[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021166041A1 - Dc power supply device, electric motor drive device, air conditioner, and refrigerator - Google Patents

Dc power supply device, electric motor drive device, air conditioner, and refrigerator Download PDF

Info

Publication number
WO2021166041A1
WO2021166041A1 PCT/JP2020/006100 JP2020006100W WO2021166041A1 WO 2021166041 A1 WO2021166041 A1 WO 2021166041A1 JP 2020006100 W JP2020006100 W JP 2020006100W WO 2021166041 A1 WO2021166041 A1 WO 2021166041A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
control unit
circuit
power supply
inverter circuit
Prior art date
Application number
PCT/JP2020/006100
Other languages
French (fr)
Japanese (ja)
Inventor
山下 裕之
知宏 沓木
浩基 鈴木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/006100 priority Critical patent/WO2021166041A1/en
Priority to US17/915,188 priority patent/US20230238893A1/en
Priority to JP2022501413A priority patent/JP7183472B2/en
Publication of WO2021166041A1 publication Critical patent/WO2021166041A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/024Compressor control by controlling the electric parameters, e.g. current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • F25B2700/151Power, e.g. by voltage or current of the compressor motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present disclosure discloses a DC power supply device that converts AC power into DC power and supplies it to a motor, an electric motor drive device that drives the motor by the DC power supplied from the DC power supply device, an air conditioner and a refrigerator equipped with the motor drive device. Regarding.
  • Patent Document 1 describes a technique for detecting a short-circuit failure of one of the switching elements in a DC power supply device that controls a full-wave rectification state and a step-up state by using two switching elements connected in series. There is.
  • a failed switching element is detected by detecting the voltage across two capacitors and detecting the voltage difference between the voltages across the two capacitors. Then, when a failure of the booster circuit is detected, the booster operation is stopped and the operation shifts to the full-wave rectification operation.
  • Patent Document 1 does not detect the failure of the inverter circuit and the load state. Therefore, in the case of the DC power supply device using the technique of Patent Document 1, assuming that the DC power supply device is operated in the safe direction, the motor must be stopped. That is, the technique of Patent Document 1 has a problem that the motor drive is stopped even though the motor drive can be continued in some cases. Therefore, there is a demand for a function that enables the continuation and stop of the motor drive according to the load state.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a DC power supply device capable of distinguishing between continuation and stop of motor drive according to a load state.
  • the present disclosure is a DC power supply device that converts AC supplied from an AC power source into DC and supplies it to a load including an electric motor.
  • the DC power supply device includes a rectifier circuit that rectifies the AC voltage output by the AC power supply into a DC voltage.
  • the DC power supply device has a reactor, and includes a booster circuit that generates a boosted voltage that boosts the DC voltage output from the rectifier circuit through or without the reactor and applies the boosted voltage to the load.
  • the DC power supply device includes a control unit that controls the operation of the booster circuit, and a first current detection unit that detects a first current flowing between the booster circuit and the load.
  • the booster circuit includes a charge storage unit having first and second capacitors connected in series, and first and second switching elements connected in series. Further, the booster circuit has a switching unit having a backflow prevention element connected in a direction to prevent backflow of electric charge from the charge storage unit, and a second switching unit that detects a second current flowing between the rectifier circuit and the switching unit. It is provided with a current detection unit. The control unit determines whether or not to continue driving the motor based on the detected values of the first and second current detection units.
  • FIG. 1 is a diagram showing a configuration example of an electric motor drive device including a DC power supply device according to the first embodiment.
  • the motor drive device 150 according to the first embodiment includes a DC power supply device 100, an inverter circuit 10, a drive control unit 11, and current detection units 12, 13, and 14.
  • the DC power supply device 100 is a power conversion device that converts alternating current into direct current.
  • the DC power supply device 100 converts the three-phase alternating current supplied from the power supply 1 into direct current and supplies it to the inverter circuit 10.
  • the inverter circuit 10 is a power conversion device that converts direct current into three-phase alternating current.
  • the inverter circuit 10 drives the electric motor 15 using the direct current supplied from the direct current power supply device 100.
  • the inverter circuit 10 and the electric motor 15 correspond to a load that consumes power by direct current. That is, the DC power supply device 100 is a power supply device that supplies DC power to a load including the electric motor 15.
  • the load including the inverter circuit is called the inverter load.
  • An example of an inverter load is a refrigeration cycle applicable device. Examples of equipment to which the refrigeration cycle is applied include an air conditioner, a refrigerator, a washer / dryer, a refrigerator, a dehumidifier, a heat pump type water heater, and a showcase.
  • the inverter load is not limited to the refrigeration cycle applicable equipment, and may be a vacuum cleaner, a fan motor, a ventilation fan, a hand dryer, an induction heating electromagnetic cooker, or the like.
  • the current detection unit 12 detects the current flowing in and out of the inverter circuit 10, that is, the current flowing between the booster circuit 7 and the inverter circuit 10.
  • the current flowing in and out of the inverter circuit 10 may be referred to as a "first current”
  • the current detection unit 12 may be referred to as a "first current detection unit”.
  • the current detection units 13 and 14 detect the current flowing through the motor 15.
  • the drive control unit 11 controls the operation of the inverter circuit 10 based on the first current detected by the current detection unit 12 and the currents detected by the current detection units 13 and 14.
  • the detection method in the current detection units 12, 13 and 14 may be a method using a shunt resistor or a method using a current transformer. Moreover, you may use other methods other than these.
  • the DC power supply device 100 includes a rectifier circuit 2, a booster circuit 7, and a control unit 8. Although the current detection unit 12 is shown as a component outside the DC power supply device 100 in FIG. 1, it may be configured as a component inside the DC power supply device 100.
  • the rectifier circuit 2 is connected to the power supply 1 on the input side and to the booster circuit 7 on the output side.
  • the power supply 1 is an AC power supply that outputs three-phase AC.
  • the rectifier circuit 2 rectifies the AC voltage output by the power supply 1 to a DC voltage.
  • the booster circuit 7 includes a reactor 3, a current detection unit 9, a switching unit 20, and a charge storage unit 22.
  • the booster circuit 7 generates a boosted voltage that boosts the DC voltage output from the rectifier circuit 2 via the reactor 3 and applies it to the inverter circuit 10.
  • the current detection unit 9 detects the current flowing in and out of the booster circuit 7, that is, the current flowing between the rectifier circuit 2 and the booster circuit 7.
  • the current flowing in and out of the booster circuit 7 may be referred to as a "second current”
  • the current detection unit 9 may be referred to as a "second current detection unit”.
  • the control unit 8 controls the operation of the booster circuit 7 based on the detected value of the second current detected by the current detection unit 9.
  • the detection method in the current detection unit 9 may be a method using a shunt resistor or a method using a current transformer. Moreover, you may use other methods other than these.
  • the charge storage unit 22 has a first capacitor 6a and a second capacitor 6b connected in series between the output terminals to the inverter circuit 10.
  • the switching unit 20 includes a first switching element 4a and a second switching element 4b connected in series, and backflow prevention elements 5a and 5b connected in a direction to prevent backflow of electric charge from the charge storage unit 22.
  • the switching unit 20 selectively charges one or both of the first capacitor 6a and the second capacitor 6b. This control is performed by the control unit 8.
  • FIG. 1 shows an example in which the reactor 3 is connected to the output side of the rectifier circuit 2, but the present invention is not limited to this.
  • the reactor 3 may be configured to be connected to the input side of the rectifier circuit 2.
  • the booster circuit 7 generates a booster voltage that boosts the DC voltage output from the rectifier circuit 2 without going through the reactor 3.
  • An example of the rectifier circuit 2 is a three-phase full-wave rectifier circuit in which six rectifier elements are fully bridge-connected. Note that FIG. 1 is an example in the case where the power supply 1 is an AC power supply that outputs three-phase AC. When the power supply 1 is an AC power supply that outputs single-phase AC, a full-wave rectifier circuit in which four rectifying elements are bridge-connected may be used.
  • the switching unit 20 has a midpoint 30 and connection points 31 and 32.
  • the midpoint 30 is a connection point between the first switching element 4a and the second switching element 4b.
  • the connection point 31 is a connection point on the high potential side of the first switching element 4a.
  • the collector of the first switching element 4a is connected to the connection point 31.
  • the connection point 32 is a connection point on the low potential side of the second switching element 4b.
  • the emitter of the second switching element 4b is connected to the connection point 32.
  • the charge storage unit 22 has a midpoint 34 and connection points 35 and 36.
  • the midpoint 34 is a connection point between the first capacitor 6a and the second capacitor 6b.
  • the connection point 35 is a connection point on the high potential side of the first capacitor 6a.
  • the connection point 36 is a connection point on the low potential side of the second capacitor 6b.
  • the anode of the backflow prevention element 5a is connected to the connection point 31, and the cathode of the backflow prevention element 5a is connected to the connection point 35. That is, the backflow prevention element 5a is connected between the connection point 31 and the connection point 35 so that the direction toward the connection point 35 is the forward direction.
  • the anode of the backflow prevention element 5b is connected to the connection point 36, and the cathode of the backflow prevention element 5b is connected to the connection point 32. That is, the backflow prevention element 5b is connected between the connection point 36 and the connection point 32 so that the direction toward the connection point 32 is the forward direction.
  • the capacities of the first capacitor 6a and the second capacitor 6b are the same.
  • semiconductor elements such as a power transistor, a power MOSFET (Metal Oxide Semiconductor Field Effect Transistor), and an IGBT (Insulated Gate Bipolar Transistor) are used.
  • the first switching element 4a and the second switching element 4b, the backflow prevention elements 5a and 5b, the rectifying element constituting the rectifying circuit 2, and the switching element constituting the inverter circuit 10 are formed of a silicon-based material. It is generally formed by using a semiconductor element, but the present invention is not limited to this. Among these semiconductor elements, at least one of the first switching element 4a and the second switching element 4b, at least one of the backflow prevention elements 5a and 5b, the rectifying element constituting the rectifying circuit 2, or The switching element constituting the inverter circuit 10 may be a switching element formed of a wide band gap (Wide Band Gap: WBG) semiconductor such as silicon carbide, gallium nitride, gallium oxide or diamond.
  • WBG Wide Band Gap
  • WBG semiconductors have lower loss than silicon semiconductors. Therefore, by forming these semiconductor elements using WBG semiconductors, a low-loss device can be configured. Further, the WBG semiconductor has a higher withstand voltage than the silicon semiconductor. Therefore, the withstand voltage resistance and the allowable current density of the semiconductor element are increased, and the semiconductor module incorporating the semiconductor switching element can be miniaturized. Further, since the WBG semiconductor has high heat resistance, it is possible to reduce the size of the heat radiating part for radiating the heat generated by the semiconductor module, and it is possible to simplify the heat radiating structure for radiating the heat generated by the semiconductor module. Is.
