[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021176813A1 - 2サイクル内燃エンジン及びエンジン作業機 - Google Patents

2サイクル内燃エンジン及びエンジン作業機 Download PDF

Info

Publication number
WO2021176813A1
WO2021176813A1 PCT/JP2020/048093 JP2020048093W WO2021176813A1 WO 2021176813 A1 WO2021176813 A1 WO 2021176813A1 JP 2020048093 W JP2020048093 W JP 2020048093W WO 2021176813 A1 WO2021176813 A1 WO 2021176813A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
air
injection valve
fuel injection
crank chamber
Prior art date
Application number
PCT/JP2020/048093
Other languages
English (en)
French (fr)
Inventor
祐則 野口
元一 佐藤
昌実 内田
Original Assignee
株式会社やまびこ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社やまびこ filed Critical 株式会社やまびこ
Priority to JP2022504985A priority Critical patent/JPWO2021176813A1/ja
Priority to US17/759,723 priority patent/US11946408B2/en
Priority to EP20922750.3A priority patent/EP4116551A4/en
Publication of WO2021176813A1 publication Critical patent/WO2021176813A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/02Engines with reciprocating-piston pumps; Engines with crankcase pumps
    • F02B33/04Engines with reciprocating-piston pumps; Engines with crankcase pumps with simple crankcase pumps, i.e. with the rear face of a non-stepped working piston acting as sole pumping member in co-operation with the crankcase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/14Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke
    • F02B25/16Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke the charge flowing upward essentially along cylinder wall opposite the inlet ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/04Pumps peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/14Arrangements of injectors with respect to engines; Mounting of injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a two-stroke internal combustion engine and an engine working machine powered by a two-cycle internal combustion engine.
  • Two-stroke internal combustion engines are often used as a power source for portable work machines such as brush cutters, chainsaws, and power blowers.
  • a carburetor produces an air-fuel mixture with fuel and air, and this air-fuel mixture is sucked into the crank chamber.
  • the two-stroke internal combustion engine has a scavenging passage that connects the crank chamber and the combustion chamber. When the piston operates in the cylinder, the air-fuel mixture precompressed in the crank chamber is introduced into the combustion chamber through the scavenging passage, and the scavenging is performed by this air-fuel mixture.
  • Two-stroke internal combustion engines have the well-known problem of "air-fuel mixture (fresh air) atrium". That is, the scavenging air-fuel mixture introduced into the combustion chamber is discharged as it is from the exhaust port of the cylinder.
  • the atrium of the air-fuel mixture is a waste of fuel and causes air pollution.
  • the intake passage of the vaporizer is divided into the air-fuel mixture passage and the air passage by a partition wall.
  • the structure becomes complicated due to the formation, the cost increases, and even if the partition wall is provided, the air-fuel mixture enters the air passage through the gap.
  • the air-fuel mixture passage and the air passage are formed separately from each other, but in that case, there are problems that the structure becomes complicated, the cost increases, and two throttle valves are required. be.
  • the present invention has been made in view of the above circumstances, and has two cycles in which it is possible to prevent the air-fuel mixture from blowing through during scavenging and to supply the air-fuel mixture suitable for the operating state of the engine to the combustion chamber. It seeks to provide an internal combustion engine.
  • the present invention also provides an engine working machine powered by the two-stroke internal combustion engine.
  • the two-cycle internal combustion engine includes a cylinder that defines a combustion chamber and has an exhaust port, an ignition device that ignites an air-fuel mixture in the combustion chamber, and combustion in the combustion chamber.
  • Fuel is supplied to the piston that reciprocates in the cylinder due to expansion, the crank chamber that communicates with the inside of the cylinder, the crankshaft that is arranged in the crank chamber and is operatively connected to the piston, and the crank chamber.
  • the fuel injection valve is provided with an intake passage for sucking only air by a negative pressure when the piston is operated, and a scavenging passage for communicating the crank chamber and the combustion chamber, and the intake passage is the first intake passage.
  • the second intake passage the first intake passage is communicated with the crank chamber, the second intake passage is communicated with the scavenging passage, and the fuel injection valve is the first intake passage and the crank. It is characterized in that fuel is injected toward at least one of the chambers, and the air staying in the scavenging passage at the end of intake is involved in scavenging as leading air.
  • fuel is supplied to the crank chamber by a fuel injection valve. Further, a part of the air passing through the intake passage is introduced into the crank chamber through the first intake passage, and the other part of the air is introduced into the crank chamber through the second intake passage and the scavenging passage. At the end of intake, air stays in the scavenging passage.
  • the air introduced into the crank chamber mixes with the fuel to form an air-fuel mixture.
  • the air-fuel mixture in the crank chamber is introduced into the combustion chamber through the scavenging passage by the operation of the piston.
  • the air-fuel mixture in the combustion chamber is compressed by a piston and ignited by an igniter to burn and expand. Exhaust and scavenging are performed in the process of pushing back the piston by this combustion expansion.
  • the combustion gas is exhausted by opening the exhaust port, and then the air staying in the scavenging passage is pumped to the combustion chamber and participates in the scavenging as the leading air, and the scavenging causes the combustion gas to be discharged from the exhaust port. Will be done.
  • the present invention since fuel is supplied to the crank chamber by the fuel injection valve, it becomes easy to control the timing of fuel supply, and it is possible to supply an air-fuel mixture suitable for the operating state of the engine. .. Further, since a part of the air is introduced into the crank chamber through the second intake passage and the scavenging passage, the air stays in the scavenging passage at the end of the intake. Since this air is involved in scavenging as leading air, the air-fuel mixture is prevented from blowing through during scavenging, and the exhaust gas component is improved.
  • the intake passage sucks only air, unlike the intake passage of a conventional vaporizer, there is no need to provide a partition wall or a plurality of throttle valves for partitioning the intake passage into the air-fuel mixture passage and the air passage.
  • the structure is simple. By sucking only air through the intake passage, it becomes easy to control the intake air and it can contribute to the improvement of the reliability of the air control.
  • the fuel injection valve may inject fuel in a direction in which the fuel does not face the scavenging passage. In this way, fuel is less likely to enter the scavenging passage.
  • the fuel injection valve may be a high-pressure fuel injection valve in which at least one of an electric fuel pump and a pump operated by rotation of the crankshaft enjoys fuel pressure. In this way, fuel can be injected at the target location.
  • the fuel injection valve may inject fuel at a high pressure toward a cooling-required portion in the cylinder or the crank chamber. In this way, the cooling-required portion is effectively cooled by the fuel injected at high pressure from the fuel injection valve.
  • the fuel injection valve may be a high-pressure fuel injection valve capable of injecting fuel even under the maximum internal pressure of the crank chamber in the operating process of the piston.
  • the timing of fuel injection into the crank chamber can be optimized, so that the exhaust gas component can be improved, such as suppressing the mixing of gasoline with the leading air.
  • the engine working machine is characterized by including the two-cycle internal combustion engine as a power source.
  • This engine working machine has the following advantages. Work machines, especially portable work machines such as hand-held type and backpack type, are desired to be miniaturized and lightweight from the viewpoint of workability and handleability.
  • the vaporizer is provided with a partition wall or the air-fuel mixture passage and the air passage are separately formed, there is a limit to the miniaturization and weight reduction of the working machine.
  • the engine working machine of the present embodiment uses a two-cycle internal combustion engine having a simple structure as a power source, it can contribute to the miniaturization and weight reduction of the working machine.
