ltd | 電動パワーステアリング装置 |
JP2018183875A (ja) * | 2015-11-26 | 2018-11-22 | 株式会社マキタ | 電動工具 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3960382A4 (en) * | 2019-04-24 | 2022-06-01 | Panasonic Intellectual Property Management Co., Ltd. | POWER TOOL |
Also Published As
Publication number | Publication date |
---|---|
JP2021083294A (ja) | 2021-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5182562B2 (ja) | 電動工具 | |
WO2021100843A1 (ja) | 電動工具、制御方法、及びプログラム | |
WO2021215083A1 (ja) | 電動工具システム、制御方法、及びプログラム | |
EP4063074B1 (en) | Impact tool, impact tool control method and program | |
CN113710427B (zh) | 电动工具 | |
JPWO2020017202A1 (ja) | 電動工具、制御方法、プログラム | |
JP7228763B2 (ja) | 電動工具 | |
JP2021079471A (ja) | 電動工具、カムアウト検知方法及びプログラム | |
WO2021100844A1 (ja) | 電動工具、制御方法、及びプログラム | |
EP3984706B1 (en) | Electric tool, motor control method, and program | |
JP7555045B2 (ja) | 電動工具、制御方法、及びプログラム | |
JP7378064B2 (ja) | 電動工具システム、電動工具システムの使用方法及びプログラム | |
WO2021095533A1 (ja) | 電動工具、制御方法、カムアウト検知方法、及びプログラム | |
WO2020261756A1 (ja) | 電動工具 | |
JP7178591B2 (ja) | インパクト工具、インパクト工具の制御方法及びプログラム | |
JP7296587B2 (ja) | 電動工具、制御方法、及びプログラム | |
JP7296586B2 (ja) | 電動工具、制御方法、及びプログラム | |
WO2021033432A1 (ja) | 電動工具 | |
EP4299251A1 (en) | Electric tool | |
WO2021095470A1 (ja) | 電動工具、制御方法、及びプログラム | |
JP2023149066A (ja) | 電動工具 | |
JP2023009977A (ja) | 電動工具、制御方法及びプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20889062 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20889062 Country of ref document: EP Kind code of ref document: A1 |