[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021169800A1 - 流量调节组件以及流量可调节的柔性冷冻探针 - Google Patents

流量调节组件以及流量可调节的柔性冷冻探针 Download PDF

Info

Publication number
WO2021169800A1
WO2021169800A1 PCT/CN2021/076191 CN2021076191W WO2021169800A1 WO 2021169800 A1 WO2021169800 A1 WO 2021169800A1 CN 2021076191 W CN2021076191 W CN 2021076191W WO 2021169800 A1 WO2021169800 A1 WO 2021169800A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
needle
mandrel
sealing
adjustment
Prior art date
Application number
PCT/CN2021/076191
Other languages
English (en)
French (fr)
Inventor
杨迟
常兆华
Original Assignee
上海导向医疗系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海导向医疗系统有限公司 filed Critical 上海导向医疗系统有限公司
Priority to CA3180710A priority Critical patent/CA3180710A1/en
Priority to EP21760937.9A priority patent/EP4129222A4/en
Priority to AU2021227084A priority patent/AU2021227084B2/en
Priority to US17/927,341 priority patent/US20230293220A1/en
Publication of WO2021169800A1 publication Critical patent/WO2021169800A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B18/0218Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques with open-end cryogenic probe, e.g. for spraying fluid directly on tissue or via a tissue-contacting porous tip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00089Thermal conductivity
    • A61B2018/00101Thermal conductivity low, i.e. thermally insulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00744Fluid flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0212Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • A61B2018/0262Characteristics of handpieces or probes using a circulating cryogenic fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • A61B2018/0262Characteristics of handpieces or probes using a circulating cryogenic fluid
    • A61B2018/0268Characteristics of handpieces or probes using a circulating cryogenic fluid with restriction of flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0293Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument interstitially inserted into the body, e.g. needle