  • the fuel injection valve may be installed on the side where the fuel tank is arranged with respect to a plane including the axis of the cylinder and the axis of the crankshaft.
  • the distance between the electric fuel pump and the injection valve is short, so it is relatively easy to supply fuel to the fuel injection valve at the time of starting. , Good startability.
  • the fuel injection valve may be provided with a fuel inlet at the rear end to inject fuel upward, and the fuel tank may be arranged below the crank chamber. In this case as well, the same effect as described above can be obtained.
  • FIG. 6 is an exploded view showing the arrangement relationship between the engine and the fuel tank of the power blower of FIG. 6 from the front.
  • the two-cycle internal combustion engine (hereinafter, simply referred to as "engine") according to the present invention is an air-cooled engine mainly mounted as a power source in a portable engine work machine.
  • Examples of the working machine in which the engine of the present invention is used include a handheld type, a shoulder-mounted type, a backpack type, and other portable working machines such as a chainsaw, a brush cutter, a power cutter, a hedge trimmer, and a power blower.
  • the engine 1 includes a cylinder block 2 and a piston 4 that reciprocates in the cylinder 3 constituting the cylinder block 2.
  • the combustion chamber 6 is defined by the cylinder head 5 and the piston 4 which form one end side of the cylinder block 2
  • the crankcase 8 is defined by the crankcase 7 and the piston 4 which form the other end side of the cylinder block 2.
  • An ignition plug 9 constituting an ignition device is fixed to the cylinder head 5, and the spark plug 9 rushes into the combustion chamber 6.
  • a crankshaft 10 is rotatably supported in the crankcase 7, and the crankshaft 10 and the piston pin 4a of the piston 4 are connected by a connecting rod 11.
  • crankshaft 10 When the piston 4 slides back and forth in the cylinder 3 due to combustion expansion (explosion) in the combustion chamber 6, the crankshaft 10 is rotationally driven via the connecting rod 11 and rotates to an output shaft (not shown) connected to the crankshaft 10. The driving force is output.
  • An exhaust port 12, an intake port 13, and at least one scavenging port 14 are opened on the inner wall of the cylinder 3, and these ports 12, 13, and 14 are controlled to open and close at predetermined timings by the reciprocating movement of the piston 4. ..
  • the exhaust port 12 communicates with the muffler 15a via the exhaust pipe 15.
  • the intake port 13 communicates with the intake passage 17 via the intake pipe 16.
  • the scavenging port 14 communicates with the crank chamber 8 via the scavenging passage 18.
  • the intake port 13 may be opened in the crankcase 7 instead of the cylinder 3.
  • a check valve is provided to prevent the air-fuel mixture in the crank chamber 8 from flowing back toward the intake pipe 16 when the piston 4 is lowered.
  • the intake passage 17 sucks only air by the negative pressure when the piston 4 operates.
  • a butterfly type throttle valve 19 is arranged in the intake passage 17, and an air cleaner 20 is arranged on the upstream side of the throttle valve 19.
  • the opening degree of the throttle valve 19 is adjusted by the operator operating an output operating member (throttle trigger, throttle lever, etc.) of the working machine.
  • the intake passage 17 is branched into a first intake passage 21 and a second intake passage 22 on the downstream side of the throttle valve 19.
  • the first intake passage 21 communicates with the crank chamber 8 via the intake pipe 16.
  • the second intake passage 22 communicates with the scavenging passage 18 via the air passage 23.
  • a check valve 23a for preventing backflow of air from the scavenging passage 18 is provided on the air passage 23.
  • the air passage 23 is connected to an air suction port 24 formed at the end of the scavenging passage 18 on the scavenging port 14 side. Then, the air passage 23 guides the air purified by the air cleaner 20 to the scavenging passage 18.
  • the air purified by the air cleaner 20 branches from the intake passage 17 into the first intake passage 21 and the second intake passage 22 and is sucked into the crank chamber 8 in the suction stroke in which the crank chamber 8 becomes a negative pressure.
  • a part of the air passing through the intake passage 17 is sucked into the crank chamber 8 through the first intake passage 21 and the intake pipe 16, and the other part of the air is taken into the second intake passage 22, the air passage 23 and the scavenging passage. It is sucked into the crank chamber 8 through 18.
  • air stays in the scavenging passage 18. In the scavenging stroke, this stagnant air flows into the cylinder 3 from the scavenging port 14 as leading air prior to the air-fuel mixture in the crank chamber 8.
  • the combustion gas in the combustion chamber 6 is discharged from the exhaust port 12.
  • the engine 1 includes a fuel injection valve 25 for supplying fuel into the crank chamber 8.
  • the fuel mixes with air in the crank chamber 8 to form an air-fuel mixture.
  • the fuel injection valve 25 injects fuel toward at least one of the crank chamber 8 and the first intake passage 21.
  • a first fuel injection valve 25a is arranged in the lower part of the crankcase 7, and fuel is injected from the first fuel injection valve 25a into the crank chamber 8.
  • a second fuel injection valve 25b that injects fuel toward the first intake passage 21 may be provided.
  • a second fuel injection valve 25b is arranged toward the intake pipe 16 communicating with the first intake passage 21.
  • the first and second fuel injection valves 25a and 25b may be arranged together.
  • a fuel tank 26 and a fuel pump 27 are connected to the fuel injection valve 25.
  • the fuel in the fuel tank 26 is supplied to the fuel injection valve 25 by the operation of the fuel pump 27, and the fuel injection is controlled by opening and closing the fuel injection valve 25.
  • the fuel injection valve 25 is opened and closed by a control device 28 including a microcomputer.
  • a detection signal of at least one sensor 29 (29a to 29g) for detecting the operating status of the engine 1 is input to the control device 28.
  • the control device 28 controls the fuel supply to the crank chamber 8 by the fuel injection valve 25 based on the detection of the sensor 29.
  • an intake air temperature sensor 29a that detects an intake air temperature and emits a signal
  • an intake pressure sensor 29b that detects an intake pressure and emits a signal
  • a signal that detects the opening degree of a throttle valve 19.
  • Throttle valve opening sensor 29c that emits a signal
  • crank chamber pressure sensor 29d that detects the pressure of the crank chamber 8 and emits a signal
  • crank chamber temperature sensor 29e that detects the temperature of the crank chamber 8 and emits a signal
  • the number of revolutions of the engine 1 examples include an engine rotation speed sensor 29f that detects and emits a signal, and a crank angle sensor 29g that detects a crank angle and emits a signal.
  • the signals of these sensors 29a to 29g are input to the control device.
  • the control device 28 emits a fuel injection signal to the fuel injection valve 25 at an appropriate timing based on various signals from the sensors 29a to 29g according to a predetermined program, and also to the spark plug 9 constituting the ignition device. And emits an ignition signal at a predetermined timing. As a result, fuel is supplied to the crank chamber 8 and the air-fuel mixture in the combustion chamber 6 is ignited.
  • FIG. 2 (a) is an explanatory diagram at the time of scavenging, (b) is at the time of suction and compression, (c) is at the time of combustion expansion (explosion), and (d) is an explanatory diagram at the time of exhaust.
  • the fuel injection into the crank chamber 8 may be performed in a timely manner, but as an example, it is assumed that the fuel is injected at the end of the suction stroke.
  • the spark plug 9 ignites when the piston 4 reaches top dead center.
  • the air-fuel mixture burns and expands (explodes) in the combustion chamber 6, and the piston 4 is pushed down to the bottom dead center, so that the crankshaft 10 rotates and power is generated.
  • the intake port 13 is closed by the descending piston 4, the air-fuel mixture in the crank chamber 8 is precompressed.
  • FIG. 3 shows the flow of air and fuel in the engine 1 of FIG. 1 briefly.
  • the timing of the fuel supply can be easily controlled, and the air-fuel mixture suitable for the operating state of the engine 1 can be controlled. Supply becomes possible. Further, at the end of intake air, air stays in the scavenging passage 18, and the stagnant air participates in scavenging as leading air, so that the air-fuel mixture is prevented from blowing through during scavenging, and the exhaust gas component is improved. Further, since the intake passage 17 sucks only air, unlike the intake passage of the conventional vaporizer, it is not necessary to provide a partition wall or a plurality of throttle valves for partitioning the intake passage into the air-fuel mixture passage and the air passage.