  • the control unit 8 switches and controls the first switching element 4a and the second switching element 4b.
  • the details of the switching control are described in the above-mentioned Patent Document 1, and the detailed description here is omitted.
  • the switching control performed by the control unit 8 the boosted voltage boosted by the booster circuit 7 is applied to the inverter circuit 10.
  • the current detection unit 9 detects the second current flowing in and out of the booster circuit 7 and feeds it back to the control unit 8.
  • the control unit 8 compares the detected value of the second current with the preset determination value. When the detected value of the second current exceeds the determination value, the control unit 8 determines that an overcurrent has flowed through the booster circuit 7, and sets the status of the booster circuit 7 as a failure. Hereinafter, this failure is appropriately referred to as an "overcurrent failure".
  • the control unit 8 stops the switching control of the switching unit 20 for the first switching element 4a and the second switching element 4b.
  • the drive control unit 11 controls the operation of the inverter circuit 10 based on the first current detected by the current detection unit 12 and the currents detected by the current detection units 13 and 14, and the motor 15 To drive.
  • the drive control unit 11 determines the load state of the motor 15 based on the current value of the current detected by the current detection units 13 and 14. If the current value of the detected current is larger than the threshold value, it can be determined that the vehicle is being driven with a high load. Further, if the current value of the detected current is smaller than the threshold value, it can be determined that the vehicle is driven with a low load.
  • the high load state or the low load state is determined by one threshold value, but the load state may be determined in multiple stages by using two or more threshold values. Further, the threshold value is not fixed, but may be changed according to the operating state of the motor 15.
  • the drive control unit 11 may determine the voltage value of the direct current applied to the inverter circuit 10 based on the load state of the motor 15.
  • the drive control unit 11 transmits the determined voltage value information to the control unit 8.
  • the control unit 8 controls the on-time of the first switching element 4a and the second switching element 4b based on the voltage value information transmitted from the drive control unit 11, and determines the direct current applied to the inverter circuit 10. Control the voltage value.
  • the drive control unit 11 detects the first current flowing in and out of the inverter circuit 10 and compares the detected value of the first current with the preset determination value. When the detected value of the first current exceeds the determination value, the drive control unit 11 determines that an overcurrent has flowed in the inverter circuit 10, and sets the status of the inverter circuit 10 as a failure. Similar to the booster circuit 7, this failure is also appropriately referred to as an “overcurrent failure”. When the drive control unit 11 detects an overcurrent failure of the inverter circuit 10, the drive control unit 11 stops the switching control of the switching element of the inverter circuit 10.
  • the drive operating range of the motor 15 changes depending on the DC voltage input to the inverter circuit 10. For example, when the motor 15 is a motor using a permanent magnet for the rotor, this DC voltage affects the magnet characteristics of the permanent magnet used for the rotor.
  • a permanent magnet motor using a rare earth magnet having a strong magnetic force As a material for permanent magnets, for example, a permanent magnet motor using a rare earth magnet having a strong magnetic force is known. Since rare earth magnets have a strong magnetic force, torque is generated with a small current. For this reason, rare earth magnets are often applied to motors used in equipment that requires energy saving. However, rare earth magnets are difficult to obtain because they are rare metals called rare earths. In a permanent magnet electric motor that does not use a rare earth magnet and uses a magnet such as ferrite that has a weaker magnetic force than the rare earth magnet, the output torque is smaller than that in the case of using a rare earth magnet if the current is the same.
  • the inverter circuit 10 needs to apply a DC voltage higher than the induced voltage to the motor 15. Therefore, when the number of turns of the stator winding is increased, it is necessary to increase the DC voltage applied to the motor 15.
  • the motor 15 When operating the motor 15 with a high load, a high rotation speed is required. On the other hand, in the case of low load operation, a high rotation speed is not required, and the motor 15 can be driven at a low rotation speed. That is, in the case of low load operation, the motor 15 may be driven without increasing the DC voltage applied to the motor 15.
  • the DC power supply device 100 and the motor drive device 150 according to the first embodiment are suitable for driving a motor having a permanent magnet composed of a permanent magnet other than rare earth elements.
  • control unit 8 determines the overcurrent failure of the booster circuit 7 and the drive control unit 11 determines the overcurrent failure of the inverter circuit 10
  • present invention is not limited to this.
  • the control unit 8 may be a higher-level control unit, and the control unit 8 may be configured to determine an overcurrent failure of the booster circuit 7 and the inverter circuit 10.
  • the information required for the determination by the control unit 8 can be realized by configuring the information to be received via the drive control unit 11.
  • FIG. 2 is a flowchart showing an example of the control procedure according to the first embodiment. It should be noted that each process of FIG. 2 will be described as being performed under the control of the control unit 8.
  • the control unit 8 determines whether or not there is an overcurrent failure in the booster circuit 7 (step S01). When an overcurrent failure of the booster circuit 7 is detected (step S01, Yes), the booster operation of the booster circuit 7 is stopped (step S02), and the process proceeds to step S03.
  • the control unit 8 determines the presence or absence of an overcurrent failure in the inverter circuit 10 (step S03), and if an overcurrent failure in the inverter circuit 10 is detected (step S03, Yes), stops the output of the inverter circuit 10. (Step S06), the flow of FIG. 2 is terminated.
  • step S03 if the overcurrent failure of the inverter circuit 10 is not detected (steps S03, No), the load state of the motor 15 is determined (step S04), and the load state of the motor 15 is not a low load state. (Step S04, No), the output of the inverter circuit 10 is stopped (step S08), and the flow of FIG. 2 ends.
  • step S04, Yes if the load state of the motor 15 is a low load state (step S04, Yes), the drive of the motor 15 is continued with the output of the booster circuit 7 that has not been boosted, that is, the non-boost voltage output from the booster circuit 7. Select that (step S07) to end the flow of FIG.
  • the load state of the motor 15 in step S04 can be determined based on the current value of the current detected by the current detection units 13 and 14.
  • step S05 determines the presence or absence of an overcurrent failure in the inverter circuit 10 (step S05), and if an overcurrent failure in the inverter circuit 10 is detected (step S05, Yes), stops the output of the inverter circuit 10. (Step S08), the flow of FIG. 2 is terminated. If the overcurrent failure of the inverter circuit 10 is not detected (step S05, No), the output of the boosted booster circuit 7 is selected to continue driving the motor 15 (step S09), and the flow of FIG. 2 is performed. finish.
  • the DC power supply device 100 and the motor drive device 150 according to the first embodiment are applied to, for example, an air conditioner and a refrigerator, it can be configured as a product with higher comfort.
  • the first current detection unit detects the first current flowing between the booster circuit and the load, and the second current detection unit switches to the rectifier circuit.
  • the second current flowing between the unit and the unit is detected. Since the control unit determines whether or not to continue driving the motor based on the respective detection values of the first and second current detection units, it is possible to distinguish between continuation and stop of motor drive. As a result, it is possible to solve the problem that the motor drive is stopped even though the motor drive can be continued.
  • FIG. 3 is a block diagram showing an example of a hardware configuration that realizes each function of the control unit 8 and the drive control unit 11 in the first embodiment.
  • FIG. 4 is a block diagram showing another example of a hardware configuration that realizes each function of the control unit 8 and the drive control unit 11 in the first embodiment.
  • the processor 300 that performs the calculation and the program read by the processor 300 are used. It can be configured to include a memory 302 to be stored and an interface 304 to input / output signals.
  • the processor 300 may be a computing means such as an arithmetic unit, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor).
  • the memory 302 includes a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Program ROM), and an EPROM (registered trademark) (Electrically EPROM). Examples thereof include magnetic disks, flexible disks, optical disks, compact disks, mini disks, and DVDs (Digital entirely Disc).
  • the memory 302 stores a program that executes each function of the control unit 8 and the drive control unit 11 according to the first embodiment.
  • the processor 300 sends and receives necessary information via the interface 304, the processor 300 executes a program stored in the memory 302, and the processor 300 refers to a table stored in the memory 302 to perform the above-described processing. It can be carried out.
  • the calculation result by the processor 300 can be stored in the memory 302.
  • the processing circuit 305 shown in FIG. 4 can also be used.
  • the processing circuit 305 corresponds to a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
  • the information input to the processing circuit 305 and the information output from the processing circuit 305 can be obtained via the interface 304.
  • control unit 8 and the drive control unit 11 may be performed in the processing circuit 305, and processing not performed in the processing circuit 305 may be performed in the processor 300 and the memory 302.
  • FIG. 5 is a diagram showing a configuration example of the air conditioner according to the second embodiment.
  • the air conditioner 200 according to the second embodiment shown in FIG. 5 includes the motor drive device 150 described in the first embodiment. Specifically, in the air conditioner 200, a compressor 41 having a built-in electric motor 15 shown in FIG. 1, a four-way valve 42, an outdoor heat exchanger 43, an expansion valve 44, and an indoor heat exchanger 45 are attached via a refrigerant pipe 46. It has a separate refrigeration cycle to form a separate air conditioner.
  • a compression mechanism 47 for compressing the refrigerant and an electric motor 15 for operating the compression mechanism 47 are provided inside the compressor 41.
  • a refrigeration cycle is configured in which the refrigerant circulates from the compressor 41 between the outdoor heat exchanger 43 and the indoor heat exchanger 45 to perform air conditioning and heating.
  • the refrigeration cycle shown in FIG. 5 can be applied not only to an air conditioner but also to a device having a refrigeration cycle such as a refrigerator and a freezer.
  • the air conditioner 200 that performs cooling and heating becomes stable when the room temperature approaches the set temperature set by the user due to the refrigeration cycle.
  • the inverter circuit 10 operates so that the electric motor 15 mounted on the compressor 41 rotates at a low speed. Therefore, in the air conditioner 200, low-speed rotation is continued for a long time, so that efficiency improvement during low-speed operation greatly contributes to energy saving. Therefore, if an electric motor using a rare earth magnet or a permanent magnet having a weak magnetic force with an increased number of turns is used as the electric motor 15, it is possible to contribute to energy saving.
  • the refrigeration cycle according to the second embodiment is applied to, for example, an air conditioner, the cooling operation or the heating operation can be continued, and while maintaining the comfort, the failure is repaired or the product is replaced. You can earn time. Further, when the refrigeration cycle according to the second embodiment is applied to, for example, a refrigerator, it is possible to increase the time until the food is damaged, and it is possible to suppress damage due to failure.
  • the configuration shown in the above embodiment is an example, and can be combined with another known technique, or a part of the configuration may be omitted or changed without departing from the gist. It is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

