[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017158916A1 - Power supply device - Google Patents

Power supply device Download PDF

Info

Publication number
WO2017158916A1
WO2017158916A1 PCT/JP2016/083128 JP2016083128W WO2017158916A1 WO 2017158916 A1 WO2017158916 A1 WO 2017158916A1 JP 2016083128 W JP2016083128 W JP 2016083128W WO 2017158916 A1 WO2017158916 A1 WO 2017158916A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
current
circuit
abnormality
power supply
Prior art date
Application number
PCT/JP2016/083128
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 久保田
圭一 石田
章弘 石ヶ谷
吉村 公志
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to JP2018505230A priority Critical patent/JP6528002B2/en
Publication of WO2017158916A1 publication Critical patent/WO2017158916A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • Embodiments of the present invention relate to a power supply device mounted on, for example, an air conditioner having a refrigeration cycle, a heat source machine, or the like.
  • a power supply device mounted on an air conditioner or a heat source apparatus having a refrigeration cycle includes a rectifier circuit that rectifies the voltage of an AC power supply, and a booster circuit that boosts the output voltage of the rectifier circuit, and the output voltage of the booster circuit Is supplied to a load such as an inverter.
  • the inverter converts the output voltage of the booster circuit into an AC voltage having a predetermined frequency.
  • the compressor motor in the refrigeration cycle is operated by the output of the inverter.
  • the booster circuit includes a series circuit of a reactor and a switch (referred to as a first switch) connected to the output terminal of the rectifier circuit, a backflow prevention diode provided in a current path between the first switch and the load, It includes a capacitor connected in parallel to the first switch via a backflow prevention diode, and boosts the output voltage of the rectifier circuit by turning on and off the first switch.
  • the load is connected in parallel to the capacitor.
  • a switch having a small resistance value (referred to as a second switch) is connected in parallel to a backflow prevention diode, and this second switch is turned off when the first switch is turned on and turned on when the first switch is turned off, that is, By operating both switches in a complementary manner, forward current does not flow through the backflow prevention diode. As a result, a forward voltage is not generated in the backflow prevention diode, and thus the power loss of the booster circuit can be reduced.
  • both switches are turned on simultaneously, a short-circuit current flows from the capacitor through both switches. Therefore, when the first switch is switched from off to on, the second switch is turned off and the second switch is turned off. A so-called dead time is ensured when the first switch is turned off when switching on.
  • both switches are turned on simultaneously.
  • a large short-circuit current flows from the capacitor through both switches. This abnormality cannot be detected from the input current from the AC power supply to the power supply device.
  • An object of an embodiment of the present invention is to provide a power supply device that can reliably detect an abnormality in which a short-circuit current flows from a capacitor through both switches.
  • the power supply device of claim 1 includes a rectifier circuit, a booster circuit, and a controller.
  • the rectifier circuit rectifies an AC voltage.
  • the step-up circuit includes a series circuit of a reactor and a first switch connected to the output terminal of the rectifier circuit, a backflow prevention diode provided in a current path between the first switch and a load, and the backflow prevention diode A capacitor connected in parallel to the first switch via a first switch, and a second switch connected in parallel to the backflow prevention diode.
  • the first switch is turned on / off and the first switch is turned on / off.
  • the output voltage of the rectifier circuit is boosted by turning on / off the second switch in phase.
  • the controller detects an abnormality in which a short-circuit current flows from the capacitor through the first and second switches from the output current of the booster circuit.
  • the block diagram which shows the structure of 1st Embodiment The figure which shows clearly the relationship between the detected electric current of each current sensor and abnormality content in 1st Embodiment, and the safety measure with respect to the abnormality.
  • the block diagram which shows the structure of 2nd Embodiment The figure which shows clearly the relationship between the detected electric current of each current sensor and abnormality content in 2nd Embodiment, and the safety measure with respect to the abnormality.
  • a power supply device mounted on an air conditioner having a refrigeration cycle will be described as an example.
  • a full-wave rectifier circuit 2 such as a diode bridge is connected to a three-phase AC power source 1
  • a booster circuit 10 is connected to the output terminal of the full-wave rectifier circuit 2.
  • An inverter 20 that is a load of the power supply device is connected to the output terminal of the booster circuit 10.
  • the booster circuit 10 supplies DC power to the inverter 20.
  • the step-up circuit 10 includes a series circuit of a reactor 11 and a switch element (first switch) SW1 connected to the output terminal of the full-wave rectifier circuit 2, and a connection point between the reactor 11 and the switch element SW1 and the inverter 20.
  • a backflow prevention diode D2 provided in the positive current path, a capacitor (electrolytic capacitor) 12 connected in parallel to the switch element SW1 via the backflow prevention diode D2, and a switch element connected in parallel to the backflow prevention diode D2
  • a full-wave rectifier circuit including a second switch SW2 by turning on / off (intermittent on) of the switch element SW1 and on / off (intermittent on) of the switch element SW2 having a phase opposite to that of the switch element SW1.
  • the switch element SW1 is also referred to as a lower phase side switch element, and the switch element SW2 is also referred to as an upper phase side switch element.
  • the switch element SW1 is a semiconductor switch element including a parasitic diode D1, for example, a MOSFET, and is turned on and off by a drive signal S1 supplied from the controller 30.
  • the switch element SW2 includes a parasitic diode D2, has a bidirectional property in which current flows in both directions between the source and the drain when turned on, and power loss (also referred to as conduction loss) when turned on is forward of the parasitic diode D2.
  • a semiconductor switching element such as a MOSFET, which is smaller than the power loss due to voltage, is driven on and off by a drive signal S2 supplied from the controller 30 in a phase opposite to that of the switching element SW1.
  • the parasitic diode D2 of the switch element SW2 is used as the backflow prevention diode D2 as it is.
  • the inverter 20 converts the output voltage of the booster circuit 10 into an AC voltage by switching, and outputs the AC voltage as drive power to the motor 21.
  • the motor 21 is a motor for driving the compressor 22 (for example, a brushless DC motor).
  • Compressor 22 sucks in refrigerant, compresses it, and discharges it.
  • One end of the outdoor heat exchanger 24 is connected to the refrigerant discharge port of the compressor 22 via a four-way valve 23, and the other end of the outdoor heat exchanger 24 is connected to one end of the indoor heat exchanger 26 via an expansion valve 25. It is connected.
  • the other end of the indoor heat exchanger 26 is connected to a refrigerant suction port of the compressor 22 via a four-way valve 23.
  • the compressor 22, the four-way valve 23, the outdoor heat exchanger 24, the expansion valve 25, and the indoor heat exchanger 26 constitute a heat pump refrigeration cycle of an air conditioner.
  • the arrows in FIG. 1 indicate the flow of the refrigerant during cooling.
  • the high-temperature refrigerant discharged from the compressor absorbs heat by the indoor heat exchanger 26 to cool the room and radiates heat by the outdoor heat exchanger 24. That is, the indoor heat exchanger 26 becomes a heat absorber, and the outdoor heat exchanger 24 becomes a radiator. If the four-way valve 23 is reversed, the refrigerant flow is reversed and heating operation can be performed. In this case, the indoor heat exchanger 26 radiates heat to warm the room, and the outdoor heat exchanger 24 absorbs heat.
  • An input current detector such as a current sensor, for detecting a current (input current to the booster circuit) Ia flowing in the reactor 11 in a current path between the positive output terminal of the full-wave rectifier circuit 2 and the reactor 11 of the booster circuit 10 13 is arranged.
  • An output current detector for example, a current sensor 14, that detects a current Idc flowing through the capacitor 12 and the inverter 20 is disposed in the energization path between the switch element SW 2 and the capacitor 12.
  • a current sensor 27 that detects a current (phase winding current) that flows through the motor 22 is disposed in the energization path between the inverter 20 and the motor 21. The detection results of these current sensors 13, 14, and 27 are supplied to the controller 30.
  • An output voltage (voltage across the capacitor 12) Vdc of the booster circuit 10 is detected by the controller 30.
  • the controller 30 includes a boost control unit 40, an inverter control unit 50, a target value setting unit 51, and an abnormality detection unit 60.
  • the step-up control unit 40 performs pulse width modulation (PWM) switching of the step-up circuit 10 so that the output voltage Vdc of the step-up circuit 10 becomes the target value Vdcref and the input current Ia to the step-up circuit 10 is constant.
  • the control unit includes a subtractor 41, a PI controller 42, a subtractor 43, a PI controller 44, a PWM signal generator 45, a carrier generator 46, and switch drive controllers 47 and 48.
  • the subtraction unit 41 obtains a deviation ⁇ Vdc between the output voltage Vdc of the booster circuit 10 and the target value Vdcref.
  • the PI controller 42 obtains a current command value Iref for the input current Ia to the booster circuit 10 by proportional / integral calculation using the deviation ⁇ Vdc obtained by the subtracting unit 41 as an input.
  • the subtracting unit 43 obtains a deviation ⁇ Ia between the current command value Iref obtained by the PI controller 42 and the input current (detected current of the current sensor 13) Ia to the booster circuit 10.
  • the PI controller 44 obtains a voltage command value Vref for pulse width modulation by proportional / integral calculation using the deviation ⁇ Ia obtained by the subtractor 43 as an input.
  • the carrier generating unit 46 generates a triangular wave carrier signal voltage Vc having a predetermined frequency.
  • the PWM signal generation unit 45 performs pulse width modulation (voltage comparison) on the carrier command voltage Vc generated by the carrier generation unit 46 with the voltage command value Vref obtained by the PI controller 44, thereby switching the switching elements SW1, W2 of the booster circuit 10.
  • a pulse-shaped PWM signal S0 for switching is generated.
  • the switch drive control unit 47 has the same phase as the PWM signal S0 generated by the PWM signal generation unit 45 when the target value Vdcref set by the target value setting unit 51 is equal to or greater than a predetermined value (during high / medium load).
  • a drive signal S1 is generated and output for driving the switch element SW1.
  • the switch drive control unit 48 has a phase opposite to that of the PWM signal S0 generated by the PWM signal generation unit 45.
  • a drive signal S2 is generated and output for driving the switch element SW2.
  • the booster circuit 10 operates in the boost operation mode by the outputs of the drive signals S1 and SW2.
  • the switch drive control unit 47 when the target value Vdcref set by the target value setting unit 51 is less than a predetermined value (when the load is low), the switch drive control unit 47 generates a drive signal S1 for continuously turning off the switch element SW1. Output.
  • the switch drive control unit 48 When the target value Vdcref set by the target value setting unit 51 is less than a predetermined value (when the load is low), the switch drive control unit 48 generates and outputs a drive signal S2 for continuously turning on the switch element SW2. . Since the switch element SW1 is continuously turned off by the outputs of the drive signals S1 and SW2, the booster circuit 10 enters the non-boosting operation mode.
  • the target value Vdcref is set according to the load of the heat pump refrigeration cycle (so-called refrigeration load), and is set to a low value during a low refrigeration load when the compressor 22 (motor 21) is in a low rotation state.
  • the compressor 22 is set to a high value during a high refrigeration load when the engine 22 is in a high rotation state.
  • the booster circuit 10 operates in the non-boosting operation mode.
  • the switch drive control units 47 and 48 are arranged so that the switch element SW2 is switched from on to off before the switch element SW1 is switched from off to on, that is, the timing and switch when the switch element SW1 is switched from off to on.
  • the switch after the switch element SW1 is switched from on to off so as to ensure a dead time during which both the switch elements SW1 and SW2 are turned off between the timing when the element SW2 is switched from on to off.
  • Both the switch elements SW1 and SW2 are in an off state so that the element SW2 is switched from off to on, that is, between the timing when the switch element SW1 is switched from on to off and the timing when the switch element SW2 is switched from on to off.
  • Drive signals S1 and S2 are generated so as to ensure a dead time of .
  • the subtraction unit 41 and the PI controller 42 function as a voltage control system.
  • the subtractor 43 and the PI controller 44 function as a current control system. With this voltage control system and current control system, switching of the booster circuit 10 is PWM controlled so that the output voltage Vdc of the booster circuit 4 becomes the target value Vdcref and the input current I to the booster circuit 4 is constant. Is done.
  • the inverter control unit 50 estimates the speed (rotational speed) of the brushless DC motor 21 from the detected current (motor current) of the current sensor 27, and inverts the estimated speed to a target speed corresponding to the size of the refrigeration load. 20 switching is PWM controlled.