Definitions

  • the present invention relates to the field of medical equipment, in particular to a flow regulating assembly and a flexible cryoprobe with adjustable flow.
  • Cryotherapy includes two categories: cryoablation and cryoadhesion: cryoablation requires tissue inactivation, resulting in irreversible damage, and is often used for tumor ablation treatment; cryoadhesion only needs to be taken out by freezing the tissue, freezing biopsy, Frozen cutting and foreign body extraction are all frozen adhesions.
  • cryotherapy there are many situations that need to adjust the flow, such as freezing power adjustment, freezing power adjustment is flow adjustment, the lower the power or flow, the slower the ice ball growth rate, and the ice ball has reached the required size but needs to extend the freezing time
  • the power can be reduced to stop the hockey puck from continuing to grow.
  • the flow rate required for the needle cooling process is higher than the flow rate required to maintain the low temperature after cooling. Therefore, when the needle drops to the lowest temperature, the flow rate is reduced to the minimum that maintains the low temperature, which can be greatly reduced without affecting the freezing performance. Reduce gas consumption and achieve the purpose of saving gas.
  • the flow adjustment methods are all realized through the internal control of the host side, such as the opening and closing control of the intake valve, the flow controller or the adjustment of the pressure reducing valve, which usually causes a delayed response at the probe end, and may also cause flow irregularities. Stability, serious loss of cooling capacity, and too narrow adjustable range of working pressure correspond to the problem of too narrow adjustable flow range. .
  • the present invention provides a flow adjustment assembly and a flexible cryoprobe with adjustable flow to solve the problem of unstable flow, serious cold loss, and too narrow adjustable range of working pressure in the related art, and the corresponding adjustable flow range is too narrow. problem.
  • a flow adjustment assembly the flow adjustment assembly includes a mandrel, and an adjustment cavity is provided in the mandrel;
  • the first end of the mandrel is provided with a large vent hole, the side wall of the mandrel is provided with a small vent hole, and the inner diameter of the large vent hole is smaller than the inner diameter of the adjustment cavity;
  • the second end of the mandrel is connected with the front end of a J-T slot, and the rear end of the J-T slot is connected with a bypass pipe;
  • a sealing element is arranged in the adjusting cavity, and the outer diameter of the sealing element is smaller than or equal to the inner diameter of the adjusting cavity and larger than the inner diameter of the large air outlet;
  • the sealing member is connected to one end of a traction member, and the other end of the traction member is led out through the bypass pipe;
  • a sealing component is provided at the end of the bypass pipe, the sealing component includes a sealing ring, the inner diameter of the sealing ring matches the outer diameter of the traction member, and the traction member can pass through;
  • the sealing element moves axially in the adjustment cavity under the action of the traction element, and the position of the sealing element is adjusted to change the communication between the large air outlet and the small air outlet to the The number of effective vents of the bypass pipe.
  • the outer diameter of the sealing member is smaller than the inner diameter of the adjustment cavity, and the number of the small air outlet is at least one;
  • the large vent when the seal is at the large vent of the first end of the mandrel, the large vent is closed, and the small vent is connected to the bypass pipe to serve as the effective vent
  • the large vent hole and the small vent hole are both connected to the bypass pipe to The air is vented as the effective vent hole.
  • the outer diameter of the sealing element is equal to the inner diameter of the adjustment cavity
  • the number of small vent holes is at least two rows, the number of small vent holes in each row is at least one, and at least two sets of small vent holes are located along the Describe the axial distribution of the mandrel;
  • each of the small air outlets is connected to the bypass pipe to serve as the effective air outlet; when the sealing element is in the When the traction member moves to the second end of the mandrel, it is connected to the bypass pipe, so that the number of small air outlets as the effective air outlet is reduced.
  • the sealing element further includes a sealing ring pressing part, the sealing ring pressing part is sleeved on the end of the bypass pipe, and the sealing ring is clamped to the seal along the length direction of the bypass pipe. Between the ring pressing member and the end of the bypass pipe, the sealing ring pressing member is provided with a through hole for the traction member to pass through.
  • a flexible cryoprobe with an adjustable flow rate includes the flow adjustment assembly described in each of the foregoing embodiments, and the flexible cryoprobe further includes: a needle A duct component, a handle component and an extension pipe component, the extension pipe component includes an air inlet pipe, a return air pipe and a regulating pipe;
  • the flow regulating assembly is arranged inside the needle catheter part, and the needle catheter part is connected with the handle part;
  • the air inlet pipe is connected to the bypass pipe in the flow adjustment assembly, and the gas in the adjustment chamber is discharged through the air return pipe;
  • the adjusting tube is used to directly or indirectly adjust the axial position of the seal in the adjusting cavity.
  • the needle catheter component includes a needle tip, a needle, an inner tube assembly, and an outer tube assembly;
  • the needle includes a front section of a needle and a rear section of the needle, the needle tip is arranged at the front end of the needle, and the rear section of the needle is fixedly connected to the inner tube assembly and the outer tube assembly.
  • a heat insulation layer is provided between the inner tube assembly and the outer tube assembly, and the heat insulation layer is a heat insulation material or a vacuum layer.
  • the adjustment cavity is placed inside the front section of the needle, the JT groove is arranged inside the inner tube assembly, and the gas in the needle is removed from the inner tube assembly and the JT groove.
  • the gap between returns is placed inside the front section of the needle, the JT groove is arranged inside the inner tube assembly, and the gas in the needle is removed from the inner tube assembly and the JT groove.
  • a shift lever and a connecting piece are provided on the handle, one end of the connecting piece is connected to the traction piece, the other end of the connecting piece is connected to the shift lever, and the shift lever is adjusted by the shift lever.
  • the adjustment of the axial position of the seal in the cavity is provided on the handle, one end of the connecting piece is connected to the traction piece, the other end of the connecting piece is connected to the shift lever, and the shift lever is adjusted by the shift lever.
  • a large vent hole and a small vent hole are arranged on the mandrel, and a sealing element is arranged in the adjustment cavity.
  • the sealing element and a traction element are connected to the outside through the bypass pipe.
  • the sealing element is in the traction element. Driven by the drive, the number of effective air outlets can be changed by changing the position of the seal, thereby realizing the function of multi-stage flow adjustment.
  • Fig. 1 is a schematic diagram of an axial sealing structure of a flow regulating assembly in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a radial seal structure of a flow adjustment assembly in an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a high flow state of a flow adjustment component in an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a low flow state of a flow regulating component in an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a flexible cryoprobe with adjustable flow rate in an embodiment of the present invention
  • FIG. 6 is a schematic view of the structure of the needle part in the cryoablation mode of the flexible cryoprobe with adjustable flow rate in an embodiment of the present invention
  • FIG. 7 is a schematic view of the front section of the handle of the flexible cryoprobe with adjustable flow in an embodiment of the present invention.
  • FIG. 8 is a schematic view of the rear section of the handle of the flexible cryoprobe with adjustable flow in an embodiment of the present invention
  • FIG. 9 is a schematic diagram of the structure of the needle part of the flexible cryoprobe with adjustable flow rate in cryo-adhesion mode in an embodiment of the present invention.
  • Fig. 10 is a schematic structural view of the rear section of the handle of the flexible cryoprobe with adjustable flow in an embodiment of the present invention.
  • the existing cryo-adhesion technology is generally only used for frozen biopsy, cryosection and foreign body extraction in the natural cavity. Because the temperature is not low enough and the ice ball is small, the ablation treatment cannot be effectively realized. If an ablation gas such as nitrogen or argon is introduced into the existing frozen adhesion product, the lower temperature and larger freezing range cannot be achieved due to the flow restriction of the product itself.
  • Existing cryoablation products can also achieve cryo-adhesion through certain means, such as direct introduction of carbon dioxide or nitrous oxide, but this method will waste a lot of gas, and most of the cold energy in the return gas is directly evacuated In addition, a large amount of liquid or solid carbon dioxide or nitrous oxide is injected or accumulated at the exhaust port.
  • the present invention provides a flow adjustment assembly.
  • the flow adjustment assembly includes a core shaft.
  • the inside of the core shaft is a hollow structure, and the hollow structure is a gas-conducting adjustment cavity.
  • the first end of the mandrel is provided with a large vent hole
  • the side wall of the mandrel is provided with a small vent hole
  • the inner diameter of the large vent hole is smaller than the inner diameter of the adjustment cavity.
  • the large pores and small pores can be understood to mean that the pores of the large pores are larger than the small pores, and do not specifically refer to the pores of a certain size. Therefore, any value of the pore diameter, as long as the pore diameter of the large pore is larger than the small pore , Do not deviate from the above description.