A DC power supply device (100) is provided with: a boosting circuit (7) that generates a boosted voltage by boosting a DC voltage output from a rectifier circuit (2), and that applies the boosted voltage to an inverter circuit (10); a control unit (8) that controls the operation of the boosting circuit (7); and an electrical current detection unit (12) that detects an electrical current flowing into and out of the inverter circuit (10). The boosting circuit (7) is provided with: a charge accumulation unit (22) having first and second capacitors (6a, 6b) connected in series; and first and second switching elements (4a, 4b) connected in series. The boosting circuit (7) is provided with: a switching unit (20) that has backflow prevention elements (5a, 5b) for preventing a backflow of charge from the charge accumulation unit (22); and an electrical current detection unit (9) that detects an electrical current flowing into and out of the boosting circuit (7). The control unit (8) determines whether driving of an electric motor (15) can be continued on the basis of the detected value of each of the electrical current detection units (9, 12).

Description

直流電源装置、電動機駆動装置、空気調和機及び冷蔵庫DC power supply, motor drive, air conditioner and refrigerator
 本開示は、交流電力を直流電力に変換して電動機に供給する直流電源装置、直流電源装置から供給される直流電力により電動機を駆動する電動機駆動装置、電動機駆動装置を備えた空気調和機及び冷蔵庫に関する。 The present disclosure discloses a DC power supply device that converts AC power into DC power and supplies it to a motor, an electric motor drive device that drives the motor by the DC power supplied from the DC power supply device, an air conditioner and a refrigerator equipped with the motor drive device. Regarding.
 下記特許文献1には、2個の直列接続されたスイッチング素子を用いて全波整流状態と昇圧状態とを制御する直流電源装置において、一方のスイッチング素子の短絡故障を検出する技術が記載されている。 Patent Document 1 below describes a technique for detecting a short-circuit failure of one of the switching elements in a DC power supply device that controls a full-wave rectification state and a step-up state by using two switching elements connected in series. There is.
 具体的に、特許文献1では、2つのコンデンサの両端電圧をそれぞれ検出し、両端電圧間の電圧差を検出することで、故障したスイッチング素子を検出している。そして、昇圧回路の故障検出時には、昇圧動作を停止し、全波整流動作に移行するようにしている。 Specifically, in Patent Document 1, a failed switching element is detected by detecting the voltage across two capacitors and detecting the voltage difference between the voltages across the two capacitors. Then, when a failure of the booster circuit is detected, the booster operation is stopped and the operation shifts to the full-wave rectification operation.
特許第6129331号公報Japanese Patent No. 6129331
 昇圧回路が故障している場合、負荷状態によっては、駆動を継続できる場合と、停止しなければならない場合とがある。しかしながら、特許文献1では、インバータ回路の故障及び負荷状態を検出していない。従って、特許文献1の技術を用いた直流電源装置の場合、安全方向に動作させる事を想定すると、電動機を停止せざるを得ない。即ち、特許文献1の技術では、電動機駆動を継続できる場合があるにも関わらず、電動機駆動を停止してしまうという課題がある。このため、負荷状態に応じて電動機駆動の継続及び停止の切り分けを可能とする機能が望まれている。 If the booster circuit is out of order, depending on the load condition, it may be possible to continue driving or it may have to be stopped. However, Patent Document 1 does not detect the failure of the inverter circuit and the load state. Therefore, in the case of the DC power supply device using the technique of Patent Document 1, assuming that the DC power supply device is operated in the safe direction, the motor must be stopped. That is, the technique of Patent Document 1 has a problem that the motor drive is stopped even though the motor drive can be continued in some cases. Therefore, there is a demand for a function that enables the continuation and stop of the motor drive according to the load state.
 本開示は、上記に鑑みてなされたものであって、負荷状態に応じて、電動機駆動の継続及び停止の切り分けを可能とする直流電源装置を得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a DC power supply device capable of distinguishing between continuation and stop of motor drive according to a load state.
 上述した課題を解決し、目的を達成するため、本開示は、交流電源から供給される交流を直流に変換して電動機を含む負荷に供給する直流電源装置である。直流電源装置は、交流電源が出力する交流電圧を直流電圧に整流する整流回路を備える。また、直流電源装置は、リアクタを有し、このリアクタを介して、若しくはリアクタを介さずに整流回路から出力される直流電圧を昇圧した昇圧電圧を発生させて負荷に印加する昇圧回路を備える。更に、直流電源装置は、昇圧回路の動作を制御する制御部と、昇圧回路と負荷との間に流れる第1電流を検出する第1の電流検出部と、を備える。昇圧回路は、直列接続された第1及び第2のコンデンサを有する電荷蓄積部と、直列接続された第1及び第2のスイッチング素子と、を備える。また、昇圧回路は、電荷蓄積部からの電荷の逆流を防止する向きに接続される逆流防止素子を有する切替部と、整流回路と切替部との間に流れる第2電流を検出する第2の電流検出部と、を備える。制御部は、第1及び第2の電流検出部の各検出値に基づいて電動機の駆動の継続の可否を判定する。 In order to solve the above-mentioned problems and achieve the object, the present disclosure is a DC power supply device that converts AC supplied from an AC power source into DC and supplies it to a load including an electric motor. The DC power supply device includes a rectifier circuit that rectifies the AC voltage output by the AC power supply into a DC voltage. Further, the DC power supply device has a reactor, and includes a booster circuit that generates a boosted voltage that boosts the DC voltage output from the rectifier circuit through or without the reactor and applies the boosted voltage to the load. Further, the DC power supply device includes a control unit that controls the operation of the booster circuit, and a first current detection unit that detects a first current flowing between the booster circuit and the load. The booster circuit includes a charge storage unit having first and second capacitors connected in series, and first and second switching elements connected in series. Further, the booster circuit has a switching unit having a backflow prevention element connected in a direction to prevent backflow of electric charge from the charge storage unit, and a second switching unit that detects a second current flowing between the rectifier circuit and the switching unit. It is provided with a current detection unit. The control unit determines whether or not to continue driving the motor based on the detected values of the first and second current detection units.
 本開示に係る直流電源装置によれば、負荷状態に応じて、電動機駆動の継続及び停止の切り分けが可能になるという効果を奏する。 According to the DC power supply device according to the present disclosure, there is an effect that it is possible to separate the continuation and the stop of the motor drive according to the load state.
実施の形態1に係る直流電源装置を含む電動機駆動装置の構成例を示す図The figure which shows the structural example of the electric motor drive device which includes the DC power supply device which concerns on Embodiment 1. 実施の形態1における制御手順の一例を示すフローチャートA flowchart showing an example of the control procedure according to the first embodiment. 実施の形態1における制御部及び駆動制御部の各機能を実現するハードウェア構成の一例を示すブロック図A block diagram showing an example of a hardware configuration that realizes each function of the control unit and the drive control unit in the first embodiment. 実施の形態1における制御部及び駆動制御部の各機能を実現するハードウェア構成の他の例を示すブロック図A block diagram showing another example of a hardware configuration that realizes each function of the control unit and the drive control unit according to the first embodiment. 実施の形態2に係る空気調和機の構成例を示す図The figure which shows the structural example of the air conditioner which concerns on Embodiment 2.
実施の形態1.
 図1は、実施の形態1に係る直流電源装置を含む電動機駆動装置の構成例を示す図である。実施の形態1に係る電動機駆動装置150は、直流電源装置100と、インバータ回路10と、駆動制御部11と、電流検出部12,13,14と、を備える。
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of an electric motor drive device including a DC power supply device according to the first embodiment. The motor drive device 150 according to the first embodiment includes a DC power supply device 100, an inverter circuit 10, a drive control unit 11, and current detection units 12, 13, and 14.
 直流電源装置100は、交流を直流に変換する電力変換装置である。直流電源装置100は、電源1から供給される三相交流を直流に変換してインバータ回路10に供給する。インバータ回路10は、直流を三相交流に変換する電力変換装置である。インバータ回路10は、直流電源装置100から供給される直流電流を用いて電動機15を駆動する。 The DC power supply device 100 is a power conversion device that converts alternating current into direct current. The DC power supply device 100 converts the three-phase alternating current supplied from the power supply 1 into direct current and supplies it to the inverter circuit 10. The inverter circuit 10 is a power conversion device that converts direct current into three-phase alternating current. The inverter circuit 10 drives the electric motor 15 using the direct current supplied from the direct current power supply device 100.
 直流電源装置100から見て、インバータ回路10及び電動機15は、直流で電力消費を行う負荷に相当する。即ち、直流電源装置100は、電動機15を含む負荷に直流電力を供給する電源装置である。 Seen from the DC power supply device 100, the inverter circuit 10 and the electric motor 15 correspond to a load that consumes power by direct current. That is, the DC power supply device 100 is a power supply device that supplies DC power to a load including the electric motor 15.
 一般的に、インバータ回路を含む負荷はインバータ負荷と呼ばれる。インバータ負荷の一例は、冷凍サイクル適用機器である。冷凍サイクル適用機器としては、空気調和機、冷凍機、洗濯乾燥機、冷蔵庫、除湿器、ヒートポンプ式給湯機、ショーケースなどが例示される。なお、インバータ負荷は、冷凍サイクル適用機器に限らず、掃除機、ファンモータ、換気扇、手乾燥機、誘導加熱電磁調理器などであってもよい。 Generally, the load including the inverter circuit is called the inverter load. An example of an inverter load is a refrigeration cycle applicable device. Examples of equipment to which the refrigeration cycle is applied include an air conditioner, a refrigerator, a washer / dryer, a refrigerator, a dehumidifier, a heat pump type water heater, and a showcase. The inverter load is not limited to the refrigeration cycle applicable equipment, and may be a vacuum cleaner, a fan motor, a ventilation fan, a hand dryer, an induction heating electromagnetic cooker, or the like.
 電流検出部12は、インバータ回路10に流出入する電流、即ち昇圧回路7とインバータ回路10との間に流れる電流を検出する。なお、以下の記載において、インバータ回路10に流出入する電流を「第1電流」と呼び、電流検出部12を「第1の電流検出部」と呼ぶ場合がある。 The current detection unit 12 detects the current flowing in and out of the inverter circuit 10, that is, the current flowing between the booster circuit 7 and the inverter circuit 10. In the following description, the current flowing in and out of the inverter circuit 10 may be referred to as a "first current", and the current detection unit 12 may be referred to as a "first current detection unit".
 電流検出部13,14は、電動機15に流れる電流を検出する。駆動制御部11は、電流検出部12により検出された第1電流と、電流検出部13,14により検出された電流とに基づいてインバータ回路10の動作を制御する。 The current detection units 13 and 14 detect the current flowing through the motor 15. The drive control unit 11 controls the operation of the inverter circuit 10 based on the first current detected by the current detection unit 12 and the currents detected by the current detection units 13 and 14.
 なお、電流検出部12,13,14における検出方式は、シャント抵抗を用いる方式でもよいし、カレントトランスを用いる方式でもよい。また、これら以外の他の方式を用いてもよい。 The detection method in the current detection units 12, 13 and 14 may be a method using a shunt resistor or a method using a current transformer. Moreover, you may use other methods other than these.
