WO2021193872A1 - ポリオール組成物を封入した容器、ポリウレタン組成物、及びポリウレタン発泡体 - Google Patents
ポリオール組成物を封入した容器、ポリウレタン組成物、及びポリウレタン発泡体 Download PDFInfo
- Publication number
- WO2021193872A1 WO2021193872A1 PCT/JP2021/012726 JP2021012726W WO2021193872A1 WO 2021193872 A1 WO2021193872 A1 WO 2021193872A1 JP 2021012726 W JP2021012726 W JP 2021012726W WO 2021193872 A1 WO2021193872 A1 WO 2021193872A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- container
- composition
- polyol
- polyol composition
- compound
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
Definitions
- the present invention relates to a container containing a polyol composition, a polyurethane composition comprising a polyol composition discharged from the container and a polyisocyanate composition, and a polyurethane foam formed from the polyurethane composition.
- polyurethane foam has been used as a heat insulating material in vehicles such as automobiles, railroad vehicles, and ships, and buildings.
- polyurethane foam a two-component polyurethane in which a polyol composition and a polyisocyanate composition packed in separate containers are mixed to form a foam is widely used.
- Two-component polyurethane may be used in an aerosol container because each liquid can be discharged from a container and mixed with a relatively simple structure.
- one container is filled with a polyol compound and a low boiling point compound
- the other container is filled with a polyisocyanate compound and a low boiling point compound.
- a polyurethane foam is formed by discharging a polyol solution and a polyisocyanate solution from each container by the vapor pressure of a low boiling point compound and mixing them.
- Patent Document 1 describes a two-component aerosol composition for rigid polyurethane foam containing a specific amount of a low boiling point compound, and liquefied petroleum gas (LPG), dimethyl ether (DME), or the like is used as the low boiling point compound. It is stated that this does not adversely affect global warming.
- the polyurethane foam formed by the above-mentioned conventional two-component aerosol composition tends to shrink easily, and there is room for improvement from the viewpoint of shape stability.
- a filler to the polyol composition.
- the amount of the polyol composition discharged from the aerosol container is insufficient, the mixing efficiency of the composition is lowered, the workability is deteriorated, and other problems occur.
- the present invention is a container containing a polyol composition, which can easily discharge the content polyol composition and can produce a polyurethane foam having a low shrinkage rate, and is discharged from the container. It is an object of the present invention to provide a polyurethane composition comprising a polyol composition, and a polyurethane foam formed from the polyurethane composition.
- the present inventors have made a polyol composition containing a polyol compound, a filler, a catalyst, and a low boiling point compound, and using a container containing the polyol composition having a low boiling point compound ratio in a certain range. , And found that the above-mentioned problems can be solved, and completed the following invention. That is, the present invention provides the following [1] to [8].
- C Weight of the container after discharging the polyol composition
- C Weight after drying the discharged product discharged for 10 seconds at 40 ° C.
- the filler ratio calculated by the following formula (2) of the polyol composition is 5 to 80%, the above [1].
- the container described in. Formula (2) Filler ratio (%) (E / D) x 100 D: After keeping the container warm at 35 ° C., the discharge product obtained by discharging the polyol composition from the container in a uniformly mixed state for 10 seconds is dried at 40 ° C. for 30 minutes, and then the weight E: D. The discharged product after drying was diluted with acetone and suction-filtered, and the weight of the obtained agglomerates [3]. Described container. [4] The container according to any one of the above [1] to [3], which is an aerosol container.
- a polyurethane composition comprising a polyol composition discharged from the container according to any one of the above [1] to [4] and a polyisocyanate composition containing a polyisocyanate compound.
- the polyurethane composition according to the above [5] which has an isocyanate index of 200 to 1000.
- the polyurethane foam according to the above [7] which has a shrinkage rate of less than 20%.
- a container containing a polyol composition which can easily discharge the content polyol composition and can produce a polyurethane foam having a low shrinkage rate, and is discharged from the container.
- a polyurethane composition comprising a polyol composition and a polyurethane foam formed from the polyurethane composition can be provided.
- the present invention is a container containing a polyol compound, a filler, a catalyst, and a low boiling point compound, and containing a polyol composition having a low boiling point compound ratio of 5 to 30% calculated by the following formula (1).
- C Weight of the container after discharging the polyol composition
- C Weight after drying the discharged product discharged for 10 seconds at 40 ° C. for 30 minutes.
- the polyol composition encapsulated in the container of the present invention contains a low boiling point compound.
- the low boiling point compound discharges the polyol composition by its vapor pressure and vaporizes when the polyol composition is discharged to foam the polyol composition and the polyurethane composition described later.
- the proportion of low boiling point compounds in the polyol composition is 5-30%. If the proportion of the low boiling point compound is less than 5%, the discharge amount of the polyol composition is insufficient, the mixing efficiency with the polyisocyanate composition described later is lowered, the workability is deteriorated, and other problems are likely to occur. Become.
- the proportion of the low boiling point compound exceeds 30%, the pressure inside the container tends to increase, and the safety tends to decrease.
- the proportion of the low boiling point compound is preferably 5 to 28%, more preferably 6 to 25%, from the viewpoint of enhancing safety while increasing the discharge amount of the polyol composition.
- the proportion of low boiling point compounds in the polyol composition is calculated by the following formula (1).
- Low boiling point compound ratio (%) [(AB) / C-1] ⁇ 100
- the above formula (1) for calculating the low boiling point compound ratio (%) is synonymous with [(ABC) / C] ⁇ 100, and “C” in the denominator is a polyol excluding low boiling point compounds. Corresponds to the amount of composition and the "ABC" of the molecule corresponds to the amount of low boiling point compound.
- the operation of keeping the temperature at 35 ° C. is, for example, immersing the container in warm water at 35 ° C. for 60 minutes.
- each component constituting the polyol composition is discharged in a uniformly mixed state.
- an unused aerosol container which is a polyol composition sufficiently mixed so as to be uniform and filled with a sufficient amount of the polyol composition so that not all of the polyol composition is discharged within 10 seconds, the above is used.
- the discharge rate is constant for 10 seconds.
- the container can be shaken, for example, by holding the container by hand and shaking it up and down.
- the method for uniformly mixing the polyol composition is not limited to the above-mentioned method.
- the discharged product When the discharged product is dried at 40 ° C. for 30 minutes in C above, the discharged product is placed in a cylindrical polyethylene container having a diameter of 10 cm and a height of 12 cm, and the upper portion of the container is opened.
- the type of the low boiling point compound is not particularly limited as long as the polyol composition can be discharged by its vapor pressure, and is hydrofluorocarbon (HFC), hydrochlorofluorocarbon (HCFC), hydrofluoroolefin (HFO), hydrocarbon. , Ether compounds, inorganic gases, etc. can be used.
- HFC hydrofluorocarbon
- HCFC hydrochlorofluorocarbon
- HFO hydrofluoroolefin
- Ether compounds, inorganic gases, etc. can be used.
- hydrofluoroolefins (HFOs) hydrocarbons having 1 to 5 carbon atoms
- ether compounds such as dimethyl ether
- inorganic gases such as nitrogen
- the low boiling point compound preferably has a boiling point of 0 ° C. or lower at 1 atm, more preferably ⁇ 10 ° C. or lower, and even more preferably ⁇ 15 ° C. or lower, from the viewpoint of increasing the discharge amount of the polyol composition.
- the boiling point of the low boiling point compound means the boiling point of the low boiling point compound alone, and does not mean the boiling point at which the low boiling point compound azeotropes with another compound, for example.
- Examples of the low boiling point compound having a boiling point of 0 ° C. or lower include 1,3,3,3-tetrafluoropropene (HFO-1234ze), 1,2,3,3,3-pentafluoropropene (HFO-1225ye), and the like.
- Hydrofluoroolefins such as 1,1,1,3,3-pentafluoropropene (HFO-1225zc), 2,3,3,3-tetrafluoropropene (HFO-1234yf), ethane, propane, isobutane, Examples thereof include hydrocarbons having 1 to 4 carbon atoms such as various butanes such as normal butane, dimethyl ether, and nitrogen.
- LPG liquefied petroleum gas
- propane and butanes as main components
- the low boiling point compounds having a boiling point of 0 ° C. or lower 1,3,3,3-tetrafluoropropene (HFO-1234ze), dimethyl ether, LPG, and nitrogen are preferable, and among them, 1,3,3,3-tetrafluoro Propen (HFO-1234ze), dimethyl ether, and LPG are more preferred.
- HFO-1234ze 1,3,3,3-tetrafluoropropene
- dimethyl ether LPG
- LPG low boiling point compound having a boiling point of 0 ° C. or lower
- 1,3,3,3-tetrafluoropropene (HFO-1234ze), dimethyl ether, LPG, and nitrogen are preferable, and among them, 1,3,3,3-tetrafluoro Propen (HFO-1234ze), dimethyl ether, and LPG are more preferred.
- HFO-1234ze 1,3,3,3-tetrafluoropropen
- the polyol composition in the present invention contains a filler. By containing the filler, the shrinkage of the obtained polyurethane foam can be suppressed.
- the filler ratio calculated by the formula (2) of the polyol composition is 5 to 80%. When the filler ratio is 5% or more, shrinkage of the obtained polyurethane foam is easily suppressed, and when the filler ratio is 80% or less, the polyol composition is easily discharged from the container.
- the filler ratio of the polyol composition is preferably 8 to 78%, more preferably 10 to 75%.
- the filler ratio is calculated by the following formula (2).
- Formula (2) Filler ratio (%) (E / D) x 100 D: After keeping the container warm at 35 ° C., the discharge product obtained by discharging the polyol composition from the container in a uniformly mixed state for 10 seconds is dried at 40 ° C. for 30 minutes, and then the weight E: D. The discharged product after drying is diluted with acetone and suction-filtered, and the weight of the obtained agglomerates. In the above D, the method of keeping the container at 35 ° C. and discharging the polyol composition for 10 seconds has a low boiling point. The same method as B described above for calculating the compound ratio can be applied.
- the amount of acetone used is not particularly limited as long as suction filtration can be performed, but for example, it may be 0.1 to 10 mL per 1 mg of the discharged product after drying.
- the filter paper used for suction filtration is a filter paper capable of filtering fillers, and for example, Advantech's circular quantitative filter paper No. 3 is used.
- agglomerates acetone insoluble matter
- the weight is measured, and this value is taken as the weight of the agglomerates in E.
- the filler examples include a solid flame retardant and an inorganic filler.
- a solid flame retardant When a solid flame retardant is used as the filler, the flame retardancy of the polyurethane foam can be effectively enhanced. Further, the solid flame retardant is usually in a state of being dispersed in the polyol composition as a powder component.
- the solid flame retardant is a flame retardant that becomes solid at normal temperature (23 ° C.) and normal pressure (1 atm).
- Specific examples of the solid flame retardant include a red phosphorus flame retardant, a phosphate-containing flame retardant, a bromine-containing flame retardant, a chlorine-containing flame retardant, an antimony-containing flame retardant, a boron-containing flame retardant, and a metal hydroxide. .. These may be used alone or in combination of two or more.
- the red phosphorus flame retardant may be composed of red phosphorus alone, may be a red phosphorus coated with a resin, a metal hydroxide, a metal oxide, or the like, or may be a red phosphorus coated with a resin, a metal hydroxide, or a metal. It may be mixed with an oxide or the like.
- the resin coated with red phosphorus or mixed with red phosphorus is not particularly limited, and examples thereof include thermosetting resins such as phenol resin, epoxy resin, unsaturated polyester resin, melamine resin, urea resin, aniline resin, and silicone resin. Be done.
- a metal hydroxide is preferable from the viewpoint of flame retardancy.
- the metal hydroxide those described later may be appropriately selected and used.
- phosphate-containing flame retardant for example, at least selected from various phosphoric acids, metals of Group IA to IVB of the Periodic Table, ammonia, aliphatic amines, aromatic amines, and heterocyclic compounds containing nitrogen in the ring.
- examples include phosphates consisting of salts with a type of metal or compound.
- the phosphoric acid is not particularly limited, and examples thereof include monophosphoric acid, pyrophosphoric acid, and polyphosphoric acid.
- the metals of Group IA to IVB of the Periodic Table include lithium, sodium, calcium, barium, iron (II), iron (III), and aluminum.
- Examples of the aliphatic amine include methylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, piperazine and the like.
- Examples of the aromatic amine include aniline, o-triidin, 2,4,6-trimethylaniline, anicidin, 3- (trifluoromethyl) aniline and the like.
- Examples of the heterocyclic compound containing nitrogen in the ring include pyridine, triazine, melamine and the like.
- the phosphate-containing flame retardant examples include monophosphate, pyrophosphate, polyphosphate and the like.
- the polyphosphate is not particularly limited, and examples thereof include ammonium polyphosphate, piperazine polyphosphate, melamine polyphosphate, ammonium polyphosphate, aluminum polyphosphate, and the like.
- the phosphate-containing flame retardant one or more of the above-mentioned ones can be used.
- the bromine-containing flame retardant is not particularly limited as long as it is a compound containing bromine in its molecular structure and becomes a solid at normal temperature and pressure, and examples thereof include a brominated aromatic ring-containing aromatic compound.
- examples of the brominated aromatic ring-containing aromatic compound include hexabromobenzene, pentabromotoluene, hexabromobiphenyl, decabromobiphenyl, decabromodiphenyl ether, octabromodiphenyl ether, hexabromodiphenyl ether, bis (pentabromophenoxy) ethane, and ethylenebis (Pentabromophenoxy).
- Examples thereof include monomer-based organic bromine compounds such as pentabromophenyl), ethylene bis (tetrabromophthalimide), and tetrabromobisphenol A.
- the brominated aromatic ring-containing aromatic compound may be a bromine compound polymer.
- a polycarbonate oligomer produced from brominated bisphenol A a brominated polycarbonate such as a copolymer of this polycarbonate oligomer and bisphenol A, and a diepoxy compound produced by the reaction of brominated bisphenol A with epichlorohydrin.
- brominated epoxy compounds such as monoepoxy compounds obtained by the reaction of brominated phenols with epichlorohydrin, poly (bromineed benzyl acrylate), brominated polyphenylene ether, brominated bisphenol A, and brominated phenol of cyanur chloride.
- chlorine-containing flame retardant examples include those commonly used in flame-retardant resin compositions, for example, polychlorinated naphthalene, chlorendic acid, and dodecachlorododecahydrodimethanodibenzocyclo, which is sold under the trade name of "Dechloran Plus". Octene and the like can be mentioned.
- antimony-containing flame retardant examples include antimony oxide, antimonate, pyroantimonate and the like.
- antimony oxide examples include antimony trioxide and antimony pentoxide.
- antimonate examples include sodium antimonate, potassium antimonate and the like.
- pyroantimonate examples include sodium pyroantimonate, potassium pyroantimonate and the like.
- the antimony-containing flame retardant may be used alone or in combination of two or more.
- the antimony-containing flame retardant used in the present invention is preferably antimony oxide.
- boron-containing flame retardant used in the present invention examples include borax, boron oxide, boric acid, borate and the like.
- boron oxide examples include diboron trioxide, boron trioxide, diboron dioxide, tetraboron trioxide, tetraboron pentoxide and the like.
- borate examples include alkali metals, alkaline earth metals, elements of Groups 4, 12, and 13 of the periodic table, and ammonium borates.
- alkali metal borate salts such as lithium borate, sodium borate, potassium borate, and cesium borate
- alkaline earth metal borate salts such as magnesium borate, calcium borate, and barium borate, and borate. Examples thereof include zirconium acid, zinc borate, aluminum borate, and ammonium borate.
- the boron-containing flame retardant may be used alone or in combination of two or more.
- the boron-containing flame retardant used in the present invention is preferably borate, more preferably zinc borate.
- Metal hydroxide used in the present invention include magnesium hydroxide, calcium hydroxide, aluminum hydroxide, iron hydroxide, nickel hydroxide, zirconium hydride, titanium hydroxide, zinc hydroxide, and copper hydroxide.
- Examples include vanadium hydroxide and tin hydroxide.
- the metal hydroxide may be used alone or in combination of two or more.
- the content of the solid flame retardant in the polyol composition may be appropriately adjusted so that the filler ratio is within the above range, but is preferably 5 to 100 parts by mass with respect to 100 parts by mass of the polyol compound. It is preferably 10 to 50 parts by mass.
- the content of the solid flame retardant is at least the above lower limit value, the shrinkage rate of the obtained polyurethane foam can be reduced, and the flame retardancy can be improved.
- the content of the solid flame retardant is not more than the above upper limit value, the discharge property of the polyol composition becomes good.
- Inorganic filler examples include silica, diatomaceous earth, alumina, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, ferrites, basic magnesium carbonate, calcium carbonate, magnesium carbonate, zinc carbonate, and carbon dioxide.
- inorganic fillers may be used alone or in combination of two or more.
- the content of the inorganic filler in the polyol composition may be appropriately adjusted so that the filler ratio is within the above range, but is preferably 5 to 150 parts by mass with respect to 100 parts by mass of the polyol compound. It is preferably 10 to 100 parts by mass.
- the content of the inorganic filler is at least the above lower limit value, the shrinkage rate of the obtained polyurethane foam can be reduced.
- the content of the inorganic filler is not more than the above upper limit value, the discharge property of the polyol composition becomes good.
- the polyol composition of the present invention contains a polyol compound as a raw material for a polyurethane foam.
- the polyol compound include polylactone polyols, polycarbonate polyols, aromatic polyols, alicyclic polyols, aliphatic polyols, polyester polyols, polymer polyols, and polyether polyols.
- the polyol compound usually becomes a liquid at normal temperature (23 ° C.) and normal pressure (1 atm).
- polylactone polyol examples include polypropiolactone glycol, polycaprolactone glycol, polyvalerolactone glycol and the like.
- polycarbonate polyol examples include a polyol obtained by dealcoholization of a hydroxyl group-containing compound such as ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, octanediol, and nonanediol with ethylene carbonate, propylene carbonate, and the like. And so on.
- Examples of the aromatic polyol include bisphenol A, bisphenol F, phenol novolac, cresol novolac and the like.