  • the mandrel is a tubular structure with a uniform inner diameter, and an annular structure with a through hole in the middle is arranged at the first end of the mandrel.
  • the annular structure is fixedly arranged on the first end of the mandrel, the inner diameter is formed Large vent hole smaller than the inner diameter of the mandrel.
  • the small vent holes are arranged on the side wall of the mandrel, wherein the number of small vent holes can be one or more.
  • the positions of the multiple small air outlets are set at different axial positions, and at the same axial position, different small air outlets can be set at different radial positions.
  • the pore size and size of each small vent hole may be the same, and at the same time, different embodiments are not excluded.
  • the second end of the mandrel is connected with the front end of a J-T slot, and the rear end of the J-T slot is connected with a bypass pipe.
  • the J-T tank is a flexible hose, and the material can be metal or other low-temperature resistant flexible hoses.
  • the large vent hole and the small vent hole are located on the same side of the bypass pipe along the axial direction of the mandrel.
  • a seal is arranged in the adjustment cavity.
  • the outer diameter of the seal is less than or equal to the inner diameter of the adjustment cavity and greater than the inner diameter of the large vent hole; the seal can move axially in the adjustment cavity, and the position of the seal can be adjusted to change the The number of effective vent holes in the large vent hole and the small vent hole.
  • the effective vent hole is a vent hole that is not blocked by a seal and can allow gas to pass through.
  • the sealing element is connected with one end of a traction element, and the other end of the traction element is led out through a bypass pipe.
  • the traction element is used to draw the sealing element along the axial movement of the mandrel to adjust the Location.
  • the bypass pipe may be a three-way pipe structure directly arranged on the side wall of the mandrel and formed with the two ends of the mandrel, and the traction member is connected to the seal in the mandrel through the bypass pipe; or, the The bypass pipe is a lead-out structure from the regulating cavity through other pipelines, and the sealing element in the regulating cavity is connected through the pipeline.
  • the sealing element moves axially in the adjustment cavity under the action of the traction element, and the number of effective air outlet holes is changed by adjusting the position of the sealing element.
  • the flow adjustment assembly provided by the present invention is provided with a large vent hole and a small vent hole on the mandrel, and a sealing element is arranged in the adjustment cavity, and the sealing element and a traction element are connected to the outside through the bypass pipe.
  • the sealing element is driven by the traction element, and the number of effective air outlets is changed by changing the position of the sealing element, thereby realizing the function of multi-speed flow adjustment.
  • Fig. 1 is a schematic diagram of the structure of the flow adjustment assembly in an embodiment of the present invention during axial sealing
  • Fig. 2 is a schematic diagram of the structure of the flow adjustment assembly in an embodiment of the present invention during radial sealing.
  • the flow adjustment assembly 1 at least includes an adjustment cavity 11, a sealing element 12, a J-T groove 13, a bypass pipe 14 and a fine drawing wire 15.
  • the outer diameter of the sealing element 12 is smaller than the inner diameter of the adjusting cavity 11 and larger than the inner diameter of the large outlet hole 111.
  • the sealing member 12 may be a spherical structure, or may have other shapes that can block the large air outlet 111, and no matter what shape it is, it does not deviate from the scope of this embodiment.
  • the sealing member 12 moves away from the large air outlet 111 under the traction of the traction member. Since the outer diameter of the sealing member 12 is smaller than the inner diameter of the adjusting cavity 11, the sealing member 12 After leaving the large vent 111, the gas passes through the gap between the seal 12 and the mandrel, so the gas in the adjustment chamber 11 can be simultaneously discharged from the large vent 111 and the small vent 112. At this time, the The large air outlet 111 and the small air outlet 112 are both connected to the bypass pipe to serve as the effective air outlet for air outlet. The flow adjustment component reaches the maximum air output and is in a high flow mode.
  • the sealing element 12 blocks the large air outlet 111 to form an axial seal.
  • the air in the entire flow adjustment assembly 1 is only discharged from the small air outlet 112. At this time, the flow regulating assembly 1 is in a low flow mode where the gas flow is lower than the high flow mode.
  • the number of small air outlets is at least two rows, and the number of small air outlets in each row is at least one.
  • Different sets of small air outlets 112 are provided at different axial positions on the side wall of the mandrel, namely: At least two sets of small air outlets are distributed along the axial direction of the mandrel; the outer diameter of the sealing element 12 is equal to the inner diameter of the adjusting cavity 11 and greater than the inner diameter of the large air outlet 111, when the sealing element 12 is at the first end of the mandrel Because the outer diameter of the sealing element 12 is greater than the inner diameter of the large vent hole 111, the large vent hole 111 is sealed by the sealing element 12.
  • the gas in the regulating cavity 11 cannot be discharged through the large vent hole 111, and can only pass through the mandrel.
  • the small air outlet holes on the side wall are discharged; at this time, each of the small air outlet holes is connected to the bypass pipe as the effective air outlet hole.
  • the sealing member 12 When the external force acts on the traction member to pull the sealing member 12, the sealing member 12 is moved away from the large vent hole 111 under the traction of the traction member. Since the outer diameter of the sealing member 12 is equal to the inner diameter of the mandrel, the sealing member 12 is leaving the large vent hole. After 111, the gas cannot be released from the large vent 111, but can only be released from the small vent 112. As the sealing element 12 continues to move in the axial direction, the sealing element 12 blocks multiple small vent holes 112 in turn to achieve change
  • the effect of the flow rate can also be understood as: the number of small air outlets connected to the bypass pipe as the effective air outlet is reduced.
  • the corresponding small vent holes that cannot discharge the gas passing through the bypass pipe include: the small vent hole 112 directly blocked by the seal and the small vent holes in front of it.
  • the air holes 112, and in turn, the small air outlets 112 (ie effective air outlets) that can participate in the outlet of the gas passed in by the bypass pipe are the small air outlets currently located behind the sealing member 12, and the number of these small air outlets changes, The effect of changing the flow can be achieved.
  • the sealing element 12 blocks the large air outlet 111 to achieve axial sealing, and all the small air outlets 112 on the entire flow adjustment assembly 1 can discharge air , Achieve high-traffic mode.
  • a plurality of small air outlet holes 112 are provided at the same axial position, so as to ensure the air output of the small air outlet holes 112.
  • the sealing element 12 is made of a metal material, and the air tightness between the components is ensured through precision machining.
  • the surface of the sealing member 12 is made of a material with a certain elastic deformation ability to ensure the sealing effect.
  • a low-temperature resistant rubber material can effectively reduce the precision requirements of the processing and production process.
  • a sealing surface 113 is provided at the large air outlet 111, and the sealing surface 113 is a contact surface matching the shape of the sealing element 12.
  • a low-temperature resistant rubber seal ring is provided at the large air outlet 111 to ensure the airtight effect of the large air outlet 111 and the sealing element 12.
  • a sealing component is provided between the traction member and the bypass pipe 14 to ensure the airtight effect of the adjustment chamber 11.
  • the sealing assembly includes a sealing ring 141 and a sealing ring pressing part 142, which are used to dynamically seal the gap between the bypass pipe 14 and the coarse drawing to prevent air leakage.
  • the sealing ring pressing part 142 and the bypass pipe 14 can be connected by a thread. .
  • the sealing element is connected to the traction element.
  • the traction element communicates the sealing element with the outside through the bypass pipe.
  • the sealing element moves axially under the driving of the traction element.
  • the number of effective air outlets is changed, thereby adjusting the air outlet of the mandrel to achieve the function of flow adjustment.
  • FIG. 3 is a schematic structural diagram of a high-flow state of a flow regulating component in an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a low-flow state of the flow regulating component in an embodiment of the present invention.
  • the flow regulating assembly 1 includes a regulating cavity 11, a sealing element 12 (such as a sealing ball 121), a J-T groove 13, a bypass pipe 14, and a traction element.
  • the traction member may be a thin traction wire, or two or more traction wires connected together.
  • the traction member includes a fine drawing wire 15 connected with the sealing member 12 to reduce the influence of the fine drawing on the internal air pressure.
  • the section leading from the bypass pipe 14 is a coarse drawing 16.
  • the diameter of the thick drawing wire 16 is larger than the diameter of the thin drawing wire 15, which facilitates operations such as fixing and applying force, and at the same time increases its own strength and reduces the risk of failure.
  • the adjustment cavity 11 has a large air outlet 111 at the foremost end, a small air outlet 112 on the side wall and a sealing surface 113 behind the large air outlet 111. Among them, there are at least two small air outlets 112 with a bypass pipe. There are a sealing ring 141 and a sealing ring pressing part 142 on 14. The front and rear of the JT groove 13 are fixed and sealed with the rear end of the adjustment chamber 11 and the front end of the bypass pipe 14 respectively. The thin drawn wire 15 is fixedly connected with the sealing ball 121 and the coarse drawn wire 16 respectively.
  • the sealing ball 121 is located inside the adjustment cavity 11, and the sealing ball