 直流電源装置100は、整流回路2と、昇圧回路7と、制御部8とを備える。なお、図1において、電流検出部12は、直流電源装置100外の構成部として図示されているが、直流電源装置100内の構成部として構成されていてもよい。 The DC power supply device 100 includes a rectifier circuit 2, a booster circuit 7, and a control unit 8. Although the current detection unit 12 is shown as a component outside the DC power supply device 100 in FIG. 1, it may be configured as a component inside the DC power supply device 100.
 整流回路2は、入力側は電源1に接続され、出力側は昇圧回路7に接続される。電源1は、三相交流を出力する交流電源である。整流回路2は、電源1が出力する交流電圧を直流電圧に整流する。 The rectifier circuit 2 is connected to the power supply 1 on the input side and to the booster circuit 7 on the output side. The power supply 1 is an AC power supply that outputs three-phase AC. The rectifier circuit 2 rectifies the AC voltage output by the power supply 1 to a DC voltage.
 昇圧回路7は、リアクタ3と、電流検出部9と、切替部20と、電荷蓄積部22とを備える。 The booster circuit 7 includes a reactor 3, a current detection unit 9, a switching unit 20, and a charge storage unit 22.
 昇圧回路7は、リアクタ3を介して整流回路2から出力される直流電圧を昇圧した昇圧電圧を発生させてインバータ回路10に印加する。 The booster circuit 7 generates a boosted voltage that boosts the DC voltage output from the rectifier circuit 2 via the reactor 3 and applies it to the inverter circuit 10.
 電流検出部9は、昇圧回路7に流出入する電流、即ち整流回路2と昇圧回路7との間に流れる電流を検出する。なお、以下の記載において、昇圧回路7に流出入する電流を「第2電流」と呼び、電流検出部9を「第2の電流検出部」と呼ぶ場合がある。 The current detection unit 9 detects the current flowing in and out of the booster circuit 7, that is, the current flowing between the rectifier circuit 2 and the booster circuit 7. In the following description, the current flowing in and out of the booster circuit 7 may be referred to as a "second current", and the current detection unit 9 may be referred to as a "second current detection unit".
 制御部8は、電流検出部9により検出された第2電流の検出値に基づいて昇圧回路7の動作を制御する。 The control unit 8 controls the operation of the booster circuit 7 based on the detected value of the second current detected by the current detection unit 9.
 なお、電流検出部9における検出方式は、シャント抵抗を用いる方式でもよいし、カレントトランスを用いる方式でもよい。また、これら以外の他の方式を用いてもよい。 The detection method in the current detection unit 9 may be a method using a shunt resistor or a method using a current transformer. Moreover, you may use other methods other than these.
 電荷蓄積部22は、インバータ回路10への出力端子間に直列接続された第1のコンデンサ6a及び第2のコンデンサ6bを有する。切替部20は、直列接続された第1のスイッチング素子4a及び第2のスイッチング素子4bと、電荷蓄積部22からの電荷の逆流を防止する向きに接続される逆流防止素子5a,5bを有する。切替部20は、第1のコンデンサ6a及び第2のコンデンサ6bの一方、或いは両方を選択的に充電する。この制御は、制御部8によって実施される。 The charge storage unit 22 has a first capacitor 6a and a second capacitor 6b connected in series between the output terminals to the inverter circuit 10. The switching unit 20 includes a first switching element 4a and a second switching element 4b connected in series, and backflow prevention elements 5a and 5b connected in a direction to prevent backflow of electric charge from the charge storage unit 22. The switching unit 20 selectively charges one or both of the first capacitor 6a and the second capacitor 6b. This control is performed by the control unit 8.
 なお、図1では、リアクタ3を整流回路2の出力側に接続した例を示したが、これに限定されない。リアクタ3は、整流回路2の入力側に接続される構成であってもよい。この構成の場合、昇圧回路7は、リアクタ3を介さずに、整流回路2から出力される直流電圧を昇圧した昇圧電圧を発生させる。 Note that FIG. 1 shows an example in which the reactor 3 is connected to the output side of the rectifier circuit 2, but the present invention is not limited to this. The reactor 3 may be configured to be connected to the input side of the rectifier circuit 2. In the case of this configuration, the booster circuit 7 generates a booster voltage that boosts the DC voltage output from the rectifier circuit 2 without going through the reactor 3.
 整流回路2の一例は、6つの整流素子がフルブリッジ接続された三相全波整流回路である。なお、図1は、電源1が三相交流を出力する交流電源の場合の例である。電源1が単相交流を出力する交流電源の場合、4つの整流素子がブリッジ接続された全波整流回路を用いればよい。 An example of the rectifier circuit 2 is a three-phase full-wave rectifier circuit in which six rectifier elements are fully bridge-connected. Note that FIG. 1 is an example in the case where the power supply 1 is an AC power supply that outputs three-phase AC. When the power supply 1 is an AC power supply that outputs single-phase AC, a full-wave rectifier circuit in which four rectifying elements are bridge-connected may be used.
 切替部20は、中点30及び接続点31,32を有する。中点30は、第1のスイッチング素子4aと第2のスイッチング素子4bとの接続点である。接続点31は、第1のスイッチング素子4aにおける高電位側の接続点である。接続点31には、第1のスイッチング素子4aのコレクタが接続される。接続点32は、第2のスイッチング素子4bにおける低電位側の接続点である。接続点32には、第2のスイッチング素子4bのエミッタが接続される。 The switching unit 20 has a midpoint 30 and connection points 31 and 32. The midpoint 30 is a connection point between the first switching element 4a and the second switching element 4b. The connection point 31 is a connection point on the high potential side of the first switching element 4a. The collector of the first switching element 4a is connected to the connection point 31. The connection point 32 is a connection point on the low potential side of the second switching element 4b. The emitter of the second switching element 4b is connected to the connection point 32.
 電荷蓄積部22は、中点34及び接続点35,36を有する。中点34は、第1のコンデンサ6aと第2のコンデンサ6bとの接続点である。接続点35は、第1のコンデンサ6aにおける高電位側の接続点である。接続点36は、第2のコンデンサ6bにおける低電位側の接続点である。 The charge storage unit 22 has a midpoint 34 and connection points 35 and 36. The midpoint 34 is a connection point between the first capacitor 6a and the second capacitor 6b. The connection point 35 is a connection point on the high potential side of the first capacitor 6a. The connection point 36 is a connection point on the low potential side of the second capacitor 6b.
 逆流防止素子5aのアノードは接続点31に接続され、逆流防止素子5aのカソードは接続点35に接続される。即ち、逆流防止素子5aは、接続点31と接続点35との間において、接続点35に向かう方向が順方向となるように接続される。逆流防止素子5bのアノードは接続点36に接続され、逆流防止素子5bのカソードは接続点32に接続される。即ち、逆流防止素子5bは、接続点36と接続点32との間において、接続点32に向かう方向が順方向となるように接続される。 The anode of the backflow prevention element 5a is connected to the connection point 31, and the cathode of the backflow prevention element 5a is connected to the connection point 35. That is, the backflow prevention element 5a is connected between the connection point 31 and the connection point 35 so that the direction toward the connection point 35 is the forward direction. The anode of the backflow prevention element 5b is connected to the connection point 36, and the cathode of the backflow prevention element 5b is connected to the connection point 32. That is, the backflow prevention element 5b is connected between the connection point 36 and the connection point 32 so that the direction toward the connection point 32 is the forward direction.
 第1のコンデンサ6a及び第2のコンデンサ6bの容量は、同一である。第1のスイッチング素子4a及び第2のスイッチング素子4bとしては、例えば、パワートランジスタ、パワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)等の半導体素子が用いられる。 The capacities of the first capacitor 6a and the second capacitor 6b are the same. As the first switching element 4a and the second switching element 4b, for example, semiconductor elements such as a power transistor, a power MOSFET (Metal Oxide Semiconductor Field Effect Transistor), and an IGBT (Insulated Gate Bipolar Transistor) are used.
 また、第1のスイッチング素子4a及び第2のスイッチング素子4b、逆流防止素子5a,5b、整流回路2を構成する整流素子、並びにインバータ回路10を構成するスイッチング素子は、シリコン系材料により形成された半導体素子を用いて形成するのが一般的であるが、これに限定されない。これらの半導体素子のうち、第1のスイッチング素子4a及び第2のスイッチング素子4bのうちの少なくとも1つ、逆流防止素子5a,5bのうちの少なくとも1つ、整流回路2を構成する整流素子、又はインバータ回路10を構成するスイッチング素子は、炭化珪素、窒化ガリウム、酸化ガリウム又はダイヤモンドといったワイドバンドギャップ(Wide Band Gap:WBG)半導体により形成されたスイッチング素子でもよい。 Further, the first switching element 4a and the second switching element 4b, the backflow prevention elements 5a and 5b, the rectifying element constituting the rectifying circuit 2, and the switching element constituting the inverter circuit 10 are formed of a silicon-based material. It is generally formed by using a semiconductor element, but the present invention is not limited to this. Among these semiconductor elements, at least one of the first switching element 4a and the second switching element 4b, at least one of the backflow prevention elements 5a and 5b, the rectifying element constituting the rectifying circuit 2, or The switching element constituting the inverter circuit 10 may be a switching element formed of a wide band gap (Wide Band Gap: WBG) semiconductor such as silicon carbide, gallium nitride, gallium oxide or diamond.
 一般的にWBG半導体は、シリコン半導体に比べて低損失である。このため、これらの半導体素子をWBG半導体を用いて形成することにより、低損失な装置を構成することができる。また、WBG半導体は、シリコン半導体に比べて耐電圧が高い。このため、半導体素子の耐電圧性及び許容電流密度が高くなり、半導体スイッチング素子を組み込んだ半導体モジュールを小型化できる。更に、WBG半導体は、耐熱性も高いため、半導体モジュールで発生した熱を放熱するための放熱部の小型化が可能であり、また半導体モジュールで発生した熱を放熱する放熱構造の簡素化が可能である。 Generally, WBG semiconductors have lower loss than silicon semiconductors. Therefore, by forming these semiconductor elements using WBG semiconductors, a low-loss device can be configured. Further, the WBG semiconductor has a higher withstand voltage than the silicon semiconductor. Therefore, the withstand voltage resistance and the allowable current density of the semiconductor element are increased, and the semiconductor module incorporating the semiconductor switching element can be miniaturized. Further, since the WBG semiconductor has high heat resistance, it is possible to reduce the size of the heat radiating part for radiating the heat generated by the semiconductor module, and it is possible to simplify the heat radiating structure for radiating the heat generated by the semiconductor module. Is.
 次に、直流電源装置100が行う昇圧制御について説明する。制御部8は、第1のスイッチング素子4a及び第2のスイッチング素子4bをスイッチング制御する。スイッチング制御の詳細は、上記特許文献1に記載されており、ここでの詳細な説明は割愛する。制御部8が行うスイッチング制御により、昇圧回路7によって昇圧された昇圧電圧がインバータ回路10に印加される。 Next, the boost control performed by the DC power supply device 100 will be described. The control unit 8 switches and controls the first switching element 4a and the second switching element 4b. The details of the switching control are described in the above-mentioned Patent Document 1, and the detailed description here is omitted. By the switching control performed by the control unit 8, the boosted voltage boosted by the booster circuit 7 is applied to the inverter circuit 10.
 電流検出部9は、昇圧回路7に流出入する第2電流を検出し、制御部8にフィードバックする。制御部8は、第2電流の検出値と予め設定した判定値とを比較する。第2電流の検出値が判定値を超えた場合、制御部8は、昇圧回路7に過電流が流れたと判定して、昇圧回路7のステータスを故障とする。以下、この故障を適宜「過電流故障」と呼ぶ。制御部8は、昇圧回路7の過電流故障を検出した場合、切替部20における第1のスイッチング素子4a及び第2のスイッチング素子4bに対するスイッチング制御を停止する。 The current detection unit 9 detects the second current flowing in and out of the booster circuit 7 and feeds it back to the control unit 8. The control unit 8 compares the detected value of the second current with the preset determination value. When the detected value of the second current exceeds the determination value, the control unit 8 determines that an overcurrent has flowed through the booster circuit 7, and sets the status of the booster circuit 7 as a failure. Hereinafter, this failure is appropriately referred to as an "overcurrent failure". When the control unit 8 detects an overcurrent failure of the booster circuit 7, the control unit 8 stops the switching control of the switching unit 20 for the first switching element 4a and the second switching element 4b.