  • the target value setting unit 51 sets the minimum output voltage Vdc of the booster circuit 10 necessary for the output voltage of the inverter 20 to obtain the target speed as the target value Vdcref.
  • the abnormality detection unit 60 detects an abnormality in which the short-circuit current A continues to flow from the full-wave rectifier circuit 2 through the switch element SW1 based on the detection current Ia of the current sensor 13 as well as the full-wave.
  • An abnormality (referred to as an overcurrent abnormality) in which an excessive current such as an inrush current flows through the capacitor 12 in a path from the rectifier circuit 2 through the reactor 11 and further through one of the backflow prevention diode D2 and the switch element SW2. Detection is based on 13 detection currents Ia. Specifically, the abnormality detection unit 60 determines that either “power supply short circuit abnormality” or “overcurrent abnormality” has occurred when the detection current Ia of the current sensor 13 has risen above the threshold value Ias.
  • the detection result (determination result) of the abnormality detection unit 60 is supplied to the switch drive control units 47 and 48 and the inverter control unit 50.
  • the switch drive control units 47 and 48 forcibly switch the switch elements SW1 and SW2 for safety protection when either the “power supply short circuit abnormality” or the “overcurrent abnormality” is detected by the abnormality detection unit 60. Turn off. Further, the switch drive control units 47 and 48 forcibly turn off the switch elements SW1 and SW2 for safety protection when the “abnormality of vertical short circuit” is detected by the abnormality detection unit 60.
  • Inverter control unit 50 detects that either “power supply short-circuit abnormality” or “overcurrent abnormality” is detected by abnormality detection unit 60 and the detection of the abnormality is not temporary but continues for a predetermined time. 20 switching is stopped (that is, the refrigeration load is stopped). Further, when “abnormality of upper and lower short circuit” is detected by the abnormality detection unit 60, the inverter control unit 50 immediately stops switching of the inverter 20 (that is, stops the refrigeration load).
  • At least the full-wave rectifier circuit 2, the booster circuit 10, the current sensors 13 and 14, and the controller 30 constitute a power supply device according to this embodiment.
  • the switch element SW1 When the motor 21 rotates at high and medium speeds, the switch element SW1 is turned on and off, and the switch element SW2 is turned on and off in a phase opposite to that of the switch element SW1. As a result, the output voltage of the full-wave rectifier circuit 2 is boosted by the booster circuit 10 and supplied to the inverter 20.
  • the switch element SW1 When the motor 21 rotates at a low speed and the load is low, the switch element SW1 is continuously turned off and the switch element SW2 is continuously turned on. As a result, the output voltage of the full-wave rectifier circuit 2 passes through the reactor 11 and the switch element SW2, and is supplied to the inverter 20 via the capacitor 12 without being boosted.
  • the abnormality detection unit 60 determines that “power supply short circuit abnormality” or “overcurrent abnormality” has occurred. In this determination, the switch drive control unit 47 forcibly turns off the switch element SW1, and the switch drive control unit 48 forcibly turns off the switch element SW2. Thereby, destruction of the electrical components of the booster circuit 10 and the full-wave rectifier circuit 2 due to the short circuit current A and the overcurrent can be prevented.
  • a large short-circuit current B flows from one end of the capacitor 12 to the other end due to a switching control error with respect to the switch elements SW1 and SW2 or a short-circuit failure of the switch element SW2.
  • An “abnormality” may occur.
  • the detection current Idc of the current sensor 14 increases in the negative direction and becomes equal to or greater than the threshold ⁇ Idcs.
  • the abnormality detection unit 60 determines that “upper and lower short circuit abnormality” has occurred. In this determination, the switch drive control units 47 and 48 forcibly turn off the switch elements SW1 and SW2. Thereby, destruction of the electrical components of the booster circuit 10 and the full-wave rectifier circuit 2 due to the short-circuit current B can be prevented.
  • the “current supply short-circuit abnormality”, “overcurrent abnormality”, and “upper and lower short-circuit abnormality” in the booster circuit 10 can be reliably detected by the two current sensors 13 and 14.
  • the switch elements SW1 and SW2 are forcibly turned off, so that the booster circuit 10 and the full-wave rectifier circuit 2 can be protected. Since the current sensor 13 is originally prepared for current control of the boost control unit 40, it is not necessary to prepare a new current sensor for detecting an abnormality. Therefore, an increase in cost can be suppressed.
  • the booster circuit 10 includes a series circuit of a reactor 11 and a switch element (first switch) SW1 connected to the output terminal of the full-wave rectifier circuit 2, and an interconnection point between the reactor 11 and the switch element SW1. Is connected in parallel to the backflow prevention diode 15, the capacitor 12 connected in parallel to the switch element SW 1 via the backflow prevention diode 15, and the backflow prevention diode 15.
  • the switch elements SW2 and SW3 are connected in series (second switch). The switch elements SW1 and SW3 are turned on and off (intermittently on) and the switch elements SW1 and SW3 are turned on and off.
  • the switch elements SW2 and SW3 operate in synchronization with each other by receiving the same drive signal S2. While the booster circuit 10 is operating normally, almost no current flows through the backflow prevention diode 15, so that a low-cost, small capacity (rated) component can be used as the backflow prevention diode 15. In other words, the backflow prevention diode 15 has a capacity capable of continuously flowing a current having the same magnitude as the current (boosted current) flowing in the series circuit of the switch elements SW2 and SW3 when the load is large. do not do.
  • the switch element SW1 is the same as that of the first embodiment, and is turned on and off by the drive signal S1 supplied from the controller 30.
  • the switch element SW2 includes a parasitic diode D2 and is a low breakdown voltage MOSFET having a bidirectional property in which a current flows in both directions between the source and the drain when the switch element SW2 is turned on. It is turned on and off in the opposite phase to on and off.
  • a low withstand voltage MOSFET inherently has a low on-resistance and thus has a low loss, thus preventing a reduction in efficiency.
  • the switch element SW3 is a semiconductor switch element, for example, a super junction MOSFET, and is turned on / off by a drive signal S2 supplied from the controller 30 in a phase opposite to the on / off state of the switch element SW1. That is, the switch elements SW2 and SW3 are driven in synchronization with each other.
  • the series circuit of the switch elements SW2 and SW3 is formed by connecting the switch elements SW2 and SW3 in series in opposite directions (series connected in opposite polarities), and suppresses the reverse recovery current of the parasitic diode D3 of the switch element SW3.
  • a high-efficiency switching circuit is formed together with the backflow prevention diode 15. Thereby, higher efficiency than the first embodiment can be obtained.
  • the power loss (also referred to as conduction loss) due to the resistance value of the series circuit (the total resistance value of the switch elements SW2 and SW3) when the switch elements SW2 and SW3 are turned on is the power due to the forward voltage of the backflow prevention diode 15 Less than loss.
  • the high-efficiency switching circuit corresponds to, for example, a semiconductor switch circuit described in Japanese Patent Application Laid-Open No. 2015-156795, and effectively uses a reverse recovery current of a parasitic diode (also referred to as a free wheel diode) D3 of the switch element SW3. By suppressing, the loss is reduced and the switching speed is increased. A detailed description of the semiconductor switch circuit is omitted.
  • the current sensor 14 is disposed at a position upstream of the connection point of the backflow prevention diode 15 in the current path between the series circuit of the switch elements SW2 and SW3 and the capacitor 12, and the current sensor 14 is connected to the switch elements SW2 and SW3. A current Idc flowing through the capacitor 12 and the inverter (load) 20 through the series circuit is detected.
  • the anomaly detection unit 60 is configured so that the short-circuit current A continues to flow in the path passing through the switch element SW1 from the positive side terminal to the negative side terminal of the full-wave rectifier circuit 2, and from the full-wave rectifier circuit 2 to the reactor 11
  • an “overcurrent abnormality” is caused by excessive current such as an inrush current flowing through the capacitor 12 in the path passing through the backflow prevention diode 15 or the on-state switch elements SW2 and SW3. Detection is performed according to the detection current Ia of the sensor 13.
  • the detection is performed according to the detection current Idc of the current sensor 14 as in the embodiment.
  • the abnormality detection unit 60 detects an abnormality that does not turn on (close) while one of the switch elements SW2 and SW3 is off (open), that is, an “open failure abnormality”.
  • the “open failure abnormality” of the switch element SW2 includes an abnormality in which the parasitic diode D2 does not conduct.
  • the “open failure abnormality” of the switch element SW3 includes an abnormality in which the parasitic diode D3 does not conduct.
  • the abnormality detection unit 60 determines that an “open failure abnormality” has occurred in one of the switch elements SW2 and SW3. In this case, the current Ia detected by the current sensor 13 flows through the backflow prevention diode 15 in the forward direction to the capacitor 12 side.
  • the detection result of the abnormality detection unit 60 is supplied to the switch drive control units 47 and 48 and the inverter control unit 50.
  • the switch drive control unit 47 forcibly switches the switch element SW1 in the same manner as in the first embodiment when either the “power supply short circuit abnormality” or the “overcurrent abnormality” is detected by the abnormality detection unit 60. Turn off.
  • the switch drive control unit 48 forcibly turns on the switch elements SW2 and SW3 when either the “power supply short circuit abnormality” or the “overcurrent abnormality” is detected by the abnormality detection unit 60.
  • the switch drive control unit 47 forcibly turns off the switch element SW1 for safety protection, as in the first embodiment, when “abnormality of vertical short circuit” is detected by the abnormality detection unit 60.
  • the switch drive control unit 48 forcibly turns off the switch elements SW2 and SW3 for safety protection when the “abnormality of vertical short circuit” is detected by the abnormality detection unit 60.
  • the switch drive control unit 47 forcibly turns off the switch element SW1 when any one of the switch elements SW2 and SW3 detects “open failure” in the abnormality detection unit 60.
  • the switch drive control unit 48 forcibly turns off the switch elements SW2 and SW3 when any one of the switch elements SW2 and SW3 detects “abnormal open fault” by the abnormality detection unit 60.
  • “abnormality of open failure” even if an OFF signal is input to the switch elements SW2 and SW3, the operation state does not change, so that a large current flows through the backflow prevention diode 15 having a small capacity. Can not.
  • the inverter control unit 50 immediately stops the switching of the inverter 20 and detects the backflow prevention diode 15 when the “abnormality of open failure” of either of the switch elements SW2 and SW3 is detected by the abnormality detection unit 60. Prevent destruction.
  • the inverter control unit 50 performs the same control as that in the first embodiment when any one of “abnormality of power supply short-circuit”, “abnormality of overcurrent”, and “abnormality of vertical short-circuit” is detected by the abnormality detection unit 60. Do.
  • the switch drive control unit 47 forcibly turns off the switch element SW1, and the switch drive control unit 48
  • the elements SW2 and SW3 are forcibly turned on.
  • the “overcurrent abnormality” occurs, if the switch elements SW2 and SW3 remain off, all of the overcurrent flows through the backflow prevention diode 15 having a small capacity, and the backflow prevention diode 15 is destroyed. There is a possibility. In order to prevent this destruction, the switch elements SW2 and SW3 are forcibly turned on.
  • the switch element SW3 When an “open fault abnormality” occurs in which one of the switch elements SW2 and SW3, for example, the switch element SW3 is turned off and does not turn on, the current Idc flowing from the series circuit of the switch elements SW2 and SW3 to the capacitor 12 becomes zero or zero. Decrease to a close value.
  • the abnormality detection unit 60 can detect either of the switch elements SW2 and SW3. It is determined that an “open failure abnormality” has occurred. In this determination, the switch drive control unit 47 forcibly turns off the switch element SW1, the switch drive control unit 48 forcibly turns off the switch elements SW2 and SW3, and the inverter control unit 50 switches the inverter 20 that is a load. Stop immediately.
  • the “current supply short-circuit abnormality”, “overcurrent abnormality”, “upper and lower short-circuit abnormality”, and “open failure abnormality” in the booster circuit 10 can be reliably detected by the current sensors 13 and 14.
  • the operations of the switch elements SW1, SW2, SW3 and the inverter 20 are appropriately controlled to the safe side according to the detected abnormality, the booster circuit 10 and the full-wave rectifier circuit 2 can be protected.
  • the power supply apparatus according to the embodiment of the present invention can be mounted on an air conditioner or a heat source apparatus having a refrigeration cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

The present invention detects an abnormality involving flowing of a short-circuiting current from a capacitor of a booster circuit through a first switch and a second switch of the booster circuit, in accordance with an output current of the booster circuit.