  • the diameter of 121 is smaller than the inner diameter of the adjustment cavity 11, so the sealing ball 121 can move back and forth inside the adjustment cavity 11, and the size of the gap between the two does not affect the overall flow of the intake air.
  • the thin drawn wire 15 is located inside the J-T groove 13, the diameter of the thin drawn wire 15 is smaller than the inner diameter of the J-T groove 13, and the thin drawn wire 15 can move back and forth in the J-T groove without obstructing the air flow.
  • the coarse drawing 16 is located inside the branch of the bypass pipe 14.
  • the coarse drawing 16 When the coarse drawing 16 is pulled back, it will pass through the fine drawing 15 finally drives the sealing ball 121 to move backwards.
  • both the large outlet hole 111 and the small outlet hole 112 of the regulating cavity are discharged, and the corresponding flow rate is the largest.
  • nitrogen or argon gas is introduced to realize the cryoablation mode.
  • only The small vent hole 112 has the gas out, and the corresponding flow rate is the smallest.
  • carbon dioxide or nitrous oxide is introduced to realize the freezing adhesion mode.
  • the traction element connected with the sealing element is provided, and the axial position of the sealing element is manually adjusted by external force, which allows the user to freely adjust the flow rate, thereby effectively improving the ease of use.
  • FIG. 5 is a structural schematic diagram of the flexible cryoprobe with an adjustable flow rate in a low flow state in an embodiment of the present invention.
  • the flexible cryoprobe provided in this application includes the flow regulating assembly 1, the needle catheter part 2, the handle part 3, and the extension tube part 4 provided in the embodiments of FIGS. 1 to 4, wherein the handle part 3 includes a front handle 31 and a rear handle 32. Elbow guard 33 and button assembly 34.
  • the button assembly 34 is used to switch between the low flow mode and the high flow mode.
  • the extension pipe member 4 includes an extension pipe 41, an air inlet pipe 42, an air return pipe 43, a branch pipe 44, and a vacuum hose 45.
  • the entire flow regulating assembly 1 is placed inside the needle catheter part 2 and the shunt tube 44.
  • the protective elbow 33 is arranged at the front section of the handle part 3 to protect the flexible pipeline at the front end of the flexible cryoprobe.
  • the gas in the regulating cavity is discharged through the air return pipe; the regulating pipe is used to directly or indirectly adjust and control the axial position of the sealing member in the regulating cavity, for example, it can be connected with the traction member in the flow regulating assembly.
  • the flow-adjustable flexible cryoprobe provided by this application is provided with an adjustable-flow-rate flow-adjusting component in the needle bar, and the gas flow inside the needle bar is manually controlled by the traction member, and the gas is adjusted in the needle bar.
  • Flow rate manual control of the temperature at the needle bar, avoids the problems of unstable flow, serious cold loss, and narrow adjustable range of working pressure that are prone to occur inside the host side in related technologies, which corresponds to the narrow adjustable flow range. .
  • the present invention places the flow adjustment component in the most distal effective treatment area (needle), there is no need to worry about the loss of cold energy during the flow adjustment process, and the flow adjustment can be achieved under the premise that the inlet pressure of the air outlet is almost constant.
  • the flow rate adjustment can be fed back to the amount of heat absorption to the lesion tissue with almost no delay, so that the cryoprobe with adjustable flow rate provided by the present invention can be applied in the high pressure field.
  • the existing technology that uses a flow controller to adjust the flow rate is relatively stable, the flow controller can only be placed inside the mainframe far away from the effective treatment area (needle), which results in the hysteresis of the cold change at the needle.
  • Fig. 6 is a schematic diagram of the structure of the needle part of the flexible cryoprobe with adjustable flow rate in cryoablation mode in an embodiment of the present invention.
  • the needle catheter component 2 includes a needle tip 21, a needle 22, an inner tube assembly 23 and an outer tube assembly 24.
  • the needle 22 includes a needle front section 221 and a needle rear section 222.
  • the needle front section 221 is fixed and sealed with the needle tip 21.
  • the needle rear section 222 is fixedly connected to the inner tube assembly 23 and the outer tube assembly 24, and the inner tube assembly 23 and the outer tube There is a certain gap between the components 24, and the gap is filled with heat insulation material or vacuumed to realize the vacuum insulation of the flexible duct section and prevent frost damage to the normal cavity.
  • Fig. 7 is a schematic view of the front section of the handle of the flexible cryoprobe with adjustable flow in an embodiment of the present invention.
  • the inner tube assembly 23 includes an inner flexible tube 231, an extruded tube 232, and a return air connection tube 233.
  • the front end of the return air connection tube 233 is inserted into the rear end of the inner flexible tube 231, and the extruded tube 232 is sheathed
  • the rear end of the inner flexible tube 231 is squeezed to ensure the connection strength and tightness.
  • the outer tube assembly 24 includes an outer flexible tube 241, a quick-tight screw cap 242, a vacuum chamber 243, and a pagoda joint 244.
  • the outer flexible tube 241 is flared at the rear end and is sheathed on the tapered surface of the vacuum chamber 243.
  • the quick-screw nut 242 squeezes the outer flexible tube 241 against the tapered surface of the front end of the vacuum chamber 243 to ensure connection strength and tightness.
  • the pagoda connector 244 is located on the branch of the vacuum chamber 243 and communicates with the inside of the vacuum chamber 243.
  • the outer tube assembly 24 is sheathed on the inner tube assembly 23, the rear end of the vacuum chamber 243 is fixedly sealed with the outer surface of the extrusion tube 232, the vacuum hose 45 is sheathed on the pagoda joint 244, and the vacuum pump inside the host can pass through the vacuum hose 45
  • the gap between the outer tube assembly 24 and the inner tube assembly 23 is evacuated.
  • the shunt pipe 44 further includes a lead-out hole 441, which is used to lead out the branch of the bypass pipe 14 and be fixedly sealed.
  • the rear end of the bypass pipe 14 is inserted into the intake pipe and fixedly sealed, the intake pipe 42 and the return pipe 43 are inserted into the rear end of the shunt pipe 44 and fixed and sealed.
  • the front handle 31 includes a sliding groove 311 and two limiting holes 312.
  • the first limiting hole 312 in the front corresponds to the cryo-adhesion mode
  • the second limiting hole 312 corresponds to the cryo-ablation mode.
  • the button assembly 14 includes a button box 341, a slider 342, a button 343, a connecting rod 344, a spring 345, a toggle switch 346, and a switch wire 347.
  • the slider 342 and the toggle switch 346 are both placed in the button box 341, the button box 341 is fixed on the inner surface of the front handle 31.
  • the slider 342 can slide back and forth in the button box 341.
  • the toggle switch 346 is fixed in the button box 341.
  • the rear end of the slider 342 also includes a toggle groove 3421 and a connecting rod hole. 3422, the toggle groove 3421 is used for the slider 342 to toggle the toggle switch 346 back and forth during the sliding process, and the rear end of the coarse wire drawing 16 passes through the button box 341 and is fixedly connected to the front end of the slider 342.
  • the spring 345 and the connecting rod 344 are both placed in the connecting rod hole 3422 of the slider 342.
  • the connecting rod 344 is divided into four sections.
  • the first section (the uppermost section in the figure) is used to connect with the button 343 and slide back and forth in the sliding groove 311 ,
  • the second section is used to insert the position of the fixing button 343 in the limit hole 312
  • the third section is used to clamp the upper limit position of the connecting rod 344 to prevent the connecting rod 344 from being pushed out by the spring 345
  • the fourth section is used to insert the spring 345.
  • Three switch wires 347 are connected to the toggle switch, and the switch wires 347 are connected to the internal circuit of the host for opening different gas pipelines in different modes.
  • the button 343 in the cryoablation mode, the button 343 is pushed backward, the second section of the connecting rod 344 will be locked into the second limiting hole 312, the connecting rod 344 drives the slider 342 to move backward, and the slider 342
  • the thick wire drawing 16 and the thin wire drawing 15 drive the sealing ball 121 to move backward to open the large vent 111.
  • the toggle slot 3421 toggles the toggle switch 346 backward, and the switch wire 347 leads the electrical signal into the host Circuit, the main engine will first open the exhaust of all pipelines once, exhaust the remaining gas, then open the cryoablation pipeline connected with nitrogen or argon, and pass the nitrogen or argon into the flexible cryoprobe , Through the air inlet pipe 42, the bypass pipe 14, the JT groove 13 and the adjustment chamber 11, it is finally ejected to the front section 221 of the needle through the large air outlet 111 and the small air outlet 112 to complete throttling and refrigeration and absorb a large amount of lesions outside the needle 22 The heat of the tissue forms an ice ball for ablation treatment, and the absorbed nitrogen or argon is then discharged out of the needle through the back section 222 of the needle, the inner flexible tube 231, the air return connecting tube 233, the shunt tube 44 and the air return tube 43.
  • the toggle groove 3421 will toggle the switch 346 is toggled forward, the switch wire 347 leads the electrical signal into the internal circuit of the main unit.
  • the main unit will first turn on the exhaust of all pipes, exhaust the remaining gas, and then turn on the connection with carbon dioxide or nitrous oxide.
  • the cryo-adhesion pipeline is used to pass carbon dioxide or nitrous oxide into the flexible cryoprobe, and finally only spray into the front section 221 of the needle through the small vent hole 112, to achieve the frozen adhesion with the tissue outside the needle 22, due to the small vent hole
  • the flow rate of 112 is small, and the cold generated by throttling is almost completely absorbed by the tissue at the needle 22. Therefore, the cold returned to the air is small, and the temperature of the flexible catheter will not be too low and harden.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Flow Control (AREA)
  • Safety Valves (AREA)
  • Reciprocating Pumps (AREA)