  • the structure is simple. Since the intake passage 17 sucks only air, the intake air can be easily controlled, and the reliability of the air control can be improved. Further, since the second intake passage 22 communicates with the scavenging passage 18 via the check valve 23a, it can contribute to the simplification of the piston 4 and the scavenging passage 18.
  • the arrangement mode and type of the fuel injection valve 25 may be, for example, as follows.
  • the fuel injection valve 25 may inject fuel into the scavenging passage 18 in a direction in which the fuel does not face. In this way, fuel is less likely to be mixed into the stagnant air in the scavenging passage 18.
  • the fuel injection valve 25 may be a high-pressure fuel injection valve in which at least one of an electric fuel pump and a pump operated by rotation of a crankshaft enjoys fuel pressure. In this way, fuel can be injected at the target location. For example, it is possible to inject the engine 1 at a place where seizure is likely to occur.
  • the fuel injection valve 25 may inject fuel at a high pressure toward a cooling-required portion in the cylinder 3 or the crank chamber 8.
  • the portion requiring cooling is effectively cooled by the fuel injected from the fuel injection valve 25 at a high pressure.
  • the cooling required portion include a portion where frictional heat is generated, such as a connecting portion between the connecting rod 11 and the piston pin 4a and a connecting portion between the connecting rod 11 and the crankshaft 10.
  • fuel may be injected into the inner wall of the piston 4 at a high pressure.
  • the fuel for a two-stroke internal combustion engine is a mixed fuel in which gasoline is mixed with lubricating oil. Therefore, when the fuel (mixed fuel) is supplied into the crank chamber 8, the lubricating oil contained in the fuel lubricates the piston 4 and the cylinder 3 promptly and quickly. As a result, seizure of the engine 1 is prevented.
  • fuel may be injected by using at least one of a temperature signal, a rotation speed signal, an intake pressure signal, and an opening degree signal to prevent seizure of the engine 1.
  • fuel may be injected when a high temperature is detected during high-speed operation. It is also conceivable to inject fuel to prevent seizure even when the vehicle suddenly stops during high-speed operation.
  • the fuel injection valve 25 may be a high-pressure injection valve capable of injecting fuel even under the maximum internal pressure of the crank chamber 8 in the operating process of the piston 4.
  • the timing of fuel injection into the crank chamber can be optimized, so that the exhaust gas component can be improved, such as suppressing the mixing of gasoline with the leading air.
  • the fuel injection valve 25a is located on the side where the fuel tank 26 is arranged with respect to a plane including the axis X of the cylinder 3 and the axis Y of the crankshaft 10. It may be installed. With this configuration, the positions of the fuel tank 26 and the fuel injection valve 25 are close to each other, so that the piping between the fuel tanks 26 and the fuel injection valve 25 can be shortened, which can contribute to the miniaturization and weight reduction of the work equipment. Further, by disposing the fuel injection valve 25a so that the fuel inlet 25c of the fuel injection valve 25a faces the fuel tank 26, it becomes easy to form a pipe from the fuel tank 26 to the fuel injection valve 25a.
  • the fuel injection valve 25a may include a fuel inlet at the rear end, inject fuel upward, and the fuel tank 26 may be located below the crank chamber 8. In this case as well, the same effect as described above can be obtained.
  • the fuel injection valve 25 one that can be electrically controlled or one that is mechanically controlled may be adopted.
  • a fuel injection valve that can be opened and closed mechanically may be operatively connected to the crankshaft 10 so that the fuel injection valve is opened and closed at a predetermined timing in the operation stroke of the piston 4.
  • FIG. 1 a modified example of FIG. 1 will be described with reference to FIGS. 4 and 5.
  • components that are the same as or equivalent to the example of FIG. 1 are designated by the same reference numerals as those of FIG. 1, and duplicate description will be omitted.
  • the piston 101 of FIG. 4 is provided with a piston groove 106 on the peripheral surface, and the air passage 102 (see FIG. 5) and the scavenging passage 104 (see FIG. 5) are communicated with each other at a predetermined timing through the piston groove 106. It's a type.
  • reference numeral 103 indicates a piston pin hole, and the piston 101 is connected to the connecting rod 11 (see FIG. 1) by a piston pin (see reference numeral 4a in FIG. 1) inserted into the piston pin hole 103.
  • FIG. 5 shows a cylinder 105 used with the piston 101 of FIG.
  • An air port 102a is opened in the cylinder wall 100 of the cylinder 105 in addition to an intake port, an exhaust port (all not shown), and at least one scavenging port 104a.
  • the air port 102a communicates with the air passage 102.
  • the air passage 102 has the same configuration as the air passage 23 of FIG.
  • the scavenging port 104a communicates with the crank chamber 8 (see FIG. 1) via the scavenging passage 104. Both the air port 102a and the scavenging port 104a are opened and closed by the piston 101.
  • FIGS. 5A to 5C show the relationship between the piston groove 106, the air port 102a, and the scavenging port 104a in chronological order in the process of ascending the piston 101.
  • FIG. 5 (b) shows a state in which the piston 101 is raised more than in FIG. 5 (a)
  • FIG. 5 (c) shows a state in which the piston 101 is further raised than in FIG. 5 (b).
  • the outline of the piston 101 is omitted in order to avoid complication of the diagram, and only the piston groove 106 extending in the circumferential direction of the piston 101 is shown in a simplified manner.
  • the piston groove 106 is mixed with the blowback gas from the previous scavenging. ing.
  • This blowback gas contains an air-fuel mixture component.
  • the blowback gas remaining in the piston groove 106 is indicated by dots.
  • FIG. 5B in a state where the piston 101 is further raised shows a state in which the piston groove 106 communicates with the air port 102a.
  • the piston groove 106 does not communicate with the scavenging port 104a. Therefore, even if the piston groove 106 communicates with the air port 102a, no air flow from the air port 102a to the piston groove 106 occurs at this point.
  • FIG. 5C in which the piston 101 is further raised, shows a state in which the piston groove 106 communicates with both the air port 102a and the scavenging port 104a.
  • air is filled in the scavenging passage 104 through the piston groove 106.
  • the air sucked through the air passage 102 reaches the scavenging passage 104 through the piston groove 106. That is, since the air comes into direct contact with the peripheral surface of the piston 101, the cooling performance of the piston 101 is improved.
  • the power blower 40 will be illustrated as an example of the engine working machine.
  • the power blower is a suitable working machine for blowing fallen leaves, pruned branches and leaves, and the like.
  • the power blower 40 of FIG. 6 includes a backpack-type main body frame 41 having an L-shape in a side view, and a blower 42, an engine 1 for driving the blower 42, a fuel tank 26, and the like are arranged on the main body frame 41. Will be done.
  • a blower pipe is connected to the L-shaped blower pipe 43 of the blower 42 via a bellows hose (not shown).
  • An engine output operating member (not shown) such as a throttle lever or a throttle trigger is arranged at an appropriate position on the blower pipe.
  • the blower 42 is arranged immediately behind the main body frame 41 when viewed from the operator carrying the main body frame 41 on his back.
  • the engine 1 is arranged immediately behind the blower 42, the cylinder 3 is oriented vertically, the crank chamber 8 is located below, and the crankshaft 10 extends in the front-rear direction.
  • the fuel tank 26 is arranged below the crank chamber 8. In this case, the power blower 40 can be formed compactly.
  • the fuel pump 27 is integrally arranged at one left and right end (in the example of FIG. 6, the right end when viewed from the operator carrying the main body frame 41 on his back).
  • the fuel injection valve 25a is attached to the crankcase 7 and injects fuel into the crankcase 8 diagonally upward.
  • the fuel inlet 25c of the fuel injection valve 25a and the fuel outlet 27a of the fuel pump 27 are located close to each other.
  • the piping between the two can be shortened, which can contribute to the miniaturization and weight reduction of the power blower 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