Description

電源装置Power supply
 本発明の実施形態は、例えば、冷凍サイクルを有する空気調和機や熱源機等に搭載される電源装置に関する。 Embodiments of the present invention relate to a power supply device mounted on, for example, an air conditioner having a refrigeration cycle, a heat source machine, or the like.
 冷凍サイクルを有する空気調和機や熱源機等に搭載される電源装置は、交流電源の電圧を整流する整流回路、およびこの整流回路の出力電圧を昇圧する昇圧回路を含み、この昇圧回路の出力電圧をインバータ等の負荷に供給する。インバータは、昇圧回路の出力電圧を所定周波数の交流電圧に変換する。このインバータの出力により、上記冷凍サイクルにおける圧縮機のモータが動作する。昇圧回路は、上記整流回路の出力端に接続されたリアクタおよびスイッチ(第1スイッチという)の直列回路、この第1スイッチと上記負荷との間の通電路に設けられた逆流防止用ダイオード、この逆流防止用ダイオードを介して上記第1スイッチに並列接続されたコンデンサを含み、上記第1スイッチのオン,オフにより上記整流回路の出力電圧を昇圧する。上記負荷は上記コンデンサに並列接続される。 A power supply device mounted on an air conditioner or a heat source apparatus having a refrigeration cycle includes a rectifier circuit that rectifies the voltage of an AC power supply, and a booster circuit that boosts the output voltage of the rectifier circuit, and the output voltage of the booster circuit Is supplied to a load such as an inverter. The inverter converts the output voltage of the booster circuit into an AC voltage having a predetermined frequency. The compressor motor in the refrigeration cycle is operated by the output of the inverter. The booster circuit includes a series circuit of a reactor and a switch (referred to as a first switch) connected to the output terminal of the rectifier circuit, a backflow prevention diode provided in a current path between the first switch and the load, It includes a capacitor connected in parallel to the first switch via a backflow prevention diode, and boosts the output voltage of the rectifier circuit by turning on and off the first switch. The load is connected in parallel to the capacitor.
 第1スイッチがオフからオンに切換わったとき、リアクタから逆流防止用ダイオードを順方向に通る経路でコンデンサに電流が流れる。このとき、逆流防止用ダイオードに順方向電圧が生じる。この順方向電圧の発生は、昇圧回路の電力損失を招くもので、省エネルギー性の面で無視できない。 When the first switch is switched from OFF to ON, a current flows through the capacitor through a path passing from the reactor through the backflow prevention diode in the forward direction. At this time, a forward voltage is generated in the backflow prevention diode. The generation of the forward voltage causes power loss of the booster circuit and cannot be ignored in terms of energy saving.
 対策として、抵抗値が小さいスイッチ(第2スイッチという)を逆流防止用ダイオードに並列接続し、この第2スイッチを第1スイッチのオン時にオフして第1スイッチのオフ時にオンすることにより、すなわち両スイッチを相補的に動作させることにより、逆流防止用ダイオードに順方向の電流が流れなくなる。これにより、逆流防止用ダイオードに順方向電圧が生じなくなり、よって昇圧回路の電力損失を低減できる。この場合、両スイッチが同時にオン状態になるとコンデンサから両スイッチを通して短絡電流が流れてしまうので、第1スイッチがオフからオンに切換わるときには第2スイッチがオフ状態となって第2スイッチがオフからオンに切換わるとき第1スイッチがオフ状態となるいわゆるデッドタイムが確保される。 As a countermeasure, a switch having a small resistance value (referred to as a second switch) is connected in parallel to a backflow prevention diode, and this second switch is turned off when the first switch is turned on and turned on when the first switch is turned off, that is, By operating both switches in a complementary manner, forward current does not flow through the backflow prevention diode. As a result, a forward voltage is not generated in the backflow prevention diode, and thus the power loss of the booster circuit can be reduced. In this case, if both switches are turned on simultaneously, a short-circuit current flows from the capacitor through both switches. Therefore, when the first switch is switched from off to on, the second switch is turned off and the second switch is turned off. A so-called dead time is ensured when the first switch is turned off when switching on.
特開2009-38875号公報JP 2009-38875 A
 上記電源装置では、例えば第1スイッチがオン(閉成)したままオフ(開放)しない故障いわゆる短絡故障が第1スイッチに生じた場合、整流回路からリアクタおよび第1スイッチを通して短絡電流が流れ続けてしまう(電源短絡の異常)。電源サグの復帰時など、整流回路からリアクタを通りさらに逆流防止用ダイオードおよび第2スイッチのいずれか一方を通る経路でコンデンサに過大な突入電流が流れることもある(過電流の異常)。これらの異常が生じると、交流電源から電源装置への入力電流が過大となる。この過電流を捕らえることにより、上記異常を検出できる。 In the above power supply apparatus, for example, when a so-called short-circuit failure occurs in the first switch while the first switch is on (closed), a short-circuit current continues to flow from the rectifier circuit through the reactor and the first switch. (Power supply short circuit error). When the power supply sag is restored, an excessive inrush current may flow through the capacitor from the rectifier circuit through the reactor and further through one of the backflow prevention diode and the second switch (abnormal current). When these abnormalities occur, the input current from the AC power supply to the power supply device becomes excessive. By capturing this overcurrent, the abnormality can be detected.
 一方、両スイッチに対するスイッチング制御に誤りが生じた場合、あるいは第2スイッチがオン(閉成)したままオフ(開放)しない短絡故障が第2スイッチに生じた場合、両スイッチが同時にオン状態となる事態の発生が考えられる。両スイッチが同時にオン状態になると、コンデンサから両スイッチを通して大きな短絡電流が流れてしまう。この異常については、交流電源から電源装置への入力電流からは検出できない。 On the other hand, when an error occurs in the switching control for both switches, or when a short circuit failure occurs in the second switch that does not turn off (open) while the second switch is on (closed), both switches are turned on simultaneously. The occurrence of a situation is considered. When both switches are turned on simultaneously, a large short-circuit current flows from the capacitor through both switches. This abnormality cannot be detected from the input current from the AC power supply to the power supply device.
 本発明の実施形態の目的は、コンデンサから両スイッチを通して短絡電流が流れる異常を確実に検出できる電源装置を提供することである。 An object of an embodiment of the present invention is to provide a power supply device that can reliably detect an abnormality in which a short-circuit current flows from a capacitor through both switches.
 請求項1の電源装置は、整流回路、昇圧回路、およびコントローラを備える。前記整流回路は、交流電圧を整流する。前記昇圧回路は、前記整流回路の出力端に接続されたリアクタおよび第1スイッチの直列回路、この第1スイッチと負荷との間の通電路に設けられた逆流防止用ダイオード、この逆流防止用ダイオードを介して前記第1スイッチに並列接続されたコンデンサ、前記逆流防止用ダイオードに並列接続された第2スイッチを含み、前記第1スイッチのオン,オフおよびこの第1スイッチのオン,オフとは逆位相の前記第2スイッチのオン,オフにより前記整流回路の出力電圧を昇圧する。前記コントローラは、前記コンデンサから前記第1および第2スイッチを通して短絡電流が流れる異常を前記昇圧回路の出力電流から検出する。 The power supply device of claim 1 includes a rectifier circuit, a booster circuit, and a controller. The rectifier circuit rectifies an AC voltage. The step-up circuit includes a series circuit of a reactor and a first switch connected to the output terminal of the rectifier circuit, a backflow prevention diode provided in a current path between the first switch and a load, and the backflow prevention diode A capacitor connected in parallel to the first switch via a first switch, and a second switch connected in parallel to the backflow prevention diode. The first switch is turned on / off and the first switch is turned on / off. The output voltage of the rectifier circuit is boosted by turning on / off the second switch in phase. The controller detects an abnormality in which a short-circuit current flows from the capacitor through the first and second switches from the output current of the booster circuit.
第1実施形態の構成を示すブロック図。The block diagram which shows the structure of 1st Embodiment. 第1実施形態における各電流センサの検知電流と異常内容との関係およびその異常に対する安全処置を判り易く示す図。The figure which shows clearly the relationship between the detected electric current of each current sensor and abnormality content in 1st Embodiment, and the safety measure with respect to the abnormality. 第2実施形態の構成を示すブロック図。The block diagram which shows the structure of 2nd Embodiment. 第2実施形態における各電流センサの検知電流と異常内容との関係およびその異常に対する安全処置を判り易く示す図。The figure which shows clearly the relationship between the detected electric current of each current sensor and abnormality content in 2nd Embodiment, and the safety measure with respect to the abnormality.
[1]第1実施形態 
 以下、第1実施形態として、冷凍サイクルを有する空気調和機に搭載される電源装置を例に説明する。 
 図1に示すように、3相交流電源1に整流回路たとえばダイオードブリッジの全波整流回路2が接続され、その全波整流回路2の出力端に昇圧回路10が接続されている。この昇圧回路10の出力端に、当該電源装置の負荷であるインバータ20が接続されている。昇圧回路10は、インバータ20に直流電力を供給する。
[1] First embodiment
Hereinafter, as a first embodiment, a power supply device mounted on an air conditioner having a refrigeration cycle will be described as an example.
As shown in FIG. 1, a full-wave rectifier circuit 2 such as a diode bridge is connected to a three-phase AC power source 1, and a booster circuit 10 is connected to the output terminal of the full-wave rectifier circuit 2. An inverter 20 that is a load of the power supply device is connected to the output terminal of the booster circuit 10. The booster circuit 10 supplies DC power to the inverter 20.
 昇圧回路10は、全波整流回路2の出力端に接続されたリアクタ11およびスイッチ素子(第1スイッチ)SW1の直列回路、このリアクタ11およびスイッチ素子SW1の相互接続点とインバータ20との間の正側通電路に設けられた逆流防止用ダイオードD2、この逆流防止用ダイオードD2を介してスイッチ素子SW1に並列接続されたコンデンサ(電解コンデンサ)12、逆流防止用ダイオードD2に並列接続されたスイッチ素子(第2スイッチ)SW2を含み、スイッチ素子SW1のオン,オフ(断続オン)とこのスイッチ素子SW1のオン,オフとは逆位相のスイッチ素子SW2のオン,オフ(断続オン)により全波整流回路2の出力電圧(直流電圧)を昇圧する昇圧モードの機能、およびスイッチ素子SW1のオフ(オフの継続)とスイッチ素子SW2のオン(オンの継続)により全波整流回路2の出力電圧を昇圧せずに出力する非昇圧動作モードの機能を有する。スイッチ素子SW1を下相側スイッチ素子、スイッチ素子SW2を上相側スイッチ素子ともいう。 The step-up circuit 10 includes a series circuit of a reactor 11 and a switch element (first switch) SW1 connected to the output terminal of the full-wave rectifier circuit 2, and a connection point between the reactor 11 and the switch element SW1 and the inverter 20. A backflow prevention diode D2 provided in the positive current path, a capacitor (electrolytic capacitor) 12 connected in parallel to the switch element SW1 via the backflow prevention diode D2, and a switch element connected in parallel to the backflow prevention diode D2 A full-wave rectifier circuit including a second switch SW2 by turning on / off (intermittent on) of the switch element SW1 and on / off (intermittent on) of the switch element SW2 having a phase opposite to that of the switch element SW1. Function of boosting mode for boosting the output voltage (DC voltage) of 2 and switching element SW1 off (off Having the function of the non-boost operation mode to output without boosting the output voltage of the full-wave rectifying circuit 2 by connection) and on the switching element SW2 (continuation of ON). The switch element SW1 is also referred to as a lower phase side switch element, and the switch element SW2 is also referred to as an upper phase side switch element.
 スイッチ素子SW1は、寄生ダイオードD1を含む半導体スイッチ素子たとえばMOSFETであり、コントローラ30から供給される駆動信号S1によりオン,オフ駆動される。スイッチ素子SW2は、寄生ダイオードD2を含み、オン時にソース・ドレイン間の双方向に電流が流れる双方向性を有し、かつオン時の電力損失(導通損失ともいう)が寄生ダイオードD2の順方向電圧による電力損失より小さい半導体スイッチ素子たとえばMOSFETであり、コントローラ30から供給される駆動信号S2によりスイッチ素子SW1のオン,オフとは逆位相でオン,オフ駆動される。このスイッチ素子SW2の寄生ダイオードD2が、そのまま上記逆流防止用ダイオードD2として用いられている。 The switch element SW1 is a semiconductor switch element including a parasitic diode D1, for example, a MOSFET, and is turned on and off by a drive signal S1 supplied from the controller 30. The switch element SW2 includes a parasitic diode D2, has a bidirectional property in which current flows in both directions between the source and the drain when turned on, and power loss (also referred to as conduction loss) when turned on is forward of the parasitic diode D2. A semiconductor switching element such as a MOSFET, which is smaller than the power loss due to voltage, is driven on and off by a drive signal S2 supplied from the controller 30 in a phase opposite to that of the switching element SW1. The parasitic diode D2 of the switch element SW2 is used as the backflow prevention diode D2 as it is.
 インバータ20は、昇圧回路10の出力電圧をスイッチングにより交流電圧に変換し、その交流電圧をモータ21への駆動電力として出力する。モータ21は、圧縮機22の駆動用モータ(例えばブラシレスDCモータ)である。 The inverter 20 converts the output voltage of the booster circuit 10 into an AC voltage by switching, and outputs the AC voltage as drive power to the motor 21. The motor 21 is a motor for driving the compressor 22 (for example, a brushless DC motor).