Abstract

一种流量调节组件,包括一芯轴,芯轴内设置有调节腔(11);芯轴的第一端部设置有大出气孔(111),芯轴的侧壁设置有小出气孔(112),大出气孔(111)的内径小于调节腔(11)的内径;芯轴的第二端部与一J-T槽(13)的前端连接,J-T槽(13)的后端与一旁通管(14)连接;调节腔(11)内设置有一密封件(12),密封件(12)的外径小于或等于调节腔(11)的内径,大于大出气孔(111)的内径;密封件(12)与一牵引件(15)的一端连接,牵引件(15)的另一端通过旁通管(14)引出;其中,密封件(12)在牵引件(15)的作用下在调节腔(11)内轴向运动,通过调节密封件(12)的位置以改变有效出气孔的数量。该流量调节组件解决了相关技术中流量调节方法均通过主机端内部的控制实现,容易出现流量不稳定、冷量损失严重以及工作压力可调节的范围过窄、对应可调节流量范围过窄的问题。

Description

流量调节组件以及流量可调节的柔性冷冻探针 技术领域
本发明涉及医疗器械领域,尤其涉及流量调节组件以及流量可调节的柔性冷冻探针。
背景技术
冷冻治疗包括冷冻消融和冷冻粘连两大类:冷冻消融需将组织灭活,产生不可逆的损伤,常用于肿瘤的消融治疗;冷冻粘连只需通过冷冻粘住组织将其取出即可,冷冻活检、冻切和异物提取都属于冷冻粘连。
冷冻治疗在临床应用中,有很多需要调节流量的情形,比如冷冻功率调节,冷冻功率调节即流量调节,功率或流量越低冰球生长速率越慢,对于已经达到所需冰球大小但需延长冷冻时间的情形,可通过降低功率来停止冰球继续增长。此外,针头降温过程所需的流量高于降温后维持低温所需的流量,因此当针头降至最低温后,将流量降低至维持低温的最小值,可在基本不影响冷冻性能的前提下大幅降低气体的消耗量,达到省气的目的。
相关技术中,流量调节方法均通过主机端内部的控制实现,如进气阀的开断控制、流量控制器或减压阀调节,通常会造成在探针端延迟响应,还可能会出现流量不稳定、冷量损失严重,以及工作压力可调节的范围过窄,对应可调节流量范围过窄的问题。。
发明内容
本发明提供了流量调节组件以及流量可调节的柔性冷冻探针,以解决相关技术中出现流量不稳定、冷量损失严重,以及工作压力可调节的范围过窄,对应可调节流量范围过窄的问题。
根据本发明的第一方面,提供了一种流量调节组件,所述流量调节组件包括芯轴,所述芯轴内设置有调节腔;
所述芯轴的第一端部设置有大出气孔,所述芯轴的侧壁设置有小出气孔,所述大出气孔的内径小于所述调节腔的内径;
所述芯轴的第二端部与一J-T槽的前端连接,所述J-T槽的后端与一旁通管连接;
所述调节腔内设置有一密封件,所述密封件的外径小于或等于所述调节腔的内径,大于所述大出气孔的内径;
所述密封件与一牵引件的一端连接,所述牵引件的另一端通过所述旁通管引出;
所述旁通管末端设置有密封组件,所述密封组件包括密封圈,所述密封圈的内径与所述牵引件的外径相匹配,以供所述牵引件通过;
其中,所述密封件在所述牵引件的作用下在所述调节腔内轴向运动,通过调节所述密封件的位置以改变所述大出气孔与所述小出气孔中连通至所述旁通管的有效出气孔的数量。
可选地,所述密封件的外径小于所述调节腔的内径,所述小出气孔的数量至少为一个;
其中,所述密封件在所述芯轴的第一端部的大出气孔处时,所述大出气孔封闭,所述小出气孔连通至所述旁通管,以作为所述有效出气孔进行出气;当所述密封件在所述牵引件的牵引下向所述芯轴的第二端部移动后,所述大出气孔和所述小出气孔均连通至所述旁通管,以作为所述有效出气孔进行出气。
可选地,所述密封件的外径等于所述调节腔的内径,所述小出气孔的数量至少为两排,每排小出气孔的数量为至少一个,至少两组小出气孔沿所述芯轴的轴向分布;
其中,所述密封件在所述芯轴的大出气孔处时,每个所述小出气孔均连通至所述旁通管,以作为所述有效出气孔;当所述密封件在所述牵引件的作用下向所述芯轴的第二端部移动时,连通至所述旁通管,以作为所述有效出气孔的小出气孔的数量减少。
可选地,所述密封件还包括密封圈压件,所述密封圈压件套设于所述旁通管末端,所述密封圈沿所述旁通管的长度方向夹持于所述密封圈压件与所述旁通管末端之间,所述密封圈压件设有用于供所述牵引件穿过的通孔。
根据本发明的第二方面,提供了一种流量可调节的柔性冷冻探针,所述柔性冷冻探针包括前述各实施例中所述的流量调节组件,所述柔性冷冻探针还包括:针头导管部件、手柄部件和延长管部件,所述延长管部件包括进气管、回气管以及调节管;
所述流量调节组件设置在所述针头导管部件的内部,所述针头导管部件与所述手柄部件连接;
所述进气管与所述流量调节组件中的旁通管连接,所述调节腔中的气体通过所述回气管排出;
所述调节管用于直接或间接调节所述调节腔中密封件的轴向位置。
可选地,所述针头导管部件包含针尖、针头、内层管组件和外层管组件;
所述针头包含针头前段和针头后段,所述针尖设置在所述针头的前方端部,所述针头后段与所述内层管组件和所述外层管组件固定连接。
可选地,所述内层管组件和所述外层管组件之间设置有隔热层,所述隔热层为隔热材料或真空层。
可选地,所述调节腔置于所述针头前段的内部,所述J-T槽设置在所述内层管组件的内部,所述针头中的气体从所述内层管组件和所述J-T槽之间的间隙返回。
可选地,所述手柄上设置有拨杆和连接件,所述连接件的一端与所述牵引件连接,所述连接件的另一端与所述拨杆连接,通过所述拨杆调节所述调节腔中密封件的轴向位置。
本发明提供的流量调节组件,在芯轴上设置大出气孔和小出气孔,在调节腔内设置密封件,该密封件与一牵引件穿过旁通管与外部连接,密封件在牵引件的带动下,通过改变密封件的位置改变有效出气孔的数量,从而实现多档位流量调节功能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例中流量调节组件的轴向密封结构示意图;
图2是本发明一实施例中流量调节组件的径向密封结构示意图;
图3是本发明一实施例中流量调节组件的高流量状态的结构示意图;
图4是本发明一实施例中流量调节组件的低流量状态的结构示意图;
图5是本发明一实施例中流量可调节的柔性冷冻探针的结构示意图;
图6是本发明一实施例中流量可调节的柔性冷冻探针冷冻消融模式下的针头部位的结构示意图;
图7是本发明一实施例中流量可调节的柔性冷冻探针的手柄前段结构示意图;
图8是本发明一实施例中流量可调节的柔性冷冻探针手柄后段的结构示意图;
图9是本发明一实施例中流量可调节的柔性冷冻探针冷冻粘连模式下的针头部位的结构示意图;
图10是本发明一实施例中流量可调节的柔性冷冻探针手柄后段的结构示意图。
附图标记说明:
1-流量调节组件;
11-调节腔;
111-大出气孔;
112-小出气孔;
113-密封面;
12-密封件;
121-密封球;
13-J-T槽;
14-旁通管;
141-密封圈;
142-密封圈压件;
15-细拉丝;
16-粗拉丝;
2-针头导管部件;
21-针尖;
22-针头;
221-针头前段;
222-针头后段;
23-内层管组件;
231-内层柔性导管;
232-挤压管;
233-回气连接管;
24-外层管组件;
241-外层柔性导管;
242-快拧螺帽;
243-真空腔体;
244-宝塔接头;
3-手柄部件;
31-前手柄;
311-滑动槽;
312-限位孔;
32-后手柄;
33-护弯管;
34-按钮组件;
341-按钮盒;
342-滑块;
3421-拨动槽;
3422-连杆孔;
343-按钮;
344-连杆;
345-弹簧;
346-拨动开关;
347-开关导线;
4-延长管部件;
41-延长管;
42-进气管;
43-回气管;
44-分流管;
441-引出孔;
45-真空软管;
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述 特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
现有的冷冻粘连技术,一般只用于自然腔道内的冷冻活检、冻切和异物提取,由于其温度不够低、冰球较小,无法有效实现消融治疗。若对现有的冷冻粘连产品通入氮气或氩气等消融用气体,则由于产品本身的流量限制,无法达到较低温度和较大冷冻范围。现有的冷冻消融产品也可以通过一定手段实现冷冻粘连,比如直接通入二氧化碳或一氧化二氮,但这种方法会浪费大量的气体,且回气中绝大多数的冷量都直接排空了,造成排气口喷射或堆积出大量液态或固态的二氧化碳或一氧化二氮,此外,这种方法若应用于经自然腔道的冷冻消融产品中,回气大量富余的冷量会导致柔性导管段变硬,这样一来,粘住组织的针头将无法顺利地从弯曲的腔道或内窥镜钳道中取出。
本发明提供了一种流量调节组件,该流量调节组件包括芯轴,芯轴内部为中空结构,该中空结构为导通气体的调节腔。
芯轴的第一端部设置有大出气孔,芯轴的侧壁设置有小出气孔,大出气孔的内径小于调节腔的内径。
其中的大出气孔、小出气孔,可理解为大出气孔的孔径大于小出气孔,而非特指某尺寸的孔,故而,任意取值的孔径,只要满足大出气孔的孔径大于小出气孔,均不脱离以上描述。
示例性的,芯轴为内径均匀的管状结构,在芯轴的第一端部设置一具有中间通孔的环状结构,该环状结构固定设置在芯轴的第一端部时,形成内径小于芯轴内径的大出气孔。
小出气孔设置在芯轴的侧壁,其中,小出气孔的数量可以是一个,也可 以是多个。当小出气孔的数量是多个时,多个小出气孔的位置设置在不同的轴向位置,在相同的轴向位置处,可以在不同径向位置处设置不同小出气孔。此外,各小出气孔的孔径和尺寸可以是相同的,同时,也不排除不相同的实施方式。
芯轴的第二端部与一J-T槽的前端连接,J-T槽的后端与一旁通管连接。示例性的,J-T槽是柔性软管,材质可以是金属或其他耐低温的柔性管。所述大出气孔与所述小出气孔沿所述芯轴的轴向位于所述旁通管的同一侧。
调节腔内设置有一密封件,该密封件的外径小于或等于调节腔的内径,大于大出气孔的内径;密封件能够在调节腔内进行轴向运动,通过调节密封件的位置以改变所述大出气孔与所述小出气孔中有效出气孔的数量。其中,有效出气孔为无密封件封堵、能够使气体通过的出气孔。
密封件与一牵引件的一端连接,牵引件的另一端通过旁通管引出其中,所述牵引件用于牵引所述密封件沿所述芯轴的轴向运动,以调节所述密封件的位置。示意性的,该旁通管可以是从直接设置在芯轴侧壁上,与芯轴的两端形成的三通管结构,牵引件通过旁通管连接芯轴内的密封件;或者,该旁通管为从调节腔中通过其他管路的引出结构,通过该管路连接调节腔中的密封件。
其中,密封件在牵引件的作用下在调节腔内轴向运动,通过调节密封件的位置以改变有效出气孔的数量。
综上所述,本发明提供的流量调节组件,在芯轴上设置大出气孔和小出气孔,在调节腔内设置密封件,该密封件与一牵引件穿过旁通管与外部连接,密封件在牵引件的带动下,通过改变密封件的位置改变有效出气孔的数量,从而实现多档位流量调节功能。
图1是本发明一实施例中流量调节组件的轴向密封时结构示意图;图2是本发明一实施例中流量调节组件的径向密封时结构示意图。结合图1,流量调节组件1至少包含调节腔11、密封件12、J-T槽13,旁通管14和细拉丝15。
密封件12的外径小于调节腔11的内径,大于大出气孔111的内径,当密封件12处于芯轴的第一端部时,由于密封件12的外径大于大出气孔111 的内径,导致大出气孔111被密封件12封住,因此调节腔11内的气体无法通过大出气孔111放出,只能通过设置在芯轴侧壁上的小出气孔112放出,即:此时,所述大出气孔封闭,所述小出气孔连通至所述旁通管,以作为所述有效出气孔进行出气。可选地,密封件12可以是球体结构,也可以是能够封堵大出气孔111的其他形状,不论何种形状,均不脱离本实施例的范围。
当外力作用在牵引件上拉动密封件12时,密封件12在牵引件的牵引下向远离大出气孔111的方向运动,由于密封件12的外径小于调节腔11的内径,因此密封件12在离开大出气孔111后,气体从密封件12和芯轴之间的缝隙中通过,因此调节腔11内的气体能够从大出气孔111和小出气孔112中同时排出,此时,所述大出气孔111和所述小出气孔112均连通至所述旁通管,以作为所述有效出气孔进行出气,该流量调节组件达到最大出气量,处于高流量模式。
当外力消失,密封件12在进气气流的作用下向前移动到底后,密封件12堵住大出气孔111,形成轴向密封,整个流量调节组件1中的气体仅从小出气孔112排出,此时流量调节组件1处于气体流量低于高流量模式的低流量模式。