- Examples of the alicyclic polyol include cyclohexanediol, methylcyclohexanediol, isophoronediol, dicyclohexylmethanediol, and dimethyldicyclohexylmethanediol.
- Examples of the aliphatic polyol include alkanediols such as ethylene glycol, propylene glycol, butanediol, pentanediol, and hexanediol.
- polyester polyol for example, a polymer obtained by dehydration condensation of a polybasic acid and a polyhydric alcohol, a polymer obtained by ring-opening polymerization of a lactone such as ⁇ -caprolactone and ⁇ -methyl- ⁇ -caprolactone. , And a condensate of hydroxycarboxylic acid and the polyhydric alcohol or the like.
- the polybasic acid include adipic acid, azelaic acid, sebacic acid, isophthalic acid (m-phthalic acid), terephthalic acid (p-phthalic acid), succinic acid and the like.
- polyhydric alcohol examples include bisphenol A, ethylene glycol, 1,2-propylene glycol, 1,4-butanediol, diethylene glycol, 1,6-hexane glycol, neopentyl glycol and the like.
- hydroxycarboxylic acid examples include castor oil, a reaction product of castor oil and ethylene glycol, and the like.
- polymer polyol examples include a polymer obtained by graft-polymerizing an ethylenically unsaturated compound such as acrylonitrile, styrene, methyl acrylate, and methacrylate with an aromatic polyol, an alicyclic polyol, an aliphatic polyol, a polyester polyol, or the like. , Polybutadiene polyols, modified polyols of polyhydric alcohols, hydrogenated compounds thereof and the like.
- modified polyol of the polyhydric alcohol examples include those modified by reacting the raw material polyhydric alcohol with an alkylene oxide.
- polyhydric alcohol examples include trihydric alcohols such as glycerin and trimethylolpropane, pentaerythritol, sorbitol, mannitol, sorbitan, diglycerin, dipentaerythritol and the like, sucrose, glucose, mannose, fructose, methyl glucoside and the like.
- Tetra-octavalent alcohols such as its derivatives, fluoroglycolsinol, cresol, pyrogallol, catechol, hydroquinone, bisphenol A, bisphenol F, bisphenol S, 1,3,6,8-tetrahydroxynaphthalene, and 1,4 , 5,8-Tetrahydroxyanthracene and other polyols, castor oil polyol, (co) polymer of hydroxyalkyl (meth) acrylate and polyfunctional (for example, 2 to 100 functional groups) polyols such as polyvinyl alcohol, condensation of phenol and formaldehyde Things (Novolak) can be mentioned.
- Novolak formaldehyde Things
- the method for modifying the polyhydric alcohol is not particularly limited, but a method for adding an alkylene oxide (hereinafter, also referred to as “AO”) is preferably used.
- AO include AO having 2 to 6 carbon atoms, for example, ethylene oxide (hereinafter, also referred to as “EO”), 1,2-propylene oxide (hereinafter, also referred to as “PO”), 1,3-propyleneoxide, and the like.
- Examples thereof include 1,2-butylene oxide and 1,4-butylene oxide.
- PO, EO and 1,2-butylene oxide are preferable, and PO and EO are more preferable, from the viewpoint of properties and reactivity.
- the addition method may be block addition, random addition, or a combination of these.
- the polyether polymer for example, at least one kind of alkylene oxide such as ethylene oxide, propylene oxide and tetrahydrofuran is ring-opened in the presence of at least one kind such as a low molecular weight active hydrogen compound having two or more active hydrogens.
- a low molecular weight active hydrogen compound having two or more active hydrogens examples include a polymer obtained by polymerization.
- the low molecular weight active hydrogen compound having two or more active hydrogens include diols such as bisphenol A, ethylene glycol, propylene glycol, butylene glycol and 1,6-hexanediol, and triols such as glycerin and trimethylolpropane. , Ethylenediamine, amines such as butylene diamine, and the like.
- polyester polyol and polyether polyol are preferable.
- polybasic acids having an aromatic ring such as isophthalic acid (m-phthalic acid) and terephthalic acid (p-phthalic acid)
- dihydric alcohols such as bisphenol A, ethylene glycol, and 1,2-propylene glycol.
- Aromatic polyester polyol obtained by dehydration condensation of the above is more preferable.
- a polyol having two hydroxyl groups is preferable.
- the hydroxyl value of the polyol compound is preferably 20 to 300 mgKOH / g, more preferably 30 to 250 mgKOH / g, and even more preferably 50 to 220 mgKOH / g.
- the hydroxyl value of the polyol compound is not more than the above upper limit value, the viscosity of the polyol composition tends to decrease, which is preferable from the viewpoint of handleability and the like.
- the hydroxyl value of the polyol compound is at least the above lower limit value, the crosslink density of the polyurethane foam increases and the strength increases.
- the hydroxyl value of the polyol compound can be measured according to JIS K 1557-1: 2007.
- the content of the polyol compound in the polyol composition of the present invention is preferably 10 to 80% by mass, more preferably 20 to 75% by mass, and further preferably 25 to 70% by mass.
- the content of the polyol compound is at least the above lower limit value, the polyol and the polyisocyanate are likely to react with each other, which is preferable.
- the content of the polyol compound is not more than the above upper limit value, the viscosity of the polyol-containing composition does not become too high, which is preferable from the viewpoint of handleability.
- the polyol composition in the present invention contains a catalyst.
- the catalyst preferably contains at least one of the trimerization catalyst and the resinification catalyst, and more preferably contains both the trimerization catalyst and the resinification catalyst.
- a polyol foam produced by using both of these catalysts is preferable because the shrinkage rate tends to be low.
- the trimerization catalyst is a catalyst that promotes the formation of isocyanurate rings by reacting the isocyanate groups contained in the polyisocyanate compound to trimerize them.
- nitrogen-containing aromatic compounds such as tris (dimethylaminomethyl) phenol, 2,4-bis (dimethylaminomethyl) phenol, and 2,4,6-tris (dialkylaminoalkyl) hexahydro-S-triazine.
- Carboxylic acid alkali metal salts such as potassium acetate, potassium 2-ethylhexanoate, potassium octylate, tertiary ammonium salts such as trimethylammonium salt, triethylammonium salt, triphenylammonium salt, tetramethylammonium salt, tetraethylammonium, tetra
- quaternary ammonium salt such as a phenylammonium salt or a triethylmonomethylammonium salt can be used.
- ammonium salts examples include ammonium salts of carboxylic acids such as 2,2-dimethylpropanoic acid, and more specifically, quaternary ammonium salts of carboxylic acids. These may be used alone or in combination of two or more. Among these, one or more selected from carboxylic acid alkali metal salt and carboxylic acid quaternary ammonium salt are preferable, and carboxylic acid quaternary ammonium salt is more preferable.
- the blending amount of the trimerization catalyst is preferably 1 to 25 parts by mass, more preferably 2 to 18 parts by mass, and further preferably 3 to 15 parts by mass with respect to 100 parts by mass of the polyol compound.
- trimerization of the polyisocyanate compound is likely to occur, and the flame retardancy of the obtained polyurethane foam is improved.
- the blending amount of the trimerization catalyst is not more than the above upper limit value, the reaction can be easily controlled.
- the resinification catalyst is a catalyst that promotes the reaction between the polyol compound and the polyisocyanate compound.
- the resinification catalyst include amine-based catalysts such as imidazole compounds and piperazine compounds, and metal-based catalysts.
- the imidazole compound include a tertiary amine in which the secondary amine at the 1-position of the imidazole ring is replaced with an alkyl group, an alkenyl group or the like. Specifically, N-methylimidazole, 1,2-dimethylimidazole, 1-ethyl-2-methylimidazole, 1-methyl-2-ethylimidazole, 1,2-diethylimidazole, and 1-isobutyl-2-methyl. Examples include imidazole.
- an imidazole compound in which the secondary amine in the imidazole ring is replaced with a cyanoethyl group may be used.
- the piperazine compound include tertiary amines such as N-methyl-N'N'-dimethylaminoethylpiperazine and trimethylaminoethylpiperazine.
- the resinification catalysts include pentamethyldiethylenetriamine, triethylamine, N-methylmorpholinbis (2-dimethylaminoethyl) ether, N, N, N', N ", N"-.
- Pentamethyldiethylenetriamine N, N, N'-trimethylaminoethyl-ethanolamine, bis (2-dimethylaminoethyl) ether, N, N-dimethylcyclohexylamine, diazabicycloundecene, triethylenediamine, tetramethylhexamethylenediamine , Various tertiary amines such as tripropylamine and the like.
- the metal catalyst examples include metal salts composed of lead, tin, bismuth, copper, zinc, cobalt, nickel and the like, and preferably organic acid metal salts composed of lead, tin, bismuth, copper, zinc, cobalt, nickel and the like. Is. More preferably, dibutyltin dilaurate, dioctyltin dilaurate, dioctyltin versatate, bismuth trioctate, bismastrioctate (2-ethylhexanoate), tin dioctylate, lead dioctylate and the like can be mentioned, and among them, the organic acid bismuth salt is more preferable. ..
- the resinification catalyst may be used alone or in combination of two or more. Further, among the above, it is preferable to use one or more selected from the imidazole compound and the organic acid bismuth salt, and it is also preferable to use both of them.
- the blending amount of the resinification catalyst is preferably 1 to 25 parts by mass, more preferably 2 to 18 parts by mass, and even more preferably 3 to 12 parts by mass with respect to 100 parts by mass of the polyol compound.
- the blending amount of the resinification catalyst is at least these lower limit values, urethane bonds are likely to be formed, and the reaction proceeds rapidly. On the other hand, if it is less than these upper limit values, the reaction rate can be easily controlled.
- the amount of the resinification catalyst with respect to the trimerization catalyst is the shrinkage rate of the obtained polyurethane foam. From the viewpoint of making it smaller, it is preferably 0.2 to 10, and more preferably 0.5 to 2.
- the total amount of the catalyst in the polyol composition is not particularly limited, but is preferably 2 to 40 parts by mass, more preferably 4 to 25 parts by mass, and further preferably 5 to 20 parts by mass.
- the total amount of the catalyst in the polyol composition is not particularly limited, but is preferably 2 to 40 parts by mass, more preferably 4 to 25 parts by mass, and further preferably 5 to 20 parts by mass.
- the polyol composition in the present invention may contain a liquid flame retardant.
- the liquid flame retardant is a flame retardant that becomes liquid at normal temperature and pressure.
- Specific examples of the liquid flame retardant include phosphoric acid ester.
- the phosphoric acid ester a monophosphate ester, a condensed phosphoric acid ester, or the like can be used.
- the monophosphate ester is a phosphate ester having one phosphorus atom in the molecule.
- the monophosphate ester is not limited as long as it is liquid at normal temperature and pressure, but for example, trialkyl phosphate such as trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri (2-ethylhexyl) phosphate, and tris ( ⁇ -chloro).
- Halogen-containing phosphates such as propyl) phosphate, trialkoxy phosphates such as tributoxyethyl phosphate, tricresyl phosphate, trixylenyl phosphate, tris (isopropylphenyl) phosphate, cresildiphenyl phosphate, diphenyl (2-ethylhexyl) phosphate.
- alogen-containing phosphates such as propyl) phosphate, trialkoxy phosphates such as tributoxyethyl phosphate, tricresyl phosphate, trixylenyl phosphate, tris (isopropylphenyl) phosphate, cresildiphenyl phosphate, diphenyl (2-ethylhexyl) phosphate.
- aromatic ring-containing phosphoric acid esters such as, monoisodecyl phosphate, and acidic phosphoric acid esters such as diis
- condensed phosphate ester examples include aromatic condensed phosphate esters such as trialkylpolyphosphate, resorcinol polyphenyl phosphate, bisphenol A polycresyl phosphate, and bisphenol A polyphenyl phosphate.
- aromatic condensed phosphate esters such as trialkylpolyphosphate, resorcinol polyphenyl phosphate, bisphenol A polycresyl phosphate, and bisphenol A polyphenyl phosphate.
- commercially available condensed phosphate esters include “CR-733S”, “CR-741", and “CR747” manufactured by Daihachi Chemical Industry Co., Ltd., and "ADEKA STUB PFR" and "FP-600” manufactured by ADEKA. And so on.
- the liquid flame retardant may be used alone from the above-mentioned ones, or may be used in combination of two or more.
- monophosphate esters are preferable, and halogen-containing phosphoric acid esters such as tris ( ⁇ -chloropropyl) phosphate are preferable from the viewpoint of facilitating the appropriate viscosity of the polyol compound and improving the flame retardancy of polyurethane foam. More preferred.
- the blending amount of the liquid flame retardant is preferably 5 to 70 parts by mass, more preferably 10 to 60 parts by mass, and 20 to 50 parts by mass with respect to 100 parts by mass of the polyol compound.
- the portion is more preferable.
- the polyol composition of the present invention may contain a defoaming agent.
- the defoaming agent improves the foamability of the polyurethane composition obtained from the polyol composition and the polyisocyanate composition.
- the defoaming agent include a polyoxyalkylene-based defoaming agent such as polyoxyalkylene alkyl ether and a surfactant such as a silicone-based defoaming agent such as organopolysiloxane. These foam stabilizers may be used alone or in combination of two or more.
- the blending amount of the foam stabilizer is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 8 parts by mass, still more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the polyol compound.
- the blending amount of the foam stabilizer is not less than these lower limit values, the polyurethane composition can be easily foamed, and a homogeneous polyurethane foam can be easily obtained. Further, when the blending amount of the defoaming agent is not more than these upper limit values, the balance between the manufacturing cost and the obtained effect becomes good.
- the polyol composition in the present invention may contain water. By containing water, the foamability when forming the polyurethane foam is improved.
- the blending amount of water is, for example, 0.1 to 10 parts by mass, preferably 0.2 to 5 parts by mass, and more preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the polyol compound. By setting the blending amount of water within these ranges, the polyurethane composition can be easily foamed appropriately.
- the polyol composition contains, if necessary, antioxidants such as phenol-based, amine-based, and sulfur-based antioxidants, precipitation inhibitors, heat stabilizers, metal damage inhibitors, and antistatic agents, as long as the object of the present invention is not impaired. , Stabilizers, cross-linking agents, lubricants, softeners, pigments, additives such as antistatic resins, and antistatic agents such as polybutene and petroleum resins.
- the container of the present invention is a container in which the above-mentioned polyol composition is sealed.
- the container is not particularly limited as long as the polyol composition can be discharged by the vapor pressure of the low boiling point compound, and an aerosol container is preferable.
- the aerosol container is provided with, for example, a container body filled with a polyol composition and a cap portion for sealing the upper part of the container body, and when a button or the like provided on the cap portion is pressed, a valve or the like is opened and the internal pressure is released. Then, the polyol composition is discharged from the discharge port provided in the cap portion by the vapor pressure of the low boiling point compound.
- the method for encapsulating the polyol composition in the container is not particularly limited, but each component other than the low boiling point compound is mixed as necessary using a disper or the like, filled inside the container to seal the container, and then low. Fill with boiling point compound.
- the filling of the low boiling point compound can be performed, for example, by opening the valve provided in the cap portion of the container and injecting the low boiling point compound into the inside of the container.
- the container When discharging the polyol composition from the container, discharge it in a state where each component constituting the polyol composition is uniformly mixed. It is advisable to shake the container well before discharging in order to uniformly mix the components constituting the polyol composition.
- the container can be shaken, for example, by holding the container by hand and shaking it up and down.
- the method for uniformly mixing the polyol composition is not limited to the above-mentioned method.
- the temperature of the container at the time of discharging is preferably, for example, 10 ° C. or higher and 40 ° C. or lower. When the temperature is 10 ° C. or higher, the liquid temperature is high to a certain extent, so that the discharge is good, and when the temperature is 40 ° C. or lower, the container is prevented from bursting.
- the polyurethane composition of the present invention comprises a polyol composition discharged from the above-mentioned container and a polyisocyanate composition containing a polyisocyanate compound. That is, the above-mentioned polyol composition of the present invention is used as a polyol composition of a two-component polyurethane, and is mixed with a polyisocyanate composition containing a polyisocyanate compound and used as a polyurethane composition.
- the polyol composition and the polyisocyanate composition may be mixed in a mass ratio so that the isocyanate index falls within a predetermined range, as will be described later.
- the polyurethane composition obtained by mixing the polyol composition and the polyisocyanate composition reacts and is contained in the low boiling point compound contained in the above-mentioned polyol composition or the low boiling point compound contained in the polyisocyanate composition described later. It becomes a polyurethane foam by foaming with a boiling compound or the like.
- the polyisocyanate composition contains a polyisocyanate compound.
- a polyisocyanate compound a known polyisocyanate compound used for forming a polyurethane foam can be used.
- the polyisocyanate compound include aromatic polyisocyanates, alicyclic polyisocyanates, and aliphatic polyisocyanates.
- aromatic polyisocyanate examples include phenylenediocyanate, tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, dimethyldiphenylmethane diisocyanate, triphenylmethane triisocyanate, naphthalene diisocyanate, and polymethylene polyphenyl polyisocyanate (polymeric MDI). Be done.
- Examples of the alicyclic polyisocyanate include cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, and dimethyldicyclohexylmethane diisocyanate.
- Examples of the aliphatic polyisocyanate include methylene diisocyanate, ethylene diisocyanate, propylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate and the like.
- aromatic polyisocyanates are preferable from the viewpoint of ease of use and availability, and diphenylmethane diisocyanate, polypeptide MDI, or a mixture thereof is more preferable.
- One type of polyisocyanate may be used alone, or two or more types may be mixed and used.
- Polyisocyanate compositions usually further contain lower boiling point compounds.
- the low boiling point compound the above-mentioned compounds can be used without particular limitation.
- the low boiling point compound used in the polyisocyanate composition may be the same as or different from the low boiling point compound used in the polyol composition.
- the proportion of the low boiling point compound contained in the polyisocyanate composition is preferably 5% by mass or more and less than 20% by mass, and more preferably 7% by mass or more and less than 15% by mass. Sufficient discharge force can be obtained by containing 5% by mass or more of the low boiling point compound. Further, if it is less than 20% by mass, the foaming density obtained does not become too low, and appropriate physical properties can be obtained.