 圧縮機22は、冷媒を吸込んで圧縮し吐出する。この圧縮機22の冷媒吐出口に四方弁23を介して室外熱交換器24の一端が接続され、その室外熱交換器24の他端が膨張弁25を介して室内熱交換器26の一端に接続されている。室内熱交換器26の他端は、四方弁23を介して圧縮機22の冷媒吸込口に接続されている。これら圧縮機22、四方弁23、室外熱交換器24、膨張弁25、室内熱交換器26により、空気調和機のヒートポンプ式冷凍サイクルが構成されている。図1中の矢印は、冷房時の冷媒の流れを示し、圧縮機から吐出した高温冷媒は、室内熱交換器26で吸熱して室内を冷却し、室外熱交換器24で放熱する。すなわち、室内熱交換器26は吸熱器となり、室外熱交換器24は放熱器となる。四方弁23を反転すれば、冷媒の流れが反対となり暖房運転ができる。この場合、室内熱交換器26で放熱して室内を暖め、室外熱交換器24で吸熱することになる。 Compressor 22 sucks in refrigerant, compresses it, and discharges it. One end of the outdoor heat exchanger 24 is connected to the refrigerant discharge port of the compressor 22 via a four-way valve 23, and the other end of the outdoor heat exchanger 24 is connected to one end of the indoor heat exchanger 26 via an expansion valve 25. It is connected. The other end of the indoor heat exchanger 26 is connected to a refrigerant suction port of the compressor 22 via a four-way valve 23. The compressor 22, the four-way valve 23, the outdoor heat exchanger 24, the expansion valve 25, and the indoor heat exchanger 26 constitute a heat pump refrigeration cycle of an air conditioner. The arrows in FIG. 1 indicate the flow of the refrigerant during cooling. The high-temperature refrigerant discharged from the compressor absorbs heat by the indoor heat exchanger 26 to cool the room and radiates heat by the outdoor heat exchanger 24. That is, the indoor heat exchanger 26 becomes a heat absorber, and the outdoor heat exchanger 24 becomes a radiator. If the four-way valve 23 is reversed, the refrigerant flow is reversed and heating operation can be performed. In this case, the indoor heat exchanger 26 radiates heat to warm the room, and the outdoor heat exchanger 24 absorbs heat.
 全波整流回路2の正側出力端と昇圧回路10のリアクタ11との間の通電路に、リアクタ11に流れる電流(昇圧回路10への入力電流)Iaを検知する入力電流検知器たとえば電流センサ13が配置されている。スイッチ素子SW2とコンデンサ12との間の通電路に、コンデンサ12及びインバータ20に流れる電流Idcを検知する出力電流検知器たとえば電流センサ14が配置されている。インバータ20とモータ21との間の通電路に、モータ22に流れる電流(相巻線電流)を検知する電流センサ27が配置されている。これら電流センサ13,14,27の検知結果がコントローラ30に供給される。昇圧回路10の出力電圧(コンデンサ12の両端間電圧)Vdcが、コントローラ30で検出される。 An input current detector, such as a current sensor, for detecting a current (input current to the booster circuit) Ia flowing in the reactor 11 in a current path between the positive output terminal of the full-wave rectifier circuit 2 and the reactor 11 of the booster circuit 10 13 is arranged. An output current detector, for example, a current sensor 14, that detects a current Idc flowing through the capacitor 12 and the inverter 20 is disposed in the energization path between the switch element SW 2 and the capacitor 12. A current sensor 27 that detects a current (phase winding current) that flows through the motor 22 is disposed in the energization path between the inverter 20 and the motor 21. The detection results of these current sensors 13, 14, and 27 are supplied to the controller 30. An output voltage (voltage across the capacitor 12) Vdc of the booster circuit 10 is detected by the controller 30.
 コントローラ30は、昇圧制御部40、インバータ制御部50、目標値設定部51、および異常検出部60を含む。 The controller 30 includes a boost control unit 40, an inverter control unit 50, a target value setting unit 51, and an abnormality detection unit 60.
 昇圧制御部40は、昇圧回路10の出力電圧Vdcが目標値Vdcrefとなるように、かつ昇圧回路10への入力電流Iaが一定となるように、昇圧回路10のスイッチングをパルス幅変調(PWM)制御するもので、減算部41、PI制御器42、減算部43、PI制御器44、PWM信号生成部45、キャリア発生部46、スイッチ駆動制御部47,48を含む。 The step-up control unit 40 performs pulse width modulation (PWM) switching of the step-up circuit 10 so that the output voltage Vdc of the step-up circuit 10 becomes the target value Vdcref and the input current Ia to the step-up circuit 10 is constant. The control unit includes a subtractor 41, a PI controller 42, a subtractor 43, a PI controller 44, a PWM signal generator 45, a carrier generator 46, and switch drive controllers 47 and 48.
 減算部41は、昇圧回路10の出力電圧Vdcと目標値Vdcrefとの偏差ΔVdcを求める。PI制御器42は、減算部41で得た偏差ΔVdcを入力とする比例・積分演算により、昇圧回路10への入力電流Iaに対する電流指令値Irefを得る。減算部43は、PI制御器42で得た電流指令値Irefと昇圧回路10への入力電流(電流センサ13の検知電流)Iaとの偏差ΔIaを求める。PI制御器44は、減算部43で得た偏差ΔIaを入力とする比例・積分演算により、パルス幅変調用の電圧指令値Vrefを得る。キャリア発生部46は、所定周波数の三角波状のキャリア信号電圧Vcを発する。PWM信号生成部45は、キャリア発生部46が発するキャリア信号電圧VcをPI制御器44で得た電圧指令値Vrefでパルス幅変調(電圧比較)することにより、昇圧回路10のスイッチング素子SW1,W2に対するスイッチング用のパルス状のPWM信号S0を生成する。 The subtraction unit 41 obtains a deviation ΔVdc between the output voltage Vdc of the booster circuit 10 and the target value Vdcref. The PI controller 42 obtains a current command value Iref for the input current Ia to the booster circuit 10 by proportional / integral calculation using the deviation ΔVdc obtained by the subtracting unit 41 as an input. The subtracting unit 43 obtains a deviation ΔIa between the current command value Iref obtained by the PI controller 42 and the input current (detected current of the current sensor 13) Ia to the booster circuit 10. The PI controller 44 obtains a voltage command value Vref for pulse width modulation by proportional / integral calculation using the deviation ΔIa obtained by the subtractor 43 as an input. The carrier generating unit 46 generates a triangular wave carrier signal voltage Vc having a predetermined frequency. The PWM signal generation unit 45 performs pulse width modulation (voltage comparison) on the carrier command voltage Vc generated by the carrier generation unit 46 with the voltage command value Vref obtained by the PI controller 44, thereby switching the switching elements SW1, W2 of the booster circuit 10. A pulse-shaped PWM signal S0 for switching is generated.
 スイッチ駆動制御部47は、目標値設定部51で設定される目標値Vdcrefが所定値以上(高・中負荷時)の場合に、PWM信号生成部45で生成されたPWM信号S0と同じ位相の駆動信号S1をスイッチ素子SW1の駆動用として生成し出力する。スイッチ駆動制御部48は、目標値設定部51で設定される目標値Vdcrefが所定値以上(高・中負荷時)の場合に、PWM信号生成部45で生成されたPWM信号S0と逆位相の駆動信号S2をスイッチ素子SW2の駆動用として生成し出力する。これら駆動信号S1,SW2の出力により、昇圧回路10が昇圧動作モードで動作する。 The switch drive control unit 47 has the same phase as the PWM signal S0 generated by the PWM signal generation unit 45 when the target value Vdcref set by the target value setting unit 51 is equal to or greater than a predetermined value (during high / medium load). A drive signal S1 is generated and output for driving the switch element SW1. When the target value Vdcref set by the target value setting unit 51 is equal to or higher than a predetermined value (at the time of high / medium load), the switch drive control unit 48 has a phase opposite to that of the PWM signal S0 generated by the PWM signal generation unit 45. A drive signal S2 is generated and output for driving the switch element SW2. The booster circuit 10 operates in the boost operation mode by the outputs of the drive signals S1 and SW2.
 また、スイッチ駆動制御部47は、目標値設定部51で設定される目標値Vdcrefが所定値未満(低負荷時)の場合、スイッチ素子SW1を継続的にオフさせるための駆動信号S1を生成し出力する。スイッチ駆動制御部48は、目標値設定部51で設定される目標値Vdcrefが所定値未満(低負荷時)の場合、スイッチ素子SW2を継続的にオンさせるための駆動信号S2を生成し出力する。これら駆動信号S1,SW2の出力により、スイッチ素子SW1が継続的にオフされるため、昇圧回路10が非昇圧動作モードとなる。 Further, when the target value Vdcref set by the target value setting unit 51 is less than a predetermined value (when the load is low), the switch drive control unit 47 generates a drive signal S1 for continuously turning off the switch element SW1. Output. When the target value Vdcref set by the target value setting unit 51 is less than a predetermined value (when the load is low), the switch drive control unit 48 generates and outputs a drive signal S2 for continuously turning on the switch element SW2. . Since the switch element SW1 is continuously turned off by the outputs of the drive signals S1 and SW2, the booster circuit 10 enters the non-boosting operation mode.
 なお、目標値Vdcrefは、ヒートポンプ式冷凍サイクルの負荷(いわゆる冷凍負荷)に応じて設定されるもので、圧縮機22(モータ21)が低回転状態となる低冷凍負荷時は低い値に設定され、圧縮機22が高回転状態となる高冷凍負荷時は高い値に設定される。目標値Vdcrefが低くなる低冷凍負荷時は、昇圧回路10が非昇圧動作モードで動作する。 The target value Vdcref is set according to the load of the heat pump refrigeration cycle (so-called refrigeration load), and is set to a low value during a low refrigeration load when the compressor 22 (motor 21) is in a low rotation state. The compressor 22 is set to a high value during a high refrigeration load when the engine 22 is in a high rotation state. When the target value Vdcref is low and the refrigeration load is low, the booster circuit 10 operates in the non-boosting operation mode.
 とくに、スイッチ駆動制御部47,48は、スイッチ素子SW1がオフからオンに切換わる前にスイッチ素子SW2がオンからオフに切換わるように、つまりスイッチ素子SW1がオフからオンに切換わるタイミングとスイッチ素子SW2がオンからオフに切換わるタイミングとの間に両スイッチ素子SW1,SW2が共にオフ状態となるデッドタイムが確保されるように、かつスイッチ素子SW1がオンからオフに切換わった後でスイッチ素子SW2がオフからオンに切換わるように、つまりスイッチ素子SW1がオンからオフに切換わるタイミングとスイッチ素子SW2がオンからオフに切換わるタイミングとの間に両スイッチ素子SW1,SW2が共にオフ状態となるデッドタイムが確保されるように、駆動信号S1,S2を生成する。 In particular, the switch drive control units 47 and 48 are arranged so that the switch element SW2 is switched from on to off before the switch element SW1 is switched from off to on, that is, the timing and switch when the switch element SW1 is switched from off to on. The switch after the switch element SW1 is switched from on to off so as to ensure a dead time during which both the switch elements SW1 and SW2 are turned off between the timing when the element SW2 is switched from on to off. Both the switch elements SW1 and SW2 are in an off state so that the element SW2 is switched from off to on, that is, between the timing when the switch element SW1 is switched from on to off and the timing when the switch element SW2 is switched from on to off. Drive signals S1 and S2 are generated so as to ensure a dead time of .
 減算部41およびPI制御器42が電圧制御系として機能する。減算部43およびPI制御器44が電流制御系として機能する。この電圧制御系および電流制御系により、昇圧回路4の出力電圧Vdcが目標値Vdcrefとなるように、かつ昇圧回路4への入力電流Iが一定となるように、昇圧回路10のスイッチングがPWM制御される。 The subtraction unit 41 and the PI controller 42 function as a voltage control system. The subtractor 43 and the PI controller 44 function as a current control system. With this voltage control system and current control system, switching of the booster circuit 10 is PWM controlled so that the output voltage Vdc of the booster circuit 4 becomes the target value Vdcref and the input current I to the booster circuit 4 is constant. Is done.
 インバータ制御部50は、電流センサ27の検知電流(モータ電流)からブラシレスDCモータ21の速度(回転速度)を推定し、その推定速度が冷凍負荷の大きさに対応する目標速度となるようにインバータ20のスイッチングをPWM制御する。目標値設定部51は、インバータ20の出力電圧が上記目標速度を得るのに必要な最低限の昇圧回路10の出力電圧Vdcを目標値Vdcrefとして設定する。 The inverter control unit 50 estimates the speed (rotational speed) of the brushless DC motor 21 from the detected current (motor current) of the current sensor 27, and inverts the estimated speed to a target speed corresponding to the size of the refrigeration load. 20 switching is PWM controlled. The target value setting unit 51 sets the minimum output voltage Vdc of the booster circuit 10 necessary for the output voltage of the inverter 20 to obtain the target speed as the target value Vdcref.
 異常検出部60は、全波整流回路2からスイッチ素子SW1を通る経路で短絡電流Aが流れ続ける異常(電源短絡の異常という)を電流センサ13の検知電流Iaに基づいて検出するとともに、全波整流回路2からリアクタ11を通りさらに逆流防止用ダイオードD2およびスイッチ素子SW2のいずれか一方を通る経路で過大な突入電流等の過電流がコンデンサ12に流れる異常(過電流の異常という)を電流センサ13の検知電流Iaに基づいて検出する。具体的には、異常検出部60は、電流センサ13の検知電流Iaが閾値Ias以上に上昇した場合に、“電源短絡の異常”および“過電流の異常”のいずれかが生じたと判定する。 The abnormality detection unit 60 detects an abnormality in which the short-circuit current A continues to flow from the full-wave rectifier circuit 2 through the switch element SW1 based on the detection current Ia of the current sensor 13 as well as the full-wave. An abnormality (referred to as an overcurrent abnormality) in which an excessive current such as an inrush current flows through the capacitor 12 in a path from the rectifier circuit 2 through the reactor 11 and further through one of the backflow prevention diode D2 and the switch element SW2. Detection is based on 13 detection currents Ia. Specifically, the abnormality detection unit 60 determines that either “power supply short circuit abnormality” or “overcurrent abnormality” has occurred when the detection current Ia of the current sensor 13 has risen above the threshold value Ias.
 また、異常検出部60は、コンデンサ12からスイッチ素子SW1,SW2を通る経路で大きな短絡電流B(=-Idc)が流れる異常(上下短絡の異常という)を電流センサ14の検知電流Idcに基づいて検出する。具体的には、異常検出部60は、電流センサ14の検知電流Idcが負の方向に増して閾値-Idcs以上に達した場合に、“上下短絡の異常”が生じたと判定する。 In addition, the abnormality detection unit 60 detects an abnormality in which a large short-circuit current B (= −Idc) flows in a path from the capacitor 12 through the switch elements SW1 and SW2 (referred to as an upper / lower short-circuit abnormality) based on the detection current Idc of the current sensor 14. To detect. Specifically, the abnormality detection unit 60 determines that an “upper and lower short circuit abnormality” has occurred when the detected current Idc of the current sensor 14 increases in the negative direction and reaches a threshold value −Idcs or more.
 この異常検出部60の検出結果(判定結果)がスイッチ駆動制御部47,48およびインバータ制御部50に供給される。 The detection result (determination result) of the abnormality detection unit 60 is supplied to the switch drive control units 47 and 48 and the inverter control unit 50.