结合图2,所述小出气孔的数量至少为两排,每排小出气孔的数量为至少一个,在芯轴的侧壁上的不同轴向位置设置有不同组小出气孔112,即:至少两组小出气孔沿所述芯轴的轴向分布;密封件12的外径等于调节腔11的内径,大于大出气孔111的内径,当密封件12处于芯轴的第一端部时,由于密封件12的外径大于大出气孔111的内径,导致大出气孔111被密封件12封住,因此调节腔11内的气体无法通过大出气孔111排出,只能通过设置在芯轴侧壁上的小出气孔排出;此时,每个所述小出气孔均连通至所述旁通管,以作为所述有效出气孔。
当外力作用在牵引件上拉动密封件12时,密封件12在牵引件的牵引下远离大出气孔111,由于密封件12的外径等于芯轴的内径,因此密封件12在离开大出气孔111后,气体无法从大出气孔111放出,只能从小出气孔112中放出,随着密封件12在轴向方向上继续移动,密封件12依次封堵多个小出气孔112,从而达到改变流量的效果,其也可理解为:连通至所述旁通管, 以作为所述有效出气孔的小出气孔的数量减少。
具体的,在封堵的小出气孔112不同时,对应的,无法对旁通管通入的气体进行出气的小出气孔包括:密封件直接封堵的小出气孔112与其前方的各小出气孔112,进而,能够参与对旁通管通入的气体进行出气的小出气孔112(即有效出气孔)为当前处于密封件12后方的各小出气孔,该些小出气孔的数量的变化,可达改变流量的效果。
当外力消失,密封件12在进气气流的作用下向前移动到底后,密封件12堵住大出气孔111,实现轴向密封,整个流量调节组件1上的所有小出气孔112均可以出气,实现高流量模式。示例性的,在相同的轴向位置处设置多个小出气孔112,从而保证小出气孔112的出气量。
可选的,密封件12为金属材质,通过精密加工保证各组件之间的气密性。或者,密封件12的表面为具有一定弹性形变能力的材质,以保证密封效果,例如耐低温的橡胶材质,能够有效降低加工生产工艺的精度要求。
为了保证密封效果,在大出气孔111处设置密封面113,该密封面113为与密封件12形状相匹配的接触面。或者,在大出气孔111处设置耐低温的橡胶材质的密封圈,保证大出气孔111与密封件12的气密效果。
牵引件与旁通管14之间设置有密封组件,用于保证调节腔11的气密效果。该密封组件包括密封圈141和密封圈压件142,用于动态密封旁通管14和粗拉丝之间的间隙以防止漏气,密封圈压件142和旁通管14之间可采用螺纹连接。
综上所述,以上实现方式中密封件与牵引件连接,牵引件通过旁通管使密封件与外界连通,密封件在牵引件的带动下进行轴向运动,当密封件处于不同位置时,有效出气孔的数量发生变化,从而调节芯轴的出气量,达到流量调节的功能。
结合图3和图4,图3是本发明一实施例中流量调节组件的高流量状态的结构示意图;图4是本发明一实施例中流量调节组件的低流量状态的结构示意图。流量调节组件1包含调节腔11、密封件12(例如密封球121)、J-T槽13,旁通管14、牵引件。
在一个可能的实现方式中,牵引件可以是一细牵引丝,也可以是两段或多段牵引丝连接设置。当牵引件为两段或多段牵引丝连接设置时,牵引件包括与密封件12连接的细拉丝15,以降低细拉丝对内部气压的影响,从旁通管14引出的一段为粗拉丝16,粗拉丝16的直径大于细拉丝15的直径,便于对其进行固定、施力等操作,同时增加了自身强度,减少故障的风险。
调节腔11上有位于最前端的大出气孔111、位于侧边壁面的小出气孔112和位于大出气孔111后方的密封面113,其中小出气孔112至少有对称的2个,旁通管14上有密封圈141和密封圈压件142。J-T槽13前后分别与调节腔11的后端和旁通管14的前端相互固定密封,细拉丝15分别与密封球121和粗拉丝16相互固定连接,密封球121位于调节腔11内部,密封球121的直径小于调节腔11的内径,因而密封球121可在调节腔11内部前后移动,且两者之间的间隙大小不影响进气的整体流量。
在一个可能的实现方式中,细拉丝15位于J-T槽13内部,细拉丝15的直径小于J-T槽13内径,细拉丝15可在J-T槽内前后移动,且不阻碍气流通过。粗拉丝16位于旁通管14的分支内部。
正常工作时,气体从旁通管14的后端进入,通过J-T槽13内部输送至调节腔11内部,最终从调节腔11的出气孔排出,当向后拉动粗拉丝16时,将通过细拉丝15最终带动密封球121向后移动,此时,调节腔的大出气孔111和小出气孔112均出气,对应的流量最大,此时通入氮气或氩气,可实现冷冻消融模式。向前推动粗拉丝16,细拉丝15上的拉力消失,密封球121将在进气气流的作用下向前移动,最终顶在密封面113上,将大出气孔111堵住,此时,只有小出气孔112出气,对应的流量最小,此时通入二氧化碳或一氧化二氮,可实现冷冻粘连模式。
由于对气体流量的调节方法和过程图1和图2的示例相同,本实施例对此不再赘述。
综上所述,本实施例中通过设置与密封件连接的牵引件,通过外部施力手动调节密封件的轴向位置,能够让使用者自由调节流量大小,从而有效提升了易用性。
本申请还提供了一种流量可调节的柔性冷冻探针,图5是本发明一实施 例中流量可调节的柔性冷冻探针的低流量状态的结构示意图。本申请提供的柔性冷冻探针包括前述图1至图4实施例中提供的流量调节组件1、针头导管部件2、手柄部件3和延长管部件4,其中手柄部件3包含前手柄31、后手柄32、护弯管33和按钮组件34。按钮组件34用于切换低流量模式和高流量模式。延长管部件4包含延长管41、进气管42、回气管43、分流管44、真空软管45。整个流量调节组件1置于针头导管部件2和分流管44的内部。护弯管33设置在手柄部件3的前段,用以保护柔性冷冻探针前端的柔性管路。调节腔中的气体通过回气管排出;调节管用于直接或间接调节控制调节腔中密封件的轴向位置,例如可以与流量调节组件中的牵引件连接。
综上所述,本申请提供的流量可调节的柔性冷冻探针,在针杆中设置流量可调节的流量调节组件,并通过牵引件手动控制针杆内部的气体流量,在针杆内调节气体流量,手动控制针杆处的温度,避免了相关技术中在主机端的内部容易出现的流量不稳定、冷量损失严重,以及工作压力可调节的范围过窄,对应可调节流量范围过窄的问题。
由于本发明将流量调节组件放置于最远端的有效治疗区(针头)内,因而不用担心流量调节过程中的冷量损失,可保证在出气孔进气压力几乎不变的前提下实现流量调节,并且该流量调节可以几乎无延迟地反馈于对病灶组织的吸热量大小,使得本发明提供的流量可调节的冷冻探针可应用在高压领域。而现有的采用流量控制器进行流量调节的技术虽然对流量的控制较为稳定,但该流量控制器只能放置于远离有效治疗区(针头)的主机内部,从而导致针头处的冷量变化迟滞于流量调节,并且能在高压下实现流量稳定控制的流量控制器较少,并且当所需流量较低时,在流量控制器处会出现一个极小的流通截面,这样一来流量控制器内部将产生一个较低的温度,造成冷量损失,无法实现针头的有效降温,从而使得现有的流量控制器一般不适用于高压气态流的状态。
图6是本发明一实施例中流量可调节的柔性冷冻探针冷冻消融模式下的针头部位的结构示意图。结合图6,针头导管部件2包含针尖21、针头22、内层管组件23和外层管组件24。针头22包含针头前段221和针头后段222,针头前段221与针尖21固定密封,针头后段222与内层管组件23和外层管组件24相互固定连接,内层管组件23和外层管组件24之间存在一定的间隙, 该间隙内填充有隔热材料或者抽真空处理,以实现柔性导管段的真空绝热,防止冻伤正常腔道。
综上所述,由于内层管组件和外层管组件之间存在一定的间隙,在间隙中设置隔热层,一方面保证内部的冷气不能导出到外部,冻伤正常腔道,另一方面保证外部的热量无法导入到组件的内部,从而保证冷冻效果。
图7是本发明一实施例中流量可调节的柔性冷冻探针的手柄前段结构示意图。参阅图7,内层管组件23包含内层柔性导管231、挤压管232和回气连接管233,回气连接管233的前端插入内层柔性导管231的后端,挤压管232外套于内层柔性导管231的后端并通过挤压的方式确保连接强度和密封性。
外层管组件24包含外层柔性导管241、快拧螺帽242、真空腔体243和宝塔接头244,外层柔性导管241后端扩口后外套于真空腔体243的前端锥形面上,快拧螺帽242将外层柔性导管241挤压在真空腔体243的前端锥形面上,以此确保连接强度和密封性。
宝塔接头244位于真空腔体243的分支上,与真空腔体243的内部相连通。外层管组件24外套于内层管组件23,真空腔体243后端与挤压管232外表面固定密封,真空软管45外套于宝塔接头244上,主机内部的真空泵可通过真空软管45对外层管组件24和内层管组件23之间的间隙进行抽真空处理。
示例性的,分流管44还包含一个引出孔441,引出孔441用于引出旁通管14的分支并固定密封,旁通管14的后端插入进气管并固定密封,进气管42和回气管43均插入分流管44后端并固定密封。
参阅图8,前手柄31包含滑动槽311和2个限位孔312,前方第一个限位孔312对应冷冻粘连模式,第二个限位孔312对应冷冻消融模式。按钮组件14包含按钮盒341、滑块342、按钮343、连杆344、弹簧345、拨动开关346和开关导线347,其中滑块342和拨动开关346均放置于按钮盒341中,按钮盒341固定于前手柄31的内表面,滑块342可在按钮盒341中前后滑动,拨动开关346固定于按钮盒341中,滑块342后端还包含一个拨动槽3421和一个连杆孔3422,拨动槽3421用于滑块342在滑动过程中前后拨动拨动开 关346,粗拉丝16的后端穿过按钮盒341与滑块342前端固定连接。弹簧345和连杆344均放置于滑块342的连杆孔3422内,连杆344分为四段,第一段(图中最上段)用于和按钮343连接并在滑动槽311中前后滑动,第二段用于插入限位孔312内固定按钮343的位置,第三段用于卡住连杆344的上限位置,防止连杆344被弹簧345顶出去,第四段用于套入弹簧345。拨动开关连接有三根开关导线347,开关导线347与主机内部电路连接,用于不同模式下开启不同的气体管路。
以下结合使用过程对本申请做进一步详细阐述。
参阅图6和图8,冷冻消融模式下,按钮343向后拨,连杆344的第二段将卡入第二个限位孔312内,连杆344带动滑块342后移,滑块342通过粗拉丝16和细拉丝15带动密封球121向后移动,打开大出气孔111,于此同时,拨动槽3421将拨动开关346向后拨动,开关导线347将该电信号导入主机内部电路,主机将先开启一次所有管路的排气,将原有剩余的气体排光后,再开启连接有氮气或氩气的冷冻消融管路,将氮气或氩气通入柔性冷冻探针内,经进气管42、旁通管14、J-T槽13和调节腔11,最终通过大出气孔111和小出气孔112喷出至针头前段221,完成节流制冷,并大量吸收针头22外的病灶组织的热量,形成冰球,进行消融治疗,吸热后的氮气或氩气再经针头后段222、内层柔性导管231、回气连接管233、分流管44和回气管43排出针外。
参阅图9和图10,需要开启冷冻粘连模式时,则按下按钮343,将连杆344的第二段从第二个限位孔312内移出,此时,弹簧345将被压缩,连杆344的第一段进入滑动槽311内,向前推动按钮343,连杆344将带动滑块342向前移动,滑块342则带动粗拉丝16向前被推入旁通管14中,此时由于进气管路中气流的存在,密封球121将被气流向前推直至顶住密封面113,将大出气孔111堵住。按钮343推到底后,松开按钮343,连杆344将被弹簧345向上顶出,直至其第二段卡入第一个限位孔312内,于此同时,拨动槽3421将拨动开关346向前拨动,开关导线347将该电信号导入主机内部电路,主机将先开启一次所有管路的排气,将原有剩余的气体排光后,再开启连接有二氧化碳或一氧化二氮的冷冻粘连管路,将二氧化碳或一氧化二氮通入柔性冷冻探针内,最终仅通过小出气孔112喷出至针头前段221内部,实 现与针头22外组织的冷冻粘连,由于小出气孔112的流量较小,节流产生的冷量在针头22处几乎被组织完全吸收,因此,回气的冷量很小,柔性导管温度不会太低而变硬。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (7)