 前述したように、駆動制御部11は、電流検出部12により検出された第1電流と、電流検出部13,14により検出された電流とに基づいてインバータ回路10の動作を制御して電動機15を駆動する。 As described above, the drive control unit 11 controls the operation of the inverter circuit 10 based on the first current detected by the current detection unit 12 and the currents detected by the current detection units 13 and 14, and the motor 15 To drive.
 駆動制御部11は、電流検出部13,14により検出された電流の電流値に基づいて電動機15の負荷状態を判定する。検出された電流の電流値が閾値よりも大きければ、高負荷で駆動されていると判定することができる。また、検出された電流の電流値が閾値よりも小さければ、低負荷で駆動されていると判定することができる。ここでは、1つの閾値で高負荷状態又は低負荷状態を判定するとしたが、2つ以上の閾値を用いて負荷状態を多段階に判定してもよい。また、閾値は固定ではなく、電動機15の動作状態に応じて可変するようにしてもよい。 The drive control unit 11 determines the load state of the motor 15 based on the current value of the current detected by the current detection units 13 and 14. If the current value of the detected current is larger than the threshold value, it can be determined that the vehicle is being driven with a high load. Further, if the current value of the detected current is smaller than the threshold value, it can be determined that the vehicle is driven with a low load. Here, it is assumed that the high load state or the low load state is determined by one threshold value, but the load state may be determined in multiple stages by using two or more threshold values. Further, the threshold value is not fixed, but may be changed according to the operating state of the motor 15.
 また、駆動制御部11は、電動機15の負荷状態に基づいてインバータ回路10に印加する直流電流の電圧値を決定してもよい。駆動制御部11は、決定した電圧値の情報を制御部8に送信する。制御部8は、駆動制御部11から送信された電圧値の情報に基づいて、第1のスイッチング素子4a及び第2のスイッチング素子4bのオン時間を制御し、インバータ回路10に印加する直流電流の電圧値を制御する。 Further, the drive control unit 11 may determine the voltage value of the direct current applied to the inverter circuit 10 based on the load state of the motor 15. The drive control unit 11 transmits the determined voltage value information to the control unit 8. The control unit 8 controls the on-time of the first switching element 4a and the second switching element 4b based on the voltage value information transmitted from the drive control unit 11, and determines the direct current applied to the inverter circuit 10. Control the voltage value.
 更に、駆動制御部11は、インバータ回路10に流出入する第1電流を検出し、第1電流の検出値と予め設定した判定値とを比較する。第1電流の検出値が判定値を超えた場合、駆動制御部11は、インバータ回路10に過電流が流れたと判定して、インバータ回路10のステータスを故障とする。この故障も、昇圧回路7と同様に、適宜「過電流故障」と呼ぶ。駆動制御部11は、インバータ回路10の過電流故障を検出した場合、インバータ回路10のスイッチング素子に対するスイッチング制御を停止する。 Further, the drive control unit 11 detects the first current flowing in and out of the inverter circuit 10 and compares the detected value of the first current with the preset determination value. When the detected value of the first current exceeds the determination value, the drive control unit 11 determines that an overcurrent has flowed in the inverter circuit 10, and sets the status of the inverter circuit 10 as a failure. Similar to the booster circuit 7, this failure is also appropriately referred to as an “overcurrent failure”. When the drive control unit 11 detects an overcurrent failure of the inverter circuit 10, the drive control unit 11 stops the switching control of the switching element of the inverter circuit 10.
 なお、昇圧回路7が過電流故障した場合であっても、インバータ回路10が正常である場合、電動機15の特性を考慮することで電動機15の駆動を継続することが可能である。 Even if the booster circuit 7 fails due to overcurrent, if the inverter circuit 10 is normal, it is possible to continue driving the motor 15 by considering the characteristics of the motor 15.
 一般的に、電動機15の駆動動作範囲は、インバータ回路10に入力される直流電圧によって変化する。例えば、電動機15が回転子に永久磁石を用いた電動機である場合、この直流電圧は、回転子に使用される永久磁石の磁石特性に影響を及ぼす。 Generally, the drive operating range of the motor 15 changes depending on the DC voltage input to the inverter circuit 10. For example, when the motor 15 is a motor using a permanent magnet for the rotor, this DC voltage affects the magnet characteristics of the permanent magnet used for the rotor.
 永久磁石の材料として、例えば、磁力の強い希土類磁石を用いる永久磁石電動機が知られている。希土類磁石は磁力が強いために少ない電流でトルクが発生する。このため、希土類磁石は、省エネルギーが求められる機器で用いられる電動機に適用されることが多い。しかしながら、希土類磁石はレアアースと呼ばれる稀少金属であるため、入手が困難である。希土類磁石を使用せず、希土類磁石より磁力の弱いフェライトなどの磁石を使用した永久磁石電動機では、同じ電流であれば希土類磁石を用いる場合に比べ出力トルクが小さくなる。このため、磁力の弱いフェライトなどの磁石を使用した永久磁石電動機では、磁石磁力の低下分だけ電流を増加させてトルクを補う必要がある。或いは、出力トルクは、電流×巻線の巻数に比例するため、巻数を増加して電流を増加させずに出力トルクを補う必要がある。電流を増加させると、電動機15における銅損、インバータ回路10における導通損失が増加する。 As a material for permanent magnets, for example, a permanent magnet motor using a rare earth magnet having a strong magnetic force is known. Since rare earth magnets have a strong magnetic force, torque is generated with a small current. For this reason, rare earth magnets are often applied to motors used in equipment that requires energy saving. However, rare earth magnets are difficult to obtain because they are rare metals called rare earths. In a permanent magnet electric motor that does not use a rare earth magnet and uses a magnet such as ferrite that has a weaker magnetic force than the rare earth magnet, the output torque is smaller than that in the case of using a rare earth magnet if the current is the same. Therefore, in a permanent magnet electric motor using a magnet such as ferrite having a weak magnetic force, it is necessary to increase the current by the decrease in the magnet magnetic force to supplement the torque. Alternatively, since the output torque is proportional to the current × the number of turns of the winding, it is necessary to supplement the output torque without increasing the number of turns to increase the current. Increasing the current increases the copper loss in the motor 15 and the conduction loss in the inverter circuit 10.
 電動機15の損失が増加することを避けるため、電流を増加させずに、固定子巻線の巻数を増加させた場合、電動機15の回転数に応じて、電動機15の誘起電圧が増加する。電動機15を駆動する場合、インバータ回路10は、誘起電圧よりも高い直流電圧を電動機15に印加する必要がある。従って、固定子巻線の巻数を増加させた場合、電動機15に印加する直流電圧を上昇させる必要がある。 When the number of turns of the stator winding is increased without increasing the current in order to avoid an increase in the loss of the motor 15, the induced voltage of the motor 15 increases according to the rotation speed of the motor 15. When driving the motor 15, the inverter circuit 10 needs to apply a DC voltage higher than the induced voltage to the motor 15. Therefore, when the number of turns of the stator winding is increased, it is necessary to increase the DC voltage applied to the motor 15.
 電動機15を高負荷運転させる場合には、高い回転数が必要となる。一方、低負荷運転の場合には、高い回転数は必要とされず、電動機15を低い回転数で駆動することができる。つまり、低負荷運転であれば、電動機15に印加する直流電圧を上昇させずに、電動機15を駆動することができる場合がある。 When operating the motor 15 with a high load, a high rotation speed is required. On the other hand, in the case of low load operation, a high rotation speed is not required, and the motor 15 can be driven at a low rotation speed. That is, in the case of low load operation, the motor 15 may be driven without increasing the DC voltage applied to the motor 15.
 以上の説明から理解できるように、実施の形態1に係る直流電源装置100及び電動機駆動装置150は、希土類元素以外で構成される永久磁石を有する電動機を駆動する場合に好適である。 As can be understood from the above description, the DC power supply device 100 and the motor drive device 150 according to the first embodiment are suitable for driving a motor having a permanent magnet composed of a permanent magnet other than rare earth elements.
 なお、上記では、制御部8が昇圧回路7の過電流故障を判定し、駆動制御部11がインバータ回路10の過電流故障を判定すると説明したが、これに限定されない。制御部8を上位の制御部とし、制御部8が昇圧回路7及びインバータ回路10の過電流故障を判定するように構成してもよい。制御部8による判定に必要な情報は、駆動制御部11を介して受領するように構成することで実現可能である。 Although it has been described above that the control unit 8 determines the overcurrent failure of the booster circuit 7 and the drive control unit 11 determines the overcurrent failure of the inverter circuit 10, the present invention is not limited to this. The control unit 8 may be a higher-level control unit, and the control unit 8 may be configured to determine an overcurrent failure of the booster circuit 7 and the inverter circuit 10. The information required for the determination by the control unit 8 can be realized by configuring the information to be received via the drive control unit 11.
 次に、電動機駆動の継続及び停止の切り分けを行う実施の形態1における制御手順について、図1及び図2を参照して説明する。図2は、実施の形態1における制御手順の一例を示すフローチャートである。なお、図2の各処理は、制御部8の制御下において実施されるものとして説明する。 Next, the control procedure in the first embodiment for separating the continuation and the stop of the motor drive will be described with reference to FIGS. 1 and 2. FIG. 2 is a flowchart showing an example of the control procedure according to the first embodiment. It should be noted that each process of FIG. 2 will be described as being performed under the control of the control unit 8.
 まず、制御部8は、昇圧回路7における過電流故障の有無を判定する(ステップS01)。昇圧回路7の過電流故障が検出された場合(ステップS01,Yes)、昇圧回路7の昇圧動作を停止して(ステップS02)、ステップS03に進む。制御部8は、インバータ回路10における過電流故障の有無を判定し(ステップS03)、インバータ回路10の過電流故障が検出されれば(ステップS03,Yes)、インバータ回路10の出力を停止して(ステップS06)、図2のフローを終了する。 First, the control unit 8 determines whether or not there is an overcurrent failure in the booster circuit 7 (step S01). When an overcurrent failure of the booster circuit 7 is detected (step S01, Yes), the booster operation of the booster circuit 7 is stopped (step S02), and the process proceeds to step S03. The control unit 8 determines the presence or absence of an overcurrent failure in the inverter circuit 10 (step S03), and if an overcurrent failure in the inverter circuit 10 is detected (step S03, Yes), stops the output of the inverter circuit 10. (Step S06), the flow of FIG. 2 is terminated.
 また、ステップS03において、インバータ回路10の過電流故障が検出されなければ(ステップS03,No)、電動機15の負荷状態を判定し(ステップS04)、電動機15の負荷状態が低負荷状態でなければ(ステップS04,No)、インバータ回路10の出力を停止して(ステップS08)、図2のフローを終了する。一方、電動機15の負荷状態が低負荷状態であれば(ステップS04,Yes)、昇圧されていない昇圧回路7の出力、即ち昇圧回路7から出力される非昇圧電圧で電動機15の駆動を継続することを選択して(ステップS07)、図2のフローを終了する。なお、ステップS04における電動機15の負荷状態は、電流検出部13,14により検出された電流の電流値に基づいて判定することができる。 Further, in step S03, if the overcurrent failure of the inverter circuit 10 is not detected (steps S03, No), the load state of the motor 15 is determined (step S04), and the load state of the motor 15 is not a low load state. (Step S04, No), the output of the inverter circuit 10 is stopped (step S08), and the flow of FIG. 2 ends. On the other hand, if the load state of the motor 15 is a low load state (step S04, Yes), the drive of the motor 15 is continued with the output of the booster circuit 7 that has not been boosted, that is, the non-boost voltage output from the booster circuit 7. Select that (step S07) to end the flow of FIG. The load state of the motor 15 in step S04 can be determined based on the current value of the current detected by the current detection units 13 and 14.