 スイッチ駆動制御部47,48は、“電源短絡の異常”および“過電流の異常”のいずれかが異常検出部60で検出された場合に、安全保護のため、スイッチ素子SW1,SW2を強制的にオフする。また、スイッチ駆動制御部47,48は、“上下短絡の異常”が異常検出部60で検出された場合に、安全保護のため、スイッチ素子SW1,SW2を強制的にオフする。 The switch drive control units 47 and 48 forcibly switch the switch elements SW1 and SW2 for safety protection when either the “power supply short circuit abnormality” or the “overcurrent abnormality” is detected by the abnormality detection unit 60. Turn off. Further, the switch drive control units 47 and 48 forcibly turn off the switch elements SW1 and SW2 for safety protection when the “abnormality of vertical short circuit” is detected by the abnormality detection unit 60.
 インバータ制御部50は、“電源短絡の異常”および“過電流の異常”のいずれかが異常検出部60で検出され、かつその異常の検出が一時的でなく所定時間にわたり継続した場合に、インバータ20のスイッチングを停止する(すなわち冷凍負荷を停止する)。また、インバータ制御部50は、“上下短絡の異常”が異常検出部60で検出された場合には、即時に、インバータ20のスイッチングを停止する(すなわち冷凍負荷を停止する)。 Inverter control unit 50 detects that either “power supply short-circuit abnormality” or “overcurrent abnormality” is detected by abnormality detection unit 60 and the detection of the abnormality is not temporary but continues for a predetermined time. 20 switching is stopped (that is, the refrigeration load is stopped). Further, when “abnormality of upper and lower short circuit” is detected by the abnormality detection unit 60, the inverter control unit 50 immediately stops switching of the inverter 20 (that is, stops the refrigeration load).
 少なくとも上記全波整流回路2、上記昇圧回路10、上記電流センサ13,14、および上記コントローラ30により、本実施形態の電源装置が構成されている。 At least the full-wave rectifier circuit 2, the booster circuit 10, the current sensors 13 and 14, and the controller 30 constitute a power supply device according to this embodiment.
 つぎに、コントローラ30が実行する制御について説明する。電流センサ13,14の検知電流Ia,Idcと異常内容との関係およびその異常に対する安全処置を図2に判り易く示している。 Next, the control executed by the controller 30 will be described. The relationship between the detected currents Ia and Idc of the current sensors 13 and 14 and the content of the abnormality and the safety measures for the abnormality are shown in FIG.
 モータ21が高・中速度で回転する高・中負荷時、スイッチ素子SW1がオン,オフし、かつそのスイッチ素子SW1のオン,オフとは逆位相でスイッチ素子SW2がオン,オフする。これにより、全波整流回路2の出力電圧が昇圧回路10で昇圧されてインバータ20に供給される。モータ21が低速度で回転する低負荷時は、スイッチ素子SW1が継続的にオフしてスイッチ素子SW2が継続的にオンする。これにより、全波整流回路2の出力電圧は、リアクタ11およびスイッチ素子SW2を通り、昇圧されることなくコンデンサ12を介してインバータ20に供給される。 When the motor 21 rotates at high and medium speeds, the switch element SW1 is turned on and off, and the switch element SW2 is turned on and off in a phase opposite to that of the switch element SW1. As a result, the output voltage of the full-wave rectifier circuit 2 is boosted by the booster circuit 10 and supplied to the inverter 20. When the motor 21 rotates at a low speed and the load is low, the switch element SW1 is continuously turned off and the switch element SW2 is continuously turned on. As a result, the output voltage of the full-wave rectifier circuit 2 passes through the reactor 11 and the switch element SW2, and is supplied to the inverter 20 via the capacitor 12 without being boosted.
 ところで、スイッチ素子SW1がオン(閉成)したままオフ(開放)しない短絡故障が生じると、全波整流回路2からスイッチ素子SW1を通る経路で短絡電流Aが流れ続ける“電源短絡の異常”が生じる可能性がある。また、全波整流回路2からスイッチ素子SW2を通る経路でコンデンサ12に突入電流等の過電流が流れる“過電流の異常”が生じる可能性もある。このような“電源短絡の異常”および“過電流の異常”のいずれかが生じた場合、電流センサ13の検知電流Iaが閾値Ias以上に上昇する。電流センサ13の検知電流Iaが閾値Ias以上に上昇した場合、異常検出部60は、“電源短絡の異常”または“過電流の異常”が生じたと判定する。この判定に際し、スイッチ駆動制御部47はスイッチ素子SW1を強制的にオフし、スイッチ駆動制御部48はスイッチ素子SW2を強制的にオフする。これにより、上記短絡電流Aや上記過電流による昇圧回路10や全波整流回路2の電気部品の破壊を防ぐことができる。 By the way, when a short-circuit failure that does not turn off (open) while the switch element SW1 is on (closed) occurs, a “short circuit of power supply” occurs in which the short-circuit current A continues to flow from the full-wave rectifier circuit 2 through the switch element SW1. It can happen. Further, there is a possibility that an “overcurrent abnormality” in which an overcurrent such as an inrush current flows through the capacitor 12 through a path from the full-wave rectifier circuit 2 to the switch element SW2. When either of such “abnormality of power supply short-circuit” and “abnormality of overcurrent” occurs, the detection current Ia of the current sensor 13 rises to the threshold value Ias or more. When the detection current Ia of the current sensor 13 rises above the threshold value Ias, the abnormality detection unit 60 determines that “power supply short circuit abnormality” or “overcurrent abnormality” has occurred. In this determination, the switch drive control unit 47 forcibly turns off the switch element SW1, and the switch drive control unit 48 forcibly turns off the switch element SW2. Thereby, destruction of the electrical components of the booster circuit 10 and the full-wave rectifier circuit 2 due to the short circuit current A and the overcurrent can be prevented.
 なお、“過電流の異常”が生じた場合、スイッチ素子SW2がオフ状態であれば、過電流が逆流防止用ダイオードD2を通って流れるが、逆流防止用ダイオードD2はその過電流に対して十分な容量を有するので、逆流防止用ダイオードD2が破壊に至ることはない。 When an “overcurrent abnormality” occurs, if the switch element SW2 is in an off state, the overcurrent flows through the backflow prevention diode D2, but the backflow prevention diode D2 is sufficient for the overcurrent. Therefore, the backflow prevention diode D2 will not be destroyed.
 また、スイッチ素子SW1,SW2に対するスイッチング制御の誤りやスイッチ素子SW2の短絡故障などにより、コンデンサ12の一端から他端へとスイッチ素子SW2,SW1を通る経路で大きな短絡電流Bが流れる“上下短絡の異常”が生じる可能性がある。この“上下短絡の異常”が生じた場合、電流センサ14の検知電流Idcが負の方向に増して閾値-Idcs以上となる。電流センサ14の検知電流Idcが負の方向に増して閾値-Idcs以上に達した場合、異常検出部60は、“上下短絡の異常”が生じたと判定する。この判定に際し、スイッチ駆動制御部47,48は、スイッチ素子SW1,SW2を強制的にオフする。これにより、上記短絡電流Bによる昇圧回路10や全波整流回路2の電気部品の破壊を防ぐことができる。 In addition, a large short-circuit current B flows from one end of the capacitor 12 to the other end due to a switching control error with respect to the switch elements SW1 and SW2 or a short-circuit failure of the switch element SW2. An “abnormality” may occur. When this “upper and lower short circuit abnormality” occurs, the detection current Idc of the current sensor 14 increases in the negative direction and becomes equal to or greater than the threshold −Idcs. When the detection current Idc of the current sensor 14 increases in the negative direction and reaches the threshold value −Idcs or more, the abnormality detection unit 60 determines that “upper and lower short circuit abnormality” has occurred. In this determination, the switch drive control units 47 and 48 forcibly turn off the switch elements SW1 and SW2. Thereby, destruction of the electrical components of the booster circuit 10 and the full-wave rectifier circuit 2 due to the short-circuit current B can be prevented.
 以上のように、昇圧回路10における“電源短絡の異常”“過電流の異常”“上下短絡の異常”を2つの電流センサ13,14によって確実に検出することができる。異常を検出した場合はスイッチ素子SW1,SW2を強制的にオフするので、昇圧回路10および全波整流回路2を保護することができる。電流センサ13は昇圧制御部40の電流制御用としてもともと用意されているものなので、異常の検出用として新たに電流センサを用意する必要がない。よって、コストの上昇を抑えることができる。 As described above, the “current supply short-circuit abnormality”, “overcurrent abnormality”, and “upper and lower short-circuit abnormality” in the booster circuit 10 can be reliably detected by the two current sensors 13 and 14. When the abnormality is detected, the switch elements SW1 and SW2 are forcibly turned off, so that the booster circuit 10 and the full-wave rectifier circuit 2 can be protected. Since the current sensor 13 is originally prepared for current control of the boost control unit 40, it is not necessary to prepare a new current sensor for detecting an abnormality. Therefore, an increase in cost can be suppressed.
[2]第2実施形態 
 第2実施形態について説明する。 
 図3に示すように、昇圧回路10は、全波整流回路2の出力端に接続されたリアクタ11およびスイッチ素子(第1スイッチ)SW1の直列回路、このリアクタ11およびスイッチ素子SW1の相互接続点とインバータ20との間の正側通電路に設けられた逆流防止用ダイオード15、この逆流防止用ダイオード15を介してスイッチ素子SW1に並列接続されたコンデンサ12、逆流防止用ダイオード15に並列接続されたスイッチ素子SW2,SW3の直列回路(第2スイッチ)を含み、スイッチ素子SW1のオン,オフ(断続オン)とこのスイッチ素子SW1のオン,オフとは逆位相のスイッチ素子SW2,SW3のオン,オフ(断続オン)により全波整流回路2の出力電圧を昇圧する昇圧動作モードの機能、およびスイッチ素子SW1のオフ(オフの継続)とスイッチ素子SW2,SW3のオン(オンの継続)により全波整流回路2の出力電圧を昇圧せずに出力する非昇圧動作モードの機能を有する。すなわち、第1実施形態のスイッチ素子SW2に代えて、スイッチ素子(前段スイッチ)SW2とスイッチ素子(後段スイッチ)SW3の直列回路を採用している。
[2] Second embodiment
A second embodiment will be described.
As shown in FIG. 3, the booster circuit 10 includes a series circuit of a reactor 11 and a switch element (first switch) SW1 connected to the output terminal of the full-wave rectifier circuit 2, and an interconnection point between the reactor 11 and the switch element SW1. Is connected in parallel to the backflow prevention diode 15, the capacitor 12 connected in parallel to the switch element SW 1 via the backflow prevention diode 15, and the backflow prevention diode 15. The switch elements SW2 and SW3 are connected in series (second switch). The switch elements SW1 and SW3 are turned on and off (intermittently on) and the switch elements SW1 and SW3 are turned on and off. Function of boosting operation mode for boosting the output voltage of full-wave rectifier circuit 2 by turning off (intermittently on), and switching element SW Having off (continuation of OFF) and the switch elements SW2, SW3 turned on by (continuation of ON) of the non-boost operation mode to output without boosting the output voltage of the full-wave rectifier circuit 2 function. That is, instead of the switch element SW2 of the first embodiment, a series circuit of a switch element (front stage switch) SW2 and a switch element (back stage switch) SW3 is employed.
 スイッチ素子SW2,SW3は、互いに同じ駆動信号S2を受けることにより、互いに同期して動作する。昇圧回路10が正常に動作している間は電流が逆流防止用ダイオード15にほぼ流れないため、逆流防止用ダイオード15として安価で小容量(定格)の部品を使用できる。別の言い方をすると、逆流防止用ダイオード15は、負荷が大きい場合にスイッチ素子SW2,SW3の直列回路に流れる電流(昇圧電流)と同じ大きさの電流が継続して流れることのできる容量を有しない。 The switch elements SW2 and SW3 operate in synchronization with each other by receiving the same drive signal S2. While the booster circuit 10 is operating normally, almost no current flows through the backflow prevention diode 15, so that a low-cost, small capacity (rated) component can be used as the backflow prevention diode 15. In other words, the backflow prevention diode 15 has a capacity capable of continuously flowing a current having the same magnitude as the current (boosted current) flowing in the series circuit of the switch elements SW2 and SW3 when the load is large. do not do.
 スイッチ素子SW1は、第1実施形態と同じもので、コントローラ30から供給される駆動信号S1によってオン,オフ駆動される。スイッチ素子SW2は、寄生ダイオードD2を含み、オン時にソース・ドレイン間の双方向に電流が流れる双方向性を有する低耐圧のMOSFETであり、コントローラ30から供給される駆動信号S2によってスイッチ素子SW1のオン,オフとは逆位相でオン,オフ駆動される。低耐圧のMOSFETは、本来オン抵抗が小さため低損失であり、よって効率の低下を防止できる。スイッチ素子SW3は、半導体スイッチ素子たとえばスーパージャンクションMOSFETであり、コントローラ30から供給される駆動信号S2によってスイッチ素子SW1のオン,オフとは逆位相でオン,オフ駆動される。すなわち、スイッチ素子SW2,SW3は、互いに同期して駆動される。 The switch element SW1 is the same as that of the first embodiment, and is turned on and off by the drive signal S1 supplied from the controller 30. The switch element SW2 includes a parasitic diode D2 and is a low breakdown voltage MOSFET having a bidirectional property in which a current flows in both directions between the source and the drain when the switch element SW2 is turned on. It is turned on and off in the opposite phase to on and off. A low withstand voltage MOSFET inherently has a low on-resistance and thus has a low loss, thus preventing a reduction in efficiency. The switch element SW3 is a semiconductor switch element, for example, a super junction MOSFET, and is turned on / off by a drive signal S2 supplied from the controller 30 in a phase opposite to the on / off state of the switch element SW1. That is, the switch elements SW2 and SW3 are driven in synchronization with each other.