  1. 一种流量调节组件,其特征在于,所述流量调节组件包括芯轴,所述芯轴内设置有调节腔;
    所述芯轴的第一端部设置有大出气孔,所述芯轴的侧壁设置有小出气孔,所述大出气孔的内径小于所述调节腔的内径;
    所述芯轴的第二端部与一J-T槽的前端连接,所述J-T槽的后端与一旁通管连接;
    所述调节腔内设置有一密封件,所述密封件的外径小于所述调节腔的内径,大于所述大出气孔的内径;
    所述密封件与一牵引件的一端连接,所述牵引件的另一端通过所述旁通管引出;
    所述旁通管末端设置有密封组件,所述密封组件包括密封圈,所述密封圈的内径与所述牵引件的外径相匹配,以供所述牵引件通过;
    其中,所述密封件在所述牵引件的作用下在所述调节腔内轴向运动,通过调节所述密封件的位置以改变所述大出气孔与所述小出气孔中连通至所述旁通管的有效出气孔的数量;
    所述小出气孔的数量至少为一个;
    其中,所述密封件在所述芯轴的第一端部的大出气孔处时,所述大出气孔封闭,所述小出气孔连通至所述旁通管,以作为所述有效出气孔进行出气,此时所形成的流量最小,且所述流量调节组件此时用于通入二氧化碳或一氧化二氮,以实现冷冻粘连模式;
    当所述密封件在所述牵引件的牵引下向所述芯轴的第二端部移动后,所述大出气孔和所述小出气孔均连通至所述旁通管,以作为所述有效出气孔进行出气,此时所形成的流量最大,且所述流量调节组件此时用于通入氮气或氩气,以实现冷冻消融模式。
  2. 根据权利要求1所述的流量调节组件,其特征在于,所述密封组件还包括密封圈压件,所述密封圈压件套设于所述旁通管末端,所述密封圈沿所述旁通管的长度方向夹持于所述密封圈压件与所述旁通管末端之间,所述密封圈压件设有用于供所述牵引件穿过的通孔。
  3. 一种流量可调节的柔性冷冻探针,其特征在于,所述柔性冷冻探针包 括权利要求1或2任一所述的流量调节组件,所述柔性冷冻探针还包括:针头导管部件、手柄部件和延长管部件,所述延长管部件包括进气管、回气管以及调节管;
    所述流量调节组件设置在所述针头导管部件的内部,所述针头导管部件与所述手柄部件连接;
    所述进气管与所述流量调节组件中的旁通管连接,所述调节腔中的气体通过所述回气管排出;
    所述调节管用于直接或间接调节所述调节腔中密封件的轴向位置。
  4. 根据权利要求3所述的柔性冷冻探针,其特征在于,所述针头导管部件包含针尖、针头、内层管组件和外层管组件;
    所述针头包含针头前段和针头后段,所述针尖设置在所述针头的前方端部,所述针头后段与所述内层管组件和所述外层管组件固定连接。
  5. 根据权利要求4所述的柔性冷冻探针,其特征在于,所述内层管组件和所述外层管组件之间设置有隔热层,所述隔热层为隔热材料或真空层。
  6. 根据权利要求4所述的柔性冷冻探针,其特征在于,所述调节腔置于所述针头前段的内部,所述J-T槽设置在所述内层管组件的内部,所述针头中的气体从所述内层管组件和所述J-T槽之间的间隙返回。
  7. 根据权利要求3至6任一所述的柔性冷冻探针,其特征在于,所述手柄部件上设置有拨杆和连接件,所述连接件的一端与所述牵引件连接,所述连接件的另一端与所述拨杆连接,通过所述拨杆调节所述调节腔中密封件的轴向位置。
PCT/CN2021/076191 2020-02-24 2021-02-09 流量调节组件以及流量可调节的柔性冷冻探针 WO2021169800A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3180710A CA3180710A1 (en) 2020-02-24 2021-02-09 Flow regulating assembly and flexible cryoprobe with adjustable flow
EP21760937.9A EP4129222A4 (en) 2020-02-24 2021-02-09 FLOW ADJUSTMENT ARRANGEMENT AND FLEXIBLE CRYOPROBE WITH FLOW ADJUSTMENT
AU2021227084A AU2021227084B2 (en) 2020-02-24 2021-02-09 Flow adjusting assembly and flow-adjustable flexible cryoprobe
US17/927,341 US20230293220A1 (en) 2020-02-24 2021-02-09 Flow regulating assembly and flexible cryoprobe with adjustable flow