2サイクル内燃エンジンは、クランク室8内に燃料を供給する燃料噴射弁25と、ピストン4の作動時の負圧によって空気のみを吸入する吸気通路17と、クランク室8と燃焼室6とを連通する掃気通路18と、を備える。吸気通路17は第一吸気通路21と第二吸気通路22とに分岐される。第一吸気通路21はクランク室8に連通される。第二吸気通路22は掃気通路18に連通される。燃料噴射弁25は、第一吸気通路21とクランク室8の少なくとも一つに向けて燃料を噴射する。そして、吸気の終了時に掃気通路18内に滞留する空気が先導エアとして掃気に関与する。

Description

2サイクル内燃エンジン及びエンジン作業機
本発明は、2サイクル内燃エンジンと、2サイクル内燃エンジンを動力源とするエンジン作業機に関するものである。
刈払機、チェーンソー、パワーブロアなどの携帯式作業機には、動力源として2サイクル内燃エンジンが多用されている。2サイクル内燃エンジンにおいては、気化器で燃料と空気により混合気が生成され、この混合気がクランク室へと吸入される。2サイクル内燃エンジンは、クランク室と燃焼室とを連通する掃気通路を有する。シリンダ内をピストンが作動することにより、クランク室で予圧縮された混合気が掃気通路を通じて燃焼室に導入され、この混合気によって掃気が行われる。
2サイクル内燃エンジンは、周知の「混合気(新気)の吹き抜け」の問題を有する。すなわち、燃焼室に導入される掃気用の混合気がそのままシリンダの排気ポートから排出されてしまうことである。混合気の吹き抜けは燃料の無駄使いであり、大気汚染の原因にもなる。
また、混合気の吹き抜けを防止するものとして、特開2009-209939で開示されているように、気化器の吸気通路を隔壁によって混合気通路と空気通路とに仕切るものが挙げられるが、隔壁を形成するために構造が複雑になったり、コストが上がったり、隔壁を設けても隙間から混合気が空気通路へ侵入したりする問題がある。また、混合気通路と空気通路とが別個に離れて形成されたものもあるが、その場合には、構造が複雑になったり、コストが上がったり、スロットルバルブが二個必要であったりする問題がある。
また、他のエンジンと同様に2サイクル内燃エンジンにおいても、エンジンの運転状態に最も適する混合気を燃焼室へ供給することが望ましい。
本発明は、前記のような事情に鑑みてなされたもので、掃気時の混合気の吹き抜けを防止可能であり、且つ、エンジンの運転状態に適した混合気を燃焼室に供給可能な2サイクル内燃エンジンを提供しようとするものである。
本発明はまた、前記2サイクル内燃エンジンを動力源とするエンジン作業機を提供しようとするものである。
前記課題を解決するため、本発明に係る2サイクル内燃エンジンは、燃焼室を画成し且つ排気ポートを有するシリンダと、前記燃焼室の混合気に点火する点火装置と、前記燃焼室での燃焼膨張により前記シリンダ内を往復動するピストンと、前記シリンダの内部と連通するクランク室と、該クランク室内に配設されて前記ピストンと作動上連結されるクランクシャフトと、前記クランク室内に燃料を供給する燃料噴射弁と、前記ピストンの作動時の負圧によって空気のみを吸入する吸気通路と、前記クランク室と前記燃焼室とを連通する掃気通路と、を備え、前記吸気通路が第一吸気通路と第二吸気通路とに分岐され、前記第一吸気通路は前記クランク室に連通され、前記第二吸気通路は前記掃気通路に連通され、前記燃料噴射弁は、前記第一吸気通路と前記クランク室の少なくとも一つに向けて燃料を噴射し、吸気の終了時に前記掃気通路内に滞留する空気が先導エアとして掃気に関与することを特徴とする。
本発明によれば、燃料噴射弁によってクランク室内に燃料が供給される。また、吸気通路を通過する空気の一部は、第一吸気通路を通してクランク室に導入され、空気の他の一部は、第二吸気通路と掃気通路とを通してクランク室に導入される。吸気の終了時には掃気通路に空気が滞留する。クランク室内に導入された空気は燃料と混合して混合気となる。クランク室内の混合気は、ピストンの作動によって掃気通路を通って燃焼室へと導入される。燃焼室の混合気は、ピストンによって圧縮され、点火装置によって点火されて燃焼膨張する。この燃焼膨張でピストンが押し戻される過程で、排気と掃気が行われる。すなわち、排気ポートが開くことで燃焼ガスが排気され、次いで、掃気通路内に滞留する空気が燃焼室へと圧送されて先導エアとして掃気に関与し、この掃気により、排気ポートから燃焼ガスが排出される。
以上のように、本発明によれば、燃料噴射弁によってクランク室内に燃料が供給されるので、燃料供給のタイミングの制御が容易となり、エンジンの運転状態に適した混合気の供給が可能となる。また、空気の一部は第二吸気通路と掃気通路とを通してクランク室に導入されるので、吸気の終了時には掃気通路に空気が滞留する。この空気が先導エアとして掃気に関与するので、掃気時の混合気の吹き抜けが防止され、排気ガスの成分が改善される。さらに、吸気通路は空気のみを吸入するので、従来の気化器の吸気通路とは異なり、吸気通路を混合気通路と空気通路とに仕切るための隔壁や複数のスロットルバルブを設ける必要が無く、したがって構造が簡易である。吸気通路が空気のみを吸入することで、吸入空気の制御が容易となるほか、空気制御の信頼性の向上にも貢献できる。
実施の一形態として、前記燃料噴射弁は、掃気通路へ燃料が向かわない方向に向けて燃料を噴射する態様としてもよい。このようにすれば、掃気通路に燃料が混入しにくい。
実施の一形態として、前記燃料噴射弁が、電動燃料ポンプと、前記クランクシャフトの回転により動作するポンプの、少なくとも一つに燃圧を享受される高圧式燃料噴射弁としてもよい。このようにすれば、狙ったところに燃料を噴射できる。
実施の一形態として、前記燃料噴射弁が、前記シリンダ内又は前記クランク室内の要冷却部位に向けて高圧で燃料を噴射する態様としてもよい。このようにすれば、燃料噴射弁から高圧で噴射される燃料により、要冷却部位が効果的に冷却される。
実施の一形態として、前記燃料噴射弁が、前記ピストンの作動過程における前記クランク室の最高内圧下においても燃料を噴射可能な高圧式燃料噴射弁とされる態様としてもよい。このようにすれば、クランク室内への燃料噴射のタイミングが最適化できるため、先導エアへのガソリン混合を抑止するなど排気ガスの成分を改善できる。
実施の一形態として、エンジン作業機は、前記2サイクル内燃エンジンを動力源として備えることを特徴とする。このエンジン作業機は次の利点を有する。作業機、特に、手持式や背負式等の携帯式作業機は、作業性や取扱性の観点から、小型化、軽量化が望まれる。しかし、気化器に隔壁を設けたり、混合気通路と空気通路を別個に離して形成したりする従来の構成では、作業機の小型化、軽量化に限界があった。これに対し、本実施の一形態のエンジン作業機は、構造が簡易な2サイクル内燃エンジンを動力源とするので、作業機の小型化、軽量化に貢献できる。
実施の一形態として、前記燃料噴射弁は、前記シリンダの軸線と前記クランクシャフトの軸線とを含む平面に対して、燃料タンクが配置される側に設置されてもよい。この構成により、燃料タンクと燃料噴射弁の位置が近くなるので、相互間の配管が短くて済み、作業機の小型化、軽量化に一層貢献できる。また、この場合、燃料タンクと燃料噴射弁との距離が短いので、燃料噴射弁に早急に燃料を送ることができ、エンジン1の始動が良好に行える。特に電動の燃料ポンプが燃料タンクに配置された高圧式燃料噴射弁では、電動の燃料ポンプと噴射弁との距離が近くなるので、始動時に燃料噴射弁への燃料供給が比較的に簡単に行え、始動性が良い。
実施の一形態として、前記燃料噴射弁は、後端に燃料入口を備え、上側に向けて燃料を噴射し、燃料タンクは前記クランク室の下側に配置されてもよい。この場合も、前記と同様の作用効果が得られる。
本発明の実施の一形態に係る2サイクル内燃エンジンの概略図である。 図1のエンジンの作動行程の説明図である。 図1のエンジンにおける空気と燃料の流れを示すブロック図である。 図1のエンジンを構成するピストンの変形例を示す斜視図である。 図4のピストンの上昇過程での吸気通路から掃気通路への空気の流入を説明する説明図である。 図1のエンジンを動力源として搭載したエンジン作業機の一例(パワーブロア)の後面図である。 図6のパワーブロアのエンジンと燃料タンクの配置関係を前方から示した分解図である。
以下、添付図面を参照して、本発明の実施の形態について説明する。
本発明に係る2サイクル内燃エンジン(以下、単に「エンジン」という。)は、主に携帯式のエンジン作業機に動力源として搭載される空冷式のものである。本発明のエンジンが用いられる作業機としては、チェーンソー、刈払機、動力カッター、ヘッジトリマー、パワーブロワ等の、手持式、肩掛式又は背負式等の携帯式作業機が挙げられる。