 ステップS01に戻り、昇圧回路7の過電流故障が検出されない場合(ステップS01,No)、ステップS05に進む。制御部8は、インバータ回路10における過電流故障の有無を判定し(ステップS05)、インバータ回路10の過電流故障が検出されれば(ステップS05,Yes)、インバータ回路10の出力を停止して(ステップS08)、図2のフローを終了する。インバータ回路10の過電流故障が検出されなければ(ステップS05,No)、昇圧された昇圧回路7の出力で電動機15の駆動を継続することを選択して(ステップS09)、図2のフローを終了する。 Returning to step S01, if an overcurrent failure of the booster circuit 7 is not detected (steps S01, No), the process proceeds to step S05. The control unit 8 determines the presence or absence of an overcurrent failure in the inverter circuit 10 (step S05), and if an overcurrent failure in the inverter circuit 10 is detected (step S05, Yes), stops the output of the inverter circuit 10. (Step S08), the flow of FIG. 2 is terminated. If the overcurrent failure of the inverter circuit 10 is not detected (step S05, No), the output of the boosted booster circuit 7 is selected to continue driving the motor 15 (step S09), and the flow of FIG. 2 is performed. finish.
 図2の処理手順を実施することにより、電動機駆動の継続及び停止の切り分けが可能となる。これにより、電動機駆動を継続できる場合があるにも関わらず、電動機駆動を停止してしまうという課題を解決することができる。また、実施の形態1に係る直流電源装置100及び電動機駆動装置150が、例えば空気調和機及び冷蔵庫に適用される場合、より快適性の高い製品として構成することが可能となる。 By implementing the processing procedure shown in FIG. 2, it is possible to distinguish between continuation and stop of motor drive. As a result, it is possible to solve the problem that the motor drive is stopped even though the motor drive can be continued. Further, when the DC power supply device 100 and the motor drive device 150 according to the first embodiment are applied to, for example, an air conditioner and a refrigerator, it can be configured as a product with higher comfort.
 以上説明したように、実施の形態1によれば、第1の電流検出部は、昇圧回路と負荷との間に流れる第1電流を検出し、第2の電流検出部は、整流回路と切替部との間に流れる第2電流を検出する。制御部は、第1及び第2の電流検出部の各検出値に基づいて電動機の駆動の継続の可否を判定するので、電動機駆動の継続及び停止の切り分けが可能になる。これにより、電動機駆動を継続できる場合があるにも関わらず、電動機駆動を停止してしまうという課題を解決することができる。 As described above, according to the first embodiment, the first current detection unit detects the first current flowing between the booster circuit and the load, and the second current detection unit switches to the rectifier circuit. The second current flowing between the unit and the unit is detected. Since the control unit determines whether or not to continue driving the motor based on the respective detection values of the first and second current detection units, it is possible to distinguish between continuation and stop of motor drive. As a result, it is possible to solve the problem that the motor drive is stopped even though the motor drive can be continued.
 次に、実施の形態1における制御部8及び駆動制御部11の各機能を実現するためのハードウェア構成について、図3及び図4の図面を参照して説明する。図3は、実施の形態1における制御部8及び駆動制御部11の各機能を実現するハードウェア構成の一例を示すブロック図である。図4は、実施の形態1における制御部8及び駆動制御部11の各機能を実現するハードウェア構成の他の例を示すブロック図である。 Next, the hardware configuration for realizing each function of the control unit 8 and the drive control unit 11 in the first embodiment will be described with reference to the drawings of FIGS. 3 and 4. FIG. 3 is a block diagram showing an example of a hardware configuration that realizes each function of the control unit 8 and the drive control unit 11 in the first embodiment. FIG. 4 is a block diagram showing another example of a hardware configuration that realizes each function of the control unit 8 and the drive control unit 11 in the first embodiment.
 実施の形態1における制御部8及び駆動制御部11の各機能の一部又は全部を実現する場合には、図3に示されるように、演算を行うプロセッサ300、プロセッサ300によって読みとられるプログラムが保存されるメモリ302、及び信号の入出力を行うインタフェース304を含む構成とすることができる。 In the case of realizing a part or all of the functions of the control unit 8 and the drive control unit 11 in the first embodiment, as shown in FIG. 3, the processor 300 that performs the calculation and the program read by the processor 300 are used. It can be configured to include a memory 302 to be stored and an interface 304 to input / output signals.
 プロセッサ300は、演算装置、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)といった演算手段であってもよい。また、メモリ302には、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)を例示することができる。 The processor 300 may be a computing means such as an arithmetic unit, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor). Further, the memory 302 includes a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Program ROM), and an EPROM (registered trademark) (Electrically EPROM). Examples thereof include magnetic disks, flexible disks, optical disks, compact disks, mini disks, and DVDs (Digital Versailles Disc).
 メモリ302には、実施の形態1における制御部8及び駆動制御部11の各機能を実行するプログラムが格納されている。プロセッサ300は、インタフェース304を介して必要な情報を授受し、メモリ302に格納されたプログラムをプロセッサ300が実行し、メモリ302に格納されたテーブルをプロセッサ300が参照することにより、上述した処理を行うことができる。プロセッサ300による演算結果は、メモリ302に記憶することができる。 The memory 302 stores a program that executes each function of the control unit 8 and the drive control unit 11 according to the first embodiment. The processor 300 sends and receives necessary information via the interface 304, the processor 300 executes a program stored in the memory 302, and the processor 300 refers to a table stored in the memory 302 to perform the above-described processing. It can be carried out. The calculation result by the processor 300 can be stored in the memory 302.
 また、実施の形態1における制御部8及び駆動制御部11の各機能の一部を実現する場合には、図4に示す処理回路305を用いることもできる。処理回路305は、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。処理回路305に入力する情報、及び処理回路305から出力する情報は、インタフェース304を介して入手することができる。 Further, when a part of each function of the control unit 8 and the drive control unit 11 in the first embodiment is realized, the processing circuit 305 shown in FIG. 4 can also be used. The processing circuit 305 corresponds to a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. The information input to the processing circuit 305 and the information output from the processing circuit 305 can be obtained via the interface 304.
 なお、制御部8及び駆動制御部11における一部の処理を処理回路305で実施し、処理回路305で実施しない処理をプロセッサ300及びメモリ302で実施してもよい。 Note that some processing in the control unit 8 and the drive control unit 11 may be performed in the processing circuit 305, and processing not performed in the processing circuit 305 may be performed in the processor 300 and the memory 302.
実施の形態2.
 図5は、実施の形態2に係る空気調和機の構成例を示す図である。図5に示す実施の形態2に係る空気調和機200は、実施の形態1で説明した電動機駆動装置150を備える。具体的に、空気調和機200は、図1に示す電動機15を内蔵した圧縮機41、四方弁42、室外熱交換器43、膨張弁44、室内熱交換器45が冷媒配管46を介して取り付けられた冷凍サイクルを有して、セパレート形空気調和機を構成している。
Embodiment 2.
FIG. 5 is a diagram showing a configuration example of the air conditioner according to the second embodiment. The air conditioner 200 according to the second embodiment shown in FIG. 5 includes the motor drive device 150 described in the first embodiment. Specifically, in the air conditioner 200, a compressor 41 having a built-in electric motor 15 shown in FIG. 1, a four-way valve 42, an outdoor heat exchanger 43, an expansion valve 44, and an indoor heat exchanger 45 are attached via a refrigerant pipe 46. It has a separate refrigeration cycle to form a separate air conditioner.
 圧縮機41の内部には、冷媒を圧縮する圧縮機構47と、これを動作させる電動機15とが設けられている。これにより、圧縮機41から室外熱交換器43と室内熱交換器45との間を冷媒が循環することで冷暖房などを行う冷凍サイクルが構成される。なお、図5に示す冷凍サイクルは、空気調和機だけなく、冷蔵庫、冷凍庫等の冷凍サイクルを備える機器に適用可能である。 Inside the compressor 41, a compression mechanism 47 for compressing the refrigerant and an electric motor 15 for operating the compression mechanism 47 are provided. As a result, a refrigeration cycle is configured in which the refrigerant circulates from the compressor 41 between the outdoor heat exchanger 43 and the indoor heat exchanger 45 to perform air conditioning and heating. The refrigeration cycle shown in FIG. 5 can be applied not only to an air conditioner but also to a device having a refrigeration cycle such as a refrigerator and a freezer.
 冷房及び暖房を行う空気調和機200は、冷凍サイクルにより、使用者が設定した設定温度まで室内温度が近づくと安定状態となる。このとき、圧縮機41に搭載された電動機15が低速で回転するようにインバータ回路10が動作する。従って、空気調和機200では、低速回転が長時間継続されるため、低速運転時の効率改善が省エネルギーに大きく寄与する。このため、電動機15として、電流が少なくなるよう希土類磁石もしくは巻数を増加させた磁力の弱い永久磁石を用いた電動機を用いれば、省エネルギーに寄与することが可能となる。 The air conditioner 200 that performs cooling and heating becomes stable when the room temperature approaches the set temperature set by the user due to the refrigeration cycle. At this time, the inverter circuit 10 operates so that the electric motor 15 mounted on the compressor 41 rotates at a low speed. Therefore, in the air conditioner 200, low-speed rotation is continued for a long time, so that efficiency improvement during low-speed operation greatly contributes to energy saving. Therefore, if an electric motor using a rare earth magnet or a permanent magnet having a weak magnetic force with an increased number of turns is used as the electric motor 15, it is possible to contribute to energy saving.
 また、実施の形態2では、実施の形態1で説明した通り、昇圧回路7が過電流故障した場合であっても、インバータ回路10が正常である場合、冷凍サイクルの駆動を継続する制御を行う。これにより、実施の形態2に係る冷凍サイクルを、例えば空気調和機に適用した場合、冷房運転又は暖房運転を継続することができ、快適性を維持しつつ、故障の修理又は製品の買い替えまでの時間を稼ぐことができる。また、実施の形態2に係る冷凍サイクルを、例えば冷蔵庫に適用した場合、食品が傷むまでの時間を稼ぐことができ、故障による損害を未然に抑制することができる。 Further, in the second embodiment, as described in the first embodiment, even if the booster circuit 7 fails due to overcurrent, if the inverter circuit 10 is normal, the refrigeration cycle is continuously driven. .. As a result, when the refrigeration cycle according to the second embodiment is applied to, for example, an air conditioner, the cooling operation or the heating operation can be continued, and while maintaining the comfort, the failure is repaired or the product is replaced. You can earn time. Further, when the refrigeration cycle according to the second embodiment is applied to, for example, a refrigerator, it is possible to increase the time until the food is damaged, and it is possible to suppress damage due to failure.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiment is an example, and can be combined with another known technique, or a part of the configuration may be omitted or changed without departing from the gist. It is possible.
 1 電源、2 整流回路、3 リアクタ、4a 第1のスイッチング素子、4b 第2のスイッチング素子、5a,5b 逆流防止素子、6a 第1のコンデンサ、6b 第2のコンデンサ、7 昇圧回路、8 制御部、9,12,13,14 電流検出部、10 インバータ回路、11 駆動制御部、15 電動機、20 切替部、22 電荷蓄積部、30,34 中点、31,32,35,36 接続点、41 圧縮機、42 四方弁、43 室外熱交換器、44 膨張弁、45 室内熱交換器、46 冷媒配管、47 圧縮機構、100 直流電源装置、150 電動機駆動装置、200 空気調和機、300 プロセッサ、302 メモリ、304 インタフェース、305 処理回路。 1 power supply, 2 rectifier circuit, 3 reactor, 4a first switching element, 4b second switching element, 5a, 5b backflow prevention element, 6a first capacitor, 6b second capacitor, 7 booster circuit, 8 control unit , 9, 12, 13, 14 Current detector, 10 Inverter circuit, 11 Drive control unit, 15 Electric motor, 20 Switching unit, 22 Charge storage unit, 30, 34 Midpoint, 31, 32, 35, 36 Connection point, 41 Compressor, 42 four-way valve, 43 outdoor heat exchanger, 44 expansion valve, 45 indoor heat exchanger, 46 refrigerant piping, 47 compression mechanism, 100 DC power supply, 150 electric drive drive, 200 air conditioner, 300 processor, 302 Memory, 304 interface, 305 processing circuit.