- a known additive to be blended with polyisocyanate may be appropriately blended in the polyisocyanate composition.
- the isocyanate index of the polyurethane composition of the present invention is preferably 200 or more.
- the isocyanate index is 200 or more, the amount of the polyisocyanate compound with respect to the polyol compound becomes excessive, and isocyanurate bonds are easily formed by the trimeric of polyisocyanate, and as a result, the flame retardancy of the polyurethane foam is improved.
- the isocyanate index is more preferably 250 or more, further preferably 340 or more.
- the isocyanate index is preferably 1000 or less, more preferably 650 or less, and even more preferably 500 or less. When the isocyanate index is not more than these upper limit values, the balance between the flame retardancy of the obtained polyurethane foam and the manufacturing cost is improved.
- Equivalent number of water molecular weight of water (g) / molecular weight of water (mol) x number of OH groups of water
- the molecular weight of NCO is 42 (mol) and the molecular weight of KOH is 56100 (mmol).
- the molecular weight of water is 18 (mol), and the number of OH groups in water is 2.
- the present invention also provides a mixing system for mixing a polyol composition and a polyisocyanate composition.
- the mixing system 10 includes a first container 11 in which the polyol composition is encapsulated, and a second container 12 in which the polyisocyanate composition is encapsulated.
- the first containers 11 and 12 are both aerosol containers (spray cans).
- the polyol composition sealed in the first container 11 is discharged by the vapor pressure of the low boiling point compound contained in the polyol composition.
- the polyisocyanate composition sealed in the second container 12 is discharged by the vapor pressure of the low boiling point compound contained in the polyisocyanate composition.
- the polyol composition and the polyisocyanate composition discharged from the first and second containers 11 and 12 are mixed while being foamed by a low boiling point compound or the like, and the polyisocyanate compound and the polyol compound react with each other to cause polyurethane. Form foam.
- the mixing system 10 may include a mixer 13.
- the discharge ports 11A and 12A of the first and second containers 11 and 12, respectively, are connected to the mixer 13 via the supply lines 11B and 12B.
- the polyol composition and the polyisocyanate composition discharged from the first and second containers 11 and 12 are supplied to the mixer 13 via the supply lines 11B and 12B, respectively, and these are mixed in the mixer 13. .
- the polyol composition and the polyisocyanate composition mixed in the mixer 13 may be sprayed onto the surface to be constructed by an injector or the like.
- the mixer 13 is preferably a stationary mixer, which is a so-called static mixer.
- the stationary mixer is a mixer without a drive unit, and the fluid is mixed by passing the fluid through the inside of the pipe body.
- Examples of the stationary mixer include a mixer element 13B in which the mixer element 13B is arranged inside the tubular body 13A as shown in FIG.
- Examples of the mixer element 13B include those formed in a spiral shape and those in which a plurality of baffle plates are formed.
- the stationary mixer may also have the function of an injector. In this case, as shown in FIG. 1, a mixture of the polyol composition and the polyisocyanate composition mixed inside the tube 13A is mixed at the tip 13C of the tube. It is good to spray from. Note that FIG.
- a discharge gun, a jig, or the like may be provided.
- FIG. 2 shows the mixing system 20 as an example of a mode in which a discharge gun is provided before being introduced into the mixer.
- the mixing system 20 includes a first container 11, a second container 12, supply lines 11B and 12B, a discharge gun 14, and a mixer 13.
- the first container 11 and the second container 12 are as described above, and contain a polyol composition and a polyisocyanate composition, respectively. From the first and second containers, the polyol composition and the polyisocyanate composition are sent to the discharge gun 14 via the supply lines 11B and 12B, respectively.
- the discharge gun 14 includes a lever 14A and has an ON-OFF mechanism for feeding liquid.
- the polyol composition and the polyisocyanate composition are fed to the mixer 13, and when the lever 14A is released, the liquid feeding to the mixer 13 is stopped.
- the mixing system 20 including the discharge gun 14 the liquid can be fed as needed, so that the workability when forming the polyurethane foam is improved.
- the polyurethane foam of the present invention is formed from the above-mentioned polyurethane composition. Since the polyurethane foam of the present invention contains the above-mentioned filler, it has a low shrinkage rate and is excellent in shape stability. Specifically, the shrinkage ratio of the polyurethane foam is preferably less than 20%, more preferably less than 10%.
- the shrinkage rate of the polyurethane foam is determined as follows. Immediately after the completion of foaming (immediately after production), the polyurethane foam is cut into 5 cm squares (length 5 cm, width 5 cm, thickness 5 cm), and the length of each side (length before the test) is measured. In addition, each side means all sides (12 sides) of the cut-out foam.
- the cut-out foam is left to stand at a temperature of 23 ° C. and a relative humidity of 50% for 24 hours, and then the length of each side (length after the test) is measured.
- Obtain the rate of change in the length of each side [100 x (length before the test-length after the test) / length before the test], and calculate the average value of the rate of change in the length of each side (12 sides).
- the average value of the rate of change of) is taken as the shrinkage rate.
- the polyurethane foam formed from the polyurethane composition can be used for various purposes, but it is preferably used as a heat insulating material. Since the polyurethane foam has a large number of bubbles, it has a heat insulating effect. Polyurethane foam is more preferably used as a heat insulating material for vehicles or buildings in particular. Vehicles include railroad vehicles, automobiles, ships, aircraft and the like. Further, in the present invention, a polyurethane foam can be formed with a simple structure by using a container such as an aerosol container. Further, since the foam can be formed by using a container, it is particularly suitable when the surface to be constructed is relatively small.
- the present invention is not limited to such applications, and may be used to form a newly installed heat-resistant material.
- the evaluation method is as follows. [Ratio of low boiling point compounds] The proportion of low boiling point compounds in the polyol composition was calculated by the following formula (1).
- the filler ratio in the polyol composition is calculated by the following formula (2).
- Formula (2) Filler ratio (%) (E / D) x 100 D: After keeping the container warm at 35 ° C., the discharged product obtained by discharging the polyol composition from the container for 10 seconds is dried at 40 ° C. for 30 minutes, and then the discharged product having a weight E: D after drying is used. Dilute with acetone and perform suction filtration to obtain the weight of the agglomerates.
- the shrinkage rate of the polyurethane foam was calculated by the following method. Immediately after the completion of foaming (immediately after production), the polyurethane foam is cut into 5 cm squares (length 5 cm, width 5 cm, thickness 5 cm), and the length of each side (length before the test) is measured. Then, the cut-out foam was left to stand at a temperature of 23 ° C. and a relative humidity of 50% for 24 hours, and then the length of each side (length after the test) was measured. Obtain the rate of change in the length of each side [100 x (length before the test-length after the test) / length before the test], and use the average value of the rate of change in the length of each side as the shrinkage rate. It was evaluated according to the following criteria. A: Shrinkage rate is less than 10% B: Shrinkage rate is 10% or more and less than 20% C: Shrinkage rate is 20% or more
- Discharge rate The aerosol container containing the polyol composition was immersed in warm water at 35 ° C. for 60 minutes and then discharged for 5 seconds. The discharge amount was calculated based on the following formula and evaluated based on the following criteria.
- Discharge amount (g) Weight of aerosol container before discharge-Weight of aerosol container after discharge A: Discharge amount is 15 g or more B: Discharge amount is 10 g or more and less than 15 g C: Discharge amount is less than 10 g
- the components used in the examples and comparative examples are as follows.
- the number of copies of each component shown in Table 1 indicates the number of copies of the diluted product as a diluted product.
- Resinization catalyst Imidazole compound (active ingredient amount 65-75% by mass, diluted with ethylene glycol, manufactured by Tosoh Corporation, product name: TOYOCAT-DM70) Trimerization catalyst: Quaternary ammonium salt of carboxylic acid (active ingredient amount 45-55% by mass, diluted with ethylene glycol) (Evonik Japan Co., Ltd., product name: DABCO TMR-7)
- Filler 1 Wollastonite (Product name: SH1250 manufactured by Kinsei Matek Co., Ltd.)