図1に示すように、本発明の実施の一形態に係るエンジン1は、シリンダブロック2と、このシリンダブロック2を構成するシリンダ3内を往復摺動するピストン4と、を備える。シリンダブロック2の一端側を構成するシリンダヘッド5とピストン4とによって燃焼室6が画成され、シリンダブロック2の他端側を構成するクランクケース7とピストン4とによってクランク室8が画成される。シリンダヘッド5には点火装置を構成する点火プラグ9が固着され、この点火プラグ9は燃焼室6に突入している。クランクケース7内にはクランクシャフト10が回動自在に支持され、このクランクシャフト10とピストン4のピストンピン4aとが連接棒11によって連結される。燃焼室6での燃焼膨張(爆発)によりピストン4がシリンダ3内を往復摺動することにより、連接棒11を介してクランクシャフト10が回転駆動され、クランクシャフト10に繋がる図示しない出力軸に回転駆動力が出力される。
シリンダ3の内壁には、排気ポート12と吸気ポート13と少なくとも一つの掃気ポート14が開口しており、これらのポート12,13,14がピストン4の往復動によって所定のタイミングで開閉制御される。排気ポート12は排気管15を介してマフラ15aに連通する。吸気ポート13は吸気管16を介して吸気通路17に連通する。掃気ポート14は、掃気通路18を介してクランク室8に連通する。
図示してはいないが、吸気ポート13は、シリンダ3に代えてクランクケース7に開口形成することもできる。この場合には、ピストン4の下降時にクランク室8内の混合気が吸気管16側へ逆流するのを阻止する逆止弁を配設する。
吸気通路17は、ピストン4の作動時の負圧によって空気のみを吸入する。吸気通路17内にはバタフライ式等のスロットルバルブ19が配設され、スロットルバルブ19の上流側にはエアクリーナ20が配設される。スロットルバルブ19の開度は、作業者が作業機の出力操作部材(スロットルトリガやスロットルレバー等)を操作することで調整される。
吸気通路17は、スロットルバルブ19の下流側で、第一吸気通路21と第二吸気通路22とに分岐される。第一吸気通路21は、吸気管16を介してクランク室8に連通される。第二吸気通路22は、エア通路23を介して掃気通路18に連通される。エア通路23上には、掃気通路18からの空気の逆流を防止する逆止弁23aが配設される。エア通路23は、掃気通路18の掃気ポート14側の端部に形成されるエア吸入口24に連結される。そして、エア通路23は、エアクリーナ20で浄化された空気を掃気通路18へと導く。
エアクリーナ20で浄化された空気は、クランク室8が負圧となる吸入行程で、吸気通路17から第一吸気通路21と第二吸気通路22とに分岐してクランク室8へと吸入される。吸気通路17を通過する空気の一部は、第一吸気通路21と吸気管16とを通してクランク室8に吸入され、空気の他の一部は、第二吸気通路22とエア通路23と掃気通路18とを通してクランク室8に吸入される。吸入行程の終了時には、掃気通路18に空気が滞留する。この滞留空気は、掃気行程において、クランク室8内の混合気に先立って、先導エアとして掃気ポート14からシリンダ3内へと流入する。これにより、燃焼室6の燃焼ガスが排気ポート12から排出される。
エンジン1は、クランク室8内に燃料を供給するための燃料噴射弁25を備える。燃料は、クランク室8内で空気と混合して混合気となる。燃料噴射弁25は、クランク室8と第一吸気通路21の少なくとも一つに向けて燃料を噴射する。図示例では、クランクケース7の下部に第一の燃料噴射弁25aが配設され、この第一の燃料噴射弁25aからクランク室8内へと燃料が噴射される。第一の燃料噴射弁25aに代えて、第一吸気通路21に向けて燃料を噴射する第二の燃料噴射弁25bを配設してもよい。図示例では、仮想線で示すように、第一吸気通路21に連通する吸気管16へ向けて第二の燃料噴射弁25bが配設されている。第一及び第二の燃料噴射弁25a,25bを共に配設する構成としてもよい。
燃料噴射弁25には、燃料タンク26と燃料ポンプ27が連結される。燃料ポンプ27の作動によって燃料タンク26内の燃料が燃料噴射弁25に供給され、燃料噴射弁25の開閉によって燃料の噴射が制御される。
燃料噴射弁25は、マイクロコンピュータを含む制御装置28によって開閉制御される。制御装置28には、エンジン1の運転状況を検知する少なくとも一つのセンサ29(29a~29g)の検知信号が入力される。制御装置28は、センサ29の検知に基づいて、燃料噴射弁25によるクランク室8への燃料供給を制御する。
少なくとも一つのセンサ29を例示すると、例えば、吸気温度を検知して信号を発する吸気温度センサ29a、吸気圧を検知して信号を発する吸気圧センサ29b、スロットルバルブ19の開度を検知して信号を発するスロットルバルブ開度センサ29c、クランク室8の圧力を検知して信号を発するクランク室圧力センサ29d、クランク室8の温度を検知して信号を発するクランク室温度センサ29e、エンジン1の回転数を検知して信号を発するエンジン回転数センサ29f、クランク角を検知して信号を発するクランク角センサ29gが挙げられる。これらのセンサ29a~29gの信号は制御装置に入力される。
制御装置28は、センサ29a~29gからの種々の信号に基づき、所定のプログラムにしたがって、燃料噴射弁25へと適宜のタイミングで燃料噴射信号を発し、また、点火装置を構成する点火プラグ9へと所定のタイミングで点火信号を発する。これにより、クランク室8への燃料供給と、燃焼室6の混合気への点火が行われる。
次に、図2を参照して、図1のエンジン1の動作について説明する。図2において、(a)は掃気時、(b)は吸入及び圧縮時、(c)は燃焼膨張(爆発)時、(d)は排気時の説明図である。なお、クランク室8への燃料噴射は適時に行われればよいが、一例として、吸入行程の終盤に行われるものとする。
図2(a)、(b)を参照して、ピストン4が下死点から上昇する過程でピストン4により掃気ポート14が閉じると、ピストン4の上昇によりクランク室8内が負圧になる。これにより、エア通路23から掃気通路18へと空気が吸入され、続いて、吸気ポート13が開くと同時に、空気が吸気管16からクランク室8へと吸入される。一例として、吸入行程の終盤で燃焼噴射弁25から燃料が噴射される。燃焼室6では、ピストン4が上死点に達するまで混合気の圧縮が行われる。ピストン4が上死点に達すると、クランク室8への空気の吸入が終了する。この時点で、クランク室8内には燃料と空気が混合した混合気が充満し、掃気通路18内には空気が滞留する。
図2(c)を参照して、ピストン4が上死点に達した時に点火プラグ9による点火が行われる。これにより燃焼室6で混合気が燃焼膨張(爆発)し、ピストン4が下死点へと押し下げられることで、クランクシャフト10が回転して動力が発生する。下降するピストン4により吸気ポート13が閉じると、クランク室8内の混合気が予圧縮される。
図2(d)を参照して、ピストン4の下降により排気ポート12が開くと、燃焼ガスが排気管15へと流出する。続いて、図2(a)に示すように掃気ポート14が開き、予圧縮されたクランク室8内の混合気が掃気通路18を通って燃焼室6へと送り込まれる。このとき、クランク室8内の混合気に先立って、掃気通路18内に滞留していた空気が先導エアとして燃焼室6へと流入し、排気ポート12へと燃焼ガスを追い出す。このため、掃気時における混合気の吹き抜けが低減される。ピストン4は、クランクシャフト10の回転により再び上死点へ向けて移動し、以後、同様の作用が繰り返される。
なお、図1のエンジン1における空気と燃料の流れを簡潔に示すと、図3のブロック図のようになる。
本実施の一形態のエンジン1によれば、燃料噴射弁25によってクランク室8内に燃料が供給されるので、燃料供給のタイミングの制御が容易となり、エンジン1の運転状態に適した混合気の供給が可能となる。また、吸気の終了時には掃気通路18に空気が滞留し、この滞留空気が先導エアとして掃気に関与するので、掃気時の混合気の吹き抜けが防止され、排気ガスの成分が改善される。さらに、吸気通路17は空気のみを吸入するので、従来の気化器の吸気通路とは異なり、吸気通路を混合気通路と空気通路とに仕切るための隔壁や複数のスロットルバルブを設ける必要が無く、したがって構造が簡易である。吸気通路17が空気のみを吸入することで、吸入空気の制御が容易となるほか、空気制御の信頼性の向上にも貢献できる。また、第二吸気通路22が逆止弁23aを介して掃気通路18に連通するので、ピストン4や掃気通路18の簡素化に貢献できる。