 スイッチ素子SW2,SW3の直列回路は、スイッチ素子SW2,SW3を互いに逆方向に直列接続(互いに逆向きの極性で直列接続)したもので、スイッチ素子SW3の寄生ダイオードD3の逆回復電流を抑制する高効率スイッチング回路を逆流防止用ダイオード15と共に形成している。これにより、第1実施形態よりもより高い効率を得ることができる。スイッチ素子SW2,SW3がオンしたときの上記直列回路の抵抗値(スイッチ素子SW2,SW3の抵抗値の合計)による電力損失(導通損失ともいう)は、逆流防止用ダイオード15の順方向電圧による電力損失より小さい。上記高効率スイッチング回路は、例えば特開2015-156795号公報に記載されている半導体スイッチ回路に相当するもので、スイッチ素子SW3の寄生ダイオード(還流ダイオードともいう)D3の逆回復電流を効果的に抑制することで、損失の低減およびスイッチング速度の高速化を実現する。この半導体スイッチ回路の詳細についての説明は省略する。 The series circuit of the switch elements SW2 and SW3 is formed by connecting the switch elements SW2 and SW3 in series in opposite directions (series connected in opposite polarities), and suppresses the reverse recovery current of the parasitic diode D3 of the switch element SW3. A high-efficiency switching circuit is formed together with the backflow prevention diode 15. Thereby, higher efficiency than the first embodiment can be obtained. The power loss (also referred to as conduction loss) due to the resistance value of the series circuit (the total resistance value of the switch elements SW2 and SW3) when the switch elements SW2 and SW3 are turned on is the power due to the forward voltage of the backflow prevention diode 15 Less than loss. The high-efficiency switching circuit corresponds to, for example, a semiconductor switch circuit described in Japanese Patent Application Laid-Open No. 2015-156795, and effectively uses a reverse recovery current of a parasitic diode (also referred to as a free wheel diode) D3 of the switch element SW3. By suppressing, the loss is reduced and the switching speed is increased. A detailed description of the semiconductor switch circuit is omitted.
 電流センサ14は、スイッチ素子SW2,SW3の直列回路とコンデンサ12との間の通電路において、逆流防止用ダイオード15の接続点よりも上流側の位置に配置されており、スイッチ素子SW2,SW3の直列回路を通してコンデンサ12およびインバータ(負荷)20に流れる電流Idcを検知する。 The current sensor 14 is disposed at a position upstream of the connection point of the backflow prevention diode 15 in the current path between the series circuit of the switch elements SW2 and SW3 and the capacitor 12, and the current sensor 14 is connected to the switch elements SW2 and SW3. A current Idc flowing through the capacitor 12 and the inverter (load) 20 through the series circuit is detected.
 異常検出部60は、全波整流回路2の正側端子から負側端子へとスイッチ素子SW1を通る経路で短絡電流Aが流れ続ける“電源短絡の異常”、および全波整流回路2からリアクタ11を通りさらに逆流防止用ダイオード15またはオン状態のスイッチ素子SW2,SW3を通る経路で過大な突入電流等の過電流がコンデンサ12に流れる“過電流の異常”を、第1実施形態と同様に電流センサ13の検知電流Iaに応じて検出する。また、異常検出部60は、コンデンサ12の一端から他端へとスイッチ素子SW3,SW2,SW1を通る経路で大きな短絡電流B(=-Idc)が流れる“上下短絡の異常”を、第1実施形態と同様に電流センサ14の検知電流Idcに応じて検出する。 The anomaly detection unit 60 is configured so that the short-circuit current A continues to flow in the path passing through the switch element SW1 from the positive side terminal to the negative side terminal of the full-wave rectifier circuit 2, and from the full-wave rectifier circuit 2 to the reactor 11 In the same way as in the first embodiment, an “overcurrent abnormality” is caused by excessive current such as an inrush current flowing through the capacitor 12 in the path passing through the backflow prevention diode 15 or the on-state switch elements SW2 and SW3. Detection is performed according to the detection current Ia of the sensor 13. Further, the abnormality detection unit 60 performs the “upper and lower short circuit abnormality” in which a large short-circuit current B (= −Idc) flows through the switch elements SW3, SW2, and SW1 from one end to the other end of the capacitor 12 in the first implementation. The detection is performed according to the detection current Idc of the current sensor 14 as in the embodiment.
 さらに、異常検出部60は、スイッチ素子SW2,SW3のいずれかがオフ(開放)したままオン(閉成)しない異常いわゆる“オープン故障の異常”を検出する。スイッチ素子SW2の“オープン故障の異常”は、寄生ダイオードD2が導通しない異常を含む。スイッチ素子SW3の“オープン故障の異常”は、寄生ダイオードD3が導通しない異常を含む。これら“オープン故障の異常”は、電流センサ13の検知電流Iaと電流センサ14の検知電流Idcとの差ΔI(=Ia-Idc)によって検出することができる。具体的には、スイッチ素子SW2,SW3のいずれかに“オープン故障の異常”が生じると、電流センサ14の検知電流Idcが零となるので、差ΔI(=Ia-Idc)が閾値αより大きくなる。差ΔIが閾値αより大きくなった場合、異常検出部60は、スイッチ素子SW2,SW3のいずれかに“オープン故障の異常”が生じたと判定する。なお、この場合、電流センサ13で検知される電流Iaは、逆流防止用ダイオード15を順方向に通ってコンデンサ12側に流れていることになる。 Furthermore, the abnormality detection unit 60 detects an abnormality that does not turn on (close) while one of the switch elements SW2 and SW3 is off (open), that is, an “open failure abnormality”. The “open failure abnormality” of the switch element SW2 includes an abnormality in which the parasitic diode D2 does not conduct. The “open failure abnormality” of the switch element SW3 includes an abnormality in which the parasitic diode D3 does not conduct. These “open failure abnormalities” can be detected by the difference ΔI (= Ia−Idc) between the detection current Ia of the current sensor 13 and the detection current Idc of the current sensor 14. Specifically, when an “open fault abnormality” occurs in either of the switch elements SW2 and SW3, the detection current Idc of the current sensor 14 becomes zero, so the difference ΔI (= Ia−Idc) is larger than the threshold value α. Become. When the difference ΔI becomes larger than the threshold value α, the abnormality detection unit 60 determines that an “open failure abnormality” has occurred in one of the switch elements SW2 and SW3. In this case, the current Ia detected by the current sensor 13 flows through the backflow prevention diode 15 in the forward direction to the capacitor 12 side.
 この異常検出部60の検出結果がスイッチ駆動制御部47,48およびインバータ制御部50に供給される。 The detection result of the abnormality detection unit 60 is supplied to the switch drive control units 47 and 48 and the inverter control unit 50.
 スイッチ駆動制御部47は、“電源短絡の異常”および“過電流の異常”のいずれかが異常検出部60で検出された場合に、第1実施形態と同様に、スイッチ素子SW1を強制的にオフする。スイッチ駆動制御部48は、“電源短絡の異常”および“過電流の異常”のいずれかが異常検出部60で検出された場合に、スイッチ素子SW2,SW3を強制的にオンする。 The switch drive control unit 47 forcibly switches the switch element SW1 in the same manner as in the first embodiment when either the “power supply short circuit abnormality” or the “overcurrent abnormality” is detected by the abnormality detection unit 60. Turn off. The switch drive control unit 48 forcibly turns on the switch elements SW2 and SW3 when either the “power supply short circuit abnormality” or the “overcurrent abnormality” is detected by the abnormality detection unit 60.
 スイッチ駆動制御部47は、“上下短絡の異常”が異常検出部60で検出された場合、第1実施形態と同様に、安全保護のためスイッチ素子SW1を強制的にオフする。スイッチ駆動制御部48は、“上下短絡の異常”が異常検出部60で検出された場合、安全保護のためスイッチ素子SW2,SW3を強制的にオフする。 The switch drive control unit 47 forcibly turns off the switch element SW1 for safety protection, as in the first embodiment, when “abnormality of vertical short circuit” is detected by the abnormality detection unit 60. The switch drive control unit 48 forcibly turns off the switch elements SW2 and SW3 for safety protection when the “abnormality of vertical short circuit” is detected by the abnormality detection unit 60.
 また、スイッチ駆動制御部47は、スイッチ素子SW2,SW3のいずれかの“オープン故障の異常”が異常検出部60で検出された場合、スイッチ素子SW1を強制的にオフする。スイッチ駆動制御部48は、スイッチ素子SW2,SW3のいずれかの“オープン故障の異常”が異常検出部60で検出された場合、スイッチ素子SW2,SW3を強制的にオフする。但し、この“オープン故障の異常”に際しては、スイッチ素子SW2,SW3にオフ信号を入力しても、動作状態に変化はないので、容量の小さい逆流防止用ダイオード15に大きな電流が流れる事態を阻止できない。そこで、インバータ制御部50は、スイッチ素子SW2,SW3のいずれかの“オープン故障の異常”が異常検出部60で検出された場合、即時にインバータ20のスイッチングを停止して逆流防止用ダイオード15の破壊を防ぐ。 Further, the switch drive control unit 47 forcibly turns off the switch element SW1 when any one of the switch elements SW2 and SW3 detects “open failure” in the abnormality detection unit 60. The switch drive control unit 48 forcibly turns off the switch elements SW2 and SW3 when any one of the switch elements SW2 and SW3 detects “abnormal open fault” by the abnormality detection unit 60. However, in the case of “abnormality of open failure”, even if an OFF signal is input to the switch elements SW2 and SW3, the operation state does not change, so that a large current flows through the backflow prevention diode 15 having a small capacity. Can not. Therefore, the inverter control unit 50 immediately stops the switching of the inverter 20 and detects the backflow prevention diode 15 when the “abnormality of open failure” of either of the switch elements SW2 and SW3 is detected by the abnormality detection unit 60. Prevent destruction.
 なお、インバータ制御部50は、“電源短絡の異常”“過電流の異常”“上下短絡の異常”のいずれかが異常検出部60で検出された場合に、第1実施形態と同様の制御を行う。 The inverter control unit 50 performs the same control as that in the first embodiment when any one of “abnormality of power supply short-circuit”, “abnormality of overcurrent”, and “abnormality of vertical short-circuit” is detected by the abnormality detection unit 60. Do.
 他の構成は第1実施形態と同じである。同じ部分の説明については省略する。 Other configurations are the same as those in the first embodiment. The description of the same part is omitted.
 つぎに、コントローラ30が実行する制御のうち、“電源短絡の異常”および“過電流の異常”のいずれかが生じた場合の制御、および“オープン故障の異常”が生じた場合の制御について説明する。電流センサ13,14の検知電流Ia,Idcと異常内容との関係およびその異常に対する安全処置を図4に判り易く示している。 Next, of the control executed by the controller 30, the control when either “power supply short circuit abnormality” or “overcurrent abnormality” occurs and the control when “open failure abnormality” occurs will be described. To do. The relationship between the detected currents Ia and Idc of the current sensors 13 and 14 and the content of the abnormality and the safety measures for the abnormality are shown in FIG.
 “電源短絡の異常”および“過電流の異常”のいずれかが異常検出部60で検出された場合、スイッチ駆動制御部47はスイッチ素子SW1を強制的にオフし、スイッチ駆動制御部48はスイッチ素子SW2,SW3を強制的にオンする。“過電流の異常”が生じた場合にスイッチ素子SW2,SW3がオフの状態のままでは、容量の小さい逆流防止用ダイオード15に過電流の全てが流れてしまい、逆流防止用ダイオード15が破壊される可能性がある。この破壊を防ぐため、スイッチ素子SW2,SW3を強制的にオンするようにしている。 When either the “power supply short circuit abnormality” or the “overcurrent abnormality” is detected by the abnormality detection unit 60, the switch drive control unit 47 forcibly turns off the switch element SW1, and the switch drive control unit 48 The elements SW2 and SW3 are forcibly turned on. When the “overcurrent abnormality” occurs, if the switch elements SW2 and SW3 remain off, all of the overcurrent flows through the backflow prevention diode 15 having a small capacity, and the backflow prevention diode 15 is destroyed. There is a possibility. In order to prevent this destruction, the switch elements SW2 and SW3 are forcibly turned on.
 スイッチ素子SW2,SW3のいずれか例えばスイッチ素子SW3がオフしたままオンしない“オープン故障の異常”が生じた場合、スイッチ素子SW2,SW3の直列回路からコンデンサ12へと流れる電流Idcが零または零に近い値に減少する。このとき、電流センサ13の検知電流Iaと電流センサ14の検知電流Idcとの差ΔI(=Ia-Idc)が閾値αより大きくなるので、異常検出部60は、スイッチ素子SW2,SW3のいずれかに“オープン故障の異常”が生じたと判定する。この判定に際し、スイッチ駆動制御部47はスイッチ素子SW1を強制的にオフし、スイッチ駆動制御部48はスイッチ素子SW2,SW3を強制的にオフし、インバータ制御部50は負荷であるインバータ20のスイッチングを即時に停止する。 When an “open fault abnormality” occurs in which one of the switch elements SW2 and SW3, for example, the switch element SW3 is turned off and does not turn on, the current Idc flowing from the series circuit of the switch elements SW2 and SW3 to the capacitor 12 becomes zero or zero. Decrease to a close value. At this time, since the difference ΔI (= Ia−Idc) between the detection current Ia of the current sensor 13 and the detection current Idc of the current sensor 14 becomes larger than the threshold value α, the abnormality detection unit 60 can detect either of the switch elements SW2 and SW3. It is determined that an “open failure abnormality” has occurred. In this determination, the switch drive control unit 47 forcibly turns off the switch element SW1, the switch drive control unit 48 forcibly turns off the switch elements SW2 and SW3, and the inverter control unit 50 switches the inverter 20 that is a load. Stop immediately.
 以上のように、昇圧回路10における“電源短絡の異常”“過電流の異常”“上下短絡の異常”“オープン故障の異常”を電流センサ13,14によって確実に検出することができる。また、検出した異常の内容に応じてスイッチ素子SW1,SW2,SW3およびインバータ20の動作を安全側へ適切に制御するので、昇圧回路10および全波整流回路2を保護することができる。 As described above, the “current supply short-circuit abnormality”, “overcurrent abnormality”, “upper and lower short-circuit abnormality”, and “open failure abnormality” in the booster circuit 10 can be reliably detected by the current sensors 13 and 14. In addition, since the operations of the switch elements SW1, SW2, SW3 and the inverter 20 are appropriately controlled to the safe side according to the detected abnormality, the booster circuit 10 and the full-wave rectifier circuit 2 can be protected.
 なお、上記各実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 The above embodiments are presented as examples, and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, rewrites, and changes can be made without departing from the scope of the invention. In these embodiments, the scope of the invention is included in the gist, and is included in the invention described in the claims and an equivalent scope thereof.
 本発明の実施形態の電源装置は、冷凍サイクルを有する空気調和機や熱源機等への搭載が可能である。 The power supply apparatus according to the embodiment of the present invention can be mounted on an air conditioner or a heat source apparatus having a refrigeration cycle.