- Filler 2 Red phosphorus flame retardant (manufactured by Rinkagaku Kogyo Co., Ltd., product name: Nova Excel 140, metal hydroxide coating, red phosphorus content 94% by mass or more)
- Filler 3 Bromine-containing flame retardant, ethylene bis (pentabromophenyl) (manufactured by Albemarle, product name: SAYTEX 8010)
- Filler 4 Boron-containing flame retardant (Hayakawa Shoji "FIREBREAK ZB")
- Defoaming agent Polyoxyalkylene-based defoaming agent (manufactured by Toray Dow Corning, product name SH-193)
- Low boiling point compound 1 DME / LPG A mixture of DME (dimethyl ether) and LPG.
- Polyisocyanate compound 4,4'-diphenylmethane diisocyanate (4,4'-MDI) (manufactured by Manka Kagaku Japan Co., Ltd., product name: PM200)
- Example 1 In accordance with the formulation shown in Table 1, components other than the low boiling point compound were measured in a 1000 ml polypropylene beaker, mixed at 1500 rpm for 5 minutes using a disper, transferred to an aerosol container, sealed using a vacuum crimper, and then further lowered. The boiling point compound was filled to obtain a first aerosol container in which the polyol composition was sealed. The amount of the polyol composition to be filled was 460 g for the polyol composition other than the low boiling point compound, and the filling ratio for the low boiling point compound was as shown in Table 1. Using the first aerosol container, the above-mentioned low boiling point compound ratio, filler ratio, and discharge amount were measured.
- a lower boiling point compound (DME / LPG) is further sealed.
- the mass ratio of 6/4) was filled to obtain a second aerosol container in which the polyisocyanate composition was sealed.
- the amount of the low boiling point compound was 65 g with respect to 420 g of the polyisocyanate compound.
- the polyol composition and the polyisocyanate composition are discharged from the first aerosol container and the second aerosol container described above, respectively, and these are mixed with a static mixer to obtain a polyurethane composition, which is then sprayed from the tip thereof.
- a polyurethane foam was obtained by spraying on a gypsum board. The results of each evaluation are shown in Table 1.
- Example 2 to 13 Comparative Examples 1 to 3 A first aerosol container and a second aerosol container were prepared in the same manner as in Example 1 except that the composition of the polyol composition was changed as shown in Table 1, to obtain a polyurethane foam. The results of each evaluation are shown in Table 1.
- Comparative Example 1 was an example in which a container containing a polyol composition containing no filler was used, and the shrinkage rate of the obtained polyurethane foam was increased.
- Comparative Example 2 is an example in which a container filled with a polyol composition having a small proportion of low boiling point compounds was used, and the result was that the discharge amount was small.
- Comparative Example 3 is an example in which a container containing a polyol composition containing no catalyst was used, and the polyurethane foam was not formed and the shrinkage rate could not be evaluated.
- Mixing system 11 1st container 12 2nd container 11A, 12A Discharge port 11B, 12B Supply line 13 Mixer 13A Tube body 13B Mixer element 13C Tip 14 Discharge gun 14A Lever 20 Mixing system
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
本発明は、ポリオール化合物、フィラー、触媒、低沸点化合物を含み、下記式(1)で算出される低沸点化合物割合が5~30%であるポリオール組成物を封入した容器である。式(1) 低沸点化合物割合(%)=[(A-B)/C-1]×100、式(1)においてAはポリオール組成物を吐出する前の容器の重量、Bは容器を35℃に保温して、ポリオール組成物を10秒間吐出した後の容器の重量、Cはポリオール組成物を10秒間吐出した吐出物を、40℃で30分間放置して得た乾燥吐出物の重量である。 本発明によれば、ポリオール組成物を封入した容器であって、内容物であるポリオール組成物を吐出し易く、かつ収縮率の低いポリウレタン発泡体を製造可能な容器を提供することができる。
Description
本発明は、ポリオール組成物を封入した容器、該容器から吐出されたポリオール組成物と、ポリイソシアネート組成物とを備えるポリウレタン組成物、及び該ポリウレタン組成物から形成されたポリウレタン発泡体に関する。
従来、ポリウレタン発泡体(ポリウレタンフォーム)は、自動車、鉄道車輌、船舶などの乗り物、建築物などにおいて断熱材として使用されている。ポリウレタン発泡体には、別々の容器に充填されたポリオール組成物とポリイソシアネート組成物を混合して発泡体を形成する2液型ポリウレタンが広く使用される。
2液型ポリウレタンは、各液を比較的簡単な構成で容器から吐出させ混合させることが可能になるから、エアゾール容器で使用されることがある。2液型ポリウレタンがエアゾール容器で使用される場合、一方の容器にポリオール化合物と低沸点化合物が、他方の容器にポリイソシアネート化合物と低沸点化合物が充填される。各容器からは、低沸点化合物の蒸気圧により、ポリオール液剤及びポリイソシアネート液剤をそれぞれ吐出させ、それらを混合することで、ポリウレタン発泡体を形成する。
2液型ポリウレタンは、各液を比較的簡単な構成で容器から吐出させ混合させることが可能になるから、エアゾール容器で使用されることがある。2液型ポリウレタンがエアゾール容器で使用される場合、一方の容器にポリオール化合物と低沸点化合物が、他方の容器にポリイソシアネート化合物と低沸点化合物が充填される。各容器からは、低沸点化合物の蒸気圧により、ポリオール液剤及びポリイソシアネート液剤をそれぞれ吐出させ、それらを混合することで、ポリウレタン発泡体を形成する。
エアゾール容器に使用される低沸点化合物としては、ハイドロフルオロカーボン(HFC)、ハイドロクロロフルオロカーボン(HCFC)、ジメチルエーテル、液化石油ガスなどが使用される。また、HFC,HCFCは、地球温暖化係数が高いことから、これらを代替する化合物が求められている。
例えば、特許文献1では、低沸点化合物を特定量含む、硬質ポリウレタンフォーム用2液型エアゾール組成物について記載されており、低沸点化合物として、液化石油ガス(LPG)、ジメチルエーテル(DME)などを使用することにより、地球温暖化に対して悪影響を与えないことが記載されている。
例えば、特許文献1では、低沸点化合物を特定量含む、硬質ポリウレタンフォーム用2液型エアゾール組成物について記載されており、低沸点化合物として、液化石油ガス(LPG)、ジメチルエーテル(DME)などを使用することにより、地球温暖化に対して悪影響を与えないことが記載されている。
しかしながら、上記した従来の2液型エアゾール組成物により形成されたポリウレタン発泡体は、収縮し易い傾向があり、形状安定性の観点から改善の余地があった。これに対して、発泡体の収縮を抑制するため、ポリオール組成物にフィラーを配合することが考えられる。しかしながら、フィラーを配合することにより、エアゾール容器からのポリオール組成物の吐出量が不足し、組成物の混合効率が低下したり、施工性が悪化したりするなど、不具合が生じる。
そこで、本発明は、ポリオール組成物を封入した容器であって、内容物であるポリオール組成物を吐出し易く、かつ収縮率の低いポリウレタン発泡体を製造可能な容器、及び該容器から吐出されるポリオール組成物を備えるポリウレタン組成物、並びに該ポリウレタン組成物から形成されるポリウレタン発泡体を提供することを課題とする。
本発明者らは、鋭意検討を重ねた結果、ポリオール化合物、フィラー、触媒、及び低沸点化合物を含むポリオール組成物であって、低沸点化合物割合が一定範囲であるポリオール組成物を封入した容器により、上記課題が解決できることを見出し、以下の本発明を完成させた。すなわち、本発明は、以下の[1]~[8]を提供する。
[1]ポリオール化合物、フィラー、触媒、及び低沸点化合物を含み、下記式(1)で算出される低沸点化合物割合が5~30%であるポリオール組成物を封入した容器。
式(1) 低沸点化合物割合(%)=[(A-B)/C-1]×100
A:ポリオール組成物を吐出する前の容器の重量
B:容器を35℃に保温して、均一に混合された状態でポリオール組成物を10秒間吐出した後の容器の重量
C:ポリオール組成物を10秒間吐出した吐出物を、40℃で30分間乾燥させた後の重量
[2]前記ポリオール組成物の下記式(2)で算出されるフィラー割合が5~80%である、上記[1]に記載の容器。
式(2) フィラー割合(%)=(E/D)×100
D:容器を35℃に保温した後、該容器から均一に混合された状態でポリオール組成物を10秒間吐出して得た吐出物を、40℃で30分乾燥させた後の重量
E:Dの乾燥後の吐出物をアセトンで希釈して吸引濾過を行い、得られた凝集物の重量
[3]前記触媒が、樹脂化触媒及び三量化触媒を含む、上記[1]又は[2]に記載の容器。
[4]エアゾール容器である、上記[1]~[3]のいずれかに記載の容器。
[5]上記[1]~[4]のいずれかに記載の容器から吐出されたポリオール組成物と、ポリイソシアネート化合物を含むポリイソシアネート組成物とを備える、ポリウレタン組成物。
[6]イソシアネートインデックスが200~1000である上記[5]に記載のポリウレタン組成物。
[7]上記[6]に記載のポリウレタン組成物から形成される、ポリウレタン発泡体。
[8]収縮率が20%未満である、上記[7]に記載のポリウレタン発泡体。
式(1) 低沸点化合物割合(%)=[(A-B)/C-1]×100
A:ポリオール組成物を吐出する前の容器の重量
B:容器を35℃に保温して、均一に混合された状態でポリオール組成物を10秒間吐出した後の容器の重量
C:ポリオール組成物を10秒間吐出した吐出物を、40℃で30分間乾燥させた後の重量
[2]前記ポリオール組成物の下記式(2)で算出されるフィラー割合が5~80%である、上記[1]に記載の容器。
式(2) フィラー割合(%)=(E/D)×100
D:容器を35℃に保温した後、該容器から均一に混合された状態でポリオール組成物を10秒間吐出して得た吐出物を、40℃で30分乾燥させた後の重量
E:Dの乾燥後の吐出物をアセトンで希釈して吸引濾過を行い、得られた凝集物の重量
[3]前記触媒が、樹脂化触媒及び三量化触媒を含む、上記[1]又は[2]に記載の容器。
[4]エアゾール容器である、上記[1]~[3]のいずれかに記載の容器。
[5]上記[1]~[4]のいずれかに記載の容器から吐出されたポリオール組成物と、ポリイソシアネート化合物を含むポリイソシアネート組成物とを備える、ポリウレタン組成物。
[6]イソシアネートインデックスが200~1000である上記[5]に記載のポリウレタン組成物。
[7]上記[6]に記載のポリウレタン組成物から形成される、ポリウレタン発泡体。
[8]収縮率が20%未満である、上記[7]に記載のポリウレタン発泡体。
本発明によれば、ポリオール組成物を封入した容器であって、内容物であるポリオール組成物を吐出し易く、かつ収縮率の低いポリウレタン発泡体を製造可能な容器、及び該容器から吐出されるポリオール組成物を備えるポリウレタン組成物、並びに該ポリウレタン組成物から形成されるポリウレタン発泡体を提供することができる。
以下、本発明を詳細に説明する。
本発明は、ポリオール化合物、フィラー、触媒、及び低沸点化合物を含み、下記式(1)で算出される低沸点化合物割合が5~30%であるポリオール組成物を封入した容器である。
式(1) 低沸点化合物割合(%)=[(A-B)/C-1]×100
A:ポリオール組成物を吐出する前の容器の重量
B:容器を35℃に保温して、均一に混合された状態でポリオール組成物を10秒間吐出した後の容器の重量
C:ポリオール組成物を10秒間吐出した吐出物を、40℃で30分間乾燥させた後の重量。
本発明は、ポリオール化合物、フィラー、触媒、及び低沸点化合物を含み、下記式(1)で算出される低沸点化合物割合が5~30%であるポリオール組成物を封入した容器である。
式(1) 低沸点化合物割合(%)=[(A-B)/C-1]×100
A:ポリオール組成物を吐出する前の容器の重量
B:容器を35℃に保温して、均一に混合された状態でポリオール組成物を10秒間吐出した後の容器の重量
C:ポリオール組成物を10秒間吐出した吐出物を、40℃で30分間乾燥させた後の重量。
[低沸点化合物]
本発明の容器に封入されたポリオール組成物は、低沸点化合物を含有する。該低沸点化合物は、その蒸気圧によりポリオール組成物を吐出させると共に、ポリオール組成物を吐出する際に気化することで、ポリオール組成物や後述するポリウレタン組成物を発泡させる。
ポリオール組成物における低沸点化合物割合は5~30%である。低沸点化合物割合が5%未満であると、ポリオール組成物の吐出量が不足し、後述するポリイソシアネート組成物との混合効率が低下したり、施工性が悪化したりするなど、不具合が生じやすくなる。低沸点化合物割合が30%を超えると、容器内の圧力が高くなりやすく、安全性が低下する傾向がある。低沸点化合物割合は、ポリオール組成物の吐出量を増加させつつ、安全性を高める観点から、好ましくは5~28%であり、より好ましくは6~25%である。
本発明の容器に封入されたポリオール組成物は、低沸点化合物を含有する。該低沸点化合物は、その蒸気圧によりポリオール組成物を吐出させると共に、ポリオール組成物を吐出する際に気化することで、ポリオール組成物や後述するポリウレタン組成物を発泡させる。
ポリオール組成物における低沸点化合物割合は5~30%である。低沸点化合物割合が5%未満であると、ポリオール組成物の吐出量が不足し、後述するポリイソシアネート組成物との混合効率が低下したり、施工性が悪化したりするなど、不具合が生じやすくなる。低沸点化合物割合が30%を超えると、容器内の圧力が高くなりやすく、安全性が低下する傾向がある。低沸点化合物割合は、ポリオール組成物の吐出量を増加させつつ、安全性を高める観点から、好ましくは5~28%であり、より好ましくは6~25%である。
ポリオール組成物における低沸点化合物割合は、以下の式(1)で算出される。
式(1) 低沸点化合物割合(%)=[(A-B)/C-1]×100
A:ポリオール組成物を吐出する前の容器の重量
B:容器を35℃に保温して、均一に混合された状態でポリオール組成物を10秒間吐出した後の容器の重量
C:ポリオール組成物を10秒間吐出した吐出物を、40℃で30分間乾燥させた後の重量。
式(1) 低沸点化合物割合(%)=[(A-B)/C-1]×100
A:ポリオール組成物を吐出する前の容器の重量
B:容器を35℃に保温して、均一に混合された状態でポリオール組成物を10秒間吐出した後の容器の重量
C:ポリオール組成物を10秒間吐出した吐出物を、40℃で30分間乾燥させた後の重量。
なお、低沸点化合物割合(%)を算出する上記式(1)は、[(A-B-C)/C]×100と同義であり、分母の「C」は、低沸点化合物を除くポリオール組成物の量に相当し、分子の「A-B-C」は低沸点化合物の量に相当する。
上記Bにおいて、35℃に保温する操作は、例えば、容器を35℃の温水に、60分間浸漬するとよい。また、上記Bにおいて10秒間ポリオール組成物を吐出させる際には、ポリオール組成物を構成する各成分が均一に混合されている状態で吐出する。例えば、均一なるように十分に混合されたポリオール組成物であり、かつ10秒間の間にすべてが吐出されない程度の十分な量のポリオール組成物が充填された未使用のエアゾール容器を用いると、上記10秒の間の吐出量は一定となる。なお、ポリオール組成物を構成する各成分を均一に混合するために、吐出前に容器を十分に振盪するとよい。容器の振盪は、例えば容器を手で持って上下に振ることにより行うことができる。ポリオール組成物を均一に混合する方法は、前記した方法に限定されるものではない。
上記Cにおいて吐出物を、40℃で30分間乾燥させる際は、直径10cm、高さ12cmの円筒状のポリエチレン製容器に吐出物を入れ、該容器の上部を開放して行う。
低沸点化合物の種類は、その蒸気圧によりポリオール組成物を吐出させることが可能であれば特に制限されず、ハイドロフルオロカーボン(HFC)、ハイドロクロロフルオロカーボン(HCFC)、ハイドロフルオロオレフィン(HFO)、炭化水素、エーテル化合物、無機系ガスなどを使用できる。これらの中でも、環境負荷を低減する観点、吐出性を良好にする観点から、ハイドロフルオロオレフィン(HFO)、炭素数1~5の炭化水素、ジメチルエーテルなどのエーテル化合物、窒素などの無機系ガスなどが好適に使用できる。
低沸点化合物は、ポリオール組成物の吐出量を高める観点から、1気圧における沸点が0℃以下のものが好ましく、-10℃以下のものがより好ましく、-15℃以下のものがさらに好ましい。ここで、低沸点化合物の沸点は、低沸点化合物単体の沸点を意味し、例えば、低沸点化合物が他の化合物と共沸する場合において、その共沸する沸点を意味するものではない。
沸点が0℃以下の低沸点化合物としては、例えば、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)、1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye)、1,1,1,3,3-ペンタフルオロプロペン(HFO-1225zc)、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)などのハイドロフルオロオレフィン(HFO)、エタン、プロパン、イソブタン、ノルマルブタンなどの各種ブタンなどの炭素数1~4の炭化水素、ジメチルエーテル、窒素などが挙げられる。