なお、燃料噴射弁25の配設態様や種類は、例えば次のようにしてもよい。
好適な実施の一形態として、燃料噴射弁25は、掃気通路18へ燃料が向かわない方向に向けて燃料を噴射する態様としてもよい。このようにすれば、掃気通路18の滞留空気に燃料が混入しにくい。
好適な実施の一形態として、燃料噴射弁25は、電動燃料ポンプと、クランクシャフトの回転により動作するポンプの、少なくとも一つに燃圧を享受される高圧式燃料噴射弁としてもよい。このようにすれば、狙ったところに燃料を噴射できる。例えば、エンジン1の焼き付きが起こりやすい場所へ狙って噴射することも可能である。
好適な実施の一形態として、燃料噴射弁25は、シリンダ3内又はクランク室8内の要冷却部位に向けて高圧で燃料を噴射する態様としてもよい。このようにすれば、燃料噴射弁25から高圧で噴射される燃料により、要冷却部位が効果的に冷却される。要冷却部位として、例えば、連接棒11とピストンピン4aとの連結部や、連接棒11とクランクシャフト10との連結部等の、摩擦熱の発生部位が挙げられる。また、ピストン4を冷却するために、ピストン4の内壁に高圧で燃料を噴射してもよい。
2サイクル内燃エンジンの燃料は、ガソリンに潤滑用オイルを混合した混合燃料である。このため、クランク室8内に燃料(混合燃料)が供給されると、燃料に含まれる潤滑用オイルにより、ピストン4とシリンダ3との潤滑が即応的且つ迅速に行われる。これによって、エンジン1の焼き付きが防止される。この場合、温度信号、回転数信号、吸気圧信号、及び開度信号の少なくとも一つを利用して燃料を噴射してエンジン1の焼き付きを防止してもよい。例えば、高速運転時に高温を検知した際に燃料を噴射すればよい。また、高速運転時に急停止する際にも燃料を噴射して焼き付きを防止することも考えられる。
好適な実施の一形態として、燃料噴射弁25は、ピストン4の作動過程におけるクランク室8の最高内圧下においても燃料を噴射可能な高圧噴射弁としてもよい。このようにすれば、クランク室内への燃料噴射のタイミングが最適化できるため、先導エアへのガソリン混合を抑止するなど排気ガスの成分を改善できる。
好適な実施の一形態として、図1に示すように、燃料噴射弁25aは、シリンダ3の軸線Xとクランクシャフト10の軸線Yとを含む平面に対して、燃料タンク26が配置される側に設置されてもよい。この構成により、燃料タンク26と燃料噴射弁25の位置が近くなるので、相互間の配管が短くて済み、作業機の小型化、軽量化に貢献できる。また、燃料噴射弁25aの燃料入口25cが燃料タンク26へ向くように燃料噴射弁25aを配設することで、燃料タンク26から燃料噴射弁25aへの配管の形成が容易となる。また、この場合、燃料タンクと燃料噴射弁との距離が短いので、燃料噴射弁に早急に燃料を送ることができ、エンジン1の始動が良好に行える。特に、燃料タンク内に電動の燃料ポンプが設置された高圧式燃料噴射弁の場合に、電動の燃料ポンプと燃料噴射弁との距離が近いので、早急に燃料を送ることができ、エンジン1の始動が良好に行える。
好適な実施の一形態として、燃料噴射弁25aは、後端に燃料入口を備え、上側に向けて燃料を噴射し、燃料タンク26はクランク室8の下側に配置されてもよい。この場合も、前記と同様の作用効果が得られる。
燃料噴射弁25は、電気的に制御可能なもののほか、機械的に制御されるものを採用してもよい。後者の場合には、例えば、機械的に開閉可能な燃料噴射弁をクランクシャフト10に作動上連結し、ピストン4の作動行程における所定のタイミングで燃料噴射弁が開閉されるようにしてもよい。
次に、図4及び図5を参照して、図1の変形例を説明する。以下の説明において、図1の例と同一又は均等な構成要素については、図1と同様の符号を付して、重複する説明を省略する。
図4のピストン101は、周面にピストン溝106を備え、このピストン溝106を介して、所定のタイミングでエア通路102(図5参照)と掃気通路104(図5参照)とが連通されるタイプのものである。図4において、符号103はピストンピン孔を示し、このピストンピン孔103に挿入されるピストンピン(図1の符号4a参照)によってピストン101が連接棒11(図1参照)に連結される。
図5には、図4のピストン101と共に用いられるシリンダ105が示されている。このシリンダ105のシリンダ壁100には、吸気ポートと排気ポート(いずれも図示省略)と少なくとも一つの掃気ポート104aに加えて、空気ポート102aが開口している。この空気ポート102aは、エア通路102に連通する。このエア通路102は、図1のエア通路23と同様の構成である。また、掃気ポート104aは、掃気通路104を介してクランク室8(図1参照)に連通する。空気ポート102aと掃気ポート104aは、共にピストン101によって開閉される。
図5の(a)~(c)は、ピストン101が上昇する過程における、ピストン溝106と空気ポート102aと掃気ポート104aとの関係を時系列で示したものである。図5(b)は、図5(a)よりもピストン101が上昇した状態であり、図5(c)は、図5(b)よりもさらにピストン101が上昇した状態を示している。なお、図5においては、線図の錯綜を避けるためにピストン101の輪郭の図示を省略し、ピストン101の周方向に延びるピストン溝106のみを単純化して示してある。
図5(a)を参照して、ピストン101が下死点から上昇し、ピストン溝106が空気ポート102aに達する直前までは、ピストン溝106には、前回の掃気の際の吹き返しガスが混在している。この吹き返しガスは混合気成分を含んでいる。ピストン溝106に残留している吹き返しガスをドットで示す。
ピストン101が更に上昇した状態の図5(b)は、ピストン溝106が空気ポート102aに連通した状態を示す。この図5(b)の状態では、ピストン溝106は掃気ポート104aと連通していない。このため、ピストン溝106が空気ポート102aと連通しても、この時点では、空気ポート102aからピストン溝106への空気の流動は起こらない。
ピストン101が更に上昇した状態の図5(c)は、ピストン溝106が、空気ポート102aと掃気ポート104aの双方に連通した状態を示す。この図5(c)の状態になると、ピストン溝106を介して掃気通路104に空気が充填される。
図4及び図5のピストン101とシリンダ105の組み合わせを含むエンジンによれば、エア通路102を通して吸入される空気が、ピストン溝106を介して掃気通路104に到達する。つまり、空気がピストン101の周面に直接接触するので、ピストン101の冷却性能が向上する。
次に、図6及び図7を参照して、本発明の実施の一形態に係るエンジン1を動力源とするエンジン作業機について説明する。ここでは、エンジン作業機の一例として、パワーブロア40を例示する。パワーブロアは、周知の通り、落ち葉や剪定された枝葉等の吹き寄せ作業に用いて好適な作業機である。
図6のパワーブロア40は、側面視L字状の背負式の本体フレーム41を備え、この本体フレーム41上に、送風機42と、送風機42を駆動するエンジン1と、燃料タンク26等が配設される。送風機42のL字状の吐風管43には、図示しないベローズホースを介してブロアパイプが接続される。ブロアパイプの適宜の位置には、スロットルレバー又はスロットルトリガ等のエンジン出力操作部材(図示せず)が配設される。
送風機42は、本体フレーム41を背負う作業者から見て本体フレーム41のすぐ後ろに配設される。エンジン1は、送風機42のすぐ後ろに配設され、シリンダ3が縦向きでクランク室8が下に位置し、クランクシャフト10が前後方向に延びる。燃料タンク26は、クランク室8の下側に配設される。この場合、パワーブロワ40をコンパクトに形成することができる。燃料タンク26には、左右の一端(図6の例では本体フレーム41を背負う作業者から見て右端)に燃料ポンプ27が一体に配設されている。
図6及び図7の例では、燃料噴射弁25aがクランクケース7に取り付けられ、クランク室8内に斜め上向きに燃料を噴射する。燃料噴射弁25aの燃料入口25cと、燃料ポンプ27の燃料出口27aは、互いに近接して位置する。これにより、相互間の配管が短くて済み、パワーブロア40の小型化、軽量化に貢献できる。また、燃料噴射弁25aの燃料入口25cが燃料ポンプ27へ向くように燃料噴射弁25aを配設することで、燃料ポンプ27から燃料噴射弁25aへの配管の形成が容易となる。
以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。