Claims (13)

  1.  交流電源から供給される交流を直流に変換して電動機を含む負荷に供給する直流電源装置であって、
     前記交流電源が出力する交流電圧を直流電圧に整流する整流回路と、
     リアクタを有し、前記リアクタを介して、若しくは前記リアクタを介さずに前記整流回路から出力される直流電圧を昇圧した昇圧電圧を発生させて前記負荷に印加する昇圧回路と、
     前記昇圧回路の動作を制御する制御部と、
     前記昇圧回路と前記負荷との間に流れる第1電流を検出する第1の電流検出部と、を備え、
     前記昇圧回路は、
     直列接続された第1及び第2のコンデンサを有する電荷蓄積部と、
     直列接続された第1及び第2のスイッチング素子と、前記電荷蓄積部からの電荷の逆流を防止する向きに接続される逆流防止素子を有する切替部と、
     前記整流回路と前記切替部との間に流れる第2電流を検出する第2の電流検出部と、を備え、
     前記制御部は、前記第1及び第2の電流検出部の各検出値に基づいて前記電動機の駆動の継続の可否を判定する
     直流電源装置。
    A DC power supply that converts alternating current supplied from an alternating current power supply into direct current and supplies it to loads including motors.
    A rectifier circuit that rectifies the AC voltage output by the AC power supply to a DC voltage,
    A booster circuit having a reactor, generating a booster voltage that boosts the DC voltage output from the rectifier circuit through or without the reactor, and applying the booster voltage to the load.
    A control unit that controls the operation of the booster circuit and
    A first current detection unit for detecting a first current flowing between the booster circuit and the load is provided.
    The booster circuit
    A charge storage unit having first and second capacitors connected in series,
    A switching unit having first and second switching elements connected in series and a backflow prevention element connected in a direction to prevent backflow of electric charge from the charge storage unit.
    A second current detection unit for detecting a second current flowing between the rectifier circuit and the switching unit is provided.
    The control unit is a DC power supply device that determines whether or not to continue driving the motor based on the detected values of the first and second current detection units.
  2.  前記制御部は、前記第2の電流検出部の検出値に基づいて前記昇圧回路の過電流故障の有無を判定し、
     前記昇圧回路の過電流故障が検出された場合には、前記昇圧回路の昇圧動作を停止させる
     請求項1に記載の直流電源装置。
    The control unit determines the presence or absence of an overcurrent failure of the booster circuit based on the detection value of the second current detection unit.
    The DC power supply device according to claim 1, wherein when an overcurrent failure of the booster circuit is detected, the booster operation of the booster circuit is stopped.
  3.  前記第1及び第2のスイッチング素子のうちの少なくとも1つ、前記逆流防止素子のうちの少なくとも1つ、又は前記整流回路を構成する整流素子は、ワイドバンドギャップ半導体によって形成されている
     請求項2に記載の直流電源装置。
    Claim 2 in which at least one of the first and second switching elements, at least one of the backflow prevention elements, or the rectifying element constituting the rectifying circuit is formed of a wide bandgap semiconductor. DC power supply device described in.
  4.  前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム、酸化ガリウム又はダイヤモンドである
     請求項3に記載の直流電源装置。
    The DC power supply device according to claim 3, wherein the wide bandgap semiconductor is silicon carbide, gallium nitride, gallium oxide, or diamond.
  5.  請求項2から4の何れか1項に記載の直流電源装置と、
     前記直流電源装置から供給される直流電流を用いて前記電動機を駆動するインバータ回路と、
     前記第1電流及び前記電動機に流れる電流に基づいて前記インバータ回路の動作を制御する駆動制御部と、
     を備えた電動機駆動装置。
    The DC power supply device according to any one of claims 2 to 4.
    An inverter circuit that drives the motor using the direct current supplied from the direct current power supply device, and
    A drive control unit that controls the operation of the inverter circuit based on the first current and the current flowing through the motor.
    Motor drive device equipped with.
  6.  前記駆動制御部は、前記電動機に流れる電流に基づいて前記電動機の負荷状態を判定し、前記電動機の負荷状態に基づいて前記インバータ回路に印加する直流電流の電圧値を決定し、
     前記制御部は、前記駆動制御部から送信された前記電圧値の情報に基づいて前記インバータ回路に印加する直流電流の電圧値を制御する
     請求項5に記載の電動機駆動装置。
    The drive control unit determines the load state of the motor based on the current flowing through the motor, determines the voltage value of the direct current applied to the inverter circuit based on the load state of the motor, and determines the voltage value of the direct current applied to the inverter circuit.
    The motor drive device according to claim 5, wherein the control unit controls a voltage value of a direct current applied to the inverter circuit based on the voltage value information transmitted from the drive control unit.
  7.  前記制御部は、前記第1の電流検出部の検出値に基づいて前記インバータ回路の過電流故障の有無を検出し、
     前記昇圧回路の過電流故障が検出され、且つ、前記インバータ回路の過電流故障が検出された場合には、前記インバータ回路の出力を停止する
     請求項6に記載の電動機駆動装置。
    The control unit detects the presence or absence of an overcurrent failure of the inverter circuit based on the detection value of the first current detection unit.
    The motor drive device according to claim 6, wherein when an overcurrent failure of the booster circuit is detected and an overcurrent failure of the inverter circuit is detected, the output of the inverter circuit is stopped.
  8.  前記制御部は、前記第1の電流検出部の検出値に基づいて前記インバータ回路の過電流故障の有無を検出し、
     前記昇圧回路の過電流故障が検出された場合であっても、前記インバータ回路の過電流故障が検出されない場合には、
     前記昇圧回路の過電流故障が検出され、且つ、前記インバータ回路の過電流故障が検出されず、且つ、前記電動機の負荷状態が低負荷状態の場合には、前記昇圧回路から出力される非昇圧電圧で前記電動機の駆動を継続する
     請求項6に記載の電動機駆動装置。
    The control unit detects the presence or absence of an overcurrent failure of the inverter circuit based on the detection value of the first current detection unit.
    Even if an overcurrent failure of the booster circuit is detected, if an overcurrent failure of the inverter circuit is not detected,
    When the overcurrent failure of the booster circuit is detected, the overcurrent failure of the inverter circuit is not detected, and the load state of the motor is a low load state, the non-boost output from the booster circuit is not boosted. The motor driving device according to claim 6, wherein the driving of the motor is continued by a voltage.
  9.  前記電動機は、希土類元素以外で構成される永久磁石を有する電動機である
     請求項5から8の何れか1項に記載の電動機駆動装置。
    The motor driving device according to any one of claims 5 to 8, wherein the motor is a motor having a permanent magnet composed of a permanent magnet other than a rare earth element.
  10.  前記インバータ回路を構成するスイッチング素子は、ワイドバンドギャップ半導体によって形成されている
     請求項5から9の何れか1項に記載の電動機駆動装置。
    The motor drive device according to any one of claims 5 to 9, wherein the switching element constituting the inverter circuit is formed of a wide bandgap semiconductor.
  11.  前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム、酸化ガリウム又はダイヤモンドである
     請求項10に記載の電動機駆動装置。
    The motor drive device according to claim 10, wherein the wide bandgap semiconductor is silicon carbide, gallium nitride, gallium oxide, or diamond.
  12.  請求項5から11の何れか1項に記載の電動機駆動装置と、
     前記電動機駆動装置により駆動される電動機を有する圧縮機と、
     を備える空気調和機。
    The motor drive device according to any one of claims 5 to 11.
    A compressor having a motor driven by the motor drive device, and
    Air conditioner equipped with.
  13.  請求項5から11の何れか1項に記載の電動機駆動装置と、
     前記電動機駆動装置により駆動される電動機を有する圧縮機と、
     を備える冷蔵庫。
    The motor drive device according to any one of claims 5 to 11.
    A compressor having a motor driven by the motor drive device, and
    Refrigerator equipped with.
PCT/JP2020/006100 2020-02-17 2020-02-17 Dc power supply device, electric motor drive device, air conditioner, and refrigerator WO2021166041A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/006100 WO2021166041A1 (en) 2020-02-17 2020-02-17 Dc power supply device, electric motor drive device, air conditioner, and refrigerator
US17/915,188 US20230238893A1 (en) 2020-02-17 2020-02-17 Electric motor driving apparatus, air conditioner, and refrigerator
JP2022501413A JP7183472B2 (en) 2020-02-17 2020-02-17 Motor drives, air conditioners and refrigerators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/006100 WO2021166041A1 (en) 2020-02-17 2020-02-17 Dc power supply device, electric motor drive device, air conditioner, and refrigerator