沸点が0℃以下の低沸点化合物としては、例えば、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)、1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye)、1,1,1,3,3-ペンタフルオロプロペン(HFO-1225zc)、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)などのハイドロフルオロオレフィン(HFO)、エタン、プロパン、イソブタン、ノルマルブタンなどの各種ブタンなどの炭素数1~4の炭化水素、ジメチルエーテル、窒素などが挙げられる。
上記した炭素数1~4の炭化水素は、例えば、プロパンとブタン類とを主成分とするLPG(液化石油ガス)なども好適な具体例として挙げられる。
沸点が0℃以下の低沸点化合物の中でも、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)、ジメチルエーテル、LPG、及び窒素が好ましく、中でも、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)、ジメチルエーテル、及びLPGがより好ましい。これらは、組み合わせて使用することも好ましく、具体的には、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)と窒素の併用、ジメチルエーテルとLPGの併用なども好ましい。
沸点が0℃以下の低沸点化合物の中でも、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)、ジメチルエーテル、LPG、及び窒素が好ましく、中でも、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)、ジメチルエーテル、及びLPGがより好ましい。これらは、組み合わせて使用することも好ましく、具体的には、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)と窒素の併用、ジメチルエーテルとLPGの併用なども好ましい。
[フィラー]
本発明におけるポリオール組成物は、フィラーを含有する。フィラーを含有することにより、得られるポリウレタン発泡体の収縮を抑制することができる。
ポリオール組成物の式(2)で算出されるフィラー割合は5~80%である。フィラー割合が5%以上であると、得られるポリウレタン発泡体の収縮を抑制しやすくなり、フィラー割合が80%以下であると、ポリオール組成物を容器から吐出しやすくなる。
ポリオール組成物のフィラー割合は、好ましくは8~78%であり、より好ましくは10~75%である。
本発明におけるポリオール組成物は、フィラーを含有する。フィラーを含有することにより、得られるポリウレタン発泡体の収縮を抑制することができる。
ポリオール組成物の式(2)で算出されるフィラー割合は5~80%である。フィラー割合が5%以上であると、得られるポリウレタン発泡体の収縮を抑制しやすくなり、フィラー割合が80%以下であると、ポリオール組成物を容器から吐出しやすくなる。
ポリオール組成物のフィラー割合は、好ましくは8~78%であり、より好ましくは10~75%である。
フィラー割合は、以下に示す式(2)により算出される。
式(2) フィラー割合(%)=(E/D)×100
D:容器を35℃に保温した後、該容器から均一に混合された状態でポリオール組成物を10秒間吐出して得た吐出物を、40℃で30分乾燥させた後の重量
E:Dの乾燥後の吐出物をアセトンで希釈して吸引濾過を行い、得られた凝集物の重量
上記Dにおいて、容器を35℃に保温して、10秒間ポリオール組成物を吐出する方法は、低沸点化合物割合を算出する際の上記したBと同様の方法を適用できる。
上記Eにおいて、アセトンの使用量は、吸引濾過を行うことができれば特に制限されるものではないが、例えば、乾燥後の吐出物1mgあたり、0.1~10mLとすればよい。また、吸引濾過に使用される濾紙は、フィラーを濾別できる濾紙であり、例えば、アドバンテック社製円形定量ろ紙No.3を用いる。吸引濾過を行うと、濾紙上に凝集物(アセトン不溶分)が残る。該凝集物を乾燥させて、凝集物に含まれるアセトンを除いた後に、重量を測定し、この値をEにおける凝集物の重量とする。
式(2) フィラー割合(%)=(E/D)×100
D:容器を35℃に保温した後、該容器から均一に混合された状態でポリオール組成物を10秒間吐出して得た吐出物を、40℃で30分乾燥させた後の重量
E:Dの乾燥後の吐出物をアセトンで希釈して吸引濾過を行い、得られた凝集物の重量
上記Dにおいて、容器を35℃に保温して、10秒間ポリオール組成物を吐出する方法は、低沸点化合物割合を算出する際の上記したBと同様の方法を適用できる。
上記Eにおいて、アセトンの使用量は、吸引濾過を行うことができれば特に制限されるものではないが、例えば、乾燥後の吐出物1mgあたり、0.1~10mLとすればよい。また、吸引濾過に使用される濾紙は、フィラーを濾別できる濾紙であり、例えば、アドバンテック社製円形定量ろ紙No.3を用いる。吸引濾過を行うと、濾紙上に凝集物(アセトン不溶分)が残る。該凝集物を乾燥させて、凝集物に含まれるアセトンを除いた後に、重量を測定し、この値をEにおける凝集物の重量とする。
フィラーとしては、例えば固形難燃剤、無機充填剤などが挙げられる。
フィラーとして、固形難燃剤を用いると、ポリウレタン発泡体の難燃性を効果的に高めることができる。また、固形難燃剤は、通常、粉体成分としてポリオール組成物に分散した状態にある。なお、固形難燃剤とは、常温(23℃)、常圧(1気圧)において、固体となる難燃剤である。
固形難燃剤の具体例としては、赤燐系難燃剤、リン酸塩含有難燃剤、臭素含有難燃剤、塩素含有難燃剤、アンチモン含有難燃剤、ホウ素含有難燃剤、及び金属水酸化物が挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
フィラーとして、固形難燃剤を用いると、ポリウレタン発泡体の難燃性を効果的に高めることができる。また、固形難燃剤は、通常、粉体成分としてポリオール組成物に分散した状態にある。なお、固形難燃剤とは、常温(23℃)、常圧(1気圧)において、固体となる難燃剤である。
固形難燃剤の具体例としては、赤燐系難燃剤、リン酸塩含有難燃剤、臭素含有難燃剤、塩素含有難燃剤、アンチモン含有難燃剤、ホウ素含有難燃剤、及び金属水酸化物が挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
<赤燐系難燃剤>
赤燐系難燃剤は、赤燐単体からなるものでもよいが、赤燐に樹脂、金属水酸化物、金属酸化物などを被膜したものでもよいし、赤燐に樹脂、金属水酸化物、金属酸化物などと混合したものでもよい。赤燐を被膜し、または赤燐と混合する樹脂は、特に限定されないがフェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、メラミン樹脂、尿素樹脂、アニリン樹脂、及びシリコーン樹脂などの熱硬化性樹脂が挙げられる。被膜ないし混合する化合物としては、難燃性の観点から、金属水酸化物が好ましい。金属水酸化物は、後述するものを適宜選択して使用するとよい。
赤燐系難燃剤は、赤燐単体からなるものでもよいが、赤燐に樹脂、金属水酸化物、金属酸化物などを被膜したものでもよいし、赤燐に樹脂、金属水酸化物、金属酸化物などと混合したものでもよい。赤燐を被膜し、または赤燐と混合する樹脂は、特に限定されないがフェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、メラミン樹脂、尿素樹脂、アニリン樹脂、及びシリコーン樹脂などの熱硬化性樹脂が挙げられる。被膜ないし混合する化合物としては、難燃性の観点から、金属水酸化物が好ましい。金属水酸化物は、後述するものを適宜選択して使用するとよい。
<リン酸塩含有難燃剤>
リン酸塩含有難燃剤としては、例えば、各種リン酸と周期律表IA族~IVB族の金属、アンモニア、脂肪族アミン、芳香族アミン、環中に窒素を含む複素環式化合物から選ばれる少なくとも一種の金属または化合物との塩からなるリン酸塩が挙げられる。
リン酸としては、特に限定されないが、モノリン酸、ピロリン酸、ポリリン酸等が挙げられる。
周期律表IA族~IVB族の金属として、リチウム、ナトリウム、カルシウム、バリウム、鉄(II)、鉄(III)、アルミニウム等が挙げられる。
前記脂肪族アミンとして、メチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、ピペラジン等が挙げられる。芳香族アミンとしては、アニリン、o-トリイジン、2,4,6-トリメチルアニリン、アニシジン、3-(トリフルオロメチル)アニリン等が挙げられる。環中に窒素を含む複素環式化合物として、ピリジン、トリアジン、メラミン等が挙げられる。
リン酸塩含有難燃剤としては、例えば、各種リン酸と周期律表IA族~IVB族の金属、アンモニア、脂肪族アミン、芳香族アミン、環中に窒素を含む複素環式化合物から選ばれる少なくとも一種の金属または化合物との塩からなるリン酸塩が挙げられる。
リン酸としては、特に限定されないが、モノリン酸、ピロリン酸、ポリリン酸等が挙げられる。
周期律表IA族~IVB族の金属として、リチウム、ナトリウム、カルシウム、バリウム、鉄(II)、鉄(III)、アルミニウム等が挙げられる。
前記脂肪族アミンとして、メチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、ピペラジン等が挙げられる。芳香族アミンとしては、アニリン、o-トリイジン、2,4,6-トリメチルアニリン、アニシジン、3-(トリフルオロメチル)アニリン等が挙げられる。環中に窒素を含む複素環式化合物として、ピリジン、トリアジン、メラミン等が挙げられる。
リン酸塩含有難燃剤の具体例としては、例えば、モノリン酸塩、ピロリン酸塩、ポリリン酸塩等が挙げられる。ここで、ポリリン酸塩としては、特に限定されないが、例えば、ポリリン酸アンモニウム、ポリリン酸ピペラジン、ポリリン酸メラミン、ポリリン酸アンモニウムアミド、ポリリン酸アルミニウム等が挙げられる。
リン酸塩含有難燃剤は、上記したものから一種もしくは二種以上を使用することができる。
リン酸塩含有難燃剤は、上記したものから一種もしくは二種以上を使用することができる。
<臭素含有難燃剤>
臭素含有難燃剤としては、分子構造中に臭素を含有し、常温、常圧で固体となる化合物であれば特に限定されないが、例えば、臭素化芳香環含有芳香族化合物等が挙げられる。
臭素化芳香環含有芳香族化合物としては、ヘキサブロモベンゼン、ペンタブロモトルエン、ヘキサブロモビフェニル、デカブロモビフェニル、デカブロモジフェニルエーテル、オクタブロモジフェニルエーテル、ヘキサブロモジフェニルエーテル、ビス(ペンタブロモフェノキシ)エタン、エチレンビス(ペンタブロモフェニル)、エチレンビス(テトラブロモフタルイミド)、テトラブロモビスフェノールA等のモノマー系有機臭素化合物が挙げられる。
臭素含有難燃剤としては、分子構造中に臭素を含有し、常温、常圧で固体となる化合物であれば特に限定されないが、例えば、臭素化芳香環含有芳香族化合物等が挙げられる。
臭素化芳香環含有芳香族化合物としては、ヘキサブロモベンゼン、ペンタブロモトルエン、ヘキサブロモビフェニル、デカブロモビフェニル、デカブロモジフェニルエーテル、オクタブロモジフェニルエーテル、ヘキサブロモジフェニルエーテル、ビス(ペンタブロモフェノキシ)エタン、エチレンビス(ペンタブロモフェニル)、エチレンビス(テトラブロモフタルイミド)、テトラブロモビスフェノールA等のモノマー系有機臭素化合物が挙げられる。
また、臭素化芳香環含有芳香族化合物は、臭素化合物ポリマーであってもよい。具体的には、臭素化ビスフェノールAを原料として製造されたポリカーボネートオリゴマー、このポリカーボネートオリゴマーとビスフェノールAとの共重合物等の臭素化ポリカーボネート、臭素化ビスフェノールAとエピクロルヒドリンとの反応によって製造されるジエポキシ化合物などが挙げられる。さらには、臭素化フェノール類とエピクロルヒドリンとの反応によって得られるモノエポキシ化合物等の臭素化エポキシ化合物、ポリ(臭素化ベンジルアクリレート)、臭素化ポリフェニレンエーテルと臭素化ビスフェノールAと塩化シアヌールとの臭素化フェノールの縮合物、臭素化(ポリスチレン)、ポリ(臭素化スチレン)、架橋臭素化ポリスチレン等の臭素化ポリスチレン、架橋または非架橋臭素化ポリ(-メチルスチレン)等が挙げられる。
また、ヘキサブロモシクロドデカンなどの臭素化芳香環含有芳香族化合物以外の化合物であってもよい。
これら臭素含有難燃剤は、1種単独で使用してもよいし、2種以上を併用してもよい。
また、上記した中では、臭素化芳香環含有芳香族化合物が好ましく、中でも、エチレンビス(ペンタブロモフェニル)などのモノマー系有機臭素化合物が好ましい。
また、ヘキサブロモシクロドデカンなどの臭素化芳香環含有芳香族化合物以外の化合物であってもよい。
これら臭素含有難燃剤は、1種単独で使用してもよいし、2種以上を併用してもよい。
また、上記した中では、臭素化芳香環含有芳香族化合物が好ましく、中でも、エチレンビス(ペンタブロモフェニル)などのモノマー系有機臭素化合物が好ましい。
塩素含有難燃剤は、難燃性樹脂組成物に通常用いられるものが挙げられ、例えば、ポリ塩化ナフタレン、クロレンド酸、「デクロランプラス」の商品名で販売されるドデカクロロドデカヒドロジメタノジベンゾシクロオクテンなどが挙げられる。
<アンチモン含有難燃剤>
アンチモン含有難燃剤としては、例えば、酸化アンチモン、アンチモン酸塩、ピロアンチモン酸塩等が挙げられる。酸化アンチモンとしては、例えば、三酸化アンチモン、五酸化アンチモン等が挙げられる。アンチモン酸塩としては、例えば、アンチモン酸ナトリウム、アンチモン酸カリウム等が挙げられる。ピロアンチモン酸塩としては、例えば、ピロアンチモン酸ナトリウム、ピロアンチモン酸カリウム等が挙げられる。
アンチモン含有難燃剤は、一種単独で使用してもよいし、二種以上を併用してもよい。
本発明に使用するアンチモン含有難燃剤は、酸化アンチモンであることが好ましい。
アンチモン含有難燃剤としては、例えば、酸化アンチモン、アンチモン酸塩、ピロアンチモン酸塩等が挙げられる。酸化アンチモンとしては、例えば、三酸化アンチモン、五酸化アンチモン等が挙げられる。アンチモン酸塩としては、例えば、アンチモン酸ナトリウム、アンチモン酸カリウム等が挙げられる。ピロアンチモン酸塩としては、例えば、ピロアンチモン酸ナトリウム、ピロアンチモン酸カリウム等が挙げられる。
アンチモン含有難燃剤は、一種単独で使用してもよいし、二種以上を併用してもよい。
本発明に使用するアンチモン含有難燃剤は、酸化アンチモンであることが好ましい。
<ホウ素含有難燃剤>
本発明で使用するホウ素含有難燃剤としては、ホウ砂、酸化ホウ素、ホウ酸、ホウ酸塩等が挙げられる。酸化ホウ素としては、例えば、三酸化二ホウ素、三酸化ホウ素、二酸化二ホウ素、三酸化四ホウ素、五酸化四ホウ素等が挙げられる。
ホウ酸塩としては、例えば、アルカリ金属、アルカリ土類金属、周期表第4族、第12族、第13族の元素およびアンモニウムのホウ酸塩等が挙げられる。具体的には、ホウ酸リチウム、ホウ酸ナトリウム、ホウ酸カリウム、ホウ酸セシウム等のホウ酸アルカリ金属塩、ホウ酸マグネシウム、ホウ酸カルシウム、ホウ酸バリウム等のホウ酸アルカリ土類金属塩、ホウ酸ジルコニウム、ホウ酸亜鉛、ホウ酸アルミニウム、ホウ酸アンモニウム等が挙げられる。
ホウ素含有難燃剤は、一種単独で使用してもよいし、二種以上を併用してもよい。
本発明に使用するホウ素含有難燃剤は、ホウ酸塩であることが好ましく、ホウ酸亜鉛がより好ましい。
本発明で使用するホウ素含有難燃剤としては、ホウ砂、酸化ホウ素、ホウ酸、ホウ酸塩等が挙げられる。酸化ホウ素としては、例えば、三酸化二ホウ素、三酸化ホウ素、二酸化二ホウ素、三酸化四ホウ素、五酸化四ホウ素等が挙げられる。
ホウ酸塩としては、例えば、アルカリ金属、アルカリ土類金属、周期表第4族、第12族、第13族の元素およびアンモニウムのホウ酸塩等が挙げられる。具体的には、ホウ酸リチウム、ホウ酸ナトリウム、ホウ酸カリウム、ホウ酸セシウム等のホウ酸アルカリ金属塩、ホウ酸マグネシウム、ホウ酸カルシウム、ホウ酸バリウム等のホウ酸アルカリ土類金属塩、ホウ酸ジルコニウム、ホウ酸亜鉛、ホウ酸アルミニウム、ホウ酸アンモニウム等が挙げられる。
ホウ素含有難燃剤は、一種単独で使用してもよいし、二種以上を併用してもよい。
本発明に使用するホウ素含有難燃剤は、ホウ酸塩であることが好ましく、ホウ酸亜鉛がより好ましい。
<金属水酸化物>
本発明に使用する金属水酸化物としては、例えば、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム、水酸化鉄、水酸化ニッケル、水酸化ジルコニウム、水酸化チタン、水酸化亜鉛、水酸化銅、水酸化バナジウム、水酸化スズ等が挙げられる。金属水酸化物は、一種単独で使用してもよいし、二種以上を併用してもよい。
本発明に使用する金属水酸化物としては、例えば、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム、水酸化鉄、水酸化ニッケル、水酸化ジルコニウム、水酸化チタン、水酸化亜鉛、水酸化銅、水酸化バナジウム、水酸化スズ等が挙げられる。金属水酸化物は、一種単独で使用してもよいし、二種以上を併用してもよい。
固体難燃剤のポリオール組成物中の含有量は、フィラー割合が上記範囲内となるように適宜調整すればよいが、ポリオール化合物100質量部に対して、好ましくは5~100質量部であり、より好ましくは10~50質量部である。
固体難燃剤の含有量が上記下限値以上であると、得られるポリウレタン発泡体の収縮率を小さくすることができ、また難燃性を向上させることができる。固体難燃剤の含有量が上記上限値以下であると、ポリオール組成物の吐出性が良好になる。
固体難燃剤の含有量が上記下限値以上であると、得られるポリウレタン発泡体の収縮率を小さくすることができ、また難燃性を向上させることができる。固体難燃剤の含有量が上記上限値以下であると、ポリオール組成物の吐出性が良好になる。
<無機充填剤>
無機充填材としては、例えば、シリカ、珪藻土、アルミナ、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、フェライト類、塩基性炭酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ドーソナイト、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、石膏繊維、ケイ酸カルシウム、タルク、クレー、マイカ、ウォラストナイト、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカパルン、窒化アルミニウム、窒化ホウ素、窒化ケイ素、カーボンブラック、グラファイト、炭素繊維、炭素パルン、木炭粉末、各種金属粉、チタン酸カリウム、硫酸マグネシウム、チタン酸ジルコン酸鉛、アルミニウムポレート、硫化モリブデン、炭化ケイ素、ステンレス繊維、各種磁性粉、スラグ繊維、フライアッシュ、シリカアルミナ繊維、アルミナ繊維、シリカ繊維、及びジルコニア繊維等が挙げられる。これらの無機充填剤は、単独でも、2種以上を組み合わせて用いてもよい。
無機充填剤のポリオール組成物中の含有量は、フィラー割合が上記範囲内となるように適宜調整すればよいが、ポリオール化合物100質量部に対して、好ましくは5~150質量部であり、より好ましくは10~100質量部である。
無機充填剤の含有量が上記下限値以上であると、得られるポリウレタン発泡体の収縮率を小さくすることができる。無機充填剤の含有量が上記上限値以下であると、ポリオール組成物の吐出性が良好になる。
無機充填材としては、例えば、シリカ、珪藻土、アルミナ、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、フェライト類、塩基性炭酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ドーソナイト、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、石膏繊維、ケイ酸カルシウム、タルク、クレー、マイカ、ウォラストナイト、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカパルン、窒化アルミニウム、窒化ホウ素、窒化ケイ素、カーボンブラック、グラファイト、炭素繊維、炭素パルン、木炭粉末、各種金属粉、チタン酸カリウム、硫酸マグネシウム、チタン酸ジルコン酸鉛、アルミニウムポレート、硫化モリブデン、炭化ケイ素、ステンレス繊維、各種磁性粉、スラグ繊維、フライアッシュ、シリカアルミナ繊維、アルミナ繊維、シリカ繊維、及びジルコニア繊維等が挙げられる。これらの無機充填剤は、単独でも、2種以上を組み合わせて用いてもよい。
無機充填剤のポリオール組成物中の含有量は、フィラー割合が上記範囲内となるように適宜調整すればよいが、ポリオール化合物100質量部に対して、好ましくは5~150質量部であり、より好ましくは10~100質量部である。
無機充填剤の含有量が上記下限値以上であると、得られるポリウレタン発泡体の収縮率を小さくすることができる。無機充填剤の含有量が上記上限値以下であると、ポリオール組成物の吐出性が良好になる。
[ポリオール化合物]
本発明のポリオール組成物は、ポリウレタン発泡体の原料となるポリオール化合物を含有する。ポリオール化合物としては、例えば、ポリラクトンポリオール、ポリカーボネートポリオール、芳香族ポリオール、脂環族ポリオール、脂肪族ポリオール、ポリエステルポリオール、ポリマーポリオール、及びポリエーテルポリオール等が挙げられる。ポリオール化合物は、通常、常温(23℃)、常圧(1気圧)で液体となる。