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010111100.7A CN110934636B (zh) 2020-02-24 2020-02-24 流量调节组件以及流量可调节的柔性冷冻探针
CN202010111100.7 2020-02-24

Publications (1)

Publication Number Publication Date
WO2021169800A1 true WO2021169800A1 (zh) 2021-09-02

Family

ID=69913887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076191 WO2021169800A1 (zh) 2020-02-24 2021-02-09 流量调节组件以及流量可调节的柔性冷冻探针

Country Status (6)

Country Link
US (1) US20230293220A1 (zh)
EP (1) EP4129222A4 (zh)
CN (1) CN110934636B (zh)
AU (1) AU2021227084B2 (zh)
CA (1) CA3180710A1 (zh)
WO (1) WO2021169800A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113842204A (zh) * 2021-11-11 2021-12-28 上海导向医疗系统有限公司 双j-t槽的冷冻消融针
CN115137467A (zh) * 2022-07-07 2022-10-04 上海导向医疗系统有限公司 可穿刺消融针

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110934636B (zh) * 2020-02-24 2020-06-05 上海导向医疗系统有限公司 流量调节组件以及流量可调节的柔性冷冻探针
CN112022326A (zh) * 2020-08-18 2020-12-04 上海市第十人民医院 一种作用范围可调节的喷雾冷冻导管
CN112807073B (zh) * 2021-03-01 2024-10-01 宁波胜杰康生物科技有限公司 一种冷冻消融导管

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380307A (en) * 1992-09-30 1995-01-10 Target Therapeutics, Inc. Catheter with atraumatic drug delivery tip
CN103930153A (zh) * 2011-10-28 2014-07-16 美敦力 用于可变注射流量的系统及方法
CN108498162A (zh) * 2018-04-24 2018-09-07 海杰亚(北京)医疗器械有限公司 分体连接冷冻消融针及其针头组件和针尾组件
CN110251224A (zh) * 2019-08-13 2019-09-20 上海导向医疗系统有限公司 可调节冷冻消融针
CN110575242A (zh) * 2019-09-16 2019-12-17 海杰亚(北京)医疗器械有限公司 冷热消融针
CN110604613A (zh) * 2019-08-13 2019-12-24 上海导向医疗系统有限公司 弯型可调冷冻消融针
CN110934636A (zh) * 2020-02-24 2020-03-31 上海导向医疗系统有限公司 流量调节组件以及流量可调节的柔性冷冻探针

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3548829A (en) * 1968-10-21 1970-12-22 Frigitronics Of Conn Inc Cryosurgical instrument
CN201524122U (zh) * 2009-07-27 2010-07-14 赵菁 心血管导丝介入用引导器
ES2976564T3 (es) * 2011-02-01 2024-08-05 Channel Medsystems Inc Aparato para el tratamiento criogénico de una cavidad o luz del cuerpo
CN202409157U (zh) * 2011-12-26 2012-09-05 王继红 一种介入手术穿刺针导向管
CN108814676A (zh) * 2018-04-03 2018-11-16 北京金泰创新科技有限公司 一种带螺旋切割碎栓功能的血栓抽吸导管
CN109730763A (zh) * 2019-02-28 2019-05-10 上海导向医疗系统有限公司 分体式柔性冷冻消融针装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380307A (en) * 1992-09-30 1995-01-10 Target Therapeutics, Inc. Catheter with atraumatic drug delivery tip
CN103930153A (zh) * 2011-10-28 2014-07-16 美敦力 用于可变注射流量的系统及方法
CN108498162A (zh) * 2018-04-24 2018-09-07 海杰亚(北京)医疗器械有限公司 分体连接冷冻消融针及其针头组件和针尾组件
CN110251224A (zh) * 2019-08-13 2019-09-20 上海导向医疗系统有限公司 可调节冷冻消融针
CN110604613A (zh) * 2019-08-13 2019-12-24 上海导向医疗系统有限公司 弯型可调冷冻消融针
CN110575242A (zh) * 2019-09-16 2019-12-17 海杰亚(北京)医疗器械有限公司 冷热消融针
CN110934636A (zh) * 2020-02-24 2020-03-31 上海导向医疗系统有限公司 流量调节组件以及流量可调节的柔性冷冻探针

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4129222A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113842204A (zh) * 2021-11-11 2021-12-28 上海导向医疗系统有限公司 双j-t槽的冷冻消融针
CN115137467A (zh) * 2022-07-07 2022-10-04 上海导向医疗系统有限公司 可穿刺消融针

Also Published As

Publication number Publication date
CN110934636B (zh) 2020-06-05
EP4129222A4 (en) 2024-07-10
EP4129222A1 (en) 2023-02-08
AU2021227084B2 (en) 2023-11-30
US20230293220A1 (en) 2023-09-21
CA3180710A1 (en) 2021-09-02
CN110934636A (zh) 2020-03-31
AU2021227084A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
WO2021169800A1 (zh) 流量调节组件以及流量可调节的柔性冷冻探针
WO2023083048A1 (zh) 双j-t槽的冷冻消融针
CN203122580U (zh) 一种超低温冷冻探头
US20110208166A1 (en) Catheter having communicating lumens
CA2607175A1 (en) Compliant balloon catheter
WO2023083050A1 (zh) J-t槽位置可调的冷冻消融针
WO2023083047A1 (zh) J-t槽套管的冷冻消融针
EP4431038A1 (en) Vacuum wall position adjustable cryoablation needle
CN111407393B (zh) 一种冷冻消融球囊导管
CN212466150U (zh) 流量调节组件以及流量可调节的冷冻探针
WO2024050967A1 (zh) 消融系统
CN111134832B (zh) 流量调节组件以及流量可调节的冷冻探针
US11717656B2 (en) Delivery of mixed phase media for the treatment of the anatomy
JP7145333B2 (ja) 耐低温高圧の可撓性冷凍アブレーションニードル装置
CN209316044U (zh) 一种冷冻消融导管
CN113081231B (zh) 冷冻消融系统
CN214342576U (zh) 一种冷冻消融球囊导管
CN207837630U (zh) 一种用于肿瘤冷冻治疗的预冷节流氩氦刀
CN215349399U (zh) 一种新型冷冻消融导管
CN219048799U (zh) 一种气管镜用冷冻探头
CN219484237U (zh) 一种带有冷却机构的刀塔
CN220424285U (zh) 一种三腔导尿管与膀胱冲洗器连接装置
HK1141422A1 (en) Cryogenic device for surgical use
CN118787429A (zh) 压力闭环控制的喷雾冷冻消融导管
TWM576651U (zh) Defrosting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2021227084

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 3180710

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021760937

Country of ref document: EP

Effective date: 20220926

ENP Entry into the national phase

Ref document number: 2021227084

Country of ref document: AU

Date of ref document: 20210209

Kind code of ref document: A