Claims (8)

  1. 燃焼室を画成し且つ排気ポートを有するシリンダと、前記燃焼室の混合気に点火する点火装置と、前記燃焼室での燃焼膨張により前記シリンダ内を往復動するピストンと、前記シリンダの内部と連通するクランク室と、該クランク室内に配設されて前記ピストンと作動上連結されるクランクシャフトと、前記クランク室内に燃料を供給する燃料噴射弁と、前記ピストンの作動時の負圧によって空気のみを吸入する吸気通路と、前記クランク室と前記燃焼室とを連通する掃気通路と、を備え、前記吸気通路が第一吸気通路と第二吸気通路とに分岐され、前記第一吸気通路は前記クランク室に連通され、前記第二吸気通路は前記掃気通路に連通され、前記燃料噴射弁は、前記第一吸気通路と前記クランク室の少なくとも一つに向けて燃料を噴射し、吸気の終了時に前記掃気通路内に滞留する空気が先導エアとして掃気に関与する、2サイクル内燃エンジン。
  2. 前記燃料噴射弁は、掃気通路へ燃料が向かわない方向に向けて燃料を噴射する、請求項1に記載の2サイクル内燃エンジン。
  3. 前記燃料噴射弁が、電動燃料ポンプと、前記クランクシャフトの回転により動作するポンプの、少なくとも一つに燃圧を享受される高圧式燃料噴射弁である、請求項1又は2に記載の2サイクル内燃エンジン。
  4. 前記燃料噴射弁が、前記シリンダ内又は前記クランク室内の要冷却部位に向けて高圧で燃料を噴射する、請求項3に記載の2サイクル内燃エンジン。
  5. 前記燃料噴射弁が、前記ピストンの作動過程における前記クランク室の最高内圧下においても燃料を噴射可能な高圧式燃料噴射弁である、請求項3又は4に記載の2サイクル内燃エンジン。
  6. 請求項1から5のいずれか一項に記載の2サイクル内燃エンジンを動力源として備えるエンジン作業機。
  7. 前記燃料噴射弁は、前記シリンダの軸線と前記クランクシャフトの軸線とを含む平面に対して、燃料タンクが配置される側に設置される、請求項6に記載のエンジン作業機。
  8. 前記燃料噴射弁は、後端に燃料入口を備え、上側に向けて燃料を噴射し、燃料タンクは前記クランク室の下側に配置される、請求項6に記載のエンジン作業機。
PCT/JP2020/048093 2020-03-02 2020-12-23 2サイクル内燃エンジン及びエンジン作業機 WO2021176813A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022504985A JPWO2021176813A1 (ja) 2020-03-02 2020-12-23
US17/759,723 US11946408B2 (en) 2020-03-02 2020-12-23 Two-stroke internal combustion engine and engine working machine
EP20922750.3A EP4116551A4 (en) 2020-03-02 2020-12-23 TWO-STROKE INTERNAL COMBUSTION ENGINE AND MOTOR CONSTRUCTION MACHINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020034898 2020-03-02
JP2020-034898 2020-03-02