本発明のポリオール組成物は、ポリウレタン発泡体の原料となるポリオール化合物を含有する。ポリオール化合物としては、例えば、ポリラクトンポリオール、ポリカーボネートポリオール、芳香族ポリオール、脂環族ポリオール、脂肪族ポリオール、ポリエステルポリオール、ポリマーポリオール、及びポリエーテルポリオール等が挙げられる。ポリオール化合物は、通常、常温(23℃)、常圧(1気圧)で液体となる。
ポリラクトンポリオールとしては、例えば、ポリプロピオラクトングリコール、ポリカプロラクトングリコール、及びポリバレロラクトングリコール等が挙げられる。
ポリカーボネートポリオールとしては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、及びノナンジオール等の水酸基含有化合物と、エチレンカーボネート、プロピレンカーボネート等との脱アルコール反応により得られるポリオール等が挙げられる。
ポリカーボネートポリオールとしては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、及びノナンジオール等の水酸基含有化合物と、エチレンカーボネート、プロピレンカーボネート等との脱アルコール反応により得られるポリオール等が挙げられる。
芳香族ポリオールとしては、例えば、ビスフェノールA、ビスフェノールF、フェノールノボラック、及びクレゾールノボラック等が挙げられる。
脂環族ポリオールとしては、例えば、シクロヘキサンジオール、メチルシクロヘキサンジオール、イソホロンジオール、ジシクロへキシルメタンジオール、及びジメチルジシクロへキシルメタンジオール等が挙げられる。
脂肪族ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、及びヘキサンジオール等のアルカンジオールが挙げられる。
脂環族ポリオールとしては、例えば、シクロヘキサンジオール、メチルシクロヘキサンジオール、イソホロンジオール、ジシクロへキシルメタンジオール、及びジメチルジシクロへキシルメタンジオール等が挙げられる。
脂肪族ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、及びヘキサンジオール等のアルカンジオールが挙げられる。
ポリエステルポリオールとしては、例えば、多塩基酸と多価アルコールとを脱水縮合して得られる重合体、ε-カプロラクトン、及びα-メチル-ε-カプロラクトン等のラクトンを開環重合して得られる重合体、及びヒドロキシカルボン酸と前記多価アルコール等との縮合物が挙げられる。
多塩基酸としては、例えば、アジピン酸、アゼライン酸、セバシン酸、イソフタル酸(m-フタル酸)、テレフタル酸(p-フタル酸)、及びコハク酸等が挙げられる。また、多価アルコールとしては、例えば、ビスフェノールA、エチレングリコール、1,2-プロピレングリコール、1,4-ブタンジオール、ジエチレングリコール、1,6-ヘキサングリコール、及びネオペンチルグリコール等が挙げられる。
また、ヒドロキシカルボン酸としては、例えば、ひまし油、ひまし油とエチレングリコールの反応生成物等が挙げられる。
多塩基酸としては、例えば、アジピン酸、アゼライン酸、セバシン酸、イソフタル酸(m-フタル酸)、テレフタル酸(p-フタル酸)、及びコハク酸等が挙げられる。また、多価アルコールとしては、例えば、ビスフェノールA、エチレングリコール、1,2-プロピレングリコール、1,4-ブタンジオール、ジエチレングリコール、1,6-ヘキサングリコール、及びネオペンチルグリコール等が挙げられる。
また、ヒドロキシカルボン酸としては、例えば、ひまし油、ひまし油とエチレングリコールの反応生成物等が挙げられる。
ポリマーポリオールとしては、例えば、芳香族ポリオール、脂環族ポリオール、脂肪族ポリオール、及びポリエステルポリオール等に対し、アクリロニトリル、スチレン、メチルアクリレート、及びメタクリレート等のエチレン性不飽和化合物をグラフト重合させた重合体、ポリブタジエンポリオール、及び多価アルコールの変性ポリオール又はこれらの水素添加物等が挙げられる。
多価アルコールの変性ポリオールとしては、例えば、原料の多価アルコールにアルキレンオキサイドを反応させて変性したもの等が挙げられる。
多価アルコールとしては、例えば、グリセリン及びトリメチロールプロパン等の三価アルコール、ペンタエリスリトール、ソルビトール、マンニトール、ソルビタン、ジグリセリン、ジペンタエリスリトール等、ショ糖、グルコース、マンノース、フルクト-ス、メチルグルコシド及びその誘導体等の四~八価のアルコール、フロログルシノール、クレゾール、ピロガロール、カテコ-ル、ヒドロキノン、ビスフェノールA、ビスフェノールF、ビスフェノールS、1,3,6,8-テトラヒドロキシナフタレン、及び1,4,5,8-テトラヒドロキシアントラセン等のポリオール、ひまし油ポリオール、ヒドロキシアルキル(メタ)アクリレートの(共)重合体及びポリビニルアルコール等の多官能(例えば官能基数2~100)ポリオール、フェノールとホルムアルデヒドとの縮合物(ノボラック)が挙げられる。
多価アルコールとしては、例えば、グリセリン及びトリメチロールプロパン等の三価アルコール、ペンタエリスリトール、ソルビトール、マンニトール、ソルビタン、ジグリセリン、ジペンタエリスリトール等、ショ糖、グルコース、マンノース、フルクト-ス、メチルグルコシド及びその誘導体等の四~八価のアルコール、フロログルシノール、クレゾール、ピロガロール、カテコ-ル、ヒドロキノン、ビスフェノールA、ビスフェノールF、ビスフェノールS、1,3,6,8-テトラヒドロキシナフタレン、及び1,4,5,8-テトラヒドロキシアントラセン等のポリオール、ひまし油ポリオール、ヒドロキシアルキル(メタ)アクリレートの(共)重合体及びポリビニルアルコール等の多官能(例えば官能基数2~100)ポリオール、フェノールとホルムアルデヒドとの縮合物(ノボラック)が挙げられる。
多価アルコールの変性方法は特に限定されないが、アルキレンオキサイド(以下、「AO」ともいう)を付加させる方法が好適に用いられる。AOとしては、炭素数2~6のAO、例えば、エチレンオキサイド(以下、「EO」ともいう)、1,2-プロピレンオキサイド(以下、「PO」ともいう)、1,3-プロピレオキサイド、1,2-ブチレンオキサイド、及び1,4-ブチレンオキサイド等が挙げられる。
これらの中でも性状や反応性の観点から、PO、EO及び1,2-ブチレンオキサイドが好ましく、PO及びEOがより好ましい。AOを2種以上使用する場合(例えば、PO及びEO)の付加方法としては、ブロック付加であってもランダム付加であってもよく、これらの併用であってもよい。
これらの中でも性状や反応性の観点から、PO、EO及び1,2-ブチレンオキサイドが好ましく、PO及びEOがより好ましい。AOを2種以上使用する場合(例えば、PO及びEO)の付加方法としては、ブロック付加であってもランダム付加であってもよく、これらの併用であってもよい。
ポリエーテルポリオ-ルとしては、例えば、活性水素を2個以上有する低分子量活性水素化合物等の少なくとも1種の存在下に、エチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン等のアルキレンオキサイドの少なくとも1種を開環重合させて得られる重合体が挙げられる。活性水素を2個以上有する低分子量活性水素化合物としては、例えば、ビスフェノールA、エチレングリコール、プロピレングリコール、ブチレングリコール、1,6-ヘキサンジオ-ル等のジオール類、グリセリン、トリメチロールプロパン等のトリオール類、エチレンジアミン、及びブチレンジアミン等のアミン類等が挙げられる。
本発明に使用するポリオール化合物としては、ポリエステルポリオール、及びポリエーテルポリオールが好ましい。中でも、イソフタル酸(m-フタル酸)、テレフタル酸(p-フタル酸)等の芳香族環を有する多塩基酸と、ビスフェノールA、エチレングリコール、及び1,2-プロピレングリコール等の2価アルコールとを脱水縮合して得られる芳香族系ポリエステルポリオールがより好ましい。また、水酸基を2個有するポリオールが好ましい。
ポリオール化合物の水酸基価は、20~300mgKOH/gが好ましく、30~250mgKOH/gがより好ましく、50~220mgKOH/gがさらに好ましい。ポリオール化合物の水酸基価が前記上限値以下であるとポリオール組成物の粘度が下がりやすく、取り扱い性等の観点で好ましい。一方、ポリオール化合物の水酸基価が前記下限値以上であるとポリウレタン発泡体の架橋密度が上がることにより強度が高くなる。
なお、ポリオール化合物の水酸基価は、JIS K 1557-1:2007に従って測定可能である。
なお、ポリオール化合物の水酸基価は、JIS K 1557-1:2007に従って測定可能である。
本発明のポリオール組成物中のポリオール化合物の含有量は、好ましくは10~80質量%、より好ましくは20~75質量%、更に好ましくは25~70質量%である。ポリオール化合物の含有量が前記下限値以上であるとポリオールとポリイソシアネートとを反応させやすくなるため好ましい。一方、ポリオール化合物の含有量が前記上限値以下であると、ポリオール含有組成物の粘度が高くなりすぎないため取扱い性の観点で好ましい。
[触媒]
本発明におけるポリオール組成物は、触媒を含有する。触媒としては、三量化触媒及び樹脂化触媒の少なくとも一方を含有することが好ましく、三量化触媒及び樹脂化触媒の両方を含有することがより好ましい。これら両方の触媒を用いて製造されたポリオール発泡体は、収縮率が低くなりやすく好ましい。
本発明におけるポリオール組成物は、触媒を含有する。触媒としては、三量化触媒及び樹脂化触媒の少なくとも一方を含有することが好ましく、三量化触媒及び樹脂化触媒の両方を含有することがより好ましい。これら両方の触媒を用いて製造されたポリオール発泡体は、収縮率が低くなりやすく好ましい。
三量化触媒は、ポリイソシアネート化合物に含まれるイソシアネート基を反応させて三量化させ、イソシアヌレート環の生成を促進する触媒である。三量化触媒としては、トリス(ジメチルアミノメチル)フェノール、2,4-ビス(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジアルキルアミノアルキル)ヘキサヒドロ-S-トリアジン等の窒素含有芳香族化合物、酢酸カリウム、2-エチルヘキサン酸カリウム、オクチル酸カリウム等のカルボン酸アルカリ金属塩、トリメチルアンモニウム塩、トリエチルアンモニウム塩、トリフェニルアンモニウム塩等の3級アンモニウム塩、テトラメチルアンモニウム塩、テトラエチルアンモニウム、テトラフェニルアンモニウム塩、トリエチルモノメチルアンモニウム塩等の4級アンモニウム塩等を使用できる。アンモニウム塩としては、2,2-ジメチルプロパン酸などカルボン酸のアンモニウム塩が挙げられ、より具体的にはカルボン酸4級アンモニウム塩が挙げられる。
これらは1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中では、カルボン酸アルカリ金属塩、カルボン酸4級アンモニウム塩から選択される1種又は2種以上が好ましく、中でもカルボン酸4級アンモニウム塩がより好ましい。
これらは1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中では、カルボン酸アルカリ金属塩、カルボン酸4級アンモニウム塩から選択される1種又は2種以上が好ましく、中でもカルボン酸4級アンモニウム塩がより好ましい。
三量化触媒の配合量は、ポリオール化合物100質量部に対して、1~25質量部が好ましく、2~18質量部がより好ましく、3~15質量部が更に好ましい。三量化触媒の配合量がこれら下限値以上であるとポリイソシアネート化合物の三量化が起こりやすくなり、得られるポリウレタンフォームの難燃性が向上する。一方、三量化触媒の配合量が前記上限値以下であると反応の制御がし易くなる。
樹脂化触媒は、ポリオール化合物とポリイソシアネート化合物との反応を促進させる触媒である。樹脂化触媒としては、イミダゾール化合物、ピペラジン化合物などのアミン系触媒、金属系触媒などが挙げられる。
イミダゾール化合物としては、イミダゾール環の1位の第2級アミンをアルキル基、アルケニル基などで置換し3級アミンが挙げられる。具体的には、N-メチルイミダゾール、1,2-ジメチルイミダゾール、1-エチル-2-メチルイミダゾール、1-メチル-2-エチルイミダゾール、1,2-ジエチルイミダゾール、及び1-イソブチル-2-メチルイミダゾールなどが挙げられる。また、イミダゾール環中の第2級アミンをシアノエチル基で置換したイミダゾール化合物などでもよい。
また、ピペラジン化合物として、N-メチル-N’N’-ジメチルアミノエチルピペラジン、トリメチルアミノエチルピペラジンなどの3級アミンが挙げられる。
また、樹脂化触媒としては、イミダゾール化合物、ピペラジン化合物以外にも、ペンタメチルジエチレントリアミン、トリエチルアミン、N-メチルモルホリンビス(2-ジメチルアミノエチル)エーテル、N,N,N’,N”,N”-ペンタメチルジエチレントリアミン、N,N,N’-トリメチルアミノエチル-エタノールアミン、ビス(2-ジメチルアミノエチル)エーテル、N,N-ジメチルシクロヘキシルアミン、ジアザビシクロウンデセン、トリエチレンジアミン、テトラメチルヘキサメチレンジアミン、トリプロピルアミン等の各種の3級アミンなどが挙げられる。
イミダゾール化合物としては、イミダゾール環の1位の第2級アミンをアルキル基、アルケニル基などで置換し3級アミンが挙げられる。具体的には、N-メチルイミダゾール、1,2-ジメチルイミダゾール、1-エチル-2-メチルイミダゾール、1-メチル-2-エチルイミダゾール、1,2-ジエチルイミダゾール、及び1-イソブチル-2-メチルイミダゾールなどが挙げられる。また、イミダゾール環中の第2級アミンをシアノエチル基で置換したイミダゾール化合物などでもよい。
また、ピペラジン化合物として、N-メチル-N’N’-ジメチルアミノエチルピペラジン、トリメチルアミノエチルピペラジンなどの3級アミンが挙げられる。
また、樹脂化触媒としては、イミダゾール化合物、ピペラジン化合物以外にも、ペンタメチルジエチレントリアミン、トリエチルアミン、N-メチルモルホリンビス(2-ジメチルアミノエチル)エーテル、N,N,N’,N”,N”-ペンタメチルジエチレントリアミン、N,N,N’-トリメチルアミノエチル-エタノールアミン、ビス(2-ジメチルアミノエチル)エーテル、N,N-ジメチルシクロヘキシルアミン、ジアザビシクロウンデセン、トリエチレンジアミン、テトラメチルヘキサメチレンジアミン、トリプロピルアミン等の各種の3級アミンなどが挙げられる。
金属系触媒としては、鉛、錫、ビスマス、銅、亜鉛、コバルト、ニッケルなどからなる金属塩が挙げられ、好ましくは鉛、錫、ビスマス、銅、亜鉛、コバルト、ニッケルなどからなる有機酸金属塩である。より好ましくはジブチル錫ジラウレート、ジオクチル錫ジラウレート、ジオクチル錫バーサテート、ビスマストリオクテート、ビスマストリス(2-エチルへキサノエート)、ジオクチル酸スズ、ジオクチル酸鉛などが挙げられ、中でも有機酸ビスマス塩がさらに好ましい。
樹脂化触媒は、1種単独で使用してもよいし、2種以上を併用してもよい。また、上記した中では、イミダゾール化合物及び有機酸ビスマス塩から選択される1種又は2種以上を使用することが好ましく、これら両方を使用する態様も好ましい。
樹脂化触媒は、1種単独で使用してもよいし、2種以上を併用してもよい。また、上記した中では、イミダゾール化合物及び有機酸ビスマス塩から選択される1種又は2種以上を使用することが好ましく、これら両方を使用する態様も好ましい。
樹脂化触媒の配合量は、ポリオール化合物100質量部に対して、1~25質量部が好ましく、2~18質量部がより好ましく、3~12質量部が更に好ましい。樹脂化触媒の配合量がこれら下限値以上であるとウレタン結合が形成しやすくなり、反応が速やかに進行する。一方、これら上限値以下であると、反応速度が制御しやすくなる。
触媒として、三量化触媒と樹脂化触媒とを併用する場合は、三量化触媒に対する樹脂化触媒の量(樹脂化触媒の量/三量化触媒の量)は、得られるポリウレタン発泡体の収縮率を小さくする観点から、好ましくは0.2~10であり、より好ましくは0.5~2である。
また、ポリオール組成物における触媒の合計量は、特に限定されないが、好ましくは2~40質量部、より好ましくは4~25質量部、さらに好ましくは5~20質量部である。これら下限値以上であると、ウレタン結合の形成と三量化が適切に進行して、難燃性が良好となりやい。また、これら上限値以下とすると、ウレタン化及び三量化反応の制御が容易となる。
[液状難燃剤]
本発明におけるポリオール組成物は、液状難燃剤を含有してもよい。液状難燃剤とは、常温、常圧にて液体となる難燃剤である。液状難燃剤の具体例としては、リン酸エステルが挙げられる。ポリオール組成物に液状難燃剤を含有させることで、吐出流速、混合性などを殆ど低下させることなく、難燃性をより向上させやすくなる。
本発明におけるポリオール組成物は、液状難燃剤を含有してもよい。液状難燃剤とは、常温、常圧にて液体となる難燃剤である。液状難燃剤の具体例としては、リン酸エステルが挙げられる。ポリオール組成物に液状難燃剤を含有させることで、吐出流速、混合性などを殆ど低下させることなく、難燃性をより向上させやすくなる。
リン酸エステルとしては、モノリン酸エステル、縮合リン酸エステル等を使用できる。モノリン酸エステルとは、分子中にリン原子を1つ有するリン酸エステルである。モノリン酸エステルとしては、常温、常圧で液体のものであれば限定されないが、例えば、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリ(2-エチルヘキシル)ホスフェートなどのトリアルキルホスフェート、トリス(β-クロロプロピル)ホスフェートなどのハロゲン含有リン酸エステル、トリブトキシエチルホスフェートなどのトリアルコキシホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、トリス(イソプロピルフェニル)ホスフェート、クレジルジフェニルホスフェート、ジフェニル(2-エチルヘキシル)ホスフェートなどの芳香環含有リン酸エステル、モノイソデシルホスフェート、ジイソデシルホスフェートなどの酸性リン酸エステル等が挙げられる。
縮合リン酸エステルとしては、例えば、トリアルキルポリホスフェート、レゾルシノールポリフェニルホスフェート、ビスフェノールAポリクレジルホスフェート、ビスフェノールAポリフェニルホスフェートなどの芳香族縮合リン酸エステルが挙げられる。
縮合リン酸エステルの市販品としては、例えば、大八化学工業株式会社製の「CR-733S」、「CR-741」、「CR747」、ADEKA社製の「アデカスタブPFR」、「FP-600」等が挙げられる。
縮合リン酸エステルの市販品としては、例えば、大八化学工業株式会社製の「CR-733S」、「CR-741」、「CR747」、ADEKA社製の「アデカスタブPFR」、「FP-600」等が挙げられる。
液状難燃剤は、上記したものの中から1種単独で使用してもよいし、2種以を併用してもよい。これらの中でも、ポリオール化合物の粘度を適切にしやすくする観点、及びポリウレタンフォームの難燃性を向上させる観点から、モノリン酸エステルが好ましく、トリス(β-クロロプロピル)ホスフェートなどのハロゲン含有リン酸エステルがより好ましい。
ポリオール組成物が液状難燃剤を含有する場合、液状難燃剤の配合量は、ポリオール化合物100質量部に対して、5~70質量部が好ましく、10~60質量部がより好ましく、20~50質量部がさらに好ましい。液状難燃剤の配合量をこれら下限値以上とすることで、液状難燃剤を含有させる効果を発揮しやすくなる。また、上限値以下とすることで、液状難燃剤によって、ポリウレタン発泡体の発泡が阻害さたりすることもない。
[整泡剤]
本発明のポリオール組成物は、整泡剤を含有してもよい。整泡剤は、ポリオール組成物とポリイソシアネート組成物とから得られるポリウレタン組成物の発泡性を向上させる。
整泡剤としては、例えば、ポリオキシアルキレンアルキルエーテル等のポリオキシアルキレン系整泡剤、オルガノポリシロキサン等のシリコーン系整泡剤等の界面活性剤等が挙げられる。これらの整泡剤は、単独で使用してもよいし、2種以上を組み合わせて用いてもよい。
整泡剤の配合量は、ポリオール化合物100質量部に対して、0.1~10質量部が好ましく、0.5~8質量部がより好ましく、1~5質量部が更に好ましい。整泡剤の配合量がこれら下限値以上であるとポリウレタン組成物を発泡させやすくなり、均質なポリウレタン発泡体を得やすくなる。また、整泡剤の配合量がこれら上限値以下であると製造コストと得られる効果のバランスが良好になる。
本発明のポリオール組成物は、整泡剤を含有してもよい。整泡剤は、ポリオール組成物とポリイソシアネート組成物とから得られるポリウレタン組成物の発泡性を向上させる。
整泡剤としては、例えば、ポリオキシアルキレンアルキルエーテル等のポリオキシアルキレン系整泡剤、オルガノポリシロキサン等のシリコーン系整泡剤等の界面活性剤等が挙げられる。これらの整泡剤は、単独で使用してもよいし、2種以上を組み合わせて用いてもよい。
整泡剤の配合量は、ポリオール化合物100質量部に対して、0.1~10質量部が好ましく、0.5~8質量部がより好ましく、1~5質量部が更に好ましい。整泡剤の配合量がこれら下限値以上であるとポリウレタン組成物を発泡させやすくなり、均質なポリウレタン発泡体を得やすくなる。また、整泡剤の配合量がこれら上限値以下であると製造コストと得られる効果のバランスが良好になる。