Publications (1)

Publication Number Publication Date
WO2021166041A1 true WO2021166041A1 (en) 2021-08-26

Family

ID=77390635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006100 WO2021166041A1 (en) 2020-02-17 2020-02-17 Dc power supply device, electric motor drive device, air conditioner, and refrigerator

Country Status (3)

Country Link
US (1) US20230238893A1 (en)
JP (1) JP7183472B2 (en)
WO (1) WO2021166041A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010187521A (en) * 2009-01-16 2010-08-26 Mitsubishi Electric Corp Motor drive controller, compressor, blower, air conditioner and refrigerator or freezer
JP6129331B2 (en) * 2013-10-18 2017-05-17 三菱電機株式会社 DC power supply, motor drive, air conditioner and refrigerator
JP6132948B1 (en) * 2016-03-29 2017-05-24 三菱電機株式会社 Motor control device and motor control method
WO2017158916A1 (en) * 2016-03-16 2017-09-21 東芝キヤリア株式会社 Power supply device
JP2018026903A (en) * 2016-08-08 2018-02-15 富士電機株式会社 Power conversion device
JP2018117507A (en) * 2017-01-22 2018-07-26 新電元工業株式会社 Semiconductor switch and semiconductor module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11113283A (en) * 1997-09-30 1999-04-23 Toshiba Corp Motor driver
EP3054574B1 (en) * 2013-09-30 2020-03-11 Mitsubishi Electric Corporation Power conversion device and air conditioner using same
US11121542B2 (en) * 2018-10-29 2021-09-14 Rolls-Royce North American Technologies, Inc. Protection coordination technique for power converters

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010187521A (en) * 2009-01-16 2010-08-26 Mitsubishi Electric Corp Motor drive controller, compressor, blower, air conditioner and refrigerator or freezer
JP6129331B2 (en) * 2013-10-18 2017-05-17 三菱電機株式会社 DC power supply, motor drive, air conditioner and refrigerator
WO2017158916A1 (en) * 2016-03-16 2017-09-21 東芝キヤリア株式会社 Power supply device
JP6132948B1 (en) * 2016-03-29 2017-05-24 三菱電機株式会社 Motor control device and motor control method
JP2018026903A (en) * 2016-08-08 2018-02-15 富士電機株式会社 Power conversion device
JP2018117507A (en) * 2017-01-22 2018-07-26 新電元工業株式会社 Semiconductor switch and semiconductor module

Also Published As

Publication number Publication date
JPWO2021166041A1 (en) 2021-08-26
JP7183472B2 (en) 2022-12-05
US20230238893A1 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
JP6129331B2 (en) DC power supply, motor drive, air conditioner and refrigerator
JP5674959B2 (en) DC power supply device and motor drive device
EP3059843B1 (en) Dc power source device, electric motor drive device, air conditioner, and refrigerator
JPWO2015125240A1 (en) DC power supply device, electric motor drive device including the same, and refrigeration cycle application device including the same
US11940194B2 (en) Power converting apparatus and air conditioner including the same
WO2017042889A1 (en) Power conversion device and air conditioning device provided with power conversion device
WO2021166041A1 (en) Dc power supply device, electric motor drive device, air conditioner, and refrigerator
WO2017109848A1 (en) Power conversion device and air conditioning device provided with power conversion device
JP6182462B2 (en) Power converter
WO2022185374A1 (en) Ac-dc conversion device, electric motor drive device, and refrigeration cycle device
JP3101380B2 (en) Air conditioner power supply
WO2022091185A1 (en) Power conversion device, motor drive device, and refrigeration cycle application device
JP7198344B2 (en) DC power supplies, motor drives, air conditioners, refrigerators and heat pump water heaters
WO2023002559A1 (en) Dc power source device and refrigeration cycle apparatus
JP6518506B2 (en) POWER SUPPLY DEVICE AND AIR CONDITIONER USING SAME
US20240022182A1 (en) Power conversion apparatus and air conditioner
WO2023238229A1 (en) Power conversion device, motor drive device, and refrigeration cycle application apparatus
US11699972B2 (en) Variable speed motor drive with integrated motor heating systems and methods
WO2022091184A1 (en) Power converter, motor driver, and equipment used in refrigeration cycle applied
JP5916830B2 (en) DC power supply device and motor drive device
CN118265877A (en) Power conversion device, motor drive device, and refrigeration cycle application device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920409

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501413

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920409

Country of ref document: EP

Kind code of ref document: A1