Claims (10)

  1.  交流電圧を整流する整流回路と、
     前記整流回路の出力端に接続されたリアクタおよび第1スイッチの直列回路、この第1スイッチと負荷との間の通電路に設けられた逆流防止用ダイオード、この逆流防止用ダイオードを介して前記第1スイッチに並列接続されたコンデンサ、前記逆流防止用ダイオードに並列接続された第2スイッチを含み、前記第1スイッチのオン,オフおよびこの第1スイッチのオン,オフとは逆位相の前記第2スイッチのオン,オフにより前記整流回路の出力電圧を昇圧する昇圧回路と、
     前記コンデンサから前記第1スイッチおよび前記第2スイッチを通して短絡電流が流れる異常を前記昇圧回路の出力電流に基づいて検出するコントローラと、
     を備えることを特徴とする電源装置。
    A rectifier circuit for rectifying an alternating voltage;
    A series circuit of a reactor and a first switch connected to the output terminal of the rectifier circuit, a backflow prevention diode provided in a current path between the first switch and a load, and the backflow prevention diode via the backflow prevention diode A capacitor connected in parallel to one switch and a second switch connected in parallel to the backflow prevention diode, wherein the first switch is turned on and off and the first switch is turned on and off in phase opposite to the second A booster circuit that boosts the output voltage of the rectifier circuit by turning on and off the switch;
    A controller for detecting an abnormality in which a short-circuit current flows from the capacitor through the first switch and the second switch based on an output current of the booster circuit;
    A power supply apparatus comprising:
  2.  前記コントローラは、前記異常を検出した場合に前記第1スイッチおよび前記第2スイッチをオフする、
     ことを特徴とする請求項1に記載の電源装置。
    The controller turns off the first switch and the second switch when the abnormality is detected;
    The power supply device according to claim 1.
  3.  前記コントローラは、前記異常を検出した場合に前記負荷を即時に停止する、
     ことを特徴とする請求項1または請求項2に記載の電源装置。
    The controller immediately stops the load when detecting the abnormality.
    The power supply device according to claim 1, wherein the power supply device is provided.
  4.  前記第2スイッチは、寄生ダイオードを含むとともに、オン時に双方向に電流が流れる双方向性を有し、かつオン時の電力損失が前記寄生ダイオードの順方向電流による電力損失より小さい半導体スイッチ素子である、
     前記逆流防止用ダイオードは、前記第2スイッチの前記寄生ダイオードである、
     ことを特徴とする請求項1から請求項3のいずれか一項に記載の電源装置。
    The second switch includes a parasitic diode, has a bidirectional property in which a current flows in both directions when turned on, and is a semiconductor switch element in which the power loss when turned on is smaller than the power loss due to the forward current of the parasitic diode. is there,
    The backflow prevention diode is the parasitic diode of the second switch.
    The power supply device according to any one of claims 1 to 3, wherein the power supply device is provided.
  5.  前記コントローラは、
     前記整流回路から前記リアクタおよび前記第1スイッチを通して短絡電流が流れ続ける異常を前記整流回路への入力電流に基づいて検出し、
     前記整流回路から前記第2スイッチを通して前記コンデンサに過電流が流れる異常を前記整流回路への入力電流に基づいて検出する、
     ことを特徴とする請求項1に記載の電源装置。
    The controller is
    Detecting an abnormality in which a short-circuit current continues to flow from the rectifier circuit through the reactor and the first switch based on an input current to the rectifier circuit;
    Detecting an abnormality in which an overcurrent flows from the rectifier circuit to the capacitor through the second switch based on an input current to the rectifier circuit;
    The power supply device according to claim 1.
  6.  前記第2スイッチは、前段スイッチと後段スイッチとの直列回路であり、
     前記昇圧回路への入力電流を検知する入力電流検知器と、
     前記前段スイッチおよび前記後段スイッチの直列回路を通して前記コンデンサおよび前記負荷に流れる電流を検知する出力電流検知器と、
     をさらに備え、
     前記コントローラは、前記コンデンサから前記第1スイッチおよび前記第2スイッチを通して短絡電流が流れる異常を出力電流検知器の検知結果から検出するとともに、前記前段スイッチおよび前記後段スイッチのいずれかがオフしたままオンしない故障を前記入力電流検知器の検知結果および前記出力電流検知器の検知結果に応じて検出する、
     ことを特徴とする請求項1に記載の電源装置。
    The second switch is a series circuit of a front switch and a rear switch,
    An input current detector for detecting an input current to the booster circuit;
    An output current detector for detecting a current flowing through the capacitor and the load through a series circuit of the front-stage switch and the rear-stage switch;
    Further comprising
    The controller detects an abnormality in which a short-circuit current flows from the capacitor through the first switch and the second switch from a detection result of an output current detector, and turns on while either the front switch or the rear switch is off. Detecting a failure that does not occur according to the detection result of the input current detector and the detection result of the output current detector,
    The power supply device according to claim 1.
  7.  前記前段スイッチは、寄生ダイオードを含むとともに、オン時に双方向に電流が流れる双方向性を有する半導体スイッチ素子である、
     前記後段スイッチは、寄生ダイオードを含むとともに、オン時に双方向に電流が流れる双方向性を有する半導体スイッチ素子である、
     前記前段スイッチおよび前記後段スイッチの直列回路は、前記前段スイッチおよび前記後段スイッチを互いに逆方向に直列接続し、前記後段スイッチの寄生ダイオードの逆回復電流を抑制する高効率スイッチング回路を前記逆流防止用ダイオードと共に形成するもので、前記前段スイッチおよび前記後段スイッチがオンしたときの電力損失が前記逆流防止用ダイオードの順方向電流による電力損失より小さい、
     ことを特徴とする請求項6に記載の電源装置。
    The pre-stage switch is a semiconductor switch element including a parasitic diode and having bidirectionality in which current flows bidirectionally when turned on.
    The post-stage switch is a semiconductor switch element including a parasitic diode and having bidirectionality in which current flows bidirectionally when turned on.
    The series circuit of the front-stage switch and the rear-stage switch includes a high-efficiency switching circuit for preventing the reverse current by connecting the front-stage switch and the rear-stage switch in series in opposite directions and suppressing a reverse recovery current of a parasitic diode of the rear-stage switch. It is formed together with a diode, and the power loss when the front-stage switch and the rear-stage switch are turned on is smaller than the power loss due to the forward current of the backflow prevention diode,
    The power supply device according to claim 6.
  8.  前記逆流防止用ダイオードは、前記負荷が大きい場合に前記前段スイッチおよび前記後段スイッチの直列回路に流れる電流と同じ大きさの電流が継続して流れることのできる容量を有しない、
     ことを特徴とする請求項7に記載の電源装置。
    The backflow prevention diode does not have a capacity capable of continuously flowing a current having the same magnitude as the current flowing in the series circuit of the front-stage switch and the rear-stage switch when the load is large.
    The power supply device according to claim 7.
  9.  前記コントローラは、
     前記前段スイッチおよび前記後段スイッチのいずれかがオフしたままオンしない故障を検出した場合に、前記第1スイッチをオフするとともに前記前段スイッチおよび前記後段スイッチをオフする、
     ことを特徴とする請求項6から請求項8のいずれか一項に記載の電源装置。
    The controller is
    When a failure is detected that does not turn on while either the front switch or the rear switch is off, the first switch is turned off and the front switch and the rear switch are turned off.
    The power supply device according to any one of claims 6 to 8, wherein
  10.  前記コントローラは、
     前記前段スイッチおよび前記後段スイッチのいずれかがオフしたままオンしない故障を検出した場合に、前記負荷を即時に停止する、
     ことを特徴とする請求項6から請求項9のいずれか一項に記載の電源装置。
    The controller is
    When a failure is detected that does not turn on while either the front switch or the rear switch is off, the load is immediately stopped.
    The power supply device according to any one of claims 6 to 9, wherein
PCT/JP2016/083128 2016-03-16 2016-11-08 Power supply device WO2017158916A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018505230A JP6528002B2 (en) 2016-03-16 2016-11-08 Power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016052671 2016-03-16
JP2016-052671 2016-03-16