[水]
本発明におけるポリオール組成物は、水を含有してもよい。水を含有することで、ポリウレタン発泡体を形成するときの発泡性が良好となる。水の配合量は、ポリオール化合物100質量部に対して、例えば0.1~10質量部、好ましくは0.2~5質量部、より好ましくは0.3~3質量部である。水の配合量をこれら範囲内とすることで、ポリウレタン組成物を適切に発泡しやすくなる。
本発明におけるポリオール組成物は、水を含有してもよい。水を含有することで、ポリウレタン発泡体を形成するときの発泡性が良好となる。水の配合量は、ポリオール化合物100質量部に対して、例えば0.1~10質量部、好ましくは0.2~5質量部、より好ましくは0.3~3質量部である。水の配合量をこれら範囲内とすることで、ポリウレタン組成物を適切に発泡しやすくなる。
[その他の成分]
ポリオール組成物は、本発明の目的を損なわない範囲で、必要に応じて、フェノール系、アミン系、イオウ系等の酸化防止剤、沈降防止剤、熱安定剤、金属害防止剤、帯電防止剤、安定剤、架橋剤、滑剤、軟化剤、顔料、粘着付与樹脂等の添加剤、ポリブテン、石油樹脂等の粘着付与剤を含むことができる。
ポリオール組成物は、本発明の目的を損なわない範囲で、必要に応じて、フェノール系、アミン系、イオウ系等の酸化防止剤、沈降防止剤、熱安定剤、金属害防止剤、帯電防止剤、安定剤、架橋剤、滑剤、軟化剤、顔料、粘着付与樹脂等の添加剤、ポリブテン、石油樹脂等の粘着付与剤を含むことができる。
[容器]
本発明の容器は、上記したポリオール組成物を封入した容器である。該容器は、低沸点化合物の蒸気圧によりポリオール組成物を吐出させることが可能であれば特に制限されず、エアゾール容器であることが好ましい。エアゾール容器は、例えば、ポリオール組成物が充填される容器本体と、容器本体の上部をシールするキャップ部を備え、キャップ部に設けられたボタンなどが押されることで弁などが開いて内圧が開放され、低沸点化合物の蒸気圧によりキャップ部に設けられた吐出口からポリオール組成物が吐出する。
容器内にポリオール組成物を封入する方法は特に限定されないが、低沸点化合物以外の各成分をディスパーなどを用いて必要に応じて混合した後、容器内部に充填して容器を密閉し、次いで低沸点化合物を充填する。低沸点化合物の充填は、例えば、容器のキャップ部に備えられた弁を開けて、低沸点化合物を容器内部に注入することで行うことができる。
本発明の容器は、上記したポリオール組成物を封入した容器である。該容器は、低沸点化合物の蒸気圧によりポリオール組成物を吐出させることが可能であれば特に制限されず、エアゾール容器であることが好ましい。エアゾール容器は、例えば、ポリオール組成物が充填される容器本体と、容器本体の上部をシールするキャップ部を備え、キャップ部に設けられたボタンなどが押されることで弁などが開いて内圧が開放され、低沸点化合物の蒸気圧によりキャップ部に設けられた吐出口からポリオール組成物が吐出する。
容器内にポリオール組成物を封入する方法は特に限定されないが、低沸点化合物以外の各成分をディスパーなどを用いて必要に応じて混合した後、容器内部に充填して容器を密閉し、次いで低沸点化合物を充填する。低沸点化合物の充填は、例えば、容器のキャップ部に備えられた弁を開けて、低沸点化合物を容器内部に注入することで行うことができる。
容器からポリオール組成物を吐出する際には、ポリオール組成物を構成する各成分が均一に混合されている状態で吐出する。ポリオール組成物を構成する各成分を均一に混合するために、吐出前に容器を十分に振盪するとよい。容器の振盪は、例えば容器を手で持って上下に振ることにより行うことができる。ポリオール組成物を均一に混合する方法は、前記した方法に限定されるものではない。また、吐出する際の容器の温度は、例えば10℃以上40℃以下が好ましい。10℃以上であると、液温が一定程度高いため吐出が良好となり、40℃以下であると容器の破裂などが防止される。
[ポリウレタン組成物]
本発明のポリウレタン組成物は、上記した容器から吐出されたポリオール組成物と、ポリイソシアネート化合物を含有するポリイソシアネート組成物とを備える。すなわち、上記した本発明のポリオール組成物は、2液型ポリウレタンのポリオール組成物として使用するものであって、ポリイソシアネート化合物を含有するポリイソシアネート組成物と混合させポリウレタン組成物として使用する。ポリオール組成物とポリイソシアネート組成物とは、後述するようにイソシアネートインデックスが所定の範囲になる質量割合で混合させるとよい。
ポリオール組成物とポリイソシアネート組成物とを混合して得られたポリウレタン組成物は、反応し、かつ上記したポリオール組成物に含有される低沸点化合物、又は後述するポリイソシアネート組成物に含有される低沸点化合物などによって、発泡することでポリウレタン発泡体となる。
本発明のポリウレタン組成物は、上記した容器から吐出されたポリオール組成物と、ポリイソシアネート化合物を含有するポリイソシアネート組成物とを備える。すなわち、上記した本発明のポリオール組成物は、2液型ポリウレタンのポリオール組成物として使用するものであって、ポリイソシアネート化合物を含有するポリイソシアネート組成物と混合させポリウレタン組成物として使用する。ポリオール組成物とポリイソシアネート組成物とは、後述するようにイソシアネートインデックスが所定の範囲になる質量割合で混合させるとよい。
ポリオール組成物とポリイソシアネート組成物とを混合して得られたポリウレタン組成物は、反応し、かつ上記したポリオール組成物に含有される低沸点化合物、又は後述するポリイソシアネート組成物に含有される低沸点化合物などによって、発泡することでポリウレタン発泡体となる。
<ポリイソシアネート組成物>
ポリイソシアネート組成物は、ポリイソシアネート化合物を含有する。ポリイソシアネート化合物としては、ポリウレタン発泡体の形成に使用する公知のポリイソシアネート化合物を使用できる。ポリイソシアネート化合物としては、例えば、芳香族ポリイソシアネート、脂環族ポリイソシアネート、及び脂肪族ポリイソシアネート等が挙げられる。
芳香族ポリイソシアネートとしては、例えば、フェニレンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ジメチルジフェニルメタンジイソシアネート、トリフェニルメタントリイソシアネート、ナフタレンジイソシアネート、及びポリメチレンポリフェニルポリイソシアネート(ポリメリックMDI)等が挙げられる。
ポリイソシアネート組成物は、ポリイソシアネート化合物を含有する。ポリイソシアネート化合物としては、ポリウレタン発泡体の形成に使用する公知のポリイソシアネート化合物を使用できる。ポリイソシアネート化合物としては、例えば、芳香族ポリイソシアネート、脂環族ポリイソシアネート、及び脂肪族ポリイソシアネート等が挙げられる。
芳香族ポリイソシアネートとしては、例えば、フェニレンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ジメチルジフェニルメタンジイソシアネート、トリフェニルメタントリイソシアネート、ナフタレンジイソシアネート、及びポリメチレンポリフェニルポリイソシアネート(ポリメリックMDI)等が挙げられる。
脂環族ポリイソシアネートとしては、例えば、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、及びジメチルジシクロヘキシルメタンジイソシアネート等が挙げられる。
脂肪族ポリイソシアネートとしては、例えば、メチレンジイソシアネート、エチレンジイソシアネート、プロピレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート等が挙げられる。
脂肪族ポリイソシアネートとしては、例えば、メチレンジイソシアネート、エチレンジイソシアネート、プロピレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート等が挙げられる。
これらの中でも、使いやすさの観点、及び入手容易性の観点から、芳香族ポリイソシアネートが好ましく、ジフェニルメタンジイソシアネート、ポリメリックMDI、又はこれらの混合物がより好ましい。ポリイソシアネートは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
ポリイソシアネート組成物は、通常、さらに低沸点化合物を含有する。低沸点化合物としては、上述したものを特に制限なく使用することができる。なお、ポリイソシアネート組成物で使用する低沸点化合物は、ポリオール組成物に使用する低沸点化合物と同じであってもよいし、異なっていてもよい。
ポリイソシアネート組成物中に含まれる低沸点化合物の割合としては5質量%以上20質量%未満であることが好ましく、7質量%以上15質量%未満であることがより好ましい。低沸点化合物が5質量%以上含まれることにより十分な吐出力が得られる。また、20質量%未満であることにより得られる発泡密度が低くなり過ぎず、適切な物性が得られる。
また、ポリイソシアネート組成物には、ポリイソシアネートに配合される公知の添加剤が適宜配合されてもよい。
ポリイソシアネート組成物中に含まれる低沸点化合物の割合としては5質量%以上20質量%未満であることが好ましく、7質量%以上15質量%未満であることがより好ましい。低沸点化合物が5質量%以上含まれることにより十分な吐出力が得られる。また、20質量%未満であることにより得られる発泡密度が低くなり過ぎず、適切な物性が得られる。
また、ポリイソシアネート組成物には、ポリイソシアネートに配合される公知の添加剤が適宜配合されてもよい。
<イソシアネートインデックス>
本発明のポリウレタン組成物のイソシアネートインデックスは、200以上が好ましい。イソシアネートインデックスが200以上であると、ポリオール化合物に対するポリイソシアネート化合物の量が過剰になりポリイソシアネートの三量化体によるイソシアヌレート結合が生成し易くなる結果、ポリウレタン発泡体の難燃性が向上する。難燃性をより向上させるために、イソシアネートインデックスは、250以上がより好ましく、340以上が更に好ましい。
また、イソシアネートインデックスは、1000以下が好ましく、650以下がさらに好ましく、500以下がよりさらに好ましい。イソシアネートインデックスがこれら上限値以下であると、得られるポリウレタン発泡体の難燃性と製造コストとのバランスが良好になる。
本発明のポリウレタン組成物のイソシアネートインデックスは、200以上が好ましい。イソシアネートインデックスが200以上であると、ポリオール化合物に対するポリイソシアネート化合物の量が過剰になりポリイソシアネートの三量化体によるイソシアヌレート結合が生成し易くなる結果、ポリウレタン発泡体の難燃性が向上する。難燃性をより向上させるために、イソシアネートインデックスは、250以上がより好ましく、340以上が更に好ましい。
また、イソシアネートインデックスは、1000以下が好ましく、650以下がさらに好ましく、500以下がよりさらに好ましい。イソシアネートインデックスがこれら上限値以下であると、得られるポリウレタン発泡体の難燃性と製造コストとのバランスが良好になる。
なお、イソシアネートインデックスは、以下の方法により計算することができる。
イソシアネートインデックス=ポリイソシアネートの当量数÷(ポリオールの当量数+水の当量数)×100
ここで、各当量数は以下のとおり計算することができる。
・ポリイソシアネートの当量数=ポリイソシアネートの使用量(g)×NCO含有量(質量%)/NCOの分子量(モル)×100
・ポリオールの当量数=OHV×ポリオールの使用量(g)÷KOHの分子量(ミリモル)
OHVはポリオールの水酸基価(mgKOH/g)である。
・水の当量数=水の使用量(g)/水の分子量(モル)×水のOH基の数
上記各式において、NCOの分子量は42(モル)、KOHの分子量は56100(ミリモル)、水の分子量は18(モル)、水のOH基の数は2とする。
イソシアネートインデックス=ポリイソシアネートの当量数÷(ポリオールの当量数+水の当量数)×100
ここで、各当量数は以下のとおり計算することができる。
・ポリイソシアネートの当量数=ポリイソシアネートの使用量(g)×NCO含有量(質量%)/NCOの分子量(モル)×100
・ポリオールの当量数=OHV×ポリオールの使用量(g)÷KOHの分子量(ミリモル)
OHVはポリオールの水酸基価(mgKOH/g)である。
・水の当量数=水の使用量(g)/水の分子量(モル)×水のOH基の数
上記各式において、NCOの分子量は42(モル)、KOHの分子量は56100(ミリモル)、水の分子量は18(モル)、水のOH基の数は2とする。
[混合システム]
本発明は、ポリオール組成物とポリイソシアネート組成物とを混合するための混合システムも提供する。図1に示すように、混合システム10は、ポリオール組成物が内部に封入された第1の容器11と、ポリイソシアネート組成物が内部に封入された第2の容器12とを備える。第1の容器11、12はいずれもエアゾール容器(スプレー缶)である。
第1の容器11に封入されたポリオール組成物は、ポリオール組成物に含有される低沸点化合物の蒸気圧により吐出される。第2の容器12に封入されたポリイソシアネート組成物は、ポリイソシアネート組成物に含有される低沸点化合物の蒸気圧により吐出される。なお、第1の容器11内部では、低沸点化合物は一部が気化して気相を形成する。第2の容器12内部においても同様である。
第1及び第2の容器11、12から吐出されたポリオール組成物及びポリイソシアネート組成物は、低沸点化合物などにより発泡されながら混合して、ポリイソシアネート化合物とポリオール化合物とが反応することで、ポリウレタン発泡体を形成する。
本発明は、ポリオール組成物とポリイソシアネート組成物とを混合するための混合システムも提供する。図1に示すように、混合システム10は、ポリオール組成物が内部に封入された第1の容器11と、ポリイソシアネート組成物が内部に封入された第2の容器12とを備える。第1の容器11、12はいずれもエアゾール容器(スプレー缶)である。
第1の容器11に封入されたポリオール組成物は、ポリオール組成物に含有される低沸点化合物の蒸気圧により吐出される。第2の容器12に封入されたポリイソシアネート組成物は、ポリイソシアネート組成物に含有される低沸点化合物の蒸気圧により吐出される。なお、第1の容器11内部では、低沸点化合物は一部が気化して気相を形成する。第2の容器12内部においても同様である。
第1及び第2の容器11、12から吐出されたポリオール組成物及びポリイソシアネート組成物は、低沸点化合物などにより発泡されながら混合して、ポリイソシアネート化合物とポリオール化合物とが反応することで、ポリウレタン発泡体を形成する。
混合システム10は、混合器13を備えるとよい。第1及び第2の容器11、12それぞれの吐出口11A、12Aは、供給ライン11B,12Bを介して混合器13に接続される。第1及び第2の容器11、12から吐出されたポリオール組成物及びポリイソシアネート組成物は、それぞれ供給ライン11B,12Bを介して混合器13に供給され、これらは混合器13にて混合される。混合器13で混合されたポリオール組成物とポリイソシアネート組成物は、噴射器などにより、施工対象面に吹き付けられるとよい。
混合器13は、いわゆるスタテックミキサーと呼ばれる静止型混合器であることが好ましい。静止型混合器は、駆動部のない混合器であって、流体が管体内部を通過することで、流体が混合されるものである。静止型混合器は、例えば、図1に示すように管体13Aの内部にミキサーエレメント13Bが配置されたものが挙げられる。ミキサーエレメント13Bとしては、螺旋状に形成されたもの、複数の邪魔板が形成されたものなどがある。
静止型混合器は、噴射器の機能を兼ね備えたものでもよく、その場合、図1に示すように管体13A内部で混合されたポリオール組成物とポリイソシアネート組成物の混合物を管体の先端13Cから噴射するとよい。なお、図1では、第1及び第2の容器11、12から吐出されたポリオール組成物及びポリイソシアネート組成物が混合器に導入される態様を示しているが、混合器に導入される前に、吐出用ガンや治具などを備えていてもよい。
静止型混合器は、噴射器の機能を兼ね備えたものでもよく、その場合、図1に示すように管体13A内部で混合されたポリオール組成物とポリイソシアネート組成物の混合物を管体の先端13Cから噴射するとよい。なお、図1では、第1及び第2の容器11、12から吐出されたポリオール組成物及びポリイソシアネート組成物が混合器に導入される態様を示しているが、混合器に導入される前に、吐出用ガンや治具などを備えていてもよい。
混合器に導入される前に、吐出用ガンを備えた態様の一例として、図2に混合システム20を示す。混合システム20は、第1の容器11と第2の容器12と、供給ライン11B及び12Bと、吐出用ガン14と、混合器13とを備える。第1の容器11と第2の容器12については上記説明したとおりであり、それぞれポリオール組成物、ポリイソシアネート組成物を収容している。第1及び第2の容器から、ポリオール組成物及びポリイソシアネート組成物が、それぞれ供給ライン11B、12Bを介して吐出用ガン14に送液される。吐出用ガン14はレバー14Aを備えており、送液のON-OFF機構を有する。具体的には、レバー14Aを引くと、ポリオール組成物及びポリイソシアネート組成物が混合器13に送液され、レバー14Aを離すと混合器13への送液が停止される。吐出用ガン14を備える混合システム20を用いることで、必要に応じて送液を行うことができるため、ポリウレタン発泡体を形成する際の作業性が向上する。
本発明のポリウレタン発泡体は、上記したポリウレタン組成物から形成される。本発明ポリウレタン発泡体は、上記したフィラーを含有するため、収縮率が低く、形状安定性に優れる。具体的には、ポリウレタン発泡体の収縮率は、好ましくは20%未満であり、より好ましくは10%未満である。
ポリウレタン発泡体の収縮率は、次のように求められる。発泡完了直後(製造直後)のポリウレタン発泡体を5cm角(縦5cm、横5cm、厚さ5cm)に切り出して、各辺の長さ(試験前長さ)を測定する。なお、各辺とは、切り出した発泡体のすべての辺(12個の辺)を意味する。その後、該切り出された発泡体を温度23℃、相対湿度50%で24時間放置した後、各辺の長さ(試験後長さ)を測定する。各辺の長さの変化率[100×(試験前の長さ-試験後の長さ)/試験前の長さ]を求め、各辺の長さの変化率の平均値(12個の辺の変化率の平均値)を収縮率とする。
ポリウレタン発泡体の収縮率は、次のように求められる。発泡完了直後(製造直後)のポリウレタン発泡体を5cm角(縦5cm、横5cm、厚さ5cm)に切り出して、各辺の長さ(試験前長さ)を測定する。なお、各辺とは、切り出した発泡体のすべての辺(12個の辺)を意味する。その後、該切り出された発泡体を温度23℃、相対湿度50%で24時間放置した後、各辺の長さ(試験後長さ)を測定する。各辺の長さの変化率[100×(試験前の長さ-試験後の長さ)/試験前の長さ]を求め、各辺の長さの変化率の平均値(12個の辺の変化率の平均値)を収縮率とする。
本発明では、ポリウレタン組成物から形成されるポリウレタン発泡体は、様々な用途で使用可能であるが、断熱材として使用することが好ましい。ポリウレタン発泡体は、多数の気泡を有するので、それにより断熱効果を有する。
ポリウレタン発泡体は、特に、乗り物または建築物の断熱材として使用することがより好ましい。乗り物としては、鉄道車輌、自動車、船舶、航空機などが挙げられる。
また、本発明では、エアゾール容器などの容器を用いて、簡単な構成で、ポリウレタン発泡体を形成できる。また、容器を用いて発泡体を形成できるため、施工対象面が比較的小さい場合に特に好適である。したがって、例えば、既設の耐熱材が劣化、損傷などした箇所に吹き付けて補修する補修用途に使用することが好ましい。勿論、そのような用途に限定されず、新設の耐熱材を形成するために使用してもよい。
ポリウレタン発泡体は、特に、乗り物または建築物の断熱材として使用することがより好ましい。乗り物としては、鉄道車輌、自動車、船舶、航空機などが挙げられる。
また、本発明では、エアゾール容器などの容器を用いて、簡単な構成で、ポリウレタン発泡体を形成できる。また、容器を用いて発泡体を形成できるため、施工対象面が比較的小さい場合に特に好適である。したがって、例えば、既設の耐熱材が劣化、損傷などした箇所に吹き付けて補修する補修用途に使用することが好ましい。勿論、そのような用途に限定されず、新設の耐熱材を形成するために使用してもよい。
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されない。
評価方法は、以下の通りである。
[低沸点化合物の割合]
ポリオール組成物における低沸点化合物割合は、以下の式(1)で算出した。
式(1) 低沸点化合物割合(%)=[(A-B)/C-1]×100
A:ポリオール組成物を吐出する前の容器の重量
B:容器を35℃に保温して、ポリオール組成物を10秒間吐出した後の容器の重量
C:ポリオール組成物を10秒間吐出した吐出物を、40℃で30分間放置して得た乾燥吐出物の重量。
[低沸点化合物の割合]
ポリオール組成物における低沸点化合物割合は、以下の式(1)で算出した。
式(1) 低沸点化合物割合(%)=[(A-B)/C-1]×100
A:ポリオール組成物を吐出する前の容器の重量
B:容器を35℃に保温して、ポリオール組成物を10秒間吐出した後の容器の重量
C:ポリオール組成物を10秒間吐出した吐出物を、40℃で30分間放置して得た乾燥吐出物の重量。
[フィラー割合]
ポリオール組成物におけるフィラー割合は、以下に示す式(2)により算出される。
式(2) フィラー割合(%)=(E/D)×100