Publications (1)

Publication Number Publication Date
WO2021176813A1 true WO2021176813A1 (ja) 2021-09-10

Family

ID=77613215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048093 WO2021176813A1 (ja) 2020-03-02 2020-12-23 2サイクル内燃エンジン及びエンジン作業機

Country Status (4)

Country Link
US (1) US11946408B2 (ja)
EP (1) EP4116551A4 (ja)
JP (1) JPWO2021176813A1 (ja)
WO (1) WO2021176813A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162144A1 (ja) * 2022-02-25 2023-08-31 株式会社やまびこ 空気吸気式2ストロークエンジン

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164029A (ja) * 1985-01-12 1986-07-24 Nippon Clean Engine Res 2サイクルエンジン
JPH0261364A (ja) * 1988-08-23 1990-03-01 Yamaha Motor Co Ltd 2行程エンジンの燃料供給装置
JPH09125966A (ja) * 1995-10-27 1997-05-13 Komatsu Zenoah Co 層状掃気2サイクルエンジン
WO2002061245A1 (en) * 2001-02-01 2002-08-08 John Arthur Notaras Internal combustion engine
JP2003307132A (ja) * 2002-04-12 2003-10-31 Kawasaki Heavy Ind Ltd 段付ピストンを有する2サイクルエンジン
JP2009209939A (ja) 2008-03-04 2009-09-17 Andreas Stihl Ag & Co Kg 2サイクルエンジンの作動方法および2サイクルエンジン
JP2013119861A (ja) * 2011-12-07 2013-06-17 Andreas Stihl Ag & Co Kg 燃料供給装置を備えた内燃エンジン
JP2013170471A (ja) * 2012-02-17 2013-09-02 Hitachi Koki Co Ltd エンジン作業機
US20140000537A1 (en) * 2011-12-07 2014-01-02 Andreas Stihl Ag & Co. Kg Power Tool
JP2015169195A (ja) * 2014-03-11 2015-09-28 本田技研工業株式会社 2ストロークエンジン
US20170165863A1 (en) * 2015-12-15 2017-06-15 Andreas Stihl Ag & Co. Kg Hand-Guided Power Tool with a Control Device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121278A (ja) * 1994-10-19 1996-05-14 Sanshin Ind Co Ltd エンジンの燃料供給装置
US6418891B2 (en) * 2000-03-13 2002-07-16 Walbro Japan, Inc. Internal combustion engine
JP3616339B2 (ja) * 2001-02-01 2005-02-02 株式会社共立 2サイクル内燃エンジン
US20070125324A1 (en) * 2005-11-22 2007-06-07 Houston Rodney A Method of lubricating an internal combustion engine
JP4391469B2 (ja) * 2005-11-29 2009-12-24 川崎重工業株式会社 2サイクルエンジン
DE102008053808B4 (de) * 2008-10-29 2022-05-25 Andreas Stihl Ag & Co. Kg Verfahren und Vorrichtung zum Fluten einer Kraftstoffzumesseinrichtung
US8534268B2 (en) * 2009-09-14 2013-09-17 Nagesh Mavinahally Two-stroke engine
JP5922569B2 (ja) * 2012-12-28 2016-05-24 株式会社マキタ 層状掃気2ストロークエンジン
WO2019073448A1 (en) * 2017-10-12 2019-04-18 Vins S.R.L. TWO-STROKE INTERNAL COMBUSTION ENGINE
DE102020000989A1 (de) * 2020-02-15 2021-08-19 Andreas Stihl Ag & Co. Kg Zweitaktmotor und Verfahren zum Betrieb eines Zweitaktmotors

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164029A (ja) * 1985-01-12 1986-07-24 Nippon Clean Engine Res 2サイクルエンジン
JPH0261364A (ja) * 1988-08-23 1990-03-01 Yamaha Motor Co Ltd 2行程エンジンの燃料供給装置
JPH09125966A (ja) * 1995-10-27 1997-05-13 Komatsu Zenoah Co 層状掃気2サイクルエンジン
WO2002061245A1 (en) * 2001-02-01 2002-08-08 John Arthur Notaras Internal combustion engine
JP2003307132A (ja) * 2002-04-12 2003-10-31 Kawasaki Heavy Ind Ltd 段付ピストンを有する2サイクルエンジン
JP2009209939A (ja) 2008-03-04 2009-09-17 Andreas Stihl Ag & Co Kg 2サイクルエンジンの作動方法および2サイクルエンジン
JP2013119861A (ja) * 2011-12-07 2013-06-17 Andreas Stihl Ag & Co Kg 燃料供給装置を備えた内燃エンジン
US20140000537A1 (en) * 2011-12-07 2014-01-02 Andreas Stihl Ag & Co. Kg Power Tool
JP2013170471A (ja) * 2012-02-17 2013-09-02 Hitachi Koki Co Ltd エンジン作業機
JP2015169195A (ja) * 2014-03-11 2015-09-28 本田技研工業株式会社 2ストロークエンジン
US20170165863A1 (en) * 2015-12-15 2017-06-15 Andreas Stihl Ag & Co. Kg Hand-Guided Power Tool with a Control Device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4116551A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162144A1 (ja) * 2022-02-25 2023-08-31 株式会社やまびこ 空気吸気式2ストロークエンジン

Also Published As

Publication number Publication date
US20230119430A1 (en) 2023-04-20
US11946408B2 (en) 2024-04-02
EP4116551A1 (en) 2023-01-11
JPWO2021176813A1 (ja) 2021-09-10
EP4116551A4 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
JP2003193911A (ja) 単流型気化器を備えた空気予備蓄積式2サイクルエンジン
US11976587B2 (en) Two-stroke engine and method for operating a two-stroke engine
WO2021177010A1 (ja) 2サイクル内燃エンジン及びエンジン作業機
WO2021176813A1 (ja) 2サイクル内燃エンジン及びエンジン作業機
WO2000070211A1 (en) Low emissions two-cycle internal combustion engine
JPH02108815A (ja) 二サイクル・ユニフロー火花点火機関
JPH06193451A (ja) 2サイクルエンジン
US6234120B1 (en) Two-stroke engine
US20190170055A1 (en) Two-stroke engine with improved performance
JP7493539B2 (ja) 2ストロークエンジン及び手持ち式の動力工具
JPS6134951B2 (ja)
WO2021065660A1 (ja) 空気先導型層状掃気式2サイクル内燃エンジン及びエンジン作業機
WO2014155945A1 (en) Engine and portable working machine
JPH09250429A (ja) 燃料噴射供給式エンジン
US6830030B2 (en) Four-cycle engine
US1174765A (en) Two-cycle combustion-engine.
US8863705B2 (en) Hand-held power tool
JPH06257504A (ja) 2サイクルエンジン
WO2024072312A1 (en) Crankcase scavenged two-stroke engine and handheld power tool
JP2777421B2 (ja) 2サイクルエンジン
JPH06257445A (ja) 2サイクルエンジン
JP2021503579A (ja) 内燃機関
WO2014002957A1 (ja) エンジンの燃料供給装置及び携帯作業機
US20160290192A1 (en) Two-stroke compression ignition engine
JPH10325342A (ja) 2サイクル内燃機関

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504985

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020922750

Country of ref document: EP

Effective date: 20221004