Publications (1)

Publication Number Publication Date
WO2017158916A1 true WO2017158916A1 (en) 2017-09-21

Family

ID=59851503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083128 WO2017158916A1 (en) 2016-03-16 2016-11-08 Power supply device

Country Status (2)

Country Link
JP (1) JP6528002B2 (en)
WO (1) WO2017158916A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065550A1 (en) * 2017-09-29 2019-04-04 パナソニックIpマネジメント株式会社 System interconnection system
JP2020124063A (en) * 2019-01-31 2020-08-13 東芝キヤリア株式会社 Power supply device
JPWO2021166041A1 (en) * 2020-02-17 2021-08-26
WO2023228677A1 (en) * 2022-05-24 2023-11-30 三菱重工サーマルシステムズ株式会社 Power conversion device, switch fault detection method for power conversion device, and program
US12009741B2 (en) 2019-08-22 2024-06-11 Nissin Electric Co., Ltd. Power supply apparatus and control method of power supply apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089639A (en) * 1994-06-23 1996-01-12 N F Kairo Sekkei Block:Kk Power converter
JP2000014155A (en) * 1998-06-26 2000-01-14 Matsushita Electric Ind Co Ltd Power supply circuit and air conditioner using it
JP2011078179A (en) * 2009-09-29 2011-04-14 Sanken Electric Co Ltd Resonant converter device
JP2012135162A (en) * 2010-12-24 2012-07-12 Hitachi Appliances Inc Power factor improvement converter and refrigeration cycle device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089639A (en) * 1994-06-23 1996-01-12 N F Kairo Sekkei Block:Kk Power converter
JP2000014155A (en) * 1998-06-26 2000-01-14 Matsushita Electric Ind Co Ltd Power supply circuit and air conditioner using it
JP2011078179A (en) * 2009-09-29 2011-04-14 Sanken Electric Co Ltd Resonant converter device
JP2012135162A (en) * 2010-12-24 2012-07-12 Hitachi Appliances Inc Power factor improvement converter and refrigeration cycle device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065550A1 (en) * 2017-09-29 2019-04-04 パナソニックIpマネジメント株式会社 System interconnection system
JP2019068618A (en) * 2017-09-29 2019-04-25 パナソニックIpマネジメント株式会社 Interconnection system
JP7117493B2 (en) 2017-09-29 2022-08-15 パナソニックIpマネジメント株式会社 Grid-connected system
JP2020124063A (en) * 2019-01-31 2020-08-13 東芝キヤリア株式会社 Power supply device
JP7130568B2 (en) 2019-01-31 2022-09-05 東芝キヤリア株式会社 power supply
US12009741B2 (en) 2019-08-22 2024-06-11 Nissin Electric Co., Ltd. Power supply apparatus and control method of power supply apparatus
JPWO2021166041A1 (en) * 2020-02-17 2021-08-26
WO2021166041A1 (en) * 2020-02-17 2021-08-26 三菱電機株式会社 Dc power supply device, electric motor drive device, air conditioner, and refrigerator
JP7183472B2 (en) 2020-02-17 2022-12-05 三菱電機株式会社 Motor drives, air conditioners and refrigerators
WO2023228677A1 (en) * 2022-05-24 2023-11-30 三菱重工サーマルシステムズ株式会社 Power conversion device, switch fault detection method for power conversion device, and program

Also Published As

Publication number Publication date
JP6528002B2 (en) 2019-06-12
JPWO2017158916A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2017158916A1 (en) Power supply device
KR101551048B1 (en) Power conversion apparatus, motor drive apparatus, and refrigeration air-conditioning apparatus
JP4989591B2 (en) Permanent magnet synchronous motor driving device, air conditioner, ventilation fan driving device, washing machine, automobile and vehicle
JP2013162719A (en) Rush-current prevention device
KR20140109165A (en) Power converting apparatus and air conditioner having the same
JP7023387B2 (en) Motor control device and air conditioner
JP6594584B2 (en) DC power supply and air conditioner
US11323050B2 (en) Power supply apparatus
WO2015056403A1 (en) Power converter and air conditioner
JP2008005592A (en) Motor drive device and storage device with the motor drive device
JP2018182939A (en) Power source device
WO2017199299A1 (en) Dc power source, refrigeration cycle device and air-conditioner
JP6182462B2 (en) Power converter
JP6926272B2 (en) Power supply
JP7130568B2 (en) power supply
WO2018142738A1 (en) Air conditioner
WO2022185374A1 (en) Ac-dc conversion device, electric motor drive device, and refrigeration cycle device
JP7198344B2 (en) DC power supplies, motor drives, air conditioners, refrigerators and heat pump water heaters
WO2023079672A1 (en) Motor drive device amd refrigeration cycle application device
WO2016190345A1 (en) Heat-source device
JP2017175873A (en) Power supply device
JP7049770B2 (en) Power converter and motor drive system
JP2021145517A (en) Power supply and motor drive
JP2008164267A (en) Refrigerating cycle device using expander

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505230

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894533

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894533

Country of ref document: EP

Kind code of ref document: A1