D:容器を35℃に保温した後、該容器からポリオール組成物を10秒間吐出して得た吐出物を、40℃で30分乾燥させた後の重量
E:Dの乾燥後の吐出物をアセトンで希釈して吸引濾過を行い、得られた凝集物の重量
ポリオール組成物におけるフィラー割合は、以下に示す式(2)により算出される。
式(2) フィラー割合(%)=(E/D)×100
D:容器を35℃に保温した後、該容器からポリオール組成物を10秒間吐出して得た吐出物を、40℃で30分乾燥させた後の重量
E:Dの乾燥後の吐出物をアセトンで希釈して吸引濾過を行い、得られた凝集物の重量
[収縮率]
ポリウレタン発泡体の収縮率を以下の方法で算出した。発泡完了直後(製造直後)のポリウレタン発泡体を5cm角(縦5cm、横5cm、厚さ5cm)に切り出して、各辺の長さ(試験前長さ)を測定する。その後、該切り出された発泡体を温度23℃、相対湿度50%で24時間放置した後、各辺の長さ(試験後長さ)を測定した。各辺の長さの変化率[100×(試験前の長さ-試験後の長さ)/試験前の長さ]を求め、各辺の長さの変化率の平均値を収縮率とし、以下の基準で評価した。
A:収縮率が10%未満
B:収縮率が10%以上20%未満
C:収縮率が20%以上
ポリウレタン発泡体の収縮率を以下の方法で算出した。発泡完了直後(製造直後)のポリウレタン発泡体を5cm角(縦5cm、横5cm、厚さ5cm)に切り出して、各辺の長さ(試験前長さ)を測定する。その後、該切り出された発泡体を温度23℃、相対湿度50%で24時間放置した後、各辺の長さ(試験後長さ)を測定した。各辺の長さの変化率[100×(試験前の長さ-試験後の長さ)/試験前の長さ]を求め、各辺の長さの変化率の平均値を収縮率とし、以下の基準で評価した。
A:収縮率が10%未満
B:収縮率が10%以上20%未満
C:収縮率が20%以上
[吐出量]
ポリオール組成物を封入したエアゾール容器を35℃の温水に60分間浸漬した後、5秒間吐出させ、以下の式に基づいて吐出量を算出し、以下の基準に基づいて評価した。
吐出量(g)=吐出前のエアゾール容器の重量-吐出後のエアゾール容器の重量
A:吐出量が15g以上
B:吐出量が10g以上15g未満
C:吐出量が10g未満
ポリオール組成物を封入したエアゾール容器を35℃の温水に60分間浸漬した後、5秒間吐出させ、以下の式に基づいて吐出量を算出し、以下の基準に基づいて評価した。
吐出量(g)=吐出前のエアゾール容器の重量-吐出後のエアゾール容器の重量
A:吐出量が15g以上
B:吐出量が10g以上15g未満
C:吐出量が10g未満
実施例、比較例にて使用した成分は以下のとおりである。なお、表1に示す各成分の配合部数は、希釈物に関しては希釈物としての配合部数を示す。
ポリオール化合物:フタル酸ポリエステルポリオール(川崎化成工業社製、製品名:マキシモールRLK-087、水酸基価=200mgKOH/g)
樹脂化触媒:イミダゾール化合物(有効成分量65~75質量%、エチレングリコールによる希釈物、東ソー株式会社製、製品名:TOYOCAT-DM70)
三量化触媒:カルボン酸4級アンモニウム塩(有効成分量45~55質量%、エチレングリコールによる希釈物)(エボニック ジャパン株式会社、製品名:DABCO TMR-7)
三量化触媒:カルボン酸4級アンモニウム塩(有効成分量45~55質量%、エチレングリコールによる希釈物)(エボニック ジャパン株式会社、製品名:DABCO TMR-7)
フィラー1:ウォラストナイト(キンセイマテック社製 製品名:SH1250)
フィラー2:赤燐系難燃剤(燐化学工業株式会社製、製品名:ノーバエクセル140、金属水酸化物被覆、赤燐分94質量%以上)
フィラー3:臭素含有難燃剤、エチレンビス(ペンタブロモフェニル)(アルベマール社製、製品名:SAYTEX 8010)
フィラー4:ホウ素含有難燃剤(早川商事 「FIREBREAK ZB」)
整泡剤:ポリオキシアルキレン系整泡剤(東レダウコーニング社製、製品名SH-193)
低沸点化合物1:DME/LPG
DME(ジメチルエーテル)とLPGの混合物。混合比(質量比)は、DME/LPG=6/4 (岩谷瓦斯製 「LPG-D」) 沸点は0℃以下
DMEの沸点 -24℃
LPGを構成するプロパンの沸点:-42℃
LPGを構成するイソブタンの沸点:-11.7℃
LPGを構成するノルマルブタンの沸点:-0.5℃
低沸点化合物2:HFO
HFO-1234ze(ハネウエル社製、製品名:ソルティスGBA)
HFO-1234zeの沸点は、-19℃
低沸点化合物3:窒素
沸点-195.8℃
フィラー2:赤燐系難燃剤(燐化学工業株式会社製、製品名:ノーバエクセル140、金属水酸化物被覆、赤燐分94質量%以上)
フィラー3:臭素含有難燃剤、エチレンビス(ペンタブロモフェニル)(アルベマール社製、製品名:SAYTEX 8010)
フィラー4:ホウ素含有難燃剤(早川商事 「FIREBREAK ZB」)
整泡剤:ポリオキシアルキレン系整泡剤(東レダウコーニング社製、製品名SH-193)
低沸点化合物1:DME/LPG
DME(ジメチルエーテル)とLPGの混合物。混合比(質量比)は、DME/LPG=6/4 (岩谷瓦斯製 「LPG-D」) 沸点は0℃以下
DMEの沸点 -24℃
LPGを構成するプロパンの沸点:-42℃
LPGを構成するイソブタンの沸点:-11.7℃
LPGを構成するノルマルブタンの沸点:-0.5℃
低沸点化合物2:HFO
HFO-1234ze(ハネウエル社製、製品名:ソルティスGBA)
HFO-1234zeの沸点は、-19℃
低沸点化合物3:窒素
沸点-195.8℃
ポリイソシアネート化合物:4,4’-ジフェニルメタンジイソシアネート(4,4’-MDI)(万華化学ジャパン株式会社製、製品名:PM200)
実施例1
表1の配合に従い、低沸点化合物以外の成分を1000mlポリプロピレンビーカーに測りとり、ディスパーを用いて1500rpmで5分間混合させた後、エアゾール容器に移し、バキューム式クリンパーを用いて封入した後、さらに低沸点化合物を充填させ、内部にポリオール組成物が封入された第1のエアゾール容器を得た。なお、ポリオール組成物の充填量は、低沸点化合物以外のポリオール組成物が460g、低沸点化合物は表1の配合比率となるように充填した。該第1のエアゾール容器を用いて、上記した低沸点化合物割合、フィラー割合、吐出量を測定した。
別のエアゾール容器にポリイソシアネート化合物として4,4’-ジフェニルメタンジイソシアネート(4,4’-MDI、万華化学ジャパン株式会社製、製品名:PM200)を封入した後、さらに低沸点化合物(DME/LPG 質量比6/4)を充填させ、ポリイソシアネート組成物が封入された第2のエアゾール容器を得た。ポリイソシアネート組成物において、低沸点化合物の量は、ポリイソシアネート化合物420gに対して65gとした。
上記した第1のエアゾール容器、及び第2のエアゾール容器から、ポリオール組成物及びポリイソシアネート組成物をそれぞれ吐出し、これらをスタティックミキサーで混合して、ポリウレタン組成物を得て、その先端から噴射することで、石膏ボード上に吹き付けてポリウレタン発泡体を得た。各評価結果を表1に示す。
表1の配合に従い、低沸点化合物以外の成分を1000mlポリプロピレンビーカーに測りとり、ディスパーを用いて1500rpmで5分間混合させた後、エアゾール容器に移し、バキューム式クリンパーを用いて封入した後、さらに低沸点化合物を充填させ、内部にポリオール組成物が封入された第1のエアゾール容器を得た。なお、ポリオール組成物の充填量は、低沸点化合物以外のポリオール組成物が460g、低沸点化合物は表1の配合比率となるように充填した。該第1のエアゾール容器を用いて、上記した低沸点化合物割合、フィラー割合、吐出量を測定した。
別のエアゾール容器にポリイソシアネート化合物として4,4’-ジフェニルメタンジイソシアネート(4,4’-MDI、万華化学ジャパン株式会社製、製品名:PM200)を封入した後、さらに低沸点化合物(DME/LPG 質量比6/4)を充填させ、ポリイソシアネート組成物が封入された第2のエアゾール容器を得た。ポリイソシアネート組成物において、低沸点化合物の量は、ポリイソシアネート化合物420gに対して65gとした。
上記した第1のエアゾール容器、及び第2のエアゾール容器から、ポリオール組成物及びポリイソシアネート組成物をそれぞれ吐出し、これらをスタティックミキサーで混合して、ポリウレタン組成物を得て、その先端から噴射することで、石膏ボード上に吹き付けてポリウレタン発泡体を得た。各評価結果を表1に示す。
実施例2~13、比較例1~3
ポリオール組成物の組成を表1に記載したとおり変更した以外は、実施例1と同様にして、第1のエアゾール容器、第2のエアゾール容器を作製して、ポリウレタン発泡体を得た。各評価結果を表1に示す。
ポリオール組成物の組成を表1に記載したとおり変更した以外は、実施例1と同様にして、第1のエアゾール容器、第2のエアゾール容器を作製して、ポリウレタン発泡体を得た。各評価結果を表1に示す。
以上の各実施例は、低沸点化合物割合が一定範囲の本発明のポリオール組成物を封入した容器を用いた例であり、吐出量に優れ、かつ得られるポリウレタン発泡体の収縮率が小さくなることが分かった。
これに対して、比較例1は、フィラーを含まないポリオール組成物を封入した容器を用いた例であり、得られたポリウレタン発泡体の収縮率が大きくなった。比較例2は、低沸点化合物割合が少ないポリオール組成物を封入した容器を用いた例であり、吐出量が少ない結果となった。比較例3は触媒を含まないポリオール組成物を封入した容器を用いた例であり、ポリウレタン発泡体が形成されず、収縮率の評価ができなかった。
これに対して、比較例1は、フィラーを含まないポリオール組成物を封入した容器を用いた例であり、得られたポリウレタン発泡体の収縮率が大きくなった。比較例2は、低沸点化合物割合が少ないポリオール組成物を封入した容器を用いた例であり、吐出量が少ない結果となった。比較例3は触媒を含まないポリオール組成物を封入した容器を用いた例であり、ポリウレタン発泡体が形成されず、収縮率の評価ができなかった。
10 混合システム
11 第1の容器
12 第2の容器
11A、12A 吐出口
11B,12B 供給ライン
13 混合器
13A 管体
13B ミキサーエレメント
13C 先端
14 吐出用ガン
14A レバー
20 混合システム
11 第1の容器
12 第2の容器
11A、12A 吐出口
11B,12B 供給ライン
13 混合器
13A 管体
13B ミキサーエレメント
13C 先端
14 吐出用ガン
14A レバー
20 混合システム
Claims (8)
- ポリオール化合物、フィラー、触媒、及び低沸点化合物を含み、下記式(1)で算出される低沸点化合物割合が5~30%であるポリオール組成物を封入した容器。
式(1) 低沸点化合物割合(%)=[(A-B)/C-1]×100
A:ポリオール組成物を吐出する前の容器の重量
B:容器を35℃に保温して、均一に混合された状態でポリオール組成物を10秒間吐出した後の容器の重量
C:ポリオール組成物を10秒間吐出した吐出物を、40℃で30分間乾燥させた後の重量 - 前記ポリオール組成物の下記式(2)で算出されるフィラー割合が5~80%である、請求項1に記載の容器。
式(2) フィラー割合(%)=(E/D)×100
D:容器を35℃に保温した後、該容器から均一に混合された状態でポリオール組成物を10秒間吐出して得た吐出物を、40℃で30分乾燥させた後の重量
E:Dの乾燥後の吐出物をアセトンで希釈して吸引濾過を行い、得られた凝集物の重量 - 前記触媒が、樹脂化触媒及び三量化触媒を含む、請求項1又は2に記載の容器。
- エアゾール容器である、請求項1~3のいずれかに記載の容器。
- 請求項1~4のいずれかに記載の容器から吐出されたポリオール組成物と、ポリイソシアネート化合物を含むポリイソシアネート組成物とを備える、ポリウレタン組成物。
- イソシアネートインデックスが200~1000である請求項5に記載のポリウレタン組成物。
- 請求項6に記載のポリウレタン組成物から形成される、ポリウレタン発泡体。
- 収縮率が20%未満である、請求項7に記載のポリウレタン発泡体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021520620A JPWO2021193872A1 (ja) | 2020-03-25 | 2021-03-25 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020054981 | 2020-03-25 | ||
JP2020-054981 | 2020-03-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021193872A1 true WO2021193872A1 (ja) | 2021-09-30 |
Family
ID=77890709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/012726 WO2021193872A1 (ja) | 2020-03-25 | 2021-03-25 | ポリオール組成物を封入した容器、ポリウレタン組成物、及びポリウレタン発泡体 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2021193872A1 (ja) |
WO (1) | WO2021193872A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022071447A1 (ja) * | 2020-10-02 | 2022-04-07 | 積水化学工業株式会社 | 混合システム |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06128404A (ja) * | 1992-10-15 | 1994-05-10 | Koike Kagaku Kk | 硬質ポリウレタンフォーム用2液型エアゾール組成物および硬質ポリウレタンフォームの製造方法 |
JP2005350666A (ja) * | 2004-05-14 | 2005-12-22 | Asahi Glass Co Ltd | 硬質発泡合成樹脂の製造方法 |
JP2006169474A (ja) * | 2004-12-20 | 2006-06-29 | Mitsui Kagaku Sanshi Kk | 硬質ポリウレタンフォーム用2液型エアゾール組成物 |
JP2016124912A (ja) * | 2014-12-26 | 2016-07-11 | 三洋化成工業株式会社 | 樹脂製造用活性水素含有組成物およびフォームの製造方法 |
JP2018502211A (ja) * | 2015-01-12 | 2018-01-25 | エフオーエムオー、プロダクツ、インク | ポリウレタンフォームにおけるオレフィン系気体状噴射剤の貯蔵寿命を延長するための方法 |
CN109485903A (zh) * | 2018-11-27 | 2019-03-19 | 北京启顺京腾科技有限责任公司 | 一种三元发泡剂组合物及其在家电用聚氨酯材料中的应用 |
JP2020090582A (ja) * | 2018-12-04 | 2020-06-11 | 積水化学工業株式会社 | 混合液剤、ポリウレタン組成物、コーキングガン用カートリッジ容器、スプレー用耐圧容器及び混合システム |
JP2020128459A (ja) * | 2019-02-07 | 2020-08-27 | 旭有機材株式会社 | ポリウレタンフォームの製造方法 |
-
2021
- 2021-03-25 WO PCT/JP2021/012726 patent/WO2021193872A1/ja active Application Filing
- 2021-03-25 JP JP2021520620A patent/JPWO2021193872A1/ja not_active Withdrawn
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06128404A (ja) * | 1992-10-15 | 1994-05-10 | Koike Kagaku Kk | 硬質ポリウレタンフォーム用2液型エアゾール組成物および硬質ポリウレタンフォームの製造方法 |
JP2005350666A (ja) * | 2004-05-14 | 2005-12-22 | Asahi Glass Co Ltd | 硬質発泡合成樹脂の製造方法 |
JP2006169474A (ja) * | 2004-12-20 | 2006-06-29 | Mitsui Kagaku Sanshi Kk | 硬質ポリウレタンフォーム用2液型エアゾール組成物 |
JP2016124912A (ja) * | 2014-12-26 | 2016-07-11 | 三洋化成工業株式会社 | 樹脂製造用活性水素含有組成物およびフォームの製造方法 |
JP2018502211A (ja) * | 2015-01-12 | 2018-01-25 | エフオーエムオー、プロダクツ、インク | ポリウレタンフォームにおけるオレフィン系気体状噴射剤の貯蔵寿命を延長するための方法 |
CN109485903A (zh) * | 2018-11-27 | 2019-03-19 | 北京启顺京腾科技有限责任公司 | 一种三元发泡剂组合物及其在家电用聚氨酯材料中的应用 |
JP2020090582A (ja) * | 2018-12-04 | 2020-06-11 | 積水化学工業株式会社 | 混合液剤、ポリウレタン組成物、コーキングガン用カートリッジ容器、スプレー用耐圧容器及び混合システム |
JP2020128459A (ja) * | 2019-02-07 | 2020-08-27 | 旭有機材株式会社 | ポリウレタンフォームの製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022071447A1 (ja) * | 2020-10-02 | 2022-04-07 | 積水化学工業株式会社 | 混合システム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021193872A1 (ja) | 2021-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7339888B2 (ja) | 混合液剤、ポリウレタン組成物、ポリウレタンフォーム、スプレー缶、及び混合システム | |
JP7463588B2 (ja) | 混合液剤、ポリウレタン組成物、コーキングガン用カートリッジ容器、スプレー用耐圧容器及び混合システム | |
JP6945714B2 (ja) | ポリウレタン組成物原料液剤、ポリウレタン組成物、及び混合システム | |
JP2022090067A (ja) | ポリウレタン組成物原料液剤、ポリウレタン組成物、及び混合吐出システム | |
WO2021193871A1 (ja) | ポリオール組成物、ポリウレタン組成物、及びポリウレタン発泡体 | |
WO2021193872A1 (ja) | ポリオール組成物を封入した容器、ポリウレタン組成物、及びポリウレタン発泡体 | |
WO2022059566A1 (ja) | ポリオール組成物、発泡性ポリウレタン組成物及びポリウレタンフォーム | |
JP7290992B2 (ja) | スプレー缶、ポリウレタン組成物、及び混合システム | |
JP7579135B2 (ja) | ポリオール組成物、混合システム及びポリウレタン発泡体 | |
WO2022071447A1 (ja) | 混合システム | |
JP2021155506A (ja) | ポリオール組成物、ポリウレタン組成物、及びポリウレタン発泡体 | |
JP2022114938A (ja) | 混合システム、及びポリウレタンフォーム | |
JP2022099912A (ja) | 混合システム及びポリウレタン発泡体 | |
JP7518709B2 (ja) | 混合システム及びポリウレタンフォームの製造方法 | |
JP7299826B2 (ja) | 積層構造体及び積層構造体の製造方法 | |
JP7490918B2 (ja) | ポリウレタンフォームの製造方法 | |
JP2024058840A (ja) | ポリオール組成物、ポリウレタン組成物、及びポリウレタン発泡体 | |
JP2024058841A (ja) | ポリオール組成物、ポリウレタン組成物、及びポリウレタン発泡体 | |
JP2024023087A (ja) | ポリオール組成物、ポリウレタン組成物、及びポリウレタン発泡体 | |
JP2021113066A (ja) | 吐出容器 | |
JP2023081650A (ja) | ポリオール組成物、混合システム及びポリウレタン発泡体 | |
JP2021127153A (ja) | パウチ状カートリッジ及び混合吐出システム | |
JP2024103691A (ja) | 充填用ポリオール液剤、充填用ポリウレタン組成物、及びポリウレタンフォーム | |
JP2024062254A (ja) | 吐出容器 | |
JP2022025989A (ja) | ポリウレタンフォームの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021520620 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21775407 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21775407 Country of ref document: EP Kind code of ref document: